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longer than 2.8 Å. There are two independent M -O-M bond angles,

one connecting octahedra along the b direction (denoted (b)), and two

equal angles connecting in the ac plane. . . . . . . . . . . . . . . . . . 78

5.2 Energies of MnSeO3 per formula unit for different magnetic states (refer

text). The energy for the lowest energy G-type order was taken as the

zero. NSP denotes non-spin-polarized. . . . . . . . . . . . . . . . . . 82

6.1 Relaxed atomic coordinates for Sr3Ru2O7. Coordinates are given in

the standard setting, Ccce, origin choice 2 for spacegroup number 68.

The lattice parameters from experiment (see text) with this setting
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ABSTRACT

Study of the quantum mechanical nature of a material provides invaluable under-

standing of its underlying mechanisms governing their fascinating novel properties.

Density functional based first-principles methods provide us with the necessary tools

to approximate the Schrödinger’s equation for many-electron periodic solids. Starting

from the atomic position of their constituent atoms, using one of the most accurate

methods of all-electron calculations, here in this thesis, I present my investigations of

several such different materials in light of these novel phenomena.

In the first chapter, I have discussed the basics of this tool and other theoretical

concepts that work in the background in order to obtain reliant and consistent results.

The results on each of these materials have been arranged around the following six

chapters. The second chapter, in its two sections, I demonstrated these methods via

two materials: a) the widely known industrial compound TiO2 where I addressed the

long standing theory versus experiment disparity of the energy ordering of its two

most used polymorphs. Our results, like most of the previous theoretical studies gave

anatase as its ground state. In the next section, I investigated the recently synthe-

sized layered monoclinic material: NaSbSe2. The results on its superior electronic

and transport property shows its potential as a thermoelectric (TE) candidate. The

investigation of TE properties in next chapter focusses on the Lorenz number where

a certain widely used prescription for its approximation has been closely examined.

Comparing against our first-principles based transport results on few well-known TEs

as well as the ideal single parabolic band model, I found that for some materials the

prescription works well within acceptable deviations. However, for TEs with complex

xvii



band structure the deviations are too big which suggests precaution to its use since

efficient TEs are often marked by such complex electronic structures only.

The following chapters explore magnetism. Starting with the discussion of the

pervoskite compound MnSeO3, we found our results to be predicting its true magnetic

ground state order. The study of its energetics and electronic structure, in comparison

to its non-magnetic analogue ZnSeO3, its magnetic nature was determined to be of

local moment nature. Showing unconventional structural properties for a pervoskite

compound, doping and spin-wave dispersion investigations will probably be useful.

In the next two chapters, I focus on the novel material Sr3Ru2O7. Widely consid-

ered as a classic quantum critical material, I discuss why it is important to understand

the nature of fluctuations associated with its quantum critical properties. For this

purpose, it is important to know the low-energy metastable states in competition

with its ground state. The first-principles investigation based survey yielded the

striped E-type antiferromagnetic state that lies closest to the ground state. The

magnetic-energy ordering in combination to its electronic structure properties, e.g.

the density of states suggest its magnetism to be of itinerant nature. My results on

the electronic transport indicates that only this striped E-type ordered state carries

a distinct anisotropy among its in-plane conductivity components. This result is par-

ticularly important since the material Sr3Ru2O7 is experimentally known to display

a similar transport anisotropy of the same order under specific magnetic field.

xviii



Chapter 1

Introduction

Understanding the electronic and crystal structure of a material is of paramount im-

portance in materials science. Insights obtained by their observations and thorough

study reveal the rich physics driving exotic phenomena in novel materials. This in

turn enables us to explain, predict, manipulate and even invent such novel materials.

Innovations like transparent solar cells with its potential to replace traditional glass

window panes for domestic energy purposes [1, 2] or certain cuprates to push the

limits of superconductivity transition temperature are to name some of them [3, 4].

Naturally these phenomena and the materials that manifest them hold tremendous

potential to address major current challenges. Solving the clean energy crisis, realizing

room temperature superconductivity are few such frontier challenges. Phenomenon

like thermoelectricity and the role of quantum criticality in unconventional supercon-

ductivity are strong candidates for solving these respective challenges. However, they

still require major advancements in their experimental realization and theoretical un-

derstanding respectively.
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As one would expect, the pursuit of such challenges is met with both theoretical

as well as experimental procedures, which go hand in hand. While for experimental

methods reliable reproducibility is the key, theoretical procedures however, in ad-

dition demand developments from existing concepts with the least possible number

of approximations. To investigate such a novel material at the fundamental atom-

istic level, the entire challenge lies upon solving the Schrödinger’s equation for the

corresponding multielectronic system from scratch, as accurately as possible. First-

principles density functional theory is a powerful theoretical tool to perform this task.

In my research, as presented in this thesis, I explored these two above mentioned

phenomena using all-electron density functional calculations tools. The contents of

this thesis can be overviewed in the following way. In chapter 2, the basic details of

electronic structure calculations are outlined together with the important theoreti-

cal concepts used to tackle their corresponding challenges. Theoretical foundations,

namely the Hohenberg-Kohn theorems of the density functional theory are discussed.

I will also present few key concepts at the core of my main tool: the linearized agu-

mented plane-wave (LAPW) method. Following this will be a brief exposition to the

phenomenon of thermoelectricity. Finally, a short description of magnetic systems is

presented along with their localized and itinerant varieties.

In chapter 3, I will present the results obtained on two different materials where the

computational techniques explained in the previous chapter will be demonstrated. In

the first section, I will address the long-standing question related to the energy order-
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ing of the two polymorphs of TiO2, a material with widespread industrial use. Using

one of the most accurate available methods to settle the long discord between the

experimental versus theoretical results, I investigated which form of this compound

is the true ground state. The results will be compared to the available literature in

relation to the experiments.

In the next section, I will consider the ordered form of the newly synthesized mate-

rial: NaSbSe2. Through Boltzmann transport theory based on its electronic structure,

we will study the material’s transport properties. Furthermore, it will be shown how

its crystal structure, as well as the chemical composition bestows this material its

superior transport properties like high mobility, defect tolerance, etc., the properties

essential for thermoelectric and/or solar-cell applications. For this purpose, I will

employ a theoretical metric called the electronic fitness function (EFF).

In chapter 4, I will delve further into the thermoelectric phenomenon. Here I will

consider the experimental challenge of separating the thermal conductivity into its

constituent components in order to obtain the efficiency metric ZT. Making use of the

Lorenz number for this purpose, I will closely examine a widely accepted prescription

in the literature that is used to address this challenge. Considering some well-known

thermoelectrics, I will present the cases for which this prescription to approximate

the Lorenz number largely deviates from the value calculated from the microscopic

level first-principles.

In the next chapters, I will discuss the phenomenon of magnetism where the local-

ized and itinerant types of magnetism will be explored. Technological developments in
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the field of condensed matter in the last two decades or so has brought up magnetism

as an indispensable tool to study the microscopic details of a material’s electronic

structure. Marked by a rich interplay of charge, spin, lattice and orbital degrees of

freedom, certain materials, for example, the ruthenates, the extensive focus of this

thesis, often host peculiar properties in their ground states. Thus, understanding

these properties starting from a point, especially using first-principles based investi-

gations warrants attention. This is presented in the respective demonstration within

two very different perovskite compounds.

First, in chapter 5, I will consider the selenite compounds: MnSeO3 paired with

a close comparison to its non-magnetic analogue ZnSeO3, I will find out the key

characteristics driving a localized moment system. Based on its crystal properties,

it will be shown how this class of material displays unusual properties unlike most

other perovskites. Investigations for its characteristic electronic properties leading to

magnetism will finally be related to other known materials of interest.

Later, we will observe the class of ruthenates in chapters 6 and 7. First, we re-

port our investigation of the compound: Sr3Ru2O7. Belonging to the class of layered

perovskites called the Ruddlesden-Popper (RP) series, all of which display interesting

properties, I will first consider this characteristic itinerant system. Experimentally

established as a classic material to manifest quantum critical behavior under mag-

netic field, it hosts various strongly competing degrees of freedom and is observed to

show electronic nematicity. Starting with an exposition on quantum criticality, I will

use density functional based results that indicate the presence of strong fluctuations
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inherent to such a quantum critical point. Theoretically, I find the states that ener-

getically compete with its ground state and thus strongly influence its ground state

properties.

In chapter 7, I discuss the electronic nematicity property. Demonstrated through

its computed transport properties, interesting results that resemble its experimen-

tally observed transport anisotropy were found. This leads to the discussion of the

implication of these results concerning such experimental observations.
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Chapter 2

Methods and theoretical
background

The central challenge in first-principles electronic structure for a periodic many-

electron system is to solve its corresponding Schrödinger’s equation. For such a

system, the Hamiltonian is written as:

HΨ =

(
− ~2

2m

∑
i

∇2
i −

∑
i,I

ZIe
2

|ri −RI |
+

1

2

∑
i 6=j

e2

|ri − rj|
+

1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |

)
Ψ (2.1)

Here, the lower-case indices are for electronic coordinates whereas the nuclear co-

ordinates are indicated by upper-case indices. Various interactions are represented

by these different terms. For an electron of mass m, the first term is the total sum

of the kinetic energy of all electrons. The second term is the nuclear attraction the

individual electrons are subjected due to a positive charge of Z (atomic number of

the element) number of protons in the nucleus. The third term is the similar 1/r
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Coulomb law repulsion between two individual electrons. Finally, the fourth term

quantifies the repulsion between two nuclei carrying different charges.

One must note here that equation (2.1) has no contribution of the kinetic energy

associated with the movement of the nuclei. This follows from the Born-Oppenheimer

approximation which states that given the same amount of kinetic energy, the nuclei,

having much larger mass as compared to the electrons, have negligible velocities. As

a result, the nuclear coordinates almost stay constant and hence their variation can

be neglected. This straightforward approximation helps in reducing the mathemati-

cal complexity of the problem within acceptable accuracy. Dropping off the nuclear

kinetic energy, it is useful to consider regrouping these terms of the Hamiltonian in

a way where the electrons are assumed to be interacting directly to the background

positive charge via some Vext. Introducing concepts like electron shielding, core elec-

trons etc. equation (2.2) can be used to further simplify the problem. Throughout

this thesis, we will look more into such approximations.

Ĥ = − ~2

2m

∑
i

∇2
i +

∑
i

Vext(ri) +
1

2

∑
i 6=j

e2

|ri − rj|
(2.2)

2.1 Addressing the many body challenge

In order to obtain the ground state electron configuration of a system defined by the

Hamiltonian in equation (2.1), one has to look for a general quantum mechanical

solution Ψ=Ψ(r1, r2, .., ri) as a function of the electronic coordinates ri including

spins. However, for a typical extended system containing number of electrons in

7



the thermodynamic limit, finding such a many-body complex solution Ψ becomes an

intractable and cumbersome problem.

Independent electron approximation: The simplest approximation one can

make is to assume that the electrons gas of the periodic extended solid is constituted

of independent moving electrons occupying some single-electron quantum states: ψi,

respecting the periodicity conditions and moving in a Coulomb background of the

nuclear positive charge, i.e:

Ψ(r1, r2, .., ri, .., rN) = ψ1(r1)ψ2(r2)..ψi(ri)..ψN(rN) (2.3)

This reduces the general many-body equation (2.1) into a one-particle Schrödinger

system given by:

− ~2

2m
∇2ψi(r) + V (r)ψi(r) = εiψi(r) (2.4)

where the Colulomb interaction involving the electrons has been summed up into

the two terms:

Vnuclear(r) = −Ze2
∑
RI

1

|r−RI |
& Velectronic(r) = −e

∫
dr’ρ(r’)

1

|r− r’|
(2.5)

In equation (2.5), the left term assumes the electrons to be moving in the back-

ground of the array of nuclei at positions RI while the right term assumes a uniform

average potential generated by other (N-1) electrons which leads to the usual electron-
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electron repulsion. Note that ρ is the electronic density at point r′ and can be obtained

as: ρ(r) =
∑

i |ψ(r)|2. This prescription is known as the Hartree approximation. The

electron-electron repulsion which is also the self-interaction energy is approximated

as:

EHartree =
1

2

∫
d3rd3r′

ρ(r)ρ(r′)

|r− r’|
(2.6)

However, one finds that the above formulation doesn’t respect the Fermi exclusion

principle, a fundamental quantum mechanical property of the electrons. It states

that two quantum mechanical particles, being the electrons, can’t occupy the same

quantum state ψis.

2.1.1 Antisymmetric nature of the electron wavefunction:

The Fermi exclusion principle for a system of N electrons gives rise to the antisym-

metric nature of the many-body wavefunction Ψ that describes its collective state.

In other words, swapping the coordinates (could either be the position or the spin

coordinate) of two electrons leads to an overall inversion of the wavefunction. Math-

ematically, Ψ must satisfy:

Ψ(r1, r2, .., ri, .., rj, .., rN) = −Ψ(r1, r2, .., rj, .., ri, .., rN) (2.7)

This antisymmetrization is effectively a linear superposition of states constructed

out of all the product of single electron states [equation (2.3)]. Now, for a system

containing N electrons, any two of them can be swapped in N! ways yielding the same

number of superposition terms. This procedure of antisymmetrization can be used to
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condense and normalize the many-body wavefunction Ψ into the Slater determinant.

ΨSlater(r1, r2, .., rN) =
1√
N !
Â[ψ1(r1)ψ2(r2)..ψN(rN)]

Ψ(r1, r2, .., rN) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ2(r1) . . . ψN(r1)

ψ1(r2) ψ2(r2) . . . ψN(r2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψ1(rN) ψ2(rN) . . . ψN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.8)

Here Â is the antisymmetrization operator that combines all possible index swaps

or equivalently creates the determinant combination of all the product states and is

antisymmetric in nature.

2.2 Density functional theory

Clearly, it is necessary to formulate a more general but also accurate theory that can

be reliably applied to a wide variety of materials, is tractable enough while also being

computationally feasible.

As the name suggests, the central theme of the density functional theory is to

replace the electronic wavefunctions with its charge density as the fundamental vari-

able. Describing a system of N electrons through wavefunctions requires 3N spatial

variables whereas being a scalar quantity, using the charge density only needs three.

This possibility of computationally simplifying the many-body problem was enter-
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tained by Hohenberg and Kohn, where by proposing two theorems, they established

that in principle, to obtain the ground-state properties of a many-electron system,

one may replace wavefunctions with density without any loss of generality [13]. Us-

ing the description by equation (2.2), below we discuss these two theorems with their

proofs[12].

2.2.1 The Hohenberg-Kohn theorems:

Theorem 1: The external potential Vext(r) is uniquely determined (upto an ad-

ditive constant) as a functional of the ground state electron density F[ρ(r)] only.

Corollary: Since the hamiltonian is thus fully determined, except for a constant

shift of the energy, it follows that the many-body wavefunctions for all states (ground

and excited) are determined. Therefore all properties of the system are completely

determined given only the ground state density ρ0(r)[30].

In reference to equation (2.2), for the ground state many-body wavefunction Ψ,

the unknown functional F is universal for all many-electron densities includes the

kinetic energy (T ) and the electron-electron Coulomb replusion (Vee) and is defined

as:
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Ĥ = F + Vext with E = 〈Ψ|H|Ψ〉 (2.9)

F [ρ(r)] = 〈Ψ|T + Vee|Ψ〉 such that E[ρ(r)] =

∫
ρ(r)Vext(r)d3r + F [ρ(r)] (2.10)

Proof by reductio ad absurdum:

Let us assume there exists two unique external potential V1
ext(r) and V 2

ext(r) which

differ by more than a additive constant which leads to two different ground state

wavefunctions: Ψ1(r) and Ψ2(r) and energies E1 and E2 respectively. However, under

such assumptions, if they both yield the same ground state charge density ρ(r), then

according to the variational principle, we obtain:

E1 ≤ 〈Ψ2|H1|Ψ2〉 = 〈Ψ2|H2|Ψ2〉+ 〈Ψ2|H1 −H2|Ψ2〉

= E2 + 〈Ψ2|H1 −H2|Ψ2〉

= E2 +

∫
ρ(r)[V 1

ext(r)− V 2
ext(r)]d3r (2.11)

The last step follows from the universality of the functional F . Now, if we inter-

changing indices 1 and 2 in above equation (2.11), and adding them together gives:

E1 + E2 ≤ E1 + E2

This emphasizes that the relation holds uniquely only in the case of equality, in

which case, the integrand term: [V 1
ext(r)−V 2

ext(r)] vanishes. This proves the theorem.
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Theorem 2: The ground state energy, E[ρ(r)], a universal functional of the

density, may be obtained variationally: the density that minimizes this ground state

energy is the exact ground state density, i.e.: E0= min
ρ→ρ0

E[ρ(r)].

Proof[30]: Consider some density ρ(r) for which the total energy functional E[ρ(r)]

gives us:

E[ρ] = T [ρ] + Vee[ρ] +

∫
Vext(r)[ρ(r)]d3r

= F [ρ] +

∫
Vext(r)[ρ(r)]d3r (2.12)

Here F [ρ] is the universal functional as defined above in equation (2.10). Now,

for the system corresponding ground state density ρGS, external potential V GS
ext and

ground state energy EGS, the energy functional is exactly equal to the expectation

value of its hamiltonian Ĥ in the ground state wavefunction ΨGS:

E[ρGS] = EGS = 〈ΨGS|Ĥ|ΨGS〉

Now, for any different density ρ1 which corresponds to a different wavefunction

Ψ1, it follows from the definition of ground state that the corresponding energy E1:

E1 = 〈Ψ1|Ĥ|Ψ1〉 > 〈ΨGS|Ĥ|ΨGS〉 = EGS (2.13)

Thus it follows from equation (2.13) that by minimizing the energy functional in
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the space of density ρ will give us the exact ground state density. Thus theorem 2 is

proved.

The strength of these theorems lies in the fact that the problem of solving the

many-body Schrödinger’s equation is now transformed into an exact problem of vari-

ational minimization of the energy functional. However, at the same time, these

theorems do not offer any idea as to the nature of this functional F or how to find it

for a given many-electron system. This practical challenge is tackled by the Kohn-

Sham formulation which we discuss now.

2.3 The Kohn-Sham formalism:

The Kohn-Sham formalism is an essential tool to successfully implement density func-

tional theory in practical systems. It maps the many-body system of N -electrons to

a fictitious auxiliary system of N non-interacting electrons moving in an effective

Kohn-Sham potential vKS in equation(2.19). The single-particle Kohn-Sham orbitals

(ψKS) obtained upon solving such a system is then used to describe all the quantities

of interest Note that the Kohn-Sham density is already constrained to yield the same

ground state density as the fully-interacting system.

Now, the ground state density ρ(r) being constrained to have the fixed N number

of electrons, when used in combination to the variational minimization of the total

energy-functional as defined in equation (2.9 and 2.10) gives:
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δ

[
F [ρ(r)] +

∫
Vext(r)ρ(r)d3r + µ

(∫
ρ(r)d3r−N

)]
= 0 (2.14)

The Lagrange multiplier µ comes out as:

µ =
δF [ρ(r)]

δρ(r)
+ vext(r) (2.15)

At this point, the universal functional F[ρ(r)] is broken down into:

F [ρ(r)] = Ts[ρ(r)] + EHartree[ρ(r)] + Exc[ρ(r)] (2.16)

Where EHartree is the usual classical Hartree term (equ [2.6]) and Ts is the kinetic

energy of the auxiliary non-interacting electron gas system of density ρ(r) as men-

tioned above and Exc is called the exchange-correlation energy which is essentially

the unknown difference between the kinetic energies of the complex many-electron

system and that of the auxiliary single-electron system.

Ts = −1

2

N∑
i

∫
ψ∗i (r)∇2ψi(r)d3r (2.17)

Working out the variational principle for the total energy functional explicitly[30],

using the chain-rule, we get:

δE

δψ∗i
=
δTs
δψ∗i

+

[
δEext
δρ

+
δEHartree

δρ
+
δExc
δρ

]
δρ(r)

δψ∗(r)

ψis subjected to the orthonormality constraint: 〈ψ∗i (r)|ψj(r)〉 = δij

with:
δTs

δψ∗i (r)
= −1

2
∇2ψi(r);

δρ(r)

δψ∗i (r)
= ψi(r) (2.18)
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Till this point, the formalism is exact. The point of separating the total energy

in this form is to be able to group together all complex many-particle interactions of

the real system into one single term hoping it to be small enough (as compared to

the total energy) to be approximated accurately enough.

Using these together, equation (2.14) gives us:

µ =
δTs[ρ(r)]

δρ(r)
+ vKS[ρ(r)]

such that: vKS = vext +
EHartree

δρ(r)
+
δExc

δρ(r)

= vext + vHartree + vxc (2.19)

The biggest advantage of this simplification is realized when the solution to equa-

tion (2.15) is cast in the form:

(
−1

2
∇2 + vKS

)
ψi(r) = εiψi(r) (2.20)

which essentially are single-particle Schrödinger’s equation that can be solved if

the form of vxc (or Exc) is known. εis are the eigenvalues corresponding to these

equations such that the ground state density can always be obtained via:

ρ(r) =
N∑
i

ψ∗i (r)ψi(r) (2.21)
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2.3.1 The exchange-correlation term:

One must note that the entirety of the Kohn-Sham formalism rests upon the existence

of the above mentioned “fictitious” single-particle system for which one can perform

all the above simplifications. In other words [30] one asks: is it possible to exactly

reproduce the ground state density of a many-electron system using such an auxiliary

system? Due to the approximate nature of the functionals, the answer is not known.

This however doesn’t prevent someone from applying this to real systems. Although

the existence of such a system is not guaranteed under the Kohn-Sham formalism,

its power lies in the fact that upon applying it to practical systems while using a

variety of approximations to the exchange-correlation functional, one obtains results

accurate enough that often go beyond the initial purview of such a single-particle

approximation.

This leads us to address approximation to the exchange-correlation energy term.

As mention earlier, the exchange-correlation term is the collective approximation of

all the many-body complex interactions which also includes the inaccuracy in repre-

senting the real kinetic energy by the Kohn-Sham kinetic energy Ts. The way of sep-

arating the energy terms as shown in equation (2.16) leaves the exchange-correlation

term to be comparatively smaller to the total energy which can then be approximated

readily without any major accuracy penalty.

The simplest approximation to achieve this would be to define it in terms of some

energy per-electron εxc(r) that is a local or nearly local functional of the density in

the neighborhood of point r in the following way:
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Exc[ρ(r)] =

∫
d3rρ(r)εxc([ρ], r) (2.22)

In general, the exchange-correlation potential [as defined in equation (2.19)] is the

functional derivative of Exc:

Vxc(r) = ε([ρ], r) + ρ(r)
δεxc([ρ(r)], r)

δρ(r)
(2.23)

Functionals

In the Kohn-Sham theory, as stated in equation 2.16, the total energy of a multi-

electronic system can be expressed as a sum of three terms viz. the total kinetic

energy, obtained through the wavefunction derivatives 2.17, the Hartree term for the

regular Coulomb repulsion 2.6 and the third and the smallest term, the exchange and

correlation term. For a given system, it is the unknown and has to be approximated.

It includes the sum total of all the residual electron interaction energies that cannot

be expressed directly.

Thus, in order to find the most accurate total energy, various approximations have

been proposed. In the following part, we shortly describe a few of such exchange-

correlational functionals that are widely used and have been fundamentally important

in the success of density functional theory as a reliable first-principles tool.
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Local density approximation The most fundamental approximation is to in-

troduce a per-electron exchange correlation energy that solely depends on the value of

the electronic density of the homogeneous electron gas (HEG) at each point in space,

hence the term ”local”. Motivated from the HEG model, this term is separated in-

dividually into the exchange and correlation term. This way, the exchange term can

be determined analytically in terms of this density.

The remaining correlation term is analytically determined from the high or low

density limit of the electron gas in terms of the Wigner-Seitz radius rs, given by:

4
3
πr3s = 1

ρ
. Combined with accurate quantum Monte-Carlo data [14], the correlation

energy is determined for any intermediate density values. Using these approxima-

tions, many functionals have been proposed e.g. by Vosko-Wilk-Nusair (1980) [22],

Perdew-Zunger (1981) [21], Perdew and Wang [15]. Interestingly, LDA works re-

markably well for materials where the electron density is slowly varying. In a wide

variety of materials, LDA works especially well in the calculations of equations of

state, elastic constants, vibrational energies etc. But for systems with strong electron

correlation, for example, transition metal oxide like NiO or Mott insulators, it yields

erratic results. A common trend is the tendency to overbind systems which leads it

to predict shorter bond lengths etc.

Generalized gradient approximation In order to incorporate the strongly

varying electronic density in practical materials, a direct way to improve the accuracy

of the exchange correlation functionals is to include its gradient information along

with its local value (nr) at a point in the space. This is being taken care of by the
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class of generalized gradient approximation or GGAs:

EGGA
xc [n(r)] =

∫
n(r)εhomxc [n(r)]Fxc[n(r),∇n(r)]dr (2.24)

The Fxc[n(r),∇n(r)] is known as the enhancement factor. As opposed LDA, being

derived from the HEG model, there is no direct analytic expression for GGAs, and

depending on their enhancement factor, each of these have their own forms. However,

their formulation includes certain constraints that they must follow. It is important

to note that the pair density P (r, r′) gives the probability of simultaneously finding

an electron at the point r within volume element dr, and another electron at r′ in

volume element dr′, among the other N − 2 electrons in the system. The total N

number of electrons for the system constraint gives:

∫ ∫
P (r, r′) dr′dr = N(N − 1)

Due to Fermi exclusion principle, the effect of exchange-correlation interaction of an

electron is to create a depletion, or hole, of electron density around itself. Considering

this hole, the pair-density function is written as: P (r, r′) = n(r)n(r′)+n(r)nXC(r, r′)

where nXC(r, r′) is the exchange-correlation hole density. Due to this, the nXC follows

the important normalization criteria known as the sum rule:

∫
nXC(r, r′) dr′ = −1 .

This condition can be physically interpreted as the “hole” carrying the total deficit

of one electron around itself [16]. Separating the exchange and correlation into their

individual contributions, nXC(r, r′) = nX(r, r′) + nC(r, r′) leads to two separate sum

rules:

∫
nX(r, r′) dr′ = −1;

∫
nC(r, r′) dr′ = 0 (2.25)

These important constraints are respected in a GGA like the PBE.The GGA fun-
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cational proposed by Perdew-Burke-Ernzerhof (PBE) [17] is among the most widely

used GGAs and has been put to use in this thesis many times. The simplistic form

of its enhancement factor and the fact that all parameters (other than those in local

spin density) are fundamental constants, combined with its accuracy for the case of

a variety of atoms, molecules and solids make it a favorite choice. Other well-known

GGAs include: Perdew-Wang (1991) [26], Wu-Cohen (2006) [19], PBEsol (2008) [20]

etc. As compared to LDA, the GGAs work better for magnetic systems.

2.3.2 The choice of basis

The above mentioned Kohn-Sham formalism, combined with the periodicity of the lat-

tice greatly simplifies the many-electron problem. However, in order to fully describe

and perform these calculations, one needs to expand the Kohn-Sham wavefunctions

which in turn describes the density. For this purpose, one requires a certain basis set

of expansion functions.

Again, stemming from the independent electron approximation, the most natural

choice is to use a finite set of orthogonalized planewaves by choosing an appropriate

energy cutoff. Although easier to formulate, the highly localized nature of the core

electrons with their rapidly varying orbital characters demand a very high cutoff for

these planewaves, which in turn increases total computation times. Fortunately, these

core electrons are not chemically active and do not really affect the materials’ overall

electronic characteristics. This leads one to approximate these core wavefunctions in

a computationally cheaper way.

The widely used pseudopotential approach removes the core electron density and
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replaces it with an approximate density following some physical and mathematical

constraints. This forms the basis of the so called frozen core approximation, the

method which is based on the transferability of the pseudopotential [27]. Chapter

3, section 3.1 is aimed at resolving the long-standing challenge of theory versus ex-

perimental mismatch of the energy ordering of TiO2 polymorphs by questioning this

frozen core approximation.

However, a sound theoretical approach aims to remove ad-hoc approximations

which lead one to use “all-electron” methods. The linearized augmented planewave

(LAPW) methods [6], used throughout this thesis to obtain the electronic ground

state of a material, is one such tool. The LAPW technique is fundamentally a modifi-

cation to the original augmented planewave (APW) method of Slater [28]. The APW

method utilizes the same fact that near an atomic nucleus the potential and wave-

functions are strongly varying but nearly spherical. However, the interstitial space

between these atoms, both of them are smoother and hence can be expanded in terms

of planewaves accurately. Therefore, the space is divided into regions of atom centered

“muffin-tin” spheres (S) inside which radial solutions to the Schrödinger equation (ul)

with spherical harmonics are used as the basis whereas regular planewaves are used

in the remaining interstitial region (I) as shown below 1:

ψk(r) =

 Ω−1/2
∑

G cGe
i(G+k)·r rεI∑

lmAlmul(r)Ylm(r̂) r εS
(2.26)

1Gs are the reciprocal lattice vectors
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However, for the kinetic energy to remain well-defined, the functions in these two

regions must be continuous at the sphere boundary. Expanding the planewave in

terms of the spherical harmonics and truncating the expression up to some finite

l value gives us the expansion coefficients (Alms) for the region inside the spheres.

However, the energy factor El in the wavefunction form leads to complications where

they have to be fixed at band energies such that the resultant basis functions are

energy dependent and computationally expensive in general [6, 29].

To overcome this, the basis functions inside the spheres are defined as the linear

combination of the radial functions, ul(r)Ylm(r̂) and their derivatives with respect to

the linearization parameters El as:

ψk(r) =

 Ω−1/2
∑

G cGe
i(G+k)·r rεI∑

lm[Almul(r) +Blmu̇l(r)]Ylm(r̂) r εS
(2.27)

In this case, Alms and Blms are obtained by matching both the value and slope

of the basis function at the sphere surface. In comparison to the APW method, this

generalization removes the restriction of fixing Els at the cost of introducing smaller

errors in solving the secular equation [6, 29]. The method used herein the thesis

relies upon the technique of introducing the so-called “local-orbitals” leading to the

LAPW+lo approach which lifts all restrictions and can then be used for any arbitrary

material as one of the most accurate, generally applicable techniques available for

electronic structure calculations.
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2.4 Brief exposition of the explored phenomena

In this section, I briefly introduce the basic concepts concerning various phenomena

that are explored in the rest of this thesis. These can be broadly categorized into:

thermoelectricity and magnetism in the context of quantum criticality. Being closely

related to the material’s microscopic electronic structure, these properties, as will be

seen in further sections, are crucial characteristics which upon investigation leads us

to explain and predict many of their macroscopic properties.

2.4.1 Thermoelectricity

In order to address the growing need of clean energy, finding its alternate sources is

one of the burning challenges of current times. Thermoelectricity, as the name sug-

gests is the property of a material that enables it to convert thermal energy into useful

electrical work. Given its potential, thermoelectricity can be used to harvest waste

heat, thus improving the overall efficiency of any conventional heat based engine. Not

to mention its scalability as well as the absence of any moving parts already make it

a useful choice in aerospace and military applications.

Following figure 2.1 shows the basic parts involved in the design of a typical en-

gine. The legs of the engine, labeled as p- and n-type are the TE materials which

when placed across the upward pointing temperature gradient, generates an elec-

tric voltage gradient E in the direction as shown. Connecting it to an external load

gives us an electric current that can perform useful electrical work on an external load.
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Figure 2.1: Schematic diagram showing the components involved in a typical TE
engine [8]

A major goal in TE research involves finding suitable materials to construct these

legs. In order to quantify the degree of performance for a candidate material, for a

simplified TE device, one requires the dimensionless figure-of-merit, ZT, given by:

ZT =
S2σ

κ
T (2.28)

Here S stands for the Seebeck coefficient, σ is the electrical conductivity together

giving us the power factor S2σ and κ=κe+κl is the thermal conductivity comprised

of the electronic thermal conductivity (κe) and the lattice or the phononic thermal

conductivity (κl). We will explore more about these contributions to the thermal

conductivity later.

For a working thermoelectric, its efficiency (η) is defined as:
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η =
Electrical energy dispersed at the load resistor

Thermal energy intake at the hot junction
(2.29)

The ZT factor, as defined above, is required to find the theoretical maximum

efficiency of a TE device. It is given by:

ηmax =
TH − TC

TH

√
1 + ZTavg − 1√

1 + ZTavg + TC

TH

(2.30)

Where TH, TC are the temperature at the hot end and cold end and Tavg is the

average of these two. The preceding term is the Carnot efficiency [10]. State of the

art TE materials like Bi2Se3, Sb2Te3 and their alloys have a typical peak ZT value

in the range of 0.8 to 1.1 [11].

The Seebeck coefficient is the fundamental measure of the thermoelectric effect

defined as the voltage generated per degree of temperature gradient. Broadly, insula-

tors tend to have a high S. However, a well-performing thermoelectric also requires a

high electrical conductivity in order to facilitate a larger flow of current. Thus, a high

power factor is always desirable. Nevertheless, such a thermoelectric, without its low

thermal conductivity will tend to leak heat across the heat source and sink, bringing

down its overall efficiency. So, altogether, ZT is what quantitatively determines the

degree of performance of a TE.

In the following figure 2.2 we show how various transport properties vary upon

the availability of free charge carriers. On the left, we have insulators with high S

whereas metals tend to have a very high number of free electrons yielding them a high
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σ. These electrons also facilitate a larger heat transfer. So, being able to maximize

the power factor combined with a low κ presents one of the central challenges in TE

research. Making note of all three of these dependencies, one finds semiconductors to

have an ideal number of carrier concentration leading to a high ZT value. In practice,

tuning a pristine semiconductor TE material’s carrier concentration via doping is one

of the techniques used to achieve high ZT (as seen in the p- and n- type labeled legs

in figure 2.1).

Figure 2.2: Plot showing the dependence of various transport quantities on the free
carrier concentration [9].

In the later chapters of this thesis, I will explore a few of these semiconductors

TEs and their transport properties in detail. Through first-principles calculations,

the inherent properties of their electronic structure that make them good TE mate-

rials will be found out.
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2.4.2 Magnetism

The source of magnetism in a condensed matter systems is ultimately the magnetic

moments of their individual electrons, arising from their spin and angular orbital

momenta. It is the overall arrangement of these electrons that finally decide the

macroscopic nature of magnetism in a material. As a result, studying magnetism re-

veals immense information about various properties of a material. I will discuss here

two of the main and opposing types of magnetism: localized and itinerant magnetism.

As its name suggests, the localized magnetism finds its origin from distinct electron

spins, from various orbitals located at fixed points while interacting with one another.

However, the itinerant magnetism, loosely translating to ‘moving’ magnetism, arises

as a result of the collective behavior of the entire electron gas, localized in the mo-

mentum space. Hence, the underlying interactions among these electrons are closely

related to the nature of the Fermi surface itself. In the following paragraphs, we

discuss in short, the mechanism working behind each of them.

Local moment magnetism

Weiss introduced the notion of an interaction between atomic magnetic moments

in solids and approximated its effect by a mean molecular field proportional to the

average magnetization [205]. This interaction resulting to the alignment of these

moments leads to macroscopic magnetism. Heisenberg mentioned this mean-field to

a quantum mechanical exchange interaction Jij which we also know as the Heisenberg

28



model. For lattice sites i and with atomic spin operator Ŝi, the model defined the

Hamiltonian in terms of this interatomic exchange interaction given by:

H =
∑
ij

JijŜiŜj (2.31)

The Curie-Weiss law: χ ∝ 1
T−TC

, governing the magnetic susceptibility (χ) of

a ferromagnet above its Curie temperature (TC), is naturally explained within this

model. It is worth noting that for localized magnetic systems, the saturation mag-

netic moment, if an integer multiple of the Bohr magneton (µB). Chapter 5 discusses

the details of one such localized magnetic system where superexchange interaction is

found to be prevalent.

Itinerant moment magnetism

The magnetism in many elemental 3d metals, for example, Fe, Co, Ni, etc., is ex-

plained by itinerant magnetism. Due to its origin which is not derived from elec-

tron(s) on the lattice sites, their saturation magnetic moment is often not an integer

multiple of µB, accompanied with usually higher saturation fields. One way to explain

this is through the Stoner mechanism, effective in systems that have a signature high

value of density of states at the Fermi level leading to Stoner ferromagnetism. Arising

from the electron-electron repulsion, the Stoner model can be formulated in terms of

an energy split from the dispersion relation between the electrons of the opposite spin

channels as:
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E↑(k) = ε(k)− IN↑ −N↓
N

, E↓(k) = ε(k) + I
N↑ −N↓

N
(2.32)

where the difference term is based on the exchange energy governed by the Stoner

parameter I, N↑or↓/N is the dimensionless quantity of spin up/down electrons and ε(k)

is the dispersion relation of the spinless system. For a fixed number of spin up/down

electrons, the corresponding energies of the electrons in either spin channels can be

calculated in terms of the polarization, P=(
N↑−N↓
N

). Systems that have a density of

states at Fermi level higher than the inverse of this exchange energy parameter I, the

Stoner criterion, i.e.: N(EF ) > 1
I
, spontaneously form a polarized state giving rise to

an overall ferromagnetic arrangement as shown in figure 2.3.

Figure 2.3: The schematic band structure for the Stoner model of ferromagnetism.
The exchange interaction has split the energy of the electrons in either spin channels,
enabling it to a selective filling of either bands resulting in an overall ferromagnetism.
Source: Wikipedia

It must be noted that itinerant magnetism is a many-body phenomenon and these

systems can often host exotic properties. For example, Cr is the classic itinerant an-
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tiferromagnet with an incommensurate spin density wave. Here the spin fluctuations,

localized in the momentum space play the pivotal role.

In terms of first-principles results, the difference between the localized and itiner-

ant moment magnetism is often clearly shown by the energetics between the individual

magnetic orders. In a localized magnetic system, the moments are usually large and

due to a high energy of formation of these moments, the paramagnetic state energet-

ically lie much higher than the magnetically ordered states. However, in a localized

magnetic system, such a distinction is not always present. The energy ordering of

different states is often seemingly haphazard to the point that certain magnetic orders

might not even be present as a self-consistent solution to the Kohn-Shan equations.

Details of one such magnetic system, namely Sr3Ru2O7 has been discussed in chapters

6 and 7.
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Chapter 3

Demonstration of first-principles
tools: Case studies of two different
materials

In this chapter, we make use of the theoretical methods covered in the previous

chapter. The work here illustrates some of the important challenges that also demon-

strates the strengths of first-principles calculations. In particular, in the first part,

identifying the ground state of TiO2 is a challenge that remains unsolved due to the

approximate nature of the theory and limitations of functionals, while the ability of

these approximate methods to treat the physical and chemical complexity of inter-

esting materials allows one to extract insights into the origins and chemical basis of

technologically interesting materials, such as the ternary semiconductors discussed in

the later part of this chapter.

Initially, we discuss the widely known industrial material TiO2. It is naturally

found mainly in its three polymorphs. Here, we address the long-standing ques-
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tion of energy ordering of two of them, viz. rutile and anatase. With our accurate

first-principles tools, we tried to resolve the conflicted findings across theory and ex-

periments so to determine which of these two polymorphs is the true ground state of

the material.

We compared the results of both theoretical and experimental investigations of

this well-known material from the literature and compared them with our precise,

well-converged all-electron calculations. Through this work, we demonstrated the

role of various calculation parameters so as to obtain accurate energetics between

these two forms of the material.

In the later part, we explore another material, the well-ordered, layered com-

pound: NaSbSe2. Previously known in the literature in its cubic amorphous form,

nanocrystals of this material were recently synthesized in its ordered form intended

for photovoltaic applications. From the experimentally estimated band gap combined

with our ab-initio electronic structure results, we find that the material possesses

many properties that results in good electronic transport. In combination of all these

findings, we conclude that layered NaSbSe2 can potentially be a thermoelectric ma-

terial.
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3.1 Ground state energy ordering of TiO2 poly-

morphs

3.1.1 Introduction

Titanium dioxide, a widely used industrial chemical is known to exist in several struc-

tural forms known as its polymorphs. Mostly known three of them are: rutile, anatase

and brookite. While rutile is mostly used to manufacture pigments and is found to

have properties useful as a thermoelectric, anatase, being a semiconductor finds its

diverse use in photocatalysis, photovoltaics etc.

Scientifically this material has been a subject of investigation for over last four

decades including many studies to determine the true ground state polymorph of

the material. Calorimetric studies by Ranade and co-workers [31] found the energy

difference ∆E=0.027 eV where ∆E=Eanatase− Erutile per formula unit TiO2 at 975

K. In other works using high temperature oxide melt solution calorimetric methods

at atmospheric pressure, ∆E was found to be 0.034 eV at 971 K [32] and 0.068 eV

at 968 K [33]. Mitsuhashi and Kleppa in their same study [32] reported 0.030 eV

at 1360 K using differential scanning calorimetry whereas Levchenko and co-workers

found ∆E= 0.018 eV [34] at 1360 K using drop solution calorimetry. Clearly, diverse

experimental methods concurred on the fact that rutile was the ground state of TiO2

at high temperatures. Although effect of several experimental conditions like grain

size [35], phase control [36], water-content [34], reaction atmosphere [37], presence of

agents like Al2O3 [38] and SiO2 [39, 40] etc. have been studied, but all of them found

rutile to be more stable than anatase at indicated high temperatures within the above
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described scatter of experimental values. Finally, Smith and co-workers [41] reported

that over entire lower temperatures ranging from 0 to 1300 K, bulk anatase does not

have a thermodynamic stability field over rutile.

On the flip side however, theoretical studies indicates otherwise where various

investigations using pseudopotential based density functional methods using both

local density and generalized gradient approximations found anatase to be more sta-

ble over rutile. For instance, using a plane-wave basis sets, Mikami and co-workers

[42] found ∆E=−0.060 eV or +0.049 eV within the LDA, depending on the type

of their pseudopotential used whereas Milman [43] reported −0.06 eV within GGA.

In other works, ∆E values of −0.032 to −0.036 eV and +0.016 to +0.098 eV were

reported using Gaussian linear combination of atomic orbitals (LCAO) basis sets,

depending on the details of the basis and functionals employed. Even using only

exchange based Hartree-Fock calculations within both LCAO [44] and pseudopoten-

tial studies [45] found similar results. Using random phase approximation however,

Cui and co-workers [46] found anatase to be more stable over rutile. Finally, beyond

density functional methods, Luo and co-workers [47] found ∆E=−0.059 eV using

diffusion quantum Monte Carlo (DQMC) calculations with the inner core described

by a pseudopotential. In addition, using DQMC again, Trail and co-workers [48]

reported similar results where anatase was found ∆E=−0.018 eV to be slightly less

albeit more stable over rutile. One must note that DQMC is generally regarded as the

most accurate method for solving the Schrödinger’s equation and importantly does

not suffer from the biases that may be inherent in ad-hoc corrections to approximate

DFT.
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To summarize the literature on the stability of TiO2, the bulk of these results

points to either an issue with the experimental ground state determination or some

fundamental issue in commonly used approximate density functional methods and/or

some overlooked approximation. An important factor to note here is the use of differ-

ent approximations methods used for the core-states in the DQMC studies [47, 48].

Considering the accuracy of DQMC methods, one such possibility is with the use of

approximations in the treatment of the outer core states, e.g. with pseudopotentials

and the frozen core approximation. In TiO2 , correct treatment of these outer core

states, especially the 3p state is essential for predictions of some properties such as

the electric field gradients (EFGs) [49].

It is also interesting to note that many theoretical studies [50, 51, 52] predicted

the lattice parameters of both of these polymorphs to be in close agreement with

the experimental data, yet on the contrary, the energy ordering was dependent on

the methods used [44, 42] and mostly contradicted the reported experimental ground

state.

In this work, we address this question of rutile-anatase energy ordering. We

used the accurate available all-electron full potential linearized augmented planewave

(LAPW) plus local orbital (LO) method [6] within density functional theory and

focus on the bulk energy ordering. This allows us to mitigate issues related to basis

sets and pseudopotentials, since the method has no pseudopotentials and the basis

sets and potentials are expanded in highly precise general forms that can be tested

36



and systematically improved, e.g. by changing sphere radii, increasing the cutoffs and

adding local orbitals.

3.1.2 Computational details

This investigation reports full-potential LAPW+lo calculations performed using the

WIEN2k code [5]. The atomic sphere radii for Ti and O were chosen at 1.95 Bohr and

1.55 Bohr respectively after being checked against their individual variations. The

planewave sector basis set size was cutoff set by choosing RminKmax=7.5 where Rmin

stands for the atomic radii for the smallest atom, being O in this system. Given this

choice of the sphere radii leads to effective RTiKmax ≈ 9.5 for treating metallic Ti

and was confirmed after performing convergence tests with ∆E variations below ∼

0.4 meV. Such a choice of RKmax has been made throughout this thesis to accurately

treat metal atoms. As mentioned earlier, we chose LAPW+lo basis set over APW+lo

since it is more flexible at the cost of a slightly larger size of the plane-wave basis set.

For performing Brillouin zone (BZ) integration, k-point grids of size 10×10×10

for anatase and 10×10×16 for rutile were used. This size of BZ sampling was also

carefully tested against a convergence threshold lower than 0.04 meV. Thus all dif-

ferent calculation parameters were fixed. Structures were optimized in two separate

methods, i.e:

1) fixed the lattice parameters to experimental values while relaxing the internal

atomic positions and

2) fully relaxing both the lattice parameters and atomic coordinates to perform a

global minimization.
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The calculations here were performed using four different functionals. In particu-

lar, the LDA [15] and three different GGAs viz.: Perdew-Burke-Ernzerhof [17] (PBE)

GGA, the Wu-Cohen [19] (WC) GGA and the PBEsol [20] GGA.

3.1.3 Results and discussion

Our calculations to obtain the energy-ordering of the material always yielded anatase

to be the more stable over rutile, irrespective of the exchange-correlation functional

used or the way lattice parameters were optimized. Interestingly, the predicted lattice

parameters were generally in close agreement with the experiment [53, 54]. The

obtained energy values have been reported below in Table 3.1.

Table 3.1: Energy-ordering (∆E = Eanatase− Erutile in eV f.u.−1 ) of two TiO2 poly-
morphs using various exchange-correlation (XC) functionals.

XC func. Eexp Erelax

LDA −0.032 −0.025
PBE −0.096 −0.101
Wu-Cohen −0.058 −0.057
PBEsol [20] −0.061 −0.061

One may note that in Table 3.1 the PBE GGA gives an energy difference 2–4

times larger than other functionals which is similar to previous calculations. The

PBE functional was designed to improve energies using exact constraints and is al-

most invariably superior to the LDA for energies [17, 18]. For example, the high

pressure transitions of SiO2 polymorphs are much improved by the GGA [55]. Thus

it is interesting to find a large stabilization of anatase over rutile with this GGA.
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The calculated lattice parameters have been reported in Table 3.2 along with the

internal coordinates as z coordinate of oxygen in anatase and x and y (=u) for ru-

tile. It may be noted that these energetics do not show much difference due to the

structure relaxation.

Table 3.2: Predicted structure parameters (Å) of two TiO2 polymorphs using various
XC functionals in relation to experiments.

XC func./expmt.
Anatase Rutile

a b z a b u
LDA [15] 3.751 9.524 0.2072 4.560 2.931 0.3039
PBE [17] 3.805 9.772 0.2057 4.652 2.976 0.3051

Wu-Cohen [19] 3.780 9.637 0.2066 4.605 2.995 0.3048
PBEsol [20] 3.779 9.644 0.2064 4.606 2.952 0.3048

Neutron diff. [53] 3.785 9.514 0.20806 4.594 2.959 0.30478
Neutron diff. [54] 3.785 9.512 0.20814 4.593 2.959 0.30476

3.1.4 Conclusions

In this work, first principles calculations using the LAPW+LO method for the en-

ergy ordering of rutile and anatase, the two mostly used polymorphs of TiO2, with

various standard approximate density functionals have been reported. This method

avoids most approximations in the treatment of the core states, such as the frozen

core approximation or neglect of relativity, and also uses highly accurate basis sets

and representations of the charge density and potential. Careful converge tests were

done. Anatase was always found to be more stable than rutile. This is in accord

with reported DQMC calculations [47]. The PBE functional, generally regarded as

particularly reliable, gives the largest energy difference.
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It can be observed from the current results and prior work that more accurate

methods (over LDA) e.g.: use of GGA functionals [44, 43, 50, 56, 57, 58] as well as

hybrid functionals (like B3LYP and PBE0) [50] do not resolve the conundrum where

anatase is obtained as the ground state, in disagreement with experiment, the details

of which have been summarized in Table 3.3. The results reported here clearly show

that the discrepancy is not explained by the use of pseudopotentials or other core

electron related approximation, as made in several of the previous studies.

These results imply that reinvestigation of the experimental ground state may be

of value, perhaps especially in relation to the extrapolation of the high-temperature

enthalpy data to 0 K. In this regard, Trail et al. [47] suggested that anharmonic

effects associated with soft phonon modes may be important in stabilizing rutile es-

pecially at elevated temperature.

As of writing this thesis, a recent study reported that this well known dichotomy

of the energy ordering of TiO2 polymorphs is similar to the energy ordering of two

other cases of compounds, namely for the polymorphs of MnO2 and structural phase

stabilities of iron disulfide, FeS2. In their study Patra et al. [60] suggested this as a

case where popular and nonempirical semilocal exchange correlation functionals fail to

correctly describe their energetics. They found out that the recently proposed meta-

GGA functional MGGAC can predict the correct ground state of these compounds

along with a quantitative agreement of few of their other properties with experimental

results.
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Table 3.3: Previously known stability order (∆E = Eanatase − Erutile in eV) using
various DFT methods. Various types include plane-wave (PW) or linear combination
of atomic orbitals (LCAO) basis using pseudopotentials (PP) mostly. For LCAO
all-electron method, a triple valence all-electron (TVAE) modification was used with
d-symmetry polarization either on O (denoted by TVAE∗) or on both O and Ti
(denoted by TVAE∗∗ ). † Most accurate basis set reported.

Literature ∆E (XC Functional)
References Methods/Basis used LDA GGA

Milman[43] Kleinman-Bylander PP, PW 0.033 (CAPZ) [21] −0.061 (PBE) [17]

Jing-Xin et al. [59] Norm-conserving PP, PW −0.030 (VWN) [22] -

Ma et al. (PW) [56] Ultrasoft PP, PW - −0.057 (PW91) [15]

Lazzeri et al. (PW) [57] Ultrasoft PP, PW −0.02 (CAPZ) [21] −0.10 (PBE) [17]

Muscat et al. (LCAO) [44]
TVAE∗ (LCAO) 0.003 (CAPZ) [21] −0.056 (PBE) [17]

TVAE∗∗ (LCAO) −0.019 (CAPZ) [21] −0.078 (PBE) [17]

Labat et al. [50]
Gaussian†(All-electron) −0.016 (VWN) [22] −0.158 (PBE) [17]

PAW-PP −0.048 (VWN) [22] −0.182 (PBE) [17]
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3.2 NaSbSe2: A study of its thermoelectric prop-

erties

3.2.1 Introduction

Chalcogenide semiconductors have attracted research attention from several decades.

They display an uncommon array of physical phenomena that range from interesting

electronic, thermal and optical properties to novel forms of superconductivity and

magnetism ([61] and references therein). When compared to binary semiconductors,

this class of compounds offer more opportunities to tune and even engineer key prop-

erties [62, 63, 64, 65]. A certain class of these semiconductors represented by ABX2

can be formed with an alkali/noble metal for A; As, Sb or Bi for B and any of the

chalcogens for X. Cation ordering can strongly affect properties for these compounds.

Recently, ordered NaSbSe2 was reported experimentally and shown to be a promis-

ing photovoltaic material with a band gap substantially larger than the effectively

semimetallic disordered phase [66]. The favorable charge carrier collection observed

in this ordered material suggests that this ordered phase of NaSbSe2 might also have

other useful electronic applications. Here we investigated this material in the context

of thermoelectrics (TEs) [67, 68, 69].

NaSbSe2 has been long known [70, 71], but only in the disordered rock salt form

which has been found to have an inadequate gap for a TE material. However, in their

recent work Aragaw et al. [66], starting with its sulfide analogue: NaSbS2 precursor,

were able to synthesize NaSbSe2 nanocrystals in its monoclinic structure by an ion-

exchange method and characterized it as a good solar absorber. The related sulfide

NaSbS2 has a high dielectric constant due to enhanced Born effective charges. This
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reduces carrier scattering and helps it to be a good material for solar cell and other

optoelectronic applications [72, 73].

3.2.2 Computational details

We performed first principles calculations on NaSbSe2 with the monoclinic (space

group 15: C2/c) structure[66] to investigate its potential applications as a TE ma-

terial. Our results were obtained using the general potential linearized augmented

plane wave (LAPW) method [6] as implemented in the WIEN2k code [5]. We used

the generalized gradient approximation by Perdew, Burke and Ernzerhof (PBE) [17]

to determine the ground state with a well-converged 12×10×12 sampling for the Bril-

louin zone integration. Electronic structure and transport quantities were calculated

using a k-mesh twice as dense in each direction. The modified Becke–Johnson (mBJ)

potential of Tran and Blaha [23] which is known to improve the band gaps signifi-

cantly for a wide range of materials [23, 74, 75, 76] was used for this purpose. The

spin–orbit interaction was included in these calculations. This was done using the

second variational method implemented in WIEN2k.

The calculations were done using LAPW sphere radii of 2.45 Bohr for all atoms.

The basis size was set by a plane-wave cutoff, Kmax determined by RminKmax = 9.0

(with Rmin = R = 2.45 bohr). Local orbitals were included for semicore states. The

structure was taken from variable-cell relaxation calculation results as reported by

Aragaw et al [66]. We employed the constant scattering time approximation (CSTA),

as implemented in the BoltzTraP code [7], for calculating TE transport properties.

Within the CSTA, the thermopower (S) can be obtained as a function of temperature
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and doping concentration directly from the band structure without any adjustable pa-

rameters. We also investigated the Born effective charges and the dielectric tensor

within density functional perturbation theory (DFPT) as implemented in the vasp

code using PAW pseudopotentials [77]. We used the PBE functional for these response

calculations. This is because the mBJ potential is not a total energy functional and

hence cannot be used to calculate responses.

3.2.3 Results and discussion

NaSbSe2, like other similar compounds e.g. NaSbTe2 and NaBiTe2, is known [71, 78,

79] to exist in a NaCl-like cubic structure, which is cation disordered. However, an

ordered monoclinic structure was recently reported based on an ion exchange process

[66]. Figure 3.1 shows this structure. It is monoclinic with space group C2/c (no.

15) with a = 8.433 Å, b = 7.230 Åand c = 8.716 Åand monoclinic angle γ ∼ 57◦.

Cartesian coordinate axes y and z have been chosen along b and c respectively and

the orthogonal x axis accordingly for the discussion below.

The structure is formed of Na ions and Se–Sb–Se units. These units have a

Se–Sb–Se angle of ∼99.5◦ and are placed such that the Sb lone pair is directed to-

wards Na. This forms layers stacked along the slanted b-axis. Each unit cell contains

two of these layers but it should be noted that these units are oppositely oriented.

Standard density functionals such as the PBE functional are designed for accu-

rate energy prediction [52] but underestimate the band gaps of semiconductors. Using
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Figure 3.1: Layered structure of ordered NaSbSe2. The yellow spheres are Se, the
blue are Na and the gray ones are Sb atoms. There are 2 formula units in the unit
cell. On left the Se-Sb-Se units are shown. These along with Na atoms make up the
layers. Individual layers are stacked as shown on the right.

PBE, a gap of 0.553 eV was obtained. The mBJ potential, designed for gaps and en-

ergies, along with spin-orbit coupling yields an indirect gap of 0.843 eV. This band

gap for this semiconductor is sufficient to avoid any major bipolar conduction effects;

an essential property of any good doped TE. The bipolar effect as shown by nar-

row band gap TE materials is phenomenon where at sufficiently high temperatures,

the minority carriers in the semiconductor are excited across the band gap. This

additional conduction deteriorates its performance due to the undesirable lowering

of the Seebeck coefficient. The disordered cubic lattice is known to melt at 1013

K [80]. Upon heating, at around 753 K, cation disorder is reported to be induced

in the monoclinic structure [66]. Here we consider the temperature range up to 600 K.

The electronic density of states (DOS) and their projections onto the LAPW

spheres are shown in figure 3.2. Na is fully ionized and does not contribute to the va-
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lence bands significantly. The valence bands are derived from Se p states as expected

for the Se2− ions. In the same interval down from −5 eV to 0 eV, with respect to the

valence band maximum (VBM), there is substantial Sb-5p orbital character concen-

trated around the bottom edge of this range. In the conduction band, similar Se and

Sb p orbital contributions are found. This indicates a high degree of hybridization

between the Se and Sb states i.e. a significant amount of cross-gap hybridization

between Se-4p and Sb-5p states. We also note a small peak close to the VBM which

has antibonding Sb-4s character. Whereas the main Sb-4s states lie in a peak around

7 eV depth below VBM.
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Figure 3.2: DOS and its projections onto the LAPW spheres shown on a per formula
unit basis.

This cross-gap hybridization may give rise to enhanced Born effective charges as

in the case of many oxides [81]. The Born effective charge tensor is a response func-

tion (Z∗κ,αβ) for an atom κ that is defined as the coefficient of proportionality at linear

46



order between its change in its macroscopic polarization (Pβ) per unit cell in direction

β caused by an atomic displacement in the direction α (τα) under the condition of

zero external electric field (q=0) as given below in equation 3.1. Since polarization

can be defined as a first derivative of energy with respect to the macroscopic electric

field, this can be utilized to transform this in terms of a linear relation between the

force and electric field εβ as [83]:

Z∗κ,αβ = Ω0
∂Pβ
∂τκα

∣∣∣∣
q=0

= − ∂2Etot
∂εβ∂τκα

∣∣∣∣
q=0

=
∂Fκ,α
∂εβ

(3.1)

We performed DFPT calculations using the PBE functional. The resulting Born

effective charge tensor and the macroscopic dielectric tensor are given in tables 3.4

and 3.5.

Table 3.4: Calculated Born effective charge tensor for monoclinic NaSbSe2. For Se∗,
the dual Born charges indicate the relatively opposite alignment of each Se atom.

xx xy xz yx yy yz zx zy zz
Na 1.39 -0.31 0.00 -0.26 1.32 0.00 0.00 0.00 1.18
Sb 2.50 0.09 0.00 -0.05 6.01 0.00 0.00 0.00 2.18
Se∗ -1.95 0.11 ±0.91 0.16 -3.66 ±1.15 ±0.79 ±0.48 -1.68

Table 3.5: Dielectric tensor of monoclinic NaSbSe2. ε∞ is the electronic whereas εph
is the lattice contribution to the total macroscopic dielectric tensor: ε.

xx xy yy zz
ε∞,ij 9.2 1.4 13.1 9.6
εph,ij 9.4 -14.1 60.1 3.3
εij 18.6 -12.7 73.2 12.9
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The Born effective charges for Se and Sb are quite different from the nominal

valence and are enhanced in the y direction. This is also reflected in table 3.5 for the

dielectric constant where a high value is found along the y direction. The lattice part

has a much higher contribution along the same direction reflecting the origin in the

high y direction Born effective charges. This large dielectric response can be benefi-

cial in screening ionized impurities [82]. Defect tolerance due to charge screening has

been shown to be beneficial for carrier transport in various other semiconductors [84].

Now we discuss transport properties in relation to the TE performance ZT =

σS2T/κ. High ZT demands a high electrical conductivity (σ) simultaneously with

a high Seebeck coefficient (S). NaSbSe2 belongs to a chalcogenide chemistry that is

known to be associated with very low thermal conductivity, κ related to its bonding

characteristics [85]. Here we focus on the electronic aspect of ZT . Being counter-

correlated, increasing the carrier concentration generally increases σ but at the same

time also reduces S. This poses one of the central challenges in finding high perfor-

mance TE materials.

In attempts to address this, it has been shown that materials with certain complex

and/or non-parabolic band structure features, for example carrier-pocket anisotropy

[86, 87, 88], reduced dimensionality [89, 90, 91, 92, 93], exploitable anisotropies [94, 95]

and band degeneracies due to convergence [96, 97, 98] may result in decoupling of σ

and S. Such decoupling is important for realizing high thermoelectric performance

[68, 99, 100]. Essentially, these electronic band structure features are all significant

deviations from the isotropic single parabolic band (SPB) model and have been used
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to find high ZT TEs. These features in some cases can be visually identified in carrier

pocket shapes. Energy isosurfaces are shown in figure 3.3.

Figure 3.3: Isoenergy surfaces at 0.05 eV and 0.1 eV below VBM (p-type, left panel)
and above conduction band minima [CBM] (n-type, right panel) showing various
carrier-pockets.

The isoenergy surfaces in figure 3.3 are complex in nature and deviate substan-

tially from ideal ellipsoidal shapes as described by the SPB model and additionally,

are clearly anisotropic. For p-type, they are flattened ellipsoids on the Brillouin zone

faces. Whereas for n-type, sheets are formed at the zone boundaries which upon

increasing the doping concentration, connect in order to form approximate cylinders

that run along kz. Contrary to the p-type, this elongation represents an increase in

the transport effective mass along this direction. This direction corresponds to the

direction of inter-planar transport in the real-space structure.
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We now discuss the transport quantities more quantitatively. In figure 3.4, the

Seebeck coefficients are plotted in each of the three directions as a function of carrier

concentration at T = 300, 400 and 600 K. The reduced electrical conductivities (σ/τ)

are also shown.

Figure 3.4: Seebeck coefficients (in µVK−1) at various temperatures in all three di-
rections as a function of either doping concentration. [Bottom right] reduced con-
ductivity (in 1020 Ω−1m−1s−1) on a log-log scale for both p- (solid lines) and n-type
(dashed lines) doping.

We find the n-type Seebeck coefficient to be larger than the p-type, almost by a

factor of two. This reflects the steeper onset of the n-type DOS [92]. In the 1019-

1020 cm−3 doping range it is as high as 300 µV K−1 for the n-type. For TEs where

the thermal conductivity is typically approximated as κ=κe+κl, the sum of electrical
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and lattice thermal conductivity contributions respectively, one can apply the Wiede-

mann–Franz law, κ=LσT . With this and the standard value of L=L0, it can be shown

that one has to have S ' 160 µV K−1 in order to obtain Z = S2σ/κ over unity in

the (ideal) limit of vanishing κl. Despite being almost isotropic, S has slightly larger

values along the y-direction in either doping types. The effect is stronger for n-type

where the carrier pockets become open cylinders at comparatively low energy relative

to the band edge. In the lower right panel of figure 3.4, the reduced electrical conduc-

tivity (σ/τ) shows similar trends. This significant anisotropy in the conduction band

masses results into about an order of magnitude difference between the in-plane (x

and z) and out-of-plane (y) direction conductivity values.

The reduced power factor (RPF) defined as S2σ/τ , captures the combined effect

of both σ and S on the TE transport and is shown in figure 3.5. One may note the

large difference in the RPF in the x, z direction from the y direction arising from its

lower conductivity. This difference is about 20 times larger for n-doped case reflecting

the flatter anisotropic energy isosurface shapes.

As mentioned, there are a number of band structure features that can decouple

σ and S in doped semiconductors. Such band structure complexities relevant to TEs

can be quantified using an EFF defined as: (σ/τ)S2/N2/3 where N is the volumetric

density of states [65, 92]. This function is low when either conductivity or ther-

mopower is low, and is high when conductivity and thermopower are both high- a

combination that does not generally occur for a single isotropic parabolic band. As

mentioned, the EFF is a temperature and doping level dependent function based on
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Figure 3.5: [Left Panel] Reduced power factor: S 2σ/τ (in 1010 Wm−1K−2s−1) at
various temperatures in all three directions as a function of both p- (left half) and
n-type (right half) doping concentration. Note the difference in scales, especially for
y direction of n-type. [Right Panel] Calculated EFF (in 10−19 W5/3ms−1/3K−2) in
all three directions for monoclinic NaSbSe2 as a function of doping concentration at
various temperatures for both p- and n-type doping. Note the similar difference in
scales.

transport integrals. It characterizes the extent to which the band shape favors high

ZT , independent of differences in scattering mechanisms or the thermal conductivity.

The EFF for NaSbSe2 is shown on right in figure 3.5. We restrict our discussion to

T = 600 K, and below, since the stability of the ordered structure is doubtful above

this temperature.

As seen, on right of in figure 3.5, for n-type doping, the in-plane/out-of-plane

anisotropy in EFF is larger than 25. This means that n-type NaSbSe2 will have

strongly anisotropic TE properties. This is a consequence mainly of strong anisotropy
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Figure 3.6: Comparison of EFF (in 10−19 W5/3ms−1/3K−2) calculated along direction
of best performance for four other known TEs namely Mg3Sb2, PbTe, GeTe and
ZrNiSn with both doping types. Note that at 600 K we have the rhombohedral
structure for the highest EFF value material GeTe.

in the conductivity, and in particular low conductivity perpendicular to the layers. In

the following we focus in the in-plane directions. In figure 3.6, we present a compari-

son of EFF with four other established TE materials at 600 K in their corresponding

crystal directions of best performance (i.e. highest EFF directions).

The superior TE performance of n-doped NaSbSe2 along the x-direction as indi-

cated by calculated EFF can be noted from figure 3.6. It is next only to rhombohedral

GeTe, which has comparable EFF for either doping type [65, 101]. The peak EFF for

n-type NaSbSe2 is close to that of n-type Mg3Sb2, which is a newly discovered high

performance Zintl TE, with especially favorable properties at intermediate tempera-

ture when the doping is optimized [102, 103]. In relation to PbTe, which is currently

used in thermoelectric generators, the EFF for n-type NaSbSe2 is comparable for the

same temepratures. Lastly, the half-Heusler compound ZrNiSn, taken as a known

[104] nanocomposite TE to standardize the EFF values [65] lies lower than n-type
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optimally oriented NaSbSe2.

Three interesting aspects of the EFF of n-type NaSbSe2 are that the EFF is

strongly increasing with temperature over the range shown, that the EFF is rather

isotropic in-plane (x-z directions), and that the EFF maximum in-plane is rather flat

over a wide concentration range at fixed temperature. Specifically, the EFF changes

by only ∼10% in the doping range 1018–1019 at 600 K for x and z directions. This

means that control of the exact carrier concentration is less important in this material

than in many other TEs, and moreover that a single carrier concentration will be near

optimal over the whole temperature range from 300 K to 600 K. The in-plane near

isotropy means that high performance might occur not only in suitably oriented sin-

gle crystals, but also in ceramics, provided that the ceramics are highly textured for

in-plane transport. The increase with temperature implies that it will be of interest

to experimentally determine what temperature can be used while retaining stability

of the structure, and also whether chemical modifications can be made that improve

the stability.

3.2.4 Conclusions

To summarize, we performed first-principles electronic structure and transport calcu-

lations and determined the TE properties of newly synthesized monoclinic NaSbSe2.

This material was previously known in literature as a cation disordered material

where its layer ordered form has been recently synthesized in nanostructured form.

Our first-principles results showed cross-gap hybridization between Se-4p and Sb-5p
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states. We also found this in conjunction to enhanced Born effective charge and

high dielectric constant (ε). Keeping thermoelectric transport in mind, this is espe-

cially helpful in achieving defect-tolerance against ion-impurity scattering and helps

increase electron mobility. A large Seebeck coefficient coupled with anisotropically

high electrical conductivity features are also found through specific transport cal-

culations using Boltzmann theory. The calculated large anisotropies in ε, S and σ

are in accord with its layered structure. Complex energy isosurface structure with

properties favorable for the electronic part of the TE transport are also found from

the study of electronic structure. Based on the calculated EFF, a metric formulated

to evaluate TEs theoretically, the material shows behavior competitive to the best

known TEs in this temperature range. In conclusion, n-type NaSbSe2 possesses elec-

tronic structure properties favorable for TE transport. Experimentally, it would be

of interest to investigate doping and the resulting TE performance of this material

when doped.
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Chapter 4

Thermoelectrics: An insight into
the Lorenz number

In this chapter, we examined the Lorenz number (L) as used in the Wiedemann-Franz

relation in the context of Thermoelectrics (TEs), with a focus on one of the recur-

rent formulas in the literature. Based on the observed Seebeck coefficient, it is used

to estimate L in experimental investigation of novel TEs. We used the Boltzmann

transport theory to test this formula for realistic electronic structures of a few known

TEs in different scattering regimes.

We find that this expression, captures the observed variations of L with satisfac-

tory accuracy for some materials while deviating substantially for some other ones

that have non-parabolic band structures. This implies caution should be exercised

especially in TEs and other materials that may have complex electronic structures.
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4.1 Introduction

Heat conduction in materials generally involves multiple transport channels, including

electronic and phononic, and these may be coupled. It is often important to separate

these components to reveal the physics of heat transport. This is particularly signifi-

cant in thermoelectrics (TEs), where understanding lattice thermal conductivity and

mechanisms for its reduction are crucial [105, 106, 107, 108, 109, 110]. In principle,

the electronic conductivity and corresponding electronic thermal conductivity can be

suppressed by magnetic field, allowing direct measurement of the lattice thermal con-

ductivity, κl. This has been carried out for several materials including Bi2Te3 crystals

and some other materials generally below room temperature [109, 111]. However, the

regime where the cyclotron time and relaxation time are comparable, it is not achiev-

able in ordinary TEs at temperatures where they are used. Therefore, even though

the conditions can be somewhat relaxed by appropriate fits [109], only the total ther-

mal conductivity, κ, consisting of the sum of all these parts is normally accessible by

direct measurement in ordinary TEs.

Then, empirical methods are used to separate the lattice and electronic contri-

butions to κ. It is common to use the Wiedemann–Franz (WF) relation for this

[107]. This states that κe = LTσ, where κe is the electronic component of κ, σ is

the electronic conductivity, T is the temperature and L is the Lorenz number which

is often treated as a constant, L0=
π2

3
(kB/e)

2 = 2.443 × 10−8 WΩK−2. Flage-Larsen

and Prytz [113] used specific parametrizations with a single parabolic band (SPB)

model to estimate electronic transport through L for different model scattering mech-

anisms, temperatures, chemical potential and carrier concentration. Going beyond
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this, Maciá [112] derived L, κe and other transport coefficients analytically in com-

bination to phenomenological parameters for complex metallic alloys and obtained

corrections to the WF relation in accord with experiments.

It must be noted that the WF relation as stated previously holds under the ideal

conditions of the degenerate doping limit, with additional assumptions such as elas-

tic scattering. These generally hold for metals and heavily doped semiconductors at

temperatures where electronic heat transport dominates, the case where L converges

to L0. However, in practice, semiconductor TEs often lie in between the heavily

doped degenerate limit and the lightly doped non-degenerate limit, and here, L may

deviate significantly from L0 [114]. This also may depend on the associated electronic

scattering mechanisms, its temperature dependence and other factors [112, 115, 116].

In an attempt to estimate L more accurately, Kim et al. [117], using experimental

data, proposed an approximate equation by which one can estimate L directly from

Seebeck coefficient (S) measurements. This enabled experimentalists to quickly es-

timate L at any temperature without having to depend on less accessible quantities

e.g. Hall mobility and so on. This expression has become very widely used and is

the subject of the present work [118, 119, 120, 121, 122]. Assuming a parabolic band

model with acoustic phonon scattering, its (simplified) form as used is:

L = 1.5 + exp

[
− |S|

116

]
(4.1)

This equation is intended to provide a better approximation to L (in 10−8 WΩK−2)

obtained from measured S (in µV K−1) as compared with treating it as the constant
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L0.

Previously, Wang and co-workers [123], explored the factors affecting its gener-

ality for Si and Bi2Te3 via the Landauer approach and found that L can be much

smaller than the expected non-degenerate limit L = 2(kB/e)2 = 1.48×10−8 WΩK−2.

Here, we studied the accuracy of this expression by comparing it with first-principles

results obtained for a few known TEs as well as numerically solving the Boltzmann

transport equations for the SPB model, which is the origin of this formula.

The semiclassical theory of electronic transport or the Boltzmann transport equa-

tion (BTE) under the relaxation time approximation results in the following equations

(in their scalar form):

σ =

∫
σ(E)dE (4.2a)

S = − 1

eT

∫
(E − EF )σ(E)dE∫

σ(E)dE
(4.2b)

κe =
1

e2T

∫
(E − EF )2σ(E)dE (4.2c)

where

σ(E) = e2Ξ(E)

(
−∂f0
∂E

)
(4.2d)

Here f0 is the Fermi function and τ is the relaxation time and e is the magnitude

of electronic charge. The integrals are over the entire energy range. The transport
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function Ξ(E) is derived from the band structure, which in its tensor form is

Ξij(E) =

∫
2d~k

(2π)3
vi(~k)vj(~k)τ(E)δ[E − E(~k)] (4.3a)

with

~v(~k) =
1

~
∇~kE(~k) (4.3b)

such that

ΞSPB(E) = N(E)v(E)2τ(E) (4.3c)

Equation 4.2d states the standard definition of κ [124]. However, for materials

that are not metals, the presence of a temperature gradient (∇T ) induces an electric

field and vice versa [125, 126]. This is the source of thermoelectric effects. This leads

to an additional contribution to the open circuit thermal conductivity:

κopen = κe − TσS2 (4.4)

Although these equations hold good for materials with a general band structure,

it is also relevant to study the analytical results applicable for the SPB model. In

this ideal case, one can solve BTE to obtain both S as well as L directly in terms of

a scattering law exponent (λ) and the relevant chemical potential (η, depending on

the carrier concentration). These analytic results (using the expression in equation
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4.4 can be summarized as:

L =

(
kB
e

)2 (1 + λ)(3 + λ)Fλ(η)Fλ+2(η)− (2 + λ)2F 2
λ+1(η)

(1 + λ)2F 2
λ (η)

(4.5a)

S =
kB
e

(
(2 + λ)Fλ+1(η)

(1 + λ)Fλ(η)
− η
)

(4.5b)

Here, Fλ(η) is the generalized Fermi integral over the entire energy range and is

given by:

Fj(η) =

∫
EjdE

1 + exp
(
E−η
kBT

) (4.6)

Using these above expressions, we define the L in two different ways as [127]:

Le =
ke
σT

(4.7a)

Lopen =
kopen
σT

(4.7b)

We use both of these expressions and investigate the variations in it from the

degenerate value L0 in different materials. We find, although in some cases equation

4.1 is close to the exact result, important deviations are found in others, including

practically relevant cases for TE research.
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4.2 Computational methods

We investigated the electronic structure of four known TEs viz. Mg3Sb2, PbTe,

SrTiO3 and ZrNiSn via density functional theory calculations with the all-electron

linearized augmented planewave (LAPW) method [6] as implemented in the WIEN2k

code [5]. We used experimental lattice parameters as given in table 4.1. Where ap-

plicable, we relaxed the internal atomic coordinates.

Table 4.1: Used lattice paramaters from experiments with relaxed internal coordinates
(in case of Mg3Sb2)

Material Space Group a (Å) c (Å) Sp.
Internal coor.

x y z

Mg3Sb2[128] P3̄m1,164 4.559 7.243
Mg1 0 0 0
Mg2 1/3 2/3 0.6315
Sb 1/3 2/3 0.2247

PbTe[129] Fm3̄m,225 6.454 6.454
Pb 0 0 0
Te 1/2 1/2 1/2

SrTiO3[130] Pm3̄m,221 3.906 3.906
Sr 0 0 0
Ti 1/2 1/2 1/2
O 1/2 0 1/2

ZrNiSn[131] F4̄3m,216 6.115 6.115
Zr 0 0 0
Ni 1/4 1/4 1/4
Sn 1/2 1/2 1/2

We used the Perdew–Burke–Ernzerhof functional to relax the atomic coordinates

of Mg3Sb2 [17]. We then used the modified Becke–Johnson (mBJ) potential to cal-

culate the electronic and transport properties [23]. The mBJ functional, as discussed

in the previous chapter, is known to yield improved band gaps relative to experiment

for a wide variety of simple semiconductors and insulators [23, 74], including Mg3Sb2

[132]. Spin-orbit coupling was included for all calculations except for the determina-
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tion of internal atomic coordinates. In particular, spin orbit was included for all the

electronic structures and transport properties that are presented here. The LAPW

sphere radii (RMT) of the individual atoms were fixed at 2.4 Bohr except that 1.8

Bohr was used for Ti and O and 2.2 Bohr for Sr in SrTiO3. RMT for Sb in Mg3Sb2

was fixed at 2.6 Bohr. The plane wave sector basis set was constructed by choosing

RminKmax = 9 for all the calculations. Brillouin zone integrations were carried out on

a k-mesh of 20×20×11 for rhombohedral Mg3Sb2 and 20×20×20 for the other TEs.

For the transport calculations, the number of k-points was further doubled in each

k-direction.

We solved the Boltzmann transport equations with the constant scattering time

approximation (CSTA) as implemented in the BoltzTraP code [7]. We also used the

acoustic phonon scattering (APS) time approximation by modifying the code. We cal-

culated S and L in both of these cases. The APS was implemented by setting τAPS(E)

∝ 1/τN(E), using N(E) as the electronic density of states (DOS) [123, 126, 133]. This

is the APS formula for a general band structure and reduces to the APS scattering

exponent, τ−1 ∼ E1/2 for a single parabolic band, where E is the energy from the band

edge. We also solved equation 4.2 for the SPB model numerically with unit effective

mass under both CSTA and APS approximations independent of equation 4.5 and

found agreement with the formula as expected. It should be emphasized that carrier

scattering in thermoelectric materials is generally complex involving both multiple

scattering mechanisms and sample dependence. Nonetheless, our results, which show

substantial deviations from the formula for TEs with complex band structures, do

illustrate the limitations of this formula.
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4.3 Results and discussion

The band gaps obtained using the mBJ potential were 0.58 eV, 0.33 eV, 2.71 eV

and 0.46 eV for Mg3Sb2, PbTe, SrTiO3 and ZrNiSn, respectively. As mentioned, the

actual scattering mechanisms in materials under experimental investigation are gen-

erally difficult to determine and may vary [103], so here, we examine the accuracy

of the proposed estimate of L as given by equation 4.1 in both the CSTA and APS

regimes. Results obtained by numerically solving equation 4.2 or the SPB model

together with those from equation 4.1 were included for reference in each case.

In CSTA, τ(E) comes out of the integral as a constant for each of the coeffi-

cients. However, in the APS case, recalling the DOS substitution for τ(E) as shown

previously one may also obtain both L and S. In literature, Wang et al. [123] and

McKinney et al. [126] used this energy dependent scattering rate to explicitly include

APS.

In figure 4.1, one may note that S is lower in the APS than in the CSTA. This is

due to the DOS dependent relaxation time as mentioned earlier. p-type PbTe can be

seen to show the largest such reduction of S among the two scattering time approxi-

mations. This is related to the highly non-parabolic band structure.

We used the standard expression from equation 4.7b and calculated L for both

64



Figure 4.1: Calculated S (in µVK−1) under both CSTA (blue) and APS (red) ap-
proximation as a function of doping concentration (in cm−3) of either doping types
for four TEs at suitable temperatures. The solid lines indicate p-type whereas n-type
doping has been shown in dashed lines.

scattering approximations. The results are shown in figure 4.2. When compared with

the degenerate case, one may observe how the L obtained using the standard defi-

nition gives us orders of magnitude large deviations, especially around lower doping

levels. One may also note how L decreases monotonically for ZrNiSn and SrTiO3 so as

to converge to the degenerate limit value at highest doping levels. PbTe and Mg3Sb2

exhibit a local minima where they go below L0 in the APS case before converging

similarly to L0.

Including the open circuit correction term as in equation 4.7b, we obtained the rel-

evant estimate of L. This leads us to make a direct comparison of our first-principles

65



Figure 4.2: Calculated L (in WΩ K−2) using equation 4.7a under both CSTA and
APS approx. similar to figure 4.1 for both doping types.

results to the estimated L in equation 4.1. The results have been plotted against the

doping concentration separately for p and n types in figure 4.3 and figure 4.4, respec-

tively. It should be noted that due to bipolar reduction of S, the L vs S relation

is multivalued in certain materials. This suggests extra care when using expression

4.1, especially for narrow band gap materials which show strong bipolar transport

[134]. The standard parabolic band results are also included in the fourth panel for

comparison.

From figure 4.3, one may observe that the estimate of equation 4.1 gives reason-

able agreement for SrTiO3 and ZrNiSn. The results are summarized in table 4.2. For

either of the compounds, we found the estimates to have a maximum deviation of

less than about 15%. Both of these have high doping levels. For the other two com-
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Figure 4.3: First-principles results of L (in WΩ K−2) vs p-doping concentration using
equation 4.7b under both CSTA (solid lines) and APS (dashed lines) shown in blue
lines for above mentioned TEs at suitable temperatures. The approximation using
expression 4.1 have been shown in red similarly. Standard degenerate limit value has
been also been shown in black dashed lines.

pounds, however, the deviations are much larger. In Mg3Sb2, L deviates by over 0.87

and by 0.35 (×10−8 WΩ K−2) for the p and n-type, respectively. Similarly, for PbTe,

these values are about 52% and 36%. Interestingly, for the latter two compounds,

these points lie closer to the non-degenerate doping limit.

The above mentioned deviations from L0 are in accord with the results reported by

Kim et al. [117] with a common overestimation trend among all four materials. How-

ever, it must be noted that especially for Mg3Sb2 (and also for PbTe somewhat), the

deviations are quite large as the calculated L dips much lower than the non-degenerate

limit of 2(kB/e) = 1.5×10−8 WΩK−2 for the APS case. This is in accord with an
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Figure 4.4: Calculated L (in WΩ K−2) using equation 4.7b under both CSTA and APS
time approximations similar to figure 4.3 for n-doped TEs at suitable temperatures.

Table 4.2: Maximum deviation between the estimated and calculated L (L(|S|) −
L(kopen)) with relevant doping concentration (conc.) in multiples of 1019 cm−3.

Material
Maximum deviation (in 10−8 WΩK2)

p n
Conc. Abs % Conc. Abs %

Mg3Sb2 0.2 0.87 130 4.5 0.35 26
PbTe 4.5 0.76 52 0.9 0.5 36

SrTiO3 0.13 -0.21 12.3 150 0.2 13
ZrNiSn 20 0.2 13 5.0 0.17 11

earlier report where it was observed in the case of Mg3Sb2 that the low L is beneficial

for TE performance [126]. On the other hand, for PbTe, our results were in accord

with those of a previous study, in which Ahmad and Mahanti [125] solved Boltzmann

transport equations for Kane bands under different scattering mechanisms.
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Importantly, in addition to this, for the SPB results, we found that the approxima-

tion (simplified form) overshoots the degenerate value at extreme doping concentra-

tion, in agreement with the low S region as reported [117]. It also shows considerable

deviations around the doping region of 1019 cm−3, the one relevant in TEs. The

inclusion of our CSTA results shows the similarity of approximated L across both

scattering cases, especially at lower doping levels where S is large. As reported, our

first-principles results in figure 4.3, figure 4.4 confirm how this approximation is valid

only for the APS case.

From equation 4.2, one may note how the transport coefficients involve integra-

tion of energy moments of the transport function ΞCSTA(E) over the electronic states

chosen by the temperature-dependent window function f ′(E−EF ). We plotted these

quantities along with the characteristic DOS of the material in figure 4.5.

From figure 4.5, one may note how the widths of each window differ for each order

of the moment of energy over the scale of a few kBT . Thus, they sample the transport

function Ξ(E) differently. These different samplings control the different transport

coefficients, and also the L. The DOS plots also show considerable deviations from

their ideal parabolic nature.

It is evident from the above mentioned results, in particular the non-trivial doping

dependence of L in the top panels of figure 4.3, figure 4.4, that the proposed formula

works within acceptable error ranges for SrTiO3 and ZrNiSn. However, there are very
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Figure 4.5: The window function: f ’(E-EF ) plotted vs energy together with its
various energy moments all scaled to unity. The doping types have been chosen
for the one with better TE performance from literature at a fixed concentration of
5×1019 cm−3. The integrand: transport function in equation 4.2 for the CSTA case
along with the electronic DOS have also been shown for reference while scaling them
appropriately for visibility. A smoothening of 0.003 Ry has been applied for all DOS
plots. The zero energy was set at the nearest band edge.

sizable errors in determining the properties of compounds such as Mg3Sb2 and PbTe.

This is a consequence of the complex non-parabolic band structures, which are also

of importance for their TE performance [92, 87, 135, 136]. Hence, care must be taken

for materials having such non-parabolic band structures. From equations 4.2 and 4.7,

it can be seen how the dependence of L on Ξij(E) is a much complex relationship.

Thus, relating it directly to |S| is an oversimplification. In case of these complex

band structured TE materials, relying on this expression for κe and κl separation

that yields an erroneous L with an upper bound of 20% deviation as found above,
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might not be the right choice[120, 137].

4.4 Conclusions

We studied the accuracy of the expression proposed to estimate L, the Lorenz num-

ber, using the experimental S by testing them against first-principles results obtained

by solving Boltzmann transport equation using first-principles electronic structures

as input. The equation is straightforward and is an improvement over using only the

degenerate limit value: L0 and works within <15% error for TEs like SrTiO3 and

ZrNiSn. As a result this is expression is widely accepted choice for the experimental

study of TEs that involves separation of the constituting electronic and lattice compo-

nents of the thermal conductivity. However, the errors are large for materials known

to have non-parabolic band structures and/or low-band gaps. As proposed originally,

the formula also deviates around 5% from the analytical SPB model in the doping

concentration of around 1019 cm−3, that is, the range relevant to many well-known

TEs. These findings are in agreement with previous results by Wang et al. [123] on

Si and Bi2Te3. As mentioned, complex non-parabolic band structures are generally

helpful in improving TE performance. Interestingly, we also find that materials such

as PbTe and Mg3Sb2 for which this is the case are cases where the proposed expres-

sion also has larger errors. Therefore, although the expression remains useful, caution

should be used in its application to TE materials with complex, non-parabolic band

structures.
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Chapter 5

Magnetism: a case study of its
localized type

This chapter and the following two, focuses on one of the major characteristics of

condensed matter systems: magnetism, the origin and types of which are often de-

cided by its intricate microscopic properties. Studying magnetism not only drives

novel technological innovations, but also serves as an important tool to understand

the detailed nature of physical phenomena operating at the atomic level of matter

[138].

Here, in this chapter, we will find how a material’s crystal structure, chemical

composition and nature of electronic interactions leads it towards magnetism. I stud-

ied manganese selenite, a perovskite material of rare structural characteristics, and

compare it with its non-magnetic counterpart zinc selenite in order to decipher the

nature of its magnetism. Upon investigation of its properties, I find that this material
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is of localized magnetic nature. In the following two chapters, we will investigate the

other kind of magnetism, viz.: the itinerant magnetism and some interesting phenom-

ena associated with it.

5.1 Properties of the antiferromagnetic selenite

MnSeO3 and its non-magnetic analogue ZnSeO3

I present our study of properties of antiferromagnetic selenite MnSeO3 and the non-

magnetic analogue ZnSeO3, based on first principles calculations. These compounds

are rare examples of ABO3 perovskites with a tetravalent A-site and a divalent B-

site. The electronic structure is discussed in the context of the bonding and crystal

structure. There is cross-gap hybridization between the O p states that form the va-

lence bands of these compounds and the unoccupied p states of Se, reflecting the lone

pair physics that leads to the strong off-centering of Se from the perovskite A-site.

The G-type antiferromagnetism of MnSeO3 is a local moment in nature arising from

high spin Mn2+ with short range interactions. Additionally, there is an interesting

spin-dependent hybridization of Mn d and O p states analogous to that in colossal

magnetoresistance manganites.
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5.2 Introduction

Perovskite oxides constitute an exceptionally broad class of compounds, which exhibit

many diverse properties and useful functionalities. The structure type is character-

ized by an ABO3 stoichiometry, based on corner linked BO6 octahedra arranged on a

simple cubic lattice, often distorted, but always having this topology. This includes

the four member rings that allow coherent rigid body rotations of the octahedra and

that allow accommodation of ions with sizes mismatched to the ideal structure.

MnSeO3 is an antiferromagnetic compound, Néel temperature TN = 53.5 K [139],

that occurs in an orthorhombic (spacegroup 62, Pnma) structure that has been de-

scribed as a distorted perovskite and as an ionic salt consisting of Mn2+ and (SeO3)2−

[140]. It belongs to a group of selenites described by the chemical formula MSeO3,

where M is a metal (Mn, Co, Ni, Zn, Mg or Cu). These compounds are generally

formed at elevated pressure and temperature [139, 140, 141, 142, 143]. First principles

calculations for several of these selenites, including MnSeO3 were reported by Michel

[143].

Common A-B valence states for ABO3 perovskites are 0–6 (e.g. WO3), 1–5 (e.g.

KTaO3), 2–4 (e.g. PbTiO3) and 3–3 (e.g. BiFeO3) [144]. However, these selenites are

examples of the rarely seen 4–2 valence combination (4 on the A-site and 2 on the

B-site). The reason for this rarity is well understood in terms of the Pauling rules

where the corner sharing perovskite structure is normally stabilized by repulsion be-

tween highly charged B-site cations [145], which in the present compounds are not

highly charged. Furthermore, the perovskite tolerance factors (t = 0.63 for ZnSeO3),
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based on Shannon crystal ionic radii, are extremely low for a stable perovskite due

to the small size of the Se4+ cation. The structure of these selenites accommodates

the low tolerance factor via a strong off-centering of the Se ions in their cage and

tilts of the BO6 octahedra, as is common in low tolerance factor perovskites. It has

been suggested that these tilts play an important role in the exchange interactions

[139, 140, 141, 142, 143]. It is also of interest to note that MnSeO3 can be regarded

as a charge conjugate analogue of SrMnO3, in the sense that with high spin Mn in an

octahedral crystal field, doping the full eg level of MnSeO3 with holes is like doping

SrMnO3 with electrons, as in the (La, Sr)MnO3 colossal magnetoresistance (CMR)

system [146, 147, 148].

Here I report a first principles investigation of MnSeO3 and the non-magnetic

analogue ZnSeO3 to elucidate the nature of the exchange interactions and the basic

features of the electronic structure in relation to the bonding and crystal structure.

5.3 Computational approach

The calculations presented here were done in the framework of density functional

theory using the general potential linearized augmented planewave (LAPW) method

[6] as implemented in the WIEN2k code [5]. We used the generalized gradient ap-

proximation (GGA) of Perdew, Burke and Ernzerhof (PBE) [17], along with well

converged Brillouin zone samplings and basis sets. We used LAPW sphere radii of

1.4 Bohr, 1.8 Bohr, 2.0 Bohr and 2.0 Bohr, for O, Se, Mn and Zn, respectively, and
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a planewave cutoff, Kmax, determined by RminKmax = 7.0 , where Rmin = 1.4 Bohr is

the O sphere radius. This yields effective RmtKmax values of at least 9.0 for the other

atoms. Local orbitals were used to include the semicore states with the valence states.

We tested different zone sampling densities for convergence. The results shown were

obtained with meshes of 10 × 8 × 12 or better. We also calculated magnetic ener-

gies using the PBE+U method, with U = 5 eV to test the effect of possible beyond

density functional theory correlation effects. These calculations were done with fully

localized limit double counting as implemented in the WIEN2k code.

Both ZnSeO3 and MnSeO3 occur with orthorhombic Pnma structures, with four

formula units per cell. We used experimental lattice parameters, and relaxed the

atomic positions using the PBE GGA. Magnetism was included for MnSeO3. The

crystal structures are depicted in figure 5.1. For ZnSeO3, which is semiconducting,

we also did calculations using the modified Becke Johnson (mBJ) potential [23]. As

described in earlier chapters, compared to standard GGA functionals designed for

total energies [17, 18], such as the PBE GGA, this potential generally gives much

improved band gaps in relation to experiment for simple semiconductors and insu-

lators, although it is not applicable to magnetic transition metal compounds, such

as MnSeO3 [75, 74]. Optical properties for ZnSeO3 were obtained with the optical

package of the WIEN2k code using the mBJ predicted electronic structure.
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Figure 5.1: Structure of ZnSeO3 (left) and MnSeO3 (right). The Zn/Mn are in the
centers of the octahedra. Note the perovskite structural motif of corner sharing ZnO6

or MnO6 octahedra, although with very strong rotations.

5.4 Results and discussion

The structure (figure 5.1) consists of fully corner linked M (Zn or Mn) centered octa-

hedra. Structural parameters are given in table 5.1. The structure is perovskite-like

in terms of the connectivity and topology of the MO6 octahedra. However, it is

strongly distorted as seen from the very strong deviation of the M–O–M bond angles

from the ideal value of 180◦. The angles are in fact substantially smaller than even

in the proton conductor, CaZrO3 (∼ 145◦ [149]). On the other hand, the octahedra

themselves are relatively undistorted in both compounds. The similar, small level of

distortion for the Zn and Mn compounds implies an absence of Jahn–Teller activity

in the Mn compound, consistent with its nominal Mn2+ valence. More generally, the

structural similarity of the two compounds strongly supports this assignment of Mn2+

. However, in both compounds the M bond valence sum is somewhat higher than the

nominal value (2.30 for ZnSeO3 and 2.24 for MnSeO3), implying Se–O covalency.
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Table 5.1: Structural parameters for Pnma ZnSeO3 and MnSeO3. The lattice param-
eters, a, b and c are from experiment [139, 140, 141, 142, 143]. Each M = Zn, Mn
has six O neighbors, two at each independent bond length. Se has three short bond
lengths, with other Se-O distances longer than 2.8 Å. There are two independent
M -O-M bond angles, one connecting octahedra along the b direction (denoted (b)),
and two equal angles connecting in the ac plane.

ZnSeO3 MnSeO3

a, b, c (Å) 5.9239, 7.6684, 5.0421 6.093, 7.8638, 5.1426
M -O (Å) 2.075, 2.168, 2.208 2.153, 2.234, 2.267
Se-O (Å) 1.740, 1.754, 1.754 1.743, 1.755, 1.755
M -O-M 124.3◦ (b), 130.5◦ 123.3◦ (b), 128.8◦

The strong distortion from the ideal perovskite structure could perhaps be ratio-

nalized by the very small size of the Se4+ ion, which would in turn lead to a very

low tolerance factor of ∼0.6 in these compounds. However, this is outside the normal

range of perovskite stability [150]. In fact, as seen, the Se is strongly off-centered

within its anion cage, leading to three very short Se-O bonds (∼1.75 Å), while the

other Se-O distances are all longer than 2.8 Å. The short bond lengths are again

suggestive of at least some significant degree of Se-O covalency. From this point of

view, the stability of these compounds with perovskite topology is due to the bonding

of Se with three O neighbors. This can also be discussed as a strong lone pair driven

distortion (note that lone pair distortions implicitly involve cation ligand p-electron

hybridization).

The electronic density of states (DOS) for ZnSeO3 is shown in figure 5.2. Se p and

O p projections of the DOS are shown in figure 5.3, and the band structure is given

in figure 5.4. The present calculations were done using small Se and O LAPW sphere
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radii of 1.8 Bohr and 1.4 Bohr. This was necessitated by the short Se-O bond lengths.

Note that as a result of this and the extended nature of Se p and O p orbitals, these

projections are approximately proportional to, but lower than the p orbital character.

In any case, the plot clearly shows covalency involving the nominally Se p derived con-

duction band orbitals and the nominally O p derived valence band orbitals through

the sizable Se character in the valence bands and O character in the conduction bands.

Figure 5.2: Electronic density of states and d-character projection onto the Zn LAPW
sphere for ZnSeO3, as obtained with the PBE GGA on a per formula unit basis.

Finally, before turning to the electronic structure and magnetism, we note that

the strongly bent Mn-O-Mn bond angles may be expected to have a strong influence

on the magnetic interactions. These angles are in the range where antiferromagnetic

superexchange may be weakened in favor of ferromagnetic interactions according to

the Goodenough-Kanamori rules [151, 152]. The distortion is stronger for the con-

nections along the b axis direction, which may suggest perhaps different interactions

along b.
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Figure 5.3: Projection of the DOS of p character onto the Se and O LAPW spheres
in ZnSeO3 as obtained with the PBE GGA. Note that due to the small Se and O
LAPW sphere radii this is approximately proportional to but smaller than the true
p orbital characters.

Figure 5.4: Calculated band structure of ZnSeO3 as obtained with the mBJ potential.

We begin the discussion of the electronic structures with ZnSeO3, which can be

regarded as a non-magnetic reference for MnSeO3. figure 5.2 shows the calculated

electronic DOS as obtained with the PBE GGA. As seen, the compound is insulating
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and the Zn d states are fully occupied and occur at a binding energy of ∼5 eV relative

to the valence band maximum, consistent with the expected divalent Zn. The width

of the O p derived valence bands is ∼6.4 eV and the almost certainly underestimated

PBE band gap is 3.8 eV.

Calculations with the mBJ potential give a larger band gap of ∼4.9 eV. The op-

tical absorption spectrum is given in figure 5.5. As seen, there is an onset of strong

absorption starting slightly above the fundamental band gap, with anisotropy near

the band edge.

Figure 5.5: Calculated optical absorption spectrum for ZnSeO3 as obtained with the
mBJ potential.

We performed calculations for MnSeO3 with different assumed magnetic orders.

In all cases, we obtained an insulating electronic structures and moments consistent

with high spin Mn2+ . Specifically, we obtained fully occupied Mn majority d bands

and unoccupied minority d bands. The orders that we considered were ferromagnetic

(F), G-type antiferromagnetic (G), with all nearest neighbor Mn–Mn connections
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antiferromagnetic, C-type (C), consisting of ferromagnetic chains along the b-axis di-

rection, ordered with nearest neighbor antiferromagnetism in the ac plane and A-type

(A), with ferromagnetic layers in the ac plane stacked antiferromagnetically along b.

The electronic structures are shown in figure 5.6. The band structure in the ground

state G-type ordering is shown in figure 5.7. The basic features of the electronic

structure of MnSeO3 are similar to those of ZnSeO3, e.g. in the O p derived valence

band width, with the exception of the position of the M d bands. In ZnSeO3 these

are fully occupied and overlap the O p bands, while in the case of MnSeO3 these are

at the top of and above the O p bands.

We also performed calculations without spin polarization. We find that G-type

antiferromagnetic order provides the lowest energy, which is consistent with experi-

ment [139], and a prior calculation by Michel [143]. The calculated energies for the

different structures are given in table 5.2.

Table 5.2: Energies of MnSeO3 per formula unit for different magnetic states (refer
text). The energy for the lowest energy G-type order was taken as the zero. NSP
denotes non-spin-polarized.

Order G C A F NSP

E (eV) 0.0000 0.0175 0.0325 0.0550 2.59

As seen, all magnetically ordered structures are much lower in energy than the

non-spin polarized (NSP) case, and the energy differences between these orders is

very much lower in magnitude than the energy difference from the NSP case (at most

0.055 eV versus 2.59 eV). This means that the inter-site exchange interaction energies
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Figure 5.6: Calculated electronic density of states and minority and majority spin
Mn d projections for MnSeO3 with different magnetic orders. In the ferromagnetic
case, majority spin is shown above the axis and minority spin is shown below.

are much weaker than the on-site energy associated with moment formation. MnSeO3

is therefore in the limit of a local moment antiferrromagnet. This is in contrast to e.g.

SrTcO3, where the two energy scales are comparable resulting in an extremely high

TN [153]. In any case, with only nearest neighbor interactions considered, based on

the energy difference between the F and G orders, one obtains an average energy cost

for a ferromagnetic bond of 0.018 eV. The difference between A- and G-type orders

gives an energy cost of 0.016 eV for a ferromagnetic bond in the ac plane, while the

energy difference between C- and G-type give a cost of 0.018 eV for a b-axis ferro-

magnetic bond. The resulting average from the calculated G-, A- and C-type orders
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Figure 5.7: Calculated band structure of MnSeO3 with G-type antiferromagnetic
order, emphasizing majority (left) and minority (right) Mn d character using the
‘fat-bands’ scheme.

is then 0.017 eV, which is very close to that obtained using the F order calculation.

Thus it seems that the magnetic energies may be well described in terms of a nearest

neighbor interaction that is antiferromagnetic and only weakly anisotropic.

It is possible that correlation effects beyond the PBE level may be important in

these compounds, although it should be noted that the high spin, half filled Mn d

band implies a strong Hund’s coupling that may work against additional effects of

Coulomb repulsions. In any case, to determine the qualitative effects that additional

Coulomb repulsion would have, we performed PBE+U calculations with U set to

5 eV. These calculations were done using the fully localized limit double counting

scheme. We find the same energy ordering as without U and the same relative energy
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differences to within 10%. The energy scale between the different magnetic orderings

is, however, reduced. The energy difference between the G-type and ferromagnetic

order becomes 0.015 eV/formula unit, much smaller than the 0.055 eV for the PBE

GGA. This reflects the generally reduced hybridization in PBE+U calculations rel-

ative to PBE calculations [154]. The qualitative trend is similar to that found by

Michel with hybrid functionals [143]. Generally, the effect of PBE+U is to raise the

energy of the unoccupied transition metal d bands relative to the occupied bands and

O p bands. This increased energy separation reduces hybridization and therefore the

strength of superexchange [155].

Turning to the electronic structure (figure 5.6), it may be noted that all magnetic

orders show insulating gaps in excess of 1 eV. The calculated band gap for the lowest

energy G-type order is ∼2 eV. The gap formation is due to the large exchange split-

ting on the high spin Mn2+ ions and is between occupied majority spin eg bands and

unoccupied t2g bands. MnSeO3 is therefore an example of a transition metal oxide

with an odd number of electrons per formula unit that is insulating at the GGA level

independent of the specific magnetic order. Considering the very high energy scale

for moment formation relative to the inter-site exchange interactions the paramag-

netic state above TN should be viewed as having Mn ions with thermally fluctuating

moment directions, but stable moments. Based on the GGA results, this would also

be insulating even without considering electron correlations beyond the GGA level.

The DOS for the ferromagnetic order has O p bands that range from approximately

−2.5 eV to −9 eV, relative to the highest occupied state. There is pronounced hy-
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bridization between the Mn d and O p orbitals, and this hybridization is very spin

dependent and much stronger in the majority spin channel. This is seen in the ma-

jority spin Mn d projection, where there is a long tail extending into the O p bands.

There is also evident hybridization, though weaker, between the unoccupied minority

Mn d orbitals and the O p orbitals. This cross-gap hybridization provides an expla-

nation for the antiferromagnetic exchange [155]. The exchange splitting of the Mn

d states, estimated from the ferromagnetic DOS, is ∼4.5 eV, while the t2g-eg crystal

field splitting is ∼1 eV. The large exchange splitting relative to the crystal field is

consistent with the high spin Mn. The calculated spin moment for the ferromagnetic

ordering was 5 µB per formula unit, of which 4.24 µB is contained inside the Mn

LAPW sphere radius 2.0 Bohr, also consistent with high spin Mn2+ . All the antifer-

romagnetic configurations also show spin dependent Mn d-O p hybridization, similar

to the ferromagnetic case. We note that strong spin dependent hybridization is also

a characteristic of the CMR manganites [156, 157, 158, 159, 160].

5.5 Summary and conclusions

We report a first principles investigation of the nature of magnetism in the antifer-

romagnetic compound MnSeO3 and its non-magnetic analogue ZnSeO3. ZnSeO3 is

predicted to be an insulator with a band gap near 4.9 eV using the mBJ potential.

We find that MnSeO3 is reasonably described as a perovskite oxide with a high spin

Mn2+ B-site cation. We find a G-type lowest energy magnetic order in accord with

experiment. The magnetism is in the local moment limit, with an insulating elec-
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tronic structure, The inter-site exchange coupling may be well described in terms of

nearest neighbor nearly isotropic interactions. Additionally, the electronic structure

shows strong spin dependent Mn d-O p hybridization. In light of this, in analogy with

the CMR manganites, it will be of interest to determine whether the compound can

be doped, and if so whether a conducting ferromagnetic state can be induced. In any

case, inelastic scattering experiments to measure the spin-wave dispersions will be

a useful for establishing the nature of the exchange interactions in relation to other

manganites.
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Chapter 6

Quantum criticality and the search
for competing magnetic orders in
Sr3Ru2O7

The following two chapters focus on the material Sr3Ru2O7. This material is well-

known for showing a variety of interesting phenomenon like quantum criticality and

electronic nematicity. In this chapter, starting with a brief exposition on quantum

criticality, we discuss why it is essential to know about the low-energy states present

in competition with the ground state of such a system and how such a competition

directly influences its overall low-temperature ground state properties. This underly-

ing competition in Sr3Ru2O7, when appropriately perturbed via different techniques,

reveals many other properties and phases. Reviewing the literature to include them,

we searched for such metastable states that consists of a specific magnetic order and

also investigated its structural properties.
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A search strategy comprising of PAW pseudopotential based first-principles meth-

ods [25], we surveyed 12 possible magnetically ordered states. This finally yielded us

with a striped magnetically ordered state that indeed lies energetically very close to

the nascent density functional predicted ferromagnetic ground state. It is important

to note here that in quantum critical systems comprised of a strongly fluctuating

ground state, standard density functional methods almost always fail to directly cap-

ture its true ground state properties, often marked by a large overestimation of its

magnetic moments etc. However, we discuss how this known issue is being dealt with

and can be used advantageously in favor of these itinerant magnetic systems showing

such signature properties [201] while still being able to reliably predict its metastable

states.

This bilayered metal, however, being closely related to Sr2RuO4, which is a well-

known low temperature unconventional superconductor with elusive electronic inter-

actions, shows another interesting property. In this direction, we continue our discus-

sion of Sr3Ru2O7 where in the next chapter we focus on this phenomenon which is

known as the electronic nematicity where under specific magnetic field, the in-plane

transport properties of this metal displays a peculiar anisotropy. In this context, we

performed transport calculations on all of various magnetically ordered states and

found that such an anisotropy does exist exclusively in this metastable, striped mag-

netically ordered state.
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6.1 Quantum critical point

A critical point, as understood for a classical phase transition, which occurs at a finite

temperature, is that point in the phase-space of a material where the line separating

two phases in equilibrium, terminates. Such a phase transition is driven by thermal

fluctuations of the system.

In contrast, a quantum phase transition is driven by quantum fluctuations, as

identified by the Heisenberg’s uncertainty principle. Also, such a phase transition

takes place at absolute zero and can be accessed by tuning some non-thermal pa-

rameter of the system. At such a “quantum critical point” (QCP) the behavior of

the material is characterized by [161] a state that is the quantum superposition of

both order and disorder. Refer to figure 6.1. At this critical point, such quantum

critical fluctuations (for a second order phase transition) exhibit scale invariance in

both space and time i.e. the order parameter fluctuates over infinite region of space

and time. As explained by Coleman and Schofield [162], as one approaches such a

point, ever-larger “droplets” of “nascent” order develop and span the whole system.

One must note here that although interest in QCP arose purely for academic in-

terests, recent experimental results led to the belief that the presence of such a QCP

in a material can influence its electronic properties at non-zero temperatures, espe-

cially in high Tc superconductors and a whole host of other superconductors that

carry quasi-linear resistance signatures in their normal states [162, 163]. It is also

believed that proximity to a critical point may actually stabilize novel ground state

like high Tc superconductors in itinerant systems [163, 164]. These properties raise
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Figure 6.1: Schematics of a second order phase transition showing different phases as
a function of some tuning parameter p with temperature. The funnel shaped middle
part is where the effect of the T=0 QCP is still felt at higher temperatures. The
ordered state on the left has a broken symmetry [Source: Wikipedia]

the urgency to understand the details of the mechanisms that drive such phase tran-

sitions, characterize them and investigate whether such possibilities might indeed be

true.

On a separate note, the Fermi liquid theory is one of the important tools for the

experimental determination of the properties of a material. The low temperature

properties of metals are often understood in terms of this famous theory. Despite

having strong many-body interactions present, using this theory one understands the

properties of such metals to be derived from “quasiparticles”. One key element of

this theory is that such quasiparticle excitations of the Fermi sea carry the same

charge, spin etc. as the electrons constituting them, while having a different, gener-

ally larger renormalized effective mass m∗. Such a mass enhancement in the so-called

heavy-fermion systems is sometimes understood as an outcome of this mentioned
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many-body interactions.

However, as one approaches a quantum critical point by tuning some parameter

as described above, this theoretical cornerstone to understand such low temperature

properties breaks down. Signatures for such violations are often recognized by a di-

verging m∗ or by deviations from the quadratic temperature dependent power law of

electrical resistivity. Divergence in other transport properties like the specific heat

or magnetic susceptibility is also observed. Such inconclusive nature of these prop-

erties once again urges for a thorough understanding of the low-temperature physics

of strongly-correlated materials and it becomes necessary to understand its responsi-

ble mechanisms (e.g. enhanced electron scattering off the fluctuations or even quasi-

particle–quasi-particle scattering) and how such deviations from the Fermi-liquid the-

ory can be understood in the context of QCP.

6.2 Sr3Ru2O7: Quantum criticality and its proper-

ties

Sr3Ru2O7, as mentioned above, first came to attention for showing the signatures of

a QCP in the vicinity of a first-order metamagnetic transition. A metamagnetic tran-

sition is characterized by the sudden non-linear rise in magnetization of a material at

some finite field. Since the symmetry of the initial and final magnetic phases stays

the same in such a transition, it must be either a first order phase transition, with

the consequent discontinuous jump in the magnetization, or simply a crossover. At
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first sight, neither of these can be a source of the required diverging susceptibilities

etc. (as shown later in figure 6.2 and figure 6.3). However, due to this symmetry

conservation between the two phases, it is possible for this first order line to end at

a critical endpoint (CEP). This CEP shares the property of a second order phase

transition that is the key to producing quantum criticality, since it is characterized

by diverging susceptibilities and the physics is dominated by fluctuations. The main

qualitative difference is the absence of any spontaneous breaking of symmetry [165].

In this subsection, the literature review spanning the investigation of the nature of

quantum criticality and its other interesting properties have been presented.

Early experiments e.g. by Cao et al. [166] found this material to have a rich

ferromagnetic ground state of the itinerant (and probably canted) nature carrying

saturated moments of around 1.3 µB per Ru atom with Curie temperature Tc of

104 K. Owing to the phase impurity of the metal, soon Huang et al. [167] reported

Sr3Ru2O7 to have no magnetic order down to 1.6 K. It was soon confirmed by Ikeda et

al. [168] where they concluded it to be a Fermi-liquid paramagnet with a high (¿10)

Wilson ratio. Although axial pressure variations normal to the RuO2 planes were

later found to revert this back to ferromagnetism suggesting it to be in proximity of

a ferromagnetic instability [169]. Later, using inelastic neutrons scattering, Capogna

et al. [170] also found FM spin fluctuations present over T ≥20 K.

By 2001, Perry et al. [172] and Grigera et al. [163] observed critical fluctuations

and metamagnetism. With their thorough investigation, Sr3Ru2O7 was established

to feature a new class of quantum critical point arising when the critical end-point
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of this first order metamagnetic transition was depressed down towards absolute zero

using magnetic field of about 7.8 T strength (figure 6.2). It was confirmed and re-

fined further again by Grigera et al. [173] where they observed that the first order

end-point sits at about 1.25 K for in-plane magnetic fields. Aligning the field within

10◦ of the c axis depressed it below 50 mK.

Figure 6.2: Reported phase diagram of Sr3Ru2O7 in terms of the temperature depen-
dent power-law coefficient (α) of electrical resistance (ρ) as a function of the magnetic
field as the tuning parameter at low temperatures. The striking similarity to figure
6.1 is evident. A quadratic temperature dependence confirms its low T , low B Fermi-
liquid behavior. Note how α=1 (non-fermi liquid) regime depresses down towards
zero with increasing field. α rises slowly on the other side of high B limit [163]

.

It is worth noting here that the previous experimental investigations [166, 167, 168]

reported a tetragonal structure of Sr3Ru2O7. However, Saked et al. [174] found in-

plane RuO6 octahedral rotations by about 7◦ which was soon confirmed by Kiyanagi

et al. [175] to be accompanied by a nanometre-size twin orthorhombic distortion in
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Figure 6.3: Characterizing the sharp change in ρ (= ρres+ATα ) as a divergence of
the quantity A when the field sweeps in the vicinity of the metamagnetic field of
magnitude 7.85±0.05 T. Another metamagnetic transition occurs at B ∼ 5.5 T for
an in-plane (ab) field direction [163].

the ab plane. This is phenomenal for the material because such a distortion now makes

the electronic structure of Sr3Ru2O7 different from its previous (n=1) Ruddlesden-

Popper (RP) series member Sr2RuO4 by more than the mere addition of a double

layering extra octahedron. This can be expected to cause subtle changes in the Fermi

surface. The relevant crystal structures have been shown later in figure 6.5. Con-

sidering this distortion, such a possibility was pointed out by electronic structure

calculations by Singh et. al [176]. It was also noted how this rotation is expected to

reduce the in-plane Ru-Ru hopping, and hence increase the density of states at the

Fermi level, which may enhance the magnetic fluctuations.

In search of the existence for this metamagnetic transition related QCEP and its

explanation, researchers also explored the possibility of Fermi surface instabilities in

Sr3Ru2O7, specifically for van Hove singularities [177]. Theory and combined exper-
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imental investigation by Grigera et al. [178] suggested the presence of a new phase

of this material which is strongly disorder (or sample purity) dependent and that the

fluctuations associated with an itinerant metamagnetic QCP are rather unusual in

the sense that they are fluctuations of the Fermi surface itself. In 2005, Kee and Kim

[179] showed that metamagnetic transition in metals with a spin-dependent Fermi

surface instability can occur via the formation of electronic nematic order, details of

which has been explored in the next chapter.

In 2012, however, Mesa et al. [182], reported neutron scattering results on

Sr3(Ru1−xMnx)2O7 where they observed the unusual E-type AFM order stabilized

by Mn doping corresponding to x=0.16. Such an AFM order was found to exhibit

only a single-bilayer thickness correlation along the c-direction. They concluded the

presence of an unusual competition between AFM and FM order in the material since

below TN=78 K it also exhibited similar single bilayer FM correlations. The resulting

new phase space that has the doping concentration as the tuning parameter as re-

ported has been shown in figure 6.4 [182]. Interestingly, the crossover point between

the mentioned magnetic orders is at x=0.16 which is also where the octahedral rota-

tion rapidly diminishes to zero.

6.2.1 Introduction

Quantum criticality, especially in the context of its material-dependent signatures, is

of significant current interest [183, 184]. Here, we investigate the competing orders

present in the quantum critical metamagnet Sr3Ru2O7 [163, 185, 186, 187]. We find
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Figure 6.4: The schematic phase diagram of Sr3(Ru1−xMnx)2O7 as a function of Mn
doping concentration. Region I is a paramagnetic metallic (PM-M) phase; region II
is a paramagnetic insulating (PM-I) phase; region III is a metallic phase with AFM
correlation (AFMC-M); and region IV is a long-range AFM insulating phase (LR-
AFM-I). The unit cell (with square lattice dimensions) has been shown in inset for
reference. [182].

low-energy antiferromagnetically ordered states that energetically compete with fer-

romagnetism. Interestingly, we further find that these low-energy antiferromagnetic

(AFM) states show substantial in-plane transport anisotropy, which we discuss in

relation to nematicity in the next chapter.

Members of the Ruddlesden-Popper (RP) series of strontium ruthenate com-

pounds, Srn+1RunO3n+1, have many interesting characteristics. The n = ∞ member

SrRuO3 is a rare 4d itinerant ferromagnet [188, 189]. The n = 1 member Sr2RuO4,

however, is a known unconventional superconductor [190, 191, 192]. The n = 2
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bilayer compound, Sr3Ru2O7, the focus of the present work, shows quantum critical-

ity under magnetic field. Its phase diagram shows a metamagnetic transition with

a critical point that can be tuned to near zero temperature by applying magnetic

field[163, 193, 173, 194, 195]. Borzi and co-workers reported a strong in-plane conduc-

tivity anisotropy in this near tetragonal compound around the critical point and char-

acterized it as nematic [181, 180]. More broadly, Sr3Ru2O7 presents an interesting case

of a nearly ferromagnetic (FM) 4d material with a layered crystal structure and con-

siderable tunability of properties [175, 196, 166, 168, 197, 198, 199, 200, 201, 202, 203].

In general, various low-temperature properties of a system situated near a mag-

netic quantum critical point (QCP), including transport, are strongly influenced

by its associated spin fluctuations, sometimes up to relatively high temperatures

[170, 171, 174, 204]. This is the case in Sr3Ru2O7, implying that the spin fluctuations

associated with the critical point are relatively strong in this material. The under-

lying quantum fluctuations also lead to a suppression of magnetic order [205]. In

addition, they also present challenges to the characterization of such systems [206].

Commonly employed density functional theory (DFT) approximations, such as the

local density approximation (LDA), behave like a mean-field theory in this regard and

do not capture the effect of such spin fluctuations that arise near a quantum critical

point [207]. These large fluctuations lead to a systematic overestimation of ground

state magnetizations in DFT calculations [208, 209].

We note that the overestimation of magnetizations and magnetic moments in stan-

dard density functional calculations for materials is unusual. In weak and moderately
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correlated magnetic materials standard DFT yields generally good agreement with

experiment. This includes materials such as the 3d ferromagnets (Fe, Co, Ni, and a

wide variety of intermetallics based on them) [210, 211, 212], as well as the ferromag-

netic perovskite SrRuO3 [188, 213], which is chemically and structurally very similar

to Sr3Ru2O7. In strongly correlated systems, such as Mott insulators, the moments

are often strongly underestimated by standard DFT calculations. For example, in the

undoped parents of the high-temperature cuprate superconductors, DFT calculations

fail to produce the experimentally observed antiferromagnetic ground states [214]. In

these systems, the Coulomb repulsion, which is needed to localize the electrons, is

inadequately represented in standard DFT calculations. Adding an additional Hub-

bard U then improves the description, including reproduction of the ground state of

undoped cuprates [215, 216].

While such strongly correlated materials, where standard DFT calculations un-

derestimate magnetic ordering and do not properly describe the ground state, are

relatively common, materials where such calculations overestimate the magnetic mo-

ments are much less common. These are cases where spin fluctuations, often associ-

ated with nearby quantum critical points, are strong enough to significantly reduce

the bare DFT moments. This has been discussed in terms of a bare DFT energy

surface as a function of magnetization that is then renormalized by spin fluctuations

using a fluctuation amplitude and a fluctuation renormalized Landau theory anal-

ogous to lowest order self-consistent phonon theory [217, 218]. Applying this in a

quantitative way to predict the renormalized magnetic properties from first princi-

ples is not straightforward due to the difficulty in determining a cutoff to distinguish
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spin fluctuations associated with the critical point, not included in standard DFT,

from higher-energy spin fluctuations that are included [208]. However, by comparing

standard DFT calculations with experiment, estimates have been made of fluctua-

tion amplitudes [208, 209]. Not surprisingly, the addition of Coulomb correlations by

methods such as LDA+U degrades agreement with experiment in these cases since

it introduces shifts opposite to those needed [219]. Furthermore, the magnitude of

this type of deviation between DFT and experiment has been used as a signature

to identify materials near magnetic quantum critical points [209, 220, 221, 222], in-

cluding successful predictions confirmed by subsequent experiments, as in the cases

of hydrated NaxCoO2 and YFe2Ge2 [223, 224, 225, 226, 227, 228, 229].

It is also of interest to note the connection of Sr3Ru2O7 and its magnetism to

other members of the RP series, (Sr,Ca)n+1RunO3n+1. As mentioned, SrRuO3 is a

ferromagnet [230] with itinerant character that is well described by LDA calculations

as far as its magnetism is concerned [188, 231, 232, 233]. Furthermore, details of its

electronic structure, including, for example, LDA-based predictions of a negative spin

polarization, have been confirmed in detail by experiments [234, 235, 236].

Theoretical work indicates significant sensitivity of the magnetism to structure in

this compound [231, 237, 238]. Experimentally, alloying with Ca leads to increased

distortion of the ideal perovskite structure through octahedral tilts. This is accom-

panied by a decrease in the magnetic ordering temperature until a critical point is

reached at ∼70% Ca, beyond which a highly renormalized near ferromagnetic metal

is found [239, 240].
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The importance of octahedral tilts and rotation in relation to magnetism is also

found in single-layer (Sr,Ca)2RuO4. Sr2RuO4 is a paramagnetic Fermi liquid that

exhibits unconventional superconductivity at low temperature [190, 192]. There has

been debate about the extent and nature of correlations in this material [241, 242, 243,

244]. However, it is generally agreed that the Fermi surface agrees with that predicted

by LDA calculations [245, 246], although with mass renormalization [247, 248], that

spin fluctuations likely play an important role in the superconductivity [213, 249, 250]

and that these spin fluctuations have a substantial itinerant origin. This itinerant be-

havior includes the observation of incommensurate spin fluctuations predicted on

the basis of Fermi-surface nesting [251]. Alloying with Ca in (Sr,Ca)2RuO4 again

demonstrates sensitivity to structure. Initially there is an increasing ferromagnetic

susceptibility as the octahedra rotate, followed by a crossover, and eventually near

pure Ca2RuO4 the development of an antiferromagnetic insulating phase with a strong

change in the Ru-O bond lengths reflecting distortion of the octahedra [252, 253].

In any case, the fluctuation-dissipation theorem, which relates the amplitude of

the fluctuations to the dissipation, given by an integral involving the imaginary part of

the susceptibility, implies an enhanced imaginary component of the magnetic suscep-

tibility associated with the sizable fluctuations in materials near magnetic quantum

critical points. This in turn points towards the presence of strongly competing orders

in materials that show strong spin fluctuations but no order, as discussed previously

[218]. Besides an overly strong tendency towards ferromagnetism, both FM and AFM

fluctuations [170, 254] may coexist in this ruthenate system [171, 250]. Here we report
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a search for such competing orders including commonly discussed AFM states as well

as the so-called E-type order that occurs with heavy Mn doping [182].

6.2.2 Computational Methods

We searched initially for various possible magnetic orders using projector augmented

wave (PAW) pseudopotentials as implemented in the Vienna Ab initio Simulation

Package (VASP) [24, 25]. An energy cutoff of 500 eV was used. Energy and force

convergence criteria were chosen as 10−7 eV and 0.01 eV Å−1, respectively. The Bril-

louin zone (BZ), in this case, was sampled on a 5×5×5 k mesh. We used both LDA

and the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation [17]. We

also checked the structural predictions of these two functionals. We find that the PBE

functional leads to a unit cell volume 1.6% larger than experiment (average lattice

parameter error of +0.5%), while the LDA leads to an underestimate of the unit cell

volume by 6.6% (average lattice parameter error of −2.2%). These are within the

range of typical errors for these functionals and the somewhat smaller lattice param-

eters predicted by LDA relative to PBE is also as usual.

Following this survey, we then investigated the low-lying states in detail using

the general potential linearized augmented plane wave (LAPW) [6] method as im-

plemented in the WIEN2k code [5]. The LAPW sphere radii for Ru and Sr atoms

were both chosen as RMT=2.1 Bohr, while for O atoms RMT=1.55 Bohr was used.

The basis size was set by plane-wave cutoff Kmax with RminKmax=7.0. This leads to

an effective RKmax = 9.5 for the metal atoms. The self-consistent calculations were
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performed using a BZ sampling of at least 1000 k points in the respective BZs. Trans-

port integrals were done using the BoltzTraP code [7]. Dense Brillouin zone sampling

with k meshes of dimensions 30×16×16 or higher was used for these calculations.

Sr3Ru2O7 has a layered perovskite structure that is formed by two sheets of corner-

sharing RuO6 octahedra connected via a shared apical oxygen (figure 6.5). Interest-

ingly, the metal ions still occupy the ideal tetragonal symmetry sites similar to the n

= 1 compound Sr2RuO4, although the Ru-O-Ru bonds are bent due to the counter-

rotation of the octahedra about the c axis. These rotations amount to approximately

7◦ and are opposite for the two sheets making up a bilayer. This in combination with

the stacking of the bilayers reduces the overall symmetry so that finally the compound

has an orthorhombic crystal structure, space group Ccca (No. 68) [174, 255, 167, 256].

The lattice parameters for our calculations were taken from experiment, specifi-

cally the measurements performed on single crystals, as reported by Kiyanagi et al.

[175]. These are a=5.4979 Å, b=5.5008 Å, and c=26.7327 Å. The internal positions

of the atoms were relaxed. Details of the structure are given below:

6.2.3 Results and discussion on the magnetic order

Sr3Ru2O7 is a known metal and despite having a susceptibility peak at around

∼18 K [197, 167], it displays no long-range magnetic order [168]. Multiple re-

ports, however, suggest temperature-dependent competing FM and AFM spin fluc-

tuations, although the nature of the AFM fluctuations has not been established

[201, 170, 172, 257, 258, 259, 260].
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Figure 6.5: Crystal structure of orthorhombic Sr3Ru2O7, showing layering along c
(left) and the view along the c axis, illustrating octahedral rotations (right).

Table 6.1: Relaxed atomic coordinates for Sr3Ru2O7. Coordinates are given in the
standard setting, Ccce, origin choice 2 for spacegroup number 68. The lattice param-
eters from experiment (see text) with this setting are, a=5.4979 Å, b=20.7327 and Å,
c=5.5008 Å.

Site x y z
Ru 8f 0.0000 0.1517 0.7500
Sr 4a 0.0000 0.7500 0.7500
Sr 8f 0.0000 0.9367 0.7500
O 4b 0.0000 0.2500 0.7500
O 8f 0.0000 0.0534 0.7500
O 16i 0.2815 0.8473 0.7500

Both experimental and theoretical investigations show that the material lies close
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to a magnetic instability [168, 198, 261]. Apart from applying an external magnetic

field along various directions, investigations by perturbing the system via uniaxial

pressure [255, 262, 263], doping by both magnetic impurities [198, 199] and nonmag-

netic impurities [257, 264] find various magnetic behaviors. DFT investigations find

a ferromagnetic instability in contrast to the experimentally observed enhanced para-

magnetic state [168, 176, 265]. As mentioned, this type of error is a characteristic of

a material near a quantum critical point. In the case of Sr3Ru2O7, the predicted fer-

romagnetism has an itinerant origin, coming from a high density of states associated

with the structure of the t2g bands, specifically Van Hove singularities in the dxy band.

This Stoner mechanism is similar to SrRuO3 and Sr2RuO4 [200, 213, 231, 176, 266].

The finding of an incorrect ferromagnetic state is not affected by spin-orbit coupling.

In our calculations, which were done in a scalar relativistic approximation, we found

a spin magnetization of 4.7µB per unit cell (four Ru atoms, including the interstitial

and O components) in the LDA, which is reduced by less than 10% to 4.4µB per

cell when spin orbit is included. Adding Coulomb correlations using the LDA+U

method [216], with a moderate value U = 4 eV and the standard fully localized limit

double counting strongly increases the magnetization to 7.9µB per cell, opposite to

what is needed to produce agreement with experiment. This is not unexpected, since

degradation of standard DFT results with the addition of U has been noted in other

itinerant magnetic systems previously [212, 267]

As mentioned, Sr3Ru2O7 displays a metamagnetic transition at a field strength

of approximately 7–8 T [185]. However, doping using magnetic impurities [268] such

as Fe [198] and Mn [199, 202, 202, 269, 270] as well as nonmagnetic Ti [264] has
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been found to yield different AFM orders [269]. In general, the relationship between

these and the properties of the undoped compound is unclear, since these dopants

produce strong perturbations of the system. Nonetheless, one notable order is the

double stripe E-type order that is observed with heavy Mn doping [182], although

it is reported to have a short correlation length [198, 182]. It is to be noted that in

particular it is quite unclear that the E-type order found in Mn-doped samples is

reflective of the properties of undoped Sr3Ru2O7. This is because the Mn doping is

also accompanied by sizable distortions in the crystal structure along with bandwidth

changes that may stabilize antiferromagnetic structures [271, 272]. Furthermore, dop-

ing in Sr3Ru2O7 is often accompanied with transition to a state of more insulating

transport [198, 199, 182, 264, 271, 273], while pristine Sr3Ru2O7 is clearly metallic

and itinerant. This has led to a focus on other orders as possible competing orders to

ferromagnetism in pristine Sr3Ru2O7. For example, based on their hybrid functional

calculations, Rivero and co-workers reported other AFM orders both of metallic and

insulating nature that may be obtained via strain, particularly a layered A-type AFM

[262, 274, 275, 276].

Here we performed a search for possible long-range AFM orders (within collinear

magnetism) in relation to both FM and nonmagnetic orders initially through PAW

calculations (figure 6.6). We find the FM state as the ground state for both LDA

and PBE functionals. Besides the FM order, the lowest energies are for the E-type

order. There are two such states that are slightly nondegenerate due to orthorhom-

bicity. PBE shows stronger magnetism over LDA including larger magnetic energies

and higher moments. The three other commonly discussed AFM states lie much
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higher in energy in the order, A < C < G (figure 6.6). No self-consistent solution was

found for the G-type order within the LDA. The bottom six S-labeled AFM orders lie

somewhere in the middle of the whole range. Details of the magnetic energies as ob-

tained from these initial PAW calculations are shown below in figure 6.7 and table 6.3

Figure 6.6: Various magnetic configurations investigated. Only Ru atoms are shown.
These include ferromagnetism, A-type, G-type and C-type antiferromagnetism, which
are common orders for perovskites, two E-type orders, which are slightly nondegener-
ate due to the orthorhombic crystal symmetry, and more complex orders with larger
unit cells.

The lack of solution for G type and the variability of the moments between the

different states is a characteristic of itinerant magnetism, as is the fact that the en-

ergy differences between different orders are of similar order to the energy difference
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between the non-spin-polarized and the lowest-energy FM state. Thus local moment

pictures, such as short-range Heisenberg models, are not well suited to this mate-

rial. Furthermore, the A-type order, which consists of oppositely aligned FM layers

stacked across the bilayer, lies much higher in energy than both of the E types and the

FM order. This means that interactions between the layers within a bilayer are strong.

We now turn to the detailed results obtained with the LAPW method [201, 6].

The energetics and magnetic moments are in table 6.2. Most importantly, we find

that the two metastable E-type AFM states carry large magnetic moments (∼1.08µB

within PBE and ∼0.85µB within LDA). As expected, these are the orders that con-

sistently lie closest to the FM ground state.

Table 6.2: Energy ordering of various magnetic orders (per formula unit) found by
LAPW calculations and their (absolute) averaged magnetic moments for both PBE
and LDA functionals. Refer to figure 6.6 for naming. FM and nonmagnetic (NM)
respectively stand for ferromagnetic and nonmagnetic state (zero-energy level), while
all the other orders are antiferromagnetic in nature. Note that the moments reported
here are those lying within the LAPW sphere radii.

PBE LDA
∆E Magn. mom. ∆E Magn. mom.

Order meV/f.u. Ru (µB) meV/f.u. Ru (µB)
FM −147.8 1.28 −29.9 0.73
E −131.5 1.08 −28.6 0.85
E ′ −130.3 1.08 −28.0 0.85
A −95.6 1.06 −21.2 0.60
C −43.6 0.72 −13.6 0.38
G −3.2 0.45

NM 0 0.000 0 0.000

The sizable moments obtained and the FM ground state contradict the fact that
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Sr3Ru2O7 is an experimentally determined paramagnet. However, this is almost cer-

tainly due to the fact that the system lies close to a magnetic QCP where strong spin

fluctuations suppress any long-range magnetic order in the system. Standard DFT

calculations fail to describe this type of fluctuations, as has been noted for other

such materials near a magnetic QCP [201, 209, 277, 278, 279]. As mentioned, this

overestimation of magnetism has been used as a signature of materials that are in the

vicinity of a QCP [208, 209, 218, 279].

In addition, one may note that the magnetic moments predicted for the E-type

orders are indeed the largest among the AFM states. All the other investigated orders

lie higher in energy and have lower magnetic moments. The energy difference within

LDA between the FM and E orders is only 1.6 meV per formula unit on average

(for the E and E ′). Thus we find that the E-type order is very likely the order that

competes with ferromagnetism in this material. It is interesting to note that the

E-type order is also the order among the ones considered that breaks the tetragonal

symmetry within the RuO2 plane.

Through these results we find the E-type striped AFM order is our lowest lyting

metastable state, in energetically close competition with the FM ground state. In

the next chapter, we will focus on the details of the electronic structure of this ma-

terial and look upon transport properties. The implications of our transport results

will then be discussed in relation to well known experimental results on electronic

nematicity by Borzi et al.
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Table 6.3: Energetics and magnetic moments for 12 different magnetic orders as
shown in figure 6.7 found using both LDA and the PBE functionals. FM and NM
respectively stand for ferromagnetic and nonmagnetic orders.

Order
PBE LDA

∆E (meV)
Mag Mom.

Ru (µB)
∆E (meV)

Mag. Mom.
Ru (µB)

FM −160.6 1.35 −22.6 0.52
E −146.7 1.14 −19.6 0.79
E’ −145.6 1.14 −19.5 0.78
A −106.8 1.13 −17.3 0.48
C −49.4 0.77 −1.7 0.35
G −14.2 0.48 0 0.00
S1 −87.4 1.16 −14.8 0.84
S2 −85.2 0.95 −6.1 0.51
S3 −84.9 0.95 −6.1 0.51
S4 −108.2 1.12 −16.3 0.59
S5 −67.1 0.97 −5.4 0.40
S6 −49.5 0.85 −10.4 0.52

NM 0 0 0 0
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Figure 6.7: All the magnetic orders investigated in our PAW pseudopotential search
strategy. Refer to 6.3 for the detailed energetics for each states.

6.2.4 Summary

In this chapter, I reviewed the quantum criticality phenomenon where a non-thermal

parameter can be tuned to depress the transition temperature down towards zero

kelvin. It was also noted how the low-temperature properties of a material near such

a quantum critical point is dominated by strong fluctuations associated with it. It is

thus imperative to understand the nature of these fluctuations which is closely related

to the low-energy metastable states of the material itself.

Further, I studied the widely known quantum critical material: Sr3Ru2O7 where it
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was shown [163] that using magnetic field of strength around 8T, the transition tem-

perature of the metamagnetic transition can be depressed down toward zero kelvin.

This material, especially its magnetism, has been a subject of intense investigation,

where the material was experimentally found to be paramagnetic. However, our first-

principles DFT results find a ferromagnetic ground state within both LDA and PBE

functionals. This is a known magnetic order disruption has been regularly seen in

quantum critical material where these widely used density functionals fail to cap-

ture these strong inherent spin fluctuations. A previous doping study by Mesa et al.

[182] found very weak E-type ordering in the narrow space of its rich magnetic phase

diagram probed by Mn doping of Sr3Ru2O7.

Our first-principles results in search of these low-lying metastable states of this

material using a two fold search strategy yielded that this striped E-type antifer-

romagnetically ordered state indeed does compete with its predicted ferromagnetic

ground state. Due to its slight in-plane orthorhombic distortion from its closely re-

lated compound Sr2RuO4 structure, this gives rise to two separate slightly degenerate

states (e.g.: 1.2 meV per formula unit within PBE functional). The very high en-

ergy ordering of the other known magnetically ordered as well as the lack of G-type

antiferromagnetism within LDA functional strongly suggests its magnetism to be of

itinerant nature. The next chapter will focus onto the electronic structure of the

material where this will be examined along with other interesting properties of this

material.
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Chapter 7

Electronic structure and transport
anisotropy in Sr3Ru2O7 in relation
to experimental observations

In the previous chapter, the bilayered Sr3Ru2O7 was introduced. A well-known quan-

tum critical material, its low temperature ground state properties are expected to be

dominated by large fluctuations. As discussed earlier, the nature of these fluctuations

are determined by its low-energy metastable states. We also noted how these strong

fluctuations are also expected to disrupt any long range magnetic order present in the

system. While bare density functional methods, within both LDA and GGA function-

als predict its ground state to be of ferromagnetic nature, the results of our search for

these lowest energy metastable states yielded two slightly non-degenerate antiferro-

magnetic E-type ordered states. Summarizing quantitatively, these are energetically

within less than 20 meV and 2 meV per formula unit to the ground state, respectively.
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Previously, we discussed the metamagnetic transition and quantum criticality of

this Sr3Ru2O7. Here, we focus on the property of electronic nematicity. An electronic

nematic phase is defined when the rotational invariance is spontaneously broken and

exhibits orientational (two-fold symmetry) order. One must note that this symmetry

breaking is independent of the underlying crystal symmetries since it is exhibited

by the strongly correlated electronic fluid only [181]. In 2005, Kee and Kim [179]

reported that this metamagnetic transition in metals with a spin-dependent Fermi

surface instability can occur via the formation of electronic nematic order. Later,

Borzi et al. [180] confirmed the presence of such an electronic nematic fluid in high

purity Sr3Ru2O7 crystals. It is interesting to note that their corresponding elastic

neutron scattering could not detect any structural change within an upper limit of

10−5 in lattice anisotropy in connection to the formation of this nematic phase. For

this, Borzi et al. postulated the presence of domains that cause extra scattering which

quickly disappears as the field direction is tilted away from c-direction resulting in

destruction of such domains. Later, in 2012, Mackenzie et al. concluded that the

mechanism behind the formation of the nematic phase and its interrelation to quan-

tum criticality and its metamagnetic jump is not fully understood [281]. In 2013,

Stingl et al. in their contradicting study reported that for magnetic field variations

ranging from below 7.8 T, the system does retain four fold symmetry. This symmetry

is broken for fields in nematic phase, i.e. of strength between 7.8 T and 8.1 T to

a very small degree of 1 part in 106. They also detected a small thermal expansion

anisotropy for fields stronger than 8.1 T [282].

In figure 7.1, one may note that under a specific magnetic field, how the in-plane
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Figure 7.1: The temperature dependent difference in the in-plane resistivity ρaa and
ρbb for magnetic fields applied at θ=72◦ where its in-plane component lies along a
direction. More details in ref. [180].

resistivity (magnetoresistivity) shows an ever-increasing anisotropy along both a and

b axes with decreasing temperature. This exhibits the temperature dependent ne-

maticity for Sr3Ru2O7. From the above literature review, one may conclude that the

true nature of this nematic phase is not fully understood, especially in relation to

the quantum critical behavior of Sr3Ru2O7. In the following section, we employ our

known first-principles techniques and its derived transport calculations where we dis-

cuss the electronic structure of Sr3Ru2O7 and report out interesting results in terms

of its observed in-plane anisotropy.
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7.1 Electronic structure of Sr3Ru2O7

We start our discussion of the with the density of states (DOS) of nonmagnetic

Sr3Ru2O7, as shown in figure 7.2 shows a peak around the Fermi level. This favors

magnetism through the Stoner mechanism as discussed previously [231]. For the con-

sidered E-type orders, the corresponding DOS (shown in the table 7.2) is distorted

but still high near the Fermi level. Table 7.1 summarizes the DOS value observed at

the Fermi level, N(EF ) for each investigated magnetic order. Table 7.1 shows that

the electronic structure remains metallic for all the spin orderings considered. As

noted previously, there is strong Ru 4d-O 2p hybridization evident. Table 7.2 shows

the density of states as obtained through PAW pseudopotential method.

Figure 7.2: Density of states per formula unit of Sr3Ru2O7 for its nonmagnetic state
showing the respective LAPW sphere projected contributions from Ru 4d and O
2p orbitals obtained within LDA. Three kinds of O contributions (scaled four times
for visibility) are observed (see text) with their respective multiplicities, shown in
parentheses. The black vertical line at E=0 shows the Fermi level.
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Table 7.1: Density of states (per formula unit) at the Fermi level, N(EF) various
magnetic orders with both LDA and PBE functionals. Note that for the ferromagnetic
order (FM), and for other magnetic orders, N(EF) for each single spin channel (↑,↓)
is shown. A Gaussian broadening of 4 meV was used. Units are 1/eV.

Order
LAPW

LDA PBE
FM (↑,↓) 3.9 3.4 0.9 4.8

E 5.0 4.5
E’ 5.4 4.7
A 4.0 3.0
C 7.8 7.1

NM 5.4 6.4

Table 7.2: Density of states (per formula unit) value at the Fermi level of Sr3Ru2O7

for various magnetic orders under both LDA and PBE functionals obtained using
PAW pseudopotential methods. Note that for the ferromagnetic order (FM), N(EF )
for both spin channels (↑,↓) have been reported. A gaussian broadening 0.0003 Ry
was used throughout.

Order
PAW-vasp

LDA PBE
FM (↑,↓) 38.6 23.2 33.6 33.2

E 47.2 30.0
E’ 42.6 30.6
A 36.1 35.1
C 41.5 25.0

NM 82.4 81.6

The individual contributions from each of the three different types of O atoms are

labeled. It can be noted that the 2p contribution from the O3 atoms, which are the

in-plane O, is the largest in the region closest around the Fermi level. It reaffirms the

fact that the material is highly two dimensional and most of the electronic transport

occurs primarily in-plane. O1 and O2 are respectively the shared and SrO layer apical

oxygen atoms and contribute less near the Fermi level.
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In an octahedral crystal field, the d orbitals split into a lower-lying t2g manifold,

with three bands (and six electrons) and a higher-lying eg manifold that can accom-

modate four electrons. The eg manifold is derived from σ antibonding combinations

of O p and Ru d orbitals, while the normally more narrow t2g manifold consists of

more weakly antibonding π combinations. Ru4+, as in Sr3Ru2O7, has four d electrons,

which leads to a partially filled t2g manifold that is responsible for the magnetism

and transport. The electronic DOS in the region near the Fermi level is derived from

hybridized Ru t2g and O p states.

The orbital character is often important in understanding magnetic ordering, es-

pecially in systems where transition metal–O hybridization is important, for example

double exchange systems [280]. Figure 7.3 shows the projections of Ru d onto a site

with the different magnetic orders as obtained with the PBE functional. As noted

previously, non-spin-polarized Sr3Ru2O7 has a relatively narrow set of nominally t2g

orbitals [176]. It should be noted, however, that this crystal-field notation is not

strictly correct since the octahedral rotation mixes the eg and t2g manifolds, and the

layered structure splits the t2g orbitals. There is also mixing due to symmetry low-

ering associated with magnetic order as well as splitting due to interactions between

the two layers forming a bilayer.

However, we find that the general shape of the DOS in the energy range of the t2g

orbitals does not depend strongly on magnetic order, showing a higher peak around

the Fermi level against a broader peak at ∼ −1 eV. The main effect of magnetism
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Figure 7.3: Projected DOS of d character on a Ru atom in the energy range of the
t2g bands for the different magnetic orderings as obtained with the PBE functional.
Note that the individual d orbitals are mixed because of the low symmetry induced
by the octahedral rotations and magnetic order. The same symmetry was used for
the E-type and non-spin-polarized. The ferromagnetic, A-type, C-type, and G-type
were done in a smaller higher-symmetry cell which leads to a different coordinate
system for the d orbitals.

is to exchange split this peak into a lower-lying majority and higher-lying minority

components, with the largest exchange splitting for the orders where the moment is

highest. The second aspect to note is that the E-type order gives a strong narrowing

of the individual DOS peaks in the t2g manifold. This leads to a greater differentiation

of the orbitals. This is also the case for the C-type and G-type orders, which have

nearest-neighbor antiferromagnetism in a single plane. Meanwhile the lowest-energy

ferromagnetic and the A-type order have generally broader individual peaks.
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7.2 Electronic transport

In this section, we calculated the transport using Boltzmann transport theory. In

tables 7.3 and 7.4, we show the reduced electrical conductivity (σ/τ) values for dif-

ferent orders obtained using both LDA and PBE functionals. The transport integrals

were done for a temperature of 100 K in the Fermi function for computational con-

venience. These were calculated using the BoltzTraP code [7]. The BoltzTraP code

constructs a smooth interpolation of the energy bands that passes through all the

first-principles points. In our calculations we used dense first-principles meshes con-

sisting of 30×16×16 grids or better so that the interpolated bands are accurate. The

BoltzTraP code then does transport integrals using this interpolation to construct

the gradients that comprise the band velocities.

Table 7.3: In-plane components of the diagonalized reduced electrical conductivity
tensor and the corresponding anisotropies for various magnetic orders with the LDA
functional.

Order
σ/τ

1018 (Ωms)−1
In-plane

anisotropies
E 65 77 1.17
E ′ 67 75 1.13
A 249 250 1.00

FM (↑) 159 161 1.01
(↓) 191 191 1.00
C 229 233 1.02

NM 266 274 1.03

To ensure consistency across various magnetic orders, the conductivity tensors

have been appropriately diagonalized and only the in-plane directions are given.

These are the two largest eigenvalues of the conductivity tensor. In tables 7.3 and
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Table 7.4: In-plane components of the diagonalized reduced electrical conductivity
tensor and the corresponding anisotropies for various magnetic orders with the PBE
functional.

Order
σ/τ

1018 (Ωms)−1
In-plane

anisotropies
E 27 49 1.77
E ′ 24 47 1.95
A 174 177 1.01

FM (↑) 11.4 11.5 1.01
(↓) 218 222 1.02
C 187 189 1.01
G 248 256 1.03

NM 266 274 1.03

7.4, noticeable anisotropy occurs among the in-plane conductivity components only

in the case of the E-type magnetic order. These anisotropy values are noticeably

larger than those obtained for any other orders. One may note that within LDA, the

in-plane (reduced) electrical conductivity values differ by about ∼15%. While it is

perhaps not surprising that the E-type order gives more anisotropy considering that

the pattern of magnetic moments in the RuO2 planes is anisotropic with this order,

unlike other simple orders, it is important that this anisotropy in the magnetic pat-

tern is indeed well reflected in the electronic structure at the Fermi level that controls

transport. The higher-symmetry (and lower-energy) E-type order is slightly more

anisotropic than the E ′ order. In PBE, however, the anisotropies are larger. This

reflects its tendency towards larger moments. In this case, when contrasted to LDA,

the ordering is reversed and E ′ order has higher anisotropy.
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7.3 Summary and conclusions

In the previous two chapters: 6 and 7, we investigated the well-known layered ruthen-

ate Sr3Ru2O7. It is considered as one of the best studied examples that display the

presence of a quantum critical point. In the presence of a magnetic field, the material

shows low-temperature metamagnetic transition. More importantly, using a magnetic

field of strength of about 8T, this critical point transition temperature can be tuned

down towards zero kelvin, a signature of quantum criticality. As discussed in chapter

6, the ground state properties of such a quantum critical material is strongly influ-

enced by strong fluctuations arising from low-energy metastable states of the system.

Thus, in order to understand its properties, it becomes imperative to determine these

low energy states.

In chapter 6, we performed a survey of various magnetically ordered states of this

ruthenate material that is experimentally known to be paramagnetic. This material

when doped with Mn, is reported to display short ranged striped E-type magnetic

order [182]. It is interesting to note that our first-principles search indeed predict the

striped E-type antiferromagnetically ordered state to be the closest competitor to the

ground state. It is also worth noting that density functional methods using traditional

LDA or PBE functionals are known to overestimate magnetism in itinerant systems

lying close to quantum criticality owing to the influence of these strong fluctuations.

In chapter 7, we focus on another novel phenomenon exhibited by layered Sr3Ru2O7.

In 2007, continued exploration of its properties by Borzi et al. using certain mag-

netic field revealed that the in-plane electronic transport properties assume certain

anisotropy. This anisotropy was found to be increasing with lowering temperature.
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Known as electronic nematicity, it is interesting to note that such an anisotropy is

not accompanied by any large structural distortion of the material and is presumably

the property of its electron gas itself. The puzzling nature of this phenomenon and its

connection to its quantum criticality is not clearly understood. However, our further

investigation of this material’s transport properties showed us that among all of our

investigated magnetic orders, only the striped E-type AFM order, which also is the

lowest lying metastable state, is the one which shows an in-plane anisotropy of same

order as observed experimentally. This warrants further study of this material, prob-

ably using inelastic neutron scattering that can investigate the plausible connection

between its quantum criticality and electronic nematicity.

123



Chapter 8

Summary and concluding remarks

In this thesis, I have discussed the results my investigation on various materials in

relation to understand the phenomena of transport and magnetism. I have used all

electron density functional based first-principles tools for this purpose. The study of

the electronic structure and its interrelation to their individual crystal structure and

chemical composition is intended to bring forth the respective microscopic details of

these materials in relation to these properties.

For the widely known industrial compound TiO2, I found out the energy ordering

of two of its polymorphs. One of most accurate all-electron LAPW method is used

to investigate whether the long standing discord between the experimental versus

theoretical determination of its energy ordering is due to approximations inherent to

theoretical methods or some other detail in the experimental factors. I found anatase,

in accord with the majority of previous theory studies, to be the ground state of this

material, as opposed to experimentally determined rutile. This lead us to conclude
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that either TiO2 is the case which invokes some inherent issue with commonly used

density functionals or the experimental methods needs to be revisited to address this

conundrum.

I investigated the recently synthesized material NaSbSe2 which was previously

known in the literature to be a cation disordered solid. Through the investigation

of its electronic structure and thermoelectric transport properties using Boltzmann

transport method, I determined that this material bears the properties that are fa-

vorable for the developing a thermoelectric (TE). I also used the theoretical metric

called the electron fitness function to quantify this and found out that the material

indeed has these properties that are at par with other state of art materials used for

this purpose. Further experimental studies to realize its bulk form in TE or solar cell

purposes would be interesting.

The study of transport continued in chapter 4 where in this instance I centered

my discussion around the well-known Lorenz number factor in the context of TE

research. I focused on one of the expressions widely popular in the literature for

approximating this Lorenz number for experimental TEs. It is used to separate the

electronic and lattice components of the thermal conductivity of a TE by using the

experimental Seebeck coefficient directly. I performed first-principles calculations on

few well-known TE materials alongside the theoretical single parabolic band model

to examine the accuracy of this expression. It was found that although for a few

TEs like SrTiO3 and the half-Heusler ZrNiSn, the expression works within accept-

able margins, the expression gives rise to serious deviations for other practical TEs

like PbTe and Mg3Sb2. It was also found how this deviation is due to the highly
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non-parabolic electronic structure of these binary TEs where these materials had

large deviations over almost their entire doping range within two considered scatter-

ing mechanisms. In conclusion to these results, one must exercise caution in using

this expression since it is known that high efficiency TEs are especially characterized

by their highly non-parabolic band structure, the case where this approximation fails.

In chapter 5, I focussed on magnetism in the perovskite material: MnSeO3. This

material is unusual in terms of the chemistry of perovskite. This comes from the fact

that this material has Se4+ ions in the B site whereas the metal Mn+ ions occupy the

A site. This is enabled by strongly distorted geometry of the structure when compared

to the ideal perovskite structure. Our first principles investigation results convey that

the material has a ground state magnetic order of G-type antiferromagnetism which

agrees with experimental observations. Determination of other magnetic orders and

their corresponding energetics lead us to conclude that the material hosts localized

magnetic moment such that the on-site moment formation energy is much higher when

compared to the inter-site exchange interaction energies. The strong spin-dependent

hybridization of suggests analogy of this material with experimentally relevant CMR

manganites.

Chapter 6 and 7 are based on the study of two aspects of the material Sr3Ru2O7. I

discuss the phenomenon of quantum criticality. It is noted how through the manipula-

tion of a non-thermal parameter of the system a quantum critical transition occurs at

0 K. A system near such a criticality is dominated by large fluctuations which in turn

determine its ground state properties. Sr3Ru2O7 is a known quantum critical material
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that shows metamagnetic transition. Using a magnetic field of about 8 T strength,

this transition temperature can depressed down to 0 K. To understand the nature

of these large fluctuations, it is important to know about the low energy metastable

states of the system. For Sr3Ru2O7, we employed a two fold search strategy to find

these lowest energy states. Our first density functional based first principles method

yields a ferromagnetic ground state in comparison to an experimental observed para-

magnetic order for Sr3Ru2O7. This implies the inability of density functionals capture

the details of these fluctuations presumably causes the destruction of long range fer-

romagnetic order. However, owing to the slight orthorhombic distortion of the lattice,

we find two striped antiferromagnetic E-type ordered state that lies closest in energy

to the ground state. The energy ordering of other magnetic states in combination to

the sharp peak of density of states at the Fermi level indicates that the magnetism

in Sr3Ru2O7 is of strong itinerant nature according to the Stoner criteria.

Further, we investigate the nature of this E-type order using first-principles based

transport calculations and find that these two states display a distinctly large anisotropy

among the in-plane conductivity components. This is especially important as Sr3Ru2O7

is experimentally known to exhibit “electronic nematicity”, i.e. under certain mag-

netic field Borzi et al. observed a similar conductivity anisotropy. Our results, espe-

cially obtaining such an anisotropy of similar order is certainly interesting since the

true origin of nematicity property of Sr3Ru2O7 is not clearly known. To conclude,

inelastic neutron scattering in search of this E-type order would be interesting to

determine if this state indeed contributes to the critical fluctuations of this material

which in turn would help understand the ground state properties of Sr3Ru2O7 better.
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The study of electronic interactions in Sr3Ru2O7 is definitely a subject of great

interest in order to understand the material better. Closely related to Sr2RuO4,

a known unconventional superconductor, such an understanding will probably shed

light on pairing mechanism behind this property. In this spirit, my future research

direction is to investigate magnetism in another ruthenate: SrRuO3. This material

hosts Ru in its V state and forms a honeycomb lattice. The nature of magnetism

lies somewhere between localized and itinerant nature. In relation to the recently

synthesized AgRuO3, another ruthenate, closely related to this material, my goal

would be unravel the nature of electronic interactions, active in these two materials

especially magnetism and understand what makes its behaviour so different in relation

to other known ruthenates of Strontium.
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