

## Networking: A Key Driver for Globalization



Krishan K. Sabnani Networking Research, Bell Labs August 27, 2007

### A major driver for increased globalization is telecom and Internet

 Because low cost of connectivity and networking, distances between US, Europe, and emerging countries have been greatly reduced

### Most of the new growth in telecom and Internet is in Asia

- Economies of China and India are growing at ~10% rates due to globalization, outsourcing of manufacturing and services from US and Europe
- Low tele-densities (20% in India)
- But vast majority in emerging countries still disconnected connecting them will require disruptive networking technologies and products:
- Low-cost (due to customers with very low ARPUs)
- Auto-configurable, robust to power outages, heat, dust, ...

## The Network Evolution



- *Future networks should be designed primarily for efficient content distribution* and content search/location
  - Content distribution should not only be overlaid, but built in from ground up
- Future networks should also be able to effectively carry best-effort data traffic and QoS-sensitive multimedia traffic
- New content applications being deployed faster in Japan and Korea because of large broadband deployment

3 |Global Interdisciplinary Research Panel, Sept 6, 2007

## Tomorrow's Converged Network





# An emerging country like India has unique networking needs

### 740 million people live in rural villages

- Low incomes: monthly per-capita income \$17.50
- Low literacy: 60%
- Unreliable power: frequent outages
- Low teledensity: 2 phones per 100 people
- Low PC penetration
- Very few Internet users

### Challenges for Networking to Improve Globalization

#### Low cost infrastructure

- VillageNet: Connectivity of remote villages at very low price points
- Base Station Router: Cellular network in a box

Low cost handsets

\$30 handset, \$100 laptop

Addition of broadcast channels for content distribution to current Internet



#### Goal 1: Provide a broadband "pipe" to villages in rural areas

- Enable applications such as telemedicine, distance education, weather/crop info, e-governance etc
- Goal 2: Infrastructure should be highly inexpensive
- Because of low paying capacity of people

### Environment (in India):

- Most villages are within 25 Kms of a fiber drop small towns (called "gateway" nodes) with Internet connectivity
- Average inter-village distance: 7-8 Kms
- Last "25 Kms" problem: how to extend this internet connectivity to the villages in an inexpensive manner?

## VillageNet Approach (see also TIER, DGP)

## Use commodity IEEE 802.11 radio equipment to reduce costs

Use multi-hop mesh architecture built out from gateway node to cover long distance

 point-to-point links established using directional antennas mounted on towers to establish line-of-sight





## VillegeNet Data Access over Unreliable Wireless Meshes

Nodes are power-constrained, may be down due to unreliable power



Minimize communication to conserve power

- Cache items based on access patterns
- Batch queries, route results along optimal routes

Route around power outages to maximize throughput



## Base Station Router: Cellular Network in A Box

Base Station Router terminates all air-interface-specific functions in the base station

Can create low-cost networks with one backhaul link



## Low-Cost Computing Devices

### Current low-cost PC efforts

- One Laptop Per Child (MIT Media Labs -\$100PC)
- Eduwise (Intel)
- Simputer (Picopeta)

### **Distinctive Features**

 Thin clients (network computing), opensource, low power displays

### Widespread Adoption?

### Meanwhile ...

- 200m mobile subscribers in India growing at 8m a month!
- 500m mobile subscribers in China growing at 6m a month!
- By 2010, 3.7b worldwide cell phone subscribers!
- Cell phone costs coming down dramatically (< \$50)</p>

### Could cell phones be the low cost computing devices of the future?





### Challenge for Educational Institutions

What should educational institutions do to train their students in globalization?

- Expose students to unique challenges of developing countries like China and India
- Teach courses on how to design low cost products
- Offer courses over networks of the future
- Conduct research in network based computing for low-cost laptops and handsets

