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ON THE DIMENSIONS OF THE REALIZATION SPACES OF POLYTOPES

LAITH RASTANAWI, RAINER SINN AND GUNTER M. ZIEGLER

Abstract.  Robertson in 1988 suggested a model for the realization space of a convex d-dimensional
polytope and an approach via the implicit function theorem, which—in the case of a full rank
Jacobian—proves that the realization space is a manifold of dimension NG(P) :=d (fy + fu—1) —
Jo.a—1. Thisis the natural guess for the dimension given by the number of variables minus the number of
quadratic equations that are used in the definition of the realization space. While this indeed holds for
many natural classes of polytopes (including simple and simplicial polytopes, as well as all polytopes
of dimension at most 3), and Robertson claimed this to be true for all polytopes, Mnév’s (1986/1988)
universality theorem implies that it is not true in general. Indeed, (1) the centered realization space
is not a smoothly embedded manifold in general, and (2) it does not have the dimension NG(P) in
general. In this paper, we develop Jacobian criteria for the analysis of realization spaces. From these
we get easily that for various large and natural classes of polytopes, the realization spaces are indeed
manifolds, whose dimensions are given by NG (P). However, we also identify the smallest polytopes
where the dimension count NG (P) and thus Robertson’s claim fails, among them the bipyramid over
a triangular prism. For an explicit example with property (1), we analyze the classical 24-cell: We
show that the realization space has at least dimension NG (Cf‘”) = 48, and it has points where it is
a manifold of this dimension, but it is not smoothly embedded as a manifold everywhere.

§1. Introduction. The study of geometric realizations of convex polytopes goes back to
Legendre in 1794, who asked the following question [16, p. 309]: How many variables are
needed to determine a geometric realization of a given (combinatorial type of a) polytope?
In modern terms, Legendre asks for the dimension of the space of geometric realizations of a
polytope P, that is, the space of all choices of coordinates for the vertices of P that lead to a
polytope with the same (isomorphic) face lattice.

The case of polygons is straightforward: The number of parameters is two times the number
of vertices, which we would now write as 2 fy = 2 f;. The first major step is due to Legendre
himself [16, Note VIII] and Steinitz [28, Section 69], who settled the question in dimension
3, where the number of variables turns out to be the number of edges plus 6. So the Legendre—
Steinitz theorem says that the realization space of any 3-dimensional polytope P is a manifold
of dimension f;(P) + 6.

Itis natural to ask Legendre’s question for d-dimensional polytopes (d-polytopes, for short).
An answer was given by Robertson [24, Theorem, p. 18] in 1984: The realization space of
any d-polytope is a smooth submanifold of R?0+/-1) of dimension d (fy + fs_1) — ., where
Jo = fo(P) is the number of vertices and f;_; = f;_;(P) is the number of facets of P, and
w = u(P) = foaq—1(P) is the number of vertex-facet incidences. For the proof of his claim,
Robertson represented the realization space as an open subset (defined by strict quadratic
inequalities) of the solution set of x quadratic equations in R¢V0+/ée=1) In such a setting, it
is natural to expect that the solution set has the dimension given by the number of variables
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minus the number of equations, and Robertson’s proof is then “built round a simple application

of the implicit function theorem” [24, p. 18].

With the Euler—Poincaré equation, it is not hard to check that Robertson’s claim agrees
with what we know in dimensions d = 1,2, 3. For simplicial and for simple polytopes,
the realization spaces can be seen as open subspaces of R0 respectively, R¥+! (see
below). However, Mnév’s universality theorem for polytopes from 1986/1988 (Mné&v [18],
see also Richter-Gebert [22], as well as the exposition in [23] and Mnév’s web page
http://www.pdmi.ras.ru/~mnev/bhu.html) implies that the realization space is not in general a
manifold: For any semialgebraic set M defined over the integers, one can construct a polytope
whose realization space modulo affine transformations is equivalent to M up to certain trivial
fibrations. This implies that realization spaces can have very complicated topology (locally,
as well as globally), so realization spaces are not manifolds in general, but it does not have
immediate implications on the dimension of the realization space.

Soitappears that Robertson’s claimed theorem is true for the polytopes that we see occurring
“in nature,” but it is false for very special examples that arise by complicated constructions
in the proofs of Mnév et al.

In this paper we start from Robertson’s work. The model for the realization space suggested
by him, formalized as the centered realization space by Adiprasito and Ziegler [1, 33] (see
Definition 2.1), is indeed very natural and convenient, as it is by definition a semialgebraic
set (indeed, an open subset of a real algebraic variety). Therefore, topology and metric are
clear and the dimension is well defined. Moreover, the implicit function theorem is directly
applicable in the way that Robertson set it up. From this we get
e anatural and rather general sufficient criterion for the validity of Robertson’s claim (see

Section 3),

e a very simple and natural proof (see [4, Lemma 2.8]) for the Legendre—Steinitz theorem
for 3-dimensional polytopes (Corollary 4.10), as well as

¢ anatural tool for the analysis of other classes, with positive as well as negative results.

Our next step is the search for counterexamples (Section 5), where we identify the unique
three smallest counterexamples to Robertson’s claim, for which the realization space is still a
smooth manifold, but its dimension is not given by the “natural guess” of “number of variables
minus number of equations.” One of these is particularly simple and easy to describe: It is the
bipyramid over a triangular prism (Section 5.1).

Finally, we go for an iconic object in polytope theory, the 24-cell. We know from Paffenholz’
thesis [19] that the 24-cell is not projectively unique, but its realization space (in our model)
has dimension at least 28, which is the dimension of the group of projective transformations
on R* plus 4. We construct new classes of realizations of the 24-cell, and from these we derive
in Section 5 that
e the realization space (in our model) has dimension at least 48, which is the dimension

of the group of projective transformations on R* plus 24, and indeed this is the “natural
guess” dimension predicted by Robertson’s claim;

¢ indeed, there are points in the realization space where locally the realization space is a
manifold of dimension 48 (Corollary 5.9);

e but there are also points in the realization space (such as those given by realizations as a
regular polytope) where the realization space is not a smooth submanifold of the ambient
space RYot/a-1) = R192 (Theorem 5.10).

We doubt that the realization space of the 24-cell is a topological manifold, and indeed we

are not sure that it is pure (has the same local dimension everywhere), but this is left open:

The 24-cell keeps some of its mystery.
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§2. Realization spaces of polytopes. For general facts about polytopes, we refer to [31]. Let
P C R be a d-dimensional polytope (or d-polytope, for short). We write f;(P) (or simply f;,
if the polytope is clear from the context) for the total number of faces of P that have dimension
i. In particular, f(P) is the number of vertices and f;_; (P) is the number of facets. We write
fo.a—1(P) for the number of vertex-facet incidences. We call a polytope P C R centered if
it contains the origin 0 in its interior. We can represent every polytope as the convex hull
P = conv(V) of its vertices, where V is a (d x fp)-matrix and conv (V') is the convex hull of
the columns of V. By rescaling the facet defining inequalities, we can represent every centered
polytope as the intersection of half-spaces

P={xeR!|Ax <1},

where Aisa (d x f;—;)-matrix. In these two representations, the matrices V and A are unique
up to column permutations. From now on, we label the vertices and facets to make these
matrices unique. In this case, we say that P is labeled, and we call (V, A) the combined vertex
and facet description of P.

A labeled d-polytope Q C RY is said to realize P if there exists an isomorphism between
the face lattices of P and Q that respects the labeling of their vertices and facets. If Q was
centered, we say that Q is a centered realization of P.

We now define our model for the realization space of a polytope.

Definition 2.1 (Centered realization space [1, 33]). Let P be a labeled d-polytope with n
vertices and m facets. The centered realization space of P is the set

Ro(P) := {(V,A) € R | conv(V) = {x € R? | A'x < 1) realizes P}.

That is, Ro(P) is the set of combined vertex and facet descriptions of centered realizations
of P.

The next proposition shows that the centered realization space has a nice description as a
(basic) semialgebraic set (over Z), that is, the solution set of a system of polynomial equations
and inequalities. In particular, its dimension is well defined.

PROPOSITION 2.2. Let P be a d-polytope with vertices vy, ..., v, and facets F, . . ., F,,.
The centered realization space of P is equal to the set

=1 ifv; € F;
Ro(P) = {(W,B) = (Wi, ..., W, by,...,b,) e R&*m ‘ w;bj{ s ’}.

<1 ifviéF;

Proof. The equality conv(W) = {x € RY | B'x < 1} holds since the hyperplanes {x € R? |
x'b; = 1} are facet-defining hyperplanes for conv(W). The polytope conv(W) realizes P
because it has the same vertex-facet incidence structure as P (this determines the face lattice
of the polytope, see [31, Exercise 2.7]) with the correct labels. (I

Our model of the realization space behaves nicely with respect to duality. Recall that the
polar polytope P* of a labeled centered d-polytope P is the polytope

P :={yeR?|yx < 1forallx € P}.
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There is an inclusion-reversing bijection between the face lattices of P and P*. This bijection
maps the vertices (respectively, the facets) of P onto the facets (respectively, the vertices) of
P2 . We assume that the vertices (respectively, the facets) of P2 are labeled with the labels of
the facets (respectively, the vertices) of P induced from the bijection.

PROPOSITION 2.3. For every labeled centered d-polytope P we have Ry(P) = Ro(P%),
where the isomorphism is given by the permutation (V,A)+ (A,V). In particular,
dim Ry (P) = dim Ry (P%).

§3. The Jacobian and the degeneracy criteria. According to Proposition 2.2, the centered
realization space Ry(P) is a semialgebraic set defined by quadratic equations and strict
quadratic inequalities, so it may be seen as an open subset (cut out by the strict inequalities) of
a fiber of the characteristic map defined by the equations. This interpretation of Robertson’s
work on [24, p. 19] yields the setup for applying the implicit function theorem in this
context.

Definition 3.1 (The characteristic map). Let P be a d-polytope with vertices vy, ...V, and
facets F1, ..., F,. Let u := fp 4—1 (P) denote the number of vertex-facet incidences of P. The
characteristic map of P, denoted as ®p, is the map

dp - Rdx(n+m) — R*

1
(W,B) — (wib; — 1)[i,‘;‘]:v[eF,/'
We order the entries w'b; — 1 lexicographically into the vector ®»(W, B), that is, wb; — 1
occupies the [i, j]th entry.

Clearly, this map sends (the vertex and facet description of) any centered realization of P
to 0 € R*. Thus R (P) is an open subset of the fiber (IDJZl (0). The heuristic that the solution
set of a system of equations has dimension “number of variables minus number of equations”
suggests that dim Ry (P) is the number of variables dfy(P) + df;— (P) minus the number of
equations fy 4—1(P). This is what we call the “natural guess” for dim Ry (P) (formerly called
the “naive guess” in [1, 33]).

Definition 3.2 (The “natural guess” for the dimension of the realization space). Let P be a
d-polytope. The natural guess for dim Ry (P), the dimension of the centered realization space
of P, is

NG(P) :=d(fo(P) + fa-1(P)) — fo.a—1(P).

From an algebraic point of view, the equations w'b; = 1 do not necessarily generate a nice
ideal. It is certainly not prime in general, as we argue next.

Remark 3.3. For any d-polytope P with n vertices and m facets, the fiber @;1 (0) of the
characteristic map contains certain subsets of “degenerate configurations.” Namely, there is
e the set Sy (P) where all columns of V are identical (corresponding to identical points) and

the m affine hyperplanes contain that point, which has dimension

d4+md—-1)=m+1)d—m=m+1)d-1)+1,
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¢ and the set Sy (P) where all columns of A are identical (corresponding to identical affine
hyperplanes) and the n points lie on that affine hyperplane, which has dimension

d+nd-1)=m+1)d—n=m+1)(d—-1)+1.

These subsets are not contained in Ry (P) because all of the strict inequalities are violated.
Yet the equations defining Ry (P) still hold.

Example 3.4. The 3-cube C; C R? has 8 vertices, 6 facets, and 24 vertex-facet incidences.
We will later give a proof for the Legendre—Steinitz Theorem, which in this special case gives
that dim (R (C3)) = NG(C;3) = 18. However, the set of “degenerate configurations” S4 (Cx)
for the cube has dimension 19.

3.1. Examples. In the following proposition, we calculate the natural guess for special
classes and common constructions of polytopes.

PROPOSITION 3.5. Let P be a d-polytope.
(1) If P is simplicial, then NG(P) = dfy(P).
(1) If P is simple, then NG(P) = dfy_(P).
(iii) If P is a 3-polytope, then NG(P) = f1(P) + 6.
(iv) If P = pyr(Q) is a pyramid over a (d — 1)-polytope Q, then NG(P) = NG(Q) + 2d.
(v) If P = bipyr(Q) is a bipyramid over a (d — 1)-polytope Q, then NG(P) = 2NG(Q) +
2—-d)fo(Q) +2d.

Proof. (i) Each facet has exactly d vertices. Therefore, fo 4—1(P) = dfy_1.
(i) This is the dual statement of (i).
(iii) Each edge of a P determines four vertex-facet incidences, while each vertex-facet
incidence corresponds to two edges. Therefore, 2f,,(P) = 4f;(P). Using Euler’s
formula for 3-polytopes, we get

NG(P) = 3(fo(P) + f2(P)) — fo2(P) = fi(P) +6.

(iv) Here we have fy(P) = fo(Q) + 1 and f;—_(P) = f;-2(Q) + 1. Every vertex of Q lies
in the facet Q of P and in a facet of P that is the pyramid over a facet F' of Q if
and only if it lies in F. This gives us fo(Q) + fo.a—2(Q) incidences. Additionally,
the new vertex of the pyramid (the apex) lies in f;_»(Q) many facets of P. Thus,
Jo.a—1(P) = fo(Q) + fo.a—2(Q) + fu—2(Q). Therefore, the natural guess is

NG(P) =d(fo(Q) + 1+ fa2(Q) + 1) = fo(Q) = fo.a-2(Q) — fa—2(Q)

= (d = 1)(fo(Q) + fa—2(Q)) — fo.a—2(Q) +2d = NG(Q) + 2d.

(v) Here we have fy(P) = fo(Q) +2 and f;_1(P) =2f;2(Q). Let F be a facet of Q.
Each vertex of Q lies in two facets of P, namely, the two pyramids over a facet F
of O, if and only if it lies in F. This gives us 2fy ,—»(Q) incidences. Finally, the
new two vertices of the bipyramid (the apexes) each lie in f;_,(Q) facets of P. Thus,
Jo.a—1(P) = 2f0.a—2(Q) + 2f4_2(Q). Therefore, the natural guess is

NG(P) =d(fo(Q) +2+2f1-2(0)) — 2f0.a—2(Q) — 2fa—2(Q)
=2(d — D (fo(Q) + fu2(Q)) —2f0.a2(Q) + 2 —d) fo(Q) +2d
=2NG(Q) + 2 —4d) fo(Q) + 2d. O
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As we will see later, for large, very common classes of polytopes, the natural guess is equal
to the dimension of the realization space. However, this is not true in general. The following
examples show that the natural guess can be negative.

Example 3.6 (Adiprasito and Ziegler [33]). A d-polytope is called cubical if its facets are
combinatorially isomorphic to the standard (d — 1)-cube [—1, 119", A neighborly cubical
polytope is a cubical d-polytope whose (L%J — 1)-skeleton is combinatorially equivalent to
that of an n-cube. Such polytopes NCP, (n) were constructed by Joswig and Ziegler [14] for
all n > d. Their f-vectors are determined by n and d: The number of vertices of NCP, (n) is
2", and the number of its facets is given by

n—d—1 d d+l
fu 1 (NCPy(n) =2d +4 3 <<L2Jp++pz+ 1) * (L ;i;p»zp’

p=0
see [14, Corollary 18]. Each facet of NCP, () has 2¢~! vertices, and thus f; ;_; (NCP;(n)) =
2¢=1f, | (NCP,(n)). Now the natural guess of NCP,(n) is a function of d and n and we can
compute it.
e If d =4, then f3(NCP4(n)) = (n —2)2"2, and thus NG(NCP4(n)) = (6 —n)2" <0
whenever n > 7.
o Ifd > 5,then NG(NCP,;(n)) <Oforn>d+ 1.

Example 3.7. Let Q := C;_;(n)” be the polar of a (d — 1)-dimensional (centered) cyclic
polytope with n vertices. The number of facets of Q is n, and the number of vertices of Q is

given by
N = N =
f°(Q)_< 1454 >+< [ -1 )

see [13, 4.7.3]. Since Q is simple, we have NG(Q) = (d — 1) f4—>(Q). Finally, let P be a
bipyramid over Q. The natural guess of P is then given by

NG(P) =2NG(Q) + 2 - d)fo(Q) +2d
=2(d - Dfs—2(Q)+ 2—-d)fo(Q) +2d.

We can easily compute NG (P) as a function of n and d. For instance, ifd = 5,then NG(P) < 0
forn > 10, and if d = 6, then NG(P) < O forn > 9.

We note that in these examples, Ry (P) may still be a manifold (for the bipyramids over duals
of cyclic polytopes, this is indeed the case, see Proposition 5.6), but certainly its dimension
is not NG(P).

3.2. The Jacobian criterion. Now we are ready to state our first main theorem, which is
an application of the implicit function theorem.

THEOREM 3.8 (The Jacobian Criterion for d-polytopes; cf. Robertson [24, p. 19]). Let P
be a d-polytope. If the Jacobian matrix Jo,(Vy, Ag) of the characteristic map ®p at some
point (Vo, Ag) € Ro(P) has full row rank (that is, if it has rank fo —1(P)), then Ry(P)
is, in a neighborhood of (Vy, Ay), a smooth manifold of dimension NG(P). In particular,
dimy, 4, Ro(P) = NG(P) and dim Ry(P) > NG(P) > 0.
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Proof. By the implicit function theorem (see, for example, [15, Theorem 5.15]), @;1 0)
is, in a neighborhood of (Vy, Ap), a smooth manifold of dimension NG (P). The result follows
since Ry (P) is an open subset of d>;1 0). O

Remark 3.9. More generally, even if the Jacobian matrix does not have full rank, its corank
still gives an upper bound for the local dimension:

dim(VO,AO) R()(P) < d(l’l + m) — rank Jq>[, (V(),A()).

Indeed, if the rank is r, we select r rows of the Jacobian that form a submatrix of full rank r,
and then apply the implicit function theorem to the corresponding map CDfD’) s RIxOm) _ RY
obtained by restricting the characteristic map to the corresponding » components.

The previous theorem gives us the motivation to study the structure of the Jacobian matrix
of ®p for a polytope P.

Notation3.10. Let P be ad-polytope with n vertices, m facets, and y vertex-facet incidences.
The Jacobian matrix in compressed notation of ®p at (Vj, Ag) € R4x@+m) - denoted by
Jgp (Vo, Ap), is the matrix we get from the matrix Jo,(Vo, Ag) by replacing the columns
indexed by v;,, ..., v;, (respectively, a;, ..., a;,) by one column indexed by v; (respectively,
a;) whose entries are the corresponding row vectors. Note that

J&;P Vo, Ag)is a (u x (n + m))-matrix whose entries are row vectors,
while
Jo, Vo, Ag)is a (i x d(n + m))-matrix.

LEMMA 3.11. Jg (V,A) has a’j in the [i, jlth row and the ith column, and it has V' in the
[, j1th row and the (n + j)th column. All other entries are zero.

Proof. This follows since, for each k € {1, ..., d}, we have
o(via; — 1 d(via; — 1
—(VZ ! ) =djk and —(Vl ! ) = Vi k-
8v,-,k . 861]',/C ’

O

Example 3.12. Consider the 3-polytope P shown below, whose facet labels are indicated
below in the image of a projection onto the facet F; = {vy, v, v3, v4}.

V4

V3

V2

Vi Vi
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The matrix Jg,P (V,A) atapoint (V,A) € R3*6+7) ig

v V) V3 A7 Vs Ve a; a a3 ay as ag a;
muyfa 0 0 0 0 0 v, 0 0 0 0 0 0 7
na | a, 0 0 0 0 0 0 v, 0 0 0 0 0
me; | ag 0 0 0 O 0 0 0 0 0 0 v, 0
il a 0 0 0 0 0 0 0 0 0 0 0 V
| 0 a 0 0 0 0 v, 0 0 0 0 o0 o
21| 0 a5 0 0 0 0 0 v, 0 0 0 o0 o
31| 0 a5 0 0 0 0 0 0 v, 0 0 o0 o
Byl 0 0 a 0 0 0 v, 0 0 0 0 o0 o
B3| 0 0 a5 0 0 0 0 0 v, 0 0 o0 o0
| 0 0 a, 0 0 0 0 0 0 v, 0 0 0
Gsi| 0 0 a. 0 0 0 0 0 0 0 v, 0 0
syl 0 0 0 a 0 0 v, 0 0 0 0 0 0
[4.5] 0 0 0 a 0 0 0 0 0 0 Vv, 0 0
41| 0 O O a o0 0 0 0 0 0 o0 v, 0
541 0 0 0 0 a, 0 0 0 0 vi 0 0 0
551 06 0 0 0 a 0 0 0 0 0 vi 0 O
s 0 0 O 0 a O 0 0 0 0 0 vi O
51| 06 0 0 o0 a o0 0 0 0 0 0 0 v
2| 0 0 0 0 0 a 0 v, 0 0 0 0 0
63| 06 0 0 0 0 a, 0 0 v. 0 0 0 0
Ga| 0 0 0 0 0 a, 0 0 0 v. 0 0 0
k1L 0 0 0 0 0 a 0 0 0 0 0 0 v |

Notice that the columns are indexed by the vertices and the facets, while the rows are
indexed by the vertex-facet incidences.

Definition 3.13 (The vertex-facet incidence graph). The vertex-facet incidence graph of a
polytope P is the undirected graph 'y = (V U F, E), where V is the set of all vertices of P,
F 1is the set of all facets of P, and

E={v,F}CVUF|veF}.

Since there are no edges among the nodes in V, nor among the nodes in F, the graph I'p is
bipartite.

Definition 3.14 (k-degenerate graphs). An undirected graph G is k-degenerate if there
exists an ordering of its nodes in which each node has at most k neighbors appearing after it
in this ordering.

The degeneracy of a graph was defined by Lick and White in [17], where they established
some basic properties of degenerate graphs. One of them is the following proposition.

PROPOSITION 3.15 (Lick and White [17]). Let G = (V, E) be a k-degenerate graph with

V| = k. Then
k+1
|E|<k|V|—( ; )
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Proof. We prove this statement by induction on |V|. If |V | = k, then |E| can be at most
(I;) On the other side of the inequality, we have

k+1 k(k+1)  k(k—1) [k

Now let G be a k-degenerate graph with |V | > k and fix an order of the nodes in which each
node has at most k neighbors appearing after it in this ordering. In particular, the first node x;
has degree at most k. Let G’ = (V’, E’) be the graph obtained from G by deleting x;. Then G’
is still k-degenerate and it has |V| — 1 nodes and |E| — deg(x;) edges. Thus, we have

/ k+1 k+1
|E| = |E'| +deg(x) < k(|V]—1) — +deg(x;) < k|V|— -0

2 2

Applying the previous proposition on the vertex-facet incidence graph of a polytope, we
immediately get the following corollary.

COROLLARY 3.16. Let P be ad-polytope and assume that its vertex-facet incidence graph
['p is k-degenerate. Then the inequality

k+1
fo,d_l(m<k(fo(P)+fd_1<P>)—( er )

holds. In particular, if Tp is d-degenerate, then NG(P) > (d;rl).

The following theorem is inspired by the proof for Steinitz’s theorem given by Borisov,
Dickinson, and Hastings [4, Lemma 2.8].

THEOREM 3.17 (The degeneracy criterion). Let P be a d-polytope. If the vertex-facet
incidence, graph T'p has a d-degenerate ordering of its nodes such that the following two
conditions hold.

(1) For each facet in this ordering, the vertices appearing after it and connected to it by
an edge are linearly independent in any centered realization of P.

(i) For each vertex in this ordering, the normal vectors of the facets appearing after it
and connected to it by an edge are linearly independent in any centered realization of P.

Then Ry (P) is a smooth manifold of dimension NG(P).

Proof. Letvy,...,v,and Fy, ..., F, denote the vertices and the facets of P, respectively.
We will show that the Jacobian Criterion (Theorem 3.8) is satisfied at each point of Ry (P) by
block triangularizing the Jacobian matrix. Let J¢ := Jo, Vo, Ao) denote the Jacobian matrix in
compressed notation of the characteristic map ®p of P at some centered realization (Vj, Ag) €
Ro(P). First reorder the columns of J¢ in the way given by the degeneracy. Then, process
these columns one by one from left to right. If the column is indexed by a vertex v;, move the
rows indexed by

{li, j1| vi € F}, F; appears after v; in the ordering}
to the bottom of J¢. If the column is indexed by a normal vector a;, move the rows indexed
by

{li, j1| vi € F}, v; appears after F; in the ordering}

to the bottom of J¢. After doing this for all the columns, we get an upper block-triangularized
matrix. Now J¢ has full rank if all of these blocks have full row rank, which is guaranteed
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by conditions (i) and (ii). The statement follows using the Jacobian criterion at all centered
realizations. D

Remark 3.18. Let G be the graph obtained from I'p by deleting some r edges such that G
is d-degenerate and satisfies the conditions (i) and (ii) from the previous theorem. Then

dim Ry(P) < NG(P) +r.

This corresponds to finding a ((u — r) x d(n + m))-submatrix of the Jacobian matrix that
has full rank at all centered realizations of P.

The degeneracy criterion is not purely combinatorial. The conditions (i) and (ii) might be
satisfied for some geometric centered realizations and fail for others. However, in the next
section, we will derive some purely combinatorial results from the degeneracy criterion.

Before moving on to applications, we set up a (scaled) homogeneous version of the results
of this section, which turns out to be useful below. Let C C R*! be a closed and pointed
polyhedral cone of dimension d + 1. Analogously to the centered realization space, we define
a primal-dual realization space model for C as follows:

Ry(C) = {(W,B) € R“T*UH | cone(W) = {x € R“""| B'x < 0} realizes C,
lIwil|* = [1b;]1* = 1},

where 7 is the number of extreme rays and m the number of facets of C. Analogously to the

centered realization space, this set can be described as a semialgebraic set. Let vy, ..., v, and
Fi, ..., F, denote the extreme rays and the facets of C, respectively. Then R;(C) is equal to
the set

:0 ifV'EF' d+1 d+1
<o ifv,»gZF,-kZ:]: ik ;fk

THEOREM 3.19 (The homogeneous degeneracy criterion). Let C be a closed and pointed
polyhedral cone of dimension d + 1. Assume that its ray-facet incidence graph T'¢c has a
d-degenerate ordering of its nodes such that the following conditions hold.

(i) For each facet in this ordering, the ray generators appearing after it and connected to
it by an edge are linearly independent in any realization of C.

(i) For every ray in this ordering, the normal vectors of the facets appearing after it and
connected to it by an edge are linearly independent in any realization of C.

Ry(C) = | (W, B) € RE@+Dx(ntm)

Then the realization space R (C) is a smooth manifold of dimension d(n + m) — u, where
n is the number of extreme rays of C, m is the number of facets of C, and (. is the number of
ray—facet incidences.

The proof of this theorem is analogous to the proof of Theorem 3.17. The rows which
correspond to the norm equations can be handled as follows. The row indexed by the equation
||vil|*> = 1 (respectively, [|a;||> = 1) should be considered to move with the rows we move
when processing the column indexed by v; (respectively, a;).

§4. Applications of the degeneracy criterion. Definition 4.1 (Vertex set and facet set of a
face). Let P be a d-polytope and let F' be a face of P. The vertex set of F is the set of all
vertices of P contained in F. The facet set of F is the set of all facets of P containing F.
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The following proposition is easy. However, combining it with the degeneracy criterion
produces interesting combinatorial results.

PROPOSITION 4.2. Let P C RY be a polytope containing the origin in its interior.

(i) Let S be a set of k < d vertices that lie on a facet of P. If some k — 1 vertices from S
are the vertex set of a (k — 2)-face, then the vertices in S are linearly independent.

(i1) Let S be a set of k < d facets that share a vertex of P. If some k — 1 facets from S
are the facet set of a (d — k + 1)-face, then the normal vectors of the facets in S are linearly
independent.

Proof. The second statement (ii) is the dual of (i), so we will only prove (i). Let F' be the
facet of P which the vertices of S lie on. Let vy, ..., v;_; € S be the vertices of P which form
a (k — 2)-face, and vy be the last vertex in S. Since vy, ..., v;_; forma (k — 2)-face (that is, a
(k — 2)-simplex), they are affinely independent. By the definition of a proper face, there is an
affine hyperplane in R? which contains all these vertices and does not contain v;. The affine

hull of vy, ..., vi_; is contained in this hyperplane, and thus the affine hull of vy, ..., v;_;
does not contain v;. Thus, vy, ..., v; are affinely independent. Since the hyperplane spanned
by F does not contain 0, these vertices are also linearly independent. O

If the size of S is at most 3, some of the assumptions in the previous proposition can be
dropped.

PROPOSITION 4.3. Let P C RY be a polytope containing the origin in its interior.

(i) Let S be a set of k < 3 vertices that lie on a facet of P. Then the vertices in S are
linearly independent.

(i) Let S be a set of k < 3 facets that share a vertex of P. Then the normal vectors of the
facets in S are linearly independent.

Proof. This is true since any three vertices on a facet are affinely independent and the affine
span of any facet cannot contain the origin in a centered realization. Again, (ii) is the dual
statement of (i). U

4.1. Almost 3-degenerate polytopes.

THEOREM 4.4. Let P be a d-polytope. Let I1 be the graph obtained from the vertex-facet
incidence graph T p by removing the nodes of degree d. If Tl is 3-degenerate, then Ry (P) is
a smooth manifold of dimension NG (P).

Proof. We will use the degeneracy criterion (Theorem 3.17) to prove this statement. The
following ordering of the nodes of I'p is d-degenerate. First put all the nodes of I'p of degree
d. These correspond to the simple vertices and the simplex facets. Then put the nodes of
[T ordered by a 3-degenerate ordering. By Proposition 4.2, the conditions (i) and (ii) of the
degeneracy criterion are satisfied at the nodes of I'p of degree d. By Proposition 4.3, the
conditions (i) and (ii) of the degeneracy criterion are satisfied at the remaining nodes of I'p,
which are exactly those nodes that are connected to at most 3 later nodes in the d-degenerate
ordering we constructed. O

This is our main tool that we apply to special classes of polytopes to show that their
realization spaces are manifolds. Before we begin with these applications, we again record a
homogeneous version for later use.
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THEOREM 4.5. Let C be a closed and pointed polyhedral cone of dimension d + 1. Let T1
be the graph obtained from its ray—facet incidence graph I c by removing the nodes of degree
d. If T1 is 3-degenerate, then Ry, (C) is a smooth manifold of dimension d(m + n) — .

The proof is the same as that of Theorem 4.4 with the only exception that we use
Theorem 3.19 instead of the non-homogeneous version Theorem 3.17.

COROLLARY 4.6. Let P be a d-polytope. If
(1) each vertex of P lies in at most 3 non-simplex facets, or
(i1) each facet of P contains at most 3 non-simple vertices,

then Ry (P) is a smooth manifold of dimension NG(P).

This applies to simple and simplicial polytopes, of course. The corresponding natural guess
is computed in Proposition 3.5.

COROLLARY 4.7 (Simple and simplicial polytope). Let P be a d-polytope.
(1) If P is simplicial, then Ry (P) is a smooth manifold of dimension dfy(P).
(ii) If P is simple, then Ry (P) is a smooth manifold of dimension df;_; (P).

Polygons are always simple and simplicial, so we get that their realization spaces are always
manifolds.

COROLLARY 4.8 (2-polytopes). Let P be a 2-polytope, then Ry (P) is a smooth manifold
of dimension 2 fy(P) = 2f1(P).

To get the analog for 3-polytopes, we use the following combinatorial well-known
observation for bipartite planar graphs. Planar for us means that we can draw the graph
in the plane without edges crossing but we do not insist on the edges being line segments.

PROPOSITION 4.9. Bipartite planar graphs are 3-degenerate.

Proof. Let G be a bipartite planar graph with v nodes and e edges. We first show that
e < 2v — 4. Consider a planar drawing of G in the plane. Since the graph is bipartite, every
cycle in G has length at least 4, and therefore, every connected component of the complement
of G (called a face of the drawing) is bounded by at least four edges. On the other hand, every
edge is in two faces. Thus, 4 f < 2e, where f is the number of faces of the drawing of G. Using
Euler’s formula for planar graphs, we gete = v+ f —2 < v + %e — 2. Thus, e < 2v — 4.

Now we get a 3-degenerate order of G recursively by deletion because our face count shows
that a bipartite planar graph always contains a vertex of degree at most 3. O

COROLLARY 4.10 (3-polytopes, see Borisov, Dickinson, and Hastings [4, Lemma 2.8]).
Let P be a 3-polytope. Then Ry(P) is a smooth manifold of dimension NG(P) = f1(P) + 6.

Proof. By Proposition 3.5 (iii) NG(P) = f1(P) + 6. The vertex-facet incidence graph I'p
of P is planar, since we can draw it in the plane without crossing edges as follows. Draw one
additional point on each facet of P, and connect it by edges to the vertices of that facet. Then
project the vertices of P, the new points, and the new edges from an interior point of P onto
a sphere that contains P. Now apply a stereographic projection to the plane to get a planar
graph. By Proposition 4.9, I'p is 3-degenerate. We are done by Theorem 4.4. 0
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4.2. Hypersimplices. The hypersimplices are key examples in polytope theory, which first
appeared in the work of Gabriélov, Gel’fand, and Losik [9] on characteristic classes.

Definition 4.11 (The hypersimplex; see [7] or [32]). The standard hypersimplex A, (k) is
the polytope defined by

Ay (k) := conv {v e {0,1}¢

i=1

where 1 <k <d—-1.

Note that A, (k) C R? is a (d — 1)-polytope since it lies in the affine hyperplane defined
by Z;jzl x; = k. It has (’Z) vertices (the number of ways to choose exactly k ones in a zero-
one vector in RY). Note also that A, (k) is affinely isomorphic to A;(d — k) under the map
Xx+> 1—x.Fork =1ork =d — 1,wegeta(d — 1)-simplex A;_;. Thus, we are particularly
interested in the cases when k lies between 2 and d — 2.

We first collect information about the facets of hypersimplices. See Ziegler [32, Section 3],
De Loera, Rambau, and Santos [7, Section 6.3.6] and Paffenholz and Ziegler [21, Section 3.3.1]
for more information.

PROPOSITION 4.12. For?2 < k < d — 2, the following statements hold.
(1) Ay(k) has 2d facets: d of them are combinatorially isomorphic to Ay_(k), and the
other d facets are combinatorially isomorphic to Ay_1(k — 1).
(i) Each vertex of Ay(k) lies on d facets: d — k of them are combinatorially isomorphic
to Ay_1(k), and the other k facets are combinatorially isomorphic to Ay_1(k — 1).
(iii)) Each d — 3 facets of Ay(2) of the form Ay_1(2) form the facet set of a triangular
2-face, that is, the set of all facets that contain a triangle face.

Proof. All three parts are easy to prove. Parts (i) and (ii) are also quite well-known, see [7,
Proposition 6.3.15] and its proof.
(i) Facets are defined by two types of hyperplanes,

HY = (x e R? | x; = 0} and

HY = (xeR | x; =1},

for 1 < i < d. The first type Hi(O) produces facets of the form A,_; (k), while the second type

Hl.(l) produces facets of the form A,_;(k — 1).

(i1) Each vertex has d — k zeros, and thus, it lies on d — k facets of the form A,_; (k). It
also has k ones, and thus, it lies on k facets of the form A, _;(k — 1).

(iii) Fix d — 3 facets of the form A;_;(2). Without loss of generality, assume that these
d — 3 facets are defined by the first d — 3 hyperplanes

HY ={(xeR? | x, =0}, for 1 <i<d-3.
Thus, the face of A;(2) which they define has the following vertex set:
vel{0, 1} [vi=-=vi3=0, vgr+v4-1 + vy =2}

={(0,1,1,0), (0, 1,0, 1), (0,0, 1, D} C RY,
which is a triangular 2-face. This face clearly does not lie on any of the following hyperplanes:
H” ={xeR? | x; =0}, ford -2 <i<d,
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and

Hi(l) =(xe R | x; =1}, for 1 <i < d.here O

THEOREM 4.13. The realization space of Ay(2) is a smooth manifold of dimension
NG(A4(2) = 3(d* — d).

Proof. We will use the degeneracy criterion (Theorem 3.17) to prove this statement. Each
vertex of A, (2) lies in d facets, and we have (”21) vertices. Thus,

d
foua(Ba(2) = d( 2).

In particular,

NG(A;(2) = (d — 1)((621) +2d> - d(j) = %(d2 —d).

Let P C RY"! be a centered realization of A, (2). The following ordering of the nodes
of the vertex-facet incidence graph I'p is (d — 1)-degenerate. First put all the facets of the
form A, _;(1) at the beginning. These are (d — 2)-simplices. Then put all the vertices, and
at the end, put all the facets of the form A,_;(2). By Proposition 4.2 (i), condition (i) of
the degeneracy criterion is satisfied at the simple nodes (these are (d — 2)-simplices). Thus,
we only need to check the degeneracy criterion conditions at the nodes corresponding to the
vertices. Let v; be a vertex of P. The corresponding node is adjacent to exactly d — 2 later nodes

F, ..., F;, ,. These nodes correspond to facets of the form A;_ (2). By Proposition 4.12 (iii),
any d — 3 of them are the facet set of a 2-face. Thus, by Proposition 4.2 (ii), condition (ii) of
the degeneracy criterion is satisfied at the nodes corresponding to the vertices. O

Indeed, Grande, Padrol, and Sanyal proved in [12] that the realization space of the
hypersimplex A, (2) modulo projective transformations is topologically a ball.

§5. Negative results. 1Inthis section, we discuss negative results of various flavors. The first
set of negative results shows that there are 4-polytopes with the property that their realization
spaces are smooth manifolds but the dimension is not the expected one, that is, not equal to
the natural guess, providing explicit smooth counterexamples to the false claim in [24]. In
the second part, we show that the realization space of the 24-cell is not a smooth manifold, at
least in its natural embeddings.

5.1. The smallest polytopes P with dim Ry(P) # NG(P). Testing Theorem 4.4 on the
database of all 4-polytopes with at mostnine vertices [8] gives the following table.

Table 1: P2 is the set of all 4-polytopes with n vertices. .A? is the subset of P of all polytopes which satisfy
the condition in Theorem 4.4

n Pl | Al 1P\ Al
5 1 1 0

6 4 4 0

7 31 31 0

8 1294 1287 7

9 274 148 272 668 1480
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By examining closely the seven 4-polytopes with eight vertices that do not satisfy the
condition in Theorem 4.4, we were able to show that four of them satisfy the degeneracy
criterion (Theorem 3.17). Thus, in this section, we are going to look at the remaining three
4-polytopes with eight vertices: We will call them P;, P», and P;. They do not satisfy the
degeneracy criterion: Indeed, we will determine the dimensions of their realizations spaces,
which turn out to be different from the respective natural guess. Thus, we found the smallest
examples (in terms of the number of vertices) where the dimensions of their realization
spaces are different from their natural guesses. These three polytopes can be constructed from
a pyramid over a triangular prism pyr(prism(A)) by adding a new point as follows:

(1) In P;, the new point should lie beyond the triangular prism facet, on the supporting
hyperplane of a simplex facet, and beneath all the other facets. This polytope has 8
vertices, 9 facets, and 43 vertex-facet incidences. A realization of P; is given by the
following vertex description.

Yo Vi \{) V3 A7 Vs \ 3 V7
-1 -1 -1 1 1 1 1
1 -1 0 1 -1 0 0
1 1 -1 1 1 -1 0
0 0 0O 0 O 0o -1

—_—0 O =

(2) In P, the new point should lie beyond the triangular prism facet and beneath all the
other facets. In other words, P; is a bipyramid over the triangular prism. This polytope
has 8 vertices, 10 facets, and 46 vertex-facet incidences. A realization of P, is given by
the following vertex description.

vo vi \2) V3 V4 Vs \3 vy
-1 -1 -1 1 1 1 0 0
1 —1 0 1 -1 0 0 0
1 1 -1 1 1 -1 0 0
0 0 O 0 O 0o -1 1

(3) In P, the new point should lie beyond the triangular prism facet, beyond a simplex
facet, and beneath all the other facets. This polytope has 8 vertices, 11 facets, and 50
vertex-facet incidences. A realization of P; is given by the following vertex description.

Vo Vi V2 V3 V4 Vs \(3 V7
-1 -1 -1 1 1 1 2
1 -1 0 1 -1 0 0
1 1 -1 1 1 -1 0
0 0 0O 0 O 0 -1

—_— o O N

To start with, we introduce notation for a classical notion of realization spaces.

Definition 5.1. Let P be a labeled d-polytope with n vertices. The realization space of P is
the set

R(P) = {V € R™" | conv(V) realizes P}.

Remark 5.2. Our various models of realization spaces that we considered so far fit together
nicely. Let P C R? be a d-dimensional polytope and denote by P C R the polyhedral cone
generated by {(1,x) € R¥*!|x € P}. The centered realization space Ry (P) is diffeomorphic
to an open subset of R(P) by the map (V,A) — V. The set R(P) is diffeomorphic to an
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open subset of R, (ﬁ) by the process of homogenization (with appropriate choice of scaling
for the ray and facet description of the resulting cone, namely, scaling the columns of these
matrices to have norm 1). In particular, if we can show that R, (13) is a smooth manifold, then
the spaces R(P) and Ry (P) are smooth manifolds of dimension dim R, (P).

Richter-Gebert introduced the following notion in [22] for polytopes that we also use in a
cone version.

Definition 5.3. A d-polytope is necessarily flat if any polyhedral embedding of its boundary
complex in R”, where n > d, has affine dimension at most d. A (d + 1)-dimensional closed
and pointed polyhedral cone is necessarily flat if any polyhedral embedding of its boundary
fan in R”, where n > d + 1, has affine dimension at most d + 1.

Here a polyhedral embedding of a d-dimensional polyhedral complex C in R” is a mapping
of the vertices of C into R” such that the image of every k-face of C is a k-dimensional
convex polyhedron combinatorially equivalent to that k-face, and for no two faces, the images
intersect in their relative interiors.

In dimension 2, the only necessarily flat polytope is the triangle. In dimension 3, Richter-
Gebert in [22, Lemma 3.2.6] showed that pyramids, prisms, and “tents” over n-gons are
necessarily flat. Using the same proof provided by Richter-Gebert, one can show that the
polyhedral cone that arises from a 3-dimensional prism is necessarily flat. Another related
resultis by Schwartz [27, Lemma 2.6] who showed that every simple d-polytope is necessarily
flat, for d > 3.

PROPOSITION 5.4. The realization spaces of Py, P,, and P; are smooth manifolds of the
following dimensions:

dim Ry(P)) = 26 > 25 = NG(P)),
dim Ro(P>) = 27 > 26 = NG(P,),
dim Ro(P;) = 27 > 26 = NG(P;).

Proof. The boundary fan of each of the cones 1/51 172 and I/’; contains the boundary fan
of the cone over a triangular prism (with a missing simplex facet for Py), which we call F.
The fan F has dimension 4 in any realization of P, P>, and P; since the cone of a triangular
prism is necessarily flat. Due to convexity, we know that the span of / has dimension 4 in
any realization of P] , Pz, and P3 Thus, every realization of P is obtained from a realization
of C, where C is the cone of a pyramid over a triangular prism. The apex ray x can be chosen
in an open subset of a linear space that varies differentiably with the realization of C. In P,
and P;, this open subset has dimension 5 — 1 since x should have norm 1 and the only other
constraints are strict inequalities which correspond to the conditions that x lies beneath or
beyond a facet. In Py, this open subset has dimension 5 — 2 since, in addition to the constraints
mentioned in P, and Ps, X should lie on the supporting hyperplane of a simplicial facet of C.
We are done knowing that R, (C) is a smooth manifold of dimension 23 by the Homogeneous
Degeneracy Criterion Theorem 3.19, and using Remark 5.2. O

THEOREM 5.5. Let P be a 4-polytope with at most eight vertices. Then the realiza-
tion space Ro(P) is a smooth manifold. Its dimension is equal to NG(P), except for
the three polytopes Pi, P,, and Ps, for which the dimension of the realization space is
NG(P) + 1.
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Proof. This is shown by Proposition 5.4, combined with the enumeration that we have
reported about at the beginning of Section 5.1. (I

PROPOSITION 5.6. Ford > 3, let Q be a simple d-polytope that is not a simplex. Then, the
realization space of P := bipyr(Q), the bipyramid over Q, is also a manifold but of dimension
strictly greater than NG(P).

Proof. Using Proposition 3.5(v), we have
NG(P) =2dimRy(Q) — (d — 1) fo(Q) +2(d + 1).

By Schwartz [27, Lemma 2.6], Q is necessarily flat. Thus, any realization of P can be obtained
by embedding a realization of Q into a hyperplane H in R*! and then adding two points v
and v/, each in a different open half space of H, such that the segment [v, v'] intersects the
relative interior of Q. In particular,

dim Ry(P) = dim Ro(Q) + 3(d + 1).
Thus,
dimRy(P) —NG(P)=(d+ 1)+ (d — 1) fo(Q) —dim Ry(Q).
Since Q is simple,
dimRy(P) —=NG(P) = (d + 1) + (d — D) fo(Q) — dfa-1(Q).

We are done if we show that the right-hand side is positive. For this we use the lower bound
theorem by Barnette [2, 5] to derive

(@) = (d = Dfa-1(Q) = (d+1)(d —2)
= 75 fa1 (@) + (d = 1) = 35) fu1(Q) — (d + 1)(d — 2)
> 5 fi @+ (@ =D = 75)d+ 1) — @+ 1Dd—2)

= L fio1(Q) — 4,

where the strict inequality comes from the fact that Q is not a simplex. [

Thus, Proposition 5.6 implies that the realization space is a manifold of dimension greater
than NG (P) both for the bipyramid over a triangular prism P, of Theorem 5.5, as well as for
the bipyramids over duals of cyclic polytopes of Example 3.7.

5.2. The 24-cell. Arguably, the 24-cell Cj%) is one of the most interesting and unique
examples in polytope theory. It was discovered by Ludwig Schléfli around 1850, but his work
was published only in 1901 [26]. For a classical discussion, see, for example, Coxeter [6].
Its symmetry group is the Coxeter—Weyl group Fy of order 1152. The 24-cell is unique in
many ways. For example, it is the only centrally-symmetric self-dual regular polytope. It is
also the only regular polytope that is neither simple nor simplicial. Thus, in particular, by
Corollary 4.7 for every regular polytope P—except for possibly the 24-cell—the realization
space is a smooth manifold of dimension NG(P).

The 24-cell has 24 vertices (and 24 facets, whence the name) and 144 vertex-facet
incidences. Thus, the Jacobian matrix has the format fy 3 x 4(fo + f3) = 144 x 192. Full
rank would mean full row rank 144, and the natural guess is

NG(C*™) = 192 — 144 = 48.
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The 24 facets of the 24-cell are octahedra (which have six vertices each), and each vertex
of the 24-cell lies in exactly six of these octahedra. Thus, its vertex-facet incidence graph
is 6-regular, so it is not 4-degenerate, and thus, the degeneracy criterion cannot be applied.
Instead, we will apply the Jacobian criterion at specific realizations.

THEOREM 5.7 (Dimension estimates for the realization space of the 24-cell). The dimension
of the realization space of the 24-cell satisfies the estimates

48 < dim Ry (C™) < 52.

Proof. For the lower bound, we give a realization of the 24-cell where the Jacobian matrix
has full rank: See the third item of the following proposition, Proposition 5.8 (3).

For the upper bound, we use the Remark 3.18 to find a (140 x 192)-submatrix of the
Jacobian matrix, which has full rank at all centered realizations. For this, we construct an
ordering of the nodes of the vertex-facet incidence graph of Cf“). Start with four nodes
v,u, F, G such that v,u € F N G. For two vertices in the ordering which form an edge,
add the facets which contain it and are not already in the ordering. For two facets in the
ordering which intersect in a ridge, add the vertices which form the ridge and are not
already in the ordering. Repeat this until all the vertices and the facets are ordered. This
process does not get stuck because the edge-ridge graph is connected; see Sallee [25]. If
we remove the four edges between the nodes {v, u, F, G}, we get a 4-degenerate ordering
which satisfies the degeneracy criterion. A facet in this ordering was added because an edge
of it appeared before. So for each facet, there are at most four of its vertices appearing after
it, and these four vertices are always affinely independent because they miss two vertices
which form an edge of the octahedral facet. Similar argument for the vertices. We are done by
Remark 3.18. O

The group of projective transformations on R* has dimension 24; thus, this establishes that
the dimension of the realization space of Cf‘” modulo projective transformations satisfies

dim(Ro(CY)/PGL(R, 4)) > 24,
where the best previous estimate, due to Paffenholz [19, 20], had been
dim(Ro(CY)/PGL(R, 4)) > 4,

and thus,
dim(Re(C*)) > 28.

PROPOSITION 5.8. The Jacobian matrix for the 24-cell C §24) has different ranks at different

realizations.

(1) For any realization of the 24-cell as a regular polytope, the Jacobian matrix has rank
140 (i.e., rank deficit 4).

(2) For the non-regular Paffenholz realizations of the 24-cell, the Jacobian matrix has rank
< 142 (i.e., rank deficit > 2).

(3) Foreight 1-parameter families of non-regular realizations of the 24-cell with a symmetry
group of order 24, the Jacobian has full rank 144 (i.e., full rank).

Proof. (1) A regular realization of ij) is given by the following vertex description.
Vieg = conv {+e; £ e; e R* | 1 <i < j<4).

At this realization, the Jacobian matrix has rank 140, which is not full.
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(2) Paffenholz [19, table 3.6] [20, table 4.4] constructed a 4-parameter family of
realizations of the 24-cell. One way to see his construction is to start with the standard 4-
cube [—1, 1]%, and choose a point (a, b, ¢, d) € (—1, 1)* in the interior of that cube. Now
reflect this point through the eight supporting hyperplanes of the facets of that cube to get
eight new points. The convex hull of the 16 vertices of the standard cube and the eight new
points gives the 4-parameter family. The rows of the following matrix describe the vertices
of this 4-dimensional family of realizations.

B -1 -1 -1 —17

1 1 —1 —1

1 -1 1 -1

-1 1 1 -1

1 -1 -1 1

-1 1 -1 1

-1 -1 1 1

1 1 1 1

1 -1 -1 -1

-1 1 -1 -1

—1 —1 1 —1

1 1 1 -1

-1 -1 -1 1

1 1 -1 1

1 -1 1 1

-1 1 1 1

a b c —d—2

a b —c+?2 d

a b c —d+2

a b —c—-2 d

a —b+2 c d
—a—2 b c d
a —b—-2 c d

| —a+2 b c d|

If all the parameters are zero, we get a regular realization, and the Jacobian matrix of
the corresponding characteristic map at this realization has rank 140. Otherwise, using
SAGEMATH [29], we found two linear dependencies between the rows of the (symbolic)
Jacobian matrix.

(3) Finally, we give a new construction of eight 1-parameter families of realizations of
the 24-cell. To get these families, start with the standard 4-cube [—1, 1]*. Let v; denote a
point beyond the facet of C, defined by {x € R* | x; = 1} and beneath all the other facets.

Similarly, let u; denote a point beyond the facet of C; defined by {x € R* | x; = —1} and
beneath all the other facets. Our goal is to construct a 24-cell whose vertex set is {—1, 1}* U
{vi, ..., v4, 0y, ..., uy} such that it has the following symmetries:

u = —Vv; V1<1<4

Vi Vi w—ui=yv VIKi#j<

Vi ui=>u vy VIKi# <



ON THE DIMENSIONS OF THE REALIZATION SPACES OF POLYTOPES 361

Letting v, = (a, b, ¢, d) and looking at the symmetries of C; which map the points as described
above, we see that we have only two options for the coordinates of the functions of v;:

Vi a b C d Vi a b C d

v, —b a —d c v —b a d —c

V3 —c d a —b |’ V3 —c —d a b

vy —d —c b a v —d c —b a
The convex hull of {—1, 1}4 U{vy,...,Vq,uy, ..., s} is a 24-cell if and only if each line
segment between a pair (v, V') of non-opposite points of {vy, ..., V4, uy, ..., uy} intersects

the (relative) interior of the 2-face of Cy defined by Fy, N Fy/, where F, (respectively, Fy) is
the facet of C, which v (respectively, V') lies beyond. Writing up these conditions we see that
they are equivalent to the following conditions.

b, c*d*=—a*+2a, 1<a<?2.

2

The above equations can rationally parameterized; putting a = e gives
2x
byc,d=+———, 0<x<lL
x*+1)

The plus-minus signs are independent, so this corresponds to 23 = 8 families. The following
matrix describes the vertex description of these families, where s, s;, 53 € {—1, 1P and 0 <
x < 1.

M =1 -1 -1 —17
—1 -1 -1 1
—1 —1 1 —1
-1 —1 1 1
—1 1 —1 —1
—1 1 —1 1
—1 1 1 -1
-1 1 1 1

1 -1 -1 -1

1 -1 -1 1

1 -1 1 -1

1 —1 1 1

1 1 —1 -1

1 1 —1 1

1 1 1 —1

1 1 1 1

__2 _2s1x _ 2sx _ 2s3x

AR T e SR oy

PR L Y e

T A ¢ S 7

PR Y R L .

B PO i S A ¥

PR O N

IR T T
x241 x24+1 x2+1 x241_
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If x =0, we get a regular realization, and the Jacobian matrix of the corresponding
characteristic map at this realization has rank 140. Otherwise, when 0 < x < 1, we get a
non-regular realization. Using SAGEMATH, we were able to show that the Jacobian matrix at
the open interval 0 < x < 1 has full rank. (]

COROLLARY 5.9. There is an open subset of the realization space Ry (Cf“)) that is a
smooth manifold of dimension 48.

Proof. This holds in the neighborhood of the new realizations of Proposition 5.8 (3), where
the Jacobian has full rank. (I

However, in contrast to the local situation announced by Corollary 5.9, there are other points
(e.g., at the regular realization) where the Jacobian property fails. The following theorem
shows that the Ry (C ‘{24) ) is not smooth at any point that corresponds to a realization that is
(projectively equivalent to) a regular polytope.

THEOREM 5.10. The realization space R, (ij) C R'*2 is not smooth at any point that
corresponds to a realization of the 24-cell as a regular polytope.

Proof. For each of the eight families we constructed in Proposition 5.8 (3) above, we
construct the corresponding Jacobian matrix Jy, s, s, as a function of x. These Jacobian matrices
have full rank in the interval 0 < x < 1. Thus, their kernels define (48-dimensional) tangent
spaces along these families. We computed the limits of these eight (symbolic) tangent spaces
atx = 0, and we obtained that these limits give four different 48-dimensional subspaces. Thus,
the regular realization, given by x = 0, is not a smooth point in R (ij)).

These computations were done using SAGEMATH [29]. To be able to compute the limits,
we did the following. We computed the bases for the kernels in an echelon form, and then, we
orthogonalized (but not normalized!) the rows of these bases using Gram—Schmidt process.
The entries of this echelon form are now rational functions in x. This produced rows in the
Jacobian matrix with entries that go to infinity as x goes to 0. Those rows, we multiplied by
x, after which the entries all became convergent. U

Remark 5.11. Bates, Hauenstein, Peterson, and Sommese [3] and Wampler, Hauenstein,
and Sommese [30] introduced a local dimension numerical test based on the growth rate of the
corank of the Macaulay matrix of the given variety after adding to it some number of random
linear equations passing through the point at which we want to compute the local dimension.
We used this test and we got that
e the local dimension of the realization space of the 24-cell at the regular realization is at

most 50, and
¢ the local dimension of the realization space of the 24-cell at a Paffenholz realization is at
most 49.

§6. Comparison to other models. In what follows, we discuss various other models for
realization spaces of polytopes and how they compare to the centered realization space. In
particular, we argue that the results from Section 5.2 translate to these other models.

The simplest and most obvious model is to record the vertex coordinates of the realization;
this leads to the set R(P) = {V € R¥*/0®): conv(V) realizes P}, see Definition 5.1. This
was, for example, used in Mnév’s original statement of the universality theorem for polytopes
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[18]. The centered realization space is diffeomorphic to an open subset of the naive model,
and the action of the affine group acts transitively on the naive model. So this naive approach
is essentially the same as the centered realization space model. One might want to factor out
the action of the affine group or related transformation group actions. Several different ways
to do this have been proposed in the literature and they lead to slightly different models for
the realization space of a polytope; see Gouveia, Macchia, and Wiebe [11].

6.1. Realization spaces modulo transformation group actions. We begin with the model
favored by Richter-Gebert in his work on the universality theorem for 4-polytopes [22, 23].
Here, we factor out affine transformations by fixing points, which by the combinatorial
structure of the polytope have to be affinely independent in every realization, to be the
origin and the standard basis vectors. The following proposition tells us how we can
identify this model explicitly with a subset of the centered realization space (of lower
dimension).

PROPOSITION 6.1. Let P be a d-dimensional polytope. Let RG(P) be the realization
space of P in Richter-Gebert’s model, which fixes vertices vy, Vi, ..., Vg of P to be ey = 0,
e, ...,eq. Let Xo, Xy, ..., Xy be dffinely independent vectors in RY. Richter-Gebert’s model
is diffeomorphic to the space of realizations of P with v; = X;.

Proof. Let A be the linear map that maps e; to X; — X¢. This linear transformation has full
rank. Therefore, the affine transformation x — Ax + X, that maps e; to X; is invertible. This
map induces a diffeomorphism of the described realization spaces. [

A recent way to encode realizations of a polytope is the slack realization space introduced
by Gouveia, Macchia, Thomas, and Wiebe [10]. Essentially, the authors show that realizations
of a polytope correspond to n x m matrices of rank d + 1 (whose rows are indexed by vertices
and columns by facets) with nonnegative entries, where zero entries appear only at the positions
that correspond to vertex-facet incidences. In this model it is particularly easy to interpret and
analyze the quotients modulo transformation groups. The connection of the slack model to
Richter-Gebert’s model discussed above as well as to the point of view of chirotopes (or
oriented matroids with the same face lattice as the polytope) is explored in Gouveia, Macchia,
and Wiebe [11]. All different models modulo transformation groups are at least birational,
which is to say isomorphic on an open subset (as subsets of algebraic varieties, so in particular
also locally diffeomorphic wherever the map is defined).

For instance, if P C RY be a d-dimensional polytope whose first d + 1 vertices are affinely
independent in any realization of P, Richter-Gebert’s model fixes the first d + 1 vertices
of the polytope to be 0, ey, ..., €;. In the Grassmannian model of the realization space, a
realization V of P = conv(V) is mapped to the column space of V. By the choice of the first
d + 1 columns of V, the Pliicker vector of such a realization always ends up in the same
canonical affine chart of the Grassmannian given by the first (d + 1) x (d + 1) block of V
having full rank (so that the corresponding entry in the Pliicker vector is non-zero, more
precisely 1). So Richter-Gebert’s model is naturally a subset of the Grassmannian model of
realizations of P. The slack realization space is birational to the Grassmannian model by
[11, Theorem 4.7].

We discuss how to translate smoothness results from the centered realization space model
to these quotient models exemplarily for the 24-cell in the following section.
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6.2. The 24-cell in other models for the realization space.

PROPOSITION 6.2. There is an open neighborhood of the regular realization of the 24-cell
inRG (Cf“)) that is diffeomorphic to a transversal affine section of R (C 224)). In particular,

the regular realization is also a singular point in RG (ij)).

Proof. Choose the vectors xo = (—1,1,1,1), x; = (1,1, 1, 1), x, = (0,2,0,0), x3 =
0,0,2,0), x4 = (0,0,0, 2). These are affinely independent so that Proposition 6.1 implies
that RG (C 4524)) is diffeomorphic to all realizations of the 24-cell such that five vertices have the
above coordinates, which we call RG’ (Cf‘”). These are chosen as they are vertices of aregular
realization. There is an open neighborhood of this regular realization in RG'(C 124)) that lies

in Ry (C 524)). This neighborhood is an affine section R (C, 524)) N L of the centered realization
space determined by the affine conditions that the five vertices vy, vis, V19, V21, V23 are equal
to Xo, . . . , X4, respectively. We can now show that claim by a computation. We consider the
same four curves as in Theorem 5.10 in Ro(Cf“)) that approach the regular realization.

We transform them into curves in RG'(C 224)) by the affine transformation moving the five
chosen vertices to the fixed x;. Sufficiently close to the regular realization (given by the
parameter value 0), these transformed curves in ’Rg’(CiM)) pass through smooth points in

RQ’(C}M)) by generic smoothness of the quotient map. The tangent space to RQ’(C;M))
is a 28-dimensional linear space depending on m. The limit for m = 0 can be computed
by intersecting the limits of the tangent spaces of the original curves inside R (Cf4)) with
the linear space lin(L) corresponding to the affine subspace L, which we compute to be a
28-dimensional subspace. In fact, as in the proof of Theorem 5.10, we obtain four different
28-dimensional subspaces, which shows that Rg’(Cf‘l)), and therefore RG (Cf‘”), is not
smooth at the regular realization. (]

The fact that the realization space of the 24-cell is not a smooth manifold in Richter-Gebert’s
model locally around a regular realization also shows that it is not a smooth manifold in the
Grassmannian model and therefore neither in the slack model (see [11]), as the transition
maps between the models are defined locally around the regular realizations.
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