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Abstract 

Background 

Computer aided diagnostic tools have been developed for many decades but are only 
widely used in very specific diagnostic areas. New algorithmic tools, specifically deep 
learning, have achieved high performance and may find their way into broader clinical 
practice in the near future.  However, the high complexity of these algorithmic tools 
renders them effectively ‘black boxes’, meaning that users are unable to understand 
how they are able to make decisions. This ‘black box’ nature of deep learning severely 
inhibits their introduction into high risk fields such as medicine.  

Objective 

In this dissertation, deep learning models were used to test the feasibility of using deep 
learning to aid in the diagnosis of lymphatic infiltration by prostate cancer (PCa). In 
order to detect the presence of PCa metastasis into the lymphatic system, 68Ga-PSMA-
PET/CT is increasingly being performed.  However, due to limitations of cost and 
availability, it is unlikely that 68Ga-PSMA-PET/CT will be useful for large segments of 
the population. For this reason, computed tomography (CT) has remained the most 
important modality for PCa staging, despite low sensitivity and specificity being 
reported. The goal of this work was to train deep learning models to distinguish normal 
from PCa-infiltrated lymph nodes based on conventional CT scan.  

Methods 

From 549 patients where 68Ga-PSMA-PET/CT was performed, a dataset of 2616 
segmented lymph nodes was used. A label of positive or negative for infiltration was 
generated for each lymph node on the basis of the PET reference standard. Five 
convolutional neural networks (CNNs), a type of deep learning model, were trained. In 
order to assess radiologist performance, a zero-footprint web based radiological viewer 
was developed. Using this viewer, the performance two radiologist reader was 
assessed.  

Results 

The CNNs performed with an Area-Under-the-Curve between 0.95 and 0.86, 
compared to an average AUC of 0.81 for the experience radiologists. Of note is that 
CNNs were able to use anatomical surroundings to increase performance, effectively 
learning probabilities of infiltration by anatomical location. Two neural network 
explainability methods were employed to attempt understanding how CNNs achieve 
high classification performance. One of these methods, namely saliency map 
generation, provided valuable information, showing that one CNN used anatomical 
surroundings to increase performance. The other, known as feature visualization, did 
not provide useful information.  

Conclusion 
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From this study, we find that CNNs have the potential to form the basis of a CT-based 
biomarker for lymph node metastasis in PCa. Additionally, segmentation masks are 
not required to achieve high classification performance. 
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Abstrakt (Deutsch) 

Hintergrund 

Computergestützte diagnostische Methoden sind bereits seit mehreren Jahrzehnten 
in der Entwicklung, finden aber bisher nur in sehr begrenzten Gebieten Anwendung. 
Neue algorithmische Methoden der letzten zehn Jahre, speziell “Deep-Learning-
Modelle”, zeigen eine außerordentliche Leistungsfähigkeit, und könnten daher in der 
Zukunft Eingang in eine weitreichende klinische Praxis finden. Einschränkend muss 
jedoch bemerkt werden, dass diese neuen Methoden aufgrund ihrer hohen 
Komplexität essentiell “Black Boxes” darstellen; in anderen Worten, es ist zur Zeit für 
den Benutzter nicht nachvollziehbar, wie ein Deep-Learning-Modell zu bestimmten 
Entscheidungen gelangt. Dieser Umstand limitiert die Anwendung von Deep-Learning-
Modellen in risikobehafteten medizinischen Gebieten. 

Zielsetzung und Problematik 

In der vorliegenden Dissertation wurden Deep-Learning-Modelle daraufhin getestet, 
ob sie zur radiologischen Diagnose von Lymphknoteninfiltration durch 
Prostatakarzinome (PCa) tauglich sind.  Die lymphatische Ausdehnung eines 
Prostatakarzinoms ist ein wesentlicher Faktor bei der Auswahl therapeutischer 
Maßnahmen. Zum Nachweis lymphatischer PCa Metastasen wird in zunehmendem 
Maße 68Ga-PSMA-PET/CT angewandt. Angesichts der Beschränkungen hinsichtlich 
Kosten und Verfügbarkeit ist jedoch zweifelhaft ob 68Ga-PSMA-PET/CT für weite Teile 
der Bevölkerung eingesetzt werden kann. Aus diesem Grund verbleibt die 
Computertomographie (CT), trotz geringer Sensitivität und Spezifität, die wichtigste 
Methode zur Stadienbestimmung des PCa. Zielsetzung der vorliegenden Dissertation 
war es, Deep-Learning-Modelle unter Benutzung herkömmlicher 
Computertomographie in die Lage zu versetzen, normale von PCa-infiltrierten 
Lymphknoten zu unterscheiden. 

Methodik 

Es wurden ein Datenatz von 2616 Lymphknoten aus 68Ga-PSMA-PET/CT Aufnahmen 
von 549 PCa Patienten verwendet. Auf der Basis des PET Referenzstandards wurde 
jedem dieser Lymphknoten die Beurteilung positiv oder negativ für Lymphknotenbefall 
zugeordnet. Fünf konvolutionelle Netzwerke (CNNs; eine spezielle Art von Deep-
Learning Modellen) mit identischer Architektur wurden getestet. Der Unterschied der 
CNNs bestand in der Verwendung verschiedener Trainingsdaten, was es ermöglichte, 
die Leistungsfähigkeit der CNNs mit der Art der Eingabedaten, speziell der An- oder 
Abwesenheit einer Segmentierungsmaske, zu korrelieren. Zur Bestimmung der 
diagnostischen Treffsicherheit menschlicher Experten im Vergleich zu den CNNs 
wurde ein zero-footprint webbasierter radiologischer Viewer entwickelt. 

Ergebnisse 

Die CNNs erzielten eine Fläche unter der Kurve (AUC) zwischen 0.95 und 0.86, im 
Vergleich zu einem Durchschnittswert von 0.81, der von den Radiologen erreicht 
wurde. Interessanterweise waren CNNs in der Lage, den anatomischen Kontext zur 
Optimierung ihrer Leistung zu nutzen, wobei sie die Wahrscheinlichkeit des 
Lymphknotenbefalls in Relation zur anatomischen Lage der Lymphknoten erlernten.  
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Zwei ‚Explainability Methoden‘ wurden hinzugezogen, um die hohe 
Klassifizierungsleistung der CNNs zu analysieren. Eine dieser Methoden, die 
Erstellung von „saliency maps“, ergab aussagekräftige Resultate, die darauf 
hinwiesen, dass das CNN die anatomische Umgebung der Lymphknoten hinzuzog, 
um die Unterscheidung zwischen “metastatisch-befallen” und “normal” zu treffen. 
Demgegenüber erbrachte die andere Methode, Merkmalsvisualisierung (“feature 
visualization”), keine nützlichen Erkenntnisse. 

Schlussfolgerung 

Unsere Studie ergibt, dass CNNs das Potential aufweisen, unter Verwendung von CT-
Daten eine Beurteilung von Lymphknoten im Hinblick auf Metastasen vornehmen zu 
können. Des Weiteren zeigen unsere Resultate, dass Segmentierungsmasken nicht 
erforderlich sind, um eine hohe diagnostische Treffsicherheit der CNNs zu 
gewährleisten. 
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Synopsis 

1     Introduction 

1.1     Computer diagnosis and computer aided diagnosis 

For several decades, medical imaging has steadily increased in importance in the early 
detection, diagnosis and treatment of disease1. It is therefore not surprising that 
medical imaging is performed increasingly2. For a large majority of these cases, expert 
radiologists are required in order to view and diagnose pathologies in images that are 
produced. However, it can be argued that artificially intelligent computer systems have 
been aiding radiologists for several decades. For example, the automatic exposure 
device developed in the 1980s3 aided the radiologist in determining how best to take a 
radiograph. This device did not provide diagnostic advice, but it did remove an element 
of decision making from the radiologist4. Indeed, modern medical imaging devices 
undertake many thousands of automated decisions in order to transform physical input 
into high quality images.  

Despite the fact that image generation has become a highly automated, computer 
aided procedure, the critical step of diagnosis has remained the purview of highly 
trained medical professionals, with some notable exceptions. Since the 1960’s the 
concept of completely replacing human readers with computers has been explored in 
the field of automated computer diagnosis (CD), while the concept of human experts 
using computer output in conjunction with imaging, called computer aided diagnosis 
(CAD) became popularized in the 1980’s5. The difference between CD and CAD lies 
in how the output of the computer is used; in CAD it is used a form of second opinion, 
while in CAD it is a final output. CD devices are essentially not utilized in present day 
practices, if not simply because CD systems to not outperform humans enough to 
justify their deployment, but also due to more mundane questions such as 
reimbursement. CAD devices, on the other hand, have been used in many instances, 
are since the early 2000s have become a part of routine clinical work for the detection 
of breast cancer on mammograms in the United States5. Indeed, studies have reported 
a 164% increase in the detection of small (less than 1 cm) invasive cancers with the 
use of CAD6. CAD systems have also been deployed for the detection of lung nodules 
and vertebral fractures on radiographs, intracranial aneurysms on MRA, detection of 
colorectal polyps, and diabetic retinopathy, and others7–10. The extent to which these 
tools are utilized and beneficial is still under rigorous investigation. 

CD and CAD systems have traditionally been composed of statistical techniques and 
simple machine learning techniques such as principle component analysis, support 
vector machines and k-nearest neighbors1112–14. However, increasing interest and 
resources are being poured into a subset of machine learning techniques known as 
deep learning, as these methods have been shown to have increased performance. 
Even more interestingly, deep learning methods to a large extent remove the need of 
domain experts in the process of developing CAD tools, as the process of feature 
engineering, where the important aspects required for classification, is automated. In 
this dissertation, deep learning was used to created CAD-like tools. However, as will 
be discussed in following sections, the use of deep learning is inhibited by the lack of 
human interpretable explanations for automated decision processes. 
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1.2     Deep Learning 

Deep Learning refers to the usage of a subset of machine learning algorithms that are 
based on cascading layers of small units known as ‘neurons’15,16. Based very loosely 
on concepts from neurobiology, deep learning models, known as neural networks, are 
actually highly non-linear mathematical models with millions of parameters that, with 
the implementation of optimization algorithms, are able to learn patterns in data with 
remarkable accuracy17.  

The foundations for deep learning were set in the mid-20th century with the description 
of artificial neuron-like units by McCulloch and Pitts18, followed by developments such 
as the creation of a single layer neural network and learning rule known as the 
perceptron by Rosenblatt19. Criticisms levied at the nascent field and the lack of 
computational power led to a loss of interest in deep learning, though backpropagation, 
a critical method for learning representations in the ‘hidden’ layers of multi-layer 
networks, was explored in the 80’s20. It was only in the early 2010’s that deep learning 
again became of interest, based upon the trifecta of deep learning models, low-cost, 
highly parallel computational power provided by graphics processing units (GPUs), and 
the existence of large labelled datasets, with curation aided by the internet. In 201121 
and most famously in 2012 with AlexNet, neural networks outperformed all available 
image recognition algorithms to date by a large margin, having an error 10.8% points 
lower than the next runner up22. These achievements spurred explosive interest in the 
field of deep learning. 

With performance often rivaling or besting that of humans in image recognition tasks, 
it is of great interest to implement deep learning models as decision support systems 
in fields such as radiology and pathology, which are to a large extent based on pattern 
recognition in images. As the volume of imaging performed increases, deep learning 
has the potential to aid the radiologist in routine tasks, for example performing a 
background ‘triage’ that flags images with severe problems to be viewed immediately 
by a medical expert, or automatically performing time consuming tasks such as 
segmentation and volume measurements of regions of interest, which over time and 
repeat imaging increase in value.  There are also tantalizing possibilities that deep 
learning methods, by virtue of accessing and processing massive datasets, are able to 
distinguish between patterns that humans are not yet capable of distinguishing, and 
thus aid in areas humans cannot reliably perform, or provide a better understanding of 
pathology23–25. 

In this dissertation, a type of deep learning model known as a convolutional neural 
network (CNN) was developed and tested. These CNNs, in a process known as 
supervised learning, were shown many CT images of lymph nodes for which the 
infiltration status by PCa was known, on the basis of 68Ga-PSMA PET/CT scans. 
Following this training process, the CNNs were shown CT images of lymph nodes it 
had never seen before and were asked to predict the infiltration status. The resulting 
performance on this test set was then compared to human readers of the same CT 
images. Our results showed that CNNs were able to perform remarkably well. 
Curiously, we did not have an explanation for how they performed as well as they did. 

A serious factor inhibiting the deployment of deep learning techniques in the medical 
field is a lack of understanding of how decisions are reached. Because the internal 
mechanism of output generation (i.e. prediction) is not readily comprehensible to 
humans, neural networks are referred to as black box models. The black box nature of 
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deep learning is due to 1) the high number of parameters and 2) it’s non-linear and 
hierarchical architecture26. Neural networks regularly are composed of many millions 
to billions of parameters, with each single neuron receiving input from many thousands 
of other neurons, all working together to reach a prediction, after which a non-linear 
activation function is applied and the output shunted to the next neuron; humans 
already find it difficult to understand the interplay of a linear system with two variables.  

It is important to note that machine learning techniques that are traditionally considered 
‘interpretable’ in comparison to neural networks are more often than not equally 
unintelligible to human interpretation. For example, a linear model or decision tree are 
often considered interpretable, with a serious of thresholds and simple rules to follow. 
However, a linear model can quickly become uninterpretable as the number of 
parameters and dependent variables increases in size; often linear models, too, have 
many thousands of parameters. 

In high risk fields such as medicine, where clinical practitioners are held accountable 
for treatment decisions and failure to act properly can have consequences on patient 
health and life, it is imperative that users have, at a minimum, great confidence in a 
tool they use as a decision aid, if not a full and extensive understanding of how 
decisions are reached. The field of explainability and interpretability has been growing 
rapidly to fill exactly this need. 

1.3     Neural network explainability techniques 

Explainability techniques are categorized as global or local, with global explanations 
providing an explanation for the entire representation that a model has learned, and 
local explanations explaining a single decision on a case-by-case basis.  

In the medical field, it is clear that some kind of local explanation is required in order 
for a clinician to have confidence in a decision. For example, if a clinician begins 
treatment for a tension pneumothorax based on the output of a deep learning tool 
presented with a chest radiograph, the deep learning tool should be able to provide 
evidence for why a pneumothorax is present for this particular chest radiograph. 
Additionally, a global explanation, which in this case would reveal what the neural 
network understands under the concept of ‘pneumothorax’ generally (and not for this 
particular patient), would be of significant interest to gain confidence in the system. 

Current local explainability techniques include the generation for saliency maps, more 
generally known as heatmaps. These are well suited for imaging datasets, as the 
saliency map is a visual tool. As the name suggests, saliency maps depict areas of 
‘salience’ or importance in the input space. In the radiological sense, this means that 
areas of an input radiographic image are highlighted if they are somehow important to 
decision making. For the example of a chest radiograph of a patient with 
pneumothorax, the hope is that a saliency map would highlight a visible visceral pleural 
edge or collapsed lung, as well as the lack of lung markings peripheral to this line. 
Unfortunately, there are many methods to generate saliency maps, and for each the 
‘salience’ that is depicted is not exactly clear. For example, sensitivity decomposition 
methods highlight regions of the image that, if changed, are most likely to change the 
output decision27, while layerwise relevance techniques hope to depict regions that 
positively led to the output decision28.  
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Current global explainability techniques include representative dataset sampling and 
feature visualization. As previously mentioned, global techniques hope to provide an 
explanation for what concepts or internal representations a model has learned and do 
not provide explanations for any particular instance of input. In representative dataset 
sampling, inputs that result in high activation of a particular class are gathered the 
define that class. For example, all images that a neural network classifies with high 
output probability as ‘pneumothrax’ are gathered, and thus hint at the internal 
representation of pneumothorax.  

Feature visualization is another technique developed in the hope of revealing internal 
model representations, and consists of using the same numerical optimization 
techniques used for model training to change, not model parameters, but inputs29–31. 
Model parameters are frozen, and then inputs are adjusted in an iterative process until 
they result in maximal output at some selected point of the model. For models that are 
trained using images, this results in images that maximally stimulate some selected 
neuron in a neural network. This has led to the discovery of ‘feature detector’ neurons 
within neural networks, that are maximally stimulated by some specific feature. For 
example, it has been found that there is a ‘dog fuzzy ear detector’ neuron within 
InceptionNet that ‘fires’ or is active whenever a dog ear is present, but does not 
respond to cat ears or anything else29.  

Using feature visualization, a hierarchical organization of concepts has been revealed 
within many neural networks. Low level neurons (neurons close to the input) act as 
feature detectors to simple features such as vertical or horizontal lines at varying 
frequencies. Neurons in intermediate layers have been found to use composite 
features of lower levels, for example responding maximally to corners (the joining of a 
horizontal and vertical lines) and in later layers joining groups of lines and edges into 
shapes. Even later layers reveal abstract concepts, such as human faces or animals. 
While these insights have been interesting, how such features will be useful for 
providing explanations of model decision making is not clear. Later in this dissertation, 
an example of feature visualization applied to a medical neural network is shown. 

Despite significant shortcomings, current explainability techniques have proven useful 
and do provide an increased level of confidence in models generated. In the publication 
in this dissertation, saliency maps were used in order to a detect an error in the deep 
learning tool developed, which could then be rectified with further effort. 

1.4     Prostate Cancer 

In this dissertation, a tool to aid in the detection of the lymphatic spread of prostate 
cancer was developed. Prostate Cancer (PCa) is the most common malignant cancer 
in men, and is the second most common cause of cancer related death among men32. 
In areas with regular access to medical care, a larger proportion of men are diagnosed 
at younger ages and with tumors confined to the prostate, with some pointing to the 
advent of prostate-specific antigen (PSA) screening as a cause33.  

Upon diagnosis of PCa, an initial evaluation based on digital rectal examination (DRE), 
pretreatment PSA level, and the Gleason score/grade group in the initial biopsy, as 
well as how many and to what extent biopsy cores contain cancerous cells, is 
performed34. Based upon these factors, patients are stratified into risk categories, upon 
which further staging procedures and treatment are contingent. Common risk 
classification tools include the D’Amico classification35, or variants thereof, such as that 
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of the European Association of Urology34 . In these classifications, patients are 
classified as very low, low, intermediate, high or very high risk.  

Whether further imaging studies or treatment is performed depends on which risk 
category is defined. Patients with very-low risk disease, with increased serum PSA ( 
<10 ng/mL) but no abnormality on DRE or imaging, and biopsy histologic grade group 
1 (Gleason score ≤ 6) are recommended to follow active surveillance. In active 
surveillance regimens, no invasive treatment is initiated, and the progression of the 
disease is followed. Beginning with low-risk disease, in which there is additional 
presence of an abnormality limited to one lobe of the prostate, patients have the choice 
as to whether active surveillance should be pursued, as well as the option to undergo 
a definitive treatment such as radical prostatectomy or radiation therapy (RT). 
Definitive treatment is recommended for intermediate risk patients, where tumor is 
restricted to the prostate but involves more than one half of one lobe or is bilateral, as 
well as high and very-high risk PCa, in which serum PSA ≥20 ng/mL or a histology 
shows a Gleason grade group of 4 or 5. 

Imaging studies, including a radionuclide bone scan and computed tomography (CT) 
of the abdomen and pelvis are used in patients with intermediate, high or very-high risk 
PCa in order to determine if the primary tumor is confined to the prostate (T), if regional 
nodes have been infiltrated (N) and whether distant metastases are present (M)36. 
Patients with clinical evidence of lymph node involvement or disseminated metastases 
are not officially categorized as intermediate, high or very-high risk, regardless of 
extent or grade of tumor within the prostate. Presence of regional lymph node 
infiltration (N1) are automatically defined as prognostic stage group IVA of the Union 
for International Cancer Control (UICC 8th edition)37, while those with distant 
metastasis to nonregional lymph nodes, bone, or other sites (M1) are stage IVB. Young 
men with minimal regional lymphatic spread are recommended to undergo a 
combination strategy with radical prostatectomy and postoperative ADT or RT, with 
ADT continued for 18 to 24 months after RT. Meanwhile, if distant metastasis is present 
and definitive locoregional therapy is not an option, therapy is centered on ADT.  

As the presence of extra prostatic infiltration, either in the regional lymph nodes, or 
distant nonregional lymph nodes or bones, has a large impact of tumor prognostic 
stage group and treatments undergone, it is important that it can be reliably detected. 
Current imaging studies recommended, as mentioned, are the radionuclide bone scan 
(99mTc-bone scintigraphy) and CT imaging. Unfortunately, the sensitivity and specificity 
of CT imaging has been found to be lacking, at 42% and 82% respectively38. This is 
largely attributable to the fact that limited morphological criteria are used to assess 
lymph node infiltration status39, with a threshold set at 8-10mm often used. This usage 
of a size criteria remains, even though it has been reported that 80% of infiltrated lymph 
nodes are smaller than 8 mm40.  

1.5     PSMA PET/CT 

Efforts to improve detection of extra prostatic infiltration by PCa are areas of active 
interest. As discussed previously, CT imaging is the recommended modality for 
intermediate, high, and very-high risk patients34. The gold standard to detect nodal 
infiltration is the diagnostic pelvic lymph-node dissection (PLND); however, such 
invasive procedures are not suggested as a staging procedure. Beginning in the 90’s, 
there has been an interest in preempt PLND or augment CT imaging with a more 
targeted imaging approach, fueled by the knowledge of a type II membrane protein 
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highly specific to prostate tissue. This membrane protein, known as Prostate Specific 
Membrane Antigen (PSMA) or glutamate carboxypeptidase II (BCPII), is produced by 
the prostatic epithelium and has been found to be highly restricted in its expression41. 
Not only has the expression of PSMA been found to be specific to benign and 
malignant prostate epithelial cells, but expression of PSMA has also been found to 
have a high positive correlation with grade of adenocarcinoma; it is has been shown 
that there is a 100-1000 fold increase in expression on the membrane of PCa cells 
compared to prostate cells41,42,43. Thus, PSMA expression is positively correlated with 
aggressive disease, metastasis and disease recurrence. These two qualities, 1) 
specificity to prostate cells and 2) positive correlation with grade, make PSMA an ideal 
marker for imaging of PCa and the search for metastases in compartments outside of 
the prostate.   

Many radiolabeled small molecules with high affinity to the extracellular domain of 
PSMA have been introduced in the last decade44,45, and the 68Ga- and 18F-labeled 
PSMA-targeted ligands have been widely used in clinical practice. A number of studies 
have validated the use of these ligands, and have found a high sensitivity and 
specificity of PSMA-targeted PET in imaging PCa progression in men46,47. In a 
systematic review and meta-analysis of five studies, a sensitivity and specificity of 80% 
and 97% respectively was found for predicting lymph node infiltration (LNI)46. PSMA 
PET/CT has been deployed in the detection of PCa in the prostate, other soft tissues, 
as well as bone. Importantly, even lymph nodes under 10mm in size that have been 
infiltrated can be detected, and a study has reported a 60% detection rate for nodes 2-
5 mm in size45,48. PSMA-targeted PET has been shown to be superior to 99mTc-bone 
scintigraphy and anatomic imaging and has been shown to identify more skeletal 
lesions, as well as bone marrow seeding and osteolytic metastases; the sensitivity and 
specificity for 68Ga-PSMA PET/CT was 96.2% and 99.1% compared to 73.1% and 
84.1% for 99mTc-bone scintigraphy49.  

Despite the many benefits, a number of factors inhibit the widespread use of PSMA 
PET/CT in the clinical setting. An important consideration in the usage and deployment 
of PSMA PET/CT are matters of cost and logistics, as a cyclotron facility able to deliver 
radionuclides within short distance is required. This fact alone will inhibit the usage of 
PSMA PET/CT imaging in most parts of the world. Although data is not well collected, 
the WHO reports the number of PET scanners per 100,000 people as 0.05 for 
members of the EU after May 2004 (EU13)50, and data outside of the EU is difficult to 
find. A study which directly contacted nuclear medicine providers and asked if PET 
scanners were available for usage found that only 22.4% of high-income countries and 
10.9% of low and middle income countries responded affirmatively51. Meanwhile, the 
WHO reports that there are 1.6 CT scanners available per 100,000 in the EU1352.  

Due to the lack of PSMA PET/CT availability in large parts of the world for the 
foreseeable future, it would be beneficial to improve the more widely available imaging 
modalities currently used in PCa staging. The purpose of the publication included in 
this dissertation is to test if deep learning methods, based on information gained from 
PSMA PET/CT, are able to increase the sensitivity and specificity of using CT imaging 
alone. 
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2     Materials and Methods 

This dissertation utilized a large dataset of CT images of lymph nodes, labelled with 
infiltration status based on a 68Ga-PSMA PET/CT reference standard. Using this 
labelled dataset, a number of convolutional neural networks (CNNs) and other 
classifiers were developed, trained and tested. Following this, two radiologist readers 
were asked to assess the infiltration status of the test set. Classification performance 
of a final set of five CNNs, two random forests and two radiologist readers was then 
compared. Two explainability techniques were tested. 

2.1     Patient cohort and imaging studies 

Patients were included in the dataset if 68Ga-PSMA PET/CT examination with contrast-
enhanced CT examination in parallel had been performed. Histological verification of 
the presence of prostate cancer that warranted further staging examinations was also 
required. 738 patients had been initially screened for adherence to inclusion criteria, 
and 549 patients (of age 68.7 ± 7.54 [45-87] years, PSA 20.9 ± 94.6 [0-1423] ng/ml) 
were finally included in the dataset. From each patient, a number of lymph nodes had 
been identified and semi-automatically segmented using CT imaging. A categorical 
label, of either positive or negative for the presence of tumor infiltration, had been 
assigned to each lymph node using 68Ga-PSMA PET/CT scans as a reference 
standard, in consensus of two radiologists experienced in hybrid imaging, correlated 
with SUVmax. An additional categorical label for anatomical position had been assigned 
to each lymph node, manually assigning each lymph node as located in the 
(ascending) retroperitoneal, perirectal, cervical, mediastinal, axillary, iliacal (including 
obturator fossa), supra or infraclavicular, or inguinal region. 

2.2     Dataset generation 

Using the labelled dataset, a hold-out test set and two training datasets were then 
created using the pool of all labelled lymph node images created. It was clear that 
some kind of class balancing was necessary, as there were more lymph nodes without 
tumor infiltration than with tumor infiltration. Without any steps taken to rectify this 
inbalance, the neural network simply learns to classify most images as the larger class, 
as the larger class is more frequent. There are three main ways in which a class 
inbalance is normally accommodated for during training16. The first method is known 
as undersampling, in which the smaller class is used as the size limiting factor, and an 
equal amount of the other classes is used as the smaller class. This results in 
essentially ‘wasted’ datapoints, as the datapoints from the larger class are discarded 
and not used for training. Another method of class balancing is called oversampling. In 
this case, datapoints from the smaller class are duplicated until the model is presented 
with an equal number of all classes during training. Finally, the method of class 
weighting does not discard datapoints or duplicate the smaller class. Datapoints are 
presented to the model in the frequency at which they naturally appear, but the loss 
function used for training is adjusted by a weighting factor based on the frequency of 
each class. This means that the error from the smaller class has a larger impact on 
parameter adjustments than the error for the larger class; each example from the 
smaller class is ‘more important’ for training. 

Class balancing by undersampling was performed in this study. First, a hold-out test 
set containing 130 lymph node images with exactly equal numbers of positive/negative 
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images was set aside. Then the first of the training datasets, known as the ‘status 
balanced’ training dataset, contained 366 positive nodes and 366 randomly selected 
negative nodes. Due to variations in frequency at which lymph nodes had been 
selected during dataset generation, lymph nodes from the inguinal, iliacal and 
retroperitoneal region were overrepresented in the status balanced training set and 
test set at 32, 23, and 19% respectively. The second training dataset, known as the 
‘location balanced’ training dataset, was generated by taking matching positive and 
negative nodes equally within each anatomical category; thus, there were always an 
equal number of positive and negative nodes at each anatomical location for the 
location balanced training dataset. 

2.3     Input to the neural network 

Initially, three dimensional volumes were used as input to the networks, with isotropic 
resolution of 48x48x48. However, the large image size created using 3D volumes (with 
110,592 voxels!) meant that very few images could be used in each batch during 
training, which had a negative impact on model training and final performance. Thus, 
in order to decrease model size and increase batch sizes, two dimensional images as 
input. Only a single central slice (along the cranial-caudal axis) was taken from each 
lymph node and used as input.  

In order to create input images, a volume centered at the lymph node of interest was 
extracted and resampled to an isotropic resolution of 1 x 1 x 1 mm3. During training 
only, these images were the augmented in an online manner, and for both training and 
testing, a single central slice in the axial plane was provided to the model as input. The 
resulting two-dimensional image of 48 x 48 voxels alone was used to train two models 
described in this dissertation (which were not described in the included publication). 
The segmentation of the lymph node was additionally augmented in parallel to the CT 
image. For two further neural networks, the CT image of the lymph node and an 
identically sized segmentation mask were used to train the neural network. The 
segmentation mask was included as an additional channel, meaning that at every voxel 
position there was the CT intensity value as well as the mask value of ‘belonging to the 
lymph node’ or ‘belonging to the background’. Finally, for the xMask model, the CT 
image was multiplied with the segmentation mask. Thus the input was a single image 
of size 48 x 48, where all pixels not within the central lymph node had the intensity 
value set to 0, while all intensity values within the lymph node in question remained 
unchanged. For all models, the output was a binary prediction of whether the single 
lymph node displayed was positive or negative for tumor or not. The process of input 
image generation described here is shown in Fig. 2. 

2.4     Developing neural network architecture 

A number of neural networks architectures were experimented with in order to find a 
well performing network. The hold-out test set was not used in this process. Instead, 
k-fold validation was performed with k=4, iteratively setting one fourth of the training 
dataset aside and performing training on the remaining three fourths. Following this 
training, the model performance is determined using the unseen quarter. The average 
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of model performance on the four validation sets was then used to compare neural 
network architectures.  

Hyperparameters of the network architecture that were adjusted were the number of 
maxpool operations (from 0-3), the depth of kernels at each convolutional layer (either 
8, 16, 32, 64 or 128), the number of convolutional kernels (from 2-16),  the size of 
convolutional kernels (either 5x5 or 3x3), as well as the number and size of fully 
connected layers (from 2-5 layers with various sizes). This step of model architecture 
generation was performed using unmasked CT images and segmentations from the 
status balanced dataset. The final neural network architecture had 16 convolutional 
layers interpolated with three maxpool operations, three final fully connected layers. A 
depiction of the final network architecture used is shown in Fig. 1.  

2.5     Training neural networks  

Using the network architecture developed in the previous section, a total of five neural 
networks were trained (three of which were included in the final publication). The neural 
networks differed only by training procedure, more specifically, by which dataset was 
used (status or location balanced) and if or how the segmentation mask was provided. 
The segmentation mask was either not provided at all, was provided as an additional 
channel of information (such as an color image is determined by a red, a green and a 
blue channel), or was multiplied by the input image, thus creating a single image that 
was zero at all values except for inside of the segmentation (refer to Fig. 2 for an 
example of masked input data). 

 

Figure 1 Final neural network architecture. The three neural networks developed shared the architecture shown 
here and differed only in the input data used for training (either by balancing or masking). The architecture 
developed was inspired by successes in image classification by convolutional networks such as VGG16. Input CT 
images of size 48x48 are fed to a series of convolutional layers, which have maxpooling operations interspersed 
between them. Maxpool operations act to low the resolution of the image, thus increasing the field of view of each 
neuron in later layers and decreasing the model size. After the convolutional layers, the 2D image (with an additional 
depth channel) is flattened (i.e. made 1D) and fed to a series of fully connected layers. Finally, the output of the 
network results in a binary classification that reports a (pseudo) probability as to whether the input image contains 
tumor infiltrated lymph node or not. 
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A total of three networks were trained using the status balanced dataset (CT-only, 
CT+Mask, and xMask) while two networks were trained using the location balanced 
dataset. Heatmaps were created with the PatternAttribution method53 using the 
implementation provided by the Innvestigate (v. 1.0.2) package54.  

2.6     Non CNN classifiers 

It was important to see how simpler methods performed as classification tools, as 
neural networks, with many millions of parameters, require often unnecessary 
complication. The first classifier created used a size threshold of 1cm to classify lymph 
node infiltration. All nodes larger than 1cm were considered positive for infiltration and 
all below negative. As discussed in the introduction, size is currently the most relevant 
criteria used by radiologists to classify nodal infiltration. In order to take into account 
location information as well as size information, we developed decision trees and 
random forests. Both classifiers predicted nodal infiltration status taking only two 
variables, namely nodal anatomical location and volume in mm3 into account, with the 
9-category anatomical label encoded as a one-hot vector. Finally, an ensemble model 
was created. This model took the averaged outputs of three CNNs, namely the 
CT+mask status balanced, location balanced and xMask networks. The hope in this 
case was that some models may be better at particular nodes than others, and the 
combined output would be more accurate in those instances. 

2.7     Development of zero-footprint radiological viewer 

Knowledge of the performance of a neural network is not useful in a clinical setting 
unless it is known how human radiologist readers perform on the same input images. 
In order to perform the comparison, we required a way to present test images to 
radiologist readers and query their responses. A less than ideal scenario to assess 
radiologist performance involves providing radiologist readers either a software to 
download or a dedicated computer fixed to a physical location. Through this software 
or terminal, a directory of image files would be provided in conjunction with information 
as to where to locate the exact regions of interest in question.  For example, we 

Figure 2 Generating inputs for neural networks. A series of steps were taking before feeding images to the neural 
network that greatly impacted network learning. Images were initially resampled to isotropic resolution. 1) A ‘raw 
input’ image patch of size 64x64 was extracted from the isotropic image volume, centered at the lymph node in 
question. 2) Random image augmentation was performed during the training process only to artificially increase the 
dataset size so as to prevent overfitting. 3) The image was cropped to a size of 48x48, which represented the final 
input to the status and location balanced neural networks. 4) For the xMask neural network, the image was multiplied 
by the segmentation mask. 
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considered providing an excel spreadsheet that defined the index of the slice at which 
the lymph node in question could be found. We would hope that the reader scrolls to 
the correct lymph node in question and then input an assessment into the excel 
spreadsheet.  

We believed such a system of physical terminal and excel data entry to perform the 
reader study to be untenable. I therefore created a web-based zero-footprint viewer 
that ran on a server at the Charité using a python backend (utilizing Flask v. 1.0.1) and 
a JavaScript frontend. Readers were asked to log in to a personal account and were 
then presented with a randomized list of lymph nodes in sequential order (See Fig. 4a). 
Clicking on the ‘begin study’ would then enter the ‘viewer’ , which presented a single 
lymph node in three axes (transversal, sagittal, and coronal), as shown in Fig. 4b. Full 
radiological viewer functionality of scrubbing, panning, zooming, and window width and 
centering controls were provided using the CornerstoneJS tool55. Results were sent 
directly to the central server, thus allowing for fast and accurate gathering of radiologist 
performance with the minimum possible sharing of patient data, as image datasets did 
not have to stored on local computers and were only ever presented as need. 

 

Figure 3. Zero-Footprint Viewer created to assess radiologist performance. A) Upon logging into a personal 
account from any web browser, users are presented with a randomized list of images that they will have to assess. 
Clicking on the begin button leads to a radiological viewer. B) The radiological viewer shows a single region of 
interest, in this case a lymph node, in all three axes. The region of interest that should be assessed is automatically 
centered in the field of view. Readers are asked to respond to questions displayed in the right panel i.e. whether or 
not they believe prostate cancer has infiltrated the node in question. Responses are collected and analyzed on the 
central server.  
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Using the zero-footprint viewer, two readers were asked to assess the hold-out test CT 
images (n=130) for lymph node infiltration. Each radiologist had five or more years of 
experience with urogenital imaging. Expert readers had access to larger images than 
the CNNs, as well as 3D images, at 80 x 80 x 80 mm3, compared to the 48 x 48 mm2  
provided to the neural networks. Images were cropped so that the current lymph node 
was centered with a 1 x 1 x 1 mm3 resolution. Readers reported if the tumor was 
infiltrated on a four value scale from very likely to very unlikely. The segmentation and 
68Ga-PSMA PET/CT images were not provided to the readers. 

The calculated area under the receiver operating characteristic curve (AUC) for the 
CNNs was compared to the performance of the non-CNN classifiers and expert 
radiologists. As output of the CNNs is a continuous value, while the reporting of the 
random forest classifier and radiologist reader are discrete values, thresholds at which 
to compare CNNs were set by maximizing Youden’s index (sensitivity+specificity-1), 
and all outputs below were counted as negative, and all above positive for infiltration. 
Classification reports including accuracy, sensitivity, specificity, PPV and NPV were 
calculated using these binary predictions. The four categories provided for study 
readers were simplified to a binary prediction of likely/unlikely.  

2.8     Feature visualization implementation 

Feature visualization, like saliency map generation, is a technique used to attempt to 
explain machine learning understanding and provide interpretations for decision 
making. The technique was implemented using python and tensorflow. All model 
weights were held fixed. Each convolutional layer was sequentially selected as the 
output to be optimized. Input images were initialized with gaussian randomized values 
between 0 and 1, and were adjusted over 200 iterations using stochastic gradient 
descent to maximize the selected neuron’s output. Laplacian pyramid methods were 
used a method of frequency penalization, enforcing regularizers that reduced the 
amount of high frequency noise in images, as suggested by Mordvintsev31. 

3     Results 

3.1     Performance of CT only status and location balanced CNNs 

The status balanced CNN trained on only the CT images that received no 
segmentation mask performed with an AUC of 0.91. The location balanced CNN that 
received only CT images performed with an AUC of 0.86. Curiously, the location 
balanced CNN without the segmentation mask performed better than the location 
balanced CNN with segmentation mask, (AUC of 0.88 versus 0.86), contrasting the 
improved performance with the mask of the status balanced CNNs. Refer to Fig. 4.4 
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and 4.5 for the ROC curves of the two unmasked, CT only status and location balanced 
CNNs. The performance of the two radiologist readers, size classifier, and random 
forest classifiers are also displayed as points.  

3.2     Performance of CT and mask status and location balanced CNNs, xMask 

As discussed at length in the publication included in this dissertation, the masked 
status balanced CNN performed the best, with calculated AUC of 0.955 56. The xMask 
and location balanced CNN with mask had very similar performance with AUCs 
calculated as 0.863 and 0.85856, respectively. Refer to Fig. 4.1 and 4.2 for a reiteration 
of the ROC curves of the CT+mask status and location balanced CNNs. The status 
balanced neural networks were better able to identify inguinal lymph nodes as (true) 
negative, and retroperitoneal lymph nodes as (true) positive, as can be seen in Fig. 5. 

3.3     Performance of non-CNN classifiers 

Using size as a classifier resulted in a calculated AUC of 0.85, with an accuracy, 
sensitivity and specificity of 81%, 71% and 98%, respectively. The size classifier 
performance is shown in all panels of Fig.4 as a green point.  

Figure 4 Classification performance. Receiver Operator Characteristic (ROC) curves for 5 neural networks and 
trained to classify presence of tumor infiltration into lymph nodes. Neural networks differed by the type of input 
data used for training (either only CT images, CT images and a segmentation mask as a separate channel, or CT 
images multiplied by the segmentation mask) and the balancing of data, either by status alone or by status within 
each location category. The ROC of an ensemble model that averages the output of the models labeled with an 
asterisk is also shown. Performance of two radiologist readers is displayed as red dots on all plots. Green dots 
show performance using a size cut-off of 1cm. Performance of the two random forests trained on status and 
location balanced data is shown on the corresponding plot as a blue dot. The area under the ROC curve, AUC, is 
shown in the bottom right. A value of 1 is perfect performance, while a value of 0.5 is random classification. 1-3 
are based on data found in Hartenstein et al [35] and are included for direct comparison of the two networks trained 
without segmentation masks in 4,5 and the ensemble model shown in 6. 
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As discussed in the included publication, the status balanced random forest classifier 
had an AUC, accuracy, sensitivity, and specificity of .90, 90%, 84%, 95%, while the 
location balanced random forest had an AUC, sensitivity, specificity and accuracy of 
0.654, 70%, 60% and 65%56. The status balanced RF is shown as a blue point in Fig. 
4.1 and 4.4, while the location balanced RF is shown as a blue point in Fig. 4.2 and 
4.5. The ensemble classifier did not perform better than the CT+mask status balanced 
CNN, but did perform better than the location balanced CNNs, with an AUC of 0.933 
(95% CI from 0.894 - 0.972). The ROC of the ensemble model is shown in Fig. 4.6.  

3.4     Performance of radiologist readers 

As discussed at length in the included publication, the radiologist readers had AUC, 
accuracy, sensitivity, and specificity of 0.81, 81%, 65%, and 96% respectively when 
averaging their results56. One radiologist received a calculated AUC of 0.75, while the 
other had a calculated AUC of 0.87. The differences between error rate for CNNs and 
expert readers were not found to be statistically significant.  

3.5     Heatmaps as explanation tool 

Heatmaps produced for the location balanced and xMask CNN, as well as a majority 
of the status balanced CNN, showed high levels of attention to the lymph node in 

Figure 5 Comparison of neural 
network classification performance 
by region. In order to view the bias of 
the best performing neural network (the 
status balanced neural network), it is 
necessary to view performance within 
each anatomical location category. For 
purposes of comparison, the sensitivity 
of all neural networks was set at 90%. A) 
a stacked bar chart displaying number of 
lymph nodes in each location category 
that were correctly or incorrectly 
classified, each bar representing a 
neural network. Notice that the status 
balanced network is able to correctly 
classify inguinal lymph nodes (red) as 
true negative as compared to the 
location and xMask networks. B) The 
confusion matrix displaying the counts 
shown in A (height of each bar) for all 
networks and ensemble. 
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question; further information other than ‘the lymph node was relevant to output 
classification’ could not be extrapolated from these images. Some heatmaps for xMask 
images had rings of demarcated relevance around the lymph node in question. For 
heatmaps produced for the status balanced CNN using inguinal lymph nodes as input, 
the air/skin border was often well demarcated, meaning that the air/skin border (a 
feature of ‘inguinality’) contributed heavily to final output classification. The demarcated 
air/skin border is most obvious in the images from the CT only status balanced CNN 
in Fig. 6 B 1-3, though it is also present in the best performing CT+mask status 
balanced CNN, seen in Fig. 6 D 1-2. Interestingly, there is no air/skin border seen in 

Figure 6 Heatmaps generated using the explainability technique of LRP. Each row represents a distinct 
lymph node, with 3 non-infiltrated lymph nodes and 3 infiltrated lymph nodes in rows 1-3 and 4-6, 
respectively. Column A shows the input CT image for each row, along with location category for the 
respective node and the assessment of the two radiologist readers. All nodes displayed were assessed as 
‘unlikely’ to contain infiltration (a score of zero) by both readers, thus representing three true positives and 
three false negatives for rows 1-3 and 4-6, respectively. In contrast to radiologist readers, all nodes were 
correctly classified by all five neural networks. Each column B-F displays heatmaps generated to explain 
network output for 5 distinct, separately trained networks. The CNNs in B and C received the CT image only, 
those in D and E received the CT image and the segmentation mask in a separated channel, while the CNN 
in F received a single image created by multiplying the CT image and the segmentation. The NNs in B and 
D received a set of 732 lymph node images balanced by lymph node infiltration only (LNI) for training (Naively 
Balanced, NB), while C received 555 training images balanced by location in addition to LNI (Location 
Balanced, LB). The value in the upper left of each image is output of the NN for the column lymph node, a 
pseudo probability that the lymph node in that row is positive for tumor infiltration. Stars to the right signify 
true output predictions, ie true positives in columns 1-3 and true negative in columns 3-6. Within heatmaps, 
light colors represent areas that contribute to output prediction, while dark regions do not contribute little to 
output prediction. 
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CT+mask status balanced CNN in Fig. 6 D3; the presence of the mask seems to have 
forced attention to a non-central region of interest. The location balancing, seen in  b  

3.6     Feature visualization as explanation tool 

The method of feature visualization produced images that suggest that neurons of 
lower levels resemble simple edge detectors or simple pattern detectors. Optimized 
images created to maximize output of low level neurons, such as Fig. 7.1 and 7.2, 
show repeated linear patterns in a uniform orientation; this means that the neurons in 
7.1 are ‘vertical line’ detectors, and those in 7.2 are ‘horizontal line’ detectors. 
Meanwhile, optimized images created for neurons at higher levels are either 
combinations of simple features or more ‘abstract concepts’; in optimized images for 
high level neurons (such as Fig.7.4), a circular region of high intensity in the center of 
the image is apparent, resembling a centered lymph node. Little information about what 

Figure 7 Output of feature visualization explainability technique. The LRP method of heatmap generation used 
to help identify bias of our best performing neural network represents one field of explainability research. Feature 
visualization represents another attempt to explain neural network performance. In feature visualization, input 
images are generated through iterative optimization techniques to maximally activate single neurons. The hope is 
to find feature detector neurons that respond to obvious (human interpretable) discrete features, in the hope of 
gaining a global understanding of model function. Here, optimized images are shown for a set of neurons at low, 
middle, and high level layers (layers 2,5, and 9 respectively, with ‘low’ meaning near the input layer and high near 
the output). While the typical insights previously described for feature visualization are present, with high and low 
frequency pattern detectors at low levels and more complicated shape detectors at high levels, no further insights 
to model performance could be derived for our purposes. 
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the CNN ‘understands’ about positive or negative lymph nodes is revealed by feature 
visualization. 

4     Discussion 

In the study included in this dissertation, we explored how class balancing and the 
presence or absence of the segmentation mask affects the performance of CNNs as 
imaging-based biomarkers to predict the metastatic infiltration of lymph nodes by PCa 
on contrast-enhanced CT images. In addition, we explored how explainability tools 
could help build confidence in CNNs deployed in the clinic, finding one method to be 
helpful and another to provide no additional information. All CNNs developed had 
comparable performance to two experienced human readers. CNNs also performed 
better than random forest classifiers that took only size and anatomical location into 
consideration. In addition, in our detection of bias using saliency maps, we showed 
that the use of explainability tools is a critical component of medical applications of 
deep learning-based systems.  

This is, to our knowledge, the first attempt to use convolutional neural networks to find 
metastasis into lymph nodes by PCa using CT imaging. Current staging procedures, 
initiated at classification of a patient as intermediate, high or very-high risk based of 
DRE, serum PSA and histopathology on biopsy, include 99mTc-bone scintigraphy and 
CT imaging. This is despite the fact that sensitivity and specificity of CT imaging for 
LNI is reported as 42% and 82% respectively38,57,58. Currently, size is the most relevant 
diagnostic criteria for classification of LNI; nodes greater than 10mm are deemed as 
suspicious while those below are classified as benign40. Additional criteria used are not 
quantifiable and highly dependent on reader experience. Indeed, our two radiologist 
readers, with averaged sensitivity/specificity of 65% and 96%, performed better than 
reported. The higher performance of our expert readers may be attributable to their 
inclusion of these non-quantifiable characteristics gained during their greater than 5 
years of experience; it is likely that not every CT staging procedure is read by highly 
experienced uroradiologists. This points to a possible benefit of a deep learning based 
decision support system, even one that does not greatly outperform highly specialized 
experts.  

In addition to comparing our CNNs to radiologist readers, we compared them to 
random forest classifiers that took only size and anatomical location into consideration. 
Our CNN classifier also performed better than these random forests. 

4.1     Detecting and overcoming bias 

A key contribution of this work is the use of explainability tools to reveal the large impact 
that class balancing has on the usage of deep learning systems, and indeed all 
machine learning approaches. Our highest performing CNN, the status balanced CNN, 
was able to perform with an AUC of 0.95. However, using explainability tools, we found 
a strange pattern of attention to anatomical structures outside of the lymph node in 
question, for example the air/skin border in images of inguinal lymph nodes and 
structures such as the aorta. As we had also collected coarse data of anatomical 
location, with each lymph node given a single label of nine anatomical categories. 
Therefore, we were able to see that our dataset had a large bias we had been unaware 
of; a large majority (97%) of the inguinal lymph nodes were negative for LNI while a 
large majority of retroperitoneal lymph nodes were positive. Using explainability tools, 
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we were able to detect that our status balanced CNN had learned not to detect LNI in 
the lymph node, but to learn anatomical position. Indeed, the random forest that takes 
only size and anatomical position into account also performs well. 

In order to overcome this undesirable behavior, we developed two further neural 
networks that would not have access to anatomical location. The first was the xMask 
CNN, which had all regions outside of the lymph node set to zero. The second was the 
location balanced CNN, which received a smaller dataset where there was exactly the 
same amount of positive and negative lymph nodes in each location category, and thus 
frequencies of infiltration in each location could not be learned. These two networks 
did not perform as well as the status balanced CNN, but we could be confident that 
one bias in our dataset was not represented in the models, and thus the results would 
generalize better to external datasets. 

4.2     Use of explainability tools in the clinical setting 

In this dissertation, two types of explainability methods were employed, namely 
saliency maps, and feature visualization. As previously discussed, the purpose of 
explainability tools is to increase confidence in machine learning models, so that they 
can eventually be deployed as diagnostic aids or even diagnostic tools. At present, it 
has been shown that machine learning models, such as neural networks, are able to 
perform similarly well to highly trained humans under highly controlled settings with 
relatively small, usually single institution datasets. Even under these controlled 
settings, the high numbers of parameters (into the hundreds of millions) and non-
linearities mean that it is not clear how the networks achieve high classification 
performance.  

The two explainability methods used here represent two avenues of explainability 
research, namely global and local explanations. These two avenues of research 
attempt to answer different questions, either ‘how does the model as a whole 
understand this concept?’ or ‘why did the model make this specific decision?’. Saliency 
maps are a type of local explainability technique, and thus hope to provide an 
explanation on a case-by-case basis; a doctor would provide a single image to the 
network, and then receive an explanation for why the model made that specific decision 
for output classification. Meanwhile, feature visualization is a method of global 
explainability, and hopes to reveal how abstract concepts are structured within the 
network. For example, with feature visualization it has been shown that there are ‘dog 
ear detector’ and ‘cat ear detector’ neurons, which activate only when shown that 
specific features; higher level neurons then use these concepts compositionally to 
compose representations such as ‘dog’ and ‘cat’29.  

Our use of feature visualization was underwhelming, as it seems that feature 
visualization itself require interpretation and may only be useful for well understood 
and distinct entities, such as ‘dog’ and ‘cat’; the concepts of ‘infiltrated’ and ‘non-
infiltrated’ lymph node are unfortunately very similar, as both appear as circular regions 
of high intensity on a low intensity background. Whether or not some of the circles are 
bigger or represent concepts which could be used compositionally to understand 
infiltration is not clear. 

We found the use saliency maps to be of more use to this study, as with this local 
explainability technique, we were able to underscore the bias that was present within 
our models. Using the saliency maps, we were forced to acknowledge that our network 
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was learning a solution to our problem that would not generalize well to real world 
scenarios. This usage is one of the most obvious cases in which explainability tools 
are useful, namely in debugging model errors. However, the saliency maps were not 
able to provide any additional information as to what features the model took into 
consideration. 

4.3     Limitations of the presented study 

There are several limitations to the study presented in this dissertation. We used 68Ga-
PSMA PET/CT as the reference standard, and used this as a proxy for presence or 
absence of infiltration of lymph nodes by PCa. The reported sensitivity and specificity 
of 68Ga-PSMA PET/CT is 80% and 97%, respectively, and thus higher than that for CT 
only, reported at 42% and 82%, respectively. Thus the usage was justified if we wished 
to achieve the performance of PET/CT using CT only. However, it must be taken into 
consideration that some number of infiltrated nodes were not included in the training 
dataset due to the sensitivity of 80%. The use of this reference standard is justified due 
to the high specificity of our procedure; it is unlikely, with a 97% specificity, that non-
infiltrated nodes were incorrectly labeled as positive. The use of 68Ga-PSMA PET/CT 
allowed us to include patients who had not undergone PLND, as well as nodes that 
were in distant locations, which are not regularly biopsied. Another limitation is the 
large number of inguinal lymph nodes that were included in our data set. As these 
lymph nodes are large, they were often included, despite the fact that they were in the 
large majority of cases negative. This led to a class inbalance in our dataset, which 
required extensive balancing and use of explainability tools to overcome. We also used 
a binary value for presence of tumor infiltration, despite the fact that the intensity in 
PET scans is a continuous value. This kept a human in the process to determine what 
was positive and what negative. A direction of future work could be to directly predict 
SUVmax on 68Ga-PSMA PET using only CT imaging. 

In this dissertation, the CNNs created only classified images of lymph nodes as positive 
or negative. Finding the lymph nodes of interest on a full body CT scan was not in the 
scope of this project. A future direction of research is to build a tool that analyzes a full 
body CT scan and identifies lymph nodes positive for infiltration. Alternatively, further 
research could implement a workflow in which a radiologist clicks on a lymph node of 
interest and receives a prediction score of lymph node infiltration status in real time. Of 
course, usage of such a tool requires extensive research into human-machine 
interaction, exploring how presentation of classifier predictions affects radiologist 
performance. 

Another limitation of this study is the lack of explainability tools which exist to provide 
explanations for neural networks. While we were able to use tools that exist to allow 
some ‘de-bugging’ of our network, in which we were able to identify a failure of the 
network to perform as desired, and then rectify this issue with the usage of further class 
balancing, further explanations are lacking. The heatmaps generated for the location 
balanced CNN appear visually to be similar. The heatmaps show that the CNN focuses 
on the lymph node itself to determine output classification, with the lymph node itself 
highlighted as important to output classification. However, further information is not 
provided, and heatmaps generated for positive and negative lymph nodes appear 
identical. What features the neural networks are determining are relevant to infiltration 
status are not revealed, and if those features are similar to the features that a 
radiologist would use is not clear. If size is a relevant criterion is not clear. Current 
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explainability tools in the field of artificial intelligence are lacking in explanatory power, 
and thus we cannot provide additional information of how our well-performing 
classifiers function.  

Another limitation of this study is the use of data from only a single institute. It has been 
found that deep learning tools that work very well in one context or institute do not 
perform well when applied to dataset from different scanners or machines. A benefit of 
using CT imaging is that intensity values are standardized, as opposed to MRI imaging 
where intensity values vary even within a single patient. As the CNN classifiers trained 
in this network are trained with CT images, one can imagine that they will perform well. 
However, this has not been tested. Due to patient privacy regulations, publicly 
accessible datasets or sharing of datasets is not feasible. A future direction of research 
is to attempt federated learning, for exampling sharing the CNNs developed in this 
dissertation with other institutes, and having further training at these other institutes, 
with patient data never moving between institutes. This would overcome the single-
institute overfitting that may occur and result in better real-world performance. 

5     Conclusion 

In this dissertation, we investigated how the presence or absence of the segmentation 
maps as input to neural networks affected the performance of classification of tumor 
infiltration of lymph nodes by PCa on CT imaging. In addition, we compared 
performance of our CNNs to two experienced uroradiologists. We used explainability 
tools in order to explore how our neural network was able to perform. One of the 
explainability tools, namely saliency maps, was able to show that anatomical context 
has a large impact on performance of CNNs and thus should be carefully considered 
when building imaging-based biomarkers. The other explainability tool, feature 
visualization, did not provide any further information to improve confidence in model 
decision making. 
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Prostate Cancer Nodal Staging: 
Using Deep Learning to Predict 
68Ga-PSMA-Positivity from CT 
Imaging Alone
A. Hartenstein1, F. Lübbe1, A. D. J. Baur1, M. M. Rudolph1, C. Furth2, W. Brenner  2, 
H. Amthauer2, B. Hamm1, M. Makowski1,4,5 & T. Penzkofer1,3,5*

Lymphatic spread determines treatment decisions in prostate cancer (PCa) patients. 68Ga-PSMA-PET/
CT can be performed, although cost remains high and availability is limited. Therefore, computed 
tomography (CT) continues to be the most used modality for PCa staging. We assessed if convolutional 
neural networks (CNNs) can be trained to determine 68Ga-PSMA-PET/CT-lymph node status from CT 
alone. In 549 patients with 68Ga-PSMA PET/CT imaging, 2616 lymph nodes were segmented. Using 
PET as a reference standard, three CNNs were trained. Training sets balanced for infiltration status, 
lymph node location and additionally, masked images, were used for training. CNNs were evaluated 
using a separate test set and performance was compared to radiologists’ assessments and random 
forest classifiers. Heatmaps maps were used to identify the performance determining image regions. 
The CNNs performed with an Area-Under-the-Curve of 0.95 (status balanced) and 0.86 (location 
balanced, masked), compared to an AUC of 0.81 of experienced radiologists. Interestingly, CNNs 
used anatomical surroundings to increase their performance, “learning” the infiltration probabilities 
of anatomical locations. In conclusion, CNNs have the potential to build a well performing CT-based 
biomarker for lymph node metastases in PCa, with different types of class balancing strongly affecting 
CNN performance.

Prostate cancer (PCa) is the most common malignant cancer in men worldwide, and the second most common 
cause of cancer related death in men1. Patients with intermediate or high-risk PCa undergo regular staging exami-
nations in order to determine if the tumor has spread beyond the prostate. As treatment success is highly depend-
ent on the presence of systemic spread2,3, staging procedures with high sensitivity and specificity are necessary.

Standard of care imaging for PCa staging typically includes contrast-enhanced computed tomography (CT) 
and Technetium-99m-methylene diphosphonate bone scans4,5. Despite the continued recommendation of CT in 
staging, it has been shown that predicting lymph node infiltration (LNI) with CT scans is not very reliable6,7, with 
one study reporting a sensitivity and specificity of only 42% and 82%8. This low performance is most likely due to 
the limited morphological criteria used to define a lymph node as positive for infiltration, with size being the most 
relevant9. A threshold of 8–10 mm is often used despite the fact that 80% of lymph node metastases are less than 
8 mm in the short axis10. Further criteria, such as status of hilum fat, nodal shape, and enhancement characteris-
tics are used to aid diagnosis, but it remains difficult to exclude LNI in large benign hyperplastic nodes or detect 
it in small nodes below the size threshold11.

In 2012 imaging agents binding to Prostate Specific Membrane Antigen (PSMA) were introduced, leading 
to the development of PSMA PET/CT8. PSMA, an integral membrane glycoprotein expressed 100–1000 fold on 
membranes of PCa cells compared to prostate cells, has been shown to correlate with aggressive disease, disease 
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recurrence, and metastasis12–14, and radio-tracer targeting of PSMA in conjunction with CT has been shown in a 
systematic review and meta-analysis of 5 studies to predict LNI with a sensitivity and specificity of 80% and 97% 
respectively15. PSMA PET/CT has been used to detect PCa in the prostate, soft tissue, and bone, and has been 
shown to detect LNI in nodes even under 10 mm in size, with one study reporting a 60% detection rate for nodes 
between 2–5 mm16,17.

Even though PSMA PET/CT has proven to be very valuable in PCa staging, it remains of limited availability 
and hybrid imaging such as PET/CT is associated with high costs. The goal of this study was to evaluate – using 
68Ga-PSMA PET/CT as a reference standard – if it is possible to elucidate the status of lymph nodes based on 
contrast-enhanced CT images alone using deep learning in the form of convolutional neural networks (CNNs).

Materials and Methods
Imaging datasets. Inclusion criteria for this retrospective study was the availability of a 68Ga-PSMA PET/
CT examination with parallel contrast-enhanced CT examination performed between September 2013 and April 
2017. All patients had histopathologically verified prostate cancer that warranted staging examinations. Exclusion 
criteria were non-contrast or low-dose only CT examination, insufficient image quality, and follow-up studies 
(only the first 68Ga-PSMA PET/CT of each patient was included). Of 738 patients, 549 patients (68.7 ± 7.54 
[45–87] years, PSA 20.9 ± 94.6 [0–1423] ng/ml) fulfilled our inclusion criteria. The study was approved by the 
Charité Ethics Committee, and due to the retrospective design, the need for informed written consent was waived 
by the same review board, in accordance with institutional guidelines and regulations. The study was performed 
in accordance with the Declaration of Helsinki.

All patients had received 68Ga-PSMA PET/CT examinations for clinical purposes during the course of treat-
ment. A standard 68Ge/68Ga generator (Eckert and Ziegler Radiopharma GmbH, Berlin, Germany) was used for 
68Ga production, and PSMA- HBED-CC (ABX GmbH, Radeberg, Germany) labelling with 68Ga was performed 
according to the previously described method18. All PET/CT images were acquired using a Gemini Astonish 
TF 16 PET/CT scanner (Phillips Medical Systems, Best, The Netherlands) after intravenous injection of 68Ga- 
PSMA-HBED-CC19 using 3-D acquisition mode for all PET scans.

Semi-automated manual three dimensional segmentation of lymph nodes was performed using the MITK 
software suite (MITK v. 2016.3.0, DKFZ, Heidelberg, Germany)20. Using the PSMA PET image as ground truth, 
a label of positive or negative for tumor infiltration was generated for each lymph node in consensus of two radi-
ologists experienced in hybrid imaging, correlated with SUVmax. Figure 1 shows an example of a 68Ga-PSMA 
PET/CT full body scan and two selected lymph nodes, one positive and one negative for infiltration. In addition 
to the tumor infiltration label, the position of each lymph node in the body was manually assigned a categorical 
variable from a set of 9 possible categories (inguinal, iliacal (including obturator fossa), perirectal, (ascending) 
retroperitoneal, axillary, mediastinal, supra or infraclavicular, and cervical).

Patient collective and dataset generation. A final set of 549 patients fulfilled the inclusion criteria. An 
average of 4.72 ± 0.77 (SD) lymph nodes were segmented and labelled in each patient resulting in a total of 2,616 
labelled lymph nodes, with 431 of these labelled as positive for infiltration. Figure 2 shows how these images were 
used to generate test and training datasets, and is explained as follows. A set of 130 lymph nodes was set aside for 
testing all CNNs and experts. This test set was created by taking 15% of the available positive nodes (65 nodes) 
and matching with 65 randomly selected negative nodes to create a 50:50 class balanced set. The remaining 366 
positive nodes were matched with 366 randomly selected negative nodes to create a 50:50 class balanced set 
referred to as the ‘status balanced’ training set, with a total of 732 lymph nodes. The majority of lymph nodes in 
the status balanced and test dataset were in the inguinal region (32%), followed by the iliacal region (23%), and 
retroperitoneal region (19%). Figure 3a shows anatomical distribution by training set. To investigate effects of 
anatomical localization on classification results, the same 366 positive nodes used to create the status balanced 
set were sorted by anatomical category and matched to randomly selected negative nodes from within the same 
anatomical category, thus creating a 50:50 class balanced set with 548 lymph nodes, referred to as the ‘location 
balanced’ training set.

Neural network training. Images were resampled to an isotropic resolution of 1 × 1 × 1 mm3. A volume of 
80 × 80 × 80 mm3 was cropped around the lymph node, centered at the center point of the manual lymph node 
segmentation. Image augmentation was performed online during model training, while only non-augmented 
images were provided to the model during validation and testing. A total of four random augmentations were 
performed: brightness was augmented by a factor between 0.5 and 1.5, after which images were rotated between 
±180 degrees, translated by a maximum of 5 voxels in the x, y and/or z axis, and finally flipped across the sagittal 
or axial plane or both. In order to ensure that no ‘black borders’ (i.e. areas with no image data due to rotation 
and shifting during augmentation) would be fed to the model, images were again cropped to a final volume of 
48 × 48 × 48 mm3. Finally, a single axial central slice was provided to the model as input.

Networks received two-dimensional images of 48 × 48 voxels and output a binary prediction whether or not 
the single lymph node displayed contained tumor or not. A final network architecture with 16 convolutional 
layers and three densely connected layers, inspired by the success of similar architectures by the Visual Geometry 
Group (VGGNet)21, was selected using k-fold validation with k = 10. Figure 4 shows the architecture used by all 
CNNs. CNNs were not pre-trained. Batch normalization was performed after every layer, with rectified linear 
units (ReLU) used as the activation function. The output of the convolutional layers was fed to a fully connected 
feed forward network with 3 hidden layers. Adam optimization was used to update network weights22, with 
parameters for alpha, beta1, beta2 and epsilon set at 0.0001, 0.9, 0.999 and 1e-08.

Three separate CNNs were trained. All models shared identical network architecture and were distin-
guished by the dataset used to train them: the status balanced model received status balanced CT images and 
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segmentations, the location balanced model received location balanced CT images, and the xMask model 
received status balanced CT images multiplied by their corresponding segmentation mask. All models were 
implemented in Keras and Tensorflow (v. 1.10.1) and run on a Nvidia TITAN Xp graphics card (NVIDIA Titan 
Xp, Rev A1, Santa Clara, CA, United States). Heatmaps were generated using the Innvestigate (v. 1.0.2) package23 
using the PatternAttribution method24.

Random forests. In order to validate neural network performance, random forests were generated to pre-
dict nodal infiltration status taking only nodal volume in mm3 and nodal anatomical location into account. Two 
random forests were trained for each of the training sets used (status balanced, location balanced). Anatomical 
location was encoded as a one hot vector. Random forests were implemented using the sklearn python package25 
with maximum depth set at 5 to prevent overfitting to the training data.

Study readers. Two radiologists, with at least 5 years of experience in urogenital imaging, were presented 
with all test CT images (n = 130). Radiologists were presented an 80 × 80 × 80 mm3 volume centered on the 
lymph node in question at 1 × 1 × 1 mm3 resolution, and were asked to categorize the likelihood of lymph node 

Figure 1. Generation of Labelled Dataset. (a) Imaging of a single patient with (1) a contrast-enhanced CT scan 
and (2) a 68Ga-PSMA PET scan. An average of 4.72 ± 0.77 lymph nodes were selected and semi-automatically 
segmented for each patient. A single lymph node positive for infiltration by PCa can be seen in the mediastinal 
region outlined in red in the CT image in (a1), and demarcated by a red arrow in PET scan in (a2). Using the 
68Ga-PSMA PET/CT as our reference standard, a label for infiltration status by prostate cancer (either positive 
or negative) was assigned on a per lymph node basis. (b) An example of a negative 68Ga-PSMA PET/CT image 
pair in which the centered lymph node does not exceed background. (c) An example of a positive image pair.
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infiltration by tumor from the following four categories: very unlikely, unlikely, likely, and very likely. Neither the 
segmentation, 68Ga-PSMA PET/CT images, nor label were provided.

Statistical analysis. Model performance was evaluated for each CNN on the independent test set (n = 130) 
using the area under curve (AUC) of the receiver operating characteristic (ROC) curve. AUCs and confidence 
intervals were calculated using the pROC package in R26, with confidence intervals computed using the bootstrap 
method with 10,000 stratified replicates. To allow for model comparison, the optimal threshold at which to con-
sider CNN output as positive was set by maximizing Youden’s index (sensitivity + specificity − 1), from which 
binary predictions were generated. Accuracy, sensitivity, specificity, PPV and NPV were calculated using the 
binary predictions. For study readers, the four categories were simplified to a dichotomous prediction of likely/
unlikely. AUC for each radiologist is equivalent to the average of specificity and sensitivity27. McNemar’s test was 
applied to all pairs of CNNs and experts. Results were considered statistically significant at a reduced P < 0.005 
level to correct for multiple comparison. All variables are given as mean along with standard deviation and range 
where applicable.

Results
Evaluation of CNN classifiers and experts. The best performing Neural Network was trained using the 
status balanced training set, with an AUC of 0.955 (95% CI from 0.923–0.987). The CNNs trained with datasets 
where implicit frequency data was stripped using 50:50 class balancing by location category (the location bal-
anced training set) or masking by the segmentation masks (xMask) performed comparably well, with an AUC of 
0.858 (95% CI from 0.793–0.922) and 0.863 (95% CI from 0.804–0.923), respectively. Setting the sensitivity at 90% 
for all CNN models, the specificities of status balanced, location balanced, and xMask models was 88%, 52%, and 
55%, respectively. Figure 5a shows ROC curves of all CNNs. Figure 5b shows histograms of CNN classification  
performance. Table 1 presents classification performance.

Figure 2. Dataset Generation Flowchart. Diagram describing generation of train and test datasets. Three 
train datasets shown, (status balanced, location balanced and xMask) were used to train three distinct neural 
networks. All neural networks and experts were tested and compared using a separate test set of 130 images, 
which was withheld from the neural networks during training. 50:50 class balancing was performed by taking 
all available infiltrated lymph nodes and randomly selecting an equally sized set of non-infiltrated lymph nodes, 
either from all available non-infiltrated nodes or from nodes within the same location category.
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The experienced uroradiologists achieved an average AUC, sensitivity, specificity and accuracy of 0.81, 65%, 
96% and 81% respectively. The first radiologist performed with a calculated AUC of 0.86, while the second radi-
ologist achieved a calculated AUC of 0.75. All differences in error rate between CNNs and expert readers was not 
statistically significant using McNemar’s test and p set at a reduced 0.005.

The random forest trained with the status balanced training set achieved an AUC, sensitivity, specificity and 
accuracy of 0.900, 84%, 95% and 90% respectively on the test set. The random forest trained with the location 
balanced set performed significantly worse with an AUC, sensitivity, specificity and accuracy of 0.654, 70%, 60% 
and 65% respectively on the test set.

Use of heatmaps to explain differences in performance. Using heatmaps, we sought to elucidate 
how deep learning achieves a high classification performance. Examples of heatmaps are shown in Figs. 6 and 7.  
It appears that the CNNs are able to learn features within the lymph node and more surprisingly, outside the 

Figure 3. Dataset Regional and Volume Distributions. (a) The final distribution of lymph node images by 
location and infiltration status for the two training sets, referred to as ‘status balanced’ with 732 images and 
‘location balanced’ with 548 images. (b) Boxplots depicting volume distribution for the location and status 
balanced training sets and test set grouped by infiltration status. Due to considerable overlap of the two 
distributions, size or volume is not a powerful indicator of infiltration.

Figure 4. Convolutional neural network architecture. All three CNNs developed shared a common architecture 
and differed by the data used for training. CNNs received 2D contrast-enhanced CT images and segmentation 
masks as input, with input images augmented randomly during training. All convolutional layers used a kernel 
size of 3 × 3. A rectified linear unit (ReLU) activation function followed by batch normalization was performed 
at every layer. Adam optimization was used to update network weights, with parameters for alpha, beta1, beta2 
and epsilon set at 0.0001, 0.9, 0.999 and 1e-08. Training was continued for 50 epochs.
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boundaries of the lymph node (such as the aorta or air/skin borders), that correlate with lymph node infiltration 
status. It is critical to note that our best performing model, trained on status balanced data, appears to rely on 
features outside of the lymph node in question. This can be most clearly seen on images of inguinal or mediastinal 
lymph nodes, where areas of skin/air border (often found in the inguinal region) or lung/mediastinum border 
contribute heavily to final classification output, and the lymph node centered in the image is not highlighted. 
Heatmaps from the same CNN show that the lymph node itself is more important in true positive considerations, 
suggesting that ‘inguinality’, i.e. features of the inguinal region are important considerations in a negative infiltra-
tion status. Heatmaps generated can also be diffuse, with CNN attention displayed in many regions of the image 
but not particularly focused on the lymph node or surrounding region.

Discussion
In this study we trained and tested three CNNs that predict metastatic infiltration of lymph nodes by PCa using 
contrast-enhanced CT images and assessed their performance versus that of experienced human readers. The 
CNNs performed at the same level of two expert radiologists.

Figure 5. Classification performance. (a) Shown are the ROC curves for the three trained CNNs on the 
separate test set (n = 130) with 95% confidence interval of the sensitivity at given specificities in shaded gray. 
Displayed in the lower right hand corner is the corresponding AUC. Classification by individual radiologists 
on the same test set are displayed as black dots. Blue stars show random forest performance on the separate 
test set using the corresponding training dataset (status or location balanced). (b) Histograms of CNN model 
classification performance on the test set. The threshold that maximizes Youden’s index is shown as a dashed 
line. The threshold which corresponds to a 90% sensitivity is shown as a dotted line. Infiltrated nodes (red bars) 
to the right of the given threshold are ‘true positive’, while those to the left are ‘false negative’: non-infiltrated 
nodes (blue) to the left are true negative, to the right are false positive.

Classifier AUC
Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

PPV 
(%)

NPV 
(%)

F1 
Score

CNN: Status 
Balanced 0.95 89 86 92 91 86 88

CNN: Location 
Balanced 0.86 80 72 89 87 76 78

CNN: xMask 0.86 76 76 76 76 76 76
RF: Status 
Balanced 0.90 90 84 95 94 86 89

RF: Location 
Balanced 0.65 65 70 60 63 67 67

Expert 1 0.86 86 80 93 92 82 85
Expert 2 0.75 74 50 98 97 66 66

Table 1. Classification performance. Classification results are displayed in percentages. The optimal threshold 
for the three CNNs was selected by maximizing Youden’s Index. RF: Random Forest.
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Current attempts at detecting lymph node metastases in PCa by radiological reading have been shown to 
be suboptimal, with a sensitivity and specificity shown in one study to be 42% and 82%, respectively6–8. Size is 
often the most relevant diagnostic criteria, with nodes greater than 10 mm deemed as suspicious and all below 
as benign9,10. Other criteria are difficult to quantify and are highly dependent on reader experience. Thus, the 
use of quantitative or algorithmic methods to detect LNI is desired. By radiomic analysis, in which a host of 
quantitative features are extracted from images and analyzed for statistical correlations, it has been suggested 

Figure 6. Heatmaps display neural network attention. (a) Contrast-enhanced CT images for two lymph nodes 
that were used as input to generate all heatmaps displayed, with (1) a retroperitoneal lymph node positive for 
infiltration by PCa, and (2) an inguinal lymph node negative for infiltration. In (b–d) heatmaps for the lymph 
nodes shown in (a), produced by three CNNs trained with status balanced training data, location balanced 
training data, or masked input data, respectively. CNN output, a pseudo probability score that the lymph 
node was classified as positive for tumor infiltration, is shown in the bottom right of each heatmap in (b–d). 
Stars signify true output predictions (either true positives for the lymph node in column 1 or true negative 
for column (2), with thresholds set by optimizing Youden’s index for each CNN, set at 34, 73 and 54 for b,c, 
and d respectively. Within heatmaps, light colors represent areas that contribute to output prediction, while 
dark regions contribute little to output prediction. CNNs often highlight regions within the lymph node that 
expert radiologists recognize as important for infiltration status, such as nodal center density and contrast 
enhancement. In true positive images it appears that high central density is the most relevant parameter in 
designating a ‘positive’ label. We postulate that the ‘halo’ surrounding the lymph node in the xMask CNN (d1), 
depicts the CNN attention to size. Heatmaps produced by the CNN trained with status balanced data highlight 
anatomical regions which aid in classification of lymph nodes, often demarcating the air-skin border seen in 
images of inguinal lymph nodes, as in b2.
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that a 7.5–Hounsfield CT density threshold could act as a surrogate parameter to differentiate LNI from benign 
processes28, with 89% of non-infiltrated LNs below this threshold and 92% infiltrated LN above, though this study 
used many different cancer types and a mix of PET tracers as a standard of reference. Deep learning, in which 
optimization algorithms are used to train neural network models in classification tasks, have shown mixed suc-
cess in detecting LNI. It has been previously found that CNNs are able to predict SUVmax in a PET scan using 
CT images of lymph nodes with a moderate accuracy, with an AUC of 0.8529. A number of studies predicting 
mediastinal LNI by lung cancer and breast cancer have been performed, with one study finding an AUC of 0.7630 
and another study classifying LNI in axillary lymph nodes by breast cancer achieving an AUC of 0.8431. CNNs 
were also found to classify head and neck tumor extranodal extension with an AUC of 0.91 using 3D CT images32. 
It has also been shown feasible to identify tumor infiltrated lymph nodes in MRI using deep learning33. To our 
knowledge, no study using deep learning to identify metastases of PCa into the lymphatic system by CT has been 
performed so far.

Generation of heatmaps is an attempt to explain how deep learning models reach classification decisions 
on a per-image basis, and represents a growing field of research known as ‘explainability’. Each heatmap can be 
interpreted as displaying CNN attention; regions of an input image that influenced the classification decision are 
demarcated. From the heatmaps produced in our study, it becomes clear that identical CNN architectures learn 
different methods to solve the same problem, depending on which data is used for training. It appears that the 
CNN trained with status balanced data learned not only to recognize features of the lymph node in question, but 
also to recognize anatomical features surrounding the lymph node. Using these anatomical features, it appears 
that the status balanced CNN implicitly learned frequency of infiltration in different anatomical regions and used 
these frequencies or probabilities to improve output prediction. For example, in the status balanced dataset, 91% 
of inguinal lymph nodes were negative (see Fig. 3a). Thus, labeling all inguinal lymph nodes as negative is highly 
rewarded during the training process, and recognizing ‘inguinality’ aided in achieving high classification accu-
racy. Indeed, the air/skin border found in inguinal lymph nodes was often well demarcated in heatmaps, as seen 
in Fig. 6. However, it is unclear to what extent such anatomical features influenced classification; the CNN trained 

Figure 7. Limitations of heatmaps as tool to explain black box predictions. (a) Contrast-enhanced CT images 
for two inguinal lymph nodes that were used as input to generate all heatmaps displayed, with (1) a lymph node 
positive for infiltration by PCa, and (2) a lymph node negative for infiltration. In (b,c) heatmaps produced by 
two CNNs trained with location balanced training data, or masked input data, respectively. Beyond verifying 
that the lymph node is important for classification, heatmaps provide little additional information as to why 
classification output was either true positive (b1,c1), true negative (b2), or false positive (c2).
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with status balanced data did classify some inguinal lymph nodes as positive, and some retroperitoneal lymph 
nodes (of which 94% were positive in the status balanced dataset) as negative, as shown in Fig. 5b. The fact that 
learning anatomical features within the image (as proxy for anatomical location) greatly improves classification 
performance in the status balanced dataset is underscored by the high performance of the random forest trained 
on the this dataset; using nodal volume and location alone, high classification performance was achieved (AUC 
0.90). Thus, our best performing neural network is most likely essentially useless on external datasets not sharing 
the anatomical bias found in the status balanced dataset.

We created two additional CNNs to eliminate anatomical clues within images in an attempt to force neural 
network attention to the lymph node. First, we created a new training dataset created by balancing positive and 
negative lymph nodes within each location category. By doing so we eliminated the possibility of learning infil-
tration frequency at each anatomical location. While it is clear from generated heatmaps that the CNN trained 
with this location balanced set did focus more on the lymph node and not on anatomical features, it was not able 
to achieve the same classification performance as the status trained CNN. However, a random forest receiving 
nodal volume and location information trained on this location balanced dataset performed poorly, considerably 
worse than the CNN (AUC 0.677 vs 0.858). This leads us to believe that the neural network is indeed focusing on 
features within the lymph node to perform classification. Secondly, a new CNN was provided images created by 
multiplying the CT image by the manually generated segmentation (xMask), thus setting all values outside of the 
lymph node to zero. This removed all contextual information, such as location in the body or presence of neigh-
boring structures. The resulting performance was similar to the location balanced CNN. Interestingly, heatmaps 
created by the xMask CNN often showed a diffuse halo like pattern of attention outside of the lymph borders, 
which we postulate may be the CNNs attention to size. We cannot definitively state that any of the CNNs devel-
oped are able to determine nodal size due to intrinsic limitations of heatmaps as an explainability tool and the 
black box nature of neural networks, which often created very similar looking heatmaps (see Fig. 7). Regardless, 
size alone is a poor predictor of infiltration, as can be intuited by the considerable overlap of volume distributions 
for lymph nodes positive and negative for infiltration (see Fig. 3b) and shown quantitatively by the poor perfor-
mance of the random forests trained with location balanced data.

There are a number of limitations to our study. It is important to note that the usage of PSMA PET/CT is an 
imperfect method of label generation. In comparison to the gold standard for detecting LN metastases, namely 
histopathological analysis after extended pelvic lymph node dissection (PLND)34, PSMA PET/CT was found 
to have a sensitivity of 80% and specificity of 97% in a systematic review and meta-analysis15,16,35,36. Due to the 
high specificity, it is unlikely that our models were trained with large numbers of false positive lymph nodes. In 
addition, we relied on manual detection of segmentation of lymph nodes, and we do not perform lymph node 
detection. The tendency to select easily definable and large lymph nodes for analysis led to a large amount of 
inguinal lymph nodes being included in our dataset, a limitation we sought to overcome by various means of class 
balancing.

The obvious attention to anatomical features demonstrated by our best performing CNN raises a number 
of issues in the implementation of deep learning in the medical field. Deep learning models are able to learn 
frequencies and summary statistics, known as biases, within datasets, which can lead to high classification per-
formance based upon undesirable features. This problem is distinct from overfitting to the training dataset, and 
instead points to the need for a more rigorous explainability of deep learning models. Our results represent a 
moderate success in the use of saliency maps (heatmaps), as through this instance-based analysis of CNN atten-
tion, we were able to determine that our best performing model was using anatomical features of the lymph node 
environment in addition to features within the lymph node. We were able to compensate for anatomical variations 
in infiltration frequency because we had collected coarse data on anatomical location. However, not only does 
class balancing at ever higher levels of abstraction encroach on the notion of ‘automated feature generation’, it 
is not feasible in the medical field due to lack of knowledge of what constitutes a relevant category. The lack of 
explainability methods for deep learning models is also a limitation. Our use of heatmaps, known as an attribu-
tion method, of which there are several, is problematic not just because of inconsistencies in implementation and 
performance24, but the underpinning assumption that individual pixels in an input image should be the primary 
unit of relevance for classification.

Current deep learning systems can perform remarkably well and will most likely continue to improve with 
larger datasets and access to more contextual information, such as blood serum values and genomic data. Our 
results show that CNNs are capable of classifying lymphatic infiltration by PCa on contrast-enhanced CT scans 
alone as compared to the 68Ga-PSMA PET/CT reference standard. Anatomical context influences the performance  
of CNNs and should be carefully considered when building such imaging based biomarkers.
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