
Background

For only over two years since its emergence, COVID-19

pandemic has caused an immerse burden on the global

healthcare system and claimed over 4 million lives. Early

detection and diagnosis are the keys to improve treatment

outcome, control disease spreading, and alleviate logistical

burden for healthcare facilities. Previous studies on

incorporation of artificial intelligence-based methodologies

have shown promising results for COVID-19 screening on

medical images. However, one drawback of these studies is

to not incorporate radiomics despite its powerful diagnostic

and prognostic power in disease screening. In this study, we

propose a combined approach integrating deep learning and

radiomics for COVID-19 detection in CT scans obtained from

different patient cohorts.

Method

We analyzed the CT scans of 240 cancer patients diagnosed

with COVID-19 at MD Anderson and 227 patients retrieving

from the RSNA International COVID-19 Open Radiology

Database (RICORD). RICORD database comprises both

COVID-19 positive (n = 110) and negative (n = 117) patients.

Figure 1 shows the overall study design. Lung masks for

COVID-19 negative and positive scans were auto-

segmented using the pre-trained convolutional neural

networks (CNN) U-net R231 and U-net R231CovidWeb,

respectively. We performed habitat analysis to identify

subregions within the lung. This partitioning method

comprises of 2 clustering steps. First, at the individual level,

the lung region was oversegmented into superpixels from 2

precalculated features: CT number and entropy of CT

number. Then, at the population level, consensus clustering

was performed on generated superpixels, whose similar

image phenotypes indicate same habitats, to partition

individual lung scans into different habitat regions. Here, the

clustering number k = 3 was used, indicating that 3 different

habitats were identified for each scan. Next, the spatial

cooccurrence statistics among different habitats were

generated as multiregional spatial interaction (MSI) matrix,

which can be used as potential features for classification.

Conclusions

These results indicate the diagnostic power of habitat analysis

as a feature extraction tool for COVID-19 diagnosis in CT

scans. A strength of our study is diverse patient cohorts

However, a weakness of this study is the imbalanced data

between COVID-19 positive and negative patients, which

possibly resulted in low specificity and recall values during

classification. Future works include dimensionality reduction of

extracted deep features, performing classification on those

features, and performing classification on both habitat-based

and deep features to test incorporation of both types of

features would yield better prediction than each type alone.
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Objective

We utilized habitat analysis and an autoencoder neural

network as feature extraction tools for machine learning

classification to predict COVID-19 infection in CT scans.
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Method (Cont.)

For deep feature extraction, we utilized a 3D autoencoder built

based on an U-net CNN architecture. The CT scans overlaid

with corresponding lung masks were used as inputs. The inputs

were split into 3 subsets for training (70%), validation (10%),

and testing (20%). Mean squared error (MSE) loss function

was used for training the autoencoder. After training and output

quality check, we extracted the deep features from the

bottleneck layer.

Multiple methods were utilized for feature selection and

dimensionality reduction including pearson’s correlation

coefficient (PCC) and principal component analysis (PCA). The

finalized features were used to train multiple machine learning

(ML) classifiers with K Fold cross validation (K = 10). The

outputs were COVID-19 negative and positive. We assessed

the performance of each model using different evaluation

metrics such as sensitivity, specificity, and confusion matrix.

Result

From habitat analysis, we identified 3 subregions with distinct

image phenotypes (Fig. 2) and extracted 25 features including

3 habitat volume and 22 MSI features. Performing pair-wise

PCC of 25 habitat features, we selected out 6 features for

machine learning classification to avoid multicollinearity (Fig.

3). Fitting these features into different ML classifers yielded

promising results with many evaluation metrics such as

accuracy, recall, and AUC_ROC over 0.7 (Table 1). Further

analysis indicated that quadratic discriminant
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Figure 2. Different habitats with distinct image phenotype generated 

from habitat analysis. (A) Heatmap of superpixels by image features. (B) 

Boxplot of image features by habitats.
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Results (Cont.)

analysis was the best classifier for COVID-19 infection using

habitat-based features (Fig. 4)

Model Accuracy Precision Recall F1 Score AUC_ROC

Logistic Regression 0.719611 0.592803 0.515379 0.680781 0.728914

Support Vector Machine 0.770953 0.385476 0.500000 0.671262 0.716162

Random Forest 0.760685 0.73308 0.608081 0.745369 0.805088

Quadratic Discriminant Analysis 0.712026 0.728685 0.730859 0.712769 0.798232

Table 1. Summary Table of Different Classifiers’ Performace

Predicted Diagnosis
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Figure 3. Feature selection for habitat-based analysis. Pair-wise 

Pearson’s correlation coefficient matrix of all habitat-based features (red stars 

indicate feature used for classification).

Training the autoencoder with batch size of 6 and 150 epochs

yielded good results with low train and validation loss (Fig. 5).

After training, we extracted 1024 deep features from the

bottleneck layer of the model.
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Figure 1. Proposed study design

Figure 4. Confusion matrix of the 

performance of quadratic discriminant 

analysis with K Fold cross validation.

Figure 5. Train and validation loss 

curves of 3D autoencoder
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