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ABSTRACT 

 Neural networks produce critical rhythmic behaviors throughout an 

animal’s lifespan, despite growth, differing environments, and changes in 

physiological state. This requires networks which balance stability in their 

properties with the plasticity necessary to respond to altered demands or 

perturbations. Studying the mechanisms which confer these properties requires a 

well characterized system with a known network topology and identifiable 

neurons that are amenable to both electrophysiological and molecular 

characterization and manipulation. 

 Here, we use two networks from Cancer borealis to explore activity 

dependent regulation of cell connectivity, changes in cell properties with 

prolonged perturbation, and reliability of gene expression as a means for cell 

identification. For the first two topics we use the cardiac ganglion alone. The 

cardiac ganglion consists of a kernel of four interneurons that drive five motor 

neurons (termed large cells, LCs) which innervate the heart musculature. LCs 

burst synchronously due to simultaneous stimulation and electrical coupling 

through gap junctions. Depolarizing pharmacological perturbations have been 
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shown to result in hyperexcitability (Ransdell et al., 2012a) and disrupt synchrony 

between LCs (Lane et al., 2016) eliciting rapid plasticity in ionic currents and 

electrical coupling which restores synchrony and excitability (Ransdell et al., 

2012a; Lane et al., 2016). 

 The salient electrophysiological signal which elicits coupling plasticity has 

not been identified. Using voltage clamp we directly control LC depolarizations to 

vary amplitude and timing of activity between LCs. We find that timing between 

cells, rather than depolarization elicits plasticity with the direction, i.e., 

potentiation or depression, being determined by the degree of desynchronization. 

With dynamic clamp we artificially couple networks from two animals and show 

that strong coupling with sufficient desynchronization can compromise a cell’s 

output. These results suggest that coupling strength is tuned promoting 

synchrony or baseline cellular activity in a degree dependent manner. 

 While rapid compensatory plasticity to hyperexcitability has been shown, it 

is unknown whether the changes are solely post-transcriptional and whether the 

short-term changes persist over longer time scales. We perturb networks for one 

or twenty-four hours and compare LCs’ excitability, membrane properties, and 

abundances of ion channel and gap junction transcripts. We find evidence of 

rapid transcriptional changes at one hour, which may be maintained or regress at 

twenty-four hours. Additionally, we find that membrane properties and excitability 

are not maintained from one to twenty-four hours, suggesting a failure to 

maintain homeostasis or that additional compensatory changes are occurring at 

the network level.  
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 To address our third topic, we use LCs in addition to neurons collected 

form the stomatogastric ganglion which coordinates mastication and filtering in 

the digestive track. Both systems allow for unambiguous identification of cells 

based on anatomy or neuronal projections. We use this to evaluate the efficacy 

of cluster estimation procedures, clustering methods, and classification 

algorithms to determine the number of cell types present, group like cells 

together, and identify cells based on gene expression alone. We use single cell 

RNA-seq and single cell qRT-PCR to measure all contigs or a select set of ion 

channel, receptor, and gap junction mRNAs. We find these methods do not 

reproduce the known number of cell types present. Furthermore, although 

clustering and classification both outperform chance, we are unable to 

recapitulate cell type with complete accuracy from these data. These results 

indicate that, while promising, determining cell type by molecular profiling should 

not be relied on as the sole metric of cell type determination. 
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Chapter 1  

 

Introduction: Plasticity in cell and network properties within 

central pattern generator circuits 

 

Central pattern generator networks (CPGs) produce rhythmic behaviors 

essential for survival including chewing, locomotion, breathing, and in the case of 

Cancer borealis cardiac rhythmicity. These rhythms require coordination between 

the network’s constituent neurons which in turn relies on individual neurons 

producing certain output. How neurons produce, maintain, and restore 

appropriate output is a key question for neuroscience to address.  

Foundational research working to answer this question has relied on 

invertebrate CPGs. The systems used in this work, the cardiac ganglion and 

stomatogastric ganglion of C. borealis consist of nine (Cooke, 2002) and 

approximately twenty-six neurons respectively (Kilman and Marder, 1996). These 

systems allow unambiguous identification of neuronal cell type through 

anatomical location or nerve projections permitting identification of the same 

neuron across multiple animals. In the following studies we employ the cardiac 

ganglion as our primary model system and the stomatogastric ganglion as a 

secondary model.  

The decapod cardiac ganglion varies in number and organization of its 

constituent neurons from species to species (Alexandrowicz, 1932; Cooke, 



 

2 
 

2002). Cancer borealis, and many other species, possess four interneurons 

termed “small cells” which form a pacemaking kernel, and five motor neurons 

termed “large cells” (LCs) (Cooke, 2002). The ganglion consists of a central trunk 

with anterior and posterior bifurcations (Figure 2.1). The posterior region of the 

ganglion contains the SCs and a pair of LCs, LC 1, and LC 2. The left anterior 

branch of contains the sole unpaired LC, LC 3 with LC 4 and LC 5 occupying the 

right anterior branch. This asymmetric structure permits unambiguous 

identification of motoneurons. LCs burst simultaneously, synchrony being 

maintained through simultaneous excitation from the SCs and through electrical 

coupling between LCs. Electrical coupling between pairs of LCs is particularly 

strong with all LCs being more weakly coupled. Individual LCs can relatively 

easily be isolated and abundance of individual transcripts measured with single 

cell qRT-PCR. These features make the cardiac ganglion well suited to 

addressing questions related to coupling conductance and the plasticity thereof, 

compensation through transcriptional or post translational changes, and 

electrophysiological or molecular properties within a cell type. In the subsequent 

chapters we explore these three topics.  

First, we examine electrical coupling and the salient signal which elicits 

activity dependent compensation thereof. Between electrically coupled neurons, 

current (Watanabe, 1958) and small molecules (Nakase and Naus, 2004) can 

pass directly from one cell to another. Gap junction proteins (innexins in 

invertebrates) assemble into hemichannels in the cell membrane which dock with 

hemichannels on an adjacent cell forming a pore (Oshima et al., 2016). Gap 
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junctions are often considered to merely attenuate current, behaving in 

conjunction with the membrane as a low pass filter, but they may exhibit more 

complex behaviors including rectification (Furshpan and Potter, 1959; Haas et 

al., 2011a; Shruti et al., 2014) or band pass filtering (Curti and O’Brien, 2016) in 

conjunction with membrane conductances. In many cases gap junctions promote 

synchronization between coupled neurons as seen in the inferior olive (Long et 

al., 2002) although in certain circumstances strong coupling can facilitate 

desynchronization (Vervaeke et al., 2010). 

Similar to chemical synapses (Turrigiano et al., 1998), gap junctions 

exhibit activity dependent plasticity. In the thalamic reticular nucleus, asymmetric 

current injections have been shown to induce long term depression of coupling 

(Haas et al., 2011b). Recent study of this system has suggested the direction of 

compensation, i.e. potentiation or depression, depends on the degree of calcium 

influx elicited (Fricker et al., 2020). Activity dependent modulation of gap 

junctions has also been observed in the Retizius cells of Hirudo medicinalis 

(Welzel and Schuster, 2018). Gap junction conductance is also subject to 

neuromodulation, e.g. by dopamine (Gerschenfelds, 1984). 

Within the cardiac ganglion, comodulating of dopamine and serotonin 

prevents the decrease in synchronization seen with serotonin alone though 

increased coupling conductance between LCs (Lane et al., 2018). 

Tetraethylammonium (TEA) has been shown to decrease the similarity of LC 

voltage responses to excitatory post synaptic potential mimicking current 

injection protocols (Ransdell et al., 2013a) and synchronization in active 
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networks (Lane et al., 2016). Dopamine induce coupling potentiation is sufficient 

to prevent desynchronization induced by TEA as well (Lane et al., 2018). Beyond 

neuromodulation induced plasticity, coupling potentiation has been implicated in 

the recovery of synchrony through an activity dependent mechanism following 

TEA induced hyperexcitability (Lane et al., 2016). Despite examples of activity 

dependent coupling plasticity across taxa (Haas et al., 2011a; Lane et al., 2016; 

Welzel and Schuster, 2018) the salient electrophysiological signal or signals that 

elicit this plasticity have not been identified. In chapter 2 we show evidence that 

the desynchronization between coupled neurons rather than hyperexcitability 

elicits plasticity. We further suggest that synaptic depression and potentiation 

balance synchrony and cell output by demonstrating that potentiation, while 

increasing synchrony between cells can compromise the output of an individual 

neurons if the difference in timing is too great.  

The changes in coupling we observe, and the activity dependent changes 

induced by hyperexcitability through TEA previously studied, have focused on 

changes occurring within about one hour. In our next study we consider 

compensatory changes in the cardiac ganglion following one or twenty-four hours 

of TEA exposure and measuring changes in transcript expression in addition to 

membrane properties.  

Changes in activity can result in remodeling of physiological and molecular 

relationships. One major line of inquiry has focused on the effects of eliminated 

activity. Stomatogastric neurons following loss of activity through dissociation 

(Turrigiano and Marder, 1993) or decentralization (Thoby-Brisson and Simmers, 
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1998) regain the capacity for activity given several days in culture. The plasticity 

elicited appears to require changes in conductance magnitudes (Turrigiano et al., 

1995) and transcription (Thoby-Brisson and Simmers, 2000). To determine the 

signal responsible for these changes, investigators have focused on the 

maintenance of baseline properties namely the correlated abundances of ion 

channel mRNAs (Schulz et al., 2007a) which have been verified to correlate with 

conductance for certain transcripts (Schulz, 2006). Although neuromodulation 

has been proposed to maintain these relationships, (Khorkova and Golowasch, 

2007a), activity (Temporal et al., 2014a) – specifically voltage (Santin and 

Schulz, 2019a) appears to be the salient signal. This finding supports 

computational studies which suggest that intracellular calcium, acting as a proxy 

for activity, can lead to correlated ion channel expression (O’Leary et al., 2013a) 

similar to those observed in nature (O’Leary et al., 2014a).  

Compensatory changes have been observed on a shorter time scale (i.e. 

approximately one hour rather than hours to days) in response to 

pharmacologically induced hyperexcitability. Blockade of the A-type potassium 

current (IA) with application of 4-aminopyridine or blockade of the high threshold 

potassium current (IHTK) with TEA results in hyperpolarization and rapid 

compensatory increase of IHTK or IA (Ransdell et al., 2012a). Due to variability in 

conductances between cells, TEA differentially effects LCs (Ransdell et al., 

2013a) leading to loss of synchrony which is recovered through increased 

coupling (Lane et al., 2016). Whether increased activity disrupts LC ion channel 

mRNA correlations (Tobin et al., 2009) has not been examined. Furthermore, 



 

6 
 

whether the rapid physiological changes observed represent a terminal state or 

whether these properties remain plastic over longer time periods has not been 

examined. In chapter 3 we address both questions disrupting LC activity for one 

or twenty-four hours and measuring excitability, membrane properties, and 

transcript abundances. We find that hyperexcitability induces rapid changes in 

transcription and that after twenty-four hours membrane properties differ from 

one hour and apparently fail to maintain compensation in excitability.  

While the previous two questions have been fundamentally concerned 

with plasticity between cells or within a single cell type, our final study considers 

distinctions between cell types. The ability to unambiguously identify the same 

neuron across animals has revealed considerable variability. Within cardiac 

ganglion LCs ionic conductances have been shown to vary 2-4 fold (Ransdell et 

al., 2013a) and mRNA transcript abundances 3-9 fold (Tobin et al., 2009). Similar 

ranges, 2-4 fold in conductances (Schulz et al., 2006a) and 3-5 fold in mRNA 

transcript abundances (Schulz et al., 2007a) have been reported in cells of the 

stomatogastric ganglion. Variability has been noted in other systems as such as 

in dissociated mouse Purkinje neurons with of similar activities contain highly 

variable currents as well (Swensen, 2005). If the properties underlying a cell’s 

behavior are highly variable this may confound determining a cell’s type based 

on these features alone. This is of particular importance in systems without a 

known connectome and the capability to unambiguously identify neurons – which 

would permit validation of an expression-based means of determining cell type. 

In chapter 4 we use unambiguously identified neurons from the cardiac and 
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stomatogastric ganglia to evaluate the effectiveness of machine learning 

methods to recapitulate neuronal cell type from gene expression. Using data 

from single cell RNA-seq to capture all contigs expressed or single cell qRT-PCR 

to measure abundances of ion channel and receptor mRNAs we find that 

common algorithms recapitulate neuronal cell better than expected by chance 

but imperfectly. Furthermore, tested procedures for estimating the number of 

clusters within a dataset did not arrive at the number of cell types present in the 

sample. We conclude that a multimodal approach remains necessary for 

determining cell identity.   
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Chapter 2  

 

 

Timing dependent potentiation and depression of electrical 

synapses contributes to network stability in the crustacean 

cardiac ganglion 

 

Abstract 

Central pattern generators produce many rhythms necessary for survival (e.g. chewing, 

breathing, locomotion) and to do so often requires coordination of neurons through 

electrical synapses. Because even neurons of the same type within a network are often 

differentially tuned, uniformly applied neuromodulators or toxins can result in 

uncoordinated activity. In the crab (Cancer borealis) cardiac ganglion, potassium 

channel blockers and serotonin cause increased depolarization of the five electrically 

coupled motor neurons as well as loss of normally completely synchronous activity. 

Given time, compensation occurs that restores excitability and synchrony, and one of the 

underlying mechanisms of this compensation is an increase in coupling among neurons. 

However, the salient physiological signal that initiates increased coupling has not been 

determined. Using male C. borealis, we show that it is the loss of synchronous voltage 

signals between coupled neurons, rather than overall depolarization, that is responsible 

for plasticity in coupling. Shorter offsets in naturalistic activity across a gap junction 

enhance coupling, while longer delays depress coupling. We also provide evidence as to 

why a desynchronization-specific potentiation or depression of the synapse could 

ultimately be adaptive by using a hybrid network created by artificially coupling two 
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cardiac ganglia. Specifically, a stray neuron may be “brought back” in line by increasing 

coupling if its activity is closer to the remainder of the network. However, if a neuron’s 

activity is far outside network parameters, it is detrimental to increase coupling and 

therefore depression of the synapse removes a potentially harmful influence on the 

network.  

Significance Statement 

Understanding how neural networks maintain output over years despite environmental 

and physiological challenges requires understanding the regulatory principles of these 

networks. Here we study how cells that are synchronously active at baseline respond to 

becoming desynchronized. In this system, a loss of synchrony causes different parts of 

the heart to receive uncoordinated stimulation. We find a calcium-dependent control 

mechanism which alters the strength of electrical connections between motor neurons. 

While others have described similar control mechanisms, here we demonstrate that 

voltage changes are sufficient to elicit regulation. Furthermore, we demonstrate that 

strong connections in a sufficiently perturbed network can prevent any neuron from 

producing its target activity, thus suggesting why the connections are not constitutively 

as strong as possible.  

Introduction 

 Electrical synapses are dynamic structures capable of activity-dependent 

plasticity (Haas Greenwald Pereda 2016) and reshaping circuit behavior (Marder et al., 

2017; Alcamí and Pereda, 2019). Electrical synapses are integral to functions including 

escape behavior (Allen et al., 2006), visual encoding (Wang et al., 2017), and retinal 

processing (Kothmann et al., 2012). Electrical synapses undergo long term potentiation 

(eLTP) or depression (eLTD) due to changes in phosphorylation of the gap junction 
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(Wang et al., 2015; Sevetson et al., 2017a) . Often metabotropic glutamatergic signaling 

through group 2 mGluR activation results in eLTP while  group 1 activation results in 

eLTD (Wang et al., 2015).  

The past decade has yielded evidence suggestive of a voltage-dependent 

modulation of electrical synapses. The thalamic reticular nucleus (TRN) undergoes 

eLTD or eLTP following evoked bursting (Haas et al., 2011c) or spiking (Fricker et al., 

2020). Evoked spiking has been shown to cause eLTP in Hirudo medicinalis as well 

(Welzel and Schuster, 2018). The TRN results suggest a depolarization-dependent sign 

change, and it has been proposed that this is regulated via intracellular calcium 

(Sevetson et al., 2017a; Fricker et al., 2020). However, these experiments have not 

been conducted with mGluR antagonists and the complexity of the circuits involved 

make it challenging to disentangle potential voltage-dependent effects from metabotropic 

ones. Regardless, these studies provide compelling support for the possibility of a 

voltage dependent mechanism of eLTP and eLTD. In this study for the first time we 

address two provocative ideas put forward in this field in recent years: whether “the 

activity of electrical synapses themselves lead to their potentiation” (Haas et al., 2016) 

and whether “Activity-dependent LTD could be a mechanism used by a single bursting 

cell to unplug from … [a] network” (Haas and Landisman, 2012) . 

We address these questions using the Cancer borealis cardiac ganglion (CG) which 

contains five motor neurons (large cells, LCs) (Cooke, 2002) that depolarize 

synchronously (Figure 2.1A,B). Waveform synchrony occurs despite 2 to 4 fold variability 

in conductance magnitudes within LCs of a network (Ransdell, 2013a) through a tuning 

of membrane conductances (Lane et al., 2016), electrical coupling (Watanabe, 1958) 

and synchronous excitation. Pharmacological blockade of potassium channels with 

tetraethylammonium (TEA) results in hyperexcitability, increased activity (Ransdell et al., 
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2012b), and desynchronized waveforms of these coupled cells (Ransdell et al., 2013). 

However, within 30-60 minutes of this loss of synchrony, increased coupling (eLTP) – in 

conjunction with increase in A-type potassium conductance – act to restore synchrony in 

a compensatory fashion (Lane et al., 2016). However, it is not clear whether 

asynchronous voltage across the electrical synapses, increased activity and 

depolarization, or both are the salient signals initiating the response that enhances 

coupling. 

We hypothesized that voltage across the gap junction, coincident with depolarization, 

is a relevant electrophysiological signal for coupling modulation. Investigating these 

mechanisms requires decoupling the increased depolarization/excitability TEA causes 

from signal synchrony.  We accomplish this experimentally using two-electrode voltage 

clamp to precisely and independently control the membrane voltage of coupled cells. 

After suspending network activity, cells are clamped to the same activity with or without 

a delay between them. 

We first replicated the findings of the TEA block results (Lane et al., 2016) without 

pharmacology using protocols that mimic depolarization levels seen in TEA. We show 

that eLTP only occurs when asynchronous activity is present and that this phenomenon 

is calcium-dependent. Next, we demonstrated that increased depolarization is not 

necessary to alter coupling: at typical burst amplitudes, asynchronous activity elicits 

plasticity. Further, the sign of the change (i.e. potentiation or depression) is dependent 

on the delay between cells, with short delay resulting in eLTP and long delay resulting in 

eLTD. Finally, we use hybrid networks of two independent CGs with a simulated 

electrical synapse connecting one LC in each network to show a potential benefit for the 

induction of eLTP at lesser degrees of loss of synchrony and eLTD when loss of 

synchrony is more severe.  
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Materials and Methods  

Animals  

Wild caught adult male Jonah crabs (Cancer borealis) were purchased from The Fresh 

Lobster Company (Gloucester, MA). Upon arrival, animals were housed in tanks 

maintained at 12˚C until use. Crabs were anesthetized prior to use by cold exposure for 

thirty minutes. The heart was removed from the animal and microdissected to isolate the 

ganglion, which was pinned out in a Sylgard lined dish. Motor neurons were exposed by 

removing the connective sheath around them with a fine pin. During the dissection, the 

preparation was bathed in chilled physiological saline composed of 440 mM NaCl, 26 

mM MgCl2, 13 mM CaCl2, 11 mM KCl, and 10 mM HEPES at a pH of 7.4–7.5. All 

chemicals were purchased from Fisher Scientific unless stated otherwise.  

Electrophysiology 

Recordings and Measurements 

The cardiac ganglion in C. borealis consists of nine neurons (Figure 2.1A). Four 

interneurons, “small cells” (SCs), form a pacemaking kernel which excite the five “large 

cell” (LC) motor neurons in precise synchrony to generate action potentials that drive 

muscle contraction (Figure 2.1A,B). Paired LC somata are found in an anterior branch of 

the network (Figure 2.1A), and among these paired somata are strong local electrical 

synapses that are the focus of these studies (Lane et al., 2016, 2018). A petroleum jelly 

well around the posterior bifurcation isolated the small cells (Figure 2.1A) and a section 

of ganglionic trunk from the anterior LCs (i.e. LC3, 4, and 5; Figure 2.1A,B). This was 

used for recording network activity extracellularly with stainless steel electrodes 

connected to a differential AC amplifier (A-M Systems model 1700). Desheathed somata 

of LC4 and LC5 were recorded from using sharp electrodes filled with 3M KCl (4-16 
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MΩ). Following baseline recordings physiological saline around the small cells was 

displaced by isotonic sucrose (750 mM) to suspend network activity as described 

previously (Lane et al., 2016). When isotonic sucrose failed to fully suppress activity 

tetrodotoxin was added to eliminate residual activity. When measurements of baseline 

activity were not required, networks were sometimes silenced by cutting the trunk of the 

network to immediately and irreversibly remove SC input from the LCs. 

Gap junction and membrane resistances 

Two-electrode current and voltage clamp protocols were used to measure input 

resistance (R11) and coupling resistance (Rc), or the resistance across the electrical 

synapse. To measure these with current clamp we used sequential current injections (of 

sufficient length for the voltage to reach steady state) into both LCs. This protocol 

consisted of five (5) sweeps where one cell received 0 nA (250 ms), -6 nA (1500 ms), 

and 0 nA (2999 ms) and the other 0 nA (2999 ms), -6 nA (1500 ms), and 0 nA (250 ms). 

Initially -2 nA pulses were used, but -6 nA proved to offer better signal to noise ratio. 

From the resulting traces we calculated input resistance (R11 =  
ΔV1

I1
 ), membrane 

resistance (R1 =  
Rin1∙Rin2 − R12

2

Rin2 − R12
), transfer resistance (R12 =  

ΔV2

I1
 ), coupling coefficient 

(CC12 =  
ΔV2

ΔV1
 ), and coupling resistance (Rc =  

Rin1∙ Rin2− R12
2

R12
 ), where subscript 1 and 2 

denote the presynaptic and post synaptic cells respectively. Each of these were 

measured bidirectionally for a given pair of cells. These formulas are reported in 

(Bennett, 1966a).  

To gain a second, more direct measure of coupling via voltage-clamp, one cell was held 

at -60 mV while the other was stepped to a test voltage. Specifically, we clamped one 

cell at -60 mV (250 ms) then a test voltage ranging from -80 mV to -40 in increments of 5 

mV (1000 ms), then holding the stepped cell to -60 mV and stepping the other. The -60 
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mV step was excluded as it resulted in no transjunctional voltage.  From this, coupling 

conductance can be derived (gj =  
I2

V2 − V1
 ) (Spray et al., 1979). The reciprocal of gj, gj

-1, 

is coupling resistance. To differentiate between measurements from current clamp and 

those from voltage clamp these resistance of coupling measurements will be referred to 

as Rc and gj
-1, the former being from current clamp, the latter from voltage clamp. As 

expected, we found a close correspondence between Rc and gj
-1 (data not shown). For 

experiments where both gj
-1 and Rc were collected (i.e. all save those where endogenous 

waveforms were used.), we plot gj
-1 rather than Rc, as the derivation thereof is more 

direct. No directionality or rectification was observed (data not shown), so 

measurements of Rc and gj
-1 from LC4 and LC5 are treated as pseudoreplicates.  

The above protocols were created and run in Clampex 10.7 (Molecular Devices, San 

Jose CA) using two Axoclamp-2A intracellular amplifiers (Axon Instruments), a Brownlee 

precision amplifier (Model 410) for preamplification of the current injecting channels, and 

a Digidata 1440A digitizer (Molecular Devices).  

Voltage clamp stimulus protocols 

Following baseline measurements, LCs were voltage clamped to a waveform 

with increased depolarization or a naturalistic waveform. To mimic the effects of 

tetraethylammonium (TEA) on LC waveforms (Ransdell et al., 2013a; Lane et al., 2016), 

we created a TEA mimetic stimulus protocol (Figure 2.1C TEA Mimic) consisting of a 

high voltage, long duration pulse (depolarization to approximately -18 mV, an increase of 

35 mV from a resting membrane potential of -53 mV, for 1.61 Sec). This protocol was 

derived from a control LC waveform, where the depolarization was doubled in length and 

increased by 30 mV. Spike transients were removed to prevent excessive depolarization 

which left a shape more akin to an extreme TEA waveform. To mimic the TEA induced 



 

15 
 

desynchronization reported previously (Ransdell et al., 2013a), we introduced a delay of 

0.59 Sec between the two voltage protocols (see Figure 2.2A, ASYNC). 

The desynchronized TEA Mimetic protocol still contains overlap in the on phases 

between cells, resulting in a portion of the stimulus where there is no transjunctional 

voltage difference. Some TEA responses documented show little overlap in the 

depolarization phases of anterior LCs (i.e. LC3 vs LC4/5; see Figures 1E, 2A2, and 2A3 

of (Ransdell et al., 2013a)). Therefore, we designed a protocol with shorter 

depolarizations which lacked overlap in the timing of the “on” phase between cells. In 

this “Depolarized protocol” (Figure 2.1C, 2.2B Depolarized), the on phase amplitude was 

consistent with the previous protocols (~34mV from baseline) but remained elevated 

only for about 0.80 seconds, half as long as the depolarization in the previous protocols. 

Once again, we did not allow voltages above -14 mV to prevent excessive depolarization 

of spike transients. The delay between onset of cell depolarization was 0.98 seconds, ¼ 

the period, or 90°.  

We then performed experiments with a treatment that more closely resembles 

natural, endogenous activity. To do so, we silenced preparations with isotonic sucrose 

and then either we used a standardized trace of natural control activity to serve as the 

voltage command for voltage-clamp protocols across preparations (“Naturalistic” 

protocol), or we created “Individualized” protocols where a network’s waveform was 

recorded prior to silencing the network and then that network’s own control activity used 

as a voltage-clamp command.  

For asynchronous stimuli, a phase angle was introduced by shifting the voltage 

with respect to the time. When referred to here, “phase” is defined as a fraction of the 

period (e.g. a phase angle of 90° for a cell with a 4 second period is equivalent to a 1 

second delay). Representative phase angles used are visualized in Figure 2.1D (this 
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example uses the Naturalistic waveform). These protocol manipulations were 

accomplished through a combination of operations in R (R Core Team, 2020) and Excel 

with the resultant time-voltage pairs saved as an axon text file. Stimulus protocols were 

used to drive LC4 and LC5 for one hour, with the above measurements being collected 

every 20 minutes and with each preparation being exposed to a single stimulus protocol 

type. 

Dynamic clamp protocols 

To assess the functional consequences of desynchronization between cells in an 

ongoing rhythm, we created a dynamic clamp protocol in Netclamp (Gotham Scientific) 

that simulated a bidirectional electrical synapse between LC3s in two cardiac ganglia. 

We then set the strength of this synapse to 0, 0.025, 0.05, 0.1, 0.15, or 0.2 mS, 

consistent with conductances previously tested in this system (Lane et al., 2016). The 

simulated electrical synapse connected LC3 in two animals’ cardiac ganglia (see Figure 

2.5). Gap free recordings of the voltage in both cells, and extracellular recordings 

capturing small cell pacemaker activity, were collected from both networks and 

processed as described below. Note that while we compute the delay between burst 

onset, conversion to phase time is not appropriate here due to cycle-to-cycle variability 

in period.  

Experimental Design and Statistical Analysis 

Experimental Design 

We designed the initial set of these experiments as a simple comparison of two 

groups; TEA mimetic synchronously applied vs applied with a delay. We repeated this 

design testing whether influx of calcium is necessary by using a high amplitude 

(although shorter duty cycle) protocol in the absence and presence of Cadmium Chloride 



 

17 
 

(250 µM Cd2+). In the next set of experiments, we varied the delay between a single 

protocol using four phase angles: 0°, 22.5°, 45°, 90° (i.e. a delay of the 0, 1/16, 1/8, or 

1/4, times the period). We performed a related set of experiments where rather than 

using a single protocol we allowed the protocol to vary while controlling the relative 

delay, this time with five phase angles: 0°, 22.5°, 45°, 90°, 180°.  

Finally, we used dynamic clamp to vary the strength of fictive coupling between two cells 

of different networks at six levels (0, 0.025, 0.05, 0.1, 0.15, and 0.2 mS). We allowed 

delay between networks to vary as a second factor. Due to period variability within a 

network and between the two networks this factor is treated as being continuous. We 

sought two sets of networks such that one set possessed similar activity whereas the 

other set had mismatched activity. This final experiment is designed to be qualitatively, 

rather than quantitatively assessed. 

None of experiments presented here were preregistered. No statistical procedure 

was used to determine sample size. Rather, we based the sample size on those 

efficacious for detecting similar effects in prior publications (e.g. (Ransdell et al., 2012b, 

2013a; Lane et al., 2016)).  

Data preprocessing 

Measurements of voltage and current change or steps were obtained with 

Clampfit 10.7  and aggregated in Excel before being loaded into R (Wickham and Bryan, 

2019) for analysis. As multiple measurements were taken at each timepoint the median 

values were retained for analysis. Data were quality controlled before modeling by 

ensuring all resistances were positive, coupling coefficient values were between 0 and 1, 

and that all measured variables at each time and treatment were within two times the 

standard deviation above or below the mean. To eliminate pseudo replication in 
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measurements of coupling resistance (i.e. gj
-1 and Rc), the median of the gap junction 

resistance measures was calculated for each preparation at each time point and used in 

subsequent statistical modeling. This was not applied to coupling coefficient measures 

since they are free to vary between LCs due to independent membrane resistances. 

Data cleaning and processing libraries were fundamental to this process (Zeileis and 

Grothendieck, 2005; Müller, 2017; Vaughan and Dancho, 2018; Wickham et al., 2019; 

Firke, 2020) . 

Statistical Modeling 

Because our experimental design involves repeated measures over time, and 

multiple cells from the same individuals that share a synapse, and that quality control 

may result in unbalanced groups, we determined that a mixed model analysis – rather 

than ANOVA – would be most appropriate (McElreath, 2016). This allows for the starting 

value or level of a given dependent variable to be captured as a random effect to better 

examine the response to treatment over time. We modeled dependent variables as a 

linear function by main and interaction effects of time and phase using the library nlme 

(Pinheiro et al., 2020).  The resultant models we evaluated with the aid of the car and 

broom libraries (Fox and Weisberg, 2019; Robinson and Hayes, 2020). We used a linear 

mixed effects model fit with restricted maximum likelihood to allow for an individual cell 

(or network in the case of RC and gj
-1) to have an independent intercept but a shared 

slope. P values were corrected using a false discovery rate and are denoted as “padj”. 

Given the interrelated nature of our measurements (e.g. Input resistance being 

inextricably linked to membrane and gap junction resistance) our test results are not all 

independent.  Therefore, applying an adjustment errs on the side of being a fairly 

conservative correction. As a companion to the above we have performed Kruskal-Wallis 

or Wilcoxon rank sum tests on coupling resistance measures. Unlike the linear models 
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described previously, these non-parametric tests do not provide parameter estimates 

and thus do not act as a full substitute for the mixed model. However, they provide a 

more direct and intuitive test for evaluating experimental effects. We performed these 

tests on the change in coupling resistance from baseline at a single time point (40 

minutes) for the TEA Mimetic, Naturalistic, and Individualized protocols. The 40 minute 

time point largely captures the steady state of the effects we observed. We have also 

used a Test of One-Sided Significance (TOST) (Robinson, 2016) to evaluate if Cd2+ 

application prevented voltage evoked potentiation. The resultant p values for these were 

not adjusted in text. 

Model comparison 

We leveraged the protocol variability inherent in the individualized protocols to 

test if a single descriptor of the protocol (e.g. depolarization as represented as area 

under the curve) could outperform phase.  Using custom functions, we measured the 

following from each protocol: minimum mV, median mV, mean mV, maximum mV, Area 

under the curve (AUC) (i.e. total depolarization), Overlapping AUC (i.e. AUC based on 

the minimum voltage between LCs), normalized joint AUC (i.e. overlapping AUC 

normalized to period), correlation between protocols, On duration, duty cycle, and 

percent delay. Additionally, we tested phase as a categorical variable. The same model 

structure as above was used, allowing fixed effects of treatment, time, and an interaction 

between them with a random effect of the preparation. These models were fit with 

maximum likelihood to enable model comparison with Akaike information criteria 

corrected (AICc, which corrects for the number of terms in the model) which was 

accomplished via the AICcmodavg library (Mazerolle, 2019).  

Dynamic clamp data processing 
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Our goal with these dynamic clamp experiments was to measure the similarity of 

a burst to an idealized control burst and the similarity of a burst in one cell is to that of a 

coupled cell. We extracted the relevant voltage traces using the readABF library 

(Syekirin, 2018) and used custom R functions to find all instances where both networks 

were active simultaneously (henceforth termed an event). The start and end of an event 

was defined based on small cell spiking on the extracellular recordings. Since control 

cardiac ganglion waveforms are variable within and between animals one cannot align a 

burst to reference control, subtract the two and arrive at a robust estimate of the 

similarity to control bursts as a whole. To overcome this, we aligned each event to every 

control event and calculated the Pearson’s correlation coefficient for the voltage of these 

bursts. We retain the median from each set to serve as the deviation from control activity 

for a given event. This is visualized in Figure 2.5 and in the graphs labeled AvA’ and 

BvB’ in Figure 2.6. To measure the similarity between bursts in two coupled cells (in this 

case belonging to different networks) we calculated the Pearson’s correlation coefficient 

between the cells’ voltages for an event. These values are shown in Figure 2.6 in the 

graphs labeled AvB and BvA.  

We visualized the resultant data in two and three dimensions with respect to the 

delay in burst onset (as determined by the start of small cell bursting) between networks. 

We paired two networks such that one experiment contained cells of substantially 

differing burst amplitudes the other being of approximately matched amplitudes. This 

permits qualitative assessment of the effect of changes in onset independent of changes 

to both onset and depolarization. 

Visualizations 

We relied on a combination of R plotting libraries (Sievert, 2018; Edwards, 2019; 

Pedersen, 2019; Wilke, 2019; Slowikowski, 2020) to visualize the data produced for 
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these experiments. Minor aesthetic adjustments were made with Adobe illustrator 

(Adobe Inc., 2019). 

Code Accessibility 

Both the data and code associated with these analyses are available upon 

request. Please contact the corresponding author. 

Results 

TEA mimetic protocol requires lack of synchrony and Ca2+ to increase 

coupling 

 Tetraethylammonium (TEA) application in known to increase LC depolarization 

and decrease network synchrony (Lane et al., 2016) in cardiac ganglia. These findings 

became the foundation for our first set of experiments, where we tested whether 

increased depolarization of the stimulus sufficed to change coupling, or if 

desynchronization also was necessary. The group exposed to the desynchronized TEA 

mimetic protocol exhibited a rapid decrease in coupling resistance (an increase in 

coupling strength) whereas the synchronous group did not (Figure 2.2A). We ran a 

pairwise test on coupling resistance and the linear model described previously on all 

dependent variables listed in table 2.1 to provide a more nuance description of the 

system. At 40 minutes the change in coupling between the two groups was significantly 

different (Δgj
-1 by Condition, df = 9, W=29, p = 0.009, Wilcoxon rank sum). In our linear 

model differences in the change between groups is described by an interaction effect on 

gj
-1 (gj

-1 Time:Condition =  F (1,32) = 4.781, p = 0.036, padj = 0.084, Linear Mixed-

Effects), also appearing in our current clamp measurements of the resistance of coupling 

(Rc Time:Condition =  F (1,33) = 3.809, p = 0.060, padj = 0.095, Linear Mixed-Effects). 

We report p adjusted for multiple comparisons (padj) but this adjustment does not 
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account for the relationships between the response variables (see methods). We also 

detected an increase in coupling coefficient in the desynchronized group (CC 

Time:Condition =  F (1,84) = 9.027, p = 0.004, padj = 0.012, Linear Mixed-Effects), 

estimated by the model to be 0.002 (ΔV2/ΔV1)/20 Min in the asynchronous group. This 

Time:Condition effect on coupling coefficient appears to be driven by both a decrease in 

resistance of coupling and an increase in membrane resistance of 0.023 MΩ/20 Min (R1 

Time:Condition =  F (1,44) = 5.681, p = 0.022, padj = 0.058, Linear Mixed-Effects). Non-

interaction effects and a full list of the tested variables are provided in Table 2.1. 

 To determine if the prolonged duration of the stimulus is necessary to alter 

coupling, we shortened the depolarization of the TEA Mimetic protocol above to match 

the length of a control burst. We maintained the high amplitude and asynchrony in this 

“Depolarized” protocol (Figure 2.1C). We noted similar changes in coupling relative to 

the TEA Mimetic despite halving the length of the depolarization (Figure 2.2B). When we 

visually compared the asynchronous Depolarized and TEA Mimetic protocols, we found 

both showed increased coupling (Figures 2.2A, 2.2B). We cannot conclude these groups 

significantly equivalent at 40 minutes, (Δgj
-1, Condition at 40 minutes, df = 8, p = 0.132, 

Test of One-Sided Significance (TOST)) we also are unable to conclude they differ (Δgj
-1 

by Condition, df = 8, W= 15, p = 0.691, Wilcoxon rank sum). Similarly, the linear model 

does not suggest an interaction. This was the case both for direct (gj
-1 Time:Condition =  

F (1,29) = 0.002, p = 0.969, padj = 0.969, Linear Mixed-Effects) (Rc Time:Condition =  F 

(1,29) = 0.008, p = 0.928, padj = 0.963, Linear Mixed-Effects) and functional measures of 

coupling. None of the other parameters measured resulted in a substantial interaction 

effect (See Table 2.2). 

To determine if the observed increase in coupling is dependent on calcium influx 

through voltage-dependent channels, we applied the Depolarized asynchronous protocol 
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in the presence of extracellular 250 μM CdCl2. Blockade of calcium influx during the 

stimulus protocol virtually eliminated the increase in coupling seen as a result of the 

asynchronous Depolarized protocol (Figure 2.2B). At 40 minutes the coupling resistance 

of cells within the cadmium exposed networks (i.e. Depolarized async + Cd2+ 0 minutes 

vs 40 minutes, Figure 2.2 B, right panel) were significantly equivalent to their baseline 

values (gj
-1, 0 vs 40 minutes, df = 3, p = 0.012, Paired Test of One-Sided Significance 

(TOST)). 

A standardized control waveform increases or decreases coupling based 

on the delay between cells 

To test if these findings hold with a more naturalistic treatment, We used a 

stimulus protocol derived from a single control LC waveform applied at four phase 

angles of 0°, 22.5°, 45°, and 90° (approximately 0.00, 0.24, 0.49, 0.98 seconds 

representing an offset of 0, 1/16th 1/8th, and 1/4th the period) (Figure 2.1C & D). Below a 

threshold 90° we observed potentiation of the synapse as measured by a mean 

decrease in Rc (Figure 2.3). At 40 minutes, the 0°, 22.5°, 45°, and 90° degree phase 

angles have not deviated significantly from baseline at a threshold level of p < 0.05 (0° 

Δgj
-1 at 40, df = 4, V=1, p = 0.125, Wilcoxon rank sum), (22.5° Δgj

-1 at 40, df = 4, V=0, p 

= 0. 0625, Wilcoxon rank sum), (45° Δgj
-1 at 40, df = 4, V=2, p = 0. 1875, Wilcoxon rank 

sum), (90° Δgj
-1 at 40, df = 4, V=15, p = 0. 0625, Wilcoxon rank sum). This does not to 

suggest that the change between groups is equivalent at 40 minutes. Depression at 90° 

and potentiation at smaller phase angles resulted in a significant change of coupling 

between groups at 40 minutes (Δgj
-1 by Condition, df = 3, chi-squared = 8.897, p = 

0.031, Kruskal-Wallis). This appears as the Time:Condition effect in in the linear model 

for coupling resistance (gj
-1 Time:Condition =  F (3,59) = 1.964, p = 0.129, padj = 0.219, 

Linear Mixed-Effects) (Rc Time:Condition =  F (3,63) = 3.28, p = 0.027, padj = 0.053, 
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Linear Mixed-Effects). Resistance increased over time with a 90° protocol by 0.002 to 

0.007 MΩ/20 Minutes (as estimated from the Rc and gj
-1 measurements respectively) 

relative to control. All other groups decreased relative to control. Coupling coefficient 

was altered as well (CC Time:Condition =  F (3,154) = 3.246, p = 0.024, padj = 0.053, 

Linear Mixed-Effects) decreasing by -0.002 (ΔmV2/ΔmV1)/20 Minutes in the 90° group 

and increasing by 0.001 in the 22.5° and 45° groups. The full results from the linear 

model are provided in Table 2.3. 

Taking the above experiments together, the results are consistent with a lack of 

synchrony being responsible for altering coupling resistance (See Figures 2.2A & 2.3). 

However, it appears that phase alone is insufficient to fully predict this, as Depolarized 

Async and Naturalistic 90° possess similar delays and periods with only depolarization 

differing. Despite having the same phase angle, at different levels of depolarizations the 

sign of gap junction regulation is flipped. This observation supports a role for another 

electrophysiological factor, such as depolarization, to interact with synchrony in 

influencing coupling.   

Phase-shifted endogenous waveforms do not consistently alter coupling – 

Model comparison does not reveal a single better predictor than phase 

Given that baseline LC activity differs across animals, we sought to represent this 

variability and determine potential electrophysiological factors other than phase that 

might be more predictive of altered coupling. We repeated the previous experiment, 

except instead of using a single naturalistic waveform across preparations we used each 

network’s own baseline activity from which to derive the stimulus waveform 

(“Individualized Stimulus”). We performed these experiments with one additional group 

with a phase angle of 180° (½ the period) (Figure 2.1C & D). Given cells’ diversity of not 
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only excitability but also period, a range of delays (in seconds) is represented in each 

phase angle group.  

The “Individualized” protocols altered coupling throughout the experimental 

groups, but delay had a markedly less consistent effect among these heterogeneous 

waveforms (Figure 2.4A). While Rc appears to have decreased in some preparations 

(Figure 2.4A), none of the treatment groups changed significantly from baseline (0° Δgj
-1 

at 40, df = 6, V=9, p = 0. 469, Wilcoxon rank sum), (22.5° Δgj
-1 at 40, df = 3, V=0, p = 0. 

125, Wilcoxon rank sum), (45° Δgj
-1 at 40, df = 3, V=7, p = 0. 625, Wilcoxon rank sum), 

(90° Δgj
-1 at 40, df = 2, V=2, p = 0. 75, Wilcoxon rank sum), (180° Δgj

-1 at 40, df = 4, V=4, 

p = 0. 438, Wilcoxon rank sum). Additionally, unlike the standardized protocols above, 

using individualized protocols resulted in groups that were not separable at 40 minutes 

by change in coupling (ΔRc by Condition, df = 4, chi-squared = 2.664, p = 0.616, 

Kruskal-Wallis). The interaction effect with the smallest p value was input resistance (R11 

Time:Condition =  F (4,106) = 2.312, p = 0.062, padj = 0.107, Linear Mixed-Effects). 

Coupling resistance (Rc Time:Condition =  F (4,64) = 1.942, p = 0.114, padj = 0.183, 

Linear Mixed-Effects) (Figure 2.4A) and coupling coefficient (CC Time:Condition =  F 

(4,154) = 1.115, p = 0.352, padj = 0.444, Linear Mixed-Effects) were likewise 

inconsistently affected. A full list of the tested variables and the resultant p values is 

provided in Table 2.4. 

The Individualized LC recordings used in these experiments represented 

substantial variability among stimuli, as control activity among animals is not uniform. 

This enabled us to explore if other electrophysiological features were predictive of 

changes in coupling, as might be expected based on previous studies (Lane et al., 2016; 

Fricker et al., 2020).  To this end, we tested 15 variables representing depolarization 

features (On duration, Duty cycle, Area under the curve (AUC), Normalized AUC 
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(AUC/period), Max mV, Median mV, Minimum mV), and agreement between 

depolarization and stimuli timing in both cells (Phase, Phase as discrete conditions, 

Delay, Percent delay, Stimulus Correlation, Joint AUC (AUC of minimum voltage in 

either cell at any given time), Normalized joint AUC (Joint AUC / Period)). We ranked the 

efficacy of models of these variables using the difference in Adjusted Akaike information 

criterion (AICc) of each model independently (Figure 2.4B). AICc provides a measure of 

the predictive power of a model corrected for the number of terms where smaller AICc 

values indicate a better model. While none of the waveform-derived measures 

outperformed phase as a predictor, given the insufficiency of phase alone to capture the 

results of the previous we cannot rule that other factors, or interactions of factors such 

as those listed above, may be involved in modulating coupling induced by phase 

differences.  

Dynamic Clamp reveals a detrimental effect of coupling strength and delay 

on cells’ target output 

The goals of this experiment were twofold. First, to determine the effects of 

coupling strength on synchrony between two cells with a continuous range of delay 

times in their relative activities by comparing the activity of two artificially coupled cells in 

two different ganglia across a range of coupling conductances. Second, to investigate 

how coupling and delay interact to “pull” the cell out of its normal pattern of activity by 

comparing experimentally varied coupling strength and delay on a cell’s activity relative 

to its own baseline activity (i.e. without artificial coupling). Since the previous analysis 

provided no predictor for change in coupling that was clearly superior to 

phase/synchrony, we continued using loss of synchrony between cells to test for a delay 

dependent “cost” to the cell that is minimized by electrical synapse potentiation or 

depression. If such a cost existed, we would predict it manifests at a threshold less than 
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or equal to a delay of 0.98 seconds (90° for the Naturalistic waveform) given that 

depression is seen at this delay (Figure 2.3). However, given the variable responses 

seen in our endogenous waveform experiments (Figure 2.4) we cannot rule out that that 

this threshold would differ between cells, and certainly the sensitivity to delay will be 

influenced by the magnitude of artificial coupling.  

In order to use a truly naturalistic voltage stimulus we utilized dynamic clamp to 

take advantage of endogenous cell activity in a manner that provides a near continuous 

range of delays and complete control over coupling properties. To do so, we introduced 

a simulated gap junction between two LCs in separate, active CGs (Figure 2.5A) and 

recorded LC activity from both networks under six artificial synaptic strengths (0, 0.025, 

0.05, 0.1, 0.15, and 0.2 μS). These recordings were sufficiently long (115-300 seconds) 

to gain a roughly continuous sampling of delays between the preparations (Figure 2.5B). 

To visualize the deviation from control activity, we plotted the median correlation 

coefficient (adapted from methods previously reported  (Lane et al., 2016)) between a 

burst and all control bursts, with respect to coupling conductance and delay (Figure 

2.5C). With these data we examined how well artificially coupling cells can promote 

more synchronous activity between cells across networks. We were also able to 

compare a cell’s activity to its control activity to assess how delay and coupling alter cell 

output from baseline.  

We performed this experiment with one pair of CGs with naturally similar LC 

depolarization amplitudes and one pair of networks consisting of LCs with naturally 

varying depolarization amplitudes. To assess the difference between bursts of a given 

condition and baseline activity, we correlated all overlapping bursts of a given LC against 

all those of its own control activity (i.e. with no artificial synapse present). Summarizing 
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the resultant distribution provided a measure of similarity between a cell’s control activity 

and that of a given delay and coupling strength.  

We find that in both trials, correlation coefficient between the networks (i.e. 

similarity to each other not to a control output) was maximized by a high coupling 

conductance and low delay (Figure 2.6A, AvB). This was expected and serves to confirm 

the system was operating correctly. We found in both trials that the self-similarity (i.e. 

correlation against a cell’s baseline activity) decreased with increased coupling 

conductance and that this effect appears more severe as the delay between networks 

increases (Figure 2.6A, AvA’ and BvB’; 6B). In other words, the stronger the synapse 

between two cells and the longer the delay, the less similar a given cell will produce 

output resembling its own baseline activity (measured as a correlation coefficient). While 

output correlation was affected by coupling conductance in a roughly linear manner, 

delay affected correlation in an approximately parabolic manner (Figure 2.6A). This 

relationship was shifted relative to zero delay in the experiment with mismatched burst 

amplitudes and durations (Preparation 2) and inverted by switching the reference cell, 

thereby turning a negative delay positive (Figure 2.6A), contrast references within a 

trial). Finally, we observed that when cells are mismatched in excitability, there are 

pronounced differential sensitives between cells (Figure 2.6A; 2.6B, Preparation 2).  

Discussion  

The goals of this study were twofold. First, we set out to determine whether plasticity of 

electrical synapses can be induced solely by activity-dependent means (e.g. a 

transjunctional voltage), and second to shed light on the functional importance of 

coupling modulation in highly synchronous networks. This required a model system in 

which one can observe and maintain natural synchronous activity among constituent 

neurons and completely control neuron activity with voltage-clamp. With the crustacean 
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cardiac ganglion, we achieved the experimental control necessary to decouple activity 

from other network parameters to demonstrate a purely activity-dependent modulation of 

coupling that is directionally dependent on the degree of difference in activity between 

the coupled cells. We then performed artificial coupling experiments to explore how 

eLTP can help restore synchrony in a presumably compensatory fashion. However, we 

also show that after a point, increased coupling alone fails to prevent divergence from 

synchrony, at which we suggest it becomes advantageous for networks to “cut off” the 

aberrant cell through eLTD, salvaging the output of the remainder of the network.  

Loss of synchrony, and not increased depolarization, induces eLTP in LCs 

Our previous work demonstrated eLTP in crustacean cardiac ganglia, resulting 

from exposure of LCs to TEA, causing not only hyperexcitability and increased 

depolarization (Ransdell et al., 2012b, 2013a) but also loss of synchrony among LCs 

(Lane et al., 2016). These experiments did not determine whether the salient signaling 

inducing eLTP was increased activity of the TEA-exposed LCs or the loss of coordinated 

activity (or both). In this study, we find increased depolarization is insufficient to alter Rc 

(Figure 2.2). Instead, a delay between depolarizations is required. This is repeated in 

three different experiments (Figures 2.2-2.4), with protocols that vary in the level of 

depolarization, and the phase delay between cells. Phase delay can elicit coupling 

modulation distinct and is abolished by calcium channel blockade (Figure 2.2B), which 

agrees with previously reported activity dependent gap junction plasticity (Welzel and 

Schuster, 2018; Fricker et al., 2020). These experiments are consistent with the 

hypothesis of a voltage delay induced, calcium-mediated mechanism of electrical 

synapse potentiation (Haas et al., 2016). However, we do not yet know whether a 

meaningful differential in calcium forms across the synapse, as seen when one coupled 
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cell is driven in the TRN (Fricker et al., 2020), acting as the salient signal, or if this effect 

is driven by a different signal.  

The magnitude of phase difference may determine whether eLTP or eLTD 

is induced 

Here, for the first time to our knowledge, we find the same depolarizing stimulus 

produces both eLTP and eLTD contingent upon the delay between cells. This appears 

as a phase by time effect in our model; seen clearly in Figure 2.3. We observed clear 

and widespread eLTD with the Naturalistic stimulus at a phase angle of 90° and less 

consistently in the Individualized protocols as well. It appears that the threshold dividing 

eLTP and eLTD may be smaller than 90° as some preparations at 45° also displayed 

eLTD. Furthermore, we are not ruling out a potential interaction with depolarization. For 

example, the stimulus protocols seen in Depolarized Async (Figure 2.2B) and 

Naturalistic 90° (Figure 2.3) have similar timings, with virtually no overlap in the 

activation of the two cells but differ substantially in their depolarization amplitude and 

direction of modulation. Indeed, in general our most robust eLTP effects were elicited by 

our protocols that depolarize more (see traces in Figure 2.1C and effects shown in 

Figure 2.2 to Figures 2.3 and 2.4). Therefore, the “rules” by which a given activity pattern 

elicits eLTP or eLTD may vary across networks due to variability in the underlying 

rhythms across individuals (Marder, 2011; Williams et al., 2013) and this suggests that 

more factors are at work. While other electrophysiological features may influence 

coupling, in our results we find none more predictive than phase (Figure 2.4B). However, 

it seems likely based on our data that membrane depolarization (or lack thereof) may 

play a meaningful role in determining synaptic plasticity in this system. A recent study 

from Fricker et al. is consistent with this hypothesis. They report when stimulation of 

TRN neurons evoked spiking that eLTP is induced, whereas evoked bursting and 
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subsequent higher intracellular calcium results in eLTD (Fricker et al., 2020). Our work 

suggests regulation may involve the sustained existence of a calcium gradient, but 

additional studies will be necessary to indicate the precise intracellular triggers of eLTP 

and eLTD. 

 

Coupling conductance increases sensitivity of cell output to 

phase delay 

Excitatory neuromodulators (Cruz-Bermudez and Marder, 2007; Lane et al., 

2018) or ionic current blockers (Ransdell et al., 2013a; Lane et al., 2016) suppresses 

coordination between neurons. This loss of synchrony is attenuated (Lane et al 2016) or 

prevented (Lane et al., 2018) with an associated increased in coupling. This does not 

explain the utility of a biphasic response where RC is decreased at small delays and 

increased at larger ones (Figure 2.3). Utilizing hybrid networks formed between LCs of 

two different ganglia with an artificial electrical synapse, we tested for changes in cell 

output as an effect of delay between neurons, and coupling conductance (Figure 2.5). 

The logic of the experiment is as follows. First by comparing the activity of two artificially 

coupled cells in two different ganglia across a range of coupling conductances, we can 

determine how well coupling is able to promote more synchronous activity between 

(naturally variable) cells. We predicted that with smaller delays between the onset of 

activity of these two cells, increased coupling would increase their synchrony. However, 

at larger delays, not only would strong coupling likely be ineffective at synchronizing cell 

activity, but may also produce aberrant cell activity (relative to the cells’ “home” 

networks). This leads to the second aspect of the logic of this experiment: by comparing 

the effects of experimentally varied coupling and delay on a cell’s activity relative to its 
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own baseline activity (i.e. at 0μS), we demonstrate how coupling and delay may interact 

to “pull” the cell out of its normal pattern of output. We predicted that at some level of 

delay, it would become advantageous to reduce coupling, minimizing disruption of each 

cell’s natural activity.  

These inter-related predictions were supported by the data (Figure 2.6): the 

waveforms of artificially coupled cells are most similar under conditions of high coupling 

conductance and low delay in activity between the cells. Conversely, activity across 

networks is most dissimilar when cells are subject to low conductance and high activity 

delay. Additionally, when we look at these data from the perspective of each cell’s own 

native biological network, we indeed find that a cell’s output is deformed from control 

with increased coupling in a delay-dependent manner where large delays cause the 

largest deviation (Figure 2.6). This occurs even at coupling levels typically found in 

populations of these networks. Conversely, when coupling is reduced to lower than 

typical biological levels (i.e. eLTD), this exerts a protective effect whereby a cell is no 

longer pulled from its typical pattern of activity by an artificially coupled partner with a 

high amount of delay.  

Taken together these experiments support the idea of a nonlinear cost to a 

network’s output, whereby a cell with disrupted activity within a network may be “pulled 

back in” to normal synchrony through electrical synaptic potentiation, but a severely 

impaired cell can be “cut off” from the remaining healthy cells via synaptic depression if 

its activity onset differs too greatly. How this “decision” to rescue or abandon an 

improperly behaving cell is determined remains a compelling question for future 

experimentation, both computational and physiological. 

Conclusion 
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Electrical synapse plasticity is present across taxa in both innexin and connexin 

based synaptic coupling (Haas et al., 2011c; Lane et al., 2016; Welzel and Schuster, 

2018). Despite the multiple means documented by which circuits can tune their electrical 

synapses, our data are the first to demonstrate that timing of voltage activity can 

dynamically modulate electrical synapses. Further, with our study there is now combined 

evidence that this too is a calcium-mediated (Sevetson 2017) and likely depolarization-

dependent mechanism (Fricker et al., 2020) that is conserved across invertebrates and 

vertebrates. We suspect that the features which tune these properties will underly the 

dynamics of long-term electrical synapse plasticity akin to what has been proposed for 

membrane excitability and demonstrated in silico (O’Leary et al., 2014a). These 

mechanisms undoubtedly work in conjunction with other regulatory mechanisms of 

cellular and synaptic properties to provide robust constraints on network output.   
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Figure Legends, Tables, Extended Data, and Multimedia 

Figure 2.1 Synchronous, normative large cell (LC) depolarizations can be 

manipulated through network silencing followed by voltage clamp.   

 

A) The five motor neurons (Large Cells, LCs) of the cardiac ganglion are driven by four 

pacemaker interneurons (Small Cells) through chemical and electrical synaptic 

excitation. B) LCs depolarize synchronously, as shown by simultaneous intracellular 

recordings. A simultaneous extracellular recording made from the nerve Trunk (marked 

with a “T” in Panel 1A) detects 3 LC action potentials per burst (large events) as well as 

the pacemaker activity of the Small Cells (small events). Time scale bar is 1 second. C) 

After Small Cells are silenced by displacing physiological saline with isotonic sucrose 

fictive LC activity patterns can be induced with two electrode voltage clamp. Fictive 

activity patterns are designed to mimic i) the effects of TEA (“TEA Mimic”), ii) aberrantly 

high depolarization without increased length of the depolarization (“Depolarized”), iii) 

normative activity using a single standardized depolarization (“Naturalistic”), and iv) 

normative activity using the cell’s own activity (“Individualized”, examples shown from 

three different animals). Bars represent 10 mV and 1 Second. D) Experimentally 

controlled shifts from synchronous activity across two LCs are expressed as phase 

angles where an offset of ¼ the period is 90°.  Protocols with delays between LCs 
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ranging from 0 to ¼ of the period were created with the Naturalistic stimulus and from 0 

to ½ the period for the Individualized stimuli.   
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Figure 2.2 Electrical synapse potentiation (eLTP) requires desynchronized 

activity and Ca2+, not depolarization alone 

 

A) TEA mimetic stimuli (increased depolarization and duration) applied synchronously 

(SYNC) in coupled LCs result in little to no eLTP (i.e. a decrease in coupling resistance, 

Rc). Asynchronous depolarization across gap junctions (ASYNC) results in a substantial 

eLTP within 20 minutes. Filled circles connected by lines show change of Rc from 

baseline for a given cell over time. All cells are shown individually, but two cells from the 

same network (i.e. that share a gap junction) are treated as pseudo-replicates in the 

analyses. Open circles track the mean, gray bands show standard deviation. B) 

Decreasing the duration of the depolarization relative to the TEA Mimic stimulus 

(Depolarized ASYNC) does not abolish the eLTP effect. However, potentiation does not 

occur with the same stimulus protocol in the presence of Cd2+ (Depolarized 

ASYNC+Cd2+) suggesting that calcium influx is required as well.   
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Figure 2.3 Desynchronization with a naturalistic stimulus below a 90° phase 

shift depresses the LC 4/5 electrical synapse, smaller delays potentiate the 

synapse. 

 

We used the Naturalistic waveform to examine the effects of asynchronous stimulation 

at more normative voltages. At these more normative voltages, the sign of change (i.e. 

eLTP or eLTD) appears dependent on the magnitude of delay. A naturalistic waveform 

applied with a delay less than 90° (i.e. an offset of 1/4th the period between cells) results 

in eLTP, while a delay of 90° results in eLTP. Filled circles connected by lines show 

change of Rc from baseline for a given cell over time. All cells are shown individually, but 

two cells from the same network (i.e. that share a gap junction) are treated as pseudo-

replicates in the analyses. Open circles track the mean, gray bands standard deviation.  
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Figure 2.4 Phase outperforms waveform derived metrics in explaining 

changes in coupling.  

 

A) Using a network’s endogenous activity at delays up to 180° (an offset of ½ the period) 

fails to cleanly reproduce the effect seen with stricter experimental control. As before, 

black and red dots represent the change in individual cells and the mean respectively 

whereas the gray band represents the standard deviation. Use of individualized stimuli 

cause more varied effects on eLTP and eLTD than under any of the standardized 

treatments (TEA Mimetic, Depolarized, or Naturalistic). However, overall eLTP is 

induced at 22.5°, consistent with the other stimulus protocols. B) We tested the efficacy 

of other predictors derived from the individualized waveforms (e.g. total depolarization) 

to explain the change in coupling resistance. To evaluate models, we used Akaike 

information criterion corrected (AICc) for the number of terms in the model and plot the 

difference from the model with the lowest AICc (ΔAICc). Because the period of 
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individualized stimuli is variable, we represented phase as a continuous variable. Phase 

outperformed all other tested metrics.   
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Figure 2.5 LC output is altered by phase delay in a coupling conductance 

dependent manner.  

 

A) Using dynamic clamp, we artificially coupled two LC motor neurons from two different 

networks (i.e. animals) with their distinct ongoing rhythms intact. The simulated 

reciprocal synapse had a strength between 0 and 0.2 uS. B) As a result of the different 

cycle periods of endogenous activity between the networks, the artificially coupled LCs 

experienced activity with a continuous range of positive and negative delays relative to 

one another. The start and end of each cell’s bursts was defined based on spiking 

detected in the extracellular recordings (see Figure 2.1B, Trunk). C) To measure 

similarity to each cell’s baseline activity, each burst is correlated with every burst of its 

network’s control activity. The median value of this set (Cor) represents the similarity or 

synchrony between cells, and is then plotted for a given artificial synapse strength (Gsyn) 
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and phase delay (Delay). Four example traces of a control (gray) and treatment (black) 

burst are shown accompanied by the coupling strength, delay, and similarity (correlation) 

to control activity. Highlighted comparisons show i) low coupling, high negative delay, ii) 

low coupling, high positive delay, iii) high coupling, negative delay, and iv) high coupling 

high positive delay. In this way, we can represent how similar (high value of Cor) or 

dissimilar (low values of Cor) the artificially coupled cells are to one another as a 

function of the interaction between synapse strength (Gsyn) and the level of synchrony, or 

phase delay (Delay).   
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Figure 2.6 LC output is impaired by delay in a coupling conductance 

dependent manner 

 

A) AvB: Correlating burst activity (Cor, or the similarity between two cells) between 

preparations (ganglion A vs ganglion B) shows that both delay between burst onset and 

coupling strength (Gsyn from 0 – 0.2 mS, noted above each panel) alter burst similarity. 
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Hybrid networks of ganglia with similar excitability (Preparation 1) and dissimilar 

excitability (Preparation 2), display the same trend with different sensitivities to delay and 

coupling strength. In both cases, coupling increases overall similarity with delay altering 

similarity non-linearity. The maxima and sensitivity to delay appears to differ across cell 

pairs. AvA’ and BvB’: To determine whether coupling strength and delay interact in a 

manner that causes one of the artificially coupled cells to change its activity relative to its 

endogenous network, we plotted the similarity scores (refer to figure 2.5) of each cell to 

its own baseline  output (A’ or B’ respectively) as a function of Gsyn and delay. Individual 

cells are differentially sensitive to their partner’s activity, and the hybrid network in Trial 1 

appears more sensitive than that of Trial 2. When Gsyn is 0 (no artificial synapse), 

waveform output for a given cell is consistent over time. As synapse strength is 

increased, each cell is more and more “pulled” out of its endogenous waveform as a 

function of both the delay between cells and the strength of the synapse. Delays closer 

to 0 result in less loss of similarity to baseline activity. Each cell in a hybrid network 

shows the opposite pattern to its partner (e.g. decreasing at positive delays vs 

decreasing at negative delays – contrast AvA’ and BvB’), as a positive delay from the 

vantage point of one network will be a negative delay from the other and because bursts 

are not symmetrical. Similarity to control activity is measured by the median of the 

population correlation coefficients between a single burst and a set of control bursts. To 

aid in visualizing trends over delay, these medians have been fit with a LOESS 

regression. B) For better visualization, the same data shown in BvB’ are plotted in 3 

dimensions with respect to both Gsyn and Delay. The minimum Gsyn at which Delay 

compromises similarity differs between the two preparations. Despite the different 

excitabilities of the composite networks and differing sensitivity to Gsyn and Delay, the 

overall shape of the relationship is remarkably similar.   
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Table 2.1: TEA Mimic Sync & TEA Mimic Async. 

Dependent 
Variable 

Parameter df F Value p-Value FDR Adjusted p Parameter Effect Estimate 
 

CC (Intercept) (1, 84) 345.491 0 0 
   

 
Time (1, 84) 2.943 0.09 0.126 Time Effect 0 ΔmV/ΔmV 

 
Condition (1, 11) 12.647 0.005 0.014 TEA Mimic Async 

Effect 
-0.274 ΔmV/ΔmV 

 
Time:Condition (1, 84) 9.027 0.004 0.012 Interaction Effect 0.002 (ΔmV/ΔmV)/20 Min. 

gj-1 (Intercept) (1, 32) 40.984 0 0 
   

 
Time (1, 32) 4.484 0.042 0.085 Time Effect 0 MΩ 

 
Condition (1, 11) 5.096 0.045 0.085 TEA Mimic Async 

Effect 

3.172 MΩ 

 
Time:Condition (1, 32) 4.781 0.036 0.084 Interaction Effect -0.016 MΩ/20 Min. 

R1 (Intercept) (1, 44) 195.587 0 0 
   

 
Time (1, 44) 0.04 0.842 0.873 Time Effect -0.01 MΩ 

 
Condition (1, 11) 0.052 0.824 0.873 TEA Mimic Async 

Effect 

-0.57 MΩ 

 
Time:Condition (1, 44) 5.681 0.022 0.058 Interaction Effect 0.023 MΩ/20 Min. 

R11 (Intercept) (1, 63) 119.355 0 0 
   

 
Time (1, 63) 0.228 0.635 0.711 Time Effect -0.002 MΩ 

 
Condition (1, 11) 0.001 0.974 0.974 TEA Mimic Async 

Effect 

-0.204 MΩ 

 
Time:Condition (1, 63) 3.972 0.051 0.089 Interaction Effect 0.006 MΩ/20 Min. 

R12 (Intercept) (1, 36) 74.494 0 0 
   

 
Time (1, 36) 1.138 0.293 0.348 Time Effect -0.001 MΩ 

 
Condition (1, 11) 2.458 0.145 0.185 TEA Mimic Async 

Effect 
-0.656 MΩ 

 
Time:Condition (1, 36) 2.76 0.105 0.14 Interaction Effect 0.007 MΩ/20 Min. 

Rc (Intercept) (1, 33) 45.489 0 0 
   

 
Time (1, 33) 3.665 0.064 0.095 Time Effect 0 MΩ  

 
Condition (1, 11) 5.275 0.042 0.085 TEA Mimic Async 

Effect 
3.073 MΩ 
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Time:Condition (1, 33) 3.809 0.06 0.095 Interaction Effect -0.016 MΩ/20 Min. 

Vrest (Intercept) (1, 39) 2077.993 0 0 
   

 
Time (1, 39) 5.626 0.023 0.058 Time Effect 

 
mV 

 
Condition (1, 11) 1.193 0.298 0.348 TEA Mimic Async 

Effect 

 
mV 

 
Time:Condition (1, 39) 3.658 0.063 0.095 Interaction Effect 

 
mV/20 Min. 
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Table 2.2: TEA Mimic Async & Depolarized Async. 

Dependent 
Variable 

Parameter df F Value p-Value FDR Adjusted 
p 

Parameter Effect 
Estimate 

 

CC (Intercept) (1, 72) 414.94 0 0 
   

 
Time (1, 72) 21.195 0 0 Time Effect 0.002 ΔmV/ΔmV 

 
Condition (1, 9) 5.027 0.052 0.103 Depolarized 

Async Effect 

0.115 ΔmV/ΔmV 

 
Time:Condition (1, 72) 0.339 0.562 0.735 Interaction Effect 0 (ΔmV/ΔmV)/20 Min. 

gj-1 (Intercept) (1, 29) 52.432 0 0 
   

 
Time (1, 29) 7.813 0.009 0.023 Time Effect -0.015 MΩ 

 
Condition (1, 9) 2.829 0.127 0.209 Depolarized 

Async Effect 
-2.018 MΩ 

 
Time:Condition (1, 29) 0.002 0.969 0.969 Interaction Effect 0 MΩ/20 Min. 

R1 (Intercept) (1, 40) 248.128 0 0 
   

 
Time (1, 40) 1.772 0.191 0.297 Time Effect 0.013 MΩ 

 
Condition (1, 9) 0.334 0.578 0.735 Depolarized 

Async Effect 

0.226 MΩ 

 
Time:Condition (1, 40) 3.817 0.058 0.108 Interaction Effect -0.016 MΩ/20 Min. 

R11 (Intercept) (1, 55) 156.42 0 0 
   

 
Time (1, 55) 0.034 0.854 0.956 Time Effect 0.004 MΩ 

 
Condition (1, 9) 0.53 0.485 0.679 Depolarized 

Async Effect 
-0.027 MΩ 

 
Time:Condition (1, 55) 4.62 0.036 0.084 Interaction Effect -0.008 MΩ/20 Min. 

R12 (Intercept) (1, 31) 58.399 0 0 
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Time (1, 31) 1.283 0.266 0.392 Time Effect 0.006 MΩ 

 
Condition (1, 9) 0.134 0.723 0.844 Depolarized 

Async Effect 

0.335 MΩ 

 
Time:Condition (1, 31) 4.251 0.048 0.103 Interaction Effect -0.008 MΩ/20 Min. 

Rc (Intercept) (1, 29) 65.184 0 0 
   

 
Time (1, 29) 9.872 0.004 0.011 Time Effect -0.018 MΩ 

 
Condition (1, 9) 3.417 0.098 0.171 Depolarized 

Async Effect 
-1.933 MΩ 

 
Time:Condition (1, 29) 0.008 0.928 0.963 Interaction Effect -0.001 MΩ/20 Min. 

Vrest (Intercept) (1, 39) 1839.577 0 0 
   

 
Time (1, 39) 28.236 0 0 Time Effect -0.085 mV 

 
Condition (1, 9) 0.242 0.634 0.772 Depolarized 

Async Effect 

1.301 mV 

 
Time:Condition (1, 39) 0.011 0.917 0.963 Interaction Effect -0.003 mV/20 Min. 
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Table 2.3: Naturalistic 0°, 22.5°, 45°, & 90°. 

Dependent 
Variable 

Parameter df F Value p-Value FDR 
Adjusted p 

Parameter Effect 
Estimate 

   

CC (Intercept) (1, 154) 240.156 0 0 
     

 
Time (1, 154) 1.329 0.251 0.37 Time Effect 0.001 

  
ΔmV/ΔmV 

 
Condition (3, 19) 0.05 0.985 0.995 Phase Effects (0°, 22.5°, 

45°, 90°) 
0.013 -0.006 0.1 ΔmV/ΔmV 

 
Time:Condition (3, 154) 3.246 0.024 0.053 Interaction Effects 

(Time*Phase) 
0.001 0.001 -0.002 (ΔmV/ΔmV)/20 Min. 

gj-1 (Intercept) (1, 59) 40.007 0 0 
     

 
Time (1, 59) 0 0.995 0.995 Time Effect 0.006 

  
MΩ 

 
Condition (3, 19) 0.044 0.987 0.995 Phase Effects (0°, 22.5°, 

45°, 90°) 
0.186 -0.001 -0.535 MΩ 

 
Time:Condition (3, 59) 1.964 0.129 0.219 Interaction Effects 

(Time*Phase) 
-0.014 -0.017 0.007 MΩ/20 Min. 

R1 (Intercept) (1, 78) 429.125 0 0 
     

 
Time (1, 78) 5.245 0.025 0.053 Time Effect -0.023 

  
MΩ 

 
Condition (3, 19) 0.177 0.91 0.995 Phase Effects (0°, 22.5°, 

45°, 90°) 
0.089 -0.907 -0.022 MΩ 

 
Time:Condition (3, 78) 4.131 0.009 0.025 Interaction Effects 

(Time*Phase) 

0.007 0.035 0.012 MΩ/20 Min. 

R11 (Intercept) (1, 115) 333.2 0 0 
     

 
Time (1, 115) 1.785 0.184 0.286 Time Effect -0.006 

  
MΩ 

 
Condition (3, 19) 1.072 0.384 0.538 Phase Effects (0°, 22.5°, 

45°, 90°) 

0.456 -0.103 0.316 MΩ 

 
Time:Condition (3, 115) 5.067 0.002 0.008 Interaction Effects 

(Time*Phase) 
0.006 0.013 -0.004 MΩ/20 Min. 

R12 (Intercept) (1, 65) 92.862 0 0 
     

 
Time (1, 65) 0.315 0.576 0.734 Time Effect -0.003 

  
MΩ 

 
Condition (3, 19) 0.459 0.714 0.864 Phase Effects (0°, 22.5°, 

45°, 90°) 
0.394 -0.105 0.475 MΩ 

 
Time:Condition (3, 65) 3.298 0.026 0.053 Interaction Effects 

(Time*Phase) 
0.003 0.01 -0.007 MΩ/20 Min. 

Rc (Intercept) (1, 63) 38.52 0 0 
     

 
Time (1, 63) 2.671 0.107 0.2 Time Effect 0.009 

  
MΩ 
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Condition (3, 19) 0.42 0.741 0.864 Phase Effects (0°, 22.5°, 

45°, 90°) 
3.62 0.338 -0.362 MΩ 

 
Time:Condition (3, 63) 3.28 0.027 0.053 Interaction Effects 

(Time*Phase) 
-0.08 -0.022 0.002 MΩ/20 Min. 

Vrest (Intercept) (1, 75) 4874.341 0 0 
     

 
Time (1, 75) 10.182 0.002 0.007 Time Effect -0.03 

  
mV 

 
Condition (3, 19) 0.715 0.555 0.734 Phase Effects (0°, 22.5°, 

45°, 90°) 
-2.735 -2.222 0.993 mV 

 
Time:Condition (3, 75) 1.925 0.133 0.219 Interaction Effects 

(Time*Phase) 
-0.005 -0.001 -0.099 mV/20 Min. 
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Table 2.4: Individualized 0°, 22.5°, 45°, 90°, 180°. 

 

Dependent 

Variable 

Parameter df F Value p-

Value 

FDR 

Adjusted p 

Parameter Effect 

Estimate 

    

CC (Intercept) (1, 154) 258.361 0 0 
      

 
Time (1, 154) 5.878 0.016 0.044 Time Effect -0.002 

   
ΔmV/ΔmV 

 
Condition (4, 18) 0.955 0.455 0.547 Phase Effects 

(0°, 22.5°, 45°, 
90°, 180°) 

-0.222 -0.026 -0.02 -0.022 ΔmV/ΔmV 

 
Time:Condition (4, 154) 1.115 0.352 0.444 Interaction 

Effects 
(Time*Phase) 

0.002 0 0.002 0.002 (ΔmV/ΔmV)/20 

Min. 

R1 (Intercept) (1, 76) 293.879 0 0 
      

 
Time (1, 76) 0.167 0.684 0.746 Time Effect -0.005 

   
MΩ 

 
Condition (4, 18) 2.922 0.05 0.105 Phase Effects 

(0°, 22.5°, 45°, 

90°, 180°) 

-0.904 -1.884 -1.005 0.333 MΩ 

 
Time:Condition (4, 76) 0.377 0.824 0.86 Interaction 

Effects 

(Time*Phase) 

-0.003 -0.004 0.018 0.008 MΩ/20 Min. 

R11 (Intercept) (1, 106) 168.868 0 0 
      

 
Time (1, 106) 3.748 0.056 0.105 Time Effect -0.01 

   
MΩ 

 
Condition (4, 18) 1.29 0.311 0.437 Phase Effects 

(0°, 22.5°, 45°, 
90°, 180°) 

-0.057 -1.253 -0.349 0.397 MΩ 

 
Time:Condition (4, 106) 2.312 0.062 0.107 Interaction 

Effects 
(Time*Phase) 

0.01 0.013 0.011 0.006 MΩ/20 Min. 

R12 (Intercept) (1, 64) 52.908 0 0 
      

 
Time (1, 64) 3.76 0.057 0.105 Time Effect -0.011 

   
MΩ 

 
Condition (4, 18) 0.778 0.554 0.633 Phase Effects 

(0°, 22.5°, 45°, 
90°, 180°) 

-0.635 -0.78 -0.229 0.342 MΩ 

 
Time:Condition (4, 64) 1.214 0.314 0.437 Interaction 

Effects 

(Time*Phase) 

0.01 0.008 0.014 0.009 MΩ/20 Min. 
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Rc (Intercept) (1, 64) 59.744 0 0 
      

 
Time (1, 64) 0.974 0.328 0.437 Time Effect 0.011 

   
MΩ 

 
Condition (4, 18) 2.988 0.047 0.105 Phase Effects 

(0°, 22.5°, 45°, 
90°, 180°) 

4.226 -0.378 1.498 0.596 MΩ 

 
Time:Condition (4, 64) 1.942 0.114 0.183 Interaction 

Effects 
(Time*Phase) 

-0.017 -0.007 -0.017 -0.012 MΩ/20 Min. 

Vrest (Intercept) (1, 72) 4304.873 0 0 
      

 
Time (1, 72) 108.367 0 0 Time Effect -0.116 

   
mV 

 
Condition (4, 18) 5.176 0.006 0.018 Phase Effects 

(0°, 22.5°, 45°, 

90°, 180°) 

-8.821 0.971 3.187 -4.328 mV 

 
Time:Condition (4, 72) 0.291 0.883 0.883 Interaction 

Effects 

(Time*Phase) 

0.006 -0.019 -0.01 0.017 mV/20 Min. 
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Chapter 3  

 

 

Effects of blockade of potassium currents on membrane 

conductance and channel expression at 1 hour and 24 hours in 

motor neurons of the cardiac ganglion 

 

Abstract  

Crustacean cardiac ganglion motor neurons are robust to disrupted activity, 

displaying rapid compensatory changes following hyperexcitability. Stabilization of output 

following pharmacological reduction of high-threshold potassium conductance (IHTK) 

occurs through increase in non-blocked potassium conductances after approximately 1 

hour. Whether these changes persist or are altered at longer time scales is unknown as 

is whether transcriptional changes occur alongside the post translational changes 

documented. We induce a reduction of high-threshold potassium currents for 1 or 24 

hours and measure mRNA abundance of ion channel and innexin transcripts, membrane 

properties and currents, and cell output with a standardized fictive bursting protocol. We 

find evidence of changing mRNA relationships with fast (<= 1 hour) and slower (<= 24h) 

onset. Rapid changes in mRNA abundance are seen for the shal transcript, which 

encodes an A-type potassium channel, and inx2, which encodes an innexin. We find 

changes in membrane properties at 24 hours including an increase in membrane 

resistance, and an increase in the A-type potassium current at 0 mV and slope of 

activation (nA/mV). At 24 hours motor neurons exhibit hyperexcitability, depolarizing to 

higher amplitudes and exhibiting a greater area under the curve of the depolarization. 
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These results suggest hyperexcitability induces rapid expression changes which do not 

attain steady state transcriptional relationships with the same speed. Physiological 

changes continue even following apparent output compensation. Absent changes in 

synaptic conductance or other properties motor neurons fail to maintain output 

excitability 24 hours after the initial blockade.  
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Significance Statement  

To produce motor patterns necessary for survival (e.g., breathing, chewing, 

locomotion) neural networks generate and maintain output despite changing 

physiological and environmental factors. Understanding how these systems achieve 

robustness requires understanding how the constituent neurons respond to deviations 

from normal activity – with either in compensatory or pathological effects. In this system, 

pharmacologically induced hyperexcitability through reduction of a potassium current 

has been shown to result in increased conductance of a non-blocked potassium current 

and reduction of hyperexcitability. Whether hyperexcitability induces solely post-

translational changes or whether transcriptional changes occur, co-incident or on a 

longer time scale, has not been explored. We show evidence indicating altered 

correlations following perturbation and report measures of excitability, membrane 

properties, and transcript abundances. These data suggest hyperexcitability induces 

rapid transcriptional changes in abundance and correlations. Furthermore, we find an 

apparent inability to maintain excitability through cell specific changes after 24 hours of 

perturbation, suggesting a change in network properties may be required.  

Introduction 

The activity of a neuron is dictated by the relative balance of ionic conductances 

and the input which it receives through neuromodulators and chemical or electrical 

synapses. Disruption of this balance through modulation (Lane et al., 2018), blockade 

(Ransdell et al., 2012b), or change in reversal potential (He et al., 2020) can lead to 

hyperexcitability and disrupted output. While some conductance relationships have been 

shown to be activity independent (MacLean et al., 2003, 2005), robust activity dependent 

changes in cell properties have been observed following increased activity (Ransdell et 

al., 2012b; He et al., 2020) or removal of activity (Turrigiano and Marder, 1993; 
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Turrigiano et al., 1995; Thoby-Brisson and Simmers, 1998). Modeling suggests that cell 

activity, sensed by intracellular calcium, could result in homeostatic compensation and 

(O’Leary et al., 2013a) through transcriptional changes leading to correlations 

reminiscent to those seen in nature between transcript abundances (Schulz et al., 

2007b), and ionic conductances (Khorkova and Golowasch, 2007b). This is supported 

by a recent study (Santin and Schulz, 2019a) demonstrating that membrane voltage is 

sufficient to maintain the majority of correlations between channel mRNAs following 

removal of excitatory input. Little is known about the effect of increased activity on the 

maintenance or modification of transcript relationships, the time course thereof, and the 

persistence or impermanence of membrane changes with a prolonged excitatory 

perturbation.  

In the Cancer borealis cardiac ganglion, bath application of tetraethylammonium 

(TEA) to the motor neurons (Large Cells, LCs) blocks the calcium activated potassium 

current, IKCa, the primary component of the high threshold potassium current IHTK. 

Blockade results in hyperexcitability, increased burst duration (Ransdell et al., 2012b), 

total depolarization, burst amplitude, spikes per burst (Lane et al., 2016) and a loss of 

synchrony between motor neurons (Ransdell, 2013a). These effects are ameliorated 

through an increase in the A-type potassium current, IA,(Ransdell et al., 2012b) and 

increased coupling between motor neurons (Lane et al., 2016). Whether homeostatic 

tuning of transcript relationships or abundances occurs following hyperexcitability or if 

post-translational changes are sufficient to mitigate hyperexcitability is not known.  

In this present study we explore the transcriptional and post-transcriptional 

changes associated with hyperexcitability and the time course of these changes. We aim 

to determine first if there are transcriptional changes occurring along with the previously 

documented post-translational changes and second whether compensatory changes are 
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stable and effective on the scale of hours (i.e. 24 hours later). Initially, we establish 

evidence for a change in the relationships mRNAs encoding ion channels and innexins 

following exposure to TEA. We sample cells never exposed to TEA (0 hours TEA), 

exposed to 1 hour of TEA, or following 24 hours of exposure and examined the 

correlations in expression at each time point. We repeated this experiment collecting a 

second set of mRNA abundance measurements and physiological measurements from 

the same cells. This enables us to establish whether rapid physiological changes are 

maintained at 24 hours or if other compensatory changes occur on this longer timescale. 

Using a standardized excitatory post-synaptic potential (EPSP) mimicking current 

injection we assess cellular excitability at each time point to determine whether 

excitability is increased relative to control or maintained, providing evidence of effective 

compensation. 

Materials and Methods  

Animals  

Adult male Jonah crabs (Cancer borealis) were purchased from The Fresh 

Lobster Company (Gloucester, MA) and housed in tanks of 12˚C artificial seawater. Prior 

to use the crabs were anesthetized by thirty minutes of cold exposure. The heart was 

then removed, and the ganglion isolated through microdissection and pinned in a 

Sylgard lined petri dish. The connective sheath around the motor neurons was removed 

with a fine pin to allow for intracellular recordings and ultimately removal of the neuron. 

During and following fine dissection, the preparation was bathed in chilled physiological 

saline (440 mM NaCl, 26 mM MgCl2, 13 mM CaCl2, 11 mM KCl, and 10 mM HEPES at 

a pH of 7.4–7.5). Unless otherwise stated, all chemicals used were purchased from 

Fisher Scientific. 
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The C. borealis cardiac ganglion consists of a pacemaking kernel of four 

interneurons referred to as “small cells” (SCs) which excite five motor neurons termed 

“large cells” (LCs). Two LCs (LCs 1 and 2) reside in the posterior of the network near the 

small cells. This region was surrounded by a petroleum jelly well thereby isolating a the 

SCs and a section of trunk containing projections to and from the anterior large cells 

(LCs 3, 4, 5). We recorded extracellular activity from this location using a differential AC 

amplifier (A-M Systems model 1700) and intracellular recordings from the anterior large 

cells (LC3, 4, and 5) with sharp electrodes filled with 3M KCl (6-15 MΩ). All protocols 

were run, and data collected with Clampex 10.7 (Molecular Devices, San Jose CA) using 

Axoclamp-2A intracellular amplifiers (Axon Instruments), a Brownlee precision amplifier 

(Model 410) (which preamplified the current injecting channels) and a Digidata 1440A 

digitizer (Molecular Devices).  

 In the experimental groups we exposed LCs to tetraethylammonium (TEA) at a 

concentration of 25 mM for 1 or 24 hours, reducing the transient portion of the high 

threshold potassium current (IHTK) by ~92% (Ransdell et al., 2013a). The petroleum jelly 

well surrounding the posterior of the network served to prevent exposure of the SCs to 

TEA. To the well for leaks and to hedge against slow leaks several drops of control 

saline were added to the well. In the 1-hour condition we kept the preparation ~12°C on 

the electrophysiology rig. For the 24-hour condition the preparation dish was covered 

with a petri dish lid or film to prevent evaporation and placed in an incubator set to 12°C.  

Electrophysiology 

Membrane Resistance and Ionic Conductances 

We suspended network activity by displacing the physiological saline in the 

interneuron containing well with isotonic sucrose (750 mM) as described previously 
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(Lane et al., 2016). In the silenced network we measured input resistance (Rin =  
ΔV1

I1
 ) 

using negative current pulses. When possible, we recorded from strongly electrically 

coupled LCs simultaneously so that we would be able to calculate transfer resistance 

(Rtransfer =  
ΔV2

I1
 ) which enables us to calculate membrane resistance (Rmem =

 
Rin1∙Rin2 − R12

2

Rin2 − R12
) (Bennett, 1966b). Here and subscript 1 and 2 refer to the pre- and post – 

synaptic LCs with respect to the electrical synapse. We injected 0 nA (250 ms), -6 nA 

(1500 ms), and 0 nA (2999 ms) into one cell and 0 nA (2999 ms), -6 nA (1500 ms), and 

0 nA (250 ms) into the other five times. Next, we voltage clamped high threshold and A-

type potassium currents. High threshold potassium (IHTK) we measure with 5mV steps 

from -55mV to +20mV from a holding potential of -40mV. A-type potassium we measure 

by using an identical protocol, save the holding potential is -80mV, and subtracting IHTK 

from the resultant trace. These protocols are based on previously published methods 

(Ransdell et al., 2012b). We leak subtracted IHTK based on a linear fit of the voltage steps 

between -39 mV and -81 mV. We obtained linear fits for the approximately linear region 

of the activations of IHTK and IA between -35 mV and +5 mV for both the inactivating 

transient peak and non-inactivating current. We consider both resultant slope and 

intercept in our analysis. 

Current clamp stimulus protocol 

When exposed to TEA, current injections can produce plateau like 

depolarizations (Ransdell et al., 2012b). When excitatory post-synaptic potential (EPSP) 

mimicking protocol was used responses similar to those within an active TEA exposed 

network were observed (Ransdell et al., 2013a). We apply the same EPSP mimicking 

protocol at each cell’s resting membrane potential. This enables systematic comparison 
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of the excitability of the cell. The protocol contains four sweeps of four fictive bursts over 

19.687 seconds (78.748 seconds total per file).  

From these recordings extract measures previously used to quantify LC 

excitability: the maximum amplitude, total depolarization (i.e. the area under the curve 

(AUC) relative to resting membrane potential) (Lane et al., 2016), and the correlation 

coefficient (Ransdell et al., 2013a). In previous studies correlation coefficient has been 

calculated between LC pairs (Ransdell et al., 2013a; Lane et al., 2016). This captures 

hyperexcitability only in so far as TEA induced hyperexcitability leads to 

desynchronization through unmasked current variability (Ransdell et al., 2013a). For the 

present study we calculate correlation coefficient not relative to another LC’s voltage but 

to a predicted voltage response. We predicted each cell’s voltage response based on its 

membrane resistance and a tau of 25 ms with a simple model written for Brian 2 

(Stimberg et al., 2019). This enables subtraction of the approximate effect of membrane 

resistance although it does not allow us to account for differential activation of currents 

as a result of an elevated voltage response. We consider correlation between the 

observed response and predicted response, maximum amplitude, AUC maximum 

amplitude less the predicted amplitude, and the AUC less the predicted AUC. For the 

purposes of calculating AUC, resting voltage is defined as the average of the lowest 

20% of voltage samples. To account for the variability across sweeps, for each measure 

we calculate the inner quartile range and the median for each cell, running statistics on 

both. 

Molecular Biology 

Collection of Large Cells 
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Following collection of physiological data, the LCs were enclosed in a petroleum 

jelly well filled with ~2.5 mg/ml protease (Sigma – P6911, St. Louis, MO, USA) in saline. 

After digestion of the connective tissue the protease was washed out with copious 

chilled saline. Next, over the course of ~15 minutes 70% ethylene glycol in crab saline 

was added dropwise until the saline was fully replaced. If needed, the preparation was 

placed in a freezer set to - 20°C until cold. LCs were then hand dissected using fine 

forceps, which were cleaned prior to each cell’s collection. Each LC was placed in a 

collection tube containing 400 μl of lysis buffer (Zymo Research, Irvine, CA, USA) and 

stored at -80°C.  

Pre-amplification 

In the replication, but not the pilot experiment, we used the following process to 

pre-amplify our cDNA targets. Using the Quick-RNA MicroPrep kit (Zymo Research, 

Irvine, CA, USA) we isolated each cell’s total RNA and reverse transcribed the total RNA 

using oligo-dT and random hexamer primers (qScript cDNA Supermix; QuantaBio, 

Beverly, MA, USA). Half of the resultant cDNA was pre-amplified with PerfeCTa PreAmp 

Supermix (QuantaBio, Beverly, MA, USA) by following the manufacture’s protocol for a 

20 μL reaction volume. We used a 14-cycle PCR reaction with target-specific primers. 

Following pre-amplification, we diluted the cDNA samples 7.5x with nuclease-free water 

arriving at a final volume of 150 μL. 

Multiplex Primers 

In this study we consider the abundance of ion channel and innexin mRNAs. 

Specifically, we measure voltage gated Na+ channel (nav), L-type Ca2+ channel (cav1), 

P/Q-type Ca2+ channel (cav2), large conductance Ca2+ activated K+ channel (bkkca), 
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A-type K+ channel (shaker, shal), delayed-rectifying K+ channel (shab), delayed-

rectifying K+ channel (shaw1, shaw2), and robustly expressed innexins (inx1, inx2, inx3). 

We used LGC Biosearch Technologies (Teddington, UK) qPCR Assay Design 

Software, RealTimeDesign™, to design our assays based on previously determined 

open reading frames (Schulz et al., 2007b) or the C. borealis nervous system 

transcriptome (Northcutt et al., 2016a). Table 3.S1 records the specific primers, probe 

sequences, and fluorophores used.  

Quantitative Polymerase Chain Reaction 

2.5 μL of pre-amplified cDNA was used for each 10 μL qPCR reactions using 

PerfeCTa Multiplex qPCR ToughMix as indicated by the manufacturer’s instructions (5X, 

QuantaBio, Beverly, MA, USA). Multiplex reactions (Table 3.S1) were run on 96-well 

plates in triplicate using a CFX96 Touch™ Real-Time PCR Detection System from Bio-

Rad (Hercules, CA, USA). qPCR protocol was as follows: 3 minutes at 95°C followed by 

40 cycles 15 seconds at 95°C followed by 1 minute at 58°C, fluorescence being 

measured at the end of each cycle. Quantitation cycle (Cq) was converted to an 

absolute copy number for each gene by interpolating based on a standard curve 

generated from known copy numbers (106-101 copies). We corrected for the sample 

quantity and pre-amplification as well. 

Experimental Design and Statistical Analysis 

Experimental Design 

We designed a pilot study to assess whether TEA induced plasticity occurs solely 

post transcriptionally or if mRNA expression is changed as well. We collected LCs 

without exposure to TEA (n = 15), after 1 hour exposure (n = 15), and after 24 hours of 

exposure (n = 13). Due to concern of batch effects, we do not examine the mean 
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differences between groups and have examined only the correlations between 11 

transcripts of interest and find support for a strengthening of correlations at 24 hours. 

 We sought to build off this pilot by measuring membrane currents and cell 

excitability prior to cell collection. We used the same time points (0 hours n = 21, 1 hour 

n = 17, 24 hours n = 22) allowing for comparison of the correlations across these 

replicates. We processed these data minimizing the potential for batch effects and allow 

for comparison of mean changes across these groups. With the physiological collected 

from each cell we are able to examine co-incident changes with incubation in TEA. None 

of these experiments were preregistered. Sample size was based on sample size used 

in similar studies rather than a power calculation.  

Data preprocessing 

Physiological measurements (excluding those for excitability) were obtained 

using Clampfit 10.7 and aggregated using Excel before processing in R (Wickham and 

Bryan, 2019). Metrics for excitability were calculated programmatically with custom 

written functions in R. This process was aided immensely by the readABF library 

(Syekirin, 2020). Before statistical modeling outliers were removed. Observations were 

classified as outliers if they fell outside 1.5 times the inner quartile range above or below 

the median and were systematically excluded.   

Statistical Analysis 

All statistics were run using R. Correlation coefficients shown are Pearson’s 

correlation coefficients (R). When visualized as a correlogram the diameter of the point 

representing each correlation is equal to the absolute value of the correlation. The set of 

pairwise correlations for each time point were compared as cumulative probability 

distributions using the Kolmogorov-Smirnov test. In evaluating the consistency of 
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correlations between trials we used a fixed cutoff of R >= 0.7 to define a “strong” positive 

correlation. A tally of the number of strong correlations seen at a given time point in both, 

one, or neither trial is shown in Table 3.1. The R values themselves are reported in 

Table 3.2, with those above 0.7 highlighted. Within the replicate trial, we tested for a 

change in the slope of the linear relationship between conditions using an ANCOVA. The 

adjusted p values, corrected using a false discovery rate, for the interaction term are 

reported in Table 3.3. We also report the correlation coefficients and adjusted p values 

for the same in Table 3.3, with those conditions and time points with a significant 

correlation highlighted. We tested for univariate effects using a one-way ANOVA. We 

calculated both asymptotic p-values and empirical p-values resampling 1000 times. The 

resultant p values are often very similar but the latter method is more robust to 

deviations from the assumed distribution. To limit the family wise error rate, we corrected 

the empirical p values using a false discovery rate. The corrected values are denoted as 

“padj”. We consider an effect as “significant” if padj is less than 0.05. We use Tukey’s 

Honest Significant Difference to compare groups where there was a significant main 

effect.  The code written for these analyses and the data used are available upon 

request. Please write to the corresponding author.  

Results 

TEA induced hyperexcitability results in changes to transcriptional 

relationships 

 Tetraethylammonium (TEA) has been shown to induce hyperexcitability in LCs 

(Ransdell et al., 2012b) and decrease both waveform similarity (Ransdell et al., 2013a) 

and synchrony (Lane et al., 2016) between cells. Following approximately 60 minutes of 

exposure to TEA, LCs have been shown to exhibit homeostatic plasticity; reducing 

hyperexcitability coincident with an increase in IA (Ransdell et al., 2012b) and coupling 
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conductance which reduces the loss of synchrony (Lane et al., 2016). The compensatory 

changes explored to date have focused solely on post-transcriptional changes. Here, we 

examine a longer time point and measure the abundance of ion channel and innexin 

mRNAs to establish whether additional compensatory changes occur, whether 

compensation is stable after 24 hours, and if the abundances or relationships of 

transcripts are altered as well.  

We exposed anterior LCs to TEA for 0 (i.e., unexposed), 1, or 24 hours and 

measured transcripts all of which encode ion channels or gap junction proteins. Due to 

evidence of batch effects, we restrict our analysis to correlations between transcripts 

rather than mean expression changes for these data (denoted as “Pilot”). We find an 

increase in the number of strong positive correlations at 1 hour relative to 0 hours and 

considerably more at 24 hours relative to 0 hours (Figure 3.1 A, top row). The three 

innexin transcripts (inx1, inx2, inx3) exhibit strong positive correlations at all time points. 

Increased positive correlations appear to not be constrained to transcripts of channels 

selective to a given ion species, or those associated with hyperpolarization or 

depolarization. While we do observe more positive correlations between some 

directionally aligned currents (see nav vs cav2, cav1 vs cav2, and shal vs bkkca), 

transcripts of antagonistic currents increase as well (see shal vs cav2). This is 

inconsistent with our initial expectations – that transcripts of hyperpolarizing currents 

would become more positively correlated with each other and more weakly correlated 

with transcripts of depolarizing currents.  

With clear evidence of change over time but inability to establish changes in 

transcript abundance we repeated this experiment (denoted as “Replicate”), also 

collecting excitability measurements, active properties, and passive properties from each 

cell. Unlike in the pilot data, we find few negative correlations and no strong negative 
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correlations at any of the time points (Figure 3.1 A, bottom row). While there still appear 

to be more strong positive correlations at 1 and 24 hours than at 0 hours, changes 

appear do not fully agree pilot data.  

Examining the empirical cumulative distribution functions (ECDFs) for the sets of 

correlations (Figure 3.1 B) we find no significant difference in either trial between the 

distributions of correlations at 0 and 1 hour (Pilot 0h vs 1h KS test p = 0.438, Replicate 

0h vs 1h KS test p = 0.438). Between 0 hours vs 24 hours there is a significant right shift 

relative to 0 (Pilot 0h vs 24h KS test p < 0.001) that is not seen in the replicate (Replicate 

0h vs 24h KS test p = 0.226). Despite this the distribution of correlations above 

approximately 0.5 shows little divergence in either trial. Contrasting 1 and 24 hours, both 

datasets suggest these distributions are inequivalent (Pilot 1h vs 24h KS test p = 0.001, 

Replicate 1h vs 24h KS test p = 0.025) but in replicate 1 the 24-hour group is more 

positive whereas the 1-hour group is more positive in replicate 2. In both replicates the 

differences between ECDFs are minor for strong positive correlations (R>=0.7). 

 To examine the change of individual correlations rather than the distribution of 

correlations we calculated Pearson’s correlation coefficient and ordinary least squares 

regression on the set of correlations over each pair of time points (Figure 3.1 C). We find 

that the correlation of correlations is higher and the slope of the line of best fit is closer to 

one in the replicate than in the pilot. Thus, correlations in the replicate are more 

consistent from one time point to another than in the pilot.  

The pilot data shows far greater dispersion than the replicate. However, there 

appear to be clusters of strong positively correlated transcripts which appear to be stable 

across time in both the pilot and replicate. We compared the correlations at each time 

point to determine how many were “strong” positive (R >= 0.7) correlations in both 

groups.  
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Of the 66 correlations considered, at 0 hours 6 were strongly positive in both 

trials, 13 in only one of the two. At 1 hour 5 strongly positive correlations were found in 

both, 16 in only one. At 24 hours these increased to 8 in both, 21 in only one (Table 3.1). 

Examining the specific identities of these correlation (Table 3.2) we find many 

correlations with general agreement across trials (e.g., cav1 vs shab, cav1 vs shaker, 

shab vs shaw1, inx1 vs inx2, inx1 vs inx3, inx2 vs inx3, shaker vs shab), some elevated 

predominantly in one trial (e.g., cav1 vs shaw, cav2 vs shab, shaker vs shaw1), and 

several over thresholds at a single time point and trial (e.g., nav vs cav1, nav vs shab, 

shaker vs shal).  

In the replicate dataset we examined the slopes of relationships between 

transcript abundances and correlations across time points. We used an ANCOVA to 

examine the former, Pearson’s R for the latter. Due to the non-overlap in some 

correlations between the pilot and replicate we adjust p values for the ANCOVA 

interaction term and correlations as described in the methods. After correction we find no 

significant change in slopes for any of the pairs tested. We find 14 correlations 

significant for each time point sampled (nav vs bkkca, nav vs shal, cav1 vs cav2, cav1 vs 

shaker, cav1 vs shab, cav1 vs shaw1, cav1 vs shaw2, cav2 vs shaker, cav2 vs shab, 

shaker vs shab, shaker vs shaw1, inx1 vs inx2, inx1 vs inx3, inx2 vs inx3), 5 correlations 

significant after one hour (cav2 vs shaw1, shaker vs shaw2, shab vs shaw1, shab vs 

shaw2, shaw1 vs shaw2), 4 correlations significant only in control (bkkca vs shal, bkkca 

vs inx1, bkkca vs inx2, bkkca vs inx3), 6 correlations significant only at one hour (cav1 

vs inx2, cav2 vs bkkca, cav2 vs inx2, shaker vs inx2, shal vs shaw1, shaw1 vs inx2) and 

2 correlations significant only at 24 hours (cav1 vs inx3, cav2 vs shaw2). 35 correlations 

were not significant at any time point. 

Transcript abundances reveal limited changes following TEA exposure. 
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 To examine whether transcript abundance was altered, we performed an ANOVA 

for each transcript both as an asymptotic test and though resampling with 1000 rounds 

of shuffling to produce and empirical p-value. The latter approach is more robust but 

often produces a p value effectively the same as that of the asymptotic test. We then 

applied Tukey’s HSD as a post hoc and correct for multiple comparisons using a false 

discovery rate. We find no significant effect for voltage activated sodium (Figure 3.2 A) 

or calcium (Figure 3.2 B & C) channel transcripts. Likewise, we find no significant 

change in bkkca (Figure 3.2 D) which encodes a calcium activated potassium channel. 

Within IA encoding shaker and shal we find no significant change in shaker expression 

(Figure 3.2 E) but do find a significant main effect for shal (ep adjusted = 0.019), with 1 

hour being significantly elevated relative to 0 and 24 hours (Figure 3.2 F). For the 

transcripts we measured associated with Ikd we do find a significant main effect for shab 

(ep adjusted = 0.046) (Figure 3.2 G), but none in the HSD, and no significant main 

effects for shaw1 or shaw2 (Figure 3.2 H & I). Within the innexins we find a significant 

effect on inx2 (ep adjusted = 0.007), being significantly increased at 1 and 24 hours 

relative to 0 hours (Figure 3.2 K) and no significant effects for inx1 or inx3 (Figure 3.2 J 

& L). The statistics presented here are summarized in Table 3.4.  

Large cells do not maintain constant membrane properties over 24-hours 

of exposure. 

 Given that ionic conductance can be modulated by channel insertion or removal 

from the membrane or by phosphorylation of channels within the membrane, we sought 

to establish whether changes in post-translation changes were occurring at 24 hours 

relative to the previous time points. Given the few mean expression changes seen in our 

data we considered the possibility that changes at 1 hour might sufficiently attenuate the 

perturbed activity. Based on this, we predicted that membrane resistance (Rmem), the 
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parameters describing IA, and the metrics for excitability detailed above would form two 

post hoc groups separating control from 1 and 24 hours. The parameters describing IHTK 

would be expected to show the reverse – It would decrease following TEA application 

and remain depressed for the duration of the experiment.  

 We report a change in the input resistance (ep adjusted < 0.001) significantly 

increasing at 24 hours relative to 0 (Figure 3.3 A). Membrane resistance (ep adjusted = 

0.037) increases as well, with 24 hours being significantly higher than 0 or 1 hour (Figure 

3.3 B). The slope and intercept of the approximately linear region of the IHTK decreases 

and remains so for the transient (ep adjusted < 0.001) (Figure 3.3 C & D) and sustained 

portion of the current (ep adjusted < 0.001), consistent with effective blockade thought 

TEA. In measures of IA, we find a significant increase in the intercept (ep adjusted = 

0.003) and slope (ep adjusted = 0.003) of the transient region (Figure 3.3 E & F) of IA but 

this increase occurs by 24 hours instead of by 1 hour. The sustained region of IA where 

the intercept decreases by 1 hour and recovers by 24 hours (ep adjusted < 0.001). The 

slope of activation of the sustained portion changes significantly as well (ep adjusted < 

0.001). It decreases at 1 hour and regresses at 24 but remains statistically 

distinguishable from 0 and 1 hour at the terminal time point. The last membrane property 

we examined was resting potential. We find a significant effect of the treatment on Vrest 

(ep adjusted = 0.011) however neither 1 hour nor 24 hours are statistically 

distinguishable from control (Figure 3.3 G). In summary, we find a significant increase in 

the intercept and slope of IA but later than would be expected base on previous work. We 

also report an increase in membrane resistance, likewise, manifesting at 24 hours. The 

statistics presented here are summarized in Table 3.4.  

Large cells fail to maintain constant excitability across 24 hours.  
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Given the increase in IA by 24 hours but not 1 hour, and the upregulation of inx2 

we predicted the excitability measures would indicate a failure to maintain control 

excitability at one hour and a regression to control excitability at 24 hours. As the 

membrane resistance increased by 24 hours, and the EPSP mimetic protocol’s current is 

not scaled relative to membrane resistance we hypothesized these differences would 

increase, or only be detected, following simulation-based correction for membrane 

resistance.  

This does not appear to be the case. We find that he correlation of the voltage 

response and predicted (i.e. simulated) response is significantly altered (ep = 0.027) 

being significantly reduced at 1 hour relative to control (Figure 3.4 A). The variability in 

correlation for a given cell increases and is significantly different at the same time point 

(Figure 3.4 B). The baseline voltage during these protocols is not significantly changed 

over time (Figure 3.4 C). The variability of a given cell’s baseline decreases significantly 

at 1 and 24 hours relative to control (Figure 3.4 D). We find that the peak amplitude 

reached by a cell is significantly altered (ep adjusted < 0.001) being higher following 24 

hours than at control or 1 hour (Figure 3.4 E). The variability in amplitude decreases with 

the same time course (Figure 3.4 F). In addition to reaching a significantly higher 

amplitude, we find the area under the curve (AUC) is significantly (ep adjusted < 0.001) 

elevated at 24 hours relative to control and 1 hour (Figure 3.4 G). The variability of a 

cell’s AUC increases as well with 24 hours being significantly different from control 

(Figure 3.4 H).  

The differential amplitude (i.e. following subtraction of the predicted response) 

follows the same pattern as the measured amplitude being significantly different (ep 

adjusted = 0.005) across conditions with the 24 hour group being elevated relative to the 

rest (Figure 3.4 I). The variability of the differential amplitude is not significantly different 
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across conditions (Figure 3.4 J). We find no significant differences in differential AUC 

(Figure 3.4 K) nor in the variability thereof (Figure 3.4 L). Simulated amplitude (Figure 

3.4 M) and simulated AUC (Figure 3.4 N) were not significantly different across 

conditions. The statistics presented here are summarized in Table 3.4. 

Discussion 

This study aims to establish whether transcriptional changes occur in response to 

induced hyperexcitability or whether the homeostatic response is constrained to 

previously identified post-translational changes (Ransdell et al., 2012b; Lane et al., 

2016). The second goal of this study was to examine the time scale of LCs’ plasticity 

determining both if cells successfully maintained excitability and whether rapid (~1 hour) 

changes persist or are altered by changes operating on a longer time scale.  

Activity Induced Rapid Transcriptional Plasticity 

In both the pilot and replication, we find evidence of changing correlation 

relationships after 1 hour and 24 hours of exposure to TEA (Figure 3.1 A). This is 

accompanied by a right shift in the cumulative distribution of the correlations at 1 hour 

relative to control. We do not observe the same shifts in distribution across experiments 

for Control relative to 24 hours or 1 hour relative to 24 and among the stronger positive 

correlations there is less distance between the two distributions (Figure 3.1 B). 

Furthermore, we find that the correlations in the replication are more consistent across 

time points -- the correlation of correlations is higher and the regression slope closer to 1 

(Figure 3.1 C). We find many correlations are high (R > 0.7) in both groups for a given 

time point (Table 3.1). Examining individual correlations, we find many that are high at 

specific time points in both trials (e.g. shaker vs shab, inx1 vs inx2) suggesting some 

repeatability in these relationships but also find strong correlations only at select time 
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points in the pilot (e.g. shal vs inx1) or replicate (shaker vs shaw1) (Table 3.2). As the 

aim of the replicate data set was to avoid the confounding effects in the pilot, we focus 

our analysis on the changes within the correlations of the replicate, using an adjusted p 

value rather than a correlation cut off to establish relevance.  

Of the correlations between channel transcripts only bkkca vs shal is present in 

control and then lost subsequently. Correlations between transcripts associated with IKd 

(shab, shaw1, shaw2) strengthen and become significant after 1 hour. This also occurs 

for one of the calcium channels measured, cav2 and shaw1. In addition to persisting 

changes, we observe transient correlations significant at only 1 hour between a shal and 

shaw1 and cav2 and bkkca. These changes are suggestive of short and long term 

compensatory changes in transcriptional relationships.  

We documented several significant correlations between innexin and channel 

transcripts. Little is known about the potential coregulation of these features. Perhaps 

the most tantalizing interaction suggested is between ICa, IHTK, and coupling 

conductance. Intracellular calcium has been shown to be necessary for the homeostatic 

increase of IHTK (Ransdell et al., 2012b) and has also been implicated in regulation of 

coupling strength (Kick and Schulz 2021). Support for coregulation of IHTK and coupling 

has been shown (Ransdell, 2013a), but this has not been confirmed. We find a 

significant positive correlation between cav2 vs inx2 and cav2 vs bkkca at 1 hour 

incubation. This finding makes the cardiac ganglion a promising system to substantiate 

or disconfirm coregulation of coupling and ionic conductances either through 

transcriptional or post-translational effects.  

 Beyond bivariate relationship change we found that two genes (shal, inx2) which 

exhibited significant differences in abundance between control and 1 hour. At 24 hours, 

shal expression regresses to be indistinguishable from control whereas inx2 remains 
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elevated for the duration of the experiment. We note that shal encodes an A-type 

potassium channel and measured IA’s intercept and slope to increase at 24 hours of 

exposure. Additional study will be required to determine whether the decrease in 

abundance at 24 hours is due to negative feedback from increased protein abundance, a 

change in activity, or some other cause.  

Differential Excitability and Membrane Properties After 24 Hours 

 Beyond changes in ion channel transcript abundances and abundance 

relationships we find changes in the membrane properties and excitability of the cells at 

1 and 24 hours. Unlike in previous studies which have reported data from repeated 

measurements between 0 and 1 hour (Ransdell et al., 2012b; Lane et al., 2016) we find 

no significant increase in the IA transient at 1 hour. At 24 hours we observe an increase 

in the slope and intercept of the transient (Figure 3.3 E & F). We also observed an 

increase in the intercept of the sustained portion of IA at 24 hours, but a reduction at 1 

hour. We find a significant increase in membrane and input resistance between control 

and 24 hours, being indistinguishable from control (Rin) or indistinguishable from either 

group (Rmem) (Figure 3.3 A & B). These findings are suggestive of activity induced 

plasticity in response to hyperexcitability which requires longer timescales to observe 

than were used in previous studies.  

 To systematically assay the excitability of LCs we stimulated each cell with an 

EPSP mimicking protocol, simulated the expected response for a passive membrane, 

and calculated excitability metrics from the resulting traces. Consistent with our 

expectations of homeostatic compensation mitigating hyperexcitability, we find no 

significant difference in the maximum amplitude nor AUC observed between 0 and 1 

hour. However, we find that at 24 hours there is a significantly higher Amplitude and 

AUC than at 0 or 1 hour (Figure 3.4 E & G). Over this period, we find that the correlation 
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between the observed and expected voltage response is significantly lower at 1 hour 

than at control and increases to a level not significantly different from either group at 24 

hours (Figure 3.4 A). These findings are consistent with the previously noted increase in 

membrane resistance at 24 hours as a single EPSP protocol was applied; it was not 

scaled inversely proportionate to membrane resistance. Accounting for the change in 

resistance we find no significant effect on AUC, although the amplitude remains 

significantly higher (Figure 3.4 K & I). 

 We find the inner quartile range of the correlation calculated across the sweeps 

for a given sample is significantly lower at 1 hour than control and regresses to an 

intermediate value at 24 hours (Figure 3.4 B). This indicates that not only does the non-

linearity of a cell’s response increase at 1 hour, but the consistency of that response 

decreases at the same time. Over the same time course, the inner quartile range of the 

maximum amplitude observed decreased. Together these metrics suggest that at 24 

hours cells reach higher, less variable amplitudes presumably due to increased 

activation of outward currents at these voltages. They depolarize more as well but this 

appears to be a result of increased membrane resistance rather than insufficient IA 

magnitude per se.  

The present study does not examine all aspects of the ganglion. We focused on 

cell specific properties and therefore cannot comment on changes between cells (e.g. 

coupling, EPSP properties, stimulation frequency) are altered. This is a promising 

direction for future study. Based on present data we conclude there is a failure to 

maintain homeostatic plasticity over a prolonged challenge. Measurements of the 

synaptic current or spiking statistics could invalidate this conclusion, suggesting instead 

that multiple compensatory regimes, relying on changes in stimulation or spike initiation 

properties.  
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Conclusion 

 In this study we aimed to establish whether potassium channel blockade induces 

transcriptional changes or if compensation is mediated purely post translationally and if 

compensatory changes are stable for 24 hours. We find evidence of rapid (<= 1 hour) 

changes in transcript abundance and transcript correlations. The abundance changes 

and some of the correlational changes regress at 24 hours becoming indistinguishable 

from baseline. We also report changes in IA and membrane resistance which do not 

manifest at 1 hour, suggesting that despite a non-significant difference in excitability 

metrics, apart from correlation relative to expected output, the cell has not reached 

steady state at this time. Finally, we find an increase in excitability at 24 hours. This is 

suggestive that these networks may be unable to compensate to a perturbation of this 

severity over longer timescales or that cell specific changes are insufficient to maintain 

excitability over this duration, suggesting that changes in synaptic or network properties 

may be needed to restore baseline activity over the long run.  
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Figure Legends, Tables, Extended Data, and Multimedia 

Figure 3.1 Increased Activity Alters and Strengthens Correlations 
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A. Pearson correlation coefficients during incubation TEA for 0 hours (control), 1 hour, 

or 24 hours. Certain strong positive correlations (e.g. inx1 vs inx2) are visible across 

time points and replications. Apparent strengthening of select correlations over time, 

but without uniformity between trials.  

B. Changes in R shown by plotting a given comparison as the correlation at a later time 

as a function of its correlation at an earlier time. Correlation of correlations and OLS 

regression formula are shown. Replicate trial shows higher correlations or 

correlations and slopes closer to unity suggesting less change in correlation strength 

across time points. 

C. The distribution of correlation coefficients becomes significantly more positive after a 

24-hour incubation in TEA relative to control (0 hours) and 1 hour incubation in the 

pilot while the distribution at 1 hour is significantly more positive than 24 hours in the 

replicate (Kolmogorov–Smirnov test). In both trials the ECDFs converge at higher 

(R>=0.7) correlation. 
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Figure 3.2 Limited, Rapid changes in channel and gap junction mRNA 

abundances 

 

Expression of the voltage activated sodium channel (A.), voltage activated calcium 

channels (B & C.), large conductance calcium activated potassium channel (D.), and 

delayed rectifier potassium channels (G, H, & I.) are not significantly changed thought 

the treatment. Mean A-type potassium channel encoding shal (F) is elevated at 1 hour 

but shaker (E) is not significantly affected. Within the gap junction encoding transcripts, 

inx2 (K) is increased at 1 hour and remains elevated, but inx1 (J) and inx3 (L) are 

unaffected.  

  

0

10000

20000

0h 1h 24h

nav 

0

2000

4000

6000

0h 1h 24h

cav  

0

1000

2000

3000

4000

5000

0h 1h 24h

cav  

0

2500

5000

0h 1h 24h

   ca 

0

1000

2000

3000

4000

0h 1h 24h

s a er 

0.027

0.02

400 

200 

0

200

400

0h 1h 24h

s al 

0

1000

2000

3000

0h 1h 24h

s a  

0

1000

2000

3000

4000

0h 1h 24h

s a   

0

1000

2000

3000

0h 1h 24h

s a   

0

10000

20000

30000

40000

0h 1h 24h

 n   

0.002

0.047

0

10000

20000

30000

0h 1h 24h

 n   

0

10000

20000

30000

0h 1h 24h

 n   



 

78 
 

 

Figure 3.3 Excitability Metrics Are Inconsistent with Homeostasis at 24. 

A. Correlation between simulated and observed membrane response does not recover 

to its baseline level. B. The variation in correlation for a given observation increases 

coincident with the decrease in correlation IQR. C & D. Median baseline voltage is 

unaffected but the variation in baseline voltage decreases. E & F. Observed amplitude 

durign stimulation rises at 24 hours, coincidnent with a decrease in the IQR of the 

amplitude. G & H. AUC increases at 24 hours with AUC IQR increaseing at 24 hours 
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relative to 0 hours. I & J. The difference between obseved and simulated amplitude 

increases at 24 hours without a change in IQR. K & L. The difference between obsrved 

and simulated AUC and the IQR thereof do not change significantly. M & N. The 

simulated amplitude and simulated AUC do not change significantly.  
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Figure 3.4 Plasticity in Membrane Properties at 24 Hours 

 

 

 

A.  Input resistance is significantly higher a t 24 hours relative to 0 hours. B. Membrane 

resistance increases significantly at 1 and 24 hours. C & D. IHTK slope of activation and 

intercept are reduced through the full duration of the experiment. E & F. IA slope of 

activation and intercept increase significantly different at 24 hours relative to previous 

time points. G. Resting membrane potential is not significantly affected over the 

experimental time course.  
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Table 3.1: Comparison of the Number Strong Correlations Across 

Replicates 

R >= 0.7 0h 1h 24h 

Both 6 5 8 

Pilot 4 6 12 

Replicate 9 10 9 

Neither 47 45 37 
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Table 3.2: . Subset of Strong Correlations Observed Across Replications. 

  Pilot 0h Replicate 0h Pilot 1h Replicate 1h Pilot 24h Replicate 24h 

bkkca inx1 0.435 0.626 0.181 0.395 0.748 0.096 

bkkca inx2 0.159 0.736 0.228 0.406 0.796 0.090 

bkkca inx3 -0.174 0.665 0.374 0.373 0.764 0.252 

bkkca shab 0.566 0.272 0.120 0.390 0.274 0.283 

bkkca shaker 0.612 0.066 0.558 0.591 0.361 0.297 

bkkca shal 0.786 0.762 0.757 0.513 0.803 0.430 

bkkca shaw1 0.802 -0.092 -0.612 0.181 -0.430 0.152 

bkkca shaw2 -0.057 -0.335 -0.092 0.079 -0.127 0.112 

cav1 bkkca 0.441 0.010 0.578 0.398 0.572 0.171 

cav1 cav2 -0.014 0.750 0.569 0.802 0.568 0.647 

cav1 inx1 0.269 0.308 0.669 0.438 0.408 0.398 

cav1 inx2 0.221 0.356 0.487 0.667 0.515 0.443 

cav1 inx3 -0.412 0.381 0.545 0.102 0.315 0.730 

cav1 shab 0.110 0.806 0.382 0.893 0.780 0.736 

cav1 shaker 0.404 0.915 0.781 0.859 0.793 0.793 

cav1 shal 0.235 -0.114 0.540 0.051 0.622 -0.209 

cav1 shaw1 0.922 0.839 0.443 0.886 0.416 0.874 

cav1 shaw2 0.367 0.572 -0.527 0.811 0.316 0.855 

cav2 bkkca 0.476 0.281 0.706 0.634 0.747 0.282 

cav2 inx1 0.398 0.207 0.060 0.500 0.537 -0.057 

cav2 inx2 -0.124 0.438 0.076 0.767 0.601 0.336 

cav2 inx3 0.296 0.319 0.258 0.216 0.593 0.263 

cav2 shab 0.039 0.729 0.461 0.847 0.529 0.830 

cav2 shaker 0.245 0.790 0.820 0.923 0.543 0.962 

cav2 shal 0.364 0.427 0.921 0.345 0.515 -0.132 

cav2 shaw1 0.194 0.574 -0.183 0.655 0.523 0.871 

cav2 shaw2 0.318 0.277 0.083 0.371 0.164 0.860 

inx1 inx2 0.907 0.964 0.926 0.864 0.925 0.871 
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  Pilot 0h Replicate 0h Pilot 1h Replicate 1h Pilot 24h Replicate 24h 

inx1 inx3 0.873 0.809 0.941 0.905 0.968 0.693 

inx2 inx3 0.754 0.893 0.941 0.630 0.912 0.721 

nav bkkca 0.235 0.793 0.660 0.659 0.694 0.651 

nav cav1 0.330 0.082 0.527 0.120 0.423 -0.080 

nav cav2 0.123 0.436 0.869 0.559 0.624 0.043 

nav inx1 0.112 0.214 -0.067 0.201 0.693 -0.367 

nav inx2 -0.298 0.483 -0.063 0.318 0.599 -0.308 

nav inx3 -0.024 0.336 0.070 0.128 0.654 0.085 

nav shab 0.808 0.491 0.436 0.154 0.592 0.132 

nav shaker 0.717 0.245 0.821 0.238 0.696 0.051 

nav shal 0.421 0.870 0.786 0.903 0.768 0.683 

nav shaw1 0.482 -0.021 -0.261 0.225 -0.072 0.068 

nav shaw2 0.074 -0.134 0.071 -0.303 0.334 -0.188 

shab inx1 0.453 0.420 -0.014 0.328 0.384 0.157 

shab inx2 -0.201 0.532 -0.138 0.567 0.362 -0.024 

shab inx3 -0.026 0.425 -0.017 0.013 0.254 0.405 

shab shaw1 0.908 0.488 0.505 0.828 0.708 0.834 

shab shaw2 -0.571 0.429 0.363 0.685 0.816 0.829 

shaker inx1 -0.168 0.203 0.290 0.464 0.449 0.080 

shaker inx2 -0.417 0.384 0.255 0.658 0.392 0.369 

shaker inx3 -0.695 0.332 0.338 0.272 0.331 0.347 

shaker shab 0.801 0.860 0.670 0.895 0.949 0.860 

shaker shal 0.394 0.023 0.681 0.091 0.736 -0.140 

shaker shaw1 0.424 0.704 0.258 0.753 0.562 0.892 

shaker shaw2 0.308 0.519 0.017 0.597 0.690 0.893 

shal inx1 0.217 0.238 0.048 0.420 0.905 -0.159 

shal inx2 0.037 0.493 0.032 0.362 0.858 -0.415 

shal inx3 -0.047 0.383 0.254 0.399 0.835 -0.014 

shal shab 0.464 0.184 0.415 0.147 0.619 0.036 

shal shaw1 0.658 -0.147 -0.432 0.641 -0.103 -0.087 
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  Pilot 0h Replicate 0h Pilot 1h Replicate 1h Pilot 24h Replicate 24h 

shal shaw2 -0.385 -0.336 -0.046 -0.304 0.940 -0.268 

shaw1 inx1 0.650 0.077 0.537 0.468 -0.357 0.058 

shaw1 inx2 0.207 0.101 0.341 0.599 -0.172 0.283 

shaw1 inx3 -0.339 0.130 0.222 0.182 -0.417 0.323 

shaw1 shaw2 0.045 0.497 0.308 0.878 0.898 0.948 

shaw2 inx1 -0.034 -0.023 -0.696 0.279 0.373 0.171 

shaw2 inx2 -0.070 -0.009 -0.756 0.251 0.417 0.389 

shaw2 inx3 -0.368 -0.020 -0.786 0.094 0.175 0.219 
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Table 3.3: Bivariate transcript abundance relationships. 

 

  ANCOVA padj padj 0h padj 1h padj 24h R 0h R 1h R 24h 

nav cav1 0.980 0.857 0.736 0.876 0.082 0.120 -0.080 

nav cav2 0.960 0.188 0.072 0.897 0.436 0.559 0.043 

nav bkkca 0.980 0.001 0.025 0.011 0.793 0.659 0.651 

nav shaker 0.980 0.481 0.533 0.885 0.245 0.238 0.051 

nav shal 0.099 0.000 0.000 0.007 0.870 0.903 0.683 

nav shab 0.960 0.129 0.676 0.780 0.491 0.154 0.132 

nav shaw1 0.975 0.972 0.549 0.876 -0.021 0.225 0.068 

nav shaw2 0.960 0.759 0.419 0.672 -0.134 -0.303 -0.188 

nav inx1 0.910 0.563 0.600 0.369 0.214 0.201 -0.367 

nav inx2 0.561 0.151 0.392 0.458 0.483 0.318 -0.308 

nav inx3 0.960 0.322 0.736 0.872 0.336 0.128 0.085 

cav1 cav2 0.960 0.001 0.001 0.016 0.750 0.802 0.647 

cav1 bkkca 0.897 0.972 0.245 0.779 0.010 0.398 0.171 

cav1 shaker 0.960 0.000 0.000 0.001 0.915 0.859 0.793 

cav1 shal 0.975 0.759 0.876 0.698 -0.114 0.051 -0.209 

cav1 shab 0.960 0.000 0.000 0.003 0.806 0.893 0.736 

cav1 shaw1 0.490 0.000 0.000 0.000 0.839 0.886 0.874 

cav1 shaw2 0.521 0.038 0.001 0.000 0.572 0.811 0.855 

cav1 inx1 0.980 0.315 0.206 0.369 0.308 0.438 0.398 

cav1 inx2 0.960 0.246 0.019 0.298 0.356 0.667 0.443 

cav1 inx3 0.910 0.194 0.777 0.003 0.381 0.102 0.730 

cav2 bkkca 0.490 0.414 0.026 0.458 0.281 0.634 0.282 

cav2 shaker 0.939 0.000 0.000 0.000 0.790 0.923 0.962 

cav2 shal 0.521 0.151 0.349 0.779 0.427 0.345 -0.132 

cav2 shab 0.960 0.002 0.000 0.000 0.729 0.847 0.830 

cav2 shaw1 0.499 0.079 0.022 0.000 0.574 0.655 0.871 

cav2 shaw2 0.183 0.414 0.266 0.000 0.277 0.371 0.860 
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  ANCOVA padj padj 0h padj 1h padj 24h R 0h R 1h R 24h 

cav2 inx1 0.789 0.551 0.132 0.885 0.207 0.500 -0.057 

cav2 inx2 0.561 0.167 0.002 0.369 0.438 0.767 0.336 

cav2 inx3 0.960 0.322 0.549 0.458 0.319 0.216 0.263 

bkkca shaker 0.960 0.873 0.052 0.435 0.066 0.591 0.297 

bkkca shal 0.641 0.001 0.134 0.245 0.762 0.513 0.430 

bkkca shab 0.980 0.414 0.249 0.459 0.272 0.390 0.283 

bkkca shaw1 0.960 0.857 0.623 0.779 -0.092 0.181 0.152 

bkkca shaw2 0.960 0.322 0.803 0.823 -0.335 0.079 0.112 

bkkca inx1 0.499 0.028 0.259 0.872 0.626 0.395 0.096 

bkkca inx2 0.561 0.005 0.249 0.872 0.736 0.406 0.090 

bkkca inx3 0.630 0.015 0.283 0.492 0.665 0.373 0.252 

shaker shal 0.980 0.972 0.803 0.779 0.023 0.091 -0.140 

shaker shab 0.960 0.000 0.000 0.000 0.860 0.895 0.860 

shaker shaw1 0.319 0.007 0.005 0.000 0.704 0.753 0.892 

shaker shaw2 0.191 0.075 0.042 0.000 0.519 0.597 0.893 

shaker inx1 0.910 0.538 0.196 0.876 0.203 0.464 0.080 

shaker inx2 0.747 0.199 0.025 0.310 0.384 0.658 0.369 

shaker inx3 0.960 0.271 0.467 0.304 0.332 0.272 0.347 

shal shab 0.988 0.567 0.702 0.916 0.184 0.147 0.036 

shal shaw1 0.490 0.745 0.048 0.872 -0.147 0.641 -0.087 

shal shaw2 0.960 0.300 0.439 0.459 -0.336 -0.304 -0.268 

shal inx1 0.960 0.469 0.266 0.779 0.238 0.420 -0.159 

shal inx2 0.490 0.113 0.349 0.304 0.493 0.362 -0.415 

shal inx3 0.960 0.199 0.284 0.957 0.383 0.399 -0.014 

shab shaw1 0.490 0.129 0.000 0.000 0.488 0.828 0.834 

shab shaw2 0.490 0.151 0.014 0.000 0.429 0.685 0.829 

shab inx1 0.910 0.151 0.350 0.779 0.420 0.328 0.157 

shab inx2 0.521 0.066 0.054 0.943 0.532 0.567 -0.024 

shab inx3 0.866 0.151 0.963 0.245 0.425 0.013 0.405 

shaw1 shaw2 0.897 0.151 0.000 0.000 0.497 0.878 0.948 
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  ANCOVA padj padj 0h padj 1h padj 24h R 0h R 1h R 24h 

shaw1 inx1 0.960 0.870 0.195 0.885 0.077 0.468 0.058 

shaw1 inx2 0.767 0.849 0.048 0.459 0.101 0.599 0.283 

shaw1 inx3 0.980 0.759 0.629 0.369 0.130 0.182 0.323 

shaw2 inx1 0.960 0.972 0.459 0.769 -0.023 0.279 0.171 

shaw2 inx2 0.960 0.972 0.485 0.298 -0.009 0.251 0.389 

shaw2 inx3 0.980 0.972 0.797 0.546 -0.020 0.094 0.219 

inx1 inx2 0.844 0.000 0.000 0.000 0.964 0.864 0.871 

inx1 inx3 0.183 0.000 0.000 0.007 0.809 0.905 0.693 

inx2 inx3 0.490 0.000 0.036 0.003 0.893 0.630 0.721 
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Table 3.4: Summary of statistical effects of treatment duration on measured properties. 

 

Family  p ep 
FDR 

epadj 
 

Group and 

Estimate 0h 

Group and 

Estimate 1h 

Group and 

Estimate 24h 

Membrane 

Resistance 

Input resistance (Rin, r11) 0.0144 0.020 0.0370 * A 2.4789 AB 2.6023 B 3.6702 

Membrane resistance (Rmem, r1) 0.0000 0.000 0.0000 *** A 2.6238 A 2.8150 B 5.8282 

Resting 

Voltage 
Vrest 0.0064 0.005 0.0116 * 

AB -50.6279 A -51.0803 B -50.1705 

Outward 

Currents 

Ihtk Intercept, Transient 0.0000 0.000 0.0000 *** B 92.9582 A 19.6754 A 14.4563 

Ihtk Slope, Transient  0.0000 0.000 0.0000 *** B 3.2946 A 0.4182 A 0.4396 

Ihtk Intercept, Sustained 0.0000 0.000 0.0000 *** B 74.8268 A 16.1830 A 11.1426 

Ihtk  Slope, Sustained 0.0000 0.000 0.0000 *** B 2.4315 A 0.3487 A 0.3642 

IA Intercept, Transient 0.0002 0.001 0.0026 ** A 33.8287 A 32.7595 B 51.0611 

IA Slope, Transient 0.0044 0.001 0.0026 ** A 1.0053 A 0.9795 B 1.5488 

IA Intercept, Sustained 0.0001 0.000 0.0000 *** B 16.6296 A 5.9300 B 14.8244 

IA Slope, Sustained  0.0000 0.000 0.0000 *** B 0.5932 C 0.1848 A 0.3750 

Excitability 

Correlation (Current, Voltage) 0.0163 0.009 0.0185 * B 0.9541 A 0.8800 AB 0.9089 

Min. Voltage Observed 0.3678 0.395 0.4567   -53.7811  -55.0791  -53.3765 

Max Amplitude Observed 0.0000 0.000 0.0000 *** A -29.4474 A -30.4871 B -1.6797 

Max Amplitude Simulated 0.2627 0.285 0.3636   -37.9020  -38.7625  -34.6902 
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Family  p ep 
FDR 

epadj 
 

Group and 

Estimate 0h 

Group and 

Estimate 1h 

Group and 

Estimate 24h 

AUC Observed 0.0001 0.000 0.0000 *** 
A 21,073.4

583 

A 21,299.9

011 

B 38,574.38

63 

AUC Simulated 0.1258 0.135 0.1850  
 15,099.2

597 

 13,187.7

660 

 20,690.60

55 

Max Amplitude Delta 0.0017 0.001 0.0026 ** A 5.3127 A 7.0121 B 20.9107 

AUC Delta 0.0453 0.053 0.0784 . 
 6,950.01

97 

 9,576.15

20 

 11,282.15

97 

Correlation IQR 0.0183 0.007 0.0152 * A 0.0065 B 0.0597 AB 0.0225 

Min Voltage Observed IQR 0.0000 0.000 0.0000 *** B 4.8192 A 1.0823 A 0.6822 

Max Amplitude Observed IQR 0.0042 0.003 0.0074 ** B 4.6443 B 4.7930 A 1.6270 

AUC Observed IQR 0.0300 0.033 0.0555 . 
 1,825.34

29 

 3,192.85

42 

 4,445.240

3 

Max Amplitude Delta IQR 0.1521 0.158 0.2088   2.5660  3.6296  1.9288 

AUC Delta IQR 0.8769 0.872 0.8720  
 4,876.68

10 

 3,927.47

22 

 4,545.229

7 

Na+ Channel nav 0.3559 0.352 0.4201  
 3,543.44

03 

 4,414.72

54 

 2,656.222

7 

Ca2+ 

Channel 

cav1 0.0636 0.060 0.0854 . 
 2,610.53

81 

 3,625.03

27 

 2,650.673

6 

cav2 0.3382 0.330 0.4070  
 1,872.13

70 

 2,402.08

28 

 2,063.717

1 

Other K+ 

Channel 
bkkca 0.0432 0.042 0.0648 . 

 1,046.90

07 

 1,932.83

11 

 1,314.710

2 
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Family  p ep 
FDR 

epadj 
 

Group and 

Estimate 0h 

Group and 

Estimate 1h 

Group and 

Estimate 24h 

Voltage-

dependent K+ 

Channel 

shaker 0.5341 0.550 0.5985  
 1,384.45

55 

 1,627.22

15 

 1,422.429

6 

shal 0.0124 0.013 0.0253 * A 84.1001 B 187.9169 A 75.0182 

shab 0.0294 0.031 0.0546 . 
 1,093.47

68 

 1,557.87

83 

 1,519.613

2 

shaw1 0.7551 0.759 0.8024  
 1,370.25

25 

 1,395.72

51 

 1,239.470

7 

shaw2 0.4307 0.428 0.4799  
 879.3227  1,174.25

40 

 1,001.998

1 

Innexin 

inx1 0.8107 0.815 0.8376  
 11,836.9

957 

 13,112.0

121 

 12,266.58

39 

inx2 0.0018 0.000 0.0000 *** 
A 9,021.78

87 

B 15,609.0

201 

B 13,200.98

17 

inx3 0.0354 0.035 0.0563 . 
 10,005.9

595 

 10,475.8

073 

 5,787.396

4 
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Table 3.S1: Multiplex qRT-PCR Primers Used. 

Target Forward Primer Reverse Primer Probe 

Nav TCAACGGGAGGTACCATAAGTG TCGCTGTTCACCCAAGAGTAG CGGAGGGATTGAAGCTCAACGCA 

Cav1 CCAGGCCTTCTACTGGCTCATT  GCTGGCGATAGTGCTCACTG  TGTGCTCGTCTTCCTCAACACGG  

Cav2 ATCCGGCGGACAGTAAAGC  GTTCGGCAGCAACACAAAC  TGGTTCTACTGGTTCGTCATCATACTTGT 

Bkkca GCTCAAACTCGGCTTCATTG  CTGCGTGTCTGGAGAAGTTT  AGAATCCCGGCGCTAAACATGACT  

Shaker GAGGCTCAGAAGACCAGTCAAC  TGGCGATATCACCGAGCTCAT  CACTCGATGTCTTCGCGGAGGAGAT 

Shal GACACCACCTTCACCTCCATTC  GAACCATGTCGCCGTATCCTA  CGGCGTTTTGGTACACCATTGTCAC  

Shab GAGCCGGACAGACAGGAAC  TGCGCCTCCTTCTGTAGTC  AAGAACCACGAACACCACATGGGTC  

Shaw1 CGCGTCACTCCTCAGGACTT  CCCAGCACCAGGAAGAACAC  TGATACAGACTTTCCGTGCATCCGC  

Shaw2 GAACGCCATCAAGCACTATCATC  ATGGCGCCCGACAGCTTAG  TGGCTTGAAGGACGGTCTCACA  

Inx1 TGGAGCGTCATGATGCATTC GAGCAGGATGGCAAGGATCAC TGCTGCCTCTCAACATTCTTAACGAA 

Inx2 GGCTGTGGTGTCTGGTGTAG GCGAGAGCGTGTCCTTAACAG CTGCTGTACCGCCTCGCCACTTT 

Inx3 TGTCGGCCCTAGTGAAAGAG GGTACCGTGGGATGTAGAACA TGACGAGATTGTGTACCACGCTTAC 
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Abstract 

Understanding circuit organization depends on identification of cell types. 

Recent advances in transcriptional profiling methods have enabled classification 

of cell types by their gene expression. While exceptionally powerful and high 

throughput, the ground-truth validation of these methods is difficult: If cell type is 

unknown, how does one assess whether a given analysis accurately captures 

neuronal identity? To shed light on the capabilities and limitations of solely using 

transcriptional profiling for cell-type classification, we performed 2 forms of 

transcriptional profiling—RNA-seq and quantitative RT-PCR, in single, 

unambiguously identified neurons from 2 small crustacean neuronal networks: 

The stomatogastric and cardiac ganglia. We then combined our knowledge of 

cell type with unbiased clustering analyses and supervised machine learning to 

determine how accurately functionally defined neuron types can be classified by 

expression profile alone. The results demonstrate that expression profile is able 

to capture neuronal identity most accurately when combined with multimodal 

information that allows for post hoc grouping, so analysis can proceed from a 

supervised perspective. Solely unsupervised clustering can lead to 

misidentification and an inability to distinguish between 2 or more cell types. 

Therefore, this study supports the general utility of cell identification by 

transcriptional profiling, but adds a caution: It is difficult or impossible to know 

under what conditions transcriptional profiling alone is capable of assigning cell 

identity. Only by combining multiple modalities of information such as physiology, 
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morphology, or innervation target can neuronal identity be unambiguously 

determined. 

Significance 

Single-cell transcriptional profiling has become a widespread tool in cell 

identification, particularly in the nervous system, based on the notion that 

genomic information determines cell identity. However, many cell-type 

classification studies are unconstrained by other cellular attributes (e.g., 

morphology, physiology). Here, we systematically test how accurately 

transcriptional profiling can assign cell identity to well-studied anatomically and 

functionally identified neurons in 2 small neuronal networks. While these neurons 

clearly possess distinct patterns of gene expression across cell types, their 

expression profiles are not sufficient to unambiguously confirm their identity. We 

suggest that true cell identity can only be determined by combining gene 

expression data with other cellular attributes such as innervation pattern, 

morphology, or physiology. 

Introduction 

Unambiguous classification of neuronal cell types is a long- standing goal 

in neuroscience with the aim to understand the functional components of the 

nervous system that give rise to circuit dynamics and, ultimately, behavior 

(Stevens, 1998; Masland, 2004; Cuevas-Diaz Duran et al., 2017; Zeng and 

Sanes, 2017; Luo et al., 2018; Tasic, 2018). Beyond that, agreement upon 

neuronal cell types provides the opportunity to greatly increase reproducibility 

across investigations, allows for evolutionary comparisons across species 
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(Tessmar-Raible et al., 2007; Tomer et al., 2010), and facilitates functional 

access to, and tracking of, neuron types through developmental stages  (Mehta 

et al., 2019). To this end, attempts at defining neuronal identity have been carried 

out using morphology, electrophysiology, gene expression, spatial patterning, 

and neurotransmitter phenotypes (Whitaker et al., 2011; Cadwell et al., 2015; 

Zeisel et al., 2015; Chung et al., 2017; Boldog et al., 2018; Ho et al., 2018; 

Parmhans et al., 2018; Shrestha et al., 2018; Södersten et al., 2018). Since the 

earliest efforts to capture the transcriptomes of single neurons, using linear or 

PCR amplification of messenger RNA (mRNA) followed by either cDNA library 

construction (Eberwine et al., 1992) or microarray hybridization (Tietjen et al., 

2003; Esumi et al., 2008; Whitaker et al., 2011), singlecell RNA sequencing 

(scRNA-seq) (Tang et al., 2009) has become the method of choice for many 

genome-scale investigations into neuron cell type. Advances in microfluidics, 

library preparation, and sequencing technologies have propelled an explosion of 

molecular profiling 

studies seeking to use unique gene expression patterns to discriminate neuronal 

types from one another, whether for discovery of new types or further 

classification of existing ones (Doyle et al., 2008; Haas et al., 2013; Shin et al., 

2014; Macosko et al., 2015; Trapnell, 2015; Usoskin et al., 2015; Cembrowski et 

al., 2016; Crocker et al., 2016; Gokce et al., 2016; Poulin et al., 2016; Tasic et 

al., 2016; Wagner et al., 2016; Davie et al., 2018; Zhou and Matsunami, 2018). 

Molecular profiling approaches to tackle the problem of neuronal cell 

identity have many advantages: First, single-cell transcriptomic data contain 
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thousands of measurements in the form of gene products that can be used both 

in a qualitative (in the form of marker genes) and quantitative (in the form of 

absolute transcript counts) manner (Luo et al., 2018). Second, scRNA-seq allows 

for very high-throughput processing of samples with hundreds, if not thousands, 

of single cell transcripts simultaneously using barcoding techniques (Rosenberg 

et al., 2018). Third, these techniques can be applied to species that lack well-

annotated transcriptomic information, as the cost to generate de novo reference 

transcriptomes has decreased dramatically in recent years (Reuter et al., 2015). 

Even the sequencing of heterogeneous tissues from the central nervous system 

(CNS) can be used in conjunction with predictive modeling to reconstruct 

markers for major classes of CNS cell types, as has been done with 

oligodendrocytes, astrocytes, microglia, and neurons, in both humans and mice 

(Kelley et al., 2018). Classifying neurons into different major categories (such as 

excitatory vs. inhibitory, parvalbumin+ vs. parvalbumin-, etc.) using qualitative 

expression measures is an easier task than quantitative approaches that 

separate neurons into smaller subclasses, but runs into limitations as to how far 

further classification can proceed. Subclasses of neuron types likely require 

greater depth of sequencing to resolve, and these neurons are more likely to be 

defined by the expression of multiple genes rather than unique markers (Hobert 

et al., 2010). Yet this also is an inherent limitation of scRNA-seq: Low abundance 

transcripts are often missed or inaccurately classified as differentially expressed 

(Sha et al., 2015), and methods to dissociate and isolate cells can alter their 
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transcriptomic profiles before they are even measured (van den Brink et al., 

2017; Harris et al., 2019). 

There have now been many studies seeking to determine how many 

transcriptomically defined cell types might be present in a given part of the brain. 

For instance, an initial study of the cell-type diversity of the mouse primary visual 

cortex revealed 42 neuronal and 7 nonneuronal cell types (Tasic et al., 2016). 

More recent work from the same group identified 133 transcriptomic cell types 

(Tasic et al., 2018). Work in the retina has led the way as an example of 

generating a cell-type consensus with an unknown endpoint. Multimodal 

information of retinal ganglion cell properties, including morphology, physiology, 

gene expression, and spatial patterning, has converged on over 65 cell types in 

the macaque fovea and peripheral retina (Peng et al., 2019). However, not all 

systems have the same technical advantages as the retinal ganglion cells (such 

as uniform spatial patterning) that can be indicative of cell type, and multimodal 

information can be more difficult to obtain than high-throughput transcriptomic 

profiling methods. Therefore, the reliability of transcriptomic profiling with respect 

to neuronal identity requires additional evaluation. 

In this study, we validate and compare transcriptional profiling via scRNA-

seq and quantitative RT-PCR (qRT-PCR) methods, using supervised and 

unsupervised analyses, in 2 model systems in which neurons are unambiguously 

identified based on electrophysiological output, synaptic connectivity, axonal 

projection, and innervation target: The stomatogastric (STG) and cardiac ganglia 

(CG) of the crab, Cancer borealis. This approach allows us to test directly how 
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much of the known functional and anatomical identity of a neuron is captured in 

the transcriptomic profile of single neurons within a given network.  

Results 

Molecular Profiling of Single Identified STG and CG Neurons by RNASeq.  

Because of their large individual cell body size and our ability to manually 

collect single identified STG neurons (Fig. 4.1), we generated transcriptomes for 

pyloric dilator (PD; n = 11), gastric mill (GM; n = 11), lateral pyloric (LP; n = 8), 

and ventricular dilator (VD; n = 8) neurons by typical library preparations rather 

than more automated procedures such as Drop-seq, Splitseq, or 10× Genomics 

(Ziegenhain et al., 2017). Sequencing data were mapped to the C. borealis 

nervous system transcriptome (Northcutt et al., 2016b). After removing 

transcripts for which there was no expression in any cell type, the dataset 

contained 28,459 distinct contigs (contiguous sequences) in the complete RNA-

seq dataset. These contigs represent more than the full set of genes transcribed 

in these cells, as multiple contigs may map to a single gene but during 

transcriptome assembly the intervening sequence could not be resolved to 

assemble these distinct fragments (see ref. (Weimann et al., 1991)). We began 

our analysis of these data using unbiased hierarchical clustering methods, as is 

commonly done. Using the complete dataset (referred to as “all expressed 

contigs”), hierarchical clustering (with data centered and scaled across contigs) 

resulted in 5 clusters (Fig. 4.2A) that appeared not to segregate by cell type. One 

exception was observed among PD cells. All but 2 PD cells fell within 1 distinct 

cluster, albeit with a GM cell also identified in this cluster (Fig. 4.2A). While not 
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surprising, the complete cellular transcriptome on its own does not distinguish 

cell types. 

We identified and extended our unbiased analysis to the most variably 

expressed genes in the RNA-seq dataset. The first subset represents the top 

2,000 most variable contigs (referred to as the “2000 Highest Variability (H2K) 

contigs” and the second subset includes variable genes identified using a method 

described by Brennecke et al. (Brennecke et al., 2013), assuming a false 

discovery rate (FDR) of 0.2, which resulted in 922 contigs (referred to as highly 

variable gene contigs [HVG contigs]). Focusing on variably expressed contigs 

improved clustering with respect to cell identity, with the HVG dataset 

outperforming the H2K. In the HVG clustering (Fig. 4.2B), 8/11 GM cells, 5/8 VD 

cells, 5/8 PD cells, and 5/8 LP cells formed distinct clusters. However, these 

nodes are not perfectly segregated by cell type and cells of each kind fail to 

appropriately cluster. If blind to these cell types, the HVG clustering analysis 

yields 5 to 6 distinct cell-type clusters, rather than the appropriate 4 (Fig. 4.2B). 

Although differential expression (DE) analysis can only be carried out with 

a priori knowledge of cell identity or some other post hoc feature by which 

samples can be grouped, in an attempt to achieve the best performance possible 

with scRNA-seq clustering analyses we unblinded the analyses to cell type and 

selected only differentially expressed transcripts. We selected 2 pools of 

differentially expressed transcripts: Those with a q value <0.2 (referred to as 

“DE0.2”) or q value  0.05 (“DE0.05”). DE analysis with a q-value cutoff of 0.2 

identified 137 transcripts (DE0.2), while a q value of 0.05 identified only 45 
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transcripts (DE0.05). Hierarchical clustering of the DE0.2 dataset resulted in 

better clustering but still failed to faithfully recapitulate cell identity. Hierarchical 

clustering was greatly improved by using the DE0.05 dataset (Fig. 4.2C) but 

remained imperfect. 

To reveal which preprocessing and clustering methods best recapitulate 

the predicted number of clusters based on known cell identity, we applied 8 

cluster estimation algorithms (optCluster package) (Sekula et al., 2017) on the 

DE0.05 dataset (centered and scaled by contig, Ward.D2 linkage, and a 

correlation dissimilarity matrix; Fig. 4.2D). The highest performing clusterings 

using the DE0.05 data resulted from using Ward.D with a correlation distance 

metric, resulting in a Jaccard index of 0.738. The results of cluster estimation 

differed based on the preprocessing of the datasets. Cluster estimation 

algorithms were selected from a set of 10 algorithms for use with continuous data 

as they all yielded usable output. We retained the top 3 predicted k values from 

each. When data were centered and scaled by contig (Fig. 4.2D), the mode 

number of clusters estimated was 3 (5 indices) and 5 (5 indices), and none 

predicted the correct number of 4 clusters. 

Finally, to assess whether unblinded analyses could predict cell type, we 

tested the ability of 8 supervised machine learning (sML) classification algorithms 

(generalized linear model [GLM], k-nearest neighbors [kNNs], neural network 

[NN], multinomial neural network [MNN], random forest [RF], support vector 

machine with a linear kernel [SVML], support vector machine with a radial kernel 

[SVMR], and linear discriminant analysis [LDA]) to sort cells based on their 
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transformed or untransformed mRNA abundances. Each model’s accuracy on 

new data were estimated using 5-fold cross-validation. To capture the variation in 

the All Expressed Contigs dataset, we transformed the data with principal 

component analysis (PCA) and used the first 38 principal components, which 

accounted for over 99% of the variation. The sML mean accuracies on the All 

Expressed Contigs (PCA transformed) dataset were extremely low, with a 

maximum mean accuracy of 48.6% (Fig. 4.2E). sML accuracies improved 

substantially when classifying the RNA-seq data preprocessed to identify variably 

expressed contigs (H2K, HVG) and DE contigs (DE0.2, DE0.05), often producing 

100% accuracy for several folds during 5-fold cross-validation (Fig. 4.2E). It 

should be noted that no method classified all 5 folds with complete accuracy, 

even with only DE contigs—most methods ranged between 75 and 100% 

accuracy. 

While these results are encouraging, even under optimal conditions 

(transcriptomic data, selection of transcripts by differential expression, ability to 

use supervised methods) we were unable to consistently classify these neurons 

with 100% accuracy. 

Principal Component Analysis of scRNA-Seq Datasets.  

PCA is often used to determine whether the variance seen among 

transcript abundances can be used to separate cells into discrete types. Thus, 

we performed PCA on the 4 RNA-seq datasets (H2K, HVG, DE0.2, and DE0.05) 

to examine the ability of this approach to discriminate among cell types (Fig. 4.3). 

For most of these datasets, the first principal component (PC1) accounted for 
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>40% of the explained variance, with the exception of the HVG dataset (Fig. 4.3). 

As such, we have listed the top 10 contigs contributing to variation in PC1 for all 

4 datasets in SI Appendix, Table 4.S1. We generated pairwise plots of all 3 PCs 

in attempts to visualize separation of samples into distinct cell types. There is 

little ability to resolve cell-type differences in the H2K and HVG datasets (Fig. 4.3 

A and B). However, the differentially expressed transcripts allow for some 

separation of cell type (Fig. 4.3 C and D), with PD becoming somewhat distinct, 

for example, in the DE0.05 dataset (Fig. 4.3D). 

Gene Ontology Analyses of RNA-Seq Datasets.  

To determine the types of genes represented in the most variable (H2K 

and HVG) and differentially expressed (DE0.2, DE0.05) datasets among cell 

populations, we performed gene ontology (GO) enrichment analysis using 

analysis tools from the PANTHER Classification System (Mi et al., 2012). 

Because there is relatively little gene annotation work in the crab, we performed 

GO analysis by first using BLAST to find the top Drosophila ortholog for a given 

contig, and then retrieving the GO terms associated with this ortholog for 

analysis. Thus while this analysis provides interesting insight into cell-type 

specific differences in gene expression, there are limitations to the interpretation, 

particularly with regards to fold enrichment in Drosophila relative to crab. The 

most robust expression differences (highest fold enrichment) in the H2K 

molecular function dataset were those of ATP-synthase activity and clathrin 

binding (SI Appendix, Table 4.S2). Others of note include mRNA 3′-UTR binding, 

cell adhesion molecule, and calcium ion binding (SI Appendix, Table 4.S2). More 
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resolution is gained by examining the biological process category, where H2K 

contigs were most overrepresented for “regulation of short-term neuronal 

synaptic plasticity,” “positive regulation of neuron remodeling,” “substrate 

adhesion-dependent cell spreading,” and “clathrin-dependent synaptic vesicle 

endocytosis” categories (SI Appendix, Table 4.S3) among many others. The 

HVG dataset shows relatively few enriched categories (SI Appendix, Tables 4.S4 

and 4.S5) with FDR correction employed, including ATP binding and transferase 

activity (related to acetylcholine synthesis). 

The differentially expressed contigs of the DE0.2 dataset showed no 

significantly enriched contigs with FDR employed. Without any P value 

correction, a number of molecular function categories appear as enriched (SI 

Appendix, Table 4.S6). However, this is less an appropriate enrichment analysis 

(due to the relatively small number of contigs) and more a description of gene 

categories present in the DE0.2 contigs. The top several hits are all indicative of 

transmitter phenotype, particularly acetylcholine synthesis (SI Appendix, Table 

4.S6). However, other receptor activity is represented, such as GABA-gated 

chloride channel and GABAA receptor activity. Finally, cell–cell adhesion 

mediator activity appears once again in this list. 

Molecular Profiling of Single Identified STG and CG Neurons Using 

Candidate Genes.  

One class of genes that we were surprised to not see represented in DE 

analyses was the voltage-gated ion channels. A recent study found that 3 

classes of neuronal effector genes—ion channels, receptors, and cell adhesion 
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molecules— have the greatest ability to distinguish among morphologically 

distinct mouse cortical cell populations (Sugino et al., 2019). Our previous work 

also suggests that differential expression of ion channel mRNAs in STG cells 

may give rise to their distinct firing properties (Schulz et al., 2007c; Temporal et 

al., 2014b; Santin and Schulz, 2019b). We therefore examined these scRNA-seq 

data for expression of ion channel mRNAs. Overall, while the sequencing 

captured most of the known voltage-gated channel subtypes known in C. 

borealis, raw counts were very low (SI Appendix, Fig. 4.S1). Therefore, we 

decided to use a qRT-PCR approach to directly test the hypothesis that channels 

and transmitter receptors are effective genes of interest to differentiate known 

neuron subtypes. 

To examine the molecular profile of individual identified neurons with qRT-

PCR, we targeted the following transcripts: ion channels, receptors, gap junction 

innexins, and neurotransmitter related transcripts. These cellular components are 

responsible for giving neurons much of their unique electrophysiological outputs. 

As such, we predicted that correspondingly unique expression patterns for this 

gene set would be present in each neuron type. Using multiplex qRT-PCR, we 

measured the absolute copy number of 65 genes of interest (SI Appendix, Table 

4.S7) from 124 individual STG neurons of 11 different types (10 STG neuron 

types: pyloric dilator [PD], lateral posterior gastric [LPG], ventricular dilator [VD], 

gastric mill [GM], lateral pyloric [LP], pyloric [PY], inferior cardiac [IC], lateral 

gastric [LG], median gastric [MG], dorsal gastric [DG], and the large cell [LC] 

motor neurons from the cardiac ganglion) (n = 10 to 15 per type). We used 
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various methods of unsupervised clustering to generate the “best” clustering of 

these cells based on a priori known number of cell types. This included 

substituting any missing values in the qRT-PCR dataset via median interpolation. 

We then used k-means, unsupervised hierarchical, and shared nearest 

neighbor-Cliq (SNN-Cliq) clustering to generate unbiased clustering analyses 

based on expression of these genes of interest. Initial interrogation focused on 

data transformations with a fixed hierarchical clustering scheme (Ward.D2, 

correlation dissimilarity matrix as for the scRNA-seq analysis). Unscaled data, as 

well as data centered and scaled by gene, resulted in different hierarchical 

clustering patterns. Using unscaled data, hierarchical clustering performed rather 

poorly in terms of generating distinct clusters that match known cell identity. 

Performance—as assessed by Jaccard index—was improved by scaling data 

across genes, generating 8 distinct nodes with high bootstrap support in 

hierarchical clustering that capture some of the features of known cell identity 

(LC, IC, LG, LPG, VD, GM, LP, and PD; Fig. 4.4A). However, multiple cell types 

fall into clusters that either do not show any separation by neuron identity (DG, 

MG, and PY) or show no bootstrap support based on hierarchical clustering 

(approximately unbiased [AU] P value = 0). 

We sought to determine the upper bound for clustering performance with 

this dataset. If the known anatomical and physiological cell identity is reflected in 

the ion channel and receptor mRNA profile of STG neurons, then clustering 

analyses performed on these mRNA data should yield 11 distinct clusters. To 

determine the feasibility of clustering to sort cell types, we tested 291 clusterings 
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(varying clustering methods, distance metrics, and neighbors considered) for 

each dataset. Each clustering was compared against the known cell identities 

with the Jaccard index, which ranges from 0 to 1, where 1 is perfect 

correspondence between clusterings—in this case, the clustering and cell 

identity. The best performing combination was data scaled by target and 

processed using Ward.D2 hierarchical clustering with a correlation distance 

matrix (Jaccard = 0.636). By contrast, the next best clusterings, Ward.D on 

correlations and Ward.D on data scaled and PCA transformed using Canberra 

distance, only achieved Jaccard indices of 0.592 and 0.509, respectively. The 3 

least performant methods were single-linkage hierarchical clustering with 

distance metric of uncentered sample correlation (0.087), maximum distance 

(0.088), and correlation distance (0.089) metrics. Examining the best performing 

clustering reveals that LP, PD, LG, IC, DG, LC, PY, GM, LPG, and VD separate 

fairly well. 

Given that an a priori known number of cell types represented in a sample 

is rare, we tested whether we would have arrived at the correct number of cell 

types in the sample had we been blind to their identity. We used the best 

performing transformations from the clustering analysis, i.e., data centered and 

scaled by gene and a correlation dissimilarity matrix, and 8 cluster determination 

indices provided by the optCluster package (Sekula et al., 2017). We allowed a 

minimum of 2 and a maximum of 32 clusters for this and later cluster 

determination analyses. The mode of the top 3 predicted k values for 8 different 

methods of cluster estimation was 2 (6 indices), followed by 4 (the expected 
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number of clusters), and 6 (3 indices each) (Fig. 4.4B). If a researcher were 

using any 1 of these, or a majority vote of several, the chance they would 

conclude the correct number of 11 clusters are present would be vanishingly low.  

We repeated sML analyses on the qRT-PCR data to examine the “best 

case scenario” performance for clustering analyses. Performance varied 

substantially between algorithms (e.g., NN achieved a mean accuracy of 43.5%, 

whereas SVML produced a mean accuracy of 87.5%) and was affected by 

whether the data were centered and scaled (e.g., NN improved by 43.5%, SVML 

did not improve) (Fig. 4.4C). The highest mean accuracy we achieved was 

87.5% (SVML, either with or without scaling). We considered a principal 

component transformation as well, but it improved the maximum mean accuracy 

little (NN, 87.9%) and worsened the previously most performant methods (SVML 

decreased from 87.5 to 66.5%, unscaled and 67.4%, scaled). Although neither 

produces the highest mean accuracy, RF (87.2 to 83.2%), GLM (86.6 to 79.2%), 

and LDA (81.9 to 77.7%) performed consistently across transformations, but 

clearly not equally well. Overall, the top performing accuracy methods involved 

centering and scaling the data across genes, and yielded similar efficacies 

across algorithms (Fig. 4.4C). 

Finally, we repeated the PCA to determine if the variance seen among 

transcript abundances can be used to separate these 11 cell types into discrete 

clusters. The first 2 principal components (PC1 and PC2) generated from the 

qRT-PCR data accounted for 31.2% and 16.6% of the variance, respectively 

(Fig. 4.4D). PC3 accounted for 9.6% of the variance across samples. The top 10 



 

109 
 

mRNAs contributing to each of these PCs are listed in SI Appendix, Table 4.S1. 

We generated pairwise plots of all 3 PCs in attempts to visualize separation of 

samples into distinct cell types. The most consistent result across all 

comparisons was that LC neurons from the cardiac ganglion formed a cluster 

that had less overlap with STG neurons than STG neurons did with each other, 

particularly in the dimension of PC1 vs. PC2 (Fig. 4.4D). Visualizations of PC1 

vs. PC3 and PC2 vs. PC3 also give some indication that even with these target 

genes of interest, we are able to resolve some separation of these groups (Fig. 

4.4D). However, without such extensive a priori knowledge about cell type 

overall, it is difficult to see how PCA would be effective in separating these 11 

cell types based on the expression data at hand. 

Comparison of qRT-PCR and RNA-Seq Results.  

To ensure that the RNA-seq and qRT-PCR data were producing 

comparable expression results, we identified 4 different transcripts that were 

represented both in the DE dataset from the RNA-seq and the qRT-PCR dataset 

for the 4 cell types used in RNA-seq (PD, LP, GM, and VD). Overall, there is very 

strong agreement in expression patterns for all 4 genes (Fig. 4.5A), adding 

confidence to the quality of both datasets with respect to capturing native 

expression patterns. We then extracted the RNA-seq expression data for all 65 of 

the transcripts used in the qRT-PCR dataset. When we performed hierarchical 

clustering analysis and PCA using these 65 channel and receptor transcripts, the 

qRT-PCR clustered with nearly 100% success (with the exception of 2 GM 

neurons) into nodes that contain the 4 known distinct cell types, while the RNA-
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seq dataset using the same transcripts failed to generate coherent cell type 

clusters (Fig. 4.5 B and C). As we examined this further, we realized that the 4 

transcripts in Fig. 4.5A (ChAT, vAChT, NMDA2B, and KCNK1) represent 

somewhat higher abundance transcripts that were differentially expressed and 

showed consistent patterns between qPCR and RNA-seq methods. Other highly 

expressed transcript types were not differentially expressed (e.g., NaV and 

INX1–3), and therefore do not contribute strongly to distinguishing cell identity. 

Conversely, many of the other transcripts in the qRT-PCR dataset that were 

distinct across cell types had very low levels of detected expression in the 

RNAseq dataset (SI Appendix, Fig. 4.S1). 

Discussion 

Many projects currently attempting to describe neuronal cell types begin 

with the acquisition of molecular profiles from populations of unidentified neurons 

(Usoskin et al., 2015; Tasic et al., 2016; Li et al., 2017). Our results demonstrate 

the strengths and limitations of both unsupervised and supervised methods that 

rely solely on a molecular profile to recapitulate neuron identity by working 

“backwards” from an unambiguously known cell identity in a system with a rich 

history of single-cell neurophysiological characterization, the crustacean 

stomatogastric ganglion. The analyses clearly demonstrate that even with the 

most complete a priori knowledge of cell type, there are limitations to determining 

cell identity through mRNA expression profiles alone. However, these data add to 

compelling supporting evidence that the molecular profile can partially indicate 
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identity, particularly once supervised methods incorporating known cell 

identification are employed. 

Physiological Insights into STG Network Function and Cell Identity.  

It can be problematic to infer physiological properties associated with 

mature protein function from steady-state mRNA levels. Nevertheless, we did 

make some observations by comparing gene expression profiles to known STG 

neuron physiology that could have broader implications. First, despite the fact 

that PD and LPG cells are strongly electrically coupled and fire in a tightly phase-

locked fashion when the gastric mill rhythm is not active (Hooper et al., 1986; 

Weimann et al., 1991; Weimann and Marder, 1994), PD and LPG were about as 

different from one another based on the outcome of hierarchical clustering of 

qRTPCR data as they could be (Fig. 4.4A). One might predict that cells with very 

similar physiological outputs would likely have similar patterns of channel and 

receptor expression (Schulz et al., 2007c), either because their similar physiology 

reflects common ontogeny (Farrell et al., 2018), or activity-dependent feedback 

shapes expression in a conserved fashion (see ref. (Santin and Schulz, 

2019b)55); however, neither of these are supported by the data. Futhermore, we 

would not predict from our results that PD and LPG have a similar developmental 

trajectory—although their outputs are quite similar—nor are these data consistent 

with common rules for activity-dependent feedback to the level of steady-state 

mRNA (O’Leary et al., 2013b, 2014b; Temporal et al., 2014b). 

Second, among the full set of STG neurons in the qRT-PCR dataset, we 

did not see clustering that was faithful to neurotransmitter phenotype. For 
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example, 2 of the most closely related neurons in terms of clustering were PD 

and LP (Fig. 4.4A). Yet these 2 neurons are cholinergic and glutamatergic, 

respectively. Therefore, it raises a thought-provoking question regarding cell 

identity. That is, if 2 neurons were similar in most characteristics, yet release 

distinct transmitters, then should these be considered more distinct classes of 

cells than those that release a common transmitter but share far fewer other 

characteristics? Transmitter phenotype is a common distinguishing feature for 

assigning cell identity (Deneris and Hobert, 2014); yet even this defining feature 

is not necessarily fixed for the life of the cell (Spitzer, 2017). 

Finally, the RNA-seq data and subsequent gene ontology analysis yielded 

a strong indication that some of the most commonly differentially expressed 

transcripts represented biological processes associated with synaptic plasticity 

and neuronal and substrate/cell adhesion remodeling (SI Appendix, Table 4.S3). 

This is in contrast to the lack of differential expression in this dataset among 

gene families more directly associated with direct membrane voltage and 

physiological output, such as channels and receptors. This suggests that a key 

feature of these networks may reside more in the ability to tune and adapt 

synaptic connectivity to generate and maintain appropriate network output, rather 

than to tune individual neuronal excitability (Prinz et al., 2004)—although these 

are certainly not mutually exclusive (Turrigiano, 2012; Schulz and Lane, 2017). 

General Insights.  

There is increasing evidence that discrete classes of genes may 

distinguish cell types. For example, genes underlying synaptic transmission 
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machinery were crucial for separating mouse cortical GABAergic neurons into 

different types (Paul et al., 2017). Sets of genes that are regulated together that 

can be thought of as a “gene batteries” have also been shown to be indicative of 

cell type. For example in Caenorhabditis elegans there is expression of 

neurontype-specific combinations of transcription factors (Deneris and Hobert, 

2014). Recently, 3 classes of neuronal effector genes—ion channels, receptors, 

and cell adhesion molecules—were determined to have the greatest ability to 

distinguish among genetically and anatomically defined mouse cortical cell 

populations (Sugino et al., 2019). Consistent with this work, GO analysis of the 

2,000 most variable contigs in the scRNA-seq dataset (H2K) revealed that the 

top 5 biological process terms that were significantly enriched included 

“regulation of short-term neuronal synaptic plasticity,” “substrate adhesion-

dependent cell spreading,” and “clathrin-dependent synaptic vesicle 

endocytosis.” Specifically, the differentially expressed contigs dataset (DE0.2) 

revealed molecular function enrichment for terms related to transmitter identity 

(“choline:sodium symporter activity” and “acetylcholine transmembrane 

transporter activity” among others), specifically identified 2 GABA receptor 

function terms (“GABAgated chloride ion channel activity” and “GABA-A receptor 

activity”) and also included “cell–cell adhesion mediator activity.” Finally, our 

entire qRT-PCR experiment focused on the expression of ion channels, 

receptors, gap junction innexins, and neurotransmitter-related transcripts. While 

these 65 genes were not sufficient for classifying cells perfectly into known types, 

this modest number of transcripts discriminated neuron types fairly well. Thus, 
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categorical families of neuronally expressed genes may yield the most useful 

data for subdividing neurons into distinct classes or subtypes. 

Not every system has the same challenges or advantages in assigning 

neuronal cell identity. Mouse retinal ganglion cells of the same type are regularly 

and uniformly spaced throughout the retina, while cells belonging to different 

types do not exhibit spatial patterning relative to one another and are more 

randomly distributed (Sanes and Masland, 2015). Molecular classification of 

neurons in C. elegans found that anatomically distinct neurons have 

correspondingly distinct molecular profiles >90% of the time (Hobert et al., 2016). 

However, 146 distinct molecular profiles were identified from the 118 

anatomically distinct neuron classes, indicating the potential for molecular 

subclassification. This classification relied on hierarchical clustering that was 

carried out solely on identified reporter genes (most prominently transcription 

factors) and G protein-coupled receptor ([GPCR]-type sensory receptors) known 

to be differentially expressed across the 302 neurons of C. elegans from 

Wormbase.org (Harris et al., 2014) and not whole transcriptome molecular 

profiles. It is reassuring that the expression of a wide variety of reporter genes 

known to be differentially expressed across a population of neurons can 

recapitulate cell identity. But, this relies on having an established definition of 

neuron type to constrain hierarchical clustering, as differential expression 

analysis can only be carried out by assigning samples to different populations. 

Our results are consistent with these findings, in that clustering is most reliable 

when differentially expressed targets are used as the transcriptomic dataset. 
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Further, these data also demonstrate that without separating cell types a priori by 

such additional criteria, molecular cell classification can generate unreliable 

results, particularly with neurons that belong to the same network. 

What are the sources of variability that could mask molecular identification 

of neuronal identity? Most common high-throughput molecular profiling 

techniques require destructive sampling to acquire mRNA abundances, which 

generates only a snapshot of the profile at a single point in time. Gene 

expression has stochastic characteristics  (Raj and van Oudenaarden, 2008; Li 

and Xie, 2011); transcription takes place not continually, but in bursts of 

expression (Wang et al., 2018) (reviewed in (Symmons and Raj, 2016)); and 

steady state mRNA abundances are the result of rates of expression, 

degradation, and mRNA stability (Perez-Ortin, 2008). Single-cell transcriptomes 

can be altered biologically as a consequence of activity (Benito and Barco, 

2015), injury (Llorens-Bobadilla et al., 2015), long-term memory formation 

(Crocker et al., 2016), differentiation (Olivera-Martinez et al., 2014), and aging 

(Moroz and Kohn, 2013; Davie et al., 2018), as well as being affected by 

technical noise (Brennecke et al., 2013). Cells also belong to different 

transcriptional states under certain conditions, with the major distinction between 

a cell type and cell state being that state is a reversible condition, whereas type 

is more constant and includes neuronal states (Tasic et al., 2017). Neuron types 

exist in a continuum, exhibiting variation in expression patterns within defined cell 

types, increasing difficulty in discreetly drawing the cutoff of one type from 

another (Cembrowski and Menon, 2018). Thus, the assertion that a given neuron 
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has a single transcriptomic profile is an oversimplification and simply represents 

a moment in time in the life of a given cell.  

The present study has limitations. The expression of the focal gene set of 

ion channels, receptors, gap junction innexins, and neurotransmitter-related 

transcripts examined here ultimately discriminated neuron types fairly well, using 

supervised methods taking into account known neuron identity. This same gene 

set did not perform well in the same cell types using RNA-seq (Fig. 4.5), where a 

lack of low-abundance transcripts (such as transcription factors and ion 

channels) may have prevented us from robustly identifying cell-type-specific 

expression patterns; thus, depth of sequencing is always an ambiguity in every 

RNA-seq study  (Rizzetto et al., 2017). Furthermore, while we sampled the 

mRNA transcriptome of individual neurons, we have not measured other gene 

products that could drive unique identity, including noncoding RNA species such 

as microRNA (miRNA) and long noncoding RNA (lncRNA) (Sheng et al., 2017). 

Epigenetic modifications have also been implicated in neuronal cell identity (Mito 

et al., 2018), which were not considered in this study. Further, there are 

numerous other methods and statistical analyses being applied to molecular 

profiles to distinguish cell type. We focused on the more commonly employed 

analyses (PCA, hierarchical clustering, and machine learning algorithms) in the 

literature. Finally, although we are confident in our ability to identify and harvest 

the targeted neuron types, we cannot entirely rule out the possibility of an 

occasional misidentified or wrongly isolated cell, as well as the potential 

presence of adherent support cells. 
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This present study reveals the circular nature of using transcriptomics to 

identify cell types: Molecular profiling is most effective when cells are separated 

into distinct types a priori, yet this is often not possible in many systems. So then 

how can we most effectively use molecular profiling on unknown populations of 

cells? The clear answer is to provide as much multimodal data as possible in the 

analysis. Here, the additional data were an a priori separation into cell type 

based on electrophysiological output, synaptic connectivity, axonal projection, 

and muscle innervation target (Marder and Bucher, 2007). While it has been 

more difficult to achieve multimodal data integration in systems such as cortex, 

the approach is gaining traction and proving effective (Kim et al., 2019). 

For example, supervised clustering methods proved superior to 

unsupervised algorithms in separating pyramidal neurons from interneurons in 

the mouse neocortex based on morphological phenotypes  (Guerra et al., 2011). 

Genetically and anatomically defined cell populations in the mouse cortex have 

revealed much finer resolution and confidence in molecular profiling (Sugino et 

al., 2019), and combined physiological and transcriptomic approaches have 

yielded valuable insights into spinal interneuron diversity as well (Bikoff et al., 

2016). Much like a circuit’s connectome alone is insufficient to predict network 

output and function (Gutierrez et al., 2013), so too the transcriptome alone is 

insufficient to generate a definitive cell type. Yet it also is clear that transcriptome 

profiling provides valuable insight into understanding the functional role of 

individual neurons and neuron types in a network. Therefore, increasing 

evidence indicates that transcriptomic approaches will benefit from integration 
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with other modalities of cell-defining characteristics to gain more accurate 

distinctions among cell types. scRNA-seq data on their own should be viewed 

with caution with respect to a definitive cell identity assessment until more 

studies with multimodal integration become available. 

 

Conclusion  

Classification and characterization of cell types often has been performed 

ad hoc within the context of specific studies or species rather than based on a 

systematic approach. Without a more systematic attempt to define cell type, it will 

be challenging to use the extensive data being generated in a comparative 

fashion to its fullest potential (Tosches and Laurent, 2019). Acknowledging that 

cell types and their diversity are the product of evolution, Arendt et al. (Arendt et 

al., 2016) defined a cell type as “a set of cells in an organism that change in 

evolution together, partially independent of other cells, and are evolutionarily 

more closely related to each other than to other cells.” As a consequence, cells 

of a given type use certain genomic information—both coding and noncoding—

that determines cell identity and is not used by other cells. This suggests that 

single-cell gene expression profiling is a valuable approach to attain a 

comprehensive understanding of an organism’s cellular physiology. As such, cell 

classification schemes are susceptible to similar limitations as phylogenetic 

studies. For example, the species concept continues to be an area of active 

discussion among evolutionary biologists  (Freudenstein et al., 2017), and 

prokaryotic species assignment shares many of the same challenges as single-



 

119 
 

cell eukaryotic cell-identity approaches (Konstantinidis et al., 2006). Yet there are 

lessons to be carried across these diverse disciplines. Just as the application of 

molecular characters in phylogenetic analyses was initially met with skepticism, 

ultimately this approach became an essential scientific discipline, in part due to 

the value of combined molecular, morphological, and behavioral data (Avise, 

1994). Transcriptomic approaches to cell identity already are broadly embraced. 

However, to fully leverage these kinds of data, it seems prudent to generate a 

more systematic definition and approach to classifying neuron identity. This 

definition should strive to combine multiple modalities of data, both to increase 

confidence in the transcriptomic identification as well as refine and better 

standardize the definition of what constitutes distinct cell types or unique cell 

identity. 

Methods 

Cell Collection and RNA Preparation.  

All animal experiments were approved by the Animal Care and Use 

Committees at University of Missouri-Columbia and Brandeis University. Adult 

male Jonah crabs, C. borealis, were purchased from the Fresh Lobster Company 

(Gloucester, MA) and Commercial Lobster (Boston, MA). Animals were allowed 

to acclimate to their tanks and kept in filtered artificial seawater tanks chilled at 

10 °C to 13 °C on a 12/12 light:dark cycle until use. Prior to dissection, crabs 

were put on ice for 30 min to induce anesthetization. 

The complete stomatogastric nervous system (STNS) was dissected and 

pinned out in a dish coated in Sylgard (Dow Corning) with chilled (12 °C) 
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physiological saline (composition in mM/l: 440.0 NaCl, 20.0 MgCl2, 13.0 CaCl2, 

11.0 KCl, 11.2 Trizma base, and 5.1 maleic acid pH = 7.4 at 23 °C in RNase-free 

water). Recordings were made of the spontaneously active stomatogastric 

rhythms, and all were confirmed to be generating healthy and robust output 

equivalent to the standard in the extensive literature on this preparation (Marder 

and Bucher, 2007). This ensured all preparations used in this study were within 

the realm of normal physiological function. Following desheathing of the STG, 

neurons were identified by simultaneous intra- and extracellular recordings 

(Hooper et al., 1986; Weimann et al., 1991). Ten neuron types identified in the 

STG of C. borealis were targeted for this study: PD, LPG, LP, IC, LG, MG, GM, 

PY, VD, and DG. Identified neurons were extracted as previously described 

(Schulz et al., 2006b). More information is provided in SI Appendix, 

Supplemental Methods. Identified neurons (Fig. 4.1) were immediately placed in 

a cryogenic microcentrifuge tube containing 400 μL lysis buffer (Zymo Research) 

and stored at -80 °C until RNA extraction. Total RNA was extracted using the 

Quick-RNA MicroPrep kit (Zymo Research) per the manufacturer’s protocol. 

Library Preparation and Single-Cell RNA-Seq.  

Library construction and RNAsequencing services were carried out by the 

University of Texas at Austin Genomic Sequencing and Analysis Facility (Austin, 

TX). Extracted single-cell RNA from identified neurons from the STG was used to 

generate cDNA libraries using TruSeq Stranded mRNA Library Prep Kit (Illumina, 

San Diego, CA). Libraries were sequenced in a paired-end 150-bp (2 × 150 bp) 

configuration on the NextSeq 500 Illumina platform (Illumina). Raw reads were 
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processed and analyzed on the Stampede Cluster at the Texas Advanced 

Computing Center. Read quality was checked using the program FASTQC. Low-

quality reads and adapter sequences were removed using the program Cutadapt 

(Martin, 2011). The 40 identified neurons used in this study all had at least 4 

million uniquely mapped reads per sample, comprising 11 PD, 11 GM, 8 LP, and 

8 VD cell types. These sequencing reads are deposited in the National Center for 

Biotechnology Information (NCBI) BioProject archive (PRJNA524309) with the 

following identifiers: BioSample: SAMN11022125; sample name: STG neurons; 

SRA: SRS4411333. 

Mapping and Differential Expression.  

The software package Kallisto (Bray et al., 2016) (v0.43.1) was used in 

the quantification of RNA-seq abundances through the generation of 

pseudoalignments of paired-end fastq files to the C. borealis annotated nervous 

system transcriptome (Northcutt et al., 2016b). While a fully annotated genome 

represents the best reference for mapping, there is no genome yet available for 

C. borealis. In general, decapod crustacean genomes are severely lacking. The 

only published decapod genome likely to be of high enough quality for such 

mapping is that of the marbled crayfish, Procambaurs fallax f. virginalis 

(Gutekunst et al., 2018). However, as this species likely last shared a common 

ancestor on the order of 350 mya, we did not feel mapping was likely to be 

successful. Therefore, we elected to use what is a fairly high-quality 

transcriptome from C. borealis. Bootstrapping of the quantification was performed 

iteratively for 100 rounds. Resulting counts were normalized through the 
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transcripts per kilobase million (TPM) method. Differential expression analysis 

was carried out using the software package Sleuth (Pimentel et al., 2017) 

(v0.30.0) using TPM normalized counts for each cell type. 

Gene Ontology Enrichment Analysis.  

Because C. borealis lacks a well-curated reference genome, GO terms 

were assigned to the C. borealis transcriptome based on best BLASTX hits 

through reciprocal queries between crab sequence and the Drosophila 

melanogaster NCBI RefSeq database (release 93). BLAST annotation was 

carried out based on Drosophila protein sequence using the BLAST2GO (version 

5.1) software suite with the blastx-fast alignment with an E value threshold = 

1.0E-3 to generate D. melanogaster NCBI gene IDs associated with each C. 

borealis contig. This produced 1,348 and 252 annotated gene IDs for the H2K 

and HVG datasets, respectively. These IDs were used as input for statistical 

overrepresentation tests using the PANTHER Gene Ontology Classification 

System (v14.1) with default settings using D. melanogaster as the reference 

species. Molecular function and biological process GO terms were examined for 

enrichment in these datasets, and results reported reflect FDR correction except 

where noted. 

Multiplex Primer and Probe Design.  

Multiplex primer and probe sequences targeting C. borealis genes were 

generated using the RealTimeDesign qPCR assay design software from LGC 

Biosearch Technologies (Petaluma, CA) for custom assays. Multiplex cassettes 

were designed as a unit to ensure minimal interference in simultaneous qPCR 
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reactions. Probe fluorophore/quencher pairs used in this study are as follows: 

FAM-BHQ1, CAL Fluor Gold 540-BHQ1, CAL Fluor Red 610-BHQ2, Quasar 670-

BHQ2, and Quasar 705-BHQ2. Forward and reverse primer pair, as well as 

associated probe, sequences can be found in SI Appendix, Table 4.S7. 

cDNA Synthesis and Preamplification.  

Following RNA extraction, individual neuron RNA samples were reverse 

transcribed into cDNA using qScript cDNA SuperMix (QuantaBio, Beverly, MA) 

primed with random hexamers and oligodT per the manufacturer’s protocol in 20-

μL reactions. Half of each resulting cDNA pool (10 μL) was preamplified using 

PerfeCTa PreAmp Supermix (QuantaBio) with a 14-cycle RT-PCR primed with a 

pool of target-specific primers (SI Appendix, Table 4.S7) in a 20-μL reaction per 

the manufacturer’s protocol to allow for enough product to carry out 15 multiplex 

qPCR reactions per individual neuron sample. Amplified and unamplified target 

abundances were compared to ensure minimal amplification bias in the 

preamplification of samples (SI Appendix, Fig. 4.S2). 

Quantitative Single-Cell RT-PCR.  

Following preamplification of cDNA, samples were diluted 7.5× in 

nuclease-free water (150 μL final volume) to allow for the quantification of 73 

unique gene products across 15 multiplex assays, each able to measure 4 to 5 

different transcripts (SI Appendix, Table 4.S7). Reactions were carried out in 

triplicate on 96-well plates with 10-μL reactions per well using a CFX96 Touch 

Real-Time PCR Detection System from Bio-Rad (Hercules, CA). Cycling 

conditions for qPCR reactions were as follows: 95 °C for 3 min; 40 cycles of 95 
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°C for 15 s and 58 °C for 1 min. Fluorescent measurements were taken at the 

end of each cycle. The final concentration of primers in each multiplex qPCR 

reaction was 2.5 μM and 0.3125 μM for each probe. 

To quantify absolute mRNA abundances, standard curves were developed 

for each qRT-PCR multiplex assay using custom gBlock gene fragments 

(Integrated DNA Technologies, Coralville, IA). Standard curves were generated 

using a serial dilution of gBlock gene fragments from 1 × 106 to 1 × 101 copies 

for each reaction assay and shown to be linear and reproducible. Copy numbers 

were calculated using the efficiency and slope generated from the standard 

curves and accounting for the 14-cycle preamplification and subsequent cDNA 

dilution described above. 

Statistical Analysis.  

Expanded details on these analyses are provided in the SI Appendix, 

Supplemental Methods.  

All statistical analyses were performed using R version 3.5.3 (2019-03-11) 

“Great Truth” (R Core Team and Team, 2008). We used single-cell RNA-seq 

data to evaluate our methods under expected and near best case scenarios. To 

this end, we reduced the dimensionality of the data (28,695 contigs) by selecting 

the 2,000 most variable contigs and by selecting 922 highly variable contigs. We 

selected those contigs differentially expressed at an alpha of 0.2 or 0.05, 

centered and scaled these datasets, and used PCA to determine if any of the cell 

types were visually separable across these subsets of the data. 
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Next, we performed cluster estimation using the optClust() function of the 

optCluster package  (Sekula et al., 2017). To assess the performance of 

unsupervised machine learning methods, we tested several clustering algorithms 

and clustering methods and selected the high-performing clustering methods 

based on the Jaccard index calculated against cell identity. We selected one of 

the best performing combinations (Ward’s method with correlation as the 

distance metric) for visualization. 

Finally, we applied several supervised machine-learning methods to 

evaluate predictive power of expression data in ideal circumstances (i.e., prior 

knowledge of a given cell type’s molecular identity). For each of the models, we 

tested a variety of tuning parameters and selected the most effective parameter 

set before comparison with other methods. Methods were evaluated by using 

cross-validation (with 5 folds) to produce the expected accuracy on new data. 

The same approaches were applied to the single-cell qRT-PCR dataset, with a 

few caveats. Given its relatively smaller size, dimensionality reduction was not 

necessary to overcome technical or practical hurdles. Thus, we tested both the 

raw and centered and scaled dataset in addition to PCA transformations of the 

same. We also increased the maximum k allowed in cluster estimation to 32 
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Supporting Information Appendix 

Supplemental Methods 

Cell collection. 

A Vaseline well was constructed around the ganglion, in which ~2.5 mg/ml 

protease (Sigma – P6911, St. Louis, MO) in chilled physiological saline was 

added to disrupt connective tissue and loosen adherent support cells during a 

10-15 minute incubation. The well was then thoroughly washed with fresh 

physiological saline to halt further enzymatic activity and remove any loose 

support or connective cells. Chilled ethylene glycol was gradually added in 

increasing concentration until a 70% solution of chilled ethylene glycol in saline 

was present to the well. During the process of protease digestion, normal activity 

continues in the STG (Schulz et al., 2006b), and this activity maintains patterns 

of gene expression in STG neurons for at least some classes of gene products 

(Temporal et al., 2014b; Santin and Schulz, 2019b). Furthermore, the time from 

the initiation of protease digestion to suspension in cold ethylene glycol (which 

represents a stable end point) is < 45 minutes. Normal STG output can be 

maintained for many days (Luther et al., 2003; Hamood et al., 2015), and steady 

state mRNA levels remain relatively stable for at least 72 hours as long as 

activity is maintained (Temporal et al., 2014b). When activity is disrupted, 

significant changes in channel mRNAs can be detected only on the order of 8 

hours (Santin and Schulz, 2019b). and our preliminary data show no changes 

within 2 hours in cardiac motor neurons (LCs; unpublished observation). While 

we cannot determine whether the collection process does not alter steady state 
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mRNA levels for all gene products, present evidence suggests that the time 

frame over which the neurons are harvested is not likely to substantially change 

the state of these neurons relative to those in intact ganglia.  

Once the ganglia were suspended in cold 70% ethylene glycol solution, 

the saline outside the well was replaced with distilled water, and the entire dish 

was frozen at -20°C for 30 minutes. This constitutes a freeze substitution that 

allows the easy hand-dissection and removal of single, intact neurons for 

biochemical and molecular analyses (Marder, 1976). Due to the large size of C. 

borealis STG neuronal somata (50-150 µM in diameter) (Ransdell et al., 2010), 

fine forceps were used to manually remove each neuron. 

Statistical Analysis. 

All statistical analyses were performed using R version 3.5.3 (2019-03-11) 

-- "Great Truth" (R Core Team and Team, 2008). We used single cell RNA-seq 

data to evaluate our methods under expected and near best case scenarios. To 

this end, we reduced the dimensionality of the data (28,695 contigs) by selecting 

the 2000 most variable contig and by selecting 922 highly variable contigs 

selected using the M3Drop implementation of the Brennecke method (Brennecke 

et al., 2013) (i.e. M3Drop::BrenneckeGetVariableGenes() function (Andrews, 

2019)) assuming a 0.2 false discovery rate. To test performance under ideal 

conditions we selected those contigs differentially expressed at an alpha of 0.2 or 

0.05. We centered and scaled the aforementioned datasets and their progenitors 

via the caret::predict() and caret::preprocess() functions (from Jed Wing et al., 

2018). We also tested dimensionality reduction via PCA. We further used PCA in 
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exploratory data analysis to determine if any of the cell types were visually 

separable across four subsets of the data (Seq H2K, Seq HVG, Seq DE0.2, and 

Seq DE0.05). 

Next, we performed cluster estimation using the optClust() function of the 

optCluster package  (Sekula et al., 2017). The algorithms used on each dataset 

varied by whether the data were counts or continuous. Allowed k values ranged 

from 2-10 (i.e. cells in dataset / 4, rounding up). We selected the top three 

predicted k values from each algorithm for visualization of the spread of predicted 

ks.  

To assess the performance of unsupervised machine learning methods 

we tested several clustering algorithms – kmeans clustering, hierarchical 

clustering (using a variety of distance metrics, (euclidean, maximum, manhattan, 

canberra, binary, minkowski, correlation, uncentered) and clustering methods 

(ward.D, ward.D2, single, complete, average, mcquitty, median, centroid, 

ward.D2)), and SNN-Cliq clustering (Xu and Su, 2015). We then selected high 

performing clustering methods based on the Jaccard index calculated against 

cell identity. We selected one of the best performing combinations (Ward’s 

method with correlation as the distance metric) for visualization.  

We applied several supervised machine learning methods to evaluate 

predictive power of expression data in ideal circumstances (i.e. prior knowledge 

of a given cell type’s molecular identity). Specifically, we tested elastic 

regression, k-nearest neighbors, linear discriminant analysis, neural network, 

multinomial neural network, random forest, support vector machine with a radial 
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kernel, and support vector machine with a linear kernel. For each of these 

models we tested a variety of tuning parameters and selected the most effective 

parameter set before comparison with other methods. Methods were evaluated 

by using cross validation (with five folds) to produce the expected accuracy on 

new data. The same approaches were applied to the single cell RT-qPCR data 

set, with a few caveats. Given its relatively smaller size, dimensionality reduction 

was not necessary to overcome technical or practical hurdles. Thus, we tested 

both the raw and centered and scaled dataset in addition to PCA transformations 

of the same. We also increased the maximum k allowed in cluster estimation to 

32. 
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Figure Legends, Tables, Extended Data, and Multimedia 

Figure 4.1 Connectome and representative waveforms of neurons from the 

stomatogastric and cardiac ganglia  

 

(A) Photomicrograph of the stomatogastric ganglion. (Scale bar, 200 μm.) (B) Circuit 

map of the STG. The STG contains 12 cell types that innervate the pylorus and gastric 

mill of the crab stomach. These cells are individually identifiable, and their chemical 

(closed circles) and electrical (resistor symbols) synaptic connections are all known. We 

used 10 of these 12 STG cell types (not AB or Int1) for this study, as well as motor 

neurons of the cardiac ganglion as an outgroup for comparison. Example traces were 

taken from intracellular recordings of each of the 11 identified neuron types used in this 

study. Neurons are involved in 3 different networks/circuits in the crab, C. borealis: the 

pyloric network (anterior burster (AB), PD, LPG, LP, and PY; orange box), the gastric 

network (LG, DG, and GM; red box) and the cardiac ganglion network (Bottom). Note the 

time scale difference in the long-lasting bursts of the gastric cells (red box) relative to the 

pyloric cells (orange box). Some neurons (interneuron 1 (INT1), IC, VD, and MG) 

participate in both gastric and pyloric network activity and are noted in the purple box. 

LC motor neurons of the cardiac ganglion are used as an “outgroup” to compare 

expression patterns of motor neurons from a distinct ganglion (cardiac ganglion). Each 

of the representative recordings is independent as an example of individual cell output, 
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and simultaneous network activity is not plotted here. Thus, none of the phase 

relationships of these units within their respective rhythms is implied in any of the 

recordings.  
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Figure 4.2 Efficacy of clustering, cluster estimation, and classification 

procedures with single-cell RNA-seq measurements. 

 

Post hoc recapitulation of cell identity via single-cell RNA-seq with hierarchical clustering 

and sML algorithms. (A) Hierarchical clustering of cell type with correlation as the 

distance metric, Ward.D2, as the clustering method, and data centered and scaled by 

contig for all expressed contigs, (B) HVG dataset, and (C) DE contigs at the q < 0.05 

level. Each cell type is color coded, and AU P values are noted for each of the major 

nodes. Cells are identified by type (LP, PD, GM, VD) and a subscript that denotes a 

unique sample identifier. (D) Dotplot of the top 3 predicted number of clusters (k values) 

for 8 algorithms. None of these algorithms correctly predicted the expected 4 distinct 

clusters that would represent the 4 different cell types in this assay. (E) Accuracy 

(proportion of correctly identified cells) of cell-type prediction using 8 different methods of 

sML (GLM, kNN, NN, MNN, RF, SVML, SVMR, and LDA) for each of the datasets. Box 

and whisker plots show the efficacy of these methods to recapitulate cell identity from 
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these 2 sets of contigs as estimated by cross-validation (5 folds). To assess the efficacy 

of these methods on the full RNA-seq dataset, we used PCA for dimensionality reduction 

(i.e., >28,000 contigs to 38 PCs) while retaining 99% of the variance. Results are shown 

for raw data (Top row) and data scaled across contigs (Bottom row). 
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Figure 4.3 Principal component analysis using variable or differentially 

expressed contigs 

 

PCA for 4 different RNA-seq datasets. We performed PCA using (A) the 2,000 contigs 

with the highest variance in expression (H2K), (B) the HVG and DE contigs at the (C) q < 

0.2 (DE0.2), and (D) q < 0.05 (DE0.05) levels. For each panel we have plotted pairwise 

comparisons of PC1, PC2, and PC3, as well as a scree plot representing the percentage 

of variance explained by PCs 1 through 10. 
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Figure 4.4 Efficacy of clustering, cluster estimation, and classification 

procedures with single-cell qRT-PCR measurements. 

 

Post hoc recapitulation of cell identity via qRT-PCR expression with hierarchical 

clustering and sML algorithms. (A) Hierarchical clustering of cell type with correlation as 

the distance metric and Ward.D2 as the clustering method for data centered and scaled 

across genes. AU P values for a given node are noted in red. Each node that has >80% 

support by AU P value is color coded, and cell types that form a largely coherent group 

are noted in bold. Cells that do not appear to cluster by type are noted in gray. Cells are 

identified by type and a subscript that denotes a unique sample identifier. (B) Dotplot of 

the top 3 predicted number of clusters based on 8 different prediction algorithms. None 

of these methods correctly predicted 11 distinct clusters that would represent the 11 

different cell types in this assay. (C) Accuracy of cell-type prediction using 8 different 

methods of sML for each of the datasets. Box and whisker plots show efficacy of each 

method across 5 cross-validation folds. (D) PCA for qRT-PCR data. Pairwise 
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comparisons of PC1, PC2, and PC3 are shown in each panel as in Fig. 4.3. PC1 

accounted for 31.2% of the variance, PC2 accounted for 16.6%, and PC3 accounted for 

9.6% of the total variance across samples. A scree plot shows the amount of variance 

explained by PCs 1 through 10.  
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Figure 4.5 Expression level and clustering results using qRT-PCR or RNA-

seq 

 

Comparison of expression levels and clustering between qRT-PCR and RNA-seq 

data. (A) Expression levels of 4 different genes (choline acetyltransferase 

[ChAT], vesicular acetylcholine transporter [vAChT], NMDA receptor subtype 2B 

[NMDA2B], and K+ two-pore-domain channel subfamily K member 1 [KCNK1]) 

between the RNA-seq and qRT-PCR datasets. Data shown are medians, 

quartiles, and each individual value from a given animal. Each individual data 

point is also represented as open circles. RNA-seq data are presented as TPM 

while qRT-PCR data as absolute copy number per cell. (B) Hierarchical 

clustering comparison between qRT-PCR (Top) and RNA-seq (Bottom) for the 

same 65 genes represented in the genes of interest pool shown in Fig. 4.1. Each 
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cell type is color coded, and nodes are labeled with AU values as in previous 

figures. (C) PCA for scRNA-seq versus qRT-PCR channel and receptor data. 

Pairwise comparisons of PC1, PC2, and PC3 are shown in each panel as in Fig. 

4.3. 
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Supplemental Figures 

Figure 4.S1 Abundance of ion channels, innexins, and NA/K ATPase 

contigs  

Count numbers for selected voltage-gated ion channels from the RNA-seq data. 

The median counts for each of the voltage-gated channels used in the RT-PCR 

analysis was generated by pooling cell type. Innexins and the Na+/K+ ATPase 

are used as a reference of more highly abundant gene products. 
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Figure 4.S2 Effect of preamplification of quantitation cycle  

Comparison of expression levels of the same single cell samples (N = 5) before 

(Unamplified) and after (Amplified) 14 cycles of preamplification of cDNA. Each 

sample represents a cDNA pool from a single identified neuron, half of which was 

preamplified and half remained unamplified. Data are shown as quantitation 

cycle (Cq) values. Statistics shown report values for Pearson’s Correlation test. 
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Table 4.S1: Top ten contributing genes or contigs to PCs1-3 for each 

dataset. 

Dataset Rank PC1 PC1 value PC2 PC2 value PC3 PC3 value 

qRTPCR 1 LCCH3r 3.54 NaV 6.30 GluCl 9.12 

qRTPCR 2 mGABA3 3.10 Shal 5.65 GABAB_R1 8.04 

qRTPCR 3 mGluR5 3.06 NMDA_1A 5.16 vAChT 7.56 

qRTPCR 4 CaV2 3.05 KCNK1 4.95 HisCL 6.74 

qRTPCR 5 Shab 3.02 Shaker 4.54 ChAT 6.57 

qRTPCR 6 KCNH3 2.97 IH 3.47 IH 6.16 

qRTPCR 7 DAR1A 2.91 KCNK2 3.45 INX4 6.13 

qRTPCR 8 SKKCa 2.87 BKKCa 3.10 vGluT 5.29 

qRTPCR 9 His_3r 2.86 Dopa_1Br 3.06 RDLr 4.16 

qRTPCR 10 TRP_A_like 2.82 RDLr 2.93 CCAPr 3.11 

seq_h2k 1 c1318 0.10 c4636 0.50 c4191 0.59 

seq_h2k 2 c724 0.10 c8463 0.50 c751 0.58 

seq_h2k 3 c2022 0.10 c28755 0.50 c8533 0.49 

seq_h2k 4 c1834 0.10 c17319 0.50 c953 0.46 

seq_h2k 5 c718 0.10 c10220 0.50 c2665 0.46 

seq_h2k 6 c2357 0.10 c27163 0.49 c2126 0.45 

seq_h2k 7 c196 0.10 c5528 0.49 c2981 0.45 

seq_h2k 8 c739 0.10 c10716 0.49 c3881 0.42 

seq_h2k 9 c2301 0.10 c9333 0.49 c23433 0.41 

seq_h2k 10 c1048 0.10 c13463 0.49 c1647 0.40 

seq_hvg 1 c38450 0.50 c18443 0.63 c29394 0.80 

seq_hvg 2 c5595 0.50 c17911 0.63 c23916 0.80 

seq_hvg 3 c28755 0.50 c13615 0.63 c39794 0.80 

seq_hvg 4 c11256 0.49 c16416 0.63 c24360 0.80 

seq_hvg 5 c20433 0.49 c17569 0.63 c18403 0.79 

seq_hvg 6 c39762 0.49 c17622 0.63 c7694 0.79 

seq_hvg 7 c13489 0.49 c18306 0.63 c11984 0.79 

seq_hvg 8 c19224 0.49 c19165 0.63 c16991 0.79 

seq_hvg 9 c30088 0.49 c19999 0.63 c18899 0.79 

seq_hvg 10 c4923 0.49 c22142 0.63 c25542 0.79 

seq_DE0.2 1 c5749 1.62 c4517 3.20 c13441 5.94 

seq_DE0.2 2 c1898 1.44 c398 2.92 c1058 4.27 

seq_DE0.2 3 c23967 1.43 c878 2.92 c31757 3.14 

seq_DE0.2 4 c5120 1.41 c4945 2.87 c9248 3.05 

seq_DE0.2 5 c1219 1.39 c3559 2.69 c2212 3.02 

seq_DE0.2 6 c8871 1.37 c15559 2.64 c4534 2.63 

seq_DE0.2 7 c972 1.35 c8507 2.50 c8114 2.61 

seq_DE0.2 8 c973 1.33 c1151 2.15 c10145 2.57 

seq_DE0.2 9 c12663 1.32 c8323 2.06 c2981 2.47 

seq_DE0.2 10 c910 1.30 c1800 2.00 c14660 2.35 

seq_DE0.05 1 c21272 4.69 c4517 8.85 c1058 13.16 

seq_DE0.05 2 c5716 4.21 c16963 7.16 c13441 11.60 

seq_DE0.05 3 c5120 4.14 c3348 6.68 c2212 10.64 

seq_DE0.05 4 c3737 3.77 c1151 6.05 c2586 7.17 

seq_DE0.05 5 c8114 3.72 c14320 5.14 c5845 5.83 

seq_DE0.05 6 c16240 3.59 c5222 4.93 c14320 4.87 

seq_DE0.05 7 c2796 3.56 c8323 4.57 c4997 4.10 

seq_DE0.05 8 c1713 3.43 c5067 4.35 c14660 4.06 

seq_DE0.05 9 c49 3.38 c1324 4.12 c3348 4.00 

seq_DE0.05 10 c3716 3.23 c24846 4.08 c4534 3.86 
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Table 4.S2: Gene Ontology Enrichment analysis of Molecular Function for 

H2K RNAseq data. 

GO term: molecular function  

Fold 

Enrichment 

FDR 

p-value 

proton-transporting ATP synthase activity, rotational mechanism (GO:0046933) 8.08+ 2.88E-04 

clathrin binding (GO:0030276) 6.82+ 4.51E-03 

ubiquitin conjugating enzyme activity (GO:0061631) 4.6+ 1.59E-02 

intramolecular oxidoreductase activity (GO:0016860) 4.32+ 2.22E-02 

structural constituent of ribosome (GO:0003735) 4.02+ 4.61E-11 

proton-transporting ATPase activity, rotational mechanism (GO:0046961) 3.84+ 4.35E-02 

structural constituent of cytoskeleton (GO:0005200) 3.84+ 4.30E-02 

unfolded protein binding (GO:0051082) 3.8+ 4.00E-05 

heat shock protein binding (GO:0031072) 3.73+ 5.01E-02 

mRNA 3'-UTR binding (GO:0003730) 3.73+ 4.96E-02 

cell adhesion molecule binding (GO:0050839) 3.57+ 3.89E-02 

translation factor activity, RNA binding (GO:0008135) 3.27+ 4.57E-03 

electron transfer activity (GO:0009055) 3.07+ 1.79E-02 

GTPase activity (GO:0003924) 3.07+ 6.09E-05 

GTP binding (GO:0005525) 2.97+ 6.78E-05 

actin binding (GO:0003779) 2.95+ 4.42E-04 

kinase binding (GO:0019900) 2.85+ 7.78E-03 

microtubule binding (GO:0008017) 2.75+ 3.98E-03 

phospholipid binding (GO:0005543) 2.56+ 3.16E-02 

calcium ion binding (GO:0005509) 2.4+ 1.60E-03 

protein-containing complex binding (GO:0044877) 2.39+ 7.29E-04 

ATP binding (GO:0005524) 2.31+ 1.36E-10 

protein serine/threonine kinase activity (GO:0004674) 2.17+ 1.31E-02 

enzyme regulator activity (GO:0030234) 1.83+ 1.40E-02 

DNA-binding transcription factor activity (GO:0003700) 0.41- 1.79E-02 

serine-type endopeptidase activity (GO:0004252) 0.1- 1.90E-03 
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Table 4.S3: Gene Ontology Enrichment analysis of Biological Process for 

H2K RNAseq data. 

GO term: biological process  

Fold 

Enrichment 

FDR 

p-value 

regulation of short-term neuronal synaptic plasticity (GO:0048172) 10.96+ 6.64E-03 

positive regulation of neuron remodeling (GO:1904801) 10.63+ 7.39E-05 

substrate adhesion-dependent cell spreading (GO:0034446) 10.23+ 2.68E-03 

actin filament polymerization (GO:0030041) 9.59+ 9.52E-03 

clathrin-dependent synaptic vesicle endocytosis (GO:0150007) 8.77+ 3.43E-02 

protein N-linked glycosylation via asparagine (GO:0018279) 8.77+ 3.42E-02 

gluconeogenesis (GO:0006094) 8.53+ 1.31E-02 

dorsal closure, spreading of leading edge cells (GO:0007395) 8.53+ 1.31E-02 

morphogenesis of larval imaginal disc epithelium (GO:0016335) 7.67+ 4.63E-02 

retrograde axonal transport (GO:0008090) 7.67+ 1.79E-02 

ATP synthesis coupled proton transport (GO:0015986) 7.03+ 1.14E-04 

vesicle transport along microtubule (GO:0047496) 6.98+ 2.40E-02 

axonal transport of mitochondrion (GO:0019896) 6.98+ 2.39E-02 

anterograde axonal transport (GO:0008089) 6.98+ 2.39E-02 

cellular response to metal ion (GO:0071248) 6.39+ 3.07E-02 

axonal fasciculation (GO:0007413) 6.14+ 3.23E-03 

female germ-line stem cell asymmetric division (GO:0048132) 5.97+ 7.80E-03 

regulation of reactive oxygen species metabolic process (GO:2000377) 5.9+ 3.80E-02 

actin nucleation (GO:0045010) 5.48+ 4.75E-02 

positive regulation of photoreceptor cell differentiation (GO:0046534) 5.48+ 4.74E-02 

sevenless signaling pathway (GO:0045500) 5.42+ 2.40E-02 

ovarian follicle cell stalk formation (GO:0030713) 5.42+ 2.39E-02 

synaptic vesicle priming (GO:0016082) 5.42+ 2.39E-02 

flight behavior (GO:0007629) 5.42+ 2.39E-02 

positive regulation of endocytosis (GO:0045807) 5.42+ 3.15E-04 

positive regulation of lipid localization (GO:1905954) 5.42+ 2.38E-02 

positive regulation of canonical Wnt signaling pathway (GO:0090263) 5.39+ 1.58E-04 

ribosomal large subunit assembly (GO:0000027) 5.37+ 1.19E-02 

positive regulation of smoothened signaling pathway (GO:0045880) 5.31+ 3.15E-03 
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positive regulation of protein modification by small protein conjugation or removal 

(GO:1903322) 5.12+ 2.94E-02 

glucose homeostasis (GO:0042593) 5.12+ 2.40E-04 

lumen formation, open tracheal system (GO:0035149) 5.12+ 3.83E-03 

cellular protein complex disassembly (GO:0043624) 5.12+ 7.47E-03 

glycolytic process (GO:0006096) 4.91+ 8.93E-03 

oocyte microtubule cytoskeleton polarization (GO:0008103) 4.85+ 3.49E-02 

hemocyte migration (GO:0035099) 4.6+ 4.17E-02 

negative regulation of supramolecular fiber organization (GO:1902904) 4.55+ 1.26E-02 

maintenance of protein location in cell (GO:0032507) 4.51+ 4.05E-03 

regulation of R7 cell differentiation (GO:0045676) 4.39+ 4.95E-02 

cell adhesion mediated by integrin (GO:0033627) 4.39+ 4.94E-02 

positive regulation of neuromuscular junction development (GO:1904398) 4.39+ 4.76E-03 

terminal branching, open tracheal system (GO:0007430) 4.39+ 1.49E-02 

pole plasm oskar mRNA localization (GO:0045451) 4.32+ 9.07E-03 

positive regulation of organ growth (GO:0046622) 4.3+ 3.01E-02 

antibiotic metabolic process (GO:0016999) 4.3+ 3.00E-02 

adherens junction organization (GO:0034332) 4.26+ 5.62E-03 

epithelial cell migration, open tracheal system (GO:0007427) 4.26+ 5.61E-03 

regulation of cell-cell adhesion (GO:0022407) 4.23+ 1.77E-02 

intestinal stem cell homeostasis (GO:0036335) 4.23+ 1.77E-02 

regulation of filopodium assembly (GO:0051489) 4.19+ 1.06E-02 

heart morphogenesis (GO:0003007) 4.15+ 6.50E-03 

negative regulation of autophagy (GO:0010507) 4.13+ 3.47E-02 

reactive oxygen species metabolic process (GO:0072593) 4.13+ 3.45E-02 

plasma membrane invagination (GO:0099024) 4.13+ 3.45E-02 

ATP hydrolysis coupled proton transport (GO:0015991) 4.04+ 7.57E-03 

olfactory learning (GO:0008355) 4.04+ 7.54E-03 

positive regulation of translation (GO:0045727) 4.04+ 7.50E-03 

rhabdomere development (GO:0042052) 4.02+ 4.61E-03 

synaptic growth at neuromuscular junction (GO:0051124) 3.95+ 1.43E-02 

protein folding (GO:0006457) 3.93+ 6.74E-08 

establishment of mitotic spindle localization (GO:0040001) 3.84+ 4.66E-02 

salivary gland cell autophagic cell death (GO:0035071) 3.84+ 4.65E-02 

insulin receptor signaling pathway (GO:0008286) 3.84+ 4.64E-02 

regulation of lipid storage (GO:0010883) 3.74+ 1.15E-02 



 

147 
 

negative regulation of cytoskeleton organization (GO:0051494) 3.72+ 3.20E-02 

negative regulation of smoothened signaling pathway (GO:0045879) 3.72+ 3.20E-02 

mitochondrial ATP synthesis coupled electron transport (GO:0042775) 3.65+ 1.75E-04 

regulation of peptide secretion (GO:0002791) 3.64+ 2.21E-02 

behavioral response to ethanol (GO:0048149) 3.63+ 3.40E-03 

regulation of chemotaxis (GO:0050920) 3.61+ 3.63E-02 

response to unfolded protein (GO:0006986) 3.61+ 3.62E-02 

positive regulation of cell size (GO:0045793) 3.57+ 1.48E-02 

tight junction organization (GO:0120193) 3.54+ 2.50E-02 

apical junction assembly (GO:0043297) 3.52+ 1.02E-02 

cytosolic transport (GO:0016482) 3.5+ 4.39E-03 

cytokinetic process (GO:0032506) 3.49+ 1.69E-02 

regulation of axonogenesis (GO:0050770) 3.47+ 3.00E-03 

negative regulation of protein phosphorylation (GO:0001933) 3.44+ 2.05E-03 

positive regulation of cell morphogenesis involved in differentiation (GO:0010770) 3.41+ 4.69E-02 

establishment or maintenance of apical/basal cell polarity (GO:0035088) 3.37+ 3.20E-02 

regulation of multicellular organism growth (GO:0040014) 3.34+ 2.20E-02 

morphogenesis of follicular epithelium (GO:0016333) 3.31+ 1.47E-02 

translational initiation (GO:0006413) 3.25+ 1.65E-02 

regulation of protein stability (GO:0031647) 3.25+ 1.65E-02 

neuromuscular synaptic transmission (GO:0007274) 3.23+ 1.13E-02 

autophagy (GO:0006914) 3.23+ 4.15E-04 

imaginal disc-derived wing margin morphogenesis (GO:0008587) 3.19+ 1.86E-02 

mitotic cytokinesis (GO:0000281) 3.16+ 6.07E-03 

long-term memory (GO:0007616) 3.15+ 4.15E-03 

germ-line stem cell population maintenance (GO:0030718) 3.15+ 2.84E-03 

asymmetric neuroblast division (GO:0055059) 3.14+ 4.50E-02 

cell redox homeostasis (GO:0045454) 3.13+ 3.09E-02 

response to growth factor (GO:0070848) 3.13+ 3.08E-02 

synaptic target recognition (GO:0008039) 3.13+ 3.07E-02 

amino acid transport (GO:0006865) 3.01+ 3.76E-02 

axon guidance (GO:0007411) 2.94+ 1.77E-08 

positive regulation of locomotion (GO:0040017) 2.63+ 4.08E-02 

negative regulation of neurogenesis (GO:0050768) 2.63+ 3.09E-02 
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Table 4.S4: Gene Ontology Enrichment analysis of Molecular Function for 

HVG RNAseq data. 

GO term: molecular function  

Fold 

Enrichment 

FDR 

p-value 

ATP binding (GO:0005524) 3.1+ 1.72E-03 

transferase activity (GO:0016740) 2+ 2.38E-02 

 

Table 4.S5: Gene Ontology Enrichment analysis of Biological Process for 

HVG RNAseq data. 

GO term: molecular function  

Fold 

Enrichment 

FDR 

p-value 

regulation of protein localization to plasma membrane (GO:1903076) 35.33+ 4.79E-02 

chromatin silencing (GO:0006342) 7.69+ 3.12E-02 

nucleic acid metabolic process (GO:0090304) 2.17+ 3.74E-02 

macromolecule modification (GO:0043412) 2.08+ 3.91E-02 

cellular macromolecule metabolic process (GO:0044260) 1.84+ 2.22E-02 
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Table 4.S6: Gene Ontology Enrichment analysis of Molecular Function for 

DE0.2 RNAseq data. 

GO term: molecular function  

Fold 

Enrichment 

raw 

p-value 

choline:sodium symporter activity (GO:0005307)  > 100+ 7.51E-03 

acetylcholine transmembrane transporter activity (GO:0005277)  > 100+ 7.51E-03 

dihydroorotase activity (GO:0004151)  > 100+ 7.51E-03 

choline O-acetyltransferase activity (GO:0004102)  > 100+ 7.51E-03 

carboxyl- or carbamoyltransferase activity (GO:0016743)  > 100+ 7.51E-03 

carbamoyl-phosphate synthase (glutamine-hydrolyzing) activity (GO:0004088)  > 100+ 7.51E-03 

aspartate carbamoyltransferase activity (GO:0004070)  > 100+ 7.51E-03 

very-long-chain-acyl-CoA dehydrogenase activity (GO:0017099)  > 100+ 7.51E-03 

latrotoxin receptor activity (GO:0016524)  > 100+ 7.51E-03 

glutamine binding (GO:0070406)  > 100+ 7.51E-03 

L-iduronidase activity (GO:0003940)  > 100+ 7.51E-03 

choline binding (GO:0033265)  > 100+ 7.51E-03 

myosin II light chain binding (GO:0032033)  > 100+ 1.12E-02 

kinetochore binding (GO:0043515)  > 100+ 1.12E-02 

GABA-gated chloride ion channel activity (GO:0022851) 88.25+ 1.50E-02 

receptor antagonist activity (GO:0048019) 88.25+ 1.50E-02 

GABA-A receptor activity (GO:0004890) 66.19+ 1.87E-02 

smoothened binding (GO:0005119) 66.19+ 1.87E-02 

patched binding (GO:0005113) 66.19+ 1.87E-02 

histone demethylase activity (H3-K4 specific) (GO:0032453) 66.19+ 1.87E-02 

kinesin binding (GO:0019894) 58.83+ 7.47E-04 

histone demethylase activity (H3-K36 specific) (GO:0051864) 52.95+ 2.24E-02 

morphogen activity (GO:0016015) 52.95+ 2.24E-02 

MAP-kinase scaffold activity (GO:0005078) 52.95+ 2.24E-02 

extracellular matrix binding (GO:0050840) 52.95+ 2.24E-02 

axon guidance receptor activity (GO:0008046) 44.12+ 2.61E-02 

protein kinase C binding (GO:0005080) 44.12+ 2.61E-02 

RNA polymerase II activity (GO:0001055) 29.42+ 3.70E-02 

epidermal growth factor receptor binding (GO:0005154) 29.42+ 3.70E-02 

phosphatidylserine binding (GO:0001786) 29.42+ 3.70E-02 



 

150 
 

cell-cell adhesion mediator activity (GO:0098632) 24.07+ 4.42E-02 

fatty-acyl-CoA binding (GO:0000062) 24.07+ 4.42E-02 

microtubule plus-end binding (GO:0051010) 22.06+ 4.78E-02 

calcium-dependent phospholipid binding (GO:0005544) 22.06+ 4.78E-02 

amino acid transmembrane transporter activity (GO:0015171) 9.46+ 2.01E-02 

flavin adenine dinucleotide binding (GO:0050660) 7.79+ 2.85E-02 

GTP binding (GO:0005525) 5.12+ 2.15E-02 
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Table 4.S7: Target primer and probe sequences for qRT-PCR Multiplex 

assays. 

Each box represents a group of four to five genes that were combined into a 

single multiplex reaction. 

Gene 
Accessio

n # Forward / Reverse Primer 5’-3’ sequence Probe 5’-3’ sequence 
HTR1A KU710381.1 AACCGCTGTGGTAGTTTCCA / 

TGCTCGTTAACCCGGACTAAG 
AGCGCCTTTATTTGGCTGGAAGGA 

HTR2 KU710380.1 TCCGCCTCCATCAAGTTTGT / 
GCACGTTGGCGATGAAGAAC 

TCATCGAAGAGACACGGGAGGACC 

HTR7 KU710379.1 ACGGCGATGGCTCCATCTG / 
CGGTGAGCGGGATGTAGAAG 

TGAGGTGTGCAACAACTTCTGGTAC
C 

DAR2 KU710378.1 GAAGCCGAAAGTGAGTGAGATCA / 
TCCGAACTAAGCGCTGTTTC 

TGTGATCGAGAATGTGACACAGACG
A 

DAR1A KU710377.1 GGCGCCTGTCCATTCACT / 
CGCGGTAGATGCGGAAGTAAG 

ACCTTGTGTTCTCCTCTACTATCAG
CTTCT 

GABAB-
R1 

KU986868.1 TCGTCTCGTTTGCCATCATC / 
GGTGCCGAACCTCAATGATC 

TCTGCTGCTTCCTCTCCATGGCT 

LCCH3r KU986871.1 TGACGGCTCCATCACCTATGG / 
TTGGGTGTCGAGTGGATAGTAG 

TTCACCACTACGTTGGCCTGCAT 

RDLr KU986872.1 TGGTGTTTGCCTCGCTTCTAG / 
TCCGCTGTTCTGCTAACTTC 

AATACGCCGCGGTGGGCTACAT 

GluCl KX059698.1 ACGGAGGATCTGGTGTTTCTG / 
ACCCGTGTTGGTCTTGCTGTT 

TACAGGTGACCAAGAACCTTCACC 

NALCN KU681457.1 TCGCTTCCACGGTGTACATTC / 

GCGGTGCCTTTGTTCTCAG 

TCTTCGTCTTCCTTGGCTGCATGA 

CACNAB GEFB01006
512 

GCAGCTGGCCAAGACTTCTTT / 
AGACGCTGCAATACCTTAGGA 

AGCGCCCATCCTCGTGTACCTTAAG 

IRK KU681451.1 TACAGTGGCGTTGGACTCTAC / 
TCCACCACACCAAGGCAAATAG 

TCGTGTTCGCTATGTCATTCATCAG
C 

IH DQ103257.3 TCGGTGCCACTAGACTACATC / 
GACCCGCGTGGAGAATCTG 

TCCTCATCTTCAACCAGGACTTCAG
C 

SKKCa KU710383.1 GCATCGGAGCATTGAACAGAA / 
GCCCGGACAGATAGTCATCAG 

CAACTTCAACACTCGGTTTGTCCTC
AA 

INX1 JQ994479.1 TGGAGCGTCATGATGCATTC / 
GAGCAGGATGGCAAGGATCAC 

TGCTGCCTCTCAACATTCTTAACGA
A 

INX2 JQ994480.1 GGCTGTGGTGTCTGGTGTAG / 
GCGAGAGCGTGTCCTTAACAG 

CTGCTGTACCGCCTCGCCACTTT 

INX3 JQ994481.1 TGTCGGCCCTAGTGAAAGAG / 
GGTACCGTGGGATGTAGAACA 

TGACGAGATTGTGTACCACGCTTAC 

INX4 KJ642222.1 CTGGCGTTCAGCCTCATTGTC / 
CACGTCCTCTGGGATCTCCTTAG 

CACGCGTCAGTATGTCGGGAACC 

INX5 KJ817410.1 TGCCTTCCCTGCTGGATAA / 
GCGTCACCCATTGGTAGTAAC 

AGGTGGCTCATCCAGGCATCGGT 

Shaw1 KU681456.1 CGCGTCACTCCTCAGGACTT / 

CCCAGCACCAGGAAGAACAC 

TGATACAGACTTTCCGTGCATCCGC 

Shaw2 KU681455.1 GAACGCCATCAAGCACTATCATC / 
ATGGCGCCCGACAGCTTAG 

TGGCTTGAAGGACGGTCTCACA 

NaV EF089568.2 TCAACGGGAGGTACCATAAGTG / 
TCGCTGTTCACCCAAGAGTAG 

CGGAGGGATTGAAGCTCAACGCA 

Shaker FJ263946.1 GAGGCTCAGAAGACCAGTCAAC / 
TGGCGATATCACCGAGCTCAT 

CACTCGATGTCTTCGCGGAGGAGAT 

Shab DQ103255.1 GAGCCGGACAGACAGGAAC / 
TGCGCCTCCTTCTGTAGTC 

AAGAACCACGAACACCACATGGGTC 

CaV1 JN809809.1 CCAGGCCTTCTACTGGCTCATT / 
GCTGGCGATAGTGCTCACTG 

TGTGCTCGTCTTCCTCAACACGG 

CaV2 JN809808.1 ATCCGGCGGACAGTAAAGC / 
GTTCGGCAGCAACACAAAC 

TGGTTCTACTGGTTCGTCATCATAC
TTGT 

CaV3 JN809810.1 TGGCTGCCACCGATACTTC / 
CAGCACAATGCCCACAACTG 

CAGGACAGAGATGGAACCAGTTGG
A 

Shal DQ103254.1 GACACCACCTTCACCTCCATTC / 
GAACCATGTCGCCGTATCCTA 

CGGCGTTTTGGTACACCATTGTCAC 

BKKCa DQ103256.4 GCTCAAACTCGGCTTCATTG / 
CTGCGTGTCTGGAGAAGTTT 

AGAATCCCGGCGCTAAACATGACT 

mGluR1 KU986879.1 GCATCGTGTGGCTCATCTTTG / 
GGCCAACGTGACCACTCTAAT 

ACCTGTCAGCGGGAGTCACTGATG 

mGluR2 KU986880.1 TCCGCAGGTGAGTTTCTTC / 
CCATGGCTTTCACTTGGTAATGG 

CCACGTCGCCTGAACTGAGTAACA 

mGluR4 KU986882.1 GCGCGTTGATTCCGGTACT / 
CCACTCATCGTCCTCAACTTC 

AAGTCTTCCCGCTGGACTACGAAC 

mGluR5 KU986883.1 GCCTGTCCTTTGCCATGATC / 

TGCGCATCGTGATCTTCTTG 

CGCTTGTCACCAAGACCAACCGC 

mGluR7 KU986884.1 ACCGCGCTCGCAGATTGTC / 
TGGCTGGCGTTTCCACTATC 

TTCTGGACTGGTGAGTGTTCAGCT 
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mACHrA KX021822.1 GGTGTCGATGCCTTTGTTCAC / 
GCCAGCCAGGTGTCACATAT 

TGTACACGCTGATGGGATACTGGC 

mACHrB KX021821.1 GCGGACCATCTCCATCATTC / 

TGGTGCACTGACAGAAGCT 

CCTTTGTGGCCTGTTGGACGCC 

mGABA2 KU986869.1 TGCCTACAAAGGTCTGCTAATGG / 
TCGTTCAAGGCGGGTATGTT 

TGGTTGTTTCCTGGCCTGGGAAA 

mGABA3 KU986870.1 CGATCCCATGACGAGACACAT / 
TCCACCTGTGGCTGATAGAC 

CCTCACCTTAGAAGTGTCAGCCGA 

mGluR3 KU986881.1 CACCGTGTATGCCGTCAAGAC / 
CCCGGTGCCGAAGTAGATG 

CCCCGAGAATTTCAACGAGAGCAAG
T 

TRP-M3 KX037433.1 CCGCACCATCTACGAGAAC / 
TGCTGGCCTGGAAGATGT 

TGCTCAAGTCTCCTCGTCTTCACC 

TRP-A-
like 

KX037434.1 TCGCGACCTTCCTCAAATTC / 
CGGTACCTGAGTCCTCAACAC 

CACGGTCTTCTTACTCTTCCTCATC
GC 

TRP-A1 KX037435.1 CTGCCAAGTACGGTCGTTACAAC / 
CCCTCGTCATTGCACTCGTTA 

ACGTCAGCTTGTGGAGTCTCTGAA 

TRP-M1 KX037436.1 GAGGGCGGACCTCAAACTATC / 

TGTCGGCTGCTCTTCCTGTT 

CGTCAGGTGCTGGAGTATGTCACTG 

TRP-M-
like 

KX037437.1 GACGGGACGCAGATCCTCTT / 
GAGTGCTTGGGCTGTTAGGT 

ACGGTATACGGTTGGCTATTTCCCA 

Dopa-1Br KU710376.1 CGCAAGATTGGCAACCTCTTC / 
ACGAGGGCAAAGCTCATCAC 

TGTCCTTGGCTATCGCTGACCTCTT 

5HTR-

1Br 

KU710382.1 TGACGCAGGTGGACTACATTC / 

GGAACGACACCACCCAGATC 

ACCGATCGCCGCGTCGCATC 

His-1r KU716100.1 TGCCTGCCAGAGTAACCTTAG / 
GACAGGTGGGAGGGATTTCTG 

CATCACTTCTCACTCTGTCAACCCA
ACA 

His-2r KU716101.1 CCGCCACAGTCTCAAGGTAATC / 
GCGTAGGTCATGGAACTCTCATC 

ACGGTAGTCTACTTCCACGTCACA 

His-3r KU716102.1 ATCCGCCGCAACAAAGCAT / 
GAGAGCGAAGGAGGTTGGAA 

TGATGGTGGATCGAGTCTCAAGATA
TGTAT 

kainate-
1A 

KX016772.1 CAGGTCGGAGTGCAGTAAAGAC / 
GCCACCAGTCAGGATGTAGAAG 

CGATGACCACCCAGACGAGTGC 

kainate-
1B 

KX016773.1 TGAGCAGAACGAGATCGAGTATG / 
CGCCACATGTTCTGATACGTC 

AGGGCGGGTCTACCATGGCCTT 

kainate-
2A 

KX016774.1 CGCATGGAGTCACCTATTGAGA / 
AGGCGAAAGTGGTGCCAGTTG 

TGAGGACCTTGCTAACCAGGACAA 

kainate-

2B 

KX016775.1 GCACGGCAAGTTTGACAAGAAG / 

TGCTCCCTCTCGTAAGTGATG 

AACGGCATGATTGGGCAGCTGTT 

kainate-
2C 

KX016776.1 GGCTTGGTCAGGGAACTCAAG / 
GCTCTCCCTCGCGTAGTTG 

TGATCTAGCGGTGGGTTCTATGACT
A 

NMDA-
1A 

KX016782.1 GCCGTCAAATCAGGGAGGTT / 
ACCGGCGGTTACCAGTTCAC 

AGGCGTTCATCTGGGACAGTTCACG
T 

NMDA-

1B 

KX016783.1 ACAGCCAAGACGAAGAAGAC / 

CCGCTGTTCAGGATGACAGA 

TGAGTTCATGGCCATCTCGGAGTC 

NMDA-
2A 

KX016785.1 TCGGGTTCGTTCCCTTCAC / 
TGATGCCGTCCGTGATAGAAG 

TGAGACCATCCTTGCCAAGCACC 

NMDA-
2B 

KX016786.1 GCAAGGGTCACCATCAGACA / 
CGCTGTGAGCATGATGTAGGTA 

TGGAGAAACAACTTGAGGCCAATGG
A 

NMDA-2-
like 

KX016784.1 GCGTTGGAGCAGTTCATGTC / 
GCCACATACTGACGGAAGTAC 

CACGTTCCTGCTGTTGGGTTGTG 

KCNK2 KU681437.1 GACGCCTTCTACTACTGCTTCATC / 
GAGGGCGTTCTCCTTCTGTAG 

CCCTCACTACCATTGGCTTCGGG 

KCNK1 KU681438.1 TGGCGAACGACTCAACAAAG / 
GTCCTGGCACTTAAGGATCTTC 

CTCCTCCATCGGCATCAGGCAA 

KCNQ1 KU681453.1 GAGCCTCCTTGGGAAACCTATC / 
CCGCTCCAGGAAGTTGTAGAC 

CTCTCGCAGGGACGTCCGCTAC 

KCNQ2 KU681452.1 GCTGCCATGTTGATCCAGTG / 
CCACGTTGCTGTAGAGTTGAAG 

TGTGGCGTTGTTATGCTGCAGATAA 

KCNH2 KU681459.1 CACCGCGAGATCCTTTCAC / 
CCTGATGTGGAGGCTGAGTAG 

CATCTTCGAGACAGCGTCGCAGG 

KCNH3 KU681460.1 GAGGCGACGTACTTACCTCTATG / 
AGTGGCGTACATGCAAGGATTC 

ACTTCATCTCAAGAGGCTCGCTAGA 

KCNH1 KU681458.1 GGTCACGTCACCACCATCATC / 

CCGCACGTTGTTGAGCATTTC 

ATGACCTCCGCCACCGCCAAGT 

KCNT1 KU681454.1 CGTCCAGACCATGTTCAAGTTC / 
AAGCGCATGTTGGACGACTG 

TCCCCAACATCAAAATCATCACGGA 

CCAPr KM349850.1 GCCCTTCTCCTCTCCAAATCAC / 
GTCGGTGAGAACGCTGATGAG 

CCAGGACCAACTTCTTCATCATGCA
TCT 

vGluT MK958905 GCGTTCGTGGACCTTCTAC / 

TCAGCCACCCTGTAATGGAA 

ATCACAGCCAACCTACTTCAGCGAG 

ChAT MK958903 GGACCGCCTGGCTAAGTAC / 
TCGCGGAGTCCCATAAGG 

AGGCGGCGCTCAAGCTTCAGAC 

vAChT MK958904 GCGTCAGCTGCTTCTTCCT / 
CAGCAGTGCCGTGTCTATGAG 

TTCGCCAGCAACTACTGGGTGTT 

ACHE MK958902 GGGCAACATGGGCATGTAC / 
GGTCACCACCGAAGAATTCAATG 

AGGCGCTGGCCATCAAGTGGATAC 
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Chapter 5 

 

The Cancer borealis cardiac ganglion as a model of 

compensation: Opportunities for future research  

Neural networks underlie rhythmic behaviors necessary for survival. 

Breathing, chewing, locomotion, and in the case of Cancer borealis and other 

crustaceans, heartbeat owe their origin to central pattern generators. Here we 

have used the cardiac ganglion to examine compensatory plasticity on the scale 

of minutes and on the scale of hours and with respect to membrane properties 

and mRNA expression changes, ultimately broadening our focus to consider how 

distinct different cell types are following an unknown history of physiological 

challenges and compensatory events. Below, we summarize the findings of the 

previous three chapters and suggest how the cardiac ganglion might be used to 

further advance our understanding of activity dependent compensation. 

In chapter 2 we demonstrate that activity dependent gap junction plasticity 

occurs not due to depolarization per se but due to the asynchrony between 

neurons. Furthermore, whether coupling increases or decreases depends on 

how desynchronized the neurons are. Similar to plasticity in other systems (Haas 

et al., 2011a; Sevetson et al., 2017b; Welzel and Schuster, 2018; Fricker et al., 

2020) this phenomenon is calcium dependent suggesting the effect may be 

generalizable. We find that when we allow stimuli to vary naturalistically and 

leverage this variability to evaluate other possible electrophysiological features, 

none better explain the change in coupling than activity timing. Finally, we show 
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that a cells output becomes compromised when it is strongly coupled to a cell 

acting out of time with it, and if coupling is reduced, it will produce an output 

closer to its normal activity. 

In chapter 3 we show that compensation to hyperexcitability extends 

beyond membrane properties. Within an hour there are changes in mRNA 

abundances and abundance relationships. Furthermore, we show that although 

excitability metrics are similar to control after one hour, as expected from 

previous evidence of rapid homeostatic compensation to hyperexcitability 

(Ransdell et al., 2012a; Lane et al., 2016), the cell has not reached steady state 

at this time. We find that after twenty-four hours there are physiological and 

molecular changes relative to one hour. Additionally, we note that excitability 

metrics suggest neurons fail to maintain compensation over this prolonged 

challenge, suggesting there may be limits to cell specific compensation or that 

network properties may be altered on a longer time scale.  

In chapter 4 we demonstrate that despite substantial variability in mRNA 

expression within cell types (Schulz, 2006; Tobin et al., 2009), it is possible to 

recapitulate neuron cell identity from mRNA abundances even for neurons of the 

same ganglion. However, we find there are limits to this classification – no 

methodology we tested predicted cell type with perfect accuracy, even when we 

used a selection of physiologically relevant genes or differentially expressed 

contigs (the latter serving as a best-case scenario). Additionally, we find that 

while we are able to outperform chance for a classification task (i.e., correctly 

labeling cells given a set of labeled cells to learn from) and cluster like cells 
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together (without labeling them), but that we are unable to correctly infer the 

number of cell types present in the data set.  

Despite its long history, there are numerous questions the cardiac 

ganglion can be applied to. Here, we focus on those that build off the previous 

chapters and the past work of the Schulz lab.  

Coupling regulation and co-regulation 

The cardiac ganglion permits repeatable isolation of coupled neurons and 

allows for study of strong local coupling between paired LCs (LC 4 and 5 or LC 1 

and 2) or weaker coupling between all LCs. Building on the results of chapter 2, 

an extension would be further characterization the electrophysiological properties 

which elicit coupling plasticity. We note that although desynchronization appears 

to be the sine qua non of activity dependent coupling the same delay applied with 

control or high amplitude results in depression or potentiation, respectively. 

Characterization of the interaction effects between activity features (e.g., mean 

depolarization, number of spikes, duty cycle, period, etc.) using simpler 

waveforms would be valuable in determining which features interact with timing.  

Beyond varying the set of stimuli considered, expanding the scope to 

include the effects on membrane conductances would further a more holistic 

understanding of activity dependent compensation. We demonstrated that 

application of cadmium prevents plasticity. Calcium signaling has been 

implicated in the compensatory increase of IHTK following blockade of IA with 4-

aminopurine (Ransdell et al., 2013b) and evidence suggestive of relationship 

between IHTK magnitude and coupling conductance has been reported (Ransdell, 
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2013b). Either through identification of the molecular mechanisms of coupling 

potentiation and depression within the cardiac ganglion or by demonstrating 

alteration of one induces alteration of the other would be feasible next steps to 

establishing this system to effectively investigate coregulation of ionic and 

coupling properties.  

Cell and network level compensation  

Our dynamic clamp experiments did not permit biological compensation to 

pathological activity. Examining the changes in network activity in response to 

one or several pathologically active neurons would be a clear next step. Similar 

experiments have been attempted by using petroleum jelly wells filled with TEA 

containing saline to disrupt one, two, or three of the anterior large cells, but 

encountered difficulties with implementation. We propose instead a purely 

electrical manipulation. With voltage clamp a LC could be clamped to a loop of its 

own activity. The activity of the network would be monitored to determine if 

entrains to the perturbed cell thereby eliminating a difference in timing or whether 

coupling between LCs is altered. In a similar fashion, dynamic clamp could be 

used to mimic blockade of IHTK. Varying the strength of the disruption and 

measuring outward conductances, coupling, and activity in non-clamped cells 

one might reveal multi-faceted tuning relationships (between IA, IHTK, coupling, 

and small cell stimulation) more representative of those expected to be operating 

in vivo.  

Dynamic clamp or voltage clamp would serve as an excellent tool to 

extend the research presented in chapter 3. In the stomatogastric ganglion, multi-
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hour voltage clamp has been applied to study the preservation of mRNA 

correlations (Santin and Schulz, 2019a). We propose applying the same strategy 

to explore the plasticity of correlations. We have shown that mRNA abundances 

and correlations can be altered within one hour of TEA induced hyperexcitability. 

It is unclear whether this apparent difference in compensatory delay is an artifact 

of experimental design (i.e., that neurons in the stomatogastric ganglion have 

correlations labile at one hour but were not sampled at this time point), or if it 

represents differing time courses between neurons, loss of correlations rather 

than establishment of correlations, or if there is something fundamentally 

different about the response to too much activity relative to none. Voltage 

clamping two LCs is entirely feasible, but for more than a few hours would be 

challenging. We recommend any experimentalists interested in this line of inquiry 

to consider recording a cell’s baseline activity, silencing the network using 

isotonic sucrose and then voltage clamping LC 5 with a reference electrode in LC 

4 and LC 3. LC 4 will receive some stimulation through the strong local coupling; 

LC 3 will receive almost none. Using the recordings from each cell attenuation 

can be calculated if there is sufficient variability in non-clamped cell voltage to 

treat stimulation as a continuous variable. An alternate approach to this question 

would be to apply different blockers or different concentrations of a blocker to 

increase or decrease cells’ activity. This approach would permit comparison of 

differing compensatory strategies to depolarizing and hyperpolarizing 

perturbations albeit in a less controlled manner.  

Estimating variability and nontarget effects 
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Chapter 4 sought to establish to what extent one can recapitulate 

physiological cell identity from molecular abundances and abundance 

relationships. These systems, both the cardiac ganglion and the stomatogastric 

ganglion can be leveraged to address a vital methodological question – how 

much variability exists within identified neurons and how much might be 

attributable to effects such as seasonality (Lane, 2016), experimenter, or batch 

effects. Using the wealth of control physiology and molecular data collected for 

these systems we propose fitting a statistical model with these features included. 

Unfortunately, as these animals are wild caught from undisclosed locations there 

are many relevant features which one would be unable to include. Still, one could 

derive a more accurate depiction of which relationships between physiological 

measures are more or less likely to replicate. Furthermore, the definition of 

control distributions of physiological features would aid in generating and 

evaluating in silico models of these systems and producing reasonable priors for 

statistical modeling of future experiments. 
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