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Methods 
● The Rosenbrock function is used as a standard reference frequently used 

to evaluate the efficiency and accuracy of automatic differentiation 
frameworks.  

● The function consists of two variables and is of the form 
○ f(x, y) = (1-x)^2 + (x - y^2)^2.
○ Constrained by the circle x^2 + y^2 <= 1.

● This function has a distinct global minimum that is inside the banana 
shaped valley and thus is also known as the banana function.

Figure 1. 2D Rosenbrock 
function.  Note the spike under 
the valley that shows a clear 
global minimum. 

The Rosenbrock function and its constraint can be generalized to any 
number of variables, which we used to evaluate the speed, the number of 
iterations, the number of function evaluations and the memory of numerical 
differentiation versus autodiff in finding the minimum.  

Using MATLAB we were able to use the optimization toolbox to set up a 
Rosenbrock function of n parameters and time how long each method took to 
reach the minimum.  

Numerical Differentiation (Sum of Finite Differences)
● Uses the limit definition of a derivative to approximate the value of a 

derivative for a given function.
● Computational complexity scales with the complexity of the function.
● Much faster than hand calculations but can be unstable. 
● Works best with few independent variables as you must fully evaluate the 

function for each input. 

Methods (continued)

Hypothesis 
Using automatic differentiation to recover the 
parameters of the extended Rosenbrock function will 
be faster than numerical differentiation.

Results 
For 2, 4, and 10 parameters, finite differences was faster than 

autodiff.  However, for all parameters, Auto reverse completed the objective 
function optimization with fewer function evaluations.  Thus auto reverse is 
the best candidate for the HPMRI optimization function shown in Figure 5.

  Figure 2. Function Evaluations versus number of dimensions.

Figure 3. Evaluation time versus number of dimensions.

Figure 3. Memory allocated vs number of parameters.

Discussion/Conclusion
Auto reverse was the fastest of the three methods.  Auto forward and 
reverse took the same number of function evaluations but auto reverse 
was faster, especially a larger number of parameters.  Finite 
differences was not significantly slower in time, but took from 2.6 (2 
parameters) to 453.6 (1000 parameters) times as many function 
evaluations compared to auto forward and auto reverse.  As the 
Rosenbrock function is not very computationally complex, finite 
differences could keep up even with the discrepancy in number of 
function evaluations.  

Using a more complex function, such as the one for HPMRI, (shown in 
Figure 5), finite differences should theoretically fall behind as the time 
needed for each function evaluation should be greater, thus making it 
much slower overall.  We have not been able to get any of these 
solvers to work for the HPMRI function yet due to the high complexity 
of the function.  We expect auto reverse to be the best option.

This is expected as finite differences is expected to be computationally 
expensive as the number of parameters increases.  

One unexpected result was finite differences using more memory than 
auto reverse or auto forward.  Auto reverse was expected to use the 
most memory due to the Wengert list.  Finite differences using the most 
memory is due to the number of function evaluations. 

Auto forward and reverse had an average of 1690 Kb allocated per 
function evaluation while finite differences has 163.3 Kb allocated per 
function evaluation.

.Figure 5.  Objective function for HPMRI.

Background
● Computer models are growing increasingly complex as more accurate 

models are created.  Optimizing parameters in these models relies on 
efficiently taking derivatives.  

● Using existing machine learning framework, we can compute derivatives of 
physics based functions quickly. 

● Our model is used to find the optimum flip angles for hyperpolarized 
magnetic resonance imaging (HPMRI).

● Using the Rosenbrock function as an example to see the benefit of this 
approach as a surrogate for a full physics based model in HPMRI.

Numerical Differentiation (Sum of Finite Differences)
● Computationally expensive, especially for problems with a complex 

function and a large number of input variables.
● Has problems with truncation error as well as rounding error due to the 

imprecise nature of floating point arithmetic with numbers very close to 
zero.  

● Cost of computation as well as rounding errors exasperated when 
computing a gradient.

● Requires O(n) evaluations for an n dimensional gradient.  

What is Automatic Differentiation (Autodiff)?
● A technique used to find the gradient of a function.
● Uses the chain rule to break down functions into elementary operations 

using dummy variables to store how each piece interacts with the others.  
● Uses exact formulas and thus is to the accuracy of floating-point 

arithmetic. 
● Similar to symbolic differentiation but evaluates the function and derivative 

at each node which eliminates the expression swell problem commonly 
found with symbolic differentiation. 

● Has a forward mode and a reverse mode, which differ by how they obtain 
the gradient. 

Forward Mode
● Applies the chain rule and evaluates the gradient to each basic operation 

to get a forward primal trace.
○ Primals are an ordered pair of a node element and its derivative.  

Denoted by variable with a dot on top.
● We then obtain a derivative trace of the function with respect to the 

independent variable that we seed.
● This method is preferred when the number of independent variables is 

much smaller than the number of dependent variables.  
○ f:R^n -> R^m such that  m>>n
○ Time complexity of n*c*ops(f) where ops(f) is the operation count of 

f and c < 6 (~2 to 3)
● The final gradient is then computed by multiplying the nodes together from 

the derivative trace. 

Reverse Mode
● Starts with a forward pass where a trace of the primal nodes of the 

function is computed and each node is augmented with adjoint nodes, 
which store all intermediate variables and their connections in memory.  
This is called a Wengert list.

○ Adjoints are denoted by a variable with a bar on top of it.
○ The derivatives of each adjoint are not computed or stored during 

the forward pass
● Then there is a reverse pass where the Wengert list is followed and the 

derivatives of each adjoint node are computed.  
● The derivatives of each adjoint are chosen with respect to a given 

dependent variable.  
● This method is preferred when the number of dependent variables is 

much smaller than the number of independent variables as it produces a 
gradient of multiple independent variables using only one pass. 

○ f:R^n -> R^m such that  n>>m
○ Time complexity of m*c*ops(f) where ops(f) is the operation count of 

f and c <6 (~2 to 3)


