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Abstract 

Since the Great East Japan Earthquake, severe isoyake has occurred in some areas of the Shizugawa Bay in 

Miyagi Prefecture. To protect the algae and prevent the sea urchin population from continuing to grow, we 

developed a stereo camera system for large ROV, which mainly uses Deep Learning for pattern matching, 

accelerometer for camera angle correction, and laser size correction to measure the size and distance of sea 

urchins, and thus perform automatic capture of sea urchins. The captured sea urchins are not fat and most of 

them are thrown away. If the captured sea urchins are put into the tank for further breeding, they can grow into 

fatty that can be eaten. By establishing a system to re-culture and sell sea urchins with little flesh, we can 

effectively use aquatic resources and contribute to sustainable farming. Artificial culture of sea urchins requires 

uniform size of sea urchins, otherwise cannibalism and slow growth will occur. In addition, it is difficult to 

specify the amount of bait to be fed, so the aquaculture tanks are prone to residue decay, leading to deterioration 

of water quality, and sea urchins are highly susceptible to bald sea urchin and other special sea urchins’ diseases. 

Therefore, we need to develop special system for aquaculture farms. Considering the cost of aquaculture and the 

requirement to realize the recognition of the same size of sea urchin, this paper develops a simple small 

underwater stereo camera system, which does not rely on other hardware, and only realizes the function through 

code.  

Sea urchin ranging firstly needs to calibrate the binocular camera, so we can obtain the internal and external 

parameters of the camera for image rectification in subsequent operations and to realize the coordinate system 

conversion of image to world. To conveniently obtain the parameters of the binocular camera and avoid the 

complexity of parameter transfer between cross-platforms, this paper adopts the Zhang's algorithm based on 

OpenCV-Python with a chessboard grid for calibration. Comparing the parameters obtained from calibration 

experiments for specific binocular cameras, this paper obtains parameters with better depth error accuracy. 

ROV needs to capture sea urchins, so the binocular camera needs to recognize the sea urchins and obtain the 

image coordinate values of the sea urchins by the sea urchin classifier previously studied in the laboratory to 

recognize the sea urchins in the pictures. To find the corresponding matching detection frames from multiple 

detection frames in the pictures captured by the left and right cameras at the same time, this paper applies 

machine learning (Template matching) or neural network method (Siamese network matching) to calculate the 

similarity between two detection frames. By comparing the results of the above two methods in terms of error 

results and time consuming, template matching method can complete the similarity calculation in a shorter time 

while maintaining a certain accuracy, so the machine learning is chosen in this paper. 

The conversion from pixel information to actual distance requires finding matching points in the left and 

right images, and there are two stereo matching methods, namely machine learning or deep learning. However, 

compared with deep learning, machine learning can change the parameters according to the effect at any time 

and does not require a high-performance computer, so the semi-global block matching (SGBM) algorithm is 

used in this paper. In this paper, we first conducted a ranging experiment on sea urchins’picture in the air 

environment and obtained better image processing parameters. Further underwater experiments are carried out 

on the system. Through experimental comparison, the system developed in this paper can achieve better errors. 
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1. Introduction 

1.1. Isoyake 

Before the Great East Japan Earthquake, Shizugawa Bay in Miyagi Prefecture was a high-quality algae farm 

and thus a breeding ground for other fish species such as abalone and silver salmon, as well as specialties such 

as octopus and ascidian. However, since the Great East Japan Earthquake, some areas of Shizukawa Bay in 

Miyagi Prefecture have been experiencing severe isoyake[1], as shown in Fig. 1-1, which has led to a decrease 

in the number of fish and abalone becoming thin, causing a great loss to fishery production. One of the reasons 

for the occurrence of isoyake is thought to be the loss of algae beds due to the destruction of algae by the feeding 

of large numbers of sea urchins. To protect the algae and prevent the sea urchin population from continuing to 

grow[2], it is therefore necessary to remove the sea urchins as soon as possible. Currently, sea urchin removal is 

carried out by divers, but it is very hard and dangerous to work for long periods of time at depths of 10~20 m[3]. 

Therefore, it is necessary to develop a sea urchin removal ROV. 

Our laboratory is currently developing a sea urchin removal large ROV[4] (Fig. 1-2) with a system that can 

recognize sea urchins and measure their size in real time and at high speed, where the specific specifications of 

the large ROV are shown in Table 1-1. As Fig. 1-3 shows the result of image recognition in Shizukawa Bay in 

December 2019[5]. 

1.2.  Recycled sea urchins for aquaculture 

The sea urchins recovered using the sea urchin removal large ROV described in 1.1 can be continued to be 

fed on aquaculture farms (Fig. 1-4), until they grow into edible fatty sea urchins, and establish a system to re-

farm and sell these sea urchins, and the money from the sale can provide the necessary economic source for 

sustainable sea urchin aquaculture[6]. Currently farms have introduced system to manage information such as 

water temperature, salinity, and oxygen concentration, but the system is not very effective for sea urchins, as 

shown in Fig. 1-5. 

In addition, sea urchins are highly likely to become sick due to the inability to ensure water quality in long-

term aquaculture. Currently, sea urchin aquaculture farms use manual removal of these diseased sea urchins, 

which greatly restricts labor and does not guarantee that the situation inside the tank can be observed in any time.  

Therefore, there is a need to develop a sea urchin system using underwater stereo vision suitable for aquaculture 

farms. 

1.3.  Large sea urchin stereo recognition system 

Since the sea urchin recognition system described in 1.1 (Fig. 1-6) uses hardware such as IMU, Laser, 

Raspberry Pi and so on, which is shown in detailed specifications in Table 1-2. Because the system is large and 

heavy, and the ROV used requires optical fiber cable, so it is not suitable for use on aquaculture farms. 

Considering the economic cost and the requirements of the farm environment, it is necessary to develop a low-

cost, small, and simple structured sea urchin recognition ranging system. 
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1.4.  Sea urchin aquaculture problems 

Based on the problem in 1.2, we can conclude that the system to be developed for sea urchin aquaculture 

needs to have (1) low cost; (2) matching sea urchin size; (3) the ability to find diseased sea urchins. In this paper, 

we focus on (1) and (2). For (1), we take the approach of choosing as few hardware devices as possible; For (2), 

if the farmed sea urchins are not of the same size, it will happen that the larger size sea urchins will continue to 

get bigger while the smaller size sea urchins will get smaller in the aquaculture tank, which is highly susceptible 

to the phenomenon of cannibalism and slow growth. Moreover, due to the different sizes of sea urchins, the 

amount of bait fed cannot be unified, and it is very easy to have excess bait and thus deteriorate the water quality. 

For this reason, sea urchins are prone to be bald sea urchins (Fig. 1-7) and other specific diseases, so it is 

necessary to observe the condition of sea urchins in the tank in real time, sort out sea urchins of different sizes 

and feed them separately. 

1.5.  Sea urchin recognition system using underwater stereo vision 

Based on (1) and (2) given in 1.4, there is a need to develop a sea urchin recognition system using underwater 

stereo vision for aquaculture farms by using a binocular camera to investigate the size of sea urchins. Therefore, 

this paper develops a simple camera structure that does not rely on other hardware, but only code to measure the 

sea urchins in the image by triangulation. The sea urchin recognition system using underwater stereo vision 

developed in this paper is based on a sea urchin recognition system[7] previously developed in the laboratory. 

After obtaining the specific image coordinates of the sea urchin, the similarity of the detection frames on the left 

and right images is calculated, and the datum points of the detection frames on the left and right images are input 

into the depth detection module. The depth detection module will perform two operations of stereo rectification 

and stereo matching on the left and right images to obtain the disparity map. Based on the coordinate values of 

the detected frames and the disparity map, we can get the distance between the detected sea urchin and the 

camera by calculating the formula, thus achieving the purpose of the research, as shown in Fig. 1-8, and the 

specific specifications of the sea urchin recognition system using underwater stereo vision are shown in Table 

1-3. The specific application of the algorithm in this paper will be described in the following sections. 

 

 

Fig. 1-1: Isoyake. 

 



3 

 

 

 

Fig. 1-2: Sea urchin removal large ROV. 

 

Fig. 1-3: Image recognition results for Shizukawa Bay, December 2019. 
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Fig. 1-4: Sea urchin aquaculture farm. 

 

Fig. 1-5: Water quality conditions in sea urchin aquaculture farms. 
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Fig. 1-6: Large sea urchin stereo recognition system. 

 

 

Fig. 1-7: Bald Sea urchin. 

 

Fig. 1-8: Sea urchin recognition system using underwater stereo vision. 
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Table 1-1 Specifications of large ROV. 

Item Description 

Shape W635×L840×H490mm 

Weight 45.4kg 

Camera NTSC 

Binocular 

camera 
ELP-1MP2CAM001-HOV90 

Main thruster Two horizons, two verticals(200W) 

Sub-thruster Two verticals(200W) 

Robot hand One unit 

Sensor 
IMU(Pixhawk), Laser, Raspberry Pi, AC - DC converter 

Depth gauge, Azimuth gauge, Altimeter 

 

Table 1-2 Specifications of large sea urchin stereo recognition system. 

Item Description 

Diameter 115[mm] 

Length 375[mm] 

Weight 3.1[kg] 

Ethernet 100[Mbps] 

Power AC 85～264[V] 

Laser ON/OFF 9[V] 

Camera ELP-1MP2CAM001-HOV90 

Sensor IMU(Pixhawk), Laser, Raspberry Pi, AC - DC converter 

 

Table 1-3 Specifications of sea urchin recognition system using underwater stereo vision. 

Item Description 

Diameter 55[mm] 

Length 212[mm] 

Weight 0.115[kg]  

Power DC 5[V] 

Camera  ELP-1MP2CAM001-HOV90 
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2. Binocular calibration and image rectification 

2.1. Camera calibration 

In order to find the relationship between the pixel coordinate system and the world coordinate system, we 

need to calibrate the binocular camera. Fig. 2-1 shows the binocular camera ranging model, where the coordinate 

system of the xw, yw, zw axes is the world coordinate system, and its position in the stereoscopic space can be 

placed at will. The coordinate system of the x, y axes is the image coordinate system, the coordinate system 

formed by the xc, yc, zc axes are the camera coordinate system, and the coordinate system of the u, v axes 

component is the pixel coordinate system. These coordinate systems together constitute the distance 

measurement system. 

As shown in Fig. 2-1, point P is a point in the target object, p_{l,r} are P a point projected onto the imaging 

plane. The intersection of the camera optical axis with the image plane (generally located at the center of the 

image plane, also called the principal point of the image) is defined as the origin O_{Il,Ir} of camera coordinate 

system, and O_{pl,pr} is origin of the pixel coordinate, with the x_{l,r} -axes is parallel to the u_{l,r}-axes, and 

the y_{l,r}-axes are parallel to the v_{l,r}-axes. Assuming (u0, v0) and (u’
0, v’0) as the origin of the pixel 

coordinate system, without considering the distortion, and dx and dy represent the physical size of each pixel on 

the horizontal and vertical axes, respectively. The coordinate transform model is given by Fig. 2-2, where the 

camera intrinsic matrix(M_{l,r},D_{l,r}) and external matrix(R, T) can be obtained by calibration experiments. 

 

Fig. 2-1: Binocular camera ranging model 

 

Fig. 2-2: Binocular range coordinate transform model. 
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2.2.  Geometric relationship of coordinate systems 

According to Fig. 2-1, we need to correspond the points in pixel coordinates to the actual points in the world 

coordinate system. By using Zhang's algorithm and OpenCV, the real distance can be obtained. 

2.2.1. Conversion between image coordinate system and pixel coordinate system 

Firstly, we need to perform the conversion from pixel coordinates to image coordinates. The pixel coordinate 

system is expressed in pixel units and the image coordinate system is expressed in physical units. As shown in 

Fig. 2-3, we can see that the horizontal and vertical axes between the two coordinate systems are parallel to each 

other and shifted by a certain distance. u and v of the pixel coordinates correspond to the rows and columns of 

the image; while the image coordinate system represents the specific physical length, where dx is the unit 

length of the horizontal x-axis and dy is the unit length of the vertical y-axis. 

Where the blue coordinate system represents the pixel coordinate system, and the pink coordinate system 

represents the image coordinate system. The coordinate system with u and v axes is the pixel coordinate system 

with coordinate origin (0,0); the coordinate system with x and y axes is the image digital coordinate system with 

coordinate origin represented by (u0, v0). The relationship[8] between these two coordinate systems is shown in 

Eq. (2-1). 

0

0

x
u u

dx

y
v v

dy


= +


 = +


                                    (2-1) 

For ease of later calculation, Eq. (2-1) is converted to homogeneous coordinates, as shown in Eq. (2-2). 

0

0

1
0

1
0

1 1
0 0 1

u
dxu x

v v y
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    =
    
       

 
  

                                (2-2) 

 

Fig. 2-3: Position relationship between pixel coordinate system and image coordinates. 
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2.2.2. Conversion between camera coordinate system and image coordinate system 

Secondly, we need to perform the conversion from image coordinates to camera coordinates. As shown in 

Fig. 2-4, the origin of the camera coordinate system is located at the center of the camera, that is the optical 

center point. The axis of the camera coordinate system is perpendicular to the camera lens, that is the image 

plane. The relationship between the camera coordinate system and the image coordinate system is shown in Eq. 

(2-3). 

 

Fig. 2-4: Position relationship between image coordinate system and camera coordinates. 
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The conversion to the homogeneous coordinates is shown in Eq. (2-5). 
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2.2.3. Conversion between world coordinate system and camera coordinate system 

Thirdly, we need to perform a conversion from the camera coordinate system to the world coordinate system.  

The world coordinate system consists of the xw, yw, and zw axes, while the camera coordinate system can be 

overlapped with the world coordinate system by rotations and translations, and their conversion relationship is 

shown in Eq. (2-5). 

0 1

1 1

c w

c w

T

c w

x x

y R T y

z z

   
   

    =      
   
   

                                 (2-5) 
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where R represents the rotation matrix(3×3) and T represents the translation vector(3×1). R and T denote 

the external parameters of the position of the camera in relation to the image plane. 

2.2.4. Conversion between world coordinate system and pixel coordinate system 

Finally, we need to perform a direct conversion from pixel coordinates to world coordinates, as shown in Eq. 

(2-6). 

0

0

0 0

1
0

0 0 0 0 0
1

0 0 0 0 0 0
0 1 0 1

1 0 0 1 0 0 0 1 0
0 0 1 1 1

w w

x

w w

c yT T

w w

u
x xdxu f u

R T y R T y
z v v f v

z zdy

 
     

          
             = =                                

    
  

  (2-6) 

To simplify the above equations, we can use 

0

0

0 0

0 0

0 0 1 0

x

a y

u

Q M v

 
 

= = 
 
  

and
0 1

b T

R T
Q

 
=  
 

, and the 

projection matrix Q can relate the pixel coordinate and the world coordinate, where Q=Qa × Qb. Using the 

projection matrix Q, we can obtain information about of the world coordinate system based on the known values 

of the pixel coordinate of the tested point P.  

2.3. Distortion coefficient 

Due to the lens material and process, lens distortion is difficult to avoid in camera shooting. Lens distortion 

mainly includes radial distortion and tangential distortion[9]. Which radial distortion phenomenon as shown in 

Fig. 2-5. 

 

Fig. 2-5: Camera distortion diagram. 

According to [9], we use Taylor series expansion around the (x,y) in the image. Base on distortion parameters 

D_{l,r}=[k1,k2,p1,p2,k3], the radial distortion can be expressed by Eq. (2-7), which (x,y) is original image’s point 

and (x’,y’) is rectified image’s point. 
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The tangential distortion is expressed in Eq. (2-8). 

( )
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' 2 2

1 2
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y y p x p r y

  = + + +
  


 = + + +  

                    (2-8) 

where k1, k2, k3 represent the radial distortion coefficients and p1, p2 are tangential distortion. These 

parameters can be obtained through calibration experiments. 

 

2.4.  Selection of calibration algorithm 

Currently, there are two methods of camera calibration. One is the traditional calibration method of the 

camera to have a reference; Another is the self-calibration method that does not require a reference. The 

traditional calibration method requires a stricter reference, but the accuracy of the parameters obtained is better. 

Zhang's algorithm[10] is between the traditional calibration method and the self-calibration method, which 

solves the shortcomings of the traditional calibration method that requires strict reference. At the same time, it 

improves the accuracy and is easy to operate. 

Zhang's algorithm uses chessboard pictures for calibration, it can obtain the correspondence between 

references and images, which not only provides more accurate calibration results, but also better real-time 

performance. In addition, we can use two ordinary cameras to achieve the experimental purpose with relatively 

low cost.  

At present camera calibration can be implemented by means of MATLAB and OPENCV. For the sake of 

platform uniformity and ease of parameter transfer, the OpenCV-Python approach was chosen for the calibration 

of the camera in this paper. Since the rotation matrix R and translation vector T obtained by the OpenCV library 

cv2.stereoCalibrate() have too large errors, a monocular calibration followed by binocular calibration was chosen 

for the calibration of the binocular camera. 

2.5. Calibration experiment 

In this paper, the ELP-1MP2CAM001-HOV90 dual-lens camera module as shown in Fig. 2-6. The 

specifications of the camera module are shown in the Table 2-1. The binocular camera is calibrated according 

to Zhang's algorithm using OpenCV-Python. The calibration pattern used for the calibration experiment is a 

black and white chessboard grid, each square of which is 25 mm in size and has 9×6 corner points. The reason 

for choosing the chessboard grid for the experiment is that the chessboard grid has the characteristics of a 

horizontal and vertical grids, and the corner points are easy to identify. The principle of binocular camera 

calibration is to use two cameras that are ideally parallel and have identical specifications for calibration 

experiments, and to find the internal and external parameters of the binocular camera through OpenCV 

calibration.  

Through the continuous calibration experiments on the binocular camera, three sets of parameters with better 

calibration results are obtained, respectively denoted as A, B, and C. The graphs of calibration results are shown 
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in Fig. 2-9. 

Zhang's algorithm process: Firstly, images are taken by binocular cameras and took at least 80 sets of image 

pairs are obtained, as shown in Fig. 2-7. Then the corner points of each image are extracted, the extracted corner 

point position information is judged, and these corner points are plotted, as shown in Fig. 2-8. If some of these 

corner points are judged to be wrong corner points then the corner point extraction is performed again, and the 

correct corner point coordinates will be calculated for the next calibration step. The flow chart of Zhang's 

calibration is shown in Fig. 2-10. 

 

Table 2-1: Binocular camera specifications. 

 

Model ELP-1MP2CAM001-HOV90 

Lens size 1/4 inch 

Pixel size 3.0 um×3.0 um 

Image area 3888um×2430 um 

Max resolution 1280(H)×720(V) 

Compression format MJPEG / YUV2(YUYV) 

S/N ration 40 dB 

 

 

Fig. 2-6: ELP-1MP2CAM001-HOV90 dual-lens camera module 

 

Fig. 2-7: Binocular camera calibration images. 
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Fig. 2-8: Binocular camera calibration result images. 

 

Fig. 2-9: Binocular camera calibration result parameters. 
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Fig. 2-10: Binocular calibration flow chart. 
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3. Image processing and sea urchin recognition 

This chapter mainly introduces the image processing and sea urchin recognition of sea urchin system using 

underwater stereo vision. The main purpose of image processing is to ensure that the quality of the images is not 

affected by noise. Sea urchin recognition uses sea urchin classifier previously developed in the laboratory to 

recognize the sea urchins that appear in the images and thus obtain the coordinate values of the sea urchins in 

the image coordinate system. 

3.1. Image processing 

Image processing is mainly aimed at eliminating irrelevant information from images, recovering useful real 

information, enhancing detectability of relevant information and maximizing data simplification. Thus, the 

possibilities of sea urchin recognition, stereo matching and depth detection are improved. 

3.1.1.  Image grayscale processing 

The camera captures the raw image in color, but color images contain the full information of the image, 

computer processing of color images is much less effective than grayscale images in terms of time and 

effectiveness. In binocular camera ranging, grayscale images are sufficient to represent the complete information 

of the image, so it is necessary to process the image in grayscale. 

Grayscale images are stored using 8 nonlinear scales per pixel, so that there is 8×8×8=255 different 

grayscale values, which is enough to represent the complete information of the image, making the image 

undistorted and easier to transmit, and the memory for storing images after grayscale processing is greatly 

reduced. The specific process is shown in Fig. 3-1. 

 

Fig. 3-1: Image graying process diagram. 

 

3.1.2.  Image enhancement 

To enhance the contrast between the image sea urchin and the background, we use the histogram equalization 

to enhance the dynamic range of the pixel gray values by distributing the pixel values evenly over the entire gray 

range (0~255) of the gray image. In this paper, we use the cv2.equlizeHist() in the OpenCV library to enhance 



16 

 

the image. The specific process is shown in Fig. 3-2. 

 

Fig. 3-2: Image enhancement process diagram. 

 

3.1.3.  Image filtering 

In camera shooting, a variety of noises are generated due to the image transmission process, and these noises 

disrupt the observable information of the image. So, it is necessary to perform image filtering on the image. The 

current filters are [11]: mean filter, median filter, Gaussian filter and Bilateral filter. 

(1) Mean filter (blur) 

Mean filter is a smooth linear spatial filter that mainly uses the average value of the pixels around a pixel to 

achieve the effect of smoothing noise. Mean filter is a low-pass filter, which means that the mean value in the 

domain is assigned to the central element. 

Mean filter is used to reduce noise and is mainly used to remove irrelevant details from the image, where 

irrelevant is the area of pixels that are smaller compared to the filter's template. Blurred images are used to get 

a rough description of the object of interest, so that the grayscale of those smaller objects is blended with the 

background and larger objects become speckle-like and easy to detect. The size of the template is determined by 

the size of those objects that will blend into the background. 

(2) Median filter  

Median filter is a nonlinear filter that is often used to eliminate salt-and-pepper noise in images. Unlike low-

pass filtering, median filtering is good for preserving the sharpness of edges, but it washes away the texture in 

the uniform media area. 

Salt-and-pepper noise is the bright and dark noise in black and white generated by the image sensor, 

transmission channel, decoding process and so on. Salt-and-pepper noise refers to two kinds of noise, one is salt 

noise whose salt = white (255), and the other is pepper noise whose pepper = black (0). The former is a high 

gray noise, the latter belongs to the low gray noise. Generally, the two kinds of noises appear at the same time, 

presented in the image is black and white miscellaneous color. For color images, it is presented as 255 and 0 that 

appear randomly in the three channels of a single pixel BGR. 
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(3) Gaussian filter 

Gaussian filter is one of the linear filters. Gaussian filter is used for smoothing images, or image blurring 

process, so Gaussian filter is a low-pass filter. Its widely used in the noise reduction process of image processing, 

especially on images contaminated by Gaussian noise. 

The value of each pixel point on image is obtained by a weighted average of its own value and the values of 

other pixel points in the domain. Gaussian filter is implemented by scanning each pixel point in the image with 

a kernel (convolution kernel), multiplying each pixel value in the domain with the weight value at the 

corresponding position and summing them. Mathematically, the process of Gaussian filtering is a convolution 

operation of the image with the Gauss normal distribution. 

(4) Bilateral Filter  

Bilateral filter is a nonlinear filtering that combines the approach of image spatial proximity and pixel value 

similarity. In filtering, this filtering method considers both spatial proximity information and color similarity 

information, removing noise and smoothing the image while achieving edge preservation. 

In general, Bilateral filter uses a combination of two Gaussian filters. One is responsible for calculating the 

weight of spatial proximity, which is the principle of the usual Gaussian filter. The other one is responsible for 

calculating the weights of pixel value similarity.  

 

3.2. Sea urchin recognition 

The image recognition system in this paper focuses on creating classifiers rapidly building classifiers with 

the available GPU performance, using the pattern matching method (Viola-Jones[12]) to produce a recognition 

classifier, and to generate stronger classifier to detect objects from many weaker classifiers. To create the 

classifier, positive samples (sea urchins) and negative samples (not sea urchins) are required, and then a list of 

image labels and vector files (automatically generated via opencv-createsamples.exe) are created for the positive 

and negative samples, respectively, as shown in Fig. 3-3. In this paper, the vector files generated above are used 

to recognize and extract features from the images using Haar-like features. The sea urchin in the image is 

recognized according to the classifier and the pixel coordinates of the sea urchin detection frames are obtained, 

providing the target object coordinates for subsequent stereo matching. Since we perform binocular ranging for 

specific object (sea urchin), this system ranges the sea urchin patches detected by the left and right cameras at 

the same time and calculates the similarity of the two patches to get the sea urchin we need. 

 

Fig. 3-3: Sea urchin classifier generation schematic. 
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4.  Depth detection system 

4.1.  Image rectification 

4.1.1.  Bouguet’s algorithm 

In this paper, we use the Bouguet’s algorithm, which aims to minimize the reprojection variation in each of 

the two images (thus minimizing the result of reprojection distortion) while maximizing the common field of 

image. 

To minimize the reprojection distortion of the image, we can divide the rotation matrix R into two parts rr 

and rl that make the two rotation matrices of the left and right cameras each rotate half a turn, thus their principal 

rays will end up parallel to the vector sum where their original principal rays are pointing. But this only puts the 

two cameras into coplanar alignment, not line alignment. We can translate the epipole 
1e  of the left camera to 

infinity, with the principal point (cx,cy) as the origin of the left image, and the translation vector between the 

projection centers of the two cameras along the direction of the epipolar line can be shown in Eq. (4-1) below[9].  

1

T
e

T
=                                        (4-1) 

We need to make a vector 
2e  orthogonal to 

1e . We can choose a direction orthogonal to the principal ray 

(which tends to be along the image plane) as the direction of 
2e , and get the direction of 

2e  by making the 

cross-product of 
1e  with the direction of the principal ray, and then obtain another unit vector 

3e  by 

normalizing. 

There is always a third vector 
3e , that is orthogonal to 

1e  and 
2e  by using the cross-product operation, 

as show in Eq. (4-2). 

3 1 2e e e=                                      (4-2) 

The matrix Rrect that transforms the epipole in the left camera to infinity is show in Eq. (4-3). 

1

2

3

T

T

rect

T

e

R e

e

 
 
 =
 
 
 

                                      (4-3) 

The matrix Rrect rotates the left camera around the projection center so that the epipolar lines are horizontal 

and the epipoles are at infinity. The row alignment of two of the cameras can be achieved according to Eq. (4-

4) and Eq. (4-5) 

l rect lR R r=                                  (4-4) 

r rect rR R r=                                  (4-5) 

We will calculate the rectified left and right camera matrices 
,rect lM  and 

,rect rM , and substitute them into 

the projection matrices 
'

lP  and 
'

rP  as follows Eq. (4-6) and Eq. (4-7). 
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, ,

'

, , ,

1 0 0 0

0 0 1 0 0

0 0 1 0 0 1 0

rect l l x l

l rect l l y l y l

f c

P M P f c



=  =                      (4-6) 

, ,

'

, , ,

1 0 0

0 0 1 0 0

0 0 1 0 0 1 0

rect r r x r x

r rect r r y r y r

f c T

P M P f c



=  =                     (4-7) 

Using Eq. (4-8), the projection matrix P converts a three-dimensional point in a homogeneous coordinate 

system into a two-dimensional point in homogeneous coordinates. 

1

X
x

Y
P y

Z
w

 =                                     (4-8) 

The image coordinates can be calculated according to (x, y) = (x/w, y/w). Given the image coordinates and 

the camera intrinsic matrices, the two-dimensional points can be reprojected into three-dimensional. Where the 

projection matrix Q is shown in Eq. (4-9), where P is the ideal data of Q. 

'

1 0 0

0 1 0

0 0 0

1
0 0

x

y

x x

x x

c

c

fQ

c c

T T

−

−

=

−
−

                              (4-9) 

'

xc  is the parameter from the left image, and it is the principal point of the x-coordinate axis in the right 

image. If the principal rays of the left and right cameras intersect at the point of infinity (
'

x xc c= ), so the term 

in the lower right corner of the projection matrix Q is 0. By using Eq. (4-10), we can project the measured point 

into three-dimensional space with a two-dimensional homogeneous point and its related disparity d. 

1

x X

y Y
Q

d Z

W

=                                    (4-10) 

The three-dimensional coordinates are , ,
X Y Z

W W W

 
 
 

. 

To maximize the overlapping image area, the rotated image can be set with a new image center and a new 

image boundary, setting the unified camera center and the common maximum height and width of the two image 

regions to the center's stereo viewing plane. Fig. 4-1 shows a schematic diagram of the Bouguet’s rectification 

principle. 

In this paper, we use the cv2.stereoRectify() function in the OpenCV library file to compute the rectification 

and disparity maps we need to extract depth information from the stereo images of the binocular camera. 
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Fig. 4-1 shows a schematic diagram of the Bouguet’s rectification principle. 

4.1.2.  Rectification Mapping 

In this paper, we use the cv2.initUndistortRectifyMap() function to pre-calculate the rectification maps for 

the left and right images. Here only the pixel positions from the source image to the target image are calculated. 

For each integer pixel position in the target image, the corresponding pixel position of the source image is found 

by finding the floating-point coordinates on the source image and bilinear interpolation using the integer values 

of the surrounding source pixels. 

For each integer pixel on the rectified image, the corresponding coordinates can be found in the undistorted 

image. In this paper, we use the reverse thinking of the rectified image of to find the corresponding coordinate 

values of the target image by the coordinate values of the raw image. The pixel values on the floating point 

coordinates are obtained by interpolating the neighboring integer pixel positions on the raw image, and this value 

will be assigned to the corresponding interpolation position of the rectified image, followed by cropping of the 

rectified image to increase the superimposed area between the left and right images[9]. The whole rectification 

process is shown in Fig. 4-2. 
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Fig. 4-2: Stereo rectification flow chart. 

We rectified the images obtained from the binocular camera, and we use the cv2.remap() function to specify 

the rectified image position for each pixel in this image using interpolation. The Fig. 4-3 shows the process of 

image interpolation, where u and v represent the pixel coordinate values. The real effect is shown in Fig. 4-4. 
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Fig. 4-3: Interpolation Chart 

 

Fig. 4-4: Stereo rectification process diagram. 

 

4.2.  Similarity calculation 

We get the sea urchin detection frame in the left and right images, and then we need to find the corresponding 

right detection frame for the left detection frame, which means the corresponding coordinate representation of 

the same sea urchin in the left and right cameras. 

 4.2.1.  Template Matching 

Template matching is the discovery of a small area in the whole image area that matches a given sub-image. 

The target image is swept from left to right and from top to bottom in turn, and the computer moves the template 
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pixel by pixel from left to right and from top to bottom on the detected image, calculating the match between 

the template image and the overlapping sub-images. For higher matching degree, the higher the possibility that 

they are identical. 

OpenCV uses squared difference for matching, and the best match is 1. The worse the match, the smaller the 

match value. In this paper, we use standard squared difference matching[9] with the following Eq. (4-11), where 

R is the output image, T is the template, and I is the input image. 

( )
( ) ( )( )

( ) ( )

' '

' ' ' '

2
' ' ' '

,

2 2
' ' ' '

, ,

, ,
,

, ,

x y

x y x y

T x y I x x y y
R x y

T x y I x x y y

− + +
=

 + +



 
                 (4-11) 

In this paper, we use the sea urchin patch 1 recognized in the left image as a template and slide over the sea 

urchin patch 2 recognized in the right image to find the similarities between the two images. Fig. 4-5 and Fig. 

4-6 show the cases with the same patches and different patches of the Template matching, respectively. 

(1) Similar patches 

 

Fig. 4-5: Template matching of same patches. 

By comparing the similarity of the same patches, and the detected similarity value is 0.9073. 

(2) Different patches 

 

Fig. 4-6: Template matching of different patches. 

By comparing the similarity of different patches, and the detected similarity value is 0.5269. 

4.2.2.  Siamese Network Matching 

In this paper, the MNIST database is used to provide the dataset for the Siamese model[13], as shown in Fig. 

4-7. On the left side, two example patches are provided for the Siamese model to determine whether these patches 

belong to the same class. In the middle is the Siamese network model, where the two subnetworks are mirror of 
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each other with the same structure and parameters. If the weights of one subnetwork are updated, the weights of 

the other subnetwork are also updated. The output of each subnetwork is a fully connected layer. We calculate 

the Euclidean distance between these outputs and activate them by sigmoid activation so that we can determine 

the degree of similarity between the two input patches. 

We create positive and negative samples from MNIST and then build the Siamese network construct, train 

the Siamese network on the positive and negative sample pairs using the Siamese network model, and serialize 

the Siamese network model and the training history graph into a catalog model. Fig. 4-8 and Fig. 4-9 show the 

similar and different patches of the Siamese network matching, respectively. 

 

Fig. 4-7: The basic architecture of Siamese network. 

(1) Similar patches 

 

Fig. 4-8: Siamese network matching of same patches. 

By comparing the similarity of the same patches, and the detected similarity value is 0.9797. 

(2) Different patches 

 

Fig. 4-9: Siamese network matching of different patches. 

By comparing the similarity of different patches, and the detected similarity value is 0.000666. 

Through experimental comparison, it is found that machine learning takes less running time than deep 
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learning, although the similarity error of deep learning is a little better than machine learning, but combined with 

time efficiency, this paper uses machine learning to calculate the similarity. 

4.3.  Stereo Matching 

We obtain the pixel coordinate values of the same sea urchin in the left and right cameras respectively, and 

then we need to perform stereo matching on the left and right images. Matching a three-dimensional point in the 

left and right camera views, then the disparity value d will be calculated on the visual area where the two camera 

views overlap, so placing the binocular cameras as far forward and parallel as possible will give better results. 

Since the Hartlry algorithm can only compute the positions of points in the projection transform, the semi-global 

block matching (SGBM) algorithm is chosen in this paper. SGBM algorithm has four steps: image pre-

processing operation, acquisition of generated values, dynamic planning algorithm and image post-

processing[14]. 

(1) Image pre-processing operation 

The image pre-processing operation is performed to finally obtain the gradient information of the image, 

while being able to compensate for the distortion formed by different light intensities. The Sobel operator is used 

for image preprocessing, and the basic formula is given in Eq. (4-12), where p(x,y) is pixel value at (x,y). 

( ), 2[ ( 1, )] ( 1, )] ( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1)sobel x y p x y p x y p x y p x y p x y p x y= + − − + + − − − + + + + − − −

(4-12) 

The above equation represents the horizontal Sobel algorithm which subtracts two times the pixel value 

between neighboring pixels in the same horizontal direction from the lower-right, upper-left, upper-right and 

lower-left values. Each pixel point in the image will perform Sobel operation, and finally get a new pixel point 

image NEWP , which is represented by the mapping function in Eq. (4-13). 

0;

;

2 ,

NEW

P preFilterCap

P P preFilterCap preFilterCap P preFilterCap

preFilterCap P preFilterCap

 −


= + −  
  

           (4-13) 

(2) Matching cost calculation 

The gradient cost is obtained by sampling and calculating the gradient information obtained in the previous 

step, followed by sampling the pre-processed image to obtain the SAD cost, whose cost calculation formula is 

given in Eq. (4-14), where L(x+i,y+j) and R(x+d+i,y+j) are the grayscale values of the left image at (x+i,y+j) 

and the right image at (x+d+i,y+j), respectively. 

( , , ) ( , ) ( , )
n n

i n j n

C x y d L x i y j R x d i y j
=− =−

= + + − + + +                (4-14) 

(3) Dynamic programming 

In dynamic programming can effectively suppress this trailing effect, which can both prevent the 

proliferation of trailing effect and bring some mismatches to the subsequent operations. Therefore, this paper 

will use SGBM algorithm, which can perform Markov energy transfer by one-dimensional redundant one-

dimensional constrained epipolar lines on the image, after which the matching value of a pixel in the image is 

the superposition of all the neighboring path information around it, and a winner-take-all strategy is used to 
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determine the matching point. The dynamic programming method is shown in Eq. (4-15) and Eq. (4-16). 

( ) ( ) ( ) ( ), , min( ( , ), , 1 , , 1 , min ( , ) ) min ( , )
1 1 2

L p d C p d L p r d L p r d P L p r d P L p r i P L p r k
r r r r r r

i k

= + − − − + − + + − + − −

(4-15) 

( )( ) ,r

r

sp d L p d=                               (4-16) 

Where P1 denotes the probability that the difference between the target pixel point and its surrounding 

neighboring pixel points is equal to 1, and its concept is expressed by the penalty coefficient. P2 denotes the 

probability that the difference between the target pixel point and its surrounding neighboring pixel points is 

greater than 1, and its magnitude is expressed by the penalty coefficient P2. P2 must be greater than P1, while if 

the greater the value P1, P2 indicates the smoother the image area where its points are located. P1, P2 are 

expressed by Eq. (4-17) and Eq. (4-18) respectively[15]. 

1 8 sgP cn bmSADWindowSize sgbmSADWindowSize=              (4-17) 

2 32 sgP cn bmSADWindowSize sgbmSADWindowSize=             (4-18) 

Where the parameter cn indicates the selected region mapping value in the image and SADWindowSize 

indicates the SAD window size, here it is generally expressed as an odd number in the range of 3×3 to 21×21. 

If the size of cn and the parameter SADWindowSize are fixed, the penalty factor P1 and P2 indicate two fixed 

values. 

 

(4) Image post-processing 

The image post-processing part is divided into three parts of work: uniqueness detection, left-right 

consistency check and detecting connected areas. 

Uniqueness detection. If the current minimum cost is a multiple of (1 + uniquenessRatio/100) of the next 

lowest cost, the value represented by the store is the disparity value of a point in the requested region, and if this 

condition is not satisfied, the parallax value of the point is represented by 0, where uniquenessRatio is a constant. 

The formula for obtaining the subpixel interpolation is as follows, where d is expressed by Eq. (4-19) and Eq. 

(4-20) below. 

max( [ 1] [ 1] 2 [ ],1)
2

16

sp d sp d sp d
denom

− + + − +
=                (4-19) 

( [ 1] [ 1]) 2

2 2

sp d sp d denom
d d

denom

− − + +
= +


                    (4-20) 

Left-right consistency check. Taking the left image as the reference image, if the reference image disparity 

][dispL x  is known, the corresponding right image disparity value  dispR x d−  can be found, and d 

represents the difference in horizontal distance between the left and right corresponding images. By finding the 

minimum matching cost among the data values of  disp x , the minimum matching surrogate value is its 

correct disparity value. 

Detecting connected areas. A threshold value is set to compare all the pixels with the threshold value. It is 
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determined whether there is a mis-matching point, and there must be at least one point around a detected pixel 

that meets the connectivity condition. After the detection, the neighboring points around the point are set as the 

starting points for detection and determination, and the points around these points are found to meet the 

connectivity conditions, respectively. If the number of detected points exceeds the size of the threshold, the 

disparity value of the region is set to the correct disparity value, otherwise it is judged as a noisy point and the 

point is rejected. 

In the SGBM matching algorithm, the several parameters are adjusted to obtain the best disparity image. The 

target point of left image is necessarily generated in the same row in the right image by matching to find the 

minimum number of disparities, which means the best matching pixel of left image is found in the right image, 

the effect of SGBM algorithm and the disparity diagram are shown in Fig. 4-10. 

 

Fig. 4-10: Schematic diagram of the SGBM algorithm. 

In OpenCV, depth detection is mainly based on the left image. Assuming that the left image coordinate of 

the principal point (the coordinate value of the image coordinate origin in the pixel coordinate system) is (u0,v0) 

and the right image coordinate of the principal point is (u’
0,v

’
0), and the calculated disparity is d, the three-

dimensional depth is obtained from the reprojection matrix Q obtained by stereo correspondence[9] (as shown 

in Eq. (4-21)), and then the depth can be obtained according to Eq. (4-22) and Eq. (4-23), as shown in Fig.4-11. 
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Fig. 4-11: Geometric schematic of binocular ranging. 

 

 

5. Experimental results and analysis 

Firstly, this paper uses the specified distance depth detection of sea urchin pictures in air (laboratory) using 

a binocular stereo vision ranging system, mainly to adjust each parameter by air experiments in order to obtain 

the optimal parameters. Finally, the best parameters obtained are used to detect the depth distance of real sea 

urchins underwater, and the results are analyzed. 

5.1. Air experimental  

In this paper, three sets of better calibrated parameters obtained in Chapter 2 are used for depth detection. 

Firstly, experiments were conducted on the mounted system in an air environment. The sea urchin picture was 

tested at a certain distance using a tripod fixed as shown in the Fig. 5-1. The tripod was fixed at a distance from 

500 to 1200 mm, respectively, and depth experiments were conducted at 100 mm intervals. 

We obtain the depth information of the detected sea urchin by using the pixel coordinate values of the 

corresponding detection frame taken by the binocular camera, which is the direct distance between the sea urchin 

and the cameras. For the convenience of calculation, the actual measured distances were integers. The depth 
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error equation is shown in Eq. (5-1), where d is the detected depth and l is the real distance. 

_ 100%
d l

Depth error
l

−
=                                   (5-1) 

 

Fig. 5-1: Sea urchin picture tripod. 

5.1.1.  Select optimal calibration parameters 

Three better sets of calibration parameters were obtained in Chapter 2, and we used them to perform depth 

detection for sea urchin photos at different distances[16]. Since the machine learning can detect many suspected 

sea urchin detection frames within a specified distance at same time, a large amount of datum can be obtained. 

To make it easier to judge the accuracy of the data and use all the detected data information, this paper uses the 

extraction of the median (middle number) of all data to observe the accuracy error of the system. All calibration 

results are shown in Fig. 5-2. 

 

Fig. 5-2: All calibration results error graph. 
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Because there are many interferences in the laboratory environment, there will be objects that are not sea 

urchins misidentified by the classifier, and pictures of sea urchins are placed in the middle of the camera lens, 

so in this paper, 100~200 pixel horizontal coordinates in the detection frame are selected as the correct sea 

urchins (the camera frame size is 320×240), and the detection results after selection are shown in Fig. 5-3, and 

subsequent studies will only show the result graphs in this case. 

 

Fig. 5-3: Selected calibration result error graph. 

Fig. 5-4 shows the graphs of the time-consuming results for the three sets of calibration parameters at 

different distances. Since the duration of the videos detected at different distances is different, there is a contrast 

between the three calibration results at the same video. 

 

Fig. 5-4: Different calibration parameters time consumption graphs. 
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According to the experimental results, we can see that the three sets of calibration parameters have achieved 

good accuracy, and the accuracy error is less than 12%, and the best set of accuracy error can reach less than 

5%. Fig. 5-5 shows the disparity maps produced by the three sets of calibration parameters for the same pair of 

pictures. 

 

Fig. 5-5: Comparison of the disparity maps of the three group calibration parameters (black is invalid). 

Through comparison, it can be found that group A produces the best disparity map cloud continuity and the 

best error accuracy among the three calibration parameters, so group A is chosen as the optimal calibration 

parameter in this paper. 

5.1.2.  Image enhancement processing 

Base on the result above, so we use the group A parameters for subsequent research. According to 3.1.2, we 

use the histogram equalization to enhance the image detail. Fig. 5-6 below shows the comparison between the 

two cases of enhanced processing(hist) and unprocessed, and Fig. 5-7 shows the time consuming of both. 
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Fig. 5-6: Image enhancement compare graph. 

 

Fig. 5-7: Image enhancement compare graph. 

From the above result graphs, we can see that although the error of the enhanced image is larger at 1100 mm 

than that of the unprocessed one, but the error is smaller at all other distances than that of the unprocessed one. 

Considering this, we choose to add image enhancement in the image pre-processing. 

5.1.2.  Select filter type 

According to 3.1.3, we need to filter the images captured by the camera. First, we need to determine the 

position of the filter, here we divide into three stages: before image rectification, after rectification and after 

disparity map generation. In order to control the variable singularity, here the same set the number of filter cores 

as 3. 

(1) Before image rectification 

Table 5-1 Depth errors of different filter types at different distances before image rectification. 

Real_d(mm) non blur median gaussian bilateral 

500 2 2 2 2 2 

600 1.5 1.5 1.66667 1.5 1.5 

700 1.28571 1.28571 1.42857 1.42857 1.28571 

800 1.875 1.875 1.75 1.875 1.75 

900 1.66667 1.77778 1.66667 1.77778 1.55556 

1000 2.2 2.4 3.1 2.5 2.3 

1100 3.54545 3.63636 4.13636 3.63636 3.54545 

1200 1.66667 2.25 2 2.91667 1.83333 
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Fig. 5-8: Error comparison graph for different filter types before image rectification. 

 

 

Fig. 5-9: Time consuming graphs for different filter types before image rectification. 

Based on the above result data, we can find that in terms of error accuracy, the filter is currently more stable 

than the unprocessed image only for the bilateral filter, but the change is not very significant. In terms of time 

consuming, the increase of the filter is beneficial to reduce the running time of the code and to improve the 

efficiency. 
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Fig. 5-10: Comparison of the disparity maps of bilateral and non-processing before image rectification. 

Fig. 5-10 shows the disparity map produced after bilateral filtering before image rectification compared with 

the unprocessed disparity map. By comparison, we can find that the texture of the disparity map generated after 

the bilateral filtering is better than unprocessed one, but it is not obvious. This also corresponds to the comparison 

data in Table 5-1. 

(2) After rectification 

 Table 5-2 Depth errors of different filter types at different distances after rectification. 

Real_d(mm) non blur median gaussian bilateral 

500 2 2 2 2 2 

600 1.5 1.5 1.66667 1.5 1.5 

700 1.28571 1.42857 1.42857 1.28571 1.42857 

800 1.875 1.875 1.625 1.875 1.875 

900 1.66667 1.77778 1.55556 1.66667 1.55556 

1000 2.2 2.5 2.9 2.4 2.2 

1100 3.54545 3.59091 3.77273 3.54545 3.72727 

1200 1.66667 1.5 2.08333 1.66667 1.66667 
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Fig. 5-11: Error comparison graph for different filter types after rectification. 

 

 

Fig. 5-12: Time consuming graphs for different filter types after rectification. 

Based on the above result data (especially Table 5-2), we can see that filtering the image after image 

rectification does not have much effect on the depth error, so this paper does not take any processing for the 

rectified image.  

(3) After disparity map generation 

Table 5-3 Depth errors of different filter types at different distances after disparity map generation. 
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Real_d(mm) non blur median gaussian bilateral 

500 2 2 2 2 2 

600 1.5 1.33333 1.5 1.5 1.5 

700 1.28571 1.28571 1.28571 1.28571 1.28571 

800 1.875 1.625 1.75 1.75 1.75 

900 1.66667 1.55556 1.66667 1.55556 1.66667 

1000 2.2 2.2 2 2.2 2.2 

1100 3.54545 3.31818 3.5 3.40909 3.5 

1200 1.66667 1.66667 1.75 1.66667 1.66667 

 

 

Fig. 5-13: Error comparison graph for different filter types after disparity map generation. 

 

Table 5-4 Time consuming of different filter types at different distances after disparity map generation. 

Real_d(mm) non blur median gaussian bilateral 

500 458.033 447.415 455.634 454.1621 457.497 

600 217.122 206.962 213.364 210.865 213.772 

700 140.587 140.177 141.539 142.542 144.077 

800 190.278 191.068 194.595 196.0677 190.022 

900 128.458 129.438 127.793 126.7254 126.312 

1000 144.456 146.892 146.639 140.2694 152.57 

1100 82.4577 81.7454 82.4628 85.87254 84.7418 

1200 43.1064 44.0302 44.4993 44.68589 44.3215 
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Fig. 5-14: Time consuming graphs for different filter types after disparity map generation. 

According to the above result data can be seen, we can find that the depth error after blur filtering has been 

significantly improved, and the time consumption is also relatively good, so this paper chooses to use blur filter 

at this stage. 

 

Fig. 5-15: Comparison of the disparity maps of blur and non-processing after disparity map generation. 

According to Fig. 5-15, we can see that the edges of the disparity map are blurred, so it shortens the disparity 

values of adjacent pixels, which helps prevent sudden abrupt changes in disparity values and reduces noise. 

5.1.3.  Select the optimal filtering parameters 

Based on the conclusions in 5.1.2, we already know what type of filter to set at which stage to achieve the 

best results. In this subsection, we continue with the selection of the best filter parameters from the obtained 

result data. 

(1) Before image rectification 

Before image rectification, we need to apply bilateral filtering to the disparity map. In this paper, we will 

discuss the parameter range from 3 to 8，where 0 shows the case without the bilateral filtering process. 
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Table 5-5 Depth errors of bilateral filters in different parameters before image rectification. 

Real_d(mm) 0 3 4 5 6 7 8 

500 2 2 2 2 2 2 2 

600 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

700 1.28571 1.28571 1.28571 1.28571 1.14286 1.14286 1.28571 

800 1.875 1.75 1.75 1.75 1.75 1.75 1.75 

900 1.66667 1.55556 1.66667 1.66667 1.66667 1.66667 1.55556 

1000 2.2 2.3 2 2 2.3 2.3 2 

1100 3.54545 3.54545 3.81818 3.81818 3.68182 3.68182 3.68182 

1200 1.66667 1.83333 1.75 1.75 1.5 1.5 1.5 

 

 

Fig. 5-16: Error graph for bilateral filters at different parameters before image rectification. 

 

Table 5-6 Time consuming of bilateral filtering on different parameters before image rectification. 

Real_d(mm) 0 3 4 5 6 7 8 

500 458.033 441.477 436.971 476.614 494.796 462.973 471.799 

600 217.122 208.829 200.808 217.202 228.167 227.03 220.973 

700 140.587 138.528 140.022 149.245 155.642 152.536 148.231 

800 190.278 193.233 193.546 207.455 209.965 206.471 206.018 

900 128.458 120.058 130.028 127.825 133.055 134.862 130.487 

1000 144.456 147.267 154.605 160.052 165.106 151.168 160.382 

1100 82.4577 81.2675 87.5649 88.1262 87.3719 86.5646 85.3889 

1200 43.1064 43.6327 47.6569 46.5721 45.9128 45.8117 47.7525 
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Fig. 5-17: Time consuming graph of bilateral filtering at different parameters before image rectification. 

Based on these result data, we can find that the depth error of parameter 3 is more stable and optimal. For 

the time consuming, parameter 3 also takes a more desirable result. Therefore, the bilateral filtering parameter 

in this paper is chosen as 3. 

 

Fig. 5-18: Comparison of disparity map with different parameters of bilateral filtering. 

Through Fig. 5-18, we can find some small changes in the untextured background of the disparity map, so 

changing the parameter variation can effectively improve the effect of the disparity map. 

(2) After generating the disparity map 

After generating the disparity map, we need to blur filter the images. In this paper, we will compare the 

results of parameters 2~11 respectively and select the optimal parameters by comparing the result data. 
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Fig. 5-19: Error graph for blur filters at different parameters after generating the disparity map. 

 

 

Fig. 5-20: Time consuming graphs for blur filters at different parameters after generating the disparity map. 

From the result figures, we can see the most stable trend of depth error for parameter 10. For depth error and 

time-consuming results, we find that parameter 10 enables the result data to be optimal. 

5.1.5 Optimal image pre-processing 

According to our previous research, we use histogram equalization, Bilateral filter, and Blur filter to process 

images, which are mainly used to enhance image information and remove image noise. 
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Table 5-7 Comparison of depth error results after non-processing and image processing at different distances. 

Real_d(mm) non hist best_parameter best+hist 

500 2 2 1.6 1.6 

600 1.5 1.5 1.16667 1.16667 

700 1.28571 1.28571 1.42857 1.42857 

800 1.875 1.75 1.25 1.25 

900 1.66667 1.55556 1.33333 1.33333 

1000 2.2 2 1.7 1.4 

1100 3.54545 3.77273 2.90909 2.95455 

1200 1.66667 0.75 1.08333 1 

 

 

Fig. 5-21: Comparison graph of depth error results after non-processing and image processing. 

 

Table 5-8 Comparison of the time consuming after non-processing and image processing at different distances. 

Real_d(mm) non hist best_parameter best+hist 

500 458.033 452.208 455.761 486.734 

600 217.122 207.019 201.056 220.091 

700 140.587 142.933 142.852 151.126 

800 190.278 197.68 193.89 203.659 

900 128.458 124.572 123.051 127.505 

1000 144.456 145.184 142.298 152.552 

1100 82.4577 84.1546 81.0036 87.1071 

1200 43.1064 43.6221 43.1393 43.7924 
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Fig. 5-22: Comparison graph of non-processing and image processing time consuming. 

From the above result graphs, this paper obtains better parameters data, and the depth error can be effectively 

reduced by the image processing. The result data shows that hist can effectively reduce the depth error value, 

but hist will increase the time consuming; In addition to the filter can effectively reduce the depth error value, it 

will also reduce the time consuming, but the parameters of the filter need to find the optimal parameter value by 

comparison. 

5.1.4.  Select optimal stereo parameters 

After the above image processing, we also need to choose the optimal stereo parameters. The current SGBM 

function parameters of the OpenCV library can be modified by the following four aspects: (1) Mindisparity; (2) 

BlockSize; (3) NumDisparity; (4) Mode. Since the time consuming does not differ significantly in terms of 

parameter variation, the next parametric analysis does not analyze the time consuming specifically. 

(1) Mindisparity 

Table 5-9 Depth errors for different Mindisparity. 

Real_d(mm) 28 29 30 31 32 33 34 35 36 37 

500 5 1.4 1.6 1.8 1.8 2 2 2 1.2 1.2 

600 1.1667 1.1667 1.1667 1.1667 1.1667 1.1667 1.1667 1.1667 1.3333 1.3333 

700 1.4286 1.4286 1.4286 1.4286 1.4286 1.4286 1.4286 1.4286 2 2 

800 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.3125 1.375 1.375 

900 1.3333 1.3333 1.3333 1.3333 1.3333 1.3333 1.3333 1.3333 1.7222 1.7222 

1000 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.3 1.3 

1100 2.9546 2.9546 2.9546 2.9546 2.9546 2.9546 2.9546 2.9546 2.6364 2.6364 

1200 1 1 1 1 1 1 1 1 1.5833 1.75 
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Fig. 5-23: Depth error graph for different Mindisparity. 

From the result graphs, we can see that for the time consuming, the change of parameters does not improve 

very substantially; however, it can be seen in the depth error data that the best results can be achieved when 

Mindisparity is selected 29. 

(2) BlockSize 

 

Fig. 5-24: Depth error graph for different BlockSize. 
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Fig. 5-25: Comparison of disparity map for different BlockSize. 

To compare the above results, although in the depth error, the error curve is more stable, and the value is 

smaller when Blocksize is selected as 15. However, in the comparison of the disparity map, when Blocksize is 

13, the cloud of the untextured area is better, and the black spots are smaller, the value of depth error is also 

more stable. Combined with the above information, so this paper selects 13 in Blocksize. 

(3) NumDisparity 

Table 5-10 Depth errors for different NumDisparity. 

Real_d(mm) 3 4 5 

500 1.4 1.4 1.4 

600 1.333333 1.333333 1.333333 

700 1.428571 1.428571 1.428571 

800 1.25 1.25 1.25 

900 1.6666667 1.6666667 1.6666667 

1000 1.6 1.6 1.6 

1100 2.0454545 2.0454545 2.0454545 

1200 1.25 1.3333333 1.3333333 
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Fig. 5-26: Depth error graph for different NumDisparity. 

For these data results, we can see that depth error does not change very significantly by changing the 

NumDisparity parameter, so in this paper, we choose 3 for the NumDisparity parameter. 

 

(4) Mode 

Table 5-11 Depth errors for different Mode. 

Real_d(mm) HH SGBM 

500 1.4 1.4 

600 1.333333333 1.416666667 

700 1.428571429 0.714285714 

800 1.25 1.625 

900 1.666666667 1.777777778 

1000 1.6 1.8 

1100 2.045454545 1.909090909 

1200 1.25 1.583333333 

 

0

0.5

1

1.5

2

2.5

500 600 700 800 900 1000 1100 1200

E
rr

o
r[

%
]

Real_d[mm]

3

4

5



46 

 

 

Fig. 5-27: Depth error for different Mode. 

 

Table 5-12 Time consuming for different Mode. 

Real_d(mm) HH SGBM 

500 448.6465867 476.3508389 

600 206.5670235 211.2344835 

700 144.6781061 141.271524 

800 198.1140311 196.6638587 

900 124.5180247 126.4342964 

1000 143.789551 141.6236436 

1100 81.15415668 82.79590559 

1200 44.51624799 43.22981143 
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Fig. 5-28: Time consuming for different Mode. 

From the above result data, we can see that the best results in terms of depth error and time consuming are 

obtained when Mode is chosen as HH. It should also be specified that this paper is a comparative study of the 

new parameters based on the previously studied parameters. 

5.2. Underwater experiment 

5.2.1.  Experiment preparation 

According to the previous section, it is known that the system has been experimented in air to get better 

results, and we will conduct underwater experiments next. Firstly, the binocular camera is put into a homemade 

pressure-resistant container, as Fig. 5-29 and Fig. 5-30 show the model picture and the physical picture of the 

pressure-resistant container, respectively. Because the container is to be used frequently for underwater 

experiments, the flange used for mounting and sealing must be anodized so that a thin protective layer is covered 

on the metal surface, which can improve the durability and corrosion resistance of the metal, as shown in Fig. 

5-31 for the anodizing process. 

In this paper, the sea urchin in the laboratory aquaculture tank (shown in Fig. 5-32) is selected, and the size 

of the tank is 580×290×360 (mm). Sea urchins are selected as Echinostrephus aciculatus, as shown in Fig. 5-33. 

According to the size of the water tank and the requirements of the conveniently moving the system, the 

mounting bracket is designed, as shown in Fig. 5-34. 

Fig. 5-35 shows the process diagram of the experiment. Considering the thickness of the sea urchin and the 

necessary space of the equipment, the actual distance from the sea urchin to the camera lens is roughly 400 mm 

(Integer for easy calculation), as shown in Figure 5-36. 
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Fig. 5-29: Pressure-resistant container model. 

 

 

Fig. 5-30: Pressure-resistant container for underwater experiment. 
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Fig. 5-31: Anodizing process. 
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Fig. 5-32: Laboratory tank and sea urchin recognition system installation diagram. 

 

 

Fig. 5-33: Echinostrephus aciculatus (Tawashi sea urchin). 
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Fig. 5-34: Mounting bracket for sea urchin recognition system with underwater stereo vision. 
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Fig. 5-35: Experimental run diagram of the sea urchin recognition system using underwater stereo vision. 

 

Fig. 5-36: The actual distance from the sea urchin to the system. 
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5.2.3.  Experiment result 

We used the equipment described in 5.2.1 to perform real-time recognition ranging of the sea urchins in the 

laboratory tank. To verify the feasibility of the code operation, this paper was tested ten times at different time 

periods, and the original video and the detected result video were saved each time for the subsequent research. 

We first performed the underwater experiments with the parameters obtained in 5.1.4, and Fig. 5-37 shows the 

underwater experiments result graph, where No. is the number of underwater experiments. 

 

Fig. 5-37: The underwater experiments result graph. 

As can be seen from Fig. 5-37 (Mindisparity=29), the stable value of the parameter obtained in 5.1.4 is 

between 20% and 40%, especially for two experiments with very large errors.  Due to 5.1.1 obtained, the 

applicable range of a sea urchin recognition system using underwater stereo vision is 500 to 1200 mm (mainly 

depending on the camera focal length), while the maximum size of the experimental water tank is 580 mm, 

considering the necessary space for equipment installation and wall thickness and other factors, so the distance 

from the sea urchin to the camera is less than 500 mm, which can be seen from Fig. 5-36. Since Mindisparity is 

to change the overlapping area of left and right images by adjusting the moving the right image, Mindisparity 

can adjust the distance that can be detected. Fig.5-38 shows the depth error results of different Mindisparity for 

underwater video. 
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Fig. 5-38: The depth error results of different Mindisparity for underwater video. 

From the results in Fig. 5-38, we can see the depth error gradually stabilizes as Mindisparity increases, 

especially when Mindisparity=37, the depth error of underwater detection is the smallest. Fig. 5-39 shows the 

results of underwater detection error when Mindisparity=37. 

 

Fig. 5-39: The results of underwater detection error when Mindisparity=37 
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5.2.4.  Analysis  

The following problems can be found in the underwater experiments: 1. Depth error is particularly large and 

different display problems of the same object, such as Fig. 5-40; 2. Sea urchin shadow on the glass, such as Fig. 

5-41. The problems will be analyzed in the next step. 

For 1, since a sea urchin recognition system using underwater stereo vision is suitable for a range of 500 to 

1200mm, and the aquaculture tank used in this paper has a limited size (580×290×360mm), the effect of the 

disparity map is not ideal. Later, a suitable camera can be used to test for different sizes of aquaculture tanks. In 

addition, the distance from the sea urchin to the camera is too close, which greatly worsens the different 

phenomenon of the same object within the left and right cameras. To solve this problem, this paper adopts 

reducing the similarity score to get more matching numbers of sea urchins. 

At the beginning of the experiment, the system test will be unstable phenomenon of the disparity map, so 

there will be a large error at the beginning, but this problem will improve with time and finally the depth error 

value will be stable, so we can only use the experimental data of the later groups. 

 

Fig. 5-40: Depth error and different display issues for the same object. 

For 2, since the glass tank used for the experiment, there will be shadows of sea urchins reflected on the 

glass wall, which will cause the system to misrecognize the shadows of these sea urchins. For this problem, this 

paper uses a white cloth hanging on the outer wall of the glass (as shown in Fig. 5-43) to make the reflection 

phenomenon of sea urchins improved, and the depth error data is more stable. 

For the above problems, we adjusted the system by reducing the similarity value and modifying SGBM 

parameters (0.9 and 29 for similarity and Mindisparity in air respectively, and 0.7 and 37 in water respectively), 

so that the system can satisfy the requirements of both the experiment in air and water. From Fig. 5-39 and Fig.5-

42, we can see the error of the experiment in air is smaller than underwater, and the constant ranging about 
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400mm sea urchins in water can be found that the depth error values is stable, and the values are all between 

3~3.5%. 

 

Fig. 5-41: Sea urchin shadow on the glass problem. 

 

 

Fig. 5-42: The results of air detection error when Mindisparity=37 
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Fig. 5-43: The experimental procedure after hanging the white cloth. 

 

6.  Summary and prospect 

6.1.  Summary 

To achieve real-time recognition of sea urchins in aquaculture tanks, so as to obtain information on the size 

and depth of sea urchins, this paper develops a sea urchin recognition system using underwater stereo vision. 

The specific work as well as the results are as follows. 

(1) Binocular camera calibration and image rectification.  

In this paper, we use Zhang's algorithm to calibrate the binocular camera. For the calibration results obtained 

by the cv2.StereoCalibrate() function in OpenCV are extremely unstable, this paper adopts the way of single 

camera calibration followed by binocular calibration to obtain more stable calibration results. It is found that by 

changing the distance and angle to take at least 80 calibration photos, better calibration parameters can be 

obtained. Through analysis and comparison, when the translation matrix obtained from the experiment is close 

to the distance of 62mm between the two cameras (Ideally the translation matrix should be  62,0,0 ), as shown 

in Table 6-1, the translation matrix of the three sets of better parameters obtained from the calibration experiment. 

We get the error of the translation matrix with the ideal state of the translation matrix ( 62,0,0 ) by using 

Eq. 6-1 and get the error table of the translation matrix in Table 6-2 and the error diagram of different parameters 
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shown in Fig. 6-1. 

62
100%

62

Tx
Error

−
=                                     (6-1) 

Table 6-1 Calibration parameters (translation matrix) 

No. Tx Ty Tz 

A 61.766 -0.69659 -13.8499 

B 62.0442 -3.55082 -20.6148 

C 62.333 -3.726065 -14.2267 

 

Table 6-2 Translation matrix error table 

No. Error_x Error_y Error_y 

A 0.234 0.696587 13.84993 

B 0.0442 3.550818 20.6148 

C 0.3327 3.726065 14.22668 

 

 

Fig. 6-1: Translation matrix error result graph 

The above results show that the parameter translation matrix of group A is the closest to the ideal state, which 

is also consistent with the previous experimental comparison results. Therefore, it is considered necessary to 

judge the merits of the calibration parameters with the results of the translation parameters as the benchmark in 

the future. 

(2) Image processing and sea urchin recognition 

It is found that grayscale processing, histogram equalization, and image filtering of the image are beneficial 

to improve the detection accuracy. According to the comparison of the experimental data, it is necessary to 

perform bilateral filter on the image before image correction, and the optimal parameter is chosen as 3. After 

generating the disparity map, it is necessary to perform blur filter on the newly generated disparity map, and the 

optimal parameter is chosen as 10. 

(3) Similarity calculation and stereo matching 
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Since this paper uses the sea urchin classifier previously developed in the laboratory to recognize sea urchins, 

it is different from the general binocular ranging sequence. In this paper, we first let the left and right cameras 

recognize the sea urchins, and then perform similarity calculation on the detection frames obtained by the left 

and right cameras on this basis, so as to get the pixel coordinate values of the sea urchins detected by the left and 

right cameras at the same time. The effect diagram and flow chart of the sea urchin recognition system using 

underwater stereo vision developed in this paper are shown in Fig. 6-2 and Fig. 6-3, respectively. 

For the similarity calculation, this paper firstly uses machine learning or deep learning to get the similarity 

value of two patches. Since machine learning is less time consuming and has good depth error results, the 

machine learning method (Template matching) is chosen in this paper. 

We obtain the disparity value of the sea urchin by using the coordinate values of the sea urchin detected by 

the left and right cameras simultaneously and the disparity map obtained by stereo matching using the optimal 

parameters, so that the distance from the sea urchin to the binocular camera can be obtained by the calculation 

formula. 

(3) Experimental results 

In this paper, experiments were first conducted in air, and a better set of system combinations and parameters 

were obtained through continuous testing of sea urchin pictures. Based on this, underwater real sea urchin 

experiments were then conducted. By making Mindisparity=37, a sea urchin recognition system using 

underwater stereo vision was made to suit both air and the aquaculture tank in this lab (this can be seen in Fig. 

5-23 and Fig. 5-39). The sea urchin results graph is shown in Fig. 6-4. 

For the above problems, we adjusted the system by reducing the similarity value and modifying SGBM 

parameters (0.9 and 29 for similarity and Mindisparity in air respectively, and 0.7 and 37 in water respectively), 

so that the system can satisfy the requirements of both the experiment in air and water. From Fig. 10 and Fig. 

11, we can see the error of the experiment in air is smaller than underwater, and the constant ranging about 

400mm sea urchins in water can be found that the depth error values is stable, and the values are all between 

3~3.5%. 
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Fig. 6-2: The effect diagram of sea urchin recognition system using underwater stereo vision. 
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Fig. 6-3: The flow chart of sea urchin recognition system using underwater stereo vision. 

 

Fig. 6-4: Illustrative diagram of system operation effect information. 
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6.2.  Prospect  

This paper studies a sea urchin recognition system using underwater stereo vision applicable to aquaculture 

farming, which is small in size, light in weight and low in cost, suitable for the aquaculture industry. In the future, 

it is possible to construct an IoT underwater camera system for aquaculture by combining a simple conductivity 

sensor and water thermometer. 
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