
References
Margossian, Charles C. (2019). A Review of Automatic
Differentiation and its Efficient Implementation. 1-10.

Baydin, Atılım Günęs, et al. (2018). Automatic Differentiation
in Machine Learning: a Survey. 1-14.

Lange, Robert (2019). Forward Mode Automatic
Differentiation and Dual Numbers.

Canonical Duality Theory for Solving Minimization Problem of
Rosenbrock Function - Scientific Figure on ResearchGate.

Cohen, William. Automatic Reverse-Mode Differentiation. 1-3

Bayesian Signal model for HPMRI

Griewank, Andreas. (1997). On Automatic Differentiation.

Exploring Autodiff and Finite Differences Using the Rosenbrock Function
Nicholas Rubino1, Adrian Celaya2, David T. Fuentes Ph.D3

 Department of Imaging Physics, The University of Texas MD Anderson Cancer Center2, Houston, TX

Methods
● The Rosenbrock function is used as a standard reference frequently used

to evaluate the efficiency and accuracy of automatic differentiation
frameworks.

● The function consists of two variables and is of the form
○ f(x, y) = (1-x)^2 + (x - y^2)^2.
○ Constrained by the circle x^2 + y^2 <= 1.

● This function has a distinct global minimum that is inside the banana
shaped valley and thus is also known as the banana function.

Figure 1. 2D Rosenbrock
function. Note the spike under
the valley that shows a clear
global minimum.

The Rosenbrock function and its constraint can be generalized to any
number of variables, which we used to evaluate the speed, the number of
iterations, the number of function evaluations and the memory of numerical
differentiation versus autodiff in finding the minimum.

Using MATLAB we were able to use the optimization toolbox to set up a
Rosenbrock function of n parameters and time how long each method took to
reach the minimum.

Numerical Differentiation (Sum of Finite Differences)
● Uses the limit definition of a derivative to approximate the value of a

derivative for a given function.
● Computational complexity scales with the complexity of the function.
● Much faster than hand calculations but can be unstable.
● Works best with few independent variables as you must fully evaluate the

function for each input.

Methods (continued)

Hypothesis
Using automatic differentiation to recover the
parameters of the extended Rosenbrock function will
be faster than numerical differentiation.

Results
For 2, 4, and 10 parameters, finite differences was faster than

autodiff. However, for all parameters, Auto reverse completed the objective
function optimization with fewer function evaluations. Thus auto reverse is
the best candidate for the HPMRI optimization function shown in Figure 5.

 Figure 2. Function Evaluations versus number of dimensions.

Figure 3. Evaluation time versus number of dimensions.

Figure 3. Memory allocated vs number of parameters.

Discussion/Conclusion
Auto reverse was the fastest of the three methods. Auto forward and
reverse took the same number of function evaluations but auto reverse
was faster, especially a larger number of parameters. Finite
differences was not significantly slower in time, but took from 2.6 (2
parameters) to 453.6 (1000 parameters) times as many function
evaluations compared to auto forward and auto reverse. As the
Rosenbrock function is not very computationally complex, finite
differences could keep up even with the discrepancy in number of
function evaluations.

Using a more complex function, such as the one for HPMRI, (shown in
Figure 5), finite differences should theoretically fall behind as the time
needed for each function evaluation should be greater, thus making it
much slower overall. We have not been able to get any of these
solvers to work for the HPMRI function yet due to the high complexity
of the function. We expect auto reverse to be the best option.

This is expected as finite differences is expected to be computationally
expensive as the number of parameters increases.

One unexpected result was finite differences using more memory than
auto reverse or auto forward. Auto reverse was expected to use the
most memory due to the Wengert list. Finite differences using the most
memory is due to the number of function evaluations.

Auto forward and reverse had an average of 1690 Kb allocated per
function evaluation while finite differences has 163.3 Kb allocated per
function evaluation.

.Figure 5. Objective function for HPMRI.

Background
● Computer models are growing increasingly complex as more accurate

models are created. Optimizing parameters in these models relies on
efficiently taking derivatives.

● Using existing machine learning framework, we can compute derivatives of
physics based functions quickly.

● Our model is used to find the optimum flip angles for hyperpolarized
magnetic resonance imaging (HPMRI).

● Using the Rosenbrock function as an example to see the benefit of this
approach as a surrogate for a full physics based model in HPMRI.

Numerical Differentiation (Sum of Finite Differences)
● Computationally expensive, especially for problems with a complex

function and a large number of input variables.
● Has problems with truncation error as well as rounding error due to the

imprecise nature of floating point arithmetic with numbers very close to
zero.

● Cost of computation as well as rounding errors exasperated when
computing a gradient.

● Requires O(n) evaluations for an n dimensional gradient.

What is Automatic Differentiation (Autodiff)?
● A technique used to find the gradient of a function.
● Uses the chain rule to break down functions into elementary operations

using dummy variables to store how each piece interacts with the others.
● Uses exact formulas and thus is to the accuracy of floating-point

arithmetic.
● Similar to symbolic differentiation but evaluates the function and derivative

at each node which eliminates the expression swell problem commonly
found with symbolic differentiation.

● Has a forward mode and a reverse mode, which differ by how they obtain
the gradient.

Forward Mode
● Applies the chain rule and evaluates the gradient to each basic operation

to get a forward primal trace.
○ Primals are an ordered pair of a node element and its derivative.

Denoted by variable with a dot on top.
● We then obtain a derivative trace of the function with respect to the

independent variable that we seed.
● This method is preferred when the number of independent variables is

much smaller than the number of dependent variables.
○ f:R^n -> R^m such that m>>n
○ Time complexity of n*c*ops(f) where ops(f) is the operation count of

f and c < 6 (~2 to 3)
● The final gradient is then computed by multiplying the nodes together from

the derivative trace.

Reverse Mode
● Starts with a forward pass where a trace of the primal nodes of the

function is computed and each node is augmented with adjoint nodes,
which store all intermediate variables and their connections in memory.
This is called a Wengert list.

○ Adjoints are denoted by a variable with a bar on top of it.
○ The derivatives of each adjoint are not computed or stored during

the forward pass
● Then there is a reverse pass where the Wengert list is followed and the

derivatives of each adjoint node are computed.
● The derivatives of each adjoint are chosen with respect to a given

dependent variable.
● This method is preferred when the number of dependent variables is

much smaller than the number of independent variables as it produces a
gradient of multiple independent variables using only one pass.

○ f:R^n -> R^m such that n>>m
○ Time complexity of m*c*ops(f) where ops(f) is the operation count of

f and c <6 (~2 to 3)

