
Journal of

Clinical Medicine

Article

Classification of Dental Radiographs Using Deep Learning

Jose E. Cejudo 1, Akhilanand Chaurasia 2,3 , Ben Feldberg 1 , Joachim Krois 1,2 and Falk Schwendicke 1,2,*

����������
�������

Citation: Cejudo, J.E.; Chaurasia, A.;

Feldberg, B.; Krois, J.; Schwendicke, F.

Classification of Dental Radiographs

Using Deep Learning. J. Clin. Med.

2021, 10, 1496. https://doi.org/

10.3390/jcm10071496

Academic Editors:

Gianrico Spagnuolo and

Emmanuel Andrès

Received: 18 March 2021

Accepted: 31 March 2021

Published: 3 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Oral Diagnostics, Digital Health and Health Services Research,
Charité–Universitätsmedizin Berlin, 14197 Berlin, Germany; jose-eduardo.cejudo@charite.de (J.E.C.);
ben.feldberg@charite.de (B.F.); Joachim.krois@charite.de (J.K.)

2 ITU/WHO Focus Group AI on Health, Topic Group Dentistry, 1211 Geneva, Switzerland;
chaurasiaakhilanand49@gmail.com

3 Department of Oral Medicine and Radiology, King George’s Medical University,
Lucknow 226003, Uttar Pradesh, India

* Correspondence: falk.schwendicke@charite.de; Tel.: +49-30-450-62556; Fax: +49-30-450-7562-556

Abstract: Objectives: To retrospectively assess radiographic data and to prospectively classify radio-
graphs (namely, panoramic, bitewing, periapical, and cephalometric images), we compared three
deep learning architectures for their classification performance. Methods: Our dataset consisted
of 31,288 panoramic, 43,598 periapical, 14,326 bitewing, and 1176 cephalometric radiographs from
two centers (Berlin/Germany; Lucknow/India). For a subset of images L (32,381 images), image
classifications were available and manually validated by an expert. The remaining subset of images
U was iteratively annotated using active learning, with ResNet-34 being trained on L, least confidence
informative sampling being performed on U, and the most uncertain image classifications from
U being reviewed by a human expert and iteratively used for re-training. We then employed a
baseline convolutional neural networks (CNN), a residual network (another ResNet-34, pretrained
on ImageNet), and a capsule network (CapsNet) for classification. Early stopping was used to
prevent overfitting. Evaluation of the model performances followed stratified k-fold cross-validation.
Gradient-weighted Class Activation Mapping (Grad-CAM) was used to provide visualizations of
the weighted activations maps. Results: All three models showed high accuracy (>98%) with sig-
nificantly higher accuracy, F1-score, precision, and sensitivity of ResNet than baseline CNN and
CapsNet (p < 0.05). Specificity was not significantly different. ResNet achieved the best performance
at small variance and fastest convergence. Misclassification was most common between bitewings
and periapicals. For bitewings, model activation was most notable in the inter-arch space for periapi-
cals interdentally, for panoramics on bony structures of maxilla and mandible, and for cephalometrics
on the viscerocranium. Conclusions: Regardless of the models, high classification accuracies were
achieved. Image features considered for classification were consistent with expert reasoning.
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1. Introduction

Radiographic images are ubiquitous in many medical settings; especially in dentistry,
imaging is at the cornerstone of many patients’ dental voyage, from diagnosis, to treatment
planning, to conducting and re-evaluating therapies. Dental images involve photographs,
radiographs, 3-D scanning, cone beam computed tomography (CBCT), video data, etc.; no
discipline in medicine takes more radiographs than dentistry [1].

In today’s digital practice infrastructure, such imagery should be indexed and digitally
stored in archiving or patient management systems, allowing one to retrieve these data
easily for diagnostics, treatment, and monitoring. Traditionally, this indexing and storing
process has been done manually.

Image indexing, i.e., assigning a label to an image (like “periapical radiograph of
tooth 47”), is considered an image classification task. Such classification tasks can be
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automated using deep learning, which is a branch of machine learning that excels on
high-dimensional data such as text and images [2]. Convolutional neural networks (CNNs),
one of the most common deep learning architectures, have been employed in dentistry to
detect and classify image objects like teeth or restorations as well as to detect, classify, and
segment pathologies like dental caries or apical lesions on dental radiographs [3]. Software
products building on such deep CNNs are supposed to assist the dental practitioner in
image analysis, including speeding up the diagnostic process, improving accuracy, and
easing comprehensive reporting [4].

To retrospectively assess the available large-scale image pool in most dental settings
as well as to avoid manual labelling of prospective imagery, deep learning can be em-
ployed, too. Automated classification of dental image types, like different radiographs
(e.g., panoramics, bitewings, periapicals, and cephalometrics), would allow one to make
better use of the vast existing data in dental practices and hospitals as well as easing
the dental workflow for new imagery. For example, such automated classification could
be part of existing software suites, e.g., radiographic viewing software or patient man-
agement software, allowing automated labeling and appropriate storage and indexing
of new imagery. Additionally, such classification could be used for research purposes
to mine existing unstructured image databases, thus enabling better usage of data for
scientific objectives.

We aimed to train and test deep learning models for classifying dental radiographs,
comparing three popular network architectures for their classification performance. Moreover,
we applied elements of explainable artificial intelligence (XAI) to visualize salient areas most
relevant for the classification, helping to understand and interpret the models’ output.

2. Methods
2.1. Study Design

In the present study, three deep learning model architectures for classification of
dental radiographs were trained, validated, and tested in a supervised learning setting, i.e.,
employing a dataset with pairs of images and labels. The dataset was composed of four
types of radiographic images, i.e., panoramics, bitewings, periapicals, and cephalometrics.
A combination of active learning (AL) as part of the annotation pipeline, a weighted loss
function for handling the imbalance in the classes, early stopping to prevent overfitting, and
transfer learning were used. Ten-fold cross validation scheme was applied to account for
uncertainty. We further visualized the salient areas of the images that had most importance
in the models’ output, i.e., by leveraging XAI. Reporting of this study follows the Standards
for Reporting of Diagnostic Accuracy Studies (STARD) guidelines [5], the Checklist for
Artificial Intelligence in Medical Imaging (CLAIM) [6], and the Checklist for Artificial
Intelligence in Dental Research [7].

2.2. Data and Sampling

The dataset consisted of a total of 90,388 radiographs originating from routine care
provided at Charité–Universitätsmedizin Berlin, Germany (Charité) and King George’s
Medical University (KGMU), Lucknow, India. Data collection was ethically approved
(Charité ethics committee EA4/080/18). Charité provided in total 31,288 panoramic,
43,598 periapical, and 14,326 bitewing radiographs, whereas KGMU provided 1176 cephalo-
metric radiographs (Table 1). The data were collected between 2016 to 2018 and 2011 to 2019
at KGMU and Charité, respectively. The patients’ ethnicity at KGMU was Indian, while
further meta-data were not available. The patients’ ethnicity at Charité can be assumed to
be predominantly Caucasian, while it is worth noting that Berlin hosts a large Turkish and
Arabic community, too (totaling approx. 9% of the city’s total population). As mentioned,
age and gender information was available from Charité only. There were 49.1% male and
47.3% female patients in the dataset (the remaining portion was not reported). The mean
(SD, min–max) age was 47.4 (20.4, 3–99) years. The data from both centers were generated
using radiographic machines from the manufacturer Dentsply Sirona (Bensheim, Germany),
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mainly Orthophos SL, Orthophos XG3D, and XIOS Plus (in toto 66.3%); machines from
Dürr Dental (Bietigheim-Bissingen, Germany), mainly Vista Scan (22.6%); and machines
from Carestream (Rochester, New York, USA), mainly CS 9300 (1.8%). For approx. 10%
of the radiographs, the manufacturer was not reported. All image data were extracted
from PACS as DICOM files, pseudo-anonymized and exported as JPEG images; no further
image preprocessing was applied.

Table 1. Characteristics of the image dataset.

Image Type Data Provider Number of Images (%) Mean Age (SD, min–max) Gender (%)

Overall — 90,388 (100) 47.6 (20.2, 14–96) M: 50.2, F 49.1
Panoramics Charité 31,288 (34.6) 46.3 (22.8, 14–96) M: 50.0, F 49.9
Bitewings Charité 14,326 (15.8) 37.0 (15.0, 14–89) M: 50.8, F 48.1
Periapicals Charité 43,598 (48.2) 53.4 (17.7, 14–94) M: 51.2, F 47.9

Cephalometrics KGMU 1176 (1.3) — —

KGMU: King George’s Medical University, SD: Standard Deviation.

For a subset of images L (32,381 images), information of its category (panoramic,
bitewing, periapical, or cephalometric) were available. Notably, the proportion of images
per category varied greatly, with the dataset being heavily imbalanced (panoramic, 46.38%;
bitewing, 22.23%; periapical 27.74%; and cephalometric 3.63%). For another subset of
images U (58,007 images), no such information was available.

2.3. Reference Test; Active Learning

The subset L was manually reviewed by an experienced dentist (BF), and its clas-
sification information was validated. The remaining subset of images U was iteratively
annotated using active learning (AL) [8]. AL is a branch of machine learning that aims to
minimize the annotation effort of human annotators. A model (we used ResNet-34; model
details are described below) was trained on the labeled data L. In order to query data
points from U for labeling by a human annotator, the least confidence informative sampling
approach was adopted [9]. Such sampling uses a measure of the informativeness (here
the confidence of the model inference was used) for deciding which queries are provided
to the annotator for labeling. By doing so in each iteration, the annotator was provided
with the most uncertain image instances. Once reviewed and labeled by the human expert,
the existing labeled data were augmented with the newly annotated data at each iteration.
Hence, the amount of labeled data increased with every iteration, as did the performance
of the model. In total, 10 iterations were needed to label the complete dataset U. This
approach turned out to be faster and less work-intensive for the annotators than labeling
the entire unlabeled dataset from scratch. Notably, the ResNet-34 model trained for the AL
task was not used for the experiments outlined below.

2.4. Sample Size

As a comprehensive sample of available and labelled imagery was used, no formal
sample size estimation was performed.

2.5. Model, Model Parameters, and Training

Numerous neural network architectures for computer vision deep learning models
have been proposed [10]. CNNs leverage the concept of convolution layers [2,11], which
serve as an effective feature extractor for images. More recently, residual networks were
introduced, which add skip connections between layers and have demonstrated high
performance on computer vision tasks [10]. Capsule networks [12] have also drawn
attention given their novel architecture and routing mechanism and have achieved high
performances in medical image analysis [13]. In the present study, the performance of
a baseline CNN, a residual network (ResNet), and a capsule network (CapsNet) were
evaluated for radiographic image type classification.
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The baseline CNN was composed of two convolutional blocks with 16 and 32 kernels,
a ReLU activation function, and a Max-Pooling layer. Its classification head was composed
of two fully connected layers of 512 units followed by a ReLU and an output layer with a
softmax activation function. The weights of the baseline CNN were initialized randomly.

The residual network was a ResNet-34 model architecture, pretrained on the ImageNet
dataset. The classification head was replaced by a fully connected layer of outputs equal to
the number of labels in our dataset, i.e., four. A softmax activation function was applied
to the final layer. For both the baseline CNN and ResNet-34, weighted cross entropy
was used as the loss function. The weights were inversely proportional to the fraction of
each category to account for the class imbalance. The misclassification of categories with
fewer instances resulted in a larger loss, forcing the model to learn to correctly classify the
minority classes.

For the capsule network, a feature extraction module of CapsNet with a single convo-
lutional layer of 256 kernels followed by a ReLU activation was used. The features were
fed to a layer of 32 capsules followed by the output layer with 4 capsules, all of them
of 16 dimensions. The margin loss was used with the original parameters [12], and the
network was randomly initialized.

Prior to feeding data to the models, the images were reshaped to arrays of 224, 224,
and 3 for ResNet and the baseline CNN. Lower resolutions (64, 64, and 3) were used for the
capsule network due to computational constraints. For ResNet, images were normalized
with the mean and standard deviation of the ImageNet dataset. No image augmentation
was used in the experiments as maximizing the generalizability of the models was not the
focus of the study. The batch size was set to 16, and the Adam optimizer with learning
rate 0.0001 was used for training the models. Early stopping [14] was used to prevent
overfitting, by monitoring the validation loss and stopping training when the loss did not
decrease after five epochs. In all cases, the input of the models was an RGB image obtained
by triplicating the single channel raw image, and the output was a distribution over the
different image classes (panoramic, bitewing, periapical, or cephalometric). The resulting
output class was the one with the highest score. The models were trained for 60 epochs
on two NVIDIA Quadro RTX 6000 graphic cards. Modelling was performed using the
PyTorch implementation of torchvision.

2.6. Evaluation, Uncertainty, and Explainability

Classical multiclass classification metrics were used for measuring the performance
of the models on the test set, namely, accuracy, precision, sensitivity, F1-score, and speci-
ficity. Further, the receiver operating characteristic (ROC) curve and the confusion matrix
were computed. Evaluation of the model performances followed a stratified k-fold cross-
validation [15] with 10 train, validation, and test splits (73,214; 8135; and 9039 images,
respectively), thereby accounting for the original distribution of data across the splits.
One of the main challenges of deep learning applications is the difficulty to interpret the
decisions made by the deep learning systems. Therefore, Gradient-weighted Class Activa-
tion Mapping (Grad-CAM) [16] was used, which provides visualizations of the weighted
activations maps, resulting in visualizations of the salient regions of an image that are
relevant for the classification outcome, to overcome this challenge.

3. Results

The three different models all showed high accuracy (Table 2), with significantly higher
accuracy, F1-score, precision, and sensitivity of ResNet over the baseline CNN and the
CapsNet model (p < 0.05). The specificity was not significantly different between the three
models. Misclassification was most common for bitewings being classified as periapicals.
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Table 2. Performance of the different models for dental radiograph classification (mean, 95% CI). Statistical significance
between models is indicated in bold (p < 0.05).

Model Parameters Accuracy F1-Score Precision Sensitivity Specificity

ResNet 21 M 0.997 (0.996, 0.998) 0.991 (0.989, 0.993) 0.996 (0.995, 0.997) 0.987 (0.983, 0.991) 0.999 (0.998, 0.999)
Baseline CNN 46 M 0.987 (0.986, 0.988) 0.980 (0.979, 0.982) 0.982 (0.980, 0.984) 0.979 (0.976, 0.982) 0.996 (0.995, 0.996)

CapsNet 17 M 0.989 (0.988, 0.990) 0.984 (0.981, 0.986) 0.985 (0.983, 0.986) 0.983 (0.980, 0.986) 0.997 (0.996, 0.997)

If inspecting the training history (Figure 1), all performance metrics increased over
the number of epochs until converging, with ResNet achieving the best performance at
small variance and fastest convergence. Performance differences are further reflected in
Figure 2, showing the ROC curves for the different models and the different classes. For
the baseline CNN and CapsNet, the accuracy for periapicals was somewhat lower than
for other imagery, while ResNet did not show such differences. Our findings are further
reflected by the confusion matrix (Figure 3).
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Assessing the salient features of the best performing model (ResNet; Figure 4) indi-
cated that for bitewings the model had the highest activation in the space between the teeth
but not the roots, while for periapicals the model focused on the interdental space. For
panoramics, bony structures of the maxilla and the mandible were most relevant, while for
cephalometrics the viscerocranium (not the neurocranium) was most relevant.
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4. Discussion

In the present study, we developed a classification model for dental radiographs. Such
model itself does not add diagnostic value, as obviously classification of radiographs is a
task that is easy to perform for dentists. However, it relieves the human expert from this
task in two exemplary scenarios: retrospectively classifying existing dental radiographs and
prospectively labelling new radiographic imagery, which could be useful when radiographs
are automatically passed on from radiographic software or image archives, allowing the
dentist to omit a manual classification step and thereby easing his workflow. We further
benchmarked three different model architectures for this purpose, finding that all three
showed high accuracy, but that ResNet-34, pretrained on ImageNet, outperformed the other
architectures. We further showed that the most notable misclassifications occurred between
bitewing and periapicals. Using elements of explainable AI, we showed that the models
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considered characteristic features like the interarch space on bitewings, interdental areas
on periapicals, bony structures on panoramics and the lateral view of the viscerocranium
for cephalometrics to come to a classification decision. Given that image classification is a
complex task, with deep learning being widely considered as black box, and considering
that significant bias has been identified in classification tasks [17], our XAI results enhance
the confidence into the classification models.

Our findings require some more detailed discussion. First, and as laid out, the
developed models will not increase a dentist’s accuracy for pathology detection but will
ease the clinical workflow, allowing automated classification of any image passed onto
AI-based software systems from existing practice software suits. It will further allow one
to automatically mine existing databases, e.g., from clinics or hospitals, for both research
and business intelligence purposes.

Secondly, benchmarking of the network architectures has not been widely performed
in dentistry. We selected the three architectures as described, for experimentation purposes,
being mainly interested in trying different types of models for solving this particular prob-
lem. We obtained similar levels of performance for the different architectures, confirming
that regardless of the specific architecture, high accuracies are possible given sufficient data
being available.

Thirdly, we need to highlight that only for ResNet, transfer learning was applied,
eventually outperforming both the CNN and the capsule network. We attribute this gap
in performance to the initialization of ResNet with pre-trained weights rather than to
architectural factors. This confirms the importance of pretraining; the pretrained model
has been exposed to a larger amount of data, has learned rich features, and leverages this
learning for the finetuning, often resulting in faster convergence and better performance.
ResNet already had accuracy >97% when trained for only one epoch on the validation test.
The other two models, which were initialized randomly, exhibited a lower convergence
rate, and their standard deviation was higher.

Fourthly, active learning proved to be an efficient method to get large amounts of
images annotated swiftly. In our case we already had one third of the total amount of
images labeled, which allowed us to start with a model with high performance. The
annotators found correcting batches of predictions of this model less work-intensive than
reviewing a monolithic unlabeled dataset. Future studies should evaluate if such strategy
is also useful for other tasks, e.g., segmentation of pathologies.

Last, classification accuracy was generally high; the most notable misclassification
was between periapicals and bitewings. This might be because we drew a comprehensive
sample of bitewings, without any kind of exclusion criteria applied towards image quality
or positioning. In a number of bitewings, positioning was suboptimal and the image mostly
depicted only one dental arch; such image may be considered as periapical of, for example,
the molar region and is hard to discriminate from “true” periapicals. We decided to allow
for imagery of varying quality and positioning, as such artefacts will occur in practice, too,
and a useful model should be robust in more challenging datasets as well.

This study comes with a number of strengths and limitations. First, it was built on
one of the largest datasets of dental radiographs employed for deep learning so far; this
allowed to reach excellent accuracies and likely increased the robustness of our findings.
Second, to our knowledge this is the first study aiming to classify four different dental
radiograph types, a task which—as laid out—is clinically useful (while not increasing
accuracy, it eases the dental workflow). Third, using elements of XAI we were able to
assess the reasoning behind classification decisions, scrutinizing them for any bias and
thereby increasing trust and confidence. Fourth, and as a limitation, the differences in
pretraining strategies may have biased our findings, as discussed, which is why the
performed benchmarking should be interpreted with caution. Last, the developed models
were trained and tested from various image subtypes stemming from two different centers,
while each subtype data stemmed from one single center only. We hence cannot infer any
cross-center generalizability, a property recently found highly relevant for computer vision
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tasks on dental radiographs [18]. Future studies should aim to test the developed models
on more heterogeneous data.

5. Conclusions

Within the present study, we compared three different deep learning architectures
(ResNet, CapsNet, and Baseline CNN) to classify dental radiographs. Regardless of the
models, high classification accuracies were achieved, while a pretrained ResNet performed
best. Misclassification was most common between bitewings and periapicals. The image
features considered for classification were consistent with expert reasoning.
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