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and are important in various technological 
fields such as energy, electronics, medi-
cine, and many more.[1–5] However, as a 
consequence of industrial processes and 
man-made pollution, unwanted nanopar-
ticle size distributions and concentrations[6] 
give rise to concerns with respect to human 
health and environmental pollution. While 
the nanoparticles’ physicochemical prop-
erties (size, shape, surface chemistry, 
etc.) determine the quality of products,[7,8] 
such characteristics are also important in 
order to evaluate the biological impact of 
nanoparticles at a molecular, cellular, and 
systemic level for any risk assessment 
for environmental and human health.[9] 
Characterizing nanoparticles in a dynamic 
context and on a case-by-case basis, micro-
scopic imaging techniques including those 
that use focused electron or ion beams in 
scanning electron microscopes (SEMs) 
or helium ion microscopes[10] (HIMs) to 
generate nanometer scale spatial resolu-
tion are frequently applied in the scientific 

community. Given the substantial information content of digital 
images, these techniques often benefit from, or require, auto-
mated high-throughput data analysis that enables the accurate 
identification of large numbers of particles in a robust way.

Nanoparticles occur in various environments as a consequence of man-made 
processes, which raises concerns about their impact on the environment and 
human health. To allow for proper risk assessment, a precise and statistically 
relevant analysis of particle characteristics (such as size, shape, and composi-
tion) is required that would greatly benefit from automated image analysis 
procedures. While deep learning shows impressive results in object detec-
tion tasks, its applicability is limited by the amount of representative, experi-
mentally collected and manually annotated training data. Here, an elegant, 
flexible, and versatile method to bypass this costly and tedious data acquisi-
tion process is presented. It shows that using a rendering software allows to 
generate realistic, synthetic training data to train a state-of-the art deep neural 
network. Using this approach, a segmentation accuracy can be derived that is 
comparable to man-made annotations for toxicologically relevant metal-oxide 
nanoparticle ensembles which were chosen as examples. The presented 
study paves the way toward the use of deep learning for automated, high-
throughput particle detection in a variety of imaging techniques such as in 
microscopies and spectroscopies, for a wide range of applications, including 
the detection of micro- and nanoplastic particles in water and tissue samples.

1. Introduction

Nanoparticles are omnipresent in our daily lifes. They can be 
found in products ranging from cosmetics, textiles, and foods, 
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Several approaches[11–21] have been proposed for automated 
image analysis of SEM and TEM images. However, most of 
these approaches rely on single thresholds for the feature sep-
aration,[20,21] encounter major difficulties caused by irregular 
object patterns and noise,[22] or they rely on hand-crafted fea-
tures for the particle shapes,[14,15] which impair the generaliza-
tion potential of such algorithms for the characterization of 
arbitrary nanoparticles or heterogeneous nanoparticle ensem-
bles. In order to handle the complexity of nanoparticle images 
that include various sizes, shapes, distributions, and shadow 
variations more sophisticated image analysis approaches are 
required. With the recent advancements in machine learning 
and mainly deep learning,[23] deep convolutional neural networks 
(CNNs)[24–29] have been developed, which are able to learn from 
data sets containing millions of images[30] to resolve object detec-
tion tasks. When trained on such big data sets, CNNs are able 
to achieve task-relevant object detection performances that are 
comparable or even superior to the capabilities of humans.[31,32]

In recent years, new methods have been proposed for the 
analysis of nanostructures in SEM and TEM images that rely 
on advanced machine and deep learning techniques[33–45] 
which allow for accurate and high-throughput image analysis. 
However, as most of these methods use a supervised learning 
approach, significant human effort is needed to prepare the 
training data. The main difficulty for the training data lies in the 
acquisition of a representative data set of nanoparticle images 
which ideally contain various sizes, shapes, and distributions 
for a variety of nanoparticle types. Additionally, manual annota-
tion of the acquired data is mandatory to obtain the so called 
“ground truth” or “labels”, which is, in general, error-prone, 
time-consuming, and consequently costly. Although approaches 
exist such as “precision learning”[46] or “transfer learning”[47] 
that reliably work with a substantially reduced amount of 
training data, a certain data set size is still required that incor-
porates human effort, that is for manual annotation of the 
acquired data. To partially solve this problem recent approaches 
have been introduced that use synthetically generated[38,41] SEM 
and TEM images as training data for a deep learning based 
nanoparticle analysis. However, accurate and realistic nanopar-
ticle simulations still remain a complex-to-solve task, especially 
for the segmentation of stand-alone particles in superimposed 
3D particle ensembles. To overcome the aforementioned data 
limitations, we have developed a semi-automated data synthesis 
scheme using an open-source rendering software. Particu-
larly, we use Blender[48] in this work, in order to generate syn-
thetic data based on very limited amounts of real microscopic 
data sets. The proposed workflow enables the generation of a 
virtually unlimited number of synthetic and photo-realistic 
microscopic nanoparticle images comprising various types of 
particles with different sizes, shapes, compositions, and 3D 
distributions. Thereby, the respective synthetic ground truth 
segmentation mask is automatically derived for each generated 
image. We show that the synthetic data is sufficient in terms 
of realism and size to successfully train a deep learning model 
for segmentation which is also able to operate on real data. As 
a demonstration example, we generate photo-realistic synthetic 
data sets of HIM images of metal-oxide and metal nanoparti-
cles (SiO2, TiO2, and Ag) that serve as training data for a state-
of-the art[29,49] deep CNN so called U-Net.[28] For experimental 

validation, manual annotations of the HIM images have been 
carried out by experts. We show that training the CNN on syn-
thetic data yields similar segmentation accuracy as using real 
HIM images. Furthermore, we demonstrate the applicability 
of the proposed method for images containing very complex 
shaped and distributed Ag particles, nanorods, and nanowires.

2. Novel, Semi-Automated Nanoparticle 
Segmentation Workflow
Our goal is to extract statistical information on nanoparticle 
morphology with respect to size, shape, and distribution from 
high resolution microscopy images acquired with electron- or 
ion microscopes. However, to guide particle segmentation 
by deep CNNs, a representative amount of training data is 
required. This is in general a true limitation due to the fact that 
microscopy image data is usually not available in sufficiently 
large amounts to be suitable for robust CNN training purposes. 
Moreover, we want to overcome the manual image annotation 
process which is very time-consuming and error-prone. Here, 
we propose a novel workflow that overcomes the data problem 
for the deep learning based analysis of particle images. The 
workflow relies on a very limited number of real reference 
images, for example, out of electron or ion microscopes, which 
serve as a blue print for the semi-automated photo-realistic syn-
thetic data generation using a rendering software for example 
Blender. The proposed nanoparticle segmentation workflow is 
composed of the steps shown in Figure 1. Images of TiO2 nano-
particles on a silicon wafer surface, taken by a HIM serve as 
examples for the demonstration of the procedure and the quality 
of the statistical evaluation of the nanoparticle properties.

The starting point of the segmentation workflow is the acqui-
sition of a limited number of high resolution HIM images of 
TiO2 nanoparticles, spread on a (100) silicon wafer. Figure  1a 
shows an example of such an HIM image. Based on a number 
of images of that type (see Figure S2, Supporting Information,) a 
human is able to obtain an overall impression of the average size, 
shape, potential faceting, and orientation of the TiO2 nanoparti-
cles with respect to one another as well as the degree of homoge-
neity of the particle distribution within those images (Figure 1b). 
The knowledge gained from the initial manual assessment of 
the nanoparticle data is used to reproduce such features virtually 
using a rendering software, for example, Blender,[48] and to auto-
matically generate 3D scenes filled with synthetic TiO2 particle 
ensembles. During this automated rendering process, details of 
the individual particles as well as the overall 2D or 3D arrange-
ments on the substrate surface, including potential image arte-
facts (i.e., such as dirt which may arise from sample preparation 
procedures), are included in virtual Blender scenes to mimic 
real TiO2 particle ensembles. An automatically generated TiO2 
scene is demonstrated in Figure S9, Supporting Information. 
Details on the automatic Blender scene generation process are 
provided in Section 4. Subsequently, after a user-defined number 
of scenes is generated, each Blender scene is automatically being 
rendered twice. The first rendering process computes a photo-
realistic synthetic microscope image of the TiO2 nanoparticles 
and potential artefacts, while a subsequent render produces the 
respective error-free ground truth label image (Figure 1b).

Small Methods 2021, 5, 2100223
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With a sufficient amount of realistic synthetic data, a deep 
CNN can be properly trained on the nanoparticle segmentation 
task. In our workflow, we use the so called U-Net[28], a the state-
of-the art[29,49] deep CNN, which was originally proposed and suc-
cessfully applied for the segmentation of cells in transmission 
electron microscope images. Figure  1c shows the U-Net com-
prising a U-shaped encoder–decoder architecture. The orange 
boxes represent multi-dimensional feature maps extracted by 
different convolution layers, while the dashed gray arrows cor-
respond to skip-connections. A detailed description of the archi-
tecture is provided by Ronneberger et  al.[28]. During the U-Net 
training process, the network iteratively optimizes its internal 
parameters to learn the segmentation of nanoparticles based on 
our synthetic microscopic images by predicting corresponding 
segmentation masks. To prevent the network from overfitting 
on the synthetic data, at least one real HIM “validation” image 
is used during training. In machine learning, “validation data” 
is used during the training process to evaluate the model per-
formance on hold-out data which is not part of the training 
data set. Therefore, after each complete training iteration, also 
referred to as an “epoch” in machine learning, the model pre-
dicts segmentation for the validation image (Figure  1d). After 
the CNN training process, a human observer visually evaluates 
all predicted segmentation masks for the validation image and 

selects the model which provides the qualitatively most accurate 
particle segmentation. Subsequently, the selected model is used 
to segment all remaining real microscopic (here from a HIM) 
images (Figure  1e), while subsequently, all sorts of statistical 
and quantitative information can be deduced for the micro-
scopic HIM images of interest (Figure 1f).

2.1. Synthetic Image Quality

We used the aforementioned semi-automated data generation 
scheme to generate synthetic microscope images such as the 
HIM images of SiO2, TiO2, and silver nanoparticles of varying 
overall morphology.

A comprehensive set of real HIM images of such nanoparti-
cles are shown in the in Figures S1–S3, Supporting Information. 
However, since no human derived manual annotation was per-
formed for silver nanoparticle ensembles in HIM images due to 
the complexity of the data, in the following we will set our focus 
on SiO2 and TiO2 nanoparticles for the quantitative and qualita-
tive evaluation. Figure 2 provides a direct comparison of SiO2 
(Figure 2a) and TiO2 (Figure 2b) particles in HIM images (top 
row) with the corresponding synthetic photo-realistic images 
(middle row) and its respective synthetic labels (bottom row).

Figure 1.  Illustration of the nanoparticle segmentation workflow for real Helium ion microscope (HIM) nanoparticle images using a deep convolutional 
neural network (CNN) and synthetic training data. a) HIM images of TiO2 nanoparticle ensembles on a silicon (100) substrate surface. b) A semi-
automated procedure to synthesize HIM images of TiO2 particles based on the knowledge of a limited number of real HIM reference images. Using a 
render software (here Blender[48]) in combination with the information on particle size, shape, and distribution gained from the reference images it is 
possible to create synthetic images that mimic real HIM data realistically. During this process, the respective ground truth labels for the synthetic TiO2 
image data are also generated in a fully automated manner. c) The synthetic data set is used to train a deep CNN (here the U-Net[28]) for automated 
particle segmentation and subsequent quantitative, statistical assessment. d) After training the CNN using synthetic data, the model which predicts the 
most accurate segmentation on a real validation image is selected for further processing. e) The best CNN model is used to predict the segmentation 
masks for all experimental microscopy images. f) The accurate prediction of the model permits further statistical image analysis.
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The real SiO2 particles essentially show a very regular, spher-
ical shape, which was also considered in the corresponding 
synthetic SiO2 simulations (see Figure S5, Supporting Informa-
tion). The arrangement of the SiO2 particles in the real HIM 
images is not random, the particles align in close vicinity, ide-
ally in clusters or rows of particles. In contrast, the particles in 
the synthetic images are distributed randomly (see Figure S6, 
Supporting Information) throughout the substrate in order 
to generate very complex distribution in contrast to the real 
images and thus increase the variance in the data. The TiO2 

particles on the other hand form agglomerates, are arranged in 
sheets and have complex shapes. Therefore, in order to cover 
these characteristics in the synthetic data, we designed a range 
(we chose four) of virtual 3D so called “template objects” (see 
Figure S9, Supporting Information) that were randomly com-
bined to complex agglomerates in the TiO2 render scenes 
during the automated image creation process (see Figure S10, 
Supporting Information). For both particle types (SiO2 and 
TiO2), we were able to mimic the characteristics of all relevant 
particle characteristics in terms of shape and distribution while 

Figure 2.  a,b) Comparison of metal-oxide nanoparticles on silicon wafers imaged by a HIM (top row) with synthetically generated images using the 
proposed semi-automated rendering process (middle row) with its respective synthetic labels (bottom row). a) Spherical SiO2 nanoparticles with 
various dimensions on a silicon wafer surface arranged in clusters or a certain degree of alignment in close vicinity to neighboring particles. Also, 
note the dirt smear on the silicon wafer surface in the rightmost image, which was also covered in the simulation. The synthetic images in the middle 
row on the contrary show a more statistical distribution of particles compared to the real images, which also include the surface impurity feature.  
b) Microscopic HIM images of complex shaped and distributed TiO2 nanoparticles. c,d) t-SNE visualization of the SiO2 and TiO2 data sets. Each data 
point corresponds to an image patch of identical size (144 × 144 px) of real (blue) and synthetic (orange) images. Both t-SNE plots show a distinct sepa-
ration between background and foreground (particle) data points, while nearby and overlapping points indicate the high similarity between synthetic 
and real data. c) The t-SNE result for the SiO2 data set shows two clusters of particle images (left cluster), background images (right cluster) with an 
additional cluster for image patches, that show surface impurity. The small overlap between real and synthetic SiO2 particle images indicates that the 
synthetic images are similar, but do not represent a perfect match of the target HIM data d) t-SNE plot for the TiO2 particles. The large overlap between 
synthetic and real particle images (right cluster) indicates that the synthetic images represent the real TiO2 HIM data quite well.
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comprising a more complex localization of particles. Addition-
ally, due to the presence of substrate surface impurity (“dirt”) 
that stems from imperfect sample preparation, we extended 
our simulation with a randomized impurity texture creation 
(see Figure  1b; Figures  S4 and S8, Supporting Information) 
to account for such features. Further details on the impu-
rity texture are provided in Section  4. Note that in contrast to 
manually annotated images, our synthetic labels do not con-
tain any mislabeling and provide error-free, consistent particle 
contour lines as displayed in Figure 2a,b (bottom row). Further 
synthetic images of SiO2 and TiO2, as well as the synthetic 
representation of more complex silver (Ag) nanoparticles that 
align in from of particle wires, are shown in Figures S11– S13, 
Supporting Information.

To assess the similarity between the real and synthetic HIM 
nanoparticle images, we analyzed the SiO2 and TiO2 data 
sets using the t-distributed stochastic neighbor embedding[50] 
(t-SNE). t-SNE is an unsupervised dimensionality reduction 
method which is primarily used to visualize high-dimensional 
data. In simpler terms, t-SNE provides for an idea of how data 
is arranged in a high-dimensional space. In general, nearby and 
overlapping data points in a t-SNE plot indicate similar data, 
while distant data points correspond to significant differences in 
the data. The resulting t-SNE plots for the SiO2 and TiO2 nano-
particles are depicted in Figure  2c,d, respectively. Each scatter 
point corresponds to an image patch or sample of the size of 144 
× 144 px (with one pixel covering an area of 0.976 × 0.976 nm2) 
of a real (blue) or synthetic (orange) HIM image. More technical 
details on the sample extraction and data visualization methods 
are provided in Section 4. In both t-SNE plots, a distinct separa-
tion between particle and background images can be observed. 
The nearby and overlapping blue and orange points indicate 
the overall high similarity between synthetic and real images. 
Moreover, for the SiO2 data, the samples that contain substrate 
surface impurity in both real and synthetic data points show a 
high comparability which suggests a very accurate dirt simula-
tion. However, the small overlap between real and synthetic SiO2 
particle images indicates that although the synthetic images are 
comparable to the real HIM images, the simulation does not per-
fectly match the target HIM data. While the real data shows a 
higher variance of background images in terms of noise distri-
bution and pixel intensities, the opposite holds for the synthetic 
particle data. This can be explained by the different parameters 
for the simulation process that result in the generation of a high 
variance of particle images. These images contain for example, 
complex SiO2 particle ensembles and a high variety of bright and 
dark particle instances caused by various shadowing effects in 
combination with varying light source intensities. This leads to 
an overall higher variance for the synthetic particle images which 
is also reflected in the SiO2 t-SNE plot (Figure  2c). More tech-
nical details about the data generation are provided in Section 4. 
Additionally, in both plots an imbalance between synthetic and 
real particle and background data points can be observed. In this 
context, synthetic SiO2 and TiO2 images contain significantly 
more particle than background data. This is an intended and 
expected behavior which results from our assumption that the 
simulation of random particle distributions with a high number 
of particles leads to a high variance of complex synthetic particle 
ensembles. As a consequence, it is expected that a deep CNN 

trained on complex synthetic data is more robust to variations in 
real images.

2.2. Model Selection

Since the U-Net was trained on synthetic data only (Figure 1c) 
real validation data is needed to assess the model performance 
for real HIM particle data. To select the best model, we com-
pared two approaches for the model selection in a user study 
with seven participants, consisting of three experts on segmen-
tation and four non-experts. The first approach, referred to 
as “analytical”, requires the time-consuming manual annota-
tion of at least one real HIM validation image, which is sub-
sequently used as ground truth (GT) to select the best model 
based on the highest F1 score.[51] The F1 score is a metric which 
is often used to assess the segmentation accuracy of a model 
compared to a reference segmentation. The second approach 
relies on a human observer to choose the best model according 
to the qualitatively (visually) best segmentation performance 
(Figure 1d). Further details on the user study and model selec-
tion are presented in the Methods section. Figure 3a illustrates 
the models, defined by the epoch number, that were selected by 
each participant for the SiO2 (orange) and TiO2 (blue) data sets, 
respectively. The plot illustrates that the expert group (P5–P7) 
mostly selected models toward the end of the training process, 
while no significant trend could be observed for the non-expert 
group (P1–P4). A detailed qualitative evaluation of the selected 
segmentation masks showed that in contrast to the non-expert 
group, the experts tend to choose models that demonstrated 
a higher capability of separating particles in more detail, pro-
ducing more accurate contour lines, whereas non-experts relied 
on the overall segmentation performance only. Figure 3b visual-
izes the segmentation accuracies of the selected (manually and 
“analytically”) five best models on the validation image based 
on the mean F1 score.

For both particle types (SiO2 and TiO2), the non-expert group 
(P1–P4) as well as the experts (P5–P7) consistently selected 
models that provided almost perfect segmentation results on 
the validation image (SiO2 - F1 mean (SD): 0.92 (0.01); TiO2 - 
F1  mean  (SD):  0.93  (0.004)). However, the models selected by 
the “analytical” approach demonstrate marginally more accurate 
segmentation performances (SiO2 - F1 mean (SD): 0.93 (0.001); 
TiO2 - F1 mean (SD): 0.93 (0.001)). A qualitative (visual) com-
parison between the two approaches is displayed in Figure  3c. 
This figure visualizes the validation images, the segmentation 
masks predicted by the model with the best F1 score according 
to the “analytical” approach, the segmentation of a representative 
expert-selected model as well as the manual GT reference seg-
mentation. Both approaches resulted in a model selection that 
showed a very high overall segmentation accuracy on the valida-
tion image compared to the GT reference. However, the model 
selected by the “analytical” approach lacks a distinct separation 
of individual TiO2 particles, while the expert implicitly selected 
a model that accounted for this behavior. Moreover, the expert-
selected model produces more precise particle contour lines over 
the “analytical” approach. Since statistical analysis of nanoparticle 
images requires an accurate separation of particles, we further 
rely on expert-selected models for the particle analysis in the next 
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section. Moreover, we want to emphasize that a human-based 
model selection is preferable due to the time-consuming and 
error-prone process of manually annotating a validation image 
which is required for the “analytical” approach. Additionally, it 
was observed that training on synthetic images also resulted in 
a robust particle segmentation for the validation images, even 
for non-trivial cases as illustrated by orange arrows in Figure 3c, 

which highlight particles that are segmented as individual parti-
cles by the model but are missing in GT segmentation.

2.3. Segmentation Performance and Statistical Particle Analysis

Finally, after the model selection, the best model is used for the 
segmentation of all remaining real HIM images (Figure 1e). In 

Figure 3.  Comparison of two model selection approaches to find the best U-Net model based on real HIM validation images of SiO2 and TiO2 nano-
particles. While the “analytical” approach relies on a manual annotation of the validation image in order to find the best model, the second approach 
is based on the qualitative (visual) evaluation of the segmentation masks predicted by each model. To compare both methods, a user study with seven 
participants was conducted with non-experts (P1–P4) and experts (P5–6) for segmentation. According to its visual perception, each participant had to 
choose five best network models based on the model’s segmentation performance for a real HIM validation image. a) Visualization of the five models, 
defined by the epoch number, that were selected by each of the study participants. b) F1 scores (y-axis) averaged over the five chosen models by each 
participant (P1–P7), using the manually annotated GT as reference segmentation for the validation image. Additionally, the diagram shows the mean 
F1 score for the “analytical” model selection approach, for comparison reasons also averaged over the five best models. c) Visualization of the valida-
tion images SiO2 (top row) and TiO2 (bottom row), the corresponding segmentation masks predicted by the model with the best F1 score selected 
by the “analytical” approach, the segmentation of a representative expert-selected model as well as the manual GT reference segmentation. Although 
the analytically selected model and the representative expert-selected model both provide an accurate overall segmentation, the expert-selected model 
is more suitable to separate individual particles (TiO2) which is mandatory for statistical particle analysis. The orange arrows emphasize segmented 
particles by the U-Net that do not occur in the manually annotated ground truth image.
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order to compare the U-Net that was trained on simulated data 
(U-Netsim) with a baseline performance, we manually annotated 
all real SiO2 and TiO2 HIM images and trained a U-Net on real 
data (U-Netreal) for each particle type, respectively. Note that 
the manual annotation of SiO2 and TiO2 HIM images was per-
formed by one individual each. Due to the small number of real 
HIM images (SiO2: 9, TiO2: 8) in comparison to the number of 
synthetically generated images (SiO2: 180, TiO2: 180), U-Netreal 
was trained in a leave-one-out cross-validation[52] setup to assess 
its general segmentation performance. Further details on the 
training and the post-processing used to enhance the segmen-
tation quality are provided in Section 4.
Figure  4a provides a quantitative comparison of U-Netreal 

and U-Netsim for the SiO2 and TiO2 HIM data. According to 

precision, recall, accuracy, F1 score,[51] average precision[53] 
(AP), and the warping error[54] U-Netreal (F1 score SiO2: 0.950, 
F1 score TiO2: 0.943) marginally outperforms the U-Netsim (F1 
score SiO2: 0.930, F1 score TiO2: 0.923) for both particle types 
(see Figure S20, Supporting Information, for additional quan-
titative results based on the AP metric). However, both models 
provide nearly perfect segmentations. Additionally, for the 
SiO2 data, the average number of individual particles ( particlesN ) 
detected by U-Netreal (81.88) and U-Netsim (84.63) matches almost 
ideally the average number of 83 particles (manual particlesN ) that 
are present in the manually annotated SiO2 GT images. On 
the other hand, while the number of TiO2 particles identified 
by U-Netsim (136.71) is more accurate than the number of par-
ticles detected by U-Netreal (128.40), a considerable difference to 

Figure 4.  Segmentation results for the U-Net trained on real data (U-Netreal) compared with the performance of the U-Net which was trained on 
simulated data (U-Netsim). a) Quantitative segmentation results using precision, recall, accuracy, F1 score, average precision (AP), and the warping 
error as evaluation metrics (see Section 4 for details). The average number of particles detected by the models is denoted as “ Nparticles”, while the 
number of individual particles that are present in the manual GT annotation is given by “manual Nparticles”. b) Qualitative segmentation results for an 
exemplary selected real SiO2 (top row) and TiO2 (bottom row) HIM image. Both, the quantitative as well as qualitative results show almost perfect 
segmentations predicted by U-Netreal and U-Netsim for both particle types compared to the manually annotated ground truth segmentation indicating 
the human-comparable segmentation capabilities of the models.
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manual particlesN  (152) can be observed. An explanation for this 
finding lies in the post-processing used to improve the segmen-
tation output of the U-Nets (U-Netreal as well as U-Netsim). It 
removes small objects below a certain (pixel) area size using a 
morphological operation called “area opening”, which results in 
a smaller amount of particles that are present in the segmenta-
tion masks after the post-processing (see Figures S26–S29, Sup-
porting Information). Figure  4b visualizes the qualitative seg-
mentation results for an exemplary selected real SiO2 (top row) 
and TiO2 (bottom row) HIM image. According to the visual 
impression, U-Netreal and U-Netsim provide almost perfect seg-
mentations in comparison to the manually annotated GT seg-
mentation, which also reflect the quantitative results. A direct 
comparison of the qualitative segmentation results for all real 
HIM images is illustrated in the Figures S21–S29, Supporting 
Information, including particle size distributions for the GT 
reference as well as for the segmentations predicted by U-Netreal  
and U-Netsim. Both, the quantitative as well as qualitative 
results indicate the human-comparable segmentation capability 
of U-Netreal and U-Netsim. At this point, we want to highlight 
the extraordinary results produced by U-Netsim. Although 
trained on synthetic data only, it is able to achieve impressive 

segmentation accuracies on real HIM data, which is not only 
comparable to a U-Net trained on real data but also to the seg-
mentation capability of humans.

Due to the human-comparable segmentation accuracy of the 
U-Netsim, it is possible to derive various features of real-world 
particles including their sizes, shapes, localization, or distribu-
tions using a connected component analysis (CCA). Therefore, 
we analyzed the segmentations of U-Netsim using a CCA to 
assess the particle size distributions of the real HIM SiO2 and 
TiO2 images as depicted in Figure 5a,b. A direct comparison of 
the particle size distributions for all HIM images based on the 
segmentations of U-Netreal, U-Netsim, and the manual annota-
tions is visualized in the Figures S21–S29, Supporting Informa-
tion. While the top row shows raw HIM SiO2 and TiO2 images, 
the second row displays the corresponding post-processed 
U-Netsim segmentations. The third row visualizes an overlay of 
the original HIM images with a connected component labeling 
(CCL) based on the U-Netsim segmentation. In a CCL each color 
is associated with an individual particle. Note that due to the 
limited number of colors used in a CCL, neighboring particles 
may occur in the same color although being separated, indi-
vidual particles. The CCL results for all HIM images, including 

Figure 5.  a) Analysis of SiO2 and b) TiO2 nanoparticle images. The top row shows raw HIM image data, whereas the second row visualizes the post-
processed segmentation prediction of the U-Netsim, which was trained on synthetic data only. The third row displays an overlay of the original HIM 
image with a connected component labeling (CCL) of the post-processed segmentation. In a CCL each color is associated with an individual particle. 
Note that due to the limited number of colors used in a CCL, neighboring particles may occur in the same color although being separated, individual 
particles. The bottom row provides a particle size distribution, based on the accurate U-Netsim prediction, for each HIM image which highlights the 
particle frequency with respect to the square-root of the particle area size denoted nanometer (nm). Np represents the number of particles. While the 
SiO2 histograms reveal a bimodal character, separating the two groups of small and large particles, TiO2 histograms are characterized by a log-normal 
distribution.
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the complex Ag data, are provided in Figures  S30–S38, Sup-
porting Information. Using the CCA, we can derive accurate 
particle size distributions (Figure 5, bottom row), which high-
light the number of particles with respect to the square-root 
of the particle area size in nanometer (nm). While the SiO2 
histograms (Figure  5a) reveal a bimodal character, separating 
the two groups of small and large particles, TiO2 histograms 
(Figure  5b) are characterized by a log-normal distribution 
with a modal value of ≈60 nm. Moreover, due to the accurately 
simulated substrate surface impurity in the synthetic training 
data, image artefacts as a result of sample preparation related 
dirt in real SiO2 HIM images does not affect the segmentation 
accuracy of the U-Netsim which has properly been trained to 
deal with this type of image features.

3. Conclusion

In summary, we propose a segmentation workflow for complex 
nanoparticles in high resolution microscopic images which 
relies on deep learning in combination with a semi-automated 
synthetic data generation pipeline based on photo-realistic ren-
dering. With this approach an unlimited number of realistic 
synthetic images can be created with its respective error-free 
ground truth labels which subsequently can be used to effec-
tively train a deep CNN. The so trained CNN can subsequently 
be used to accurately segment nanoparticles in microscope 
images. We have demonstrated the applicability of the work-
flow on experimental HIM data sets of SiO2 and TiO2 nano-
particles spread on a silicon (100) wafer surface. We showed 
that the segmentation accuracy of a state-of-the art deep CNN 
trained only on synthetic data was comparable to segmenta-
tions carried out by microscopy experts. Moreover, we have 
demonstrated quantitative and statistical analysis of micros-
copy imaged nanoparticles based on the automated deep 
learning CNN segmentation.

We are confident that the method presented in this work has 
the potential to solve the training data bottleneck and the anno-
tation problem for automated image analysis approaches and 
paves the way toward a wider use of deep learning in a variety 
of microscopy applications. It permits the implementation of 
automated high-throughput particle segmentation and charac-
terization methods for all sorts of applications based on micro-
scopic images. This can be particularly relevant for studies 
related to nano-toxicology and other fields such as nano- and 
bio-medicine, consumer product efficacy testing, and anti-coun-
terfeiting. The time-consuming, costly, and error-prone process 
of acquiring and manually annotating a representative amount 
of real data in order to use the power of deep learning is over-
come by the proposed approach. Yet, although the presented 
method provides very accurate particle segmentations, espe-
cially for overlapping nanoparticles, it is not possible to extract 
the exact particle shapes. Therefore, in order to derive the exact 
shapes of overlapping particles which greatly determine their 
physiochemical properties, additional data is needed. Addition-
ally, the semi-automated data generation procedure still relies 
on human input (i.e. for the design of all relevant 3D scene 
parameters, template particles, shaders, etc.) in order to achieve 
photo-realistic renders. However, with the recent achievements 

in differentiable rendering,[55,56] we assume that it will be pos-
sible to further automate this process.

4. Experimental Section
Sample Preparation and Data Acquisition: SiO2 nanoparticles with two 

different diameters and food grade TiO2 nanoparticles (E171) with a size 
distribution of 20 to 240 nm, both deposited on silicon chips (reference 
AGAR: G3390-10), were obtained from the “Laboratoire National de 
métrologie et d’Essais”. The polyvinylpyrrolidon (PVP)-coated Ag 
nanowires (PL-AgW50-10mg) with an average diameter of 40–50  nm 
and a length of up to 50 μm were purchased from PlasmaChem 
GmbH (Berlin, Germany). A stable suspension was obtained by using 
a standard protocol.[57] For imaging, the Ag nanowires were sprayed onto 
a silicon wafer. Secondary electron images of the particles were obtained 
on a Zeiss ORION NanoFab equipped with a SIMS add-on[58,59] using 
the helium ion beam at an impact energy of 25 keV and a beam current 
of 0.5 pA. The images have a size of 2048 × 2048 px with a pixel scale of 
1.0309 px nm−1.

Scene and Synthetic Image Generation Process: For the synthetic data 
generation (Figure  1b), the open-source render software Blender[48] 
(Version 2.79.7) was used. In a first step, virtual template particles 
(see Figures  S5 and S9, Supporting Information, for SiO2 and TiO2, 
respectively) were manually modeled based on the particle features in 
the real HIM images. In this context, the authors’ want to note that 
due to lack of additional data that would allow for the reconstruction 
of a 3D shape of a single real particle, they were not able to perform 
a quantitative evaluation of how well the modeled template particles 
mathematically and statistically fit with actual data. In addition to the 
template particles, a template Blender scene was manually created 
that contains the substrate as well as the light source. Afterward, 
the parameters for the light source and the particle shaders were set 
manually to achieve a photo-realistic appearance of the particles in 
the rendered images. Once the correct parameters are set, the python 
application programming interface (API) of Blender was used to 
automatically generate a user-defined number of scenes filled with 
randomly distributed, duplicated and scaled template particles (more 
details are provided in Figures  S4 and S8, Supporting Information, for 
SiO2 and TiO2, respectively). To cover the substrate surface impurity, 
which was present in some HIM images, a random dirt texture was 
generated for each scene. The dirt texture creation was based on the 
diamond-square algorithm,[60] also known as the “random midpoint 
displacement fractal”. After all scenes were generated, each scene 
was rendered twice in an automated manner. While the first rendering 
process computes a photo-realistic HIM image, the shaders for the 
substrate and particles were changed for the second rendering process 
to obtain an error-free ground truth label. Additionally, aspects of domain 
randomization[61] were applied by randomly varying the brightness of 
each scene’s light source in the photo-realistic renders (see Figures S11 
and S12, Supporting Information, for SiO2 and TiO2, respectively). This 
way, brighter as well as darker particle images were generated, which 
increases the variance for the particle appearance in the synthetic data 
set. An automatically generated 3D scene with the corresponding label 
scenery is demonstrated in Figure S6 and S10, Supporting Information, 
for SiO2 and TiO2, respectively. Since the image quality produced by the 
renderer was adjustable and higher compared to the real HIM images in 
terms of sharpness, contrast, and noise level, the image quality of the 
synthetic, photo-realistic images was decreased by introducing aliasing 
effects in combination with additive Gaussian noise. The latter explains 
the evenly distributed synthetic background images in the t-SNE plots as 
shown in Figure  2. Aliasing was achieved by upsampling the rendered 
images from 507 × 507 px to 2031 × 2031 px using bilinear interpolation. 
Also, the synthetic labels were post-processed using binarization with a 
subsequent erosion (morphological operation) to strengthen the border 
area between particles.

In summary, for each particle type (SiO2, TiO2 and Ag) 
180 corresponding scenes were generated with their respective synthetic 
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photo-realistic images and labels. The automated process of generating 
the particle scenes, rendering the photo-realistic images and the labels, as 
well as the post-processing amounted to ≈3.5 h for the SiO2 particles, 5.5 h  
for the TiO2 type and 16 h for the Ag images. In this context, a Nvidia 
GeForce GTX 1070 graphics processing unit (GPU) supported the scene 
renderings while the scene building process was performed by an Intel 
Xeon W-2102 central processing unit (CPU). The significant increase in 
time for the Ag images was caused by sophisticated Blender build-in post-
processing edge enhancement algorithms in order to achieve accurate 
contour lines for the virtual objects, especially for the Ag nanowire images 
(see Figure S13, Supporting Information). The time spent to find and set 
the correct render settings including the correct light source parameters 
and shaders was not included in the calculation as it solely depends on 
the operators’ level of experience for the used render software.

Pre-Processing and Data Augmentation: Prior to the training of the deep 
CNN, common data augmentation strategies were applied in order to 
improve the model performance[62] by increasing the variance and diversity 
of the training data. For this purpose, the pixel intensities were normalized 
within the range of [0, 1] and contrast limited adaptive histogram 
equalization[63] (CLAHE) was applied to enhance the contrast of each 
image in the training data set. Additionally, 90° image rotations, flipping, 
zoom, intensity changes, and Gaussian-distributed noise was used.

Convolutional Neural Network Architecture and Training: The U-Nets 
were implemented and trained on the TensorFlow[64] (version 1.12) 
framework. The original U-Net architecture proposed by Ronneberger 
et al.[28] as depicted in Figure 1c with the same number of feature maps 
for the encoder and decoder part was used. Solely the cropping operation 
was excluded from the skip connections and only one filter kernel was 
applied in the last 1 × 1 convolution layer at the end of the decoder part. 
Additionally, batch normalization[65] was applied after each convolution 
layer to reduce overfitting and stabilize the learning process. The weights 
were initialized with the method proposed by He et  al.[66] As activation 
function, the rectified linear unit[67] (ReLU) was used. The training of the 
network was performed using stochastic gradient descent (SGD) with a 
patch size of 400 × 400 px and a mini-batch size of 2. Each image in 
the training batch was generated by sub-sampling a randomly chosen 
image from the synthetic data set. Prior to feeding the mini-batch into 
the network, data augmentation was applied as described in the previous 
subsection. The number of iterations was set to 150. U-Netsim was 
trained on 180 synthetic images for 500 epochs. U-Netreal was trained 
in a leave-one-out cross-validation setup on nine SiO2 and eight TiO2 
images, respectively. Due to the limited amount of real data available 
the number of epochs for U-Netreal was set to 300 and the best network 
state was chosen according to the minimal validation error. To compute 
a representative probability map as network output, a pixel-wise sigmoid 
was applied on its last feature map. The pixel-wise sigmoid is defined as:

p x
e x( ) 1

1
=

+ −
� (1)

where x denotes the pixel intensity. The binary segmentation mask was 
extracted with a threshold of 0.51 on the probability map. In other words, 
pixels that had a probability of more than 51% were classified as particle 
pixels. As loss function cross-entropy loss was applied. The networks 
(U-Netreal and U-Netsim) were trained with the Adam[68] optimization 
algorithm using a constant learning rate of 0.001 and the default 
optimizer parameters in TensorFlow. For each particle type (SiO2, TiO2, 
and Ag), a separate U-Net model was trained on a Nvidia GeForce GTX 
1070 GPU. The U-Net training for 500 epochs took ≈10 h.

Data Set Comparison and Visualization: The dimensionality reduction 
using t-SNE as illustrated in Figure 2c,d is based on features extracted 
by a VGG16,[25] a deep CNN, which is implemented in the PyTorch 
framework[69] and pre-trained on the ImageNet[30] data set. The ImageNet 
is a large data set for object detection tasks containing over 14 million 
images with more than 2000 categories. Since the VGG16 model was 
pre-trained on the ImageNet and achieved very high object detection 
accuracies,[25] it is assumed that the model had learned to extract 
relevant features to distinguish between various data sets. For data set 

comparison, image patches of the size of 144 × 144 px were processed 
by the VGG16, such that real and synthetic SiO2 and TiO2 images were 
represented as data points after the dimensionality reduction. The 
synthetic image patches were extracted by randomly sampling from all 
of the generated 180 synthetic images. Due to the small amount of HIM 
data, the real image patches were extracted sequentially from each of the 
nine HIM SiO2 and eight TiO2 images, respectively. This results in 3528 
data points for SiO2 particles (1764 real and synthetic image patches) 
and 3136 data points for the TiO2 particles (1568 real and synthetic 
image patches). Subsequently, a principal component analysis (PCA)[70] 
was applied to reduce the dimensionality of each feature vector from 
1000 to 33 components while covering 90% of its variance. Afterward, 
t-SNE[50] was used to further reduce the dimensionality and to facilitate 
visualization. The t-SNE algorithm was applied with a perplexity value of 
50, a learning rate of 10, and a maximum number of 5000 iterations for 
the optimization. The squared Euclidean distance was used as distance 
metric. Both PCA and the t-SNE algorithm were applied using the scikit-
learn[71] machine learning python module.

Time and Quality Assessment for Photo-Realism: The time it took 
to assess whether a synthetic image correctly matches with real data 
strongly depends on the user and was a very subjective aspect. However, 
based on the authors’ experience, the qualitative as well as partially 
quantitative evaluation to check for photo-realism took a couple of 
minutes. During this process, specific aspects of the synthetic images 
were compared with real data. These specific aspects were for example, 
background noise, the characteristic edge-effect, and the background-
particle or particle–particle transitions. While the quantitative 
comparison besides the t-SNE approach consisted of a simple extraction 
of intensity profiles to assess the similarity for noise and transitions 
(see Figure  S7, Supporting Information, for example intensity profiles 
extracted from a synthetic and a real HIM SiO2 nanoparticle image), the 
qualitative comparison focuses on the overall photo-realism in terms of 
shader selection and particle shape distributions.

Model Selection: In order to facilitate the understanding of the model 
selection step in the workflow (Figure 1d), the commonly used approach 
for selecting an appropriate model in machine learning is explained in 
the following. When a machine learning algorithm, that is, a deep CNN, 
is trained in a supervised fashion to solve a specific task, in general 
three stages must be passed in order to select the best model: training, 
validation, and testing. While training, the algorithm fits on the training 
data set in order to perform a specific task (i.e. segmentation). Specifically, 
during this phase the algorithm iteratively tunes its internal parameters, 
the so-called “weights” (weighted connections between neurons) in an 
artificial neural network, after each training step to improve its decision-
making. In this context, a machine learning algorithm that is trained on a 
data set is termed “model”. To prevent the model from overfitting on the 
training set, the validation data is used to assess the model performance 
after each training iteration using a pre-defined evaluation metric - the 
so-called “validation loss”. The model, which achieves the minimal loss 
on the validation set is selected as the best model and is evaluated 
afterward on the previously unseen test data.

For the manual model selection, a user study was conducted with 
seven participants, consisting of three experts on segmentation and four 
non-experts. A U-Net was trained for 500 epochs on synthetic SiO2 and 
TiO2 data, respectively. For both particle types, a representative real HIM 
validation image was selected and manually annotated. The validation 
images for SiO2 and TiO2 as well as the corresponding manual GT 
annotations are visualized in Figure 3c. After training, each participant 
was asked to choose five models out of 500 (Model 1 to Model nepochs 
in Figure 1d) that performed best based on the visual evaluation of the 
model’s segmentation performances on the real validation image.

Post-Processing: The segmentation output of the U-Nets (U-Netreal 
and U-Netsim) was post-processed in order to enhance the segmentation 
quality. For this purpose, an area opening on the binary segmentation 
mask with an area size of 400 px for the SiO2 and 600 px for the TiO2 
images was utilized to remove noise that falls below a certain area size. 
Subsequently, a distance transform watershed[72,73] algorithm using 
the MorphoLibJ[73] plugin of the open-source ImageJ/Fiji[74] software 
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was applied to further separate particles with touching borders. In 
this context, the default settings were used with a dynamic of 20 for 
the TiO2 particles and a normalized output combined with a dynamic 
of four for the SiO2 images. The time required to analyze a single HIM 
image (U-Net prediction with subsequent post-processing) took ≈5–6 s  
per image. The U-Netsim predictions together with the post-processed 
segmentation masks for all real HIM SiO2 and TiO2 are provided in 
Figures S14–S19, Supporting Information.

Metrics: For the quantitative evaluation several measures were 
utilized, including accuracy, precision, recall, and the Dice similarity 
index,[51] also known as F1 score. The metrics are defined as:

Accuracy TP TN
TP FP TN FN

= +
+ + +

� (2)

Precision TP
TP FP

= +
� (3)

Recall TP
TP FN

= +
� (4)

F1 2·TP
2·TP FP FN

= + +
� (5)

True positives (TP) and true negatives (TN) denote pixels, that were 
classified correctly as particles or background, respectively. False 
positives (FP) and false negatives (FN) were misclassified pixels that 
do not appear in the manual ground truth segmentation. The values for 
the measures vary from 0 to 1, while a value of 0 represents the worst 
possible accuracy whereas 1 denotes a perfect segmentation result. 
In literature,[75] a F1 score of 0.7 or higher was already considered as a 
good segmentation. Besides the F1 score, the warping error[54] and the 
average precision[53] (AP) was reported. The warping error is a metric 
that penalizes pixels that lead to topological disagreements but tolerates 
disagreements over boundary location. To compute the warping error, 
the Fiji Trainable Weka Segmentation tool was used.[76] The AP is an 
instance segmentation metric used to assess the quality of segmentation 
on a per-particle basis. It is the main metric by the Common Objects 
in Context[77] (COCO) segmentation challenge. This metric represents 
the area under the precision-recall curve and was computed for a 
range of pixel-wise intersection over union (IoU) thresholds in the 
interval [0.5, 0.95] in steps of 0.05. In this context, the IoU accounts 
for the overlap between a predicted particle instance segmentation 
and its corresponding GT instance label. The authors’ refer to AP using 
a specific IoU threshold of 0.5 or 0.75 as AP50 and AP75, respectively. 
Additional instance segmentation results based on the AP metric are 
provided in Figure S20, Supporting Information.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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