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Abstract
Background: Patients affected by chronic kidney disease are 
at a risk of cardiovascular morbidity and mortality. Body flu-
ids unbalance is one of the main characteristics of this condi-
tion, as fluid overload is highly prevalent in patients affected 
by the cardiorenal syndrome. Summary: We describe the 
state of the art and new insights into body volume evalua-
tion. The mechanisms behind fluid balance are often com-
plex, mainly because of the interplay of multiple regulatory 
systems. Consequently, its management may be challeng-
ing in clinical practice and even more so out-of-hospital. 

Availability of novel technologies offer new opportunities to 
improve the quality of care and patients’ outcome. Develop-
ment and validation of new technologies could provide new 
tools to reduce costs for the healthcare system, promote per-
sonalized medicine, and boost home care. Due to the current 
COVID-19 pandemic, a proper monitoring of chronic pa-
tients suffering from fluid unbalances is extremely relevant. 
Key Message: We discuss the main mechanisms responsible 
for fluid overload in different clinical contexts, including he-
modialysis, peritoneal dialysis, and heart failure, emphasiz-
ing the potential impact provided by the implementation of 
the new technologies. © 2021 The Author(s)
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Introduction

The body fluid balance has always represented a criti-
cal issue in medicine since chronic and acute volume un-
balances are negative prognostic factors in many different 
settings and conditions. In current practice, the concept 
of fluid balance and management has replaced the old 
idea of “hydration,” a term used in the past to improp-
erly describe the complex mechanisms behind the regula-
tion of water and solutes in the human body. In this re-
view, we describe the state of the art and new insights in 
body volumes evaluation and management in patients 
with chronic kidney disease (CKD), underlying the inno-
vation opportunities provided by the implementation of 
new technologies.

Fluid Volume Evaluation: An Overview

First, it is important to distinguish the fluid volumes 
in the human body. The major volume is the total body 
water (TBW) [1], which in physiologic conditions repre-
sents a fixed percentage of the body weight. This percent-
age progressively decreases with ageing, and it is mark-
edly influenced by the percentage of body fat and sex [2]. 
TBW can be differentiated in sub-volumes (shown in 
Fig. 1): intracellular water (ICW) and extracellular water 
(ECW). In physiologic conditions, ICW accounts for 
around 2/3 of TBW and 1/3 of ECW.

ECW is more critical to define, representing the vol-
ume most exposed to fluid unbalance. It could be further 
subdivided into 2 volumes: intravascular (IV) and inter-
stitial volume, the latter accounting for 3–4 times more 
fluid than the former in physiological conditions [3]. Fi-
nally, IV or plasma volume (PV) can also be partitioned 

in more specific sub-volumes, that is, arterial (30–40%) 
and capacitance vessels (60–70%) [4], while the intersti-
tium can be divided in extracellular matrix and mesothe-
lium (pleura, peritoneum, and tunica albuginea). Other-
wise, in specific pathological conditions, other human 
compartments can accumulate an important amount of 
fluid, including the bowels, bladder, lungs, and patholog-
ic cavities in soft tissue or parenchyma. In Table 1, we 
reported changes in fluid volumes distribution between 
physiological condition and kidney disease (shown in 
Fig. 1). Red blood cell volume is part of ICW in the de-
scription given above, but its analysis and evaluation, to-
gether with PV, is of interest in the evaluation of the IV 
compartment [5].

Physiological and pathological values of volumes can 
be evaluated by different methods. The first approach his-
torically used to measure the dimension and distribution 
of fluids in the human body is the indicator-dilution 
method. It is possible to calculate the volume of distribu-
tion of a specific substance starting from a basic correla-
tion between mass volume and concentration: volume = 
mass/concentration. Injecting the human body with a 
known mass of a substance and then taking a sample of 
blood and measuring its concentration after equilibra-
tion, allows for volume of distribution of that specific 
substance to be calculated.

Since the first half of the last century, many substances 
with different distribution properties have been used to 
measure the various body fluid volumes. For example, 
deuterium oxide (heavy water), tritiated water [6, 7], so-
dium bromide [8], and more recently radiosulfate have 
been used to measure TBW and ECW [9]. Dilution meth-
ods have also been used to quantify IV, by studying the 
volume distribution of plasma or red cells dyes, such as 
Evans blue, indocyanine green, iodine-131 (for plasma), 

Table 1. Percentage changes in fluid distribution among body volumes in kidney disease [1–4, 80–82, 121–123]

TBW, 
% of BW

ICW, 
% of TBW

ECW, 
% of TBW

IV, 
% of ECW

Interstitial fluid, 
% of ECW

Reference

Healthy man 60 55 45 20 80 [1–4]
Healthy woman 50 55 45 20 80 [1–4]
Nephrotic syndrome 65–70 40 60 15 85 [121]
CKD early stage 1–3 60 55 45 20 80 [122]
CKD advanced stage 4–5 65 50 50 15 85 [123]
CKD in dialysis 70 40 60 15 85 [80–82]

CKD, chronic kidney disease; TBW, total body water; ECW, extracellular water; ICW intracellular water; IV, 
intravascular volume.
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carbon monoxide, and chromium-labelled red blood cells 
[10, 11]. Anyway, dilution methods, despite their high ac-
curacy, are limited to specific research uses, since they are 
invasive, expensive, and not easy to perform. Other meth-
ods have been developed to evaluate fluid volumes status 
that we can categorize in 2 groups: techniques of quanti-
fication and evaluation, that we listed in Table 2.

Quantification techniques, like dilution methods, 
measure one or more of the fluid volumes previously de-

scribed and include noninvasive technologies, such as 
bioimpedance and magnetic resonance spectroscopy 
(MRS). Instead, evaluation techniques are heuristic meth-
ods that can help physicians in the clinical setting for the 
evaluation of the fluid volume status. They can include 
physical examination, blood pressure, central venous 
pressure (CVP) measurements, ultrasonography, bio-
markers, etc. This distinction is not strict, but it is useful 
to facilitate the understanding of this topic.

Fig. 1. Body fluids distribution in physiological condition and kidney disease. Graphic representation of different 
percentages of fluid distribution among CKD stages and nephrotic syndrome, with respect to physiological con-
dition. CKD, chronic kidney disease.
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Techniques of Fluid Volume Quantification
All methods that are able to quantify body fluid vol-

umes belong to this group. The most well-known and 
used, in addition to dilution techniques, are MRS and bio-
impedance analysis (BIA). MRS can be used both in vivo 
and in vitro studies, and it has a very wide scope of appli-
cation in research, ranging from the study of organ me-
tabolism and tissues to the measurement of body fluids, 
obtaining functional data together with anatomical eval-
uation [12]. Unlike magnetic resonance (MR), MRS can 
detect signals from atoms other than hydrogen such as 
phosphorus, carbon, and sodium providing information 
about adenosine triphosphate, glycolysis, and many other 
metabolites and metabolic pathways. Interestingly, a new 
MR technique has been described, the sodium MR that 
uses strong magnetic fields, magnetic field gradients, and 
radio waves to generate images of the distribution of so-
dium in the body. Coupled with conventional MRI, so-
dium MRI allows the absolute quantification of tissue so-
dium concentration and water content [13]. However, 
MRS and MR-based approaches are not suitable for clin-

ical practice. On the other hand, techniques based on BIA 
are cost-effective, simple, and widely used in the clinical 
setting. BIA is based on the analysis of bioelectrical infor-
mation obtained by the passage of an electrical impulse 
through the body to measure fat mass, fat-free mass, 
TBW, ECW, and ICW. Body water evaluation using BIA 
is based on the inverse correlation between resistance and 
the amount of fluids (water and electrolytes) [14]. Differ-
ent BIA techniques and methods have been developed: 
whole-body tetrapolar or localized, single frequency or 
multifrequency, bioimpedance vectorial analysis, and 
bioimpedance spectroscopy.

These techniques usually work by using regressive 
equations built comparing collected data from their mea-
surements with reference methods, such as dilution meth-
ods. The accuracy of these equations mainly depends on 
certain assumptions made during the “model building” 
phase and the statistical significance of the analyzed sam-
ples. For example, BIA equations developed in a setting of 
healthy and young subjects could give very inaccurate re-
sults when applied to elderly patients with sarcopenia 

Table 2. Advantages and disadvantages of methods of volume quantification and evaluation [6–34]

Methods Advantages Disadvantages

Quantification methods

Dilution methods (e.g., radioisotopes)  
[6–11]

Very high accuracy and 
reproducibility

Not suitable in the clinical setting. Time 
spending. Invasive. High costs

Magnetic resonance spectroscopy [12–13] Accurate, noninvasive Not suitable in the clinical setting. Expensive. 
Time spending

Bioimpedance analysis [14–16] Fast, reproducible, noninvasive,  
and cost-effective

Available equations are not validated in different 
clinical settings

Evaluation methods

Physical examination (vital signs, edema, 
and dryness) [17]

Inexpensive and available in every 
clinical setting

Very poor sensitivity, operator-dependent

Catheterization (e.g., CVP, PCWP)  
[18–20]

Sensitive, fast, and reproducible Invasive; susceptible to errors due to acute HF; 
risk of complications related to the procedure

Imaging: chest X-ray [17] Fast, reproducible Radiation exposition, poor sensitivity

Imaging: US vena cava [21–24] Sensitive, fast, cost-effective, and 
noninvasive

Operator-dependent, training needed; limited 
feasibility in overweighted patients

Imaging: lung US [25–30] Sensitive, fast, cost-effective, and 
noninvasive

Operator-dependent, training needed

Biomarkers (e.g., BNP and NT-proBNP) 
[31–34]

Sensitive, reproducible, and cost-
effective

Influenced by kidney and HF, inflammation, 
sepsis, and other conditions

CVP, central venous pressure; PCWP, pulmonary capillary wedge pressure; US, ultrasound; BNP, brain natriuretic peptide; NT-
proBNP, N-terminal-pro-b-type natriuretic peptide; HF, heart failure.
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[15]. Bioimpedance methods are also very helpful in the 
nutritional assessment in the clinical setting and the fol-
low-up of the outpatients [16], especially in hemodialysis 
(HD) patients, as recently demonstrated by Battaglia et al. 
[17], that showed a high correlation between BIVA and 
muscle mass, measured with US technique.

Techniques of Fluid Volume Evaluation
These methods are not able to quantify body fluid vol-

umes, but they provide information about volume status 
or hemodynamic assessment of patients. Depending on 
the clinical setting, invasive or noninvasive techniques 
can be used, including physical examination, measure-
ment of blood pressure and the heart rate, X-ray, ultraso-
nography, and invasive hemodynamic monitoring or 
biomarkers. Physical evaluation and basic clinical param-
eters have lower specificity and sensitivity compared to 
more sophisticated methods, but represent a good start-
ing point for further evaluations [18].

Invasive techniques do not provide a direct evaluation 
of volume status, but they are accurate methods for he-
modynamic monitoring. Indeed, the measurements of 
CVP and pulmonary capillary wedge pressure agree with 
right and left atrial pressure are extremely useful for the 
hemodynamic assessment of critically ill patients [19]. 
Nevertheless, while central venous and arterial catheter-
ization remain the most used for this method [20], other 
noninvasive hemodynamic markers, such as pulse pres-
sure, systolic pressure variation, and stroke volume varia-
tion, can detect early phases of fluid unbalance [21]. 
Nonetheless, the evaluation of hemodynamic assessment 
should be interpreted together with the global clinical sta-
tus and represents only an indication for the evaluation 
of the body volume status.

Ultrasonography is widely applied in the study of the 
inferior vena cava (IVC) size, which changes consistently 
with CVP and IV. Ultrasound evaluation of IVC is a bed-
side and noninvasive method of CVP estimation that pro-
vides quite a good correlation with the invasive measure-
ment of CVP [22]. Physiologically, during inspiration, 
intrathoracic pressure becomes negative and intra-ab-
dominal pressure increases, leading to increased venous 
return and a decreased IVC size (collapsibility index). In-
stead, in patients with fluid overload and venous conges-
tion, the IVC size is frequently increased, and its physio-
logical collapse decreased [23]. In 2015, the American So-
ciety of Echocardiography published a recommendation 
about ultrasound evaluation of IVC: the measurement 
should be taken with the patient in the supine position, 
from the subcostal view, with the IVC displayed along its 

long axis. No recommendations were given about the 
phase of the respiration to measure the maximum and the 
minimum diameter during the breathing. Moreover, the 
measurement of IVC collapsibility index (IVCCI) was 
recommended, where IVCCI = (IVC max − IVC min)/
IVC max [24]. However, despite its routine use, this tech-
nique displays a significant inter-operator variability, that 
could be partially overcome simplifying the IVC mea-
surements and performing short training sessions [25].

Lung ultrasound (LUS) has become, thanks to the pos-
sibility to identify pleural effusion and B-lines or “ring-
down artefact,” which are long, hyperechoic lines origi-
nating from the pleura, a bedside tool for the evaluation 
of central circulation congestion. In clinical practice and 
various scientific paper, B-lines are improperly associated 
to “comet-tail artefact,” which instead are caused by dif-
ferent reflective interfaces [26].

Several LUS strategies to assess B-lines are used, based 
on the number of sectors examined and the B-lines count, 
and different scores have been proposed. The more B-
lines are detected, the more significant the result of the 
examination becomes and the worse the severity of the 
extracellular volume (ECV) overload [27]. One of the 
most used approaches, in different studies, employs the 
exploration of 28 sectors and 5 B-lines as the threshold for 
a clinically significant pulmonary congestion [28]. Any-
way, in the clinical routine, protocols with less sectors 
(e.g., 6–8 sectors) are usually preferred for point-of-care 
ultrasound [29, 30]. Different probes and frequencies can 
be used to perform LUS, but an ultrasound penetration 
between 4 and 8 cm is recommended [31]. In the last sev-
eral years, thanks to the improvement of artificial intel-
ligence (AI), new methods of automatic detection and 
quantification of B-lines have been developed. These 
kinds of approaches have shown the potentialities to be 
advantageous in terms of faster data analysis and applica-
bility to large sets of data without increased costs [32], and 
they will be probably adopted in the clinical setting in the 
coming years. Finally, several biomarkers have been stud-
ied for the evaluation of fluid volume status (both for flu-
id overload and hypovolemia), yet only a few of them 
have entered the daily clinical routine.

In the field of nephrology, the most simple and reliable 
markers to estimate fluid volume are serum blood urea 
nitrogen to creatinine ratio and fractional excretion of 
sodium. In particular, in states of hypovolemia with intact 
tubular function, blood urea nitrogen is expected to rise 
out of proportion to plasma creatinine concentration (se-
rum urea/serum creatinine >100) [33], while urinary so-
dium excretion decreases (urinary sodium <10–20 
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mmol/L or fractional excretion of sodium <1%) [34], due 
to avid urea and sodium reabsorption by the proximal 
tubule. These methods are not very specific, and they are 
affected by the underlying clinical conditions, such as in 
cases of concomitant renal and/or cardiac dysfunctions. 
Instead, biomarkers of heart failure (HF) such as B-type 
natriuretic peptide (BNP) or N-terminal-proBNP (NT-
proBNP) were shown to be helpful in the diagnosis of 
fluid overload, particularly in correlation with HF [35]. 
The concentration of these biomarkers increases in the 
bloodstream when left ventricular cardiomyocytes are 
stretched by preload, and are highly reproducible and 
widely available. However, the value of these volume bio-
markers in the specific setting of CKD patients has been 
questioned due to evidence showing that they can accu-
mulate in patients with renal dysfunction [36].

Volume Balance and Evaluation in Different Clinical 
Settings of CKD Patients

Volume Balance in CKD and HF
Patients with cardiac and renal diseases frequently 

show shared elements in their clinical presentation [37]. 
So, HF patients often manifest a degree of renal dysfunc-
tion, while CKD patients, especially in the later stages, 
present an increasing prevalence of cardiac disorders [38, 
39]. Due to the tight connection between heart and kid-
ney diseases, the term “cardiorenal syndrome” has been 
proposed to facilitate the classification of these condi-
tions [40]. Cardiorenal syndrome comprises of a complex 
pathophysiology involving renin-angiotensin system ac-
tivation, the sympathetic nervous system, and hemody-
namic alterations [41]. The spectrum of kidney and heart 
diseases is very wide, but alterations of water balance and 
sodium handling are common pathogenetic features and 
important prognostic factors, considering that the pres-
ence of volume unbalance in these conditions is a predic-
tor of worse outcome.

In CKD patients, sodium retention occurs as the result 
of the relationship between the glomerular filtration rate, 
sodium excretion, and ECV [42]. Indeed, while in normal 
subjects, at a steady state, there is a linear relationship be-
tween ECV and sodium excretion, which regulates blood 
pressure, in CKD this system is impaired [43].In CKD 
patients, salt ingestion is followed by an increase in so-
dium excretion per residual nephron, as a part of the 
adaptive response to reduced nephron number, leading 
to increased sodium excretion [44]. This response should 
be mediated by some degree of subclinical volume expan-

sion and elevation in the mean arterial blood pressure, 
and represents a protection against the development of 
continuous sodium retention and edema formation.

However, this response seems limited in CKD and, 
most importantly, CKD patients are unable to further ad-
equate sodium excretion in the presence of rapid changes 
in salt ingestion, so they are prone to develop volume ex-
pansion or depletion [45, 46]. In addition, recent works 
by Titze [47] showed that sodium balance is more com-
plex than previously thought, because of the presence of 
sodium storage in the skin. This finding is accentuated in 
CKD patients, and is correlated with left ventricular hy-
pertrophy [48]. So, these pathophysiological alterations 
may create the conditions for a chronic ECV overload in 
CKD patients [49, 50].

Chronic fluid overload and LVH establish a vicious 
circle, as showed in recent study, fluid congestion evalu-
ated with NT-proBNP and BIS measurements is strongly 
correlated to left ventricular mass index in patients with 
CKD [51]. To counteract fluid congestion in CKD, both 
diuretics and water restriction showed efficacy in reduc-
ing blood pressure and body fluids, evaluated with NT-
proBNP and body weight, without worsening the renal 
function [52]. On the other hand, in HF patients, the 
myocardial dysfunction causes arterial underfilling and 
reduction of renal blood flow, with the consequent reduc-
tion of the renal function (forward mechanism) [53]. 
These events lead to a systematic, sympathetic, and neu-
rohormonal receptor activation; and the net movement 
of fluid to the IV to preserve organs perfusion [54].

To preserve glomerular capillary pressure (and so the 
glomerular filtration rate), the kidney can autoregulate 
through different mechanisms: myogenic adaptation of 
the glomerular afferent artery, the tubuloglomerular 
feedback, and the activation of the renin-angiotensin-al-
dosterone system [55, 56]. On one hand, there is a con-
tinuous increase in fluids of the IV compartment, on the 
other hand, there is a net accumulation of interstitial flu-
id caused by an alteration in the capillary endothelial per-
meability [57]. The final effect of this pathway is the pro-
portional increase of the IV and interstitium [58] (shown 
in Fig. 2). The consequent fluid overload, in turn, can de-
termine the development of tissue hypertension and cen-
tral venous congestion, which may lead to further wors-
ening of the renal function, perpetuating a vicious circle 
(backward mechanism) [59].

Volume Evaluation in CKD and HF
The complexity of the physiopathology of the cardio-

renal connections accounts for the difficulty of the fluid 
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volume assessment in these conditions. Fluid volume as-
sessments are made more challenging by the lack of sen-
sitivity and specificity of physical signs and symptoms 
(edema and dyspnea). Indeed, edema becomes clinically 
evident only when it is significant, and it can be present 
without systemic fluid expansion (e.g., vasodilatory 
drugs), while shortness of breath leads to 10–20% of false 
positives [60]. Individually, several indices of HF severity, 
such as elevated filling pressures, jugular venous pressure, 
orthopnea, and echocardiographic filling patterns, antic-
ipate higher cardiovascular event rates. Other strategies 
of noninvasive fluid status assessment include evaluation 
of the levels of cardiac biomarkers, including natriuretic 
peptides and cardiac troponins that may also anticipate 
readmission risk, particularly if they remain high at hos-
pital discharge [61, 62]. In acute HF invasive methods for 
evaluation of the hemodynamic status, such as pulmo-

nary capillary wedge pressure, CVP, and pulmonary ar-
tery resistance could be very useful, for a comprehensive 
evaluation of the fluid status of a patient [63].

BNP and NT-proBNP are established markers of HF 
but, as reported above, the coexistence of a concomitant 
renal dysfunction could considerably change their inter-
pretation. In general, HF is very likely at BNP values >500 
pg/mL and an NT-proBNP values >450 pg/mL, even if dif-
ferent cutoffs have been proposed, especially for patients 
with renal dysfunction [64]. The mechanisms underlying 
natriuretic peptides elevation in CKD patients are not ful-
ly understood. Cardiac wall stress, caused by fluid overload 
and subclinical ischemia is a tempting hypothesis, but the 
results from different studies are controversial [65].

Valle et al. [66] investigated a clinical approach based 
on natriuretic peptides and several BIA measurements 
for the fluid volume management. Patients were catego-

Fig. 2. Mechanisms underlying fluid overload in kidney dysfunc-
tion and HF, and noninvasive methods of fluid evaluation and 
quantification. HF and kidney dysfunction are strictly correlated 
and co-influenced and participate through various mechanism to 
establish and exacerbate fluid overload. Clinical and biochemical 
signs of fluid overload are heterogeneous, and fluid status evalua-
tion is frequently challenging. A multiparametric approach using 

different noninvasive methods are the preferable approach in out-
patients and not in critical patients to evaluate fluid status. Thick 
lines in the figure suggest most reliable methods. CVP, central ve-
nous pressure; ECW/ICW, extracellular and intracellular water; 
IVC, inferior vena cava; GFR, glomerular filtration rate; RAAS, 
renin-angiotensin-aldosterone system; SNS, sympathetic nervous 
system; TBW, total body water; HF, heart failure.
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rized as early responders, late responders, and nonre-
sponders (based on the BNP fall after therapy), to allow 
physicians to identify high-risk patients. They report low-
er 6 months readmission rate in patients admitted to the 
hospital for acute HF and reduction of the health-care 
costs [66]. IVC diameter and IVCCI measured using 
point-of-care ultrasound are reliable indirect parameters 
of the right atrial pressure and volume status in HF [67]. 
A recent systematic review of the literature performed by 
Ciozda et al. [22] reports consistent findings in support 
of the use of IVC size for the estimation of CVP in non-
mechanically ventilated patients. In particular, the IVC 
size was directly correlated to CVP, while IVCCI was 
shown to have a negative correlation. Anyway, IVC diam-
eter measurement differences can exist between users. 
Moreover, other limitations consist of possible altera-
tions to IVC measurement in the presence of diastolic 
dysfunction and the lack of normal values [68].

In recent years, LUS has been widely used and investi-
gated in HF and CKD settings. In different studies, it has 
been demonstrated that lung ultrasonography has higher 
accuracy in detecting pleural effusion than bedside chest 
X-rays (96–93 vs. 65–47%) [69]. Chest X-rays can detect 
pleural effusion only if the volume is at least 200 mL, and 
the sensitivity of this method decreases in the supine po-
sition, whereas ultrasound can detect effusions as small as 
20 mL [70]. A multidisciplinary panel of 28 experts has 
developed a consensus paper for LUS, based on those rec-
ommendations. B-lines show a very high correlation with 
the more established parameters of HF [71].

Anyway, LUS has several limitations in the evaluation 
of volume status. For instance, some conditions (e.g., pul-
monary fibrosis) cannot be differentiated from pulmo-
nary congestion, and B-lines due to HF cannot be distin-
guished from acute respiratory distress syndrome of oth-
er origins. Finally, LUS cannot be used to evaluate volume 
depletion [72].

The importance of the follow-up in CKD and HF pa-
tients is crucial considering the high rate of rehospitaliza-
tions. The COVID-19 pandemic has made this even more 
challenging. In this new scenario, vulnerable populations, 
such as patients with multiple chronic conditions or im-
munosuppression, will face the difficult choice between 
risking iatrogenic COVID-19 exposure during a clinician 
visit and postponing needed care [73]. Different methods 
of remote monitoring of CHF and CKD patients were 
studied, and some methods have now become part of the 
clinical routine with a large disparity between one hospi-
tal and another. In Table 3, we reported a brief list of the 
main significant trials of the last decade. Noninvasive 
methods, however, have not been fully proven to be as-
sociated with a better outcome [74, 75]. Concerning non-
invasive methods, the most widespread involves regular 
telephone support to monitor the symptoms, the body 
weight measurement changes, and the psychological sta-
tus of the patients [76]. The results of such remote moni-
toring are controversial, displaying both positive and 
negative results, the negative ones being mainly due to the 
low sensitivity of body weight changes [76]. However, the 
results of the TIM-HF2 trial published in 2018 suggest 

Table 3. Telemedical trials in HF patients

Study/author Study type Patients no. and 
characteristics

Intervention Outcomes and comments References

TELE-HF
Chaudhry et al. 
[74]

Multicenter randomized 
controlled trial

1,653 patients recently 
hospitalized for HF

Telephone-based 
interactive voice system

Readmission or death within 180 
days. Not reached

[65]

BEAT-HF
Ong et al. [76]

Multicenter randomized 
controlled trial

1,437 patients hospitalized 
for HF

Health coaching telephone 
call and telemonitoring

180 days all-cause readmission. 
Not reached

[67]

IN-TIME
Hindricks et al. 
[77]

Randomized controlled 
trial

716 patients NYHA class II 
and III plus recent implant 
of dual chamber ICD or 
CRT-D with telemonitoring 
function

ICD or CRT-D 
telemonitoring

The composite clinical score: 
death, admission, and change of 
NYHA class. Significant 
improvement of clinical outcomes

[68]

TIM-HF2
Koehler et al. 
[75]

Multicenter randomized, 
controlled, parallel-
group, unmasked trial

1,571 patients NYHA class 
II and III (EF <45% or EF 
>45% and oral diuretics)

Daily monitoring of body 
weight, blood pressure, the 
heart rate, EKG, SpO2, and 
a self-rated health status

Reduce the percentage of days lost 
due to unplanned cardiovascular 
hospital admissions and all-cause 
mortality

[66]

NYHA, New York Heart Association; ICD, implantable cardioverter defibrillator; CRT, cardiac resynchronization defibrillator; HF, heart failure.
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that a structured remote patient management interven-
tion could reduce the days lost due to unplanned cardio-
vascular hospital admissions and all-cause mortality [75].

One of the most effective approaches seems to be the 
use of invasive implanted devices, such as implantable 
cardioverter defibrillators and cardiac resynchronization 
therapy devices, which are able to detect potential ar-
rhythmias and changes in thoracic congestion [77]. The 
IN-TIME trial which used automatic implant-based mul-
tiparameter telemonitoring (namely Biotronik Home 
Monitoring) controlling rhythmic, technical, and vital 
parameters was shown to decrease the mortality of HF 
patients [77]. Another extremely accurate way to predict 
decompensation events in HF patients is represented by 
the cardioMEMS, invasively implanted in the pulmonary 
artery to measure its pressure [78]. CardioMEMS has al-
ready been shown to decrease mortality and rehospital-
izations, however, its utilization is still limited to end-
stage HF patients [78]. For both invasive and noninvasive 
solutions, what emerged clearly is not just one parameter, 
but multiple parameters should be used to detect patients 
at higher risk [76, 77].

Alternative approaches have also been reported. Re-
cently, a multicentric research team tested different algo-
rithms, using weight scale measurements and transtho-
racic bioimpedance data to predict HF decompensation 
events [79]. They demonstrated that, differently from 
weight scale measurements alone, the use of transthorac-
ic BIA and weight scale in combination with trend algo-
rithms, improved the detection of HF. BIA technology, 
more broadly, can also be very well miniaturized and em-
bedded in wearable devices, increasing the range of op-
portunities to optimally mitigate CKD progression speed 
and maximizing the quality of life [80].

Another opportunity to increase the quality of life of 
chronic patients is given by voice-enabled technology and 
AI. Recently, a feasibility study was conducted to evaluate 
the quality of the data collection of a voice-enabled auto-
mated platform called CardioCube [81]. The use of AI, in 
particular machine learning (ML), to track the clinical 
status of HF outpatients has been evaluated in another 
recent study, using a wearable electrocardiogram with 
sensing patches. They developed an algorithm enabled to 
assess compensated and decompensated HF patients by 
analyzing cardiac response to submaximal exercise [82].

Volume Balance in HD
Despite medical improvements, the risk of mortality 

in HD patients remains approximately 30 times higher 
than the general population and 10–20 times higher after 

stratification for age, gender, and presence of diabetes 
[83]. Fluid volume management is an important compo-
nent of cardiovascular risk [84] and several studies have 
reported that around 30% of dialysis patients are in 
chronic volume overload [85]. In extracorporeal dialysis, 
fluid removal is obtained by ultrafiltration (UF), a fluid 
transport from blood to dialysate, generated by the hy-
drostatic pressure gradient across the membrane. The op-
timal volume status of dialytic patients is usually de-
scribed as dry weight, defined as the lowest tolerated post-
dialysis weight with minimal sign and symptoms of 
hypovolemia or hypervolemia [86]. Instead, interdialytic 
weight gain (IDWG) indicates the volume of fluids accu-
mulated by the patient during the interdialytic period and 
that is necessary to remove during the single HD session 
by UF. When IDWG is excessive and consequently the 
UF rate is rapid, complications such as intradialytic hy-
potension, muscle cramps, nausea, or vomiting occur 
more frequently. The plasma refilling rate is a key factor 
during UF in hemodynamic balance. It has a very wide 
intraindividual and interindividual variability and can 
overcome 10 mL/kg/min [87]. In the dry-weight reduc-
tion in hypertensive HD patient trial, extreme IDWG was 
associated with adverse outcomes, while chronic volume 
overload was strongly correlated with mortality [88]. So, 
normalizing the ECV and avoiding a large IDWG should 
be primary clinical goals in the management of HD pa-
tients. Minimization of dietary sodium intake (<1,500 
mg/day), an increase of dialysis time, and the reduction 
of dialysate sodium [89] have been described as valid 
methods to achieve these objectives. Moreover, in the HD 
setting, it should be considered that additionally a resid-
ual renal function (RRF) can be of significant help in 
maintaining the volume balance. Indeed, the presence of 
residual diuresis with loss of water and sodium with urine 
allows to reduce intradialytic fluid removal, decreasing 
the risk of intradialytic hypotension, chronic hypervol-
emia, HF, and consequently improves patient survival 
[90].

Volume Evaluation
Volume evaluation is challenging in HD patients since 

clinical examination and patient history are not always 
reliable. For example, hypertension may be a sign of vol-
ume overload, but it can also depend on sympathetic 
overactivity and/or increased arterial stiffness. Also, 
blood pressure is often influenced by lower left ventricu-
lar ejection fraction, cardiac valvular disease, malnutri-
tion, and chronic wasting disease. Thus, hypertension is 
an important element guiding the assessment of dry 
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weight, whereas the absence of hypertension does not 
necessarily indicate optimal fluid volume [91]. A HD-
specific method to evaluate patient ECV is the relative PV 
monitoring, that, by use of photo-optical technology ap-
plied through a transparent chamber affixed to the arte-
rial end of the dialyzer, allows measurement of the abso-
lute changes of hematocrit during HD sessions.

Moreover, the assessment of IVC diameter, BNP and, 
in recent years, LUS has been studied as candidate indica-
tors of volume status in HD patients [92, 93]. LUS was 
deeply investigated in this clinical setting and the rela-
tionship between B-lines and UF; or IDWG and its prog-
nostic value in the prediction of mortality; or CV events 
has been confirmed in different studies [94]. Further-
more, BIA methods are used to noninvasively measure 
TBW, ECW, and ICW; and to calculate lean mass and fat 
mass exploiting empirical equations. BIA is highly repro-
ducible and operator independent. For this reason, it has 
been widely introduced in the HD setting [95]. Fluid 
overload measured with BIA (defined as overhydration/
ECW ratio >7–15%) [96] has shown a significant correla-
tion with mortality, confirmed in different studies and 
metanalysis [97, 98]. However, in a recent study, Mitsides 
et al. [99] speculated the possible influence of the subcu-
taneous sodium accumulation in reducing the predictive 
value and accuracy of BIA. A BIA-guided-HD approach 
has also been investigated in many trials and summarized 
in systematic reviews and meta-analyses. Studies have in 
general been successful in achieving secondary outcomes 
such as control of hypertension, as well as reducing fluid 
overload and hypotensive events, but there is still incon-
clusive evidence on hard outcomes such as mortality and 
hospitalization [100, 101]. Further studies should be per-
formed to better describe the effect of BIA-based strate-
gies on survival in HD patients [50, 102]. Nowadays, due 
to the limitation of the UF rate, reaching a real improve-
ment in volume management is still challenging without 
enhancing sodium water restriction or frequency of HD 
sessions. The fluid removal during adherent renal moni-
toring study, a prospective, nonrandomized trial, exam-
ined the performance of a noninvasive, multisensor fluid 
monitoring system, applied to the chest, to determine its 
performance and reliability during HD. Compared with 
body weight, bioimpedance showed a more sensitive de-
tection of changes in the body fluid [103]. Even with these 
new approaches, achieving the optimal balance between 
UF and the risk of intradialytic hypotensive events is a 
complex task in clinical practice. ML may help to person-
alize the multiple dialysis-related prescriptions affecting 
patients’ intradialytic hemodynamics. One of the progen-

itors of this approach is the automatic control of blood 
volume [104], such as the hemocontrol biofeedback sys-
tem (HemocontrolTM, Hospal, Italy) that modifies sodi-
um concentration of dialysate and regulates the UF rate 
through a biofeedback mechanism, based on relative PV 
[105]. Successively, different predictive models for ses-
sion-specific endpoints (such as Kt/V, fluid volume re-
moval, and blood pressure) have been proposed, with en-
couraging results, based on patient characteristics, his-
toric hemodynamic responses, and dialysis-related 
prescriptions [106]. ML works using interconnected pro-
cessing units organized, inspired by the neurons in the 
human brain. ML learns to compute a specific input-out-
put mapping by tuning a set of parameters in response to 
being exposed to a sufficiently large set of data [107]. The 
results of a ML analysis can assist physicians in decision-
making via early detection of vital parameters such as 
blood pressure, the heart rate, the respiration rate, and 
body temperature, available through the artificial kidney 
[108]. This kind of online monitoring systems with auto-
matic biofeedback in combination with progress in nano-
technology has made possible the implementation of 
home HD [109], as well as the development of the wear-
able artificial kidney and implantable bioartificial kidney, 
still in the preclinical study stage [110]. The clinical set-
ting is complex and requires a multiparameter approach. 
In this scenario, AI and new technologies may improve 
the diagnosis and treatment under medical surveillance.

Volume Balance in Peritoneal Dialysis
Peritoneal dialysis (PD) is performed by the patient or 

the caregiver at their own home and presents some pecu-
liarities in respect to HD in the mechanisms regulating 
fluid management. Indeed, in PD, the water is removed 
mainly by osmosis and is regulated by Starling forces 
through the peritoneum. Therefore, the rate of water re-
moval is dependent on the osmolality of the intraperito-
neal solutions, which induce an osmotic gradient between 
the peritoneal cavity and the peritoneal vessels with the 
consequent transfer of water into the peritoneal cavity 
through a crystalidosmosis process [111]. The commonly 
used solutions contain glucose at different concentra-
tions (1.36, 2.27, and 3.86%) and UF is increased by in-
creasing the concentration of glucose in the peritoneal 
dialysate [111]. Because of the absorption of glucose from 
the peritoneal cavity into the capillaries, the osmotic ef-
ficiency of the glucose-containing solutions is reduced 
during the dwell. Icodextrin, a glucose polymer, is reab-
sorbed only to a small extent by the peritoneum, and 
therefore induces UF that lasts over time through a col-
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loid osmosis mechanism [112]. The choice of peritoneal 
solution usage depends on the clinical needs of each pa-
tient, allowing for personalization of the treatment. More-
over, PD is associated with better preservation of the RRF 
than HD, because of a lower frequency of volume deple-
tion episodes [113]. However, despite these advantageous 
factors, volume unbalance is also common in PD patients. 
A recent prospective study by Van Biesen et al. [114] 
found a significant amount of volume unbalances in a co-
hort of 1,054 incidental PD patients. In particular, a rela-
tive volume overload of >7%, detected with BIA was pres-
ent in 57% of the participants before the start of PD and 
persisted after 1, 2, and 3 years of follow-up (48, 49, and 
53% of the patients, respectively). As for HD, in PD, vol-
ume excess can be harmful as well and it is associated with 
left ventricular dysfunction and hypertension, that in 
turn correlates with worse survival, also considering that 
cardiovascular complications are responsible for 40–60% 
of deaths in PD patients [115].

Volume Evaluation
Fluid volume assessment in PD is carried out exploit-

ing the same techniques described before. Physical ex-
amination is part of the routine evaluation of PD patients 
and can be used together with blood pressure measure-
ments, imaging, and natriuretic peptides. However, clin-
ical examination often proves to be imprecise and inca-
pable of guiding practicing nephrologists to more appro-
priate PD prescriptions. BIA has been increasingly 
employed in the evaluation of volume status in PD pa-
tients, as it can be easily performed by patients themselves 
at home. However, even if it might be theoretically useful, 
it should be also admitted that available data do not 
strongly support the claim that BIA is useful in the man-
agement of volume status. A prospective trial by Tan et 
al. [116] tried to determine the clinical impact of the lon-
gitudinal plot of the BIA analysis vector (i.e., the direction 
in which fluid status is changing). Unfortunately, the au-
thors found that the intervention did not result in further 
improvement in fluid analysis measurements [116]. The 
COMPASS study evaluated the usefulness of BIA in pre-
serving RRF and CV function in non-anuric PD patients 
[117]. The authors found that when compared with the 
control group receiving only clinical evaluation, patients 
receiving BIA-guided fluid management did not present 
significant clinical benefits. Although not generalizable, 
these results at the least indicate that further research is 
warranted to investigate the role of BIA in PD patient vol-
ume management. One of the most peculiar aspects of PD 
is that the treatment is delivered at patient’s home, both 

in the case of use of manual (i.e., continuous ambulatory-
PD) and automated exchanges (i.e., automated-PD). So, 
this technique is suitable for the widespread adoption of 
telemedicine platforms, which could be of great support 
for the patients.

A prototypical PD-telemedicine platform would allow 
for fast communication between patients and health-care 
providers while remaining nonintrusive and portable. 
Notably, in the telemonitoring systems, many important 
parameters could be considered, including peritoneal 
volumes, blood pressure, body weight, and BIA [118]. So, 
the adoption of this strategy can provide useful real-life 
information on volume status and control. Interestingly, 
recent studies performed in Europe [119] and Asia [120] 
found that telemonitored PD patients presented low rates 
of technique failures and hospitalizations, as well as re-
duced overall costs.

Conclusions

Body fluid management is one of the most important 
issues in the clinical practice. The first step to improve the 
quality of care provided to our patients and clinical out-
comes is to understand the physiopathology behind body 
fluid unbalances. This challenging task should take advan-
tage of basic research and clinical trials to achieve a better 
knowledge of the relationship between the heart and kid-
ney, molecular signal pathways, and adaptive response in 
kidney disease. The second step is refining our diagnostic 
methods and remote monitoring techniques, to allow re-
al-time evaluation of the fluid status of a patient in and out 
of the hospital. This will be possible thanks to the applica-
tion of new technologies, like telemedicine, wearable de-
vices, nanotechnologies, the AI-medical support system, 
and bioengineering. In particular, progress in AI will like-
ly allow us to overcome the human diagnostic threshold, 
leading to a quality of care that is unconceivable nowa-
days. The need to develop these tools comes from the ne-
cessity to reduce costs for the health-care system, incen-
tive personalized medicine, provide health assistance to a 
wide number of people, and it has been further exacer-
bated by the recent emerging necessity to monitor chron-
ic patients in the midst of the COVID-19 pandemic. Once 
regulatory and ethic barriers are removed, and as soon as 
AI-based techniques prove to be effective, we will be prob-
ably seeing an exponential spread of automated medical 
support systems for real personalized healthcare, without 
any increase in workload for medical personnel and re-
duced admissions to hospitals and the related costs.
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