

© Tesnim Hadhri, 2021

Single view depth estimation from train images

Mémoire

Tesnim Hadhri

Maîtrise en génie électrique - avec mémoire

Maître ès sciences (M. Sc.)

Québec, Canada

Single view depth estimation from train images

Mémoire

Tesnim Hadhri

Sous la direction de:

Jean-François Lalonde, directeur de recherche

Résumé

L’estimation de la profondeur consiste à calculer la distance entre différents points de la scène
et la caméra. Savoir à quelle distance un objet donné est de la caméra permettrait de com-
prendre sa représentation spatiale. Les anciennes méthodes ont utilisé des paires d’images
stéréo pour extraire la profondeur. Pour avoir une paire d’images stéréo, nous avons besoin
d’une paire de caméras calibrées. Cependant, il est plus simple d’avoir une seule image étant
donnée qu’aucun calibrage de caméra n’est alors nécessaire. C’est pour cette raison que les
méthodes basées sur l’apprentissage sont apparues. Ils estiment la profondeur à partir d’une
seule image. Les premières solutions des méthodes basées sur l’apprentissage ont utilisé la
vérité terrain de la profondeur durant l’apprentissage. Cette vérité terrain est généralement
acquise à partir de capteurs tels que Kinect ou Lidar. L’acquisition de profondeur est coû-
teuse et difficile, c’est pourquoi des méthodes auto-supervisées se sont apparues naturellement
comme une solution. Ces méthodes ont montré de bons résultats pour l’estimation de la pro-
fondeur d’une seule image. Dans ce travail, nous proposons d’estimer des cartes de profondeur
d’images prises du point de vue des conducteurs de train. Pour ce faire, nous avons proposé
d’utiliser les contraintes géométriques et les paramètres standards des rails pour extraire la
carte de profondeur à entre les rails, afin de la fournir comme signal de supervision au ré-
seau. Il a été démontré que la carte de profondeur fournie au réseau résout le problème de
la profondeur des voies ferrées qui apparaissent généralement comme des objets verticaux
devant la caméra. Cela a également amélioré les résultats de l’estimation de la profondeur
des séquences des trains. Au cours de ce projet, nous avons d’abord choisi certaines séquences
de trains et déterminé leurs distances focales pour calculer la carte de profondeur de la voie
ferrée. Nous avons utilisé ce jeu de données et les distances focales calculées pour affiner un
modèle existant « Monodepth2 » pré-entrainé précédemment sur le jeu de données Kitti.

ii

Abstract

Depth prediction is the task of computing the distance of different points in the scene from
the camera. Knowing how far away a given object is from the camera would make it possible
to understand its spatial representation. Early methods have used stereo pairs of images
to extract depth. To have a stereo pair of images, we need a calibrated pair of cameras.
However, it is simpler to have a single image as no calibration or synchronization is needed.
For this reason, learning-based methods, which estimate depth from monocular images, have
been introduced. Early solutions of learning-based problems have used ground truth depth
for training, usually acquired from sensors such as Kinect or Lidar. Acquiring depth ground
truth is expensive and difficult which is why self-supervised methods, which do not acquire
such ground truth for fine-tuning, has appeared and have shown promising results for single
image depth estimation. In this work, we propose to estimate depth maps for images taken
from the train driver viewpoint. To do so, we propose to use geometry constraints and rails
standard parameters to extract the depth map inside the rails, to provide it as a supervisory
signal to the network. To this end, we first gathered a train sequences dataset and determined
their focal lengths to compute the depth map inside the rails. Then we used this dataset and
the computed focal lengths to finetune an existing model “Monodepth2” trained previously
on the Kitti dataset. We show that the ground truth depth map provided to the network
solves the problem of depth of the rail tracks which otherwise appear as standing objects in
front of the camera. It also improves the results of depth estimation of train sequences.

iii

Table des matières

Résumé ii

Abstract iii

Table des matières iv

Liste des tableaux v

Liste des figures vi

Acknowledgments ix

Introduction 1

1 Related work 7
1.1 Introduction . 7
1.2 Depth estimation . 7
1.3 Data sets . 13
1.4 Train datasets . 19

2 Dataset generation 20
2.1 Introduction . 20
2.2 Data video sequences . 20
2.3 Estimating the camera focal length from rails 22
2.4 Estimating the depth from rails . 27
2.5 Data set . 29
2.6 Conclusion . 32

3 Finetuning Monodepth on train sequences 33
3.1 Introduction . 33
3.2 Experimental methodology . 33
3.3 Impact of ground truth depth . 34
3.4 Influence of focal length . 44
3.5 Failure cases examples . 52

Conclusion 53

Bibliographie 55

iv

Liste des tableaux

2.1 Sequences informations. 21

3.1 Quantitative results of fine tuning experiments 42
3.2 Quantitative results of focal length experiments 50

v

Liste des figures

0.1 Portrait mode . 1
0.2 Dehazing . 2
0.3 Wheelchair navigation . 3
0.4 AR with depth example . 4
0.5 Active sensors . 5

1.1 Monodepth’s [15] loss module . 10
1.2 Network components of [16] . 12
1.3 NYU dataset example . 14
1.4 scannet dataset [6] example . 14
1.5 Sun3d [35] dataset example . 15
1.6 Kitti dataset example . 16
1.7 Cityscapes dataset example . 17
1.8 Kitti dataset example . 18
1.9 4D Light Field dataset example . 18
1.10 WildDash dataset example . 19
1.11 RailSem19 dataset example . 19

2.1 Railroad parameters . 23
2.2 Scene parameters . 24
2.3 Annotated railroad ties . 25
2.4 rail detection . 26
2.5 left and right track . 26
2.6 Depth map visualisation . 27
2.7 Focal length validation . 28
2.8 Example of generated depth maps . 29
2.9 sequences focal lengths . 30
2.10 Number of frames per sequence . 30
2.11 Brief overview of the dataset . 31

3.1 [16]’s network components . 34
3.2 Depth problems after finetuning . 35
3.3 Infinite depth problem . 35
3.4 Auto-masking examples . 36
3.5 Excluded rails from auto-masking technique . 36
3.6 Depth results without auto-masking the tracks 37
3.7 Modifying the mask of the tracks . 37
3.8 Depth results without auto-masking the tracks 38

vi

3.9 Depth results of finetuning using ground truth 39
3.10 Sky and aerial lines segmentation . 39
3.11 Depth results for finetuning using ground truth and sky masking 40
3.12 Fine-tuning with four sequences . 40
3.13 Qualitative results of fine tuning experiments 43
3.14 Validation examples during training using the Kitti focal length 45
3.15 Other examples of fine-tuning with Kitti focal length 45
3.16 Validation examples during training using sequence focal length 46
3.17 Other examples of fine-tuning with sequence length 46
3.18 Depth map examples of training on four sequences 47
3.19 Depth prediction examples of fine-tuning using sequences focal length 48
3.20 Depth results of fine-tuning with the average focal length 49
3.21 Qualitative results of focal length experiments 51
3.22 Failure cases . 52

vii

To my mother and father,
Salwa and Lotfi, who have

always loved me unconditionally
and taught me to work hard for

the things that I aspire to
achieve, for their endless support,

for their kindness, for their
encouragement during difficult

moments.
To my lovely sisters Sirin
and Elae, who have never left

my side, I value all of your
inputs.

To my aunt, Samira, who,
although is no longer with us,

always has been an inspiration by
her unlimited support, help, and
encouragement. You have been a

mother to me.
To my dear husband, Wajih,
for your patience, love, friendship

and humour. You have always
been a source of support and

encouragement during different
challenges of both school and life.

I am truly thankful for having
you in my life.

viii

Acknowledgments

I would like to express my special gratitude to my supervisor Jean-François Lalonde whom
support and unlimited patience and enthusiasm helped fuel me during all the challenges I
encountered.
My sincerest thanks to my supervisor Benoit Debaque from the Thales group whose stimula-
ting suggestions helped me to coordinate my project.
Above all, I thank ALLAH, for giving me the strength to face all challenges.

ix

Introduction

Depth prediction is the task of computing the distance of different points in the scene from the
camera. Knowing how far away a given object is from the camera would make it possible to
understand its spatial representation. Depth is a crucial component in different applications.
Tasks such as background removal, removing fog from scenes, portrait mode in cameras, are
best when processed as a function of depth as shown in fig. 0.1 and fig. 0.2.

Portrait Mode takes images with a shallow depth of field, focusing on the primary subject and
blurring out the background for a professional look. It does this by using machine learning to
estimate how far away objects are from the camera, so the primary subject can be kept sharp
and everything else can be blurred.

Figure 0.1 – Portrait mode examples using google pixel camera. It is possible to tell the back-
ground from the foreground by estimating how far objects are from the camera. Having the
depth estimated makes it possible to keep the object sharp and neat and blur the background.
Image taken from [2].

In robotics, localization and navigation are very important for the robot to determine its own
spatial position, and have the ability to determine how far an object is away from it and then
decide its navigation trajectory, which is why it usually requires a depth map of its surroun-
dings as shown in fig. 0.3. Self-driving vehicles also need a depth map of the surroundings for
the car to be able to localize itself, as well as be aware of objects and people in the scene.

1

(a) (b)

Figure 0.2 – Example of removing fog from images [31]. The thickness of the fog present in
the picture is non-uniform and usually depends on depth. For instance, the fog surrounding
objects far from the camera will appear denser in images than fog surrounding objects close
to the camera, which is why depth is incorporated in haze removal techniques. Input image
in left row (a), output image in right row (b). Images taken from [31].

2

Figure 0.3 – Autonomous navigation of a wheelchair [25]. To navigate, the chair needs to
determine its spatial position by mapping the depth of the scene. Video frames are on the
left, data visualisation including 3D particle clouds are present on the right. Image taken from
[25].

3

Augmented reality (AR) is a Technology which enhances the interactions between the real
world and the virtual world by including digitized objects in the real-world environment,
usually used in gaming, medicine -notably medical training and surgeries-, learning, tourism
and different other domains. Depth maps in these applications are needed in order to have a
more natural look of the inserted objects, avoid visual artifacts and offer a visual satisfaction
to the user. Fig. 0.4 shows an example of of AR application developed using depth estimation.

Figure 0.4 – Example of AR application using ARcore Depth API from google, an algorithm
for depth estimation from a single RGB image using depth-from-motion [8], it helps as shown
in the picture, to occlude an object, a lion in this case, in a very realistic way, as is capable to
add some occlusion (lion hidden behind a tree in this picture). Image taken from this video.

To retrieve a depth map, we could use active remote sensing such as Kinect, or Lidar. Microsoft
Kinect is an active sensor which maps depth by projecting light into the scene, depending
on the Kinect version it either uses structured light or time of flight techniques as shown in
fig. 0.5. Structured light technique sends a pattern of light in the scene, captures it using
a camera and computes the depth map as function of the pattern warped on the object to
provide a dense depth map of its surrounding environment. Kinect is not a good fit to map
depth for outdoor environments, because of its limited light emission range and its sensitivity
to the sun. Lidar is also an active sensor that uses the time of flight method to measure the
depth. It sends beams of light and computes how long it took for the beam to hit an object
and reflect back to a light detector. Lidar however outputs a sparse depth map. There are also
other active sensors which, instead of sending a beam of light, rely on ultrasound to compute
depth maps. The main limitation of active sensors is that they require a large amount of
energy to operate. This limitation led the researchers to also focus on passive sensors, such as
cameras. Different algorithms are proposed since the 90s to solve the depth estimation tasks,
relying on stereo vision and stereo matching. [7] provides an overview of popular methods.

Extracting the depth map using stereo pairs is also difficult. To have a stereo pair of images,
we need a calibrated pair of cameras. However it is simpler to have a single camera as no
calibration or synchronization is needed.

4

(a) (b)

Figure 0.5 – Example of techniques used by active sensors to retrieve depth values. (a)
represents the structured light technique which which sends light patterns onto the scene and
captures it, (b) is the time-of-flight technique which sends a beam of light and computes the
depth in function of how long it took the beam to touch an object and reflect back. Image
taken from [20].

For this reason learning based methods have shown up, and are recently gaining a lot of
attention in research since you can be independent to stereo images and estimate depth from
monocular images. However it is an ill posed problem as only a single view image is provided.
There are also other challenges, such as reflective surfaces, occlusion and dynamic objects,
along with information that could be missing or hard to extract such as the focal length of
the camera. Using deep learning, depth estimation could be classified in two main categories.
First, supervised methods which rely on ground truth for training. These methods vary ac-
cording to datasets : some use real world datasets, while others use virtual datasets. Second,
self-supervised methods where infomtaions are usually extracted implicitly using the geome-
try of the scene or explicitly using only learning based techniques.
Different datasets are therefore present to support learning based techniques to estimate
depth. These datasets usually come in different categories : we find datasets for indoor en-
vironments and datasets for outdoor environments. We also find synthetic datasets besides
the real world datasets. There are a good number of datasets to support autonomous vehicle
navigation. Unfortunately not all domains have gained the same attention as the self driving
car. For example, until now there is only one dataset provided for trains, which itself does not

5

support all tasks since it was mainly developed for segmentation tasks. Due to this limitation,
rails appear as standing objects in a lot of depth estimation methods.

In this work we are specifically interested in the estimation of depth maps for images taken
from the train drivers point of view. To work on depth estimation specifically for trains, we
started by developing a dataset for trains which includes different train sequences, their pre-
dicted focal lengths, and a part of the depth ground truth which could be used as a supervisory
signal to help train the network. To achieve this goal we set the following steps. We first chose
train sequences from a train enthusiasts website [28]. We then calibrate the camera of each
sequence using the rails themselves. In order to validate the estimated focal length we will
compare an estimated distance of a visible object in the sequence with the same object’s dis-
tance in calibrated overhead imagery. Second, based on the predicted focal lengths of different
sequences, we will compute the depth map inside the rails for the corresponding extracted
frames. And finally, we will finetune monodepthV2’s [16] network with our generated dataset.
During the finetuning process we will conduct different experiments to see the influence of both
ground truth depth maps and focal lengths during the training phase and the inference phase.

In chapter 1 we will present previous methods and different datasets used for the depth estima-
tion task. In the second chapter, we will describe the process used for the dataset generation,
this dataset will be generated specifically for depth estimation for train sequences. In chapter
3 we will follow with the network finetuning experiments using the generated dataset. We will
explain different experiments and present their results. And finally a conclusion will sum up
different steps held during this project, its limitations and possible future work.

6

Chapitre 1

Related work

1.1 Introduction

Perception of the objects’ depth in a scene is a very important problem in computer vision
as depth information is a key component in different domains such as robotics, AR, auto-
nomous driving and several others. Depth can be obtained using dedicated sensors such as
Kinect or Lidar which project light in the scene in order to obtain precise depth measure-
ments. In this work we will be focusing on methods that estimate the depth from a single
input image captured by a conventional camera. Early image-based methods used stereo or
multiple cameras to compute depth maps for a corresponding image. However, relying only
on epipolar geometry requires a lot of difficult-to-acquire informations to be provided such as
the baseline measure and the focal length which sometimes could possibly be not available.
For this reason, several others looked for alternative methods to retrieve depth maps for a
single image. Those alternative methods can be either supervised methods where they rely
on ground truth depth to train a deep neural network, self supervised methods which rely on
stereo images or temporal frames to retrieve information. These methods can also follow a
joint learning architecture where they train for both depth and pose or flow motion, as these
information can be beneficial for depth retrieval. One among used methods is the depth map
completion task which relies on partially known depth maps to generate a dense depth map
for a given input. In Section 1.2 we will briefly cover some depth estimation methods, then
we will present a set of relevant datasets.

1.2 Depth estimation

We will briefly introduce some depth estimation techniques. We begin with supervised me-
thods, and follow with self-supervised methods.

7

1.2.1 Supervised methods

Several previous methods have solved the problem in a supervised learning setting, where
both the color image and its corresponding ground truth depth map are used to train a
neural network. Here the task of the learning algorithm is to discover a relationship between
the input and its given depth values.

Usually, these methods differ either in the network architecture or their loss function. [21] uses
an end-to-end convolutional neural network to solve for depth estimation using a single RGB
input image, whereas [11] handles the problem of depth estimation as an ordinal regression
problem by discretizing depth using a space increasing discretization strategy.

Another method focuses on solving the problem of spatial resolution of this task [19] since-
previous methods usually suffer from hazy boundaries. It proposed an improvement of the
network architecture as well as the loss function. They proposed an additional measurement
specifically to evaluate depth edges and quantitative results were greater than other methods.
Visually, edge boundaries of their depth maps also looked much better.

Yet, due to the lack of dense ground truth depth maps, some supervised methods solved the
problem as a depth completion problem where they generate dense depth maps from given
sparse depth maps [4] [23].

These learning based methods require the collection of ground truth depth maps which is
a difficult and time consuming task. Therefore, some weakly supervised methods rely on
synthetic data for training as an alternative. For example [40] uses synthetic data with its
corresponding depth map for the depth task. During training, it uses a GAN to translate
the synthetic image into the real image as a first stage followed with a depth estimator
architecture. At inference time, only the real input data is used.

Some methods use synthetic data for training, notably [1] which uses style transfer and ad-
versarial training to predict depth on real-world data.

1.2.2 Self-supervised methods

Ground truth depth maps are difficult to acquire for two main reasons. First, it is difficult
to acquire a sufficient amount of ground truth data to train a network for each task, second
capturing depth is an expensive process. One major problem is that depth sensors are limited.
For instance, kinect has a limited depth range and it thus is difficult to have a depth map
of the outside environment using this sensor. Lidar sensors provide only sparse depth maps
due to their limited angular sampling rate. For this reason, researchers started using self
supervised methods where ground truth depth maps are not needed for training.

8

Self supervised methods use a different way to train depth estimation networks which relies
mainly on reconstruction. Network inputs are either stereo sets of images or monocular tem-
poral sequences, or both. In this case, depth is reconstructed by minimising the reconstruction
error of a stereo pair or a temporal pair of images.

Another method [13] relies on trying to warp the right image into the left image from the
estimated depth. The little motion between the image pair makes it possible to the network
to explicitly retrieve the relationship between them which actually is the inverse depth. A
follow up on the same approach [15] has built on [13] adding a left-right consistency loss.

Some methods rely on joint learning to solve for depth estimation, notably [38] which uses
a network architecture that solves for both odometry and depth estimation by using stereo
sequence, which allows the network to learn information from temporal frames and the stereo
pair.

Other methods such as [32] solves for both depth and structure from motion trains a convo-
lutional network using uncalibrated image pair. The main goal of the network during training
is to learn matching.

Monodepth2 [16] uses stereo sequences, with which it would be possible to have information
from the stereo pair as well as the temporal frames. Aside from that, it improves the ap-
proach with a minimum reprojection loss to solve the problem of occlusions. Monodepth2
[16] introduces a technique called auto-masking, where pixels that appear to be moving with
the same velocity as the camera are excluded from the full loss module. This technique also
helps eliminate static scenes from the loss function. further description about this work will
be explained in the next section.

1.2.3 Monodepth

In this work we used [16]’s model for finetuning what is actually a follow up on [15]’s work.
This is why this detailed description is presented about both [15] and [16].

One of the most used self supervised methods is "Monodepth" [15] as it has shown a great
improvement using stereo pairs. The model learns to figure out a single image depth estimation
without ground truth provided to the network. "Monodepth" relies on explicitly extracting
the disparity while trying to reconstruct the left image from the right image by warping. In
epipolar geometry, disparity is inverse of depth.

The main contribution of [15] is in their loss function explained in fig. 1.1 which is a combi-
nation of three different modules. The first module is the appearance Matching Loss, which,
as its name shows, compares the appearance of the source image and the target image, the
appearance matching loss in [15] was inspired from [17]. The second module is the disparity

9

Figure 1.1 – Loss module from [15]. It includes both left and right disparity maps shown
in orange as well as warped disparity maps in purple and the network’s stereo input images.
Appearance matching loss underlined in green, disparity smoothness loss in red and left-right
disparity consistency loss in blue. The loss is applied every time at each stage, noted C, UC,
S, US and SC respectively for Convolution, Up-Convolution, bilinear Sampling, Up-Sampling
and Skip Connection. Image taken from [15].

smoothness loss, which forces the disparity map to be smooth and prevent discontinuities. The
third module is the Left-Right Disparity Consistency Loss, for which the network is trained to
predict both left and right disparity maps although the only source image is the left view, [15]
takes the right disparity map, warp it into the left disparity map and computes the difference
between them. This way both left and right disparity maps produced by the network will be
coherent.

Total training loss

"Monodepth"’s total loss at each output scale is described as follows :

Cs = αap(C l
ap + Cr

ap) + αds(C l
ds + Cr

ds) + αlr(C l
lr + Cr

lr), (1.1)

where Cap is the appearance matching loss which helps the constructed images to match the
input image, Cds is the smoothness loss, and Clr is the left right consistency loss. Note that
l and r in the loss label is to differentiate between left and right loss.

Appearance matching loss

Monodepth [15] computes the appearance matching loss using a combination of L1 and SSIM
[33] inspired by [39].

10

C l
ap = 1

N

∑
i,j

α
1− SSIM(I l

ij ,Ĩ
l
ij)

2 + (1− α) ‖ I l
ij − Ĩ l

ij ‖ . (1.2)

where I l
ij is the input image, Ĩ l

ij is the reconstructed image and N is the number of pixels. α
is set to 0.85 according to the experiments presented in the paper.

Disparity smoothness loss

C l
lr = 1

N

∑
i,j

| ∂xd
l
ij | exp−‖∂xIl

ij‖+ | ∂yd
l
ij | exp−‖∂yIl

ij‖, (1.3)

where N is the number of pixels, ∂d is the disparity gradients and Iij is the input image.

Left-right disparity consistency loss

C l
lr = 1

N

∑
i,j

| dl
ij − dr

ij+dl
ij
|, (1.4)

Where dl is the left disparity map and dr is the right disparity map. This loss forces the
left-view disparity map to be equal to the projected right-view disparity map as explained in
the paper [15].

1.2.4 Monodepth2

"Monodepth2" [16] is a followup on "Monodepth". Its main goal is also to estimate depth using
a single input image. Apart from training using a stereo pair, it brings the choice to also train
with monocular sequences. Since monodepth also trains for camera pose estimation as an
auxiliary task, it gives the user the flexibility to either train using stereo pairs, monocular
sequences or both.

It can thus be trained either using both or using one of them. For this purpose, aside from
training for depth prediction, they also train for pose estimation.

The model of [16] is composed of two main networks shown in fig. 1.2 : a depth estimation
network and a pose estimation network. At training time, [16] minimises a photometric re-
projection error using the target image I(t), and the source image which is I in the stereo
training, both I(t− 1) and I(t+ 1) sequence frames in the monocular training, and the three
inputs altogether in the monocular stereo training.

11

The photometric error is used between the warped target image and the source image. To warp
the target image, [16] uses the depth map predicted by the depth network, camera intrinsics,
and the pose which is predicted by the pose network. [16] uses edge aware smoothness loss on
the predicted disparity map to smooth and prevent noise and discontinuities in depth maps
edges. It also uses a full-res multi-scale loss presented in fig. 1.2 where they compute the loss
at different scales to reduce artifacts.

Figure 1.2 – Different monodepthv2 components, depth and pose networks’ architectures in
(a) and (b), minimum reprojection loss in (c) and a full-res multi-scale in (d). Image taken
from [16].

Similar to [15], [16] uses a photometric reprojection loss as shown in 1.5 and 1.6,

Lp =
∑
t′

pe(It, It′→t), (1.5)

It′→t = It′〈proj(Dt, Tt′→t,K), (1.6)

where It and It′ are respectively the source image and the target image, Dt is the predicted
dense depth map and K is camera intrinsics matrix. proj() are the 2D coordinates of the
projected depth Dt. pe is the photometric reconstruction error function as shown in 1.7.

pe(Ia, Ib) = α
1− SSIM(Ia,Ib)

2 + (1− α) ‖ Ia− Ib ‖, (1.7)

where Ia and Ib are respectively the source image and the target image, α is set to 0.85
according to the paper.

Per-pixel minimum reprojection loss

The main contribution in the reprojection loss function is shown in eq. 1.8, where rather than
average the loss over all source images, they simply take the minimum,

12

Lp = min
t′
pe(It, It′→t) (1.8)

Auto-Masking Stationary Pixels

Per pixel mask is applied to avoid stationary pixels contaminating the loss as shown in eq. 1.9

µ

[
min

t′
pe(It, It′→t) < min

t′
pe(It, It′)

]
(1.9)

Final loss

We finally combine all losses to have the total loss shown in eq. 1.10

L = µLp + λLs, (1.10)

where λ is set to 0.001 according to the paper.

1.3 Data sets

Several datasets are provided for either depth completion or depth estimation tasks. There are
datasets for the indoor environment and others for the outdoor environment. Some methods
test their models on both categories. Although there exist several benchmarks for the depth
estimation task, no dataset focuses on solving the depth estimation task for train navigation.
We can divide datasets in two main categories : synthetic and real. There exists a variety
of datasets for both indoor and outdoor environments for both the synthetic and real cases,
however there are no suitable datasets in our scenario, which is estimating depth for train
sequences from a single image. The following section presents a brief description for some
available datasets for depth estimation tasks.

1.3.1 Real world datasets

NYU-Depth V2 [26] is a dataset of video sequences of different indoor scenes, it has both
RGB images and its corresponding depth retrieved from Microsoft kinect.

ScanNet [6] is also an indoor dataset but aside from depth estimation it is also used for other
tasks such as 3d object classification and semantic voxel labelling. It features over 1500 indoor
scenes, its 3D camera pose annotations, surface reconstructions and instance-level semantic
segmentation.

13

Figure 1.3 – Examples of NYU dataset, RGB image examples, raw depth image and the
class labels from the dataset, Image taken from [29]

Figure 1.4 – Scannet dataset [6] examples. reconstructed 3D structures with its instance-
level object annotations, each instance is presented with a different color. Image taken from
[6].

14

Sun3D [35] SUN3D : provides RGB-D scenes with annotated objects and camera pose for
large scale indoor environments. The dataset itself however, is reconstructed mainly using
structure from motion technique (SFM).

(a) (b)

Figure 1.5 – Sun3d 2D view-based (a) and 3D place-centric (b) examples, images taken form
[35].

Kitti [14] is a dataset of outdoor environments. It was developed as a benchmark for different
computer vision tasks such as optical flow, visual odometry, single image depth estimation,
depth completion, semantic segmentation, etc. Kitti sequences have been recorded with the
AnnieWay mobile platform which includes two high-resolution color and grayscale video came-
ras, velodyne laser scanner for ground truth depth maps and a GPS/IMU localisation system.
For the purpose of solving depth estimation and depth completion tasks, Kitti features 93 000
RGB images and their corresponding sparse Lidar depth maps. Kitti dataset image examples
are shown in fig .1.6.

Cityscapes [5] is also a dataset for outdoor environments, it has stereo sequences of fifty
different cities in different weather conditions ans corresponding GPS coordinates and ego-
motion form vehicle odometry. Cityscapes focuses on different computer vision tasks such
as semantic understanding for outdoor scenes, and object detection. Examples of Cityscapes
dataset are shown in fig . 1.7.

1.3.2 Synthetic datasets

Interiornet [22] is a synthetic dataset for indoor environments. It features millions of objects
and difference scenes with their corresponding ground truth depth. This dataset also comes

15

Figure 1.6 – Two frames example of Kitti dataset. Images taken from [27].

with an interactive simulator to help create monocular and stereo camera trajectories from a
given layout database or different 3D scenes.

Vkitti [12] is the synthetic version of Kitti dataset. It is created with the Unity game engine
and recreates the virtual version of Kitti sequences along with their ground truth depth.
Vkitti recently published its latest version Vkitti2 [3]. Examples of Vkitti dataset are shown
in fig .1.8.

Just like Vkitti, Synscapes [24] is the virtual version of cityscapes. It was generated using a
photorealistic rendering technique. As it was created to be similar to cityscapes, it is used for
the same tasks cityscapes was created for, such as for example, depth estimation and semantic
segmentation.

4D light field [18] introduces 24 synthetic scenes with their corresponding depth ground truth.
It provides 12 other scenes which are not part of the benchmark but are used for the purpose
of evaluation. Example of 4D Light Field dataset is shown in fig . 1.9.

16

a

b

c

Figure 1.7 – Example of Cityscapes input image and GPS position visualisation in (a), finely
annotated image in (b) and sparse depth map in (c). Images taken from [30].

17

Figure 1.8 – Examples of different kitti [14] and Vkitti [12] images, original kitti in top, the
first version of virtual kitti in the second row and the second version of virtual kitti (Vkitti
2) in the last row. Images are taken from [10]

Figure 1.9 – 4D Light Feild [18] dataset example. Images are taken from [18].

18

1.4 Train datasets

WildDash [36] is a dataset for driving scenarios of different vehicles in different weather
conditions and different environments and countries. WildDash’s purpose is to provide a
benchmark for different segmentations tasks. We are particularly interested in RailSem19
which is a sub-dataset of the Wilddash dataset.

RailSem19 [37] offers sequences from the driving perspective of trains and trams. It includes
8500 images taken from the rail vehicle. It provides semantic annotations for each frame.
RailSem19 is the only dataset that is concerned about trains and trams. Unfortunately, it
only provides annotations for segmentation tasks.

Figure 1.10 – Example of wildDash [36] dataset, input image, annotated dense ground truth
and color legend. Images taken from [36].

Figure 1.11 – RailSem19 [37] dataset example, input image, annotated dense ground truth
and color legend. Images taken from [37].

19

Chapitre 2

Dataset generation

2.1 Introduction

As we have seen in the first chapter, data sets of outdoor environments with Lidar ground
truth, stereo images and/or sparse depth maps retrieved from depth sensors are available,
but the vast majority of them target autonomous car driving scenarios. However, it is quite
difficult to find datasets for other domains such as train navigation. For this purpose, in this
chapter we will explain the process used to generate navigating trains dataset that can be
used to train depth estimation algorithms. Supervised methods have shown promising results
in depth estimation from a single RGB image, yet as ground truth depth maps are difficult to
acquire, we tried to look for an alternative way to provide a supervisory signal to the network.

One way to provide that is to rely on the geometric constraints of the scene which will allow
us to retrieve part of the depth map and use it in the training phase. In addition we can also
rely on the rails dimensions in the scene to retrieve part of the depth map of an RGB image.
Depth information will be extracted mainly from geometric constraints of a moving camera
in a mostly static scene and rails standard dimension and geometry. In this chapter, we will
explain how we used the rails standard parameters to extract the focal length of the camera
in a specific sequence and then use it to compute a depth map inside the rails region to use
it as ground truth during the training process.

2.2 Data video sequences

The sequences we used for this data set were downloaded from the "Rail cabrides" website
[28], which includes several navigating train sequences that have been recorded in different
countries. Rail cabrides includes more than 8000 video sequences, mostly recorded from the
driver’s cabin. This collection includes different types of rail vehicles, including : metro, train,

20

tram, subways. Recordings are available in different weather conditions (rain, snow, fog, sun-
shine, cloudy), and also available underground. Sequences that were chosen for our dataset
are metro sequences recorded either in town or country side of the Netherlands exept for the
last sequence which is a train sequence. Sequences lengths are generally between 15 to 40
minutes as shown tab. 2.1. Note that we omitted the frames of the trains navigating inside
tunnels.

Example image Fps Duration Location URL

25 18 minutes 57
seconds

Haarlem -
Amsterdam Link1

30 32 minutes 14
seconds

Haarlem -
Alkmaar Link2

30
1 hour 18
minutes 20
seconds

Apeldoorn
-Almelo -
Enschede

Link3

25 43 minutes 11
seconds

Amersfoort -
Schothorst -
Amsterdam

Link4

30 27 minutes 26
seconds

Uitgeest -
Beverwijk -
Haarlem

Link5

30 39 minutes 31
seconds

Rotterdam -
Utrecht Link6

30 26 minutes 31
seconds

Zwolle - Nijverdal
West Link7

Table 2.1 – Informations about sequences present in the dataset. Example image, fps, dura-
tion, location and direct link to the sequence.

21

2.3 Estimating the camera focal length from rails

Standard parameter of rail tracks made it possible to extract the ground truth map, however
it is only possible to extract the ground truth inside the railroad tracks.

To extract the ground truth depth for video sequences we will first compute the camera focal
length of each sequence in the dataset using standard gauge rail parameter and geometry
constraints. Then having the camera focal length will allow us to compute the depth of each
frame in the corresponding sequence. Finally we will validate each focal length using manually
identified objects visible in both the video frame and calibrated overhead imagery.

2.3.1 Rails parameters

Two important parameters are used in the depth map computation. The first is rail gauge,
also called track gauge, and is the measurement between the two inside faces of the rails (see
fig. 2.1). The other parameter is the distance between two cross ties as shown in fig. 2.1,
the cross tie or also called railroad tie (or rail road sleeper) is the rectangle connecting two
railroad tracks and is usually made from either wood or concrete. Values in rail transport
constructions differ according to the material of the railroad tie. Note that the values shown
in both fig. 2.1 and fig. 2.1 are the values for concrete railroad ties.

22

(a)

(b)

Figure 2.1 – Railroad parameters. Different rail gauge values [34] with concrete railroad ties
in (a). The most common rail gauge value is the standard value. Note that values change
according to the material of the railroad tie which could be either wood or concrete. Standard
concrete value between rail road sleepers in (b).

2.3.2 Computing the camera focal length

To generate the train depth map data set, we start by computing the camera focal length f
for each one of the sequences. Note that we assume a pinhole model, thus there is no lens
distortion effects.

The problem is formulated as shown in fig. 2.2. The relationship between the sleepers’ distance
in the image plane D, the real distance d of the sleepers, the focal f is explained by

z
D
2

= f
d
2
⇒ z = fD

d
. (2.1)

If we take the depth value z of each rail sleeper as shown in fig. 2.2, and apply the formula
we will have :

23

f

D

(a) (b)

Figure 2.2 – Scene parameters used to compute camera focal length shown on top view (a)
and the image plane (b) : the distance between two railroad ties ∆z, rail road ties value D,
railroad tie values in the image plane d0 . . . dn and railroad depth values z0 . . . zn.

z1 = fD

d1
, z2 = fD

d2
,

z1 − z2 = ∆z, fD

d1
− fD

d2
= ∆z,

f(D
d1
− D

d2
) = ∆z, f = ∆z

D
d1
− D

d2

.

(2.2)

If we consider n railroad sleepers as shown in fig. 2.2 the problem will then be formulated as
follows :

24

z0 = fD

d0
, z1 = fD

d1
, z2 = fD

d2
, . . . , zn = fD

dn

f
D

d0
= f

D

d1
−∆z = f

D

d2
− 2∆z = f

D

d3
− 3∆z . . . = f

D

dn
− n∆z

n(f D
d0

) = (f D
d1
−∆z) + (f D

d2
− 2∆z) + (f D

d3
− 3∆z) + . . .+ (f D

dn
− n∆z)

n(f D
d0

) = fD(1
d1

+ 1
d2

+ . . .+ 1
dn

)−∆z(1 + 2 + . . .+ n)

n(f D
d0

) = fD
n∑

i=1

1
di
−∆z(n(n+ 1)/2)

f =
−∆z n(n+1)

2
(n

d0)−
∑n

i=1
1
di

.

(2.3)

To compute f for each selected frame, we need railroad ties values in the image plane. Railroad
ties in the plane image are computed from manually annotated frames as shown in fig. 2.3, n in
eq. 2.3 shows the number of annotated sleepers. A minimum of 2 rails should be annotated to
compute the distance between two railroad ties in the image plane. In most of the experiments
4, 6 or 8 rails are manually annotated. Note that, since the camera is assumed to be static
throughout the entire sequence, this manual intervention needs only to be done in a single
image for each sequence.

Figure 2.3 – Annotated railroad ties, annotation is done from left to right and starting from
the inside faces of the rails.

2.3.3 Rails detection

Before computing the depth map we need to detect rails road track. For this, we used Hough
transform [9] to detect the rails as long lines in each frame as seen in fig. 2.4, at which the
depth map later on in computed.

25

Figure 2.4 – Example of rail detection process on one of the frames in one sequence. rail
detection is processed using Hough transform on a masked region (rails region).

The rails are centred in the middle of the frame, in order to detect the long lines of rails only,
we used a mask which excludes the whole pixels from the long line detection algorithm aside
from the rails.

After detecting rail tracks, we label the rail that is detected in the first half of the frame,
according to the width, as left and the rail that is in the second as right as shown in fig. 2.5.

Figure 2.5 – Define left and right tracks in the rails : to compute the depth map inside
the rail, similarly to annotating railroad ties, we defined the left and the right rail, marked
respectively with blue and red.

26

2.4 Estimating the depth from rails

Rails depth map of a given annotated location inside the rails starting form the inside faces
of the rails are computed using the average focal length with the following formula, z = fD

d .
Note that this depth map extraction is only applicable in rails appearing as straight line in
the image planes, we cannot generate the depth map while the train is turning.

With the definition of the left and right rail we now can compute the distance d of each pixel
in the image plane from the right with its corresponding pixel from the left. Fig. 2.6 shows
the corresponding depth map of the annotated frame in fig. 2.3.

Figure 2.6 – Visualize depth map inside rails : the depth map corresponds to the same length
of annotated left and right rail, the depth is coded here in the picture from black (nearest
value of depth) to white (farthest value of depth), the color bar shows the values of depth in
meters. The values of the ground truth depth are real values and not relative.

2.4.1 Validation

To validate the recovered depth map using our proposed technique, first we manually identified
recognizable landmarks in the sequence, we computed the depth of its furthest point and
closest point using the rails as reference since we only can compute the depth of the rails,
then we computed its distance by subtracting the depth of the furthest point in the object
and the closest one.

Afterwards, we located the same landmark from overhead imagery obtained from google maps
and measured its distance to compare it to the computed distance for validation. Fig. 2.7 show
3 examples of sequence validations. In the first example we chose to validate the sequence
using the bridge distance, Overhead imagery distance is about 46 meters, using the eq. 2.1
we found that the length of the bridge is 48.8 ±4

2 meters.

27

(a) Bridge length = 48.8199 ±4
2 (b) Bridge length in google maps = 46

(c) Object length = 10.88 ±2 (d) Object length in google maps = 9.22

(e) Stop distance = 123.51 ±6
5 meters. (f) Length maps = 119.85 meters.

(g) Distance marked in green = 58.65 ±3
2 (h) Distance in google maps = 60.81

Figure 2.7 – Example of validation using overhead imagery (google maps in our case), for
validation frames (a), (c), (e) and (g). (b), (d), (f) and (h) are the corresponding real world
values in meters of the bridge, the object (small house), the stop length and the distance
between two electric power traction respectively.

28

2.5 Data set

To generate the full dataset, we first have to compute f for each sequence in the dataset as
explained in sec.2.3. Then, we detect the rails in the frames. After that, both left and right
rails are detected, we finally can compute the depth map of each frame in the sequence.

An example of the whole generation process is shown in fig. 2.8.

(a) (b)

(c) (d)

Figure 2.8 – Example of a depth map computed from the input frame (a). depth is computed
using the rails detected in (b) and left/right rails are annotated in (c). Depth (d) ranges from
near (dark purple) to far (yellow) according to the color bar shown on the right. The main
goal of the figure is to give an idea about the distance inside the rails, thus the density of
points being smaller for from the camera does not present a problem.

2.5.1 Data set details

The data set is composed of 7 sequences with different lengths and different camera focal
lengths. Fig. 2.9 shows all sequences focal lengths. The whole dataset contains 9840 frames as
shown in fig. 2.10. Since the ground truth is not available for all frames, the number of depth
maps available is only 6696. It is not possible to recover the rails depth map for all the frames
as detecting the rails in some frames is not possible. This dataset will be used for finetuning
experiments presented in chapter 3.

29

Video frames data set is formulated as follows :
80% of each one of the 6 sequences is used for training, 5% of each of the 6 sequences is used
to separate training frames from validation frames so that validation and training frames look
different. The rest (15%) is used for validation. Fig. 2.10 shows the number of frames used
for each sequence.

Figure 2.9 – Focal lengths of video sequences in the data set.

Figure 2.10 – Number of frames per sequence.

30

0 250 500 750 1000 1250 1500 1750

0

200

400

600

800

1000

0

10

20

30

40

50

60

0 250 500 750 1000 1250 1500 1750

0

200

400

600

800

1000

0

10

20

30

40

50

60

0 250 500 750 1000 1250 1500 1750

0

200

400

600

800

1000

0

10

20

30

40

50

60

0 250 500 750 1000 1250 1500 1750

0

200

400

600

800

1000

0

10

20

30

40

50

60

0 250 500 750 1000 1250 1500 1750

0

200

400

600

800

1000

0

10

20

30

40

50

60

0 250 500 750 1000 1250 1500 1750

0

200

400

600

800

1000

0

10

20

30

40

50

60

0 250 500 750 1000 1250 1500 1750

0

200

400

600

800

1000

0

10

20

30

40

50

60

(a) (b)
Figure 2.11 – Example of input image (a) with its corresponding ground truth (b) for each
sequence in the data set. Ground truth ranges from near (dark purple) to far (yellow) with a
maximum set to 60 meters according to the color bar shown on the right of each depth map
example.

31

2.6 Conclusion

In this section, we explained how we generated our train data set, and how it is possible to
extract informations about the image, the focal length in our case, relying on the geometry
of the scene. Having the focal length provided made it possible to compute a partially known
depth values of the rails track which would serve as a supervisory signal to the network later
on. The next section will cover our main approach which consists of fine tuning "Monodepth2"
on train sequences, using both the focal lengths and the rail track depth values that we have
computed in this section.

32

Chapitre 3

Finetuning Monodepth on train
sequences

3.1 Introduction

In this chapter we will cover fine tuning experiments held to solve depth map estimation for
train navigation.

During the first part of the chapter we will present a brief description of Monodepth2’s [16]
network which is actually the model we used to conduct our fine tuning experiments, its
loss function, and the modification we made to the loss function during the training process.
Two main sets of experiments are made. The goal of the first set is to see the influence of
training the network with and without depth ground truth. The goal of the second set is to
see the influence of the focal length on the finetuning process. For this purpose, different focal
lengths will be used, such as kitti focal length, the sequence focal length, and an average of
all sequences focal length.

3.2 Experimental methodology

In our project, we will use Monodepth2 [16] pretrained model to solve for depth estimation
on train dataset. Monodepth2 [16] explained in chapter 1 has two main subnetworks : one for
depth estimation and the other for pose estimation as shown in fig. 3.1.

Monodepth estimates the depth of a given image by producing a dense depth map such that
it minimises the photometric reprojection error as explained in chapter 1, monodepth also
uses the auto-masking method to retrieve pixels moving at the same speed as the camera
as well as sky pixels from their loss function by using an identity reprojection loss on those

33

pixels. It is trained on the Kitti dataset [14] with Kitti focal length which is 721.5377 pixels.
During our experiments, we will finetune using the same model with some changes. The first
goal is to see the influence of the depth map ground truth we have computed in the rails
region (see section 3.3). For this purpose, we will finetune the model first without changing
anything. Then, we will exclude the rails region from the automasking technique, and finally
we will include the depth ground truth we have calculated in the input of the network. For
this reason, we will change the loss function of the rails to an L2 loss between the predicted
output and the depth ground truth. The purpose of the second set of experiments is to see
the impact of the focal length on the results. The original model is trained using Kitti focal
length. In addition, we will train using the sequences focal lengths or the average focal length
of all sequences computed as explained in chapter 2. During these experiments we will first use
only one sequence from our dataset to train on, this sequence is chosen randomly. The chosen
sequence is sequence 4 which has 1043 frames in total, 952 of them have a corresponding
ground truth. Its focal length in pixels is 1039.78.

(a) Depth network

(b) Pose network

Figure 3.1 – Overview of both sub-networks of "Monodeth2" [16], The first sub-network is
a full conv Unet model presented as the depth network in (a). The second is a separate pose
estimation network (b) used to estimate the pose between two temporal frames given as input.

3.3 Impact of ground truth depth

To see the impact of the ground truth on the finetuning process, we conducted the following
sets of experiments. First we finetuned the model without depth ground truth, then we just
excluded the rails region from the automasking loss technique, last we finetuned the model
using the depth ground truth of the rails region.

After examining the influence of ground truth we proposed to improve the results in the sky
region by segmenting the sky’s area in order to exclude it from the automasking loss. All
experiments here are conducted using the Kitti focal length, as the next section will cover
the influence of the focal length of the camera. The first part of the section will cover the

34

experiments of training only on one sequence. We will later train the network on four sequences
(see sec. 3.3.5).

3.3.1 Fine tuning without rails depth ground truth

To solve the problem of standing objects or rails in front of the camera as shown fig. 3.2 (c)
and (d) we finetuned Monodepth2 model on our train sequences dataset. During the current
experiment, we finetuned the pre-trained model as it is. Just as illustrated in the qualitative
results in fig. 3.2, the model creates an "infinite depth" inside the rails, depth values similar to
the sky depth values, present in the fig. 3.2 as dark region inside the rails. In order to ensure
that this problem is not a result of lack of data, we trained the model on the full dataset
which gave the same result shown in fig. 3.3.

(a) (b)

(c) (d)

(e) (f)

Figure 3.2 – Depth results from a single input image in (a) and (b), using Monodepth2
pre-trained model in (c) and (d) and fine tuned on train data set using Kitti focal length in
(e) and (f).

(a) (b) (c)

Figure 3.3 – Depth results from different input images using a model trained on the full set
of data, to show that the problem is not a matter of less data.

35

3.3.2 Finetuning without masking out the rails area from the loss
function

In order to avoid objects that have the same speed as the camera and stationary scenes from
affecting the loss function, Monodepth2 used the auto-masking technique explained in chapter
1, which eliminates pixels belonging to those objects from the loss function. Rails which do
not change appearance while the camera is moving appear as objects that have the same
speed as the camera, sometimes rail sleepers appear as such, just the same case as the sky.
Most of the pixels in these regions are excluded from the loss function as shown in fig. 3.4.
Black pixels are removed from the loss function by the network, which results in infinite depth
(the same depth as the sky) predicted by the network inside the rails area as this is the best
optimisation in this case for the network.

Figure 3.4 – Auto-masking : example of visualisation of the auto-masking process, where
black pixel are removed from the loss function.

To solve this problem, during this experiment we excluded the rails region from the auto-
masking process. As shown in fig. 3.5, the new pixels present in white in the tracks area are
now included in the loss function.

Figure 3.5 – Exclude rails pixels from auto-masking technique by adding a mask (white)
inside the tracks. The network is now able to apply a reprojection loss on rails region. Images
are taken from the same scene as fig . 3.4 but they do not represent the same frames.

As shown in fig.3.6, excluding the rails region from the auto-masking technique does not solve
the problem of the rails region appearing far from the camera.

Comparing to the fine tuning without modifications results, excluding the rails from the auto-
masking technique does not make the whole area of the tracks appear to have "infinite depth"
(having the same depth as the sky), instead only the last part of the rails (the intersection of
the two tracks) have a similar depth to the sky as shown in fig .3.6.

For this reason, we have tried to expand the white area to cover the rails, and outside the
rails, or to only include the railroad ties using a dilation or an erosion as shown in fig. 3.7.

36

Figure 3.6 – Predicted depth map examples for four different frames of fine-tuning expe-
riment without including the rails in the automasking technique. Farthest values of depth
appears in dark purple, such as the sky area. The rails also appear in dark purple which
means that the rails are estimated as objects located far from the camera, especially the
regions around the tracks intersection.

(a) (b) (c)

Figure 3.7 – Auto-masking technique used with "Monodepth2" excluding the rails area, black
pixels are where the loss function is not applied, white pixels are taken in consideration in
the reprojection loss function. the mask in (a) and (b) dilated to cover the rails, the mask in
(b) is eroded so that it wouldn’t cover the whole area.

Results shown in fig.3.8 have shown a slight improvement compared to the previous one, no
part of the tracks appear to be very far from the camera and have the same depth as the sky,
however, the depth inside the tracks is still inappropriate as the tracks still appear farther
then they should be.

37

Figure 3.8 – Predicted depth map examples for different frames of the fine-tuning experiment
without including the rails in the automasking technique. These results are the results of the
fine-tuning experiment using the eroded mask as present in fig.3.7 in (c). The tracks do not
appear very far as in the previous experiments, however, the depth in the rails region still
appear farther than it should be.

3.3.3 Finetuning with rails depth ground truth

As applying the reprojection loss on the rails region was not sufficient to solve the problem,
we have applied a different loss function for the rails area only. We use an L2 loss between
the predicted depth output d̂ inside the rails and the depth ground truth d over the pixels N
which have the depth values provided. Note that the depth value of each pixel is in meters as
shown in chap.2.

Ygt = 1
N

∑
(di − d̂i)2 (3.1)

As fig. 3.9 illustrates, adding the ground truth loss for the rails region has solved the "infinite
depth" problem of the rails (where depth predictions are the same as the depth predictions
of the sky in the scene), the depth map is also generated with values in meters. However, one
other problem persists which is that the network poorly predicts the depth of the sky.

38

Figure 3.9 – Predicted depth map examples for fine tuning experiment. Here we have used
the corresponding depth ground truth values.

3.3.4 Finetuning with rails depth ground truth and sky masking

To solve the sky problem, just as we excluded the rails from the auto-masking process, we
also excluded the sky region by segmenting the sky and aerial lines using [41] [42] ‘s code. We
gave the sky mask of each corresponding image as an input to the network.

(a) (b) (c)

Figure 3.10 – Sky and aerial lines segmentation from input image in (a), results of segmen-
tation in (b), sky mask used as input to the network in (c).

Just as qualitative results show in fig. 3.13, segmenting the sky region has solved the apparent
problem of the sky depth, although the edges are still not well defined the rails depth map
show appropriate values compared to previous experiments (the depth inside the rails is not
far comparing to its surroundings).

39

Figure 3.11 – Predicted depth map examples for fine tuning experiment using both ground
truth depth values in the loss function and the sky segmentation mask. By providing the sky
segmentation mask the network would apply the loss in the sky’s area.

3.3.5 Finetuning with rails depth ground truth and sky masking on four
sequences

In this experiment we used four sequences for fine-tuning with ground truth provided and the
the segmented sky excluded from the auto-masking technique. Sequences are chosen randomly.
Sequences used for the fine-tuning are : sequences 0, 1, 4, 7 with corresponding focal lengths
2323.2, 2037.66, 1039.78, 2054.41. Fig. 3.12 shows different predicted depth map examples. In-
cluding the sky and aerial lines segmentation mask have shown a noticeable improvement in
the results. It helped avoid the aerial lines to appear as standing object in front of the camera
as well as other depth artifacts.

Figure 3.12 – Predicted depth map examples for fine tuning experiment with four sequences
instead of only one sequence. Examples are chosen randomly.

40

3.3.6 Comparison of the different experiments

As have previous results shown, providing the ground truth depth map as a supervisory signal
to the network have shown important improvement in the predicted depth maps. It has solved
the problem of very far depth values present in the depth maps as well as inappropriate depth
inside the rails tracks.

Qualitative results in fig. 3.13 have shown a noticeable improvement adding the sky and aerial
lines segmentation process which helped avoid the aerial lines to appear as standing object in
front of the camera as well as other depth artifacts.

Quantitative results to compare all previous experiments are shown in Tab. 3.1. We compare
the results of several experiences finetuned differently. First without using the ground truth
provided for the area of the rail (No GT), second using a mask on the area of the rail (Masked
Rails), third using the ground truth map provided for the area of the rail (Provided GT),
then using both the ground truth provided and a mask for the sky (GT and sky mask), and
last using all four sequences for training with both rails ground truth and the sky mask (four
seq exp). The results in Tab. 3.1 show that providing the network with rails ground truth
increases accuracy, which is especially remarkable on the metrics, where the root mean square
error (RMSE) is 8.1283m when fine-tuning without ground truth and 4.6496m when training
providing the ground truth. the same goes for the Root Mean Squared Logarithmic Error
(RMSE log) and the absolute relative error (Abs rel). According to the metrics, the best
one-sequence experiments is when we used both the ground truth depth maps and the sky
segmentation mask where the value of the RMSE metric is 4.5691m compared to 4.6496m
when only the ground truth depth maps are provided. Results are best as expected when
training using four sequences where the RMSE is 2.2275m compared to 4.5691m when fine-
tuning using one sequence only.

41

RMSE RMSE log Abs Rel

Monodepth 2 5.0217 0.5517 0.7060
No GT 8.1283 0.9674 1.1328

Masked Rails 4.7548 0.5455 0.7001
Provided GT 4.6496 0.5289 0.6868

GT and sky mask 4.5691 0.5252 0.6822
Four seq exp 2.2275 0.36918 0.3898

Table 3.1 – Quantitative results of the different fine tuning experiments. The last column pre-
sents the absolute relative error. Note that "No GT" presents the experiment without ground
truth provided, "Masked Rails" is the experiment with the mask used on rails, "Provided GT"
is the experiment where the ground truth depth is provided, "GT and sky mask" presents
the experiment with both ground truth and sky segmentation provided, the last experiment
"Four seq exp" presents the fine tuning using the ground truth and the sky segmentation on
four sequences instead of one sequence which as expected have the best results.

42

input image

Monodepth
validation

Fine tuning
without ground

truth

Fine tuning with
mask on rails

Fine tuning with
rails ground truth

Fine tuning with
rails ground

truth and with
sky masking

Fine tuning with
rails ground

truth and with
sky masking on
four sequences

Figure 3.13 – Qualitative results of different experiments on two input images. Depth map
varies from yellow (closest) to dark blue (farthest). We can see that the model with all
conditions applied (depth ground truth and sky and aerial lines masking) enhanced the depth
map of the ground and its surroundings and omitted depth artifacts from the sky.)

43

3.4 Influence of focal length

The main goal of this set of experiments is to see the influence of the focal length on the
resulting depth map. To do so, we will be fine-tuning the network on one sequence only with
a specific focal length. We first conducted two experiments on a single, randomly-selected
sequence : 1) Fine tuning using the Kitti focal length. 2) fine tuning using the sequence focal
length. Then, we experimented on four sequences, trying first with the Kitti focal length
then each sequence’s focal length and last we fine-tuned on the average of all sequences’ focal
lengths.

3.4.1 Fine tuning on one sequence

Fine-tuning using the Kitti focal length

The pretrained model is trained initially using the Kitti focal length which has a value of
721.5377. During the following experiment we will fine tune our model with the same focal
length.

As explained in chapter 2, the ground truth loss is only applied on the rails area, where the
ground truth depth values in meters are provided. The reprojection loss is applied outside the
rails area. Fig. 3.14 shows a different validation example during different epochs for one input
image. Fig. 3.15 shows other examples for different input images after training the network.

As shown in fig. 3.14 depth map results have improved, although we are using the same focal
length for all the sequences which are actually captured using different cameras with different
focal lengths.

44

(a) (b)

(c) (d)

(e) (f)

Figure 3.14 – Validation examples : depth maps from a single input image in (a) during
validation process in the first epoch in (b), second epoch in (c), fourth epoch in (d), epoch 25
in (e) and epoch 30 in (f).

Figure 3.15 – Other examples of fine-tuning using the Kitti focal length for different input
images.

Fine-tuning using sequence focal length

In this experiment we have changed the focal length during the finetuning process, so the
model which actually is trained using Kitti focal length will be finetuned on one sequence using
the sequence focal length which was estimate using the methodology presented in chapter 2.

Fig. 3.16 shows depth maps predicted during the validation stages of some epochs for the
same input image. Fig. 3.16 shows depth maps estimation for different other input images
after fine-tuning.

As shown in fig. 3.16 depth map results haven’t shown a significant qualitative difference com-
pared to the fine-tuning experiment using the Kitti focal length. Both fine-tuning experiments
have shown a significant improvement for depth map estimation results.

45

(a) (b)

(c) (d)

(e) (f)

Figure 3.16 – Validation examples : depth map from a single input image in (a) during
validation process of fine tuning using sequence focal of the first epoch in (b), second epoch
in (c), fourth epoch in (d), epoch 25 in (e) and epoch 30 (f).

Figure 3.17 – Other examples for finetuning using the sequence focal length for different
input images.

3.4.2 Fine tuning on four sequences

Fine-tuning using Kitti focal length

In this experiment we used four sequences for finetuning with ground truth provided and the
sky and the aerial lines of the train segmented. Fig.3.18 shows different predicted depth map
examples.

46

Figure 3.18 – Predicted depth map examples for fine tuning experiment with the Kitti focal
length on four sequences.

Training with four sequences with the Kitti focal length has shown enhanced depth map
estimation than training only with one sequence notably far in the scene by the end of the
rails where depth in previous experiments seem farther than what it should be. The depth
map is also less fuzzy and details of the scene can be better observed.

Fine-tuning using each sequence focal length

During this experiment, we used each sequence focal length during fine tuning.

Quantitative results shown in fig. 3.19 shows worse results than the previous experiment.
Using a different focal length for each sequence during the traning may have confused the
network and made it overfit on each ground truth provided for the rails. Being specific about
the focal length may have caused the network a lack of generalisation.

47

Figure 3.19 – Depth map prediction examples for fine-tuning experiment using each sequence
focal length. Most of the results show inappropriate depth values either inside the tracks or
in the left and right areas of the tracks.

Fine tuning using average focal length

In this experiment we used the average focal length of all sequences in the dataset during
training, As shown in fig. 3.20, depth map inside the rails have improved along with the
image details compared to the previous experiment where we fine tuned the model using four
different focal lengths.

48

Figure 3.20 – Depth map estimation examples of the fine tuning experiment using the average
focal lengths of all sequences used in the fine tuning process.

Fine-tuning with four sequences using the Kitti focal length and using an average focal length
have shown similar results, where depth map predictions of the scenes are more detailed and
better than the fine-tuning experiments with only one sequence.

3.4.3 Results comparison

The reason for these sets of experiments is to see the influence of the focal length alone. All
the experiments are trained using ground truth loss in the rails region, while not all the frames
have the ground truth provided, a lot of them do as explained in chap. 2. Frames who have
the ground truth provided, an L2 loss function is applied in the rails area, while for the others
for which the ground truth is not provided, the reprojection loss is applied in the area.

All the frames have the sky and the aerial lines of the train segmented and excluded from the
auto-masking process. The only change made in the experiments is the focal length used.

The qualitative results show no large difference in the predicted depth maps of different
experiments, apart from the sky’s region which appears more fuzzy using the Kitti focal
length for fine tuning. Table 3.2 shows quantitative results of different experiments. Fig. 3.21
shows qualitative results of all different experiments for the same input image.

49

RMSE RMSE log Abs Rel

Monodepth 2 5.0217 0.5517 0.7060
1 Kitti FL 4.5691 0.5252 0.6822

1 Sequence FL 4.6521 0.5286 0.6743
4 Kitti FL 2.2275 0.36918 0.3898

4 Sequence FL 2.2979 0.3741 0.3965
4 average FL 2.2408 0.3714 0.3915

Table 3.2 – Quantitative results. Comparison of fine tuning experiments using different focal
lengths. All fine tuning experiments in this table are conducted with both the ground truth
depth maps and the sky segmentation provided. "1 Kitti FL" is the experiment using one
sequence only with kitti focal length during finetuning, "1 Sequence FL" is the experiment with
one sequence and finetuning using the sequence focal length. "4 Kitti FL" is the experiment of
finetuning using all 4 sequences and using Kitti focal length, "4 Sequence FL" is the experiment
of finetuning all four sequences using each sequence focal length and last "4 average FL" is
the experiment using an average focal length of all the sequences used in the training.

50

input image

Monodepth
validation

Fine tuning with
kitti focal length

with one
sequence

Fine tuning with
sequence focal
length with one

sequence

Fine tuning using
Kitti focal length

with four
sequences

Fine tuning using
the average focal
length with four

sequences

Fine tuning using
each sequence’s
focal length with
four sequences

Figure 3.21 – Qualitative results of different experiments on two input images, depth maps
as mentioned before varies from yellow (closest) to dark blue (farthest). All experiments have
both rails ground truth depth maps and sky segmentation provided. Monodepth2 depth maps
on those two frames are also provided for the purpose of comparison.

51

3.5 Failure cases examples

Failure cases examples show that there still are some frames where the corresponding depth
map predictions show that the depth inside the rails is farther than its surroundings as shown
in fig. 3.22. This may because of the difference of the focal length of each sequence as these
failures are only present in the fine tuning experiments using more than two sequences. Fine
tuning using only one sequence did not show such failures. Another failure case shown here
is the depth of the rails adjacent to the main rails, which appears farther than it should be,
this problem may be solved if we also provide the rails depth map of the adjacent rails

Figure 3.22 – Example of failure cases. All experiments show inappropriate predictions of
depth map values inside the main rails or in the adjacent rails.

3.5.1 Conclusion

During the finetuning experiments, adding the ground truth depth maps of the rails as a
supervisory signal to the network has shown a significant improvement in the results, the
same as excluding the sky’s region from the from the automasking technique applied on the
loss function. As for the focal length, using an average focal length was a good choice for
the network, using however multiple choices for the focal length would confuse the network
during training.

52

Conclusion

Depth is a key component for different applications as it brings important informations about
the scene, autonomous driving and navigation being one of the most popular ones. Unfortu-
nately, not all domains have gained the same attention. For instance we don’t find work for
single image depth estimation designed specifically for trains. We also find more important
contributions in car datasets compared to train datasets.

In this work, we were interested in the estimation of depth maps from a single RGB image
for train Sequences. To this end, we first introduced a train (subway) dataset. The dataset
includes partially known depth maps for corresponding sequences used as a supervisory signal
for a network previously trained on a different dataset. To extract the ground truth depth map,
we first chose different train navigation sequences. For each one of the sequences, we started
by determining the focal length using rails standard parameters and geometry constraints.

After computing the focal length, we validated each sequence using overhead imagery by
choosing an object in the scene, computing its size using the calculated focal length and com-
paring it to the distance provided by the overhead imagery. After validating the focal length,
we detected the rails track for the sequences, then we computed the corresponding depth map
of the rails for each corresponding frame. We used these depth maps as a supervisory signal
to the network. We finetuned the Monodepth2 model [16] using the generated dataset. We
have conducted different experiments to see the influence of the retrieved ground truth depth
maps on the fine-tuning process, along with the influence of the focal lengths of the sequences.

First, we finetuned the network without the ground truth depth maps provided. Without
using the ground truth depth, the network was not able to estimate the depth inside the
rails, the estimated depth inside the tracks was very far, similar to the depth of the sky. By
providing the network with the ground truth associated with the frames of each sequence,
the problem of the depth inside the tracks have been solved. To enhance the depth of the sky
and the aerial lines, we have provided segmentation of the sky for each frame to the network
which has improved the results significantly. The goal of the second set of experiments was
to see the influence of the focal length. First, we trained the network with the Kitti focal
length, then using the sequence focal length, and last using an average focal length of all
sequences used during training. Fine-tuning experiments with the Kitti focal length and the

53

average focal length have shown close results. However, providing the network with different
focal lengths for each sequence during training has shown a significant problem in the depth
estimation, where a small part of the rail tracks seems farther than inside the rail tracks. The
influence of the focal length estimation error however will take part in a future work.

We also make an important observation on the number of sequences used for training. While
there is a remarkable difference between using only one sequence and four sequences, where
an important improvement is brought by training with four sequences, we have noticed that
training with more than four sequences has its own problems. Indeed, training with more
than four videos makes the network aware of the tracks adjacent to the main track, for which
we do not have the ground truth depth maps provided. For this reason, inside these rails the
network predicts very far depth, similar to the depth predicted for the sky, just the same
issue we had encountered when we fine-tuned without the ground truth provided for the main
tracks. Although this solution has solved the problem of trains depth maps, there still are a
lot of improvement that could be added to the project. We can provide more corresponding
depth maps as the network works best for sequences who have more depth map provided.
W can also provide the depth of the adjacent tracks so it would be possible to train using a
bigger dataset. We can solve the depth problem for when the train is inside the tunnel, and
train with more varied weather conditions.

54

Bibliographie

[1] A. Atapour-Abarghouei et T.P. Breckon : Real-time monocular depth estimation
using synthetic data with domain adaptation. In Proc. Computer Vision and Pattern
Recognition, pages 1–8. IEEE, June 2018.

[2] Google AI Blog : https://ai.googleblog.com/2019/12/

improvements-to-portrait-mode-on-google.html.

[3] Yohann Cabon, Naila Murray et Martin Humenberger : Virtual kitti 2, 2020.

[4] Zhao Chen, Vijay Badrinarayanan, Gilad Drozdov et Andrew Rabinovich : Esti-
mating depth from rgb and sparse sensing. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

[5] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enz-
weiler, Rodrigo Benenson, Uwe Franke, Stefan Roth et Bernt Schiele : The citys-
capes dataset for semantic urban scene understanding. In Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[6] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser
et Matthias Nießner : Scannet : Richly-annotated 3d reconstructions of indoor scenes.
In Proc. Computer Vision and Pattern Recognition (CVPR), IEEE, 2017.

[7] Scharstein Daniel, Szeliski Richard et Zabih Ramin : A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. In International Journal of Computer
Vision, 2002.

[8] Ruofei Du, Eric Turner, Maksym Dzitsiuk, Luca Prasso, Ivo Duarte, Jason Dour-
garian, Joao Afonso, Jose Pascoal, Josh Gladstone, Nuno Cruces, Shahram
Izadi, Adarsh Kowdle, Konstantine Tsotsos et David Kim : DepthLab : Real-time
3D Interaction with Depth Maps for Mobile Augmented Reality. In Proceedings of the
33rd Annual ACM Symposium on User Interface Software and Technology, UIST. ACM,
2020.

[9] Richard O Duda et Peter E Hart : Use of the hough transformation to detect lines and
curves in pictures. Communications of the ACM, 15(1):11–15, 1972.

55

[10] NAVER LABS Europe : VKitti. https://europe.naverlabs.com/blog/

announcing-virtual-kitti-2/.

[11] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich et Dacheng
Tao : Deep Ordinal Regression Network for Monocular Depth Estimation. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[12] A Gaidon, Q Wang, Y Cabon et E Vig : Virtual worlds as proxy for multi-object
tracking analysis. In CVPR, 2016.

[13] Ravi Garg, BG Vijay Kumar, Gustavo Carneiro et Ian Reid : Unsupervised cnn
for single view depth estimation : Geometry to the rescue. In European Conference on
Computer Vision, pages 740–756. Springer, 2016.

[14] Andreas Geiger, Philip Lenz et Raquel Urtasun : Are we ready for autonomous dri-
ving ? the kitti vision benchmark suite. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2012.

[15] Clément Godard, Oisin Mac Aodha et Gabriel J. Brostow : Unsupervised monocular
depth estimation with left-right consistency. In CVPR, 2017.

[16] Clément Godard, Oisin Mac Aodha, Michael Firman et Gabriel J. Brostow : Dig-
ging into self-supervised monocular depth prediction. The International Conference on
Computer Vision (ICCV), October 2019.

[17] Zhao Hang, Gallo Orazio, Frosio Iuri et Kautz Jan : Loss functions for image restora-
tion with neuralnetworks. In IEEE Transactions on Computational Imaging, December
2016.

[18] Katrin Honauer, Ole Johannsen, Daniel Kondermann et Bastian Goldluecke : A
dataset and evaluation methodology for depth estimation on 4d light fields. In Asian
Conference on Computer Vision. Springer, 2016.

[19] Junjie Hu, Mete Ozay, Yan Zhang et Takayuki Okatani : Revisiting single image
depth estimation : Toward higher resolution maps with accurate object boundaries. In
2019 IEEE Winter Conference on Applications of Computer Vision (WACV), 2019.

[20] Kudan inc. : Depth cameras and RGB-D SLAM. https://www.kudan.io/jp/

archives/526.

[21] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari et Nassir
Navab : Deeper depth prediction with fully convolutional residual networks. In 3D
Vision (3DV), 2016 Fourth International Conference on, pages 239–248. IEEE, 2016.

56

[22] Wenbin Li, Sajad Saeedi, John McCormac, Ronald Clark, Dimos Tzoumanikas,
Qing Ye, Yuzhong Huang, Rui Tang et Stefan Leutenegger : Interiornet : Mega-scale
multi-sensor photo-realistic indoor scenes dataset. In British Machine Vision Conference
(BMVC), 2018.

[23] Fangchang Ma et Sertac Karaman : Sparse-to-dense : Depth prediction from sparse
depth samples and a single image. ICRA, 2018.

[24] Wrenninge Magnus et Jonas Unger : Synscapes : A photorealistic synthetic dataset
for street scene parsing, 2018.

[25] Corey Montella, Timothy Perkins, J. Spletzer et M. Sands : To the bookstore !
autonomous wheelchair navigation in an urban environment. In FSR, 2012.

[26] Pushmeet Kohli Nathan Silberman, Derek Hoiem et Rob Fergus : Indoor segmen-
tation and support inference from rgbd images. In ECCV, 2012.

[27] Karlsruhe Institute of Technology : Kitti. http://www.cvlibs.net/datasets/

kitti/eval_depth.php?benchmark=depth_prediction.

[28] Yvon Rozijn : railcabrides. https://railcabrides.com/en/.

[29] Nathan Silberman : NYU. https://cs.nyu.edu/~silberman/datasets/nyu_depth_

v2.html.

[30] Cityscapes Team : Cityscapes website. https://www.cityscapes-dataset.com/.

[31] Shao uanjie, Li Lerenhan, Ren Wenqi, Gao Changxin et Sang Nong : Domain adap-
tation for image dehazing. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020.

[32] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg, A. Dosovitskiy et T. Brox :
Demon : Depth and motion network for learning monocular stereo. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

[33] Zhou Wang, Alan Bovik, Hamid Sheikh et Eero Simoncelli : Image quality assess-
ment : From error visibility to structural similarity. Image Processing, IEEE Transactions
on, 13:600 – 612, 05 2004.

[34] wikipedia : rail gauge. https://en.wikipedia.org/wiki/Track_gauge.

[35] Jianxiong Xiao, Owens Andrew et Torralba Antonio : Sun3d : A database of big
spaces reconstructed using sfm and object labels. In 2013 IEEE International Conference
on Computer Vision, 2013.

57

[36] Oliver Zendel, Katrin Honauer, Markus Murschitz, Daniel Steininger et Gus-
tavo Fernandez Dominguez : Wilddash - creating hazard-aware benchmarks. In Pro-
ceedings of the European Conference on Computer Vision (ECCV), September 2018.

[37] Oliver Zendel, Markus Murschitz, Marcel Zeilinger, Daniel Steininger, Sara Ab-
basi et Csaba Beleznai : Railsem19 : A dataset for semantic rail scene understanding. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, June 2019.

[38] Huangying Zhan, Ravi Garg, Chamara Saroj Weerasekera, Kejie Li, Harsh Agar-
wal et Ian Reid : Unsupervised learning of monocular depth estimation and visual odo-
metry with deep feature reconstruction. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

[39] Hang Zhao, Orazio Gallo, I. Frosio et J. Kautz : Is l2 a good loss function for neural
networks for image processing. arXiv : Computer Vision and Pattern Recognition, 2015.

[40] Chuanxia Zheng, Tat-Jen Cham et Jianfei Cai : T2net : Synthetic-to-realistic trans-
lation for solving single-image depth estimation tasks. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 767–783, 2018.

[41] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso et Antonio Tor-
ralba : Scene parsing through ade20k dataset. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017.

[42] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso et
Antonio Torralba : Semantic understanding of scenes through the ade20k dataset.
International Journal on Computer Vision, 2018.

58

