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Résumé

À mesure que les réseaux de communication sans fil se développent vers la 5G, une énorme
quantité de données sera produite et partagée sur la nouvelle plate-forme qui pourra être
utilisée pour promouvoir de nouveaux services. Parmis ceux-ci, les informations de lo-
calisation des terminaux mobiles (MT) sont remarquablement utiles. Par exemple, les in-
formations de localisation peuvent être utilisées dans différents cas de services d’enquête
et d’information, de services communautaires, de suivi personnel, ainsi que de commu-
nications sensibles à la localisation. De nos jours, bien que le système de positionnement
global (GPS) des MT offre la possibilité de localiser les MT, ses performances sont médiocres
dans les zones urbaines où une ligne de vue directe (LoS) aux satellites est bloqué avec de
nombreux immeubles de grande hauteur. En outre, le GPS a une consommation d’énergie
élevée. Par conséquent, les techniques de localisation utilisant la télémétrie, qui sont basées
sur les informations de signal radio reçues des MT tels que le temps d’arrivée (ToA), l’angle
d’arrivée (AoA) et la réception de la force du signal (RSS), ne sont pas en mesure de fournir
une localisation de précision satisfaisante. Par conséquent, il est particulièrement difficile de
fournir des informations de localisation fiables des MT dans des environnements complexes
avec diffusion et propagation par trajets multiples. Les méthodes d’apprentissage automa-
tique basées sur les empreintes digitales (FP) sont largement utilisées pour la localisation
dans des zones complexes en raison de leur haute fiabilité, rentabilité et précision et elles
sont flexibles pour être utilisées dans de nombreux systèmes.

Dans les réseaux 5G, en plus d’accueillir plus d’utilisateurs à des débits de données plus
élevés avec une meilleure fiabilité tout en consommant moins d’énergie, une localisation
de haute précision est également requise. Pour relever un tel défi, des systèmes massifs
à entrées multiples et sorties multiples (MIMO) ont été introduits dans la 5G en tant que
technologie puissante et potentielle pour non seulement améliorer l’efficacité spectrale et
énergétique à l’aide d’un traitement relativement simple, mais également pour fournir les
emplacements précis des MT à l’aide d’un très grand nombre d’antennes associées à des
fréquences porteuses élevées. Il existe deux types de MIMO massifs (M-MIMO), soit dis-
tribué et colocalisé.

Ici, nous visons à utiliser la méthode basée sur les FP dans les systèmes M-MIMO pour
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fournir un système de localisation précis et fiable dans un réseau sans fil 5G. Nous nous con-
centrons principalement sur les deux extrêmes du paradigme M-MIMO. Un grand réseau
d’antennes colocalisé (c’est-à-dire un MIMO massif colocalisé) et un grand réseau d’antennes
géographiquement distribué (c’est-à-dire un MIMO massif distribué). Ensuite, nous ex-
trayons les caractéristiques du signal et du canal à partir du signal reçu dans les systèmes
M-MIMO sous forme d’empreintes digitales et proposons des modèles utilisant les FP basés
sur le regroupement et la régression pour estimer l’emplacement des MT. Grâce à cette procé-
dure, nous sommes en mesure d’améliorer les performances de localisation de manière sig-
nificative et de réduire la complexité de calcul de la méthode basée sur les FP.
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Abstract

As wireless communication networks are growing into 5G, an enormous amount of data will
be produced and shared on the new platform, which can be employed in promoting new
services. Location information of mobile terminals (MTs) is remarkably useful among them,
which can be used in different use cases of inquiry and information services, community
services, personal tracking, as well as location-aware communications.

Nowadays, although the Global Positioning System (GPS) offers the possibility to localize
MTs, it has poor performance in urban areas where a direct line-of-sight (LoS) to the satel-
lites is blocked by many tall buildings. Besides, GPS has a high power consumption. Conse-
quently, the ranging based localization techniques, which are based on radio signal informa-
tion received from MTs such as time-of-arrival (ToA), angle-of-arrival (AoA), and received
signal strength (RSS), are not able to provide satisfactory localization accuracy. Therefore, it
is a notably challenging problem to provide precise and reliable location information of MTs
in complex environments with rich scattering and multipath propagation. Fingerprinting
(FP)-based machine learning methods are widely used for localization in complex areas due
to their high reliability, cost-efficiency, and accuracy and they are flexible to be used in many
systems.

In 5G networks, besides accommodating more users at higher data rates with better reliabil-
ity while consuming less power, high accuracy localization is also required in 5G networks.
To meet such a challenge, massive multiple-input multiple-output (MIMO) systems have
been introduced in 5G as a powerful and potential technology to not only improve spectral
and energy efficiency using relatively simple processing but also provide an accurate loca-
tions of MTs using a very large number of antennas combined with high carrier frequencies.
There are two types of massive MIMO (M-MIMO), distributed and collocated.

Here, we aim to use the FP-based method in M-MIMO systems to provide an accurate and
reliable localization system in a 5G wireless network. We mainly focus on the two extremes
of the M-MIMO paradigm. A large collocated antenna array (i.e., collocated M-MIMO ) and a
large geographically distributed antenna array (i.e., distributed M-MIMO). Then, we extract
signal and channel features from the received signal in M-MIMO systems as fingerprints
and propose FP-based models using clustering and regression to estimate MT’s location.
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Through this procedure, we are able to improve localization performance significantly and
reduce the computational complexity of the FP-based method.
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Chapter 2 is based on the following paper: S. S. Moosavi and P. Fortier, "Fingerprinting
Positioning in Distributed Massive MIMO Systems Using Affinity Propagation Clustering
and Gaussian Process Regression", submitted to Wireless Personal Communication, Springer
Science+Business Media, Feb., 2020. In this paper, an optimal clustering scheme based on
affinity propagation clustering (APC) and Gaussian process regression (GPR) is presented
to minimize the searching space of reference points, reduce the computational complex-
ity, and increase positioning accuracy in distributed massive multiple-input multiple-output
(DM-MIMO) systems. Paul Fortier and I jointly conceptualized the fundamental idea of
this work. I developed the methodology and conducted related simulations and numeri-
cal conclusions. Paul Fortier provided critical guidance and comments on this work. The
manuscript was written by me and revised by Paul Fortier. Also, a conference paper of this
work was accepted: S. S. Moosavi and P. Fortier, "Fingerprinting Localization Method Based
on Clustering and Gaussian Process Regression in Distributed Massive MIMO Systems." 31st
Annual International Symposium on Personal, Indoor and Mobile Radio Communications,
Sep., 2020.

Chapter 3 is based on the following paper: S. S. Moosavi and P. Fortier, "An Improved and
Low-dimensional Fingerprint-based Localization Method in Collocated Massive MIMO -
OFDM Systems", has been accepted for publication in Wireless Personal Communication,
Springer Science+Business Media, Jan., 2021. In this paper, we propose an improved and
low-dimensional FP-based localization method in collocated massive MIMO (CM-MIMO)
orthogonal frequency division multiplexing (OFDM) systems to decrease the computational
complexity and the positioning error. I conceived the main idea of this study with the guid-
ance of Paul Fortier. I developed the methodology and carried out related simulations and
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numerical conclusions. Paul Fortier provided essential comments and suggestions on the
methodology and numerical results and revised the manuscript. Also, a conference paper of
this study was accepted: S. S. Moosavi and P. Fortier, "A Fingerprint Localization Method in
Collocated Massive MIMO-OFDM Systems Using Clustering and Gaussian Process Regres-
sion", 92nd Vehicular Technology Conference (VTC2020-Fall), Nov., 2020.

Chapter 4 is based on the following paper: S. S. Moosavi and P. Fortier, "An Accurate, Ro-
bust and Low Dimensionslity Deep Learning Localization Approach in DM-MIMO Systems
Based on RSS", submitted to Wireless Personal Communication, Springer Science+Business
Media, Jan., 2021. In this paper, we proposed a low-dimensionality fingerprint-based local-
ization method using dimensionality reduction technique, clustering and deep learning re-
gression in DM-MIMO to increase the accuracy of localization in term of root-mean-squared
error (RMSE). The basic idea of this work was conceived by me under the supervision of Paul
Fortier. I developed the methodology and conducted related simulations and numerical con-
clusions. Paul Fortier provided essential comments and suggestion on the methodology and
numerical results and revised the manuscript.
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Introduction

Nowadays, positioning has been identified as an important application in fifth-generation
(5G) cellular networks. The positioning accuracy is expected to improve dramatically with
5G features such as wideband signals, massive antenna arrays, and ultra-dense network de-
ployments. Massive multiple-input multiple-output (M-MIMO) is an enabling technology
for accurate positioning besides improving communication performance. However, posi-
tioning using M-MIMO based on radio signal is still an issue in urban environments where
there are multipath propagation and non-line-of-sight (NLoS) signal conditions. The fin-
gerprinting (FP)-based method using machine learning (ML) algorithms plays an important
role in overcoming this problem. This chapter introduces 5G systems, positioning in 5G
using massive MIMO, and the motivations and objectives. Finally, the thesis outlines and
research contributions are also presented.

5G Systems

During the last two decades, the accelerated evolution of cellular communication technolo-
gies has been observed. However, the ever-increasing mobile data volume and the lack of
global bandwidth are still the principal challenges of current wireless networks. The main
motivation of 5G wireless networks is to provide gigahertz (GHz) bandwidth for high data
rate communication with low latency and higher localization accuracy. Recently, there have
been significant developments in the research on 5G networks. Several enabling technolo-
gies are being explored for the 5G mobile systems era, such as Millimeter-wave (mm-wave)
band, new waveform, and M-MIMO systems. The mm-wave band provides 5G systems
with an amount of bandwidth on the order of GHz. It also can provide data rate on the
order of gigabits per second (Gbps). New waveforms can provide higher spectral efficiency,
lower in-band and out-band emission, lower power consumption, and lower implementa-
tion complexity. M-MIMO systems improve spectral, and energy efficiencies [1], [2]. They
can also be used for localization due to many antenna arrays at the base station (BS) which
can capture the signal. Therefore, they help improve positioning accuracy in addition to
enhancing communication performance [3].
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M-MIMO systems are considered as systems with large number of antennas at the BS
which serves tens or hundreds of single-antenna MTs simultaneously with the same time-
frequency resource [1], [2]. Two paradigms can be used to deploy the M-MIMO systems: col-
located massive MIMO (CM-MIMO) and distributed massive MIMO (DM-MIMO). In CM-
MIMO, the antenna arrays at the BS are located in a compact area, while in DM-MIMO, there
is a large number of single-antenna remote radio heads (RRHs) which are geographically
spread out over a large area and connected with high-speed front-haul links to a computing
unit (CU) [2].

Localization in Massive MIMO Systems

Positioning has become an important application in 5G due to its significant potential in
extensive commercial use cases, e.g., industrial automation, remote operation, emergency
call-outs, personal tracking, and location-aware communications [4]. Therefore, besides pro-
viding higher data rates and lower latency, high accuracy positioning is also required in 5G
networks. Although the Global Positioning System (GPS) [5] provides a precise estimation
of mobile terminals (MTs) position, it needs a direct line-of-sight (LoS) to the satellites, which
is blocked in urban areas by many tall buildings [6]. There are also ranging-based position-
ing techniques [7–10] which are based on radio signal information received from MTs such
as time-of-arrival (ToA), angle-of-arrival (AoA), direction-of-arrival (DoA), and received sig-
nal strength (RSS). In 5G, M-MIMO can be used for localization by estimating radio signal
information due to using a large number of antenna arrays. However, radio-based position-
ing is always a challenging task in NLoS urban environments, where the signal between the
MT and the receiving antennas is blocked and reflected with high-rising buildings block.
Therefore, the estimated position of the MT is not reliable when it enters an area with NLoS
situations.

One approach for positioning in NLoS is to use FP-based methods, referred to herein
as machine learning algorithms. Detection of NLoS is also an important feature, that makes
it possible to decide when traditional positioning methods can and cannot be used. The FP-
based positioning methods are attracting growing interest in combining mobile positioning
requirements into the 5G wireless communication systems due to their broad applicability
and high cost-efficiency without any hardware requirement on the MTs [11].

Using FP-based method in M-MIMO systems is a strategic solution to provide low-cost,
continuous, and accurate positioning [12]. But the use of FP-based method for positioning
in massive MIMO has some challenges that should be solved. Here, we present some chal-
lenging aspects of using FP-based method in both DM-MIMO and CM-MIMO, which are
addressed in the framework of the thesis. We discuss here the most important issues.
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Motivations and Objectives

Position information in massive MIMO systems may enable many applications for 5G net-
works such as tracking of goods or products in intralogistics process, autonomous driving,
navigating emergency forces, etc. However, providing high data rates and good localiza-
tion accuracy is still a challenging problem especially in NLoS conditions. We aim to apply
machine learning algorithms in M-MIMO systems to perform accurate positioning in urban
environments with NLoS conditions. By using the M-MIMO system, large amounts of data
are received on the uplink which can be potentially exploited for positioning and location
awareness. However providing positioning in 5G has still many challenges that need to be
addressed. We discuss in the following the three most important issues.

• Accuracy: In 5G the accuracy of positioning is expected to be less than 5 meters.

• Computational complexity: The positioning system uses fingerprints received at pre-
defined locations that would affect the computational complexity. This means that to
avoid an excess in computational complexity, the number and the dimensions of the
training points (especially if it is online) should be carefully chosen.

• Latency: One of the challenges of FP-based methods is the relatively large latency
which becomes an issue in making a model, in which many training data points are
used.

The contributions of this thesis consists in applying FP-based positioning to massive
MIMO antenna arrays. Our contributions are therefore:

• Proposing a new scheme to improve positioning accuracy in DM-MIMO.

• Proposing a low-dimension scheme to improve positioning accuracy in CM-MIMO.

• Considering a low dimension scheme regarding the computational complexity prob-
lem created by positioning in M-MIMO using the FP-based method.

Thesis Outline

The structure of this thesis is as follows. In Chapter 1, we review the different radio-based
localization methods used in the literature. By reviewing these methodologies, we can have
a better picture of the advantages and disadvantages of each approach, which will result in
better methodology selection for our work.
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In Chapter 2, a clustering scheme based on affinity propagation clustering (APC) and
Gaussian process regression (GPR) is presented to minimize the search space of reference
points, reduce the computational complexity, and increase positioning accuracy in distributed
massive multiple-input multiple-output (DM-MIMO) systems.

In Chapter 3, an improved and low-dimensional FP-based localization method in col-
located massive MIMO (CM-MIMO) orthogonal frequency division multiplexing (OFDM)
systems is proposed to decrease the computational complexity and the positioning error.

In Chapter 4, we proposed a low-dimensionality positioning fingerprint-based local-
ization method using dimensionality reduction technique, clustering and deep learning re-
gression in DM-MIMO. Using the feature extraction method, we intend to deliver a feature
dataset with an acceptable level of accuracy in positioning to reduce latency and root-mean-
squared error (RMSE) of positioning.

Finally, a discussion and a conclusion are presented at the end of the thesis.
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Chapter 1

Literature Review

As discussed in the Introduction, massive MIMO (M-MIMO) is one of the potential technolo-
gies which propose the possibility to enhance positioning accuracy in 5G networks and 5G
will be the first generation to take advantage of position information that is accurate enough
to be used in wireless network design and optimization. In this chapter, at first, we will
provide an overview of M-MIMO system. Afterwards, a positioning systems classification
is presented, and we give a state of the art review of positioning techniques and technologies
by discussing the underlying mathematical principles and cellular positioning techniques,
including FP-based methods.

1.1 Massive MIMO

Massive MIMO is a form of multi-user MIMO (MU-MIMO) systems where the number of BS
antennas and the number of users are large. In massive MIMO, hundreds or thousands of
BS antennas simultaneously serve tens or hundreds of users in the same frequency resource.
Some main points of massive MIMO are [13]:

• Time-division duplex (TDD) operation: In massive MIMO with TDD, the channel
estimation overhead is independent of the number of BS antennas. Since in massive
MIMO, the number of antenna is large, TDD operation is superior.

• Linear processing: In massive MIMO the signal processing at the terminal ends deals
with large dimensional matrices/vectors because the number of BS antennas and users
is large. Therefore, simple signal processing is required. In massive MIMO, linear
processing (linear combining schemes in the uplink and linear precoding schemes in
the downlink) is almost optimal.

• Complexity: In massive MIMO, all the complexity is at the BS.
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1.1.1 System Model

In massive MIMO, TDD operation is preferable which consists of three operations: channel
estimation, uplink data transmission, and downlink data transmission. The uplink transmis-
sion is described in the next section. For explaining each operation, we consider a multi-user
MIMO (MU-MIMO) system which consists of one BS and K active users. The BS is equipped
with M antennas, while each user has a single-antenna as shown in Fig. 1.1. In general,
each user can be equipped with multiple antennas. However, for simplicity of the analysis,
we consider systems with single-antenna users. We assume that all K users share the same
time-frequency resource. Furthermore, we assume that the BS and the users have perfect
channel state information (CSI). The channels are acquired at the BS and the users during
the training phase.

M- antenna BS

User 4

User 2

User 3

User1

User k

User K

Figure 1.1: Multi-user MIMO Systems. Here, K single-antenna users are served by the M-
antenna BS in the same time-frequency resource.

Uplink Transmission

In the uplink transmission, the users simultaneously transmit K symbols, wmu = [w1,. . . , wK]
T,

and the input signal power is normalized ( i.e., E(||wmu||2) = 1). The BS receives an M× 1
signal vector which is the combination of all signals transmitted from all K users and defined
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as:

ymu =
√

ρ
K

∑
k=1

gkwk + n (1.1)

=
√

ρGmuwmu + n,

where ρ is transmission power, n ∈ CM is the additive noise vector and Gmu ∈ CM×K is the
channel matrix between the K users and the BS antenna array, with entries gmk = qmk

√
hmk

(m = 1,. . . , M, k = 1,. . . , K) where hmk and hm,k are, respectively, the small-scale and large-
scale fadings between the kth user and the mth BS antenna [14].

1.2 Basic Mathematical Principles Used in Positioning

Two mathematical techniques are usually employed for calculating the position of a UE us-
ing signals received from several transmitters: triangulation and trilateration.

1.2.1 Triangulation

Triangulation is a geometric technique applying triangles to measure the position. This prin-
ciple involves combining information received from measurements made by the BS to deter-
mine the user position. Distance and position are found in AoA systems (i.e., where the AoA
is known) using this principle. An example is shown in Fig. 1.2. Two BSs, BS1 and BS2 are
located on known coordinates, (x1, y1) and (x2, y2), also both BSs are separated by distance
R. The AoAs at the two BSs are θ1 and θ2 which are known. From trigonometry, we obtain
(x, y) the coordinates of MT as:

x =
R tan(θ2)

tan(θ2)− tan(θ1)
(1.2)

y =
R tan(θ1) tan(θ2)

tan(θ2)− tan(θ1)
(1.3)

To find the distances between BS1, BS2, and the MT, we use the following equations.

d1 = ‖(x, y), (x1, y1)‖ =
√
(x− x1)2 + (y− y1)2 (1.4)

d2 = ‖(x, y), (x2, y2)‖ =
√
(x− x2)2 + (y− y2)2 (1.5)
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(x, y) 

Figure 1.2: Illustration of positioning using triangulation.

1.2.2 Trilateration

Trilateration is the process of estimating the position of a user equipment (UE) given distance
measurements to a set of BSs with a known position. Briefly, the concept of the trilateration
technique is to measure the UE’s position based on the following requirements:

1. The distances between the target point and a number of reference points whose posi-
tions are known.

2. Coordinates (positions) of reference points.

Fig 1.3 shows an ideal positioning-estimation scenario where there are three BSs with
known fixed positions. The goal is to measure the two-dimensional position of the MT while
the distance between the MT and all BSs are known and are obtained by measuring using
some positioning method like received signal strength (RSS) or time of arrival as described
later.

According to Fig. 1.3, the distance between the MT and the receivers can be estimated
as:

d2
i = (xi − x)2 + (yi − y)2, i = 1, 2, ... (1.6)

8



where di is the distance between the MT and ith BS and (xi, yi) and (x, y) are the coordinates
of the ith BS and the MT, respectively. In the case of three BS, each distance is defined as
follows:

d2
1 = (x1 − x)2 + (y1 − y)2 (1.7)

d2
2 = (x2 − x)2 + (y2 − y)2 (1.8)

d2
3 = (x3 − x)2 + (y3 − y)2 (1.9)

By considering BS1 at the origin, i.e., x1 = y1 = 0 and subtracting (1.7) from (1.8) and (1.7)
from (1.9), we obtain:

d2
2 − d2

1 = x2
2 − 2x2x + y2

2 − 2y2y (1.10)

d2
3 − d2

1 = x2
3 − 2x3x + y2

3 − 2y3y (1.11)

These two equations can be written in matrix form as:

[
x2 y2

x3 y3

] [
x
y

]
=

1
2

[
A2

2 − d2
2 + d2

1

A2
3 − d2

3 + d2
1

]
(1.12)

where A2
i = x2

i + y2
i and we thus have:

Ab = f (1.13)

where

A =

[
x2 y2

x3 y3

]
, b =

[
x
y

]
, f =

1
2

[
A2

2 − d2
2 + d2

1

A2
3 − d2

3 + d2
1

]
(1.14)

Therefore

b = A−1f = − 1
2(x3y2 − x2y3)

[
y3 −y2

−x3 x2

] [
A2

2 − d2
2 + d2

1

A2
3 − d2

3 + d2
1

]
(1.15)

Finally (x, y) can be obtained as

x = −1
2

(
y2(d2

3 − x2
3 − d2

1 − y2
3) + y3(d2

1 − d2
2 + y2

2 + x2
2)

x3y2 − x2y3

)
(1.16)

y =
1
2

(
x2(d2

3 − x2
3 − d2

1 − y2
3) + x3(d2

1 − d2
2 + y2

2 + x2
2)

x3y2 − x2y3

)
(1.17)
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Figure 1.3: Illustration of positioning using trilateration.

1.3 Cellular positioning

Cellular positioning refers to the positioning techniques implemented in cellular networks.
Such mechanisms can be applied for both outdoor and indoor situations.

1.3.1 Cell Identity (Cell-ID)

Cell-ID positioning, also known as cell of origin (CoO) positioning, is a proximity-based
method which is the most straightforward approach for positioning [15]. In this method,
which is shown in Fig. 1.4, by using the position of the base stations and their signal strength
range, we can easily estimate the position of the UE at the cell level. Since the UE can be any-
where in the cell coverage area, the precision of the cell-ID method depends on the network
topology and can vary from a few meters (i.e., in a pico-cellular or selected indoor scenario)
to kilometers (i.e., in macrocellular settings) [16]. The best estimation is obtained in urban
areas where the cell sizes are the smallest. Therefore, this method can be quickly ruled out
since many BSs would be needed, which is not possible, for example in a suburban environ-
ment. To enhance the accuracy of this technique, additional parameters, such as round trip
time (RTT) and RSS, can be used [15], [17], [18].
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Figure 1.4: Cell-ID positioning technique.

1.3.2 Range-based methods

The foundation of many positioning techniques is based on the estimation of the physical
distance between two nodes. Estimations are achieved by measuring the specific features
of the signals transferred between the nodes, including signal propagation times, angle of
arrival or signal strengths.

Angle of Arrival

The angle of arrival (AoA) is a range-based positioning technique which is used to estimate
the Direction of Arrival (DOA). In AoA, the UE’s position is estimated by measuring the
angle of incidence at which signals arrive at the receiving antenna. Geometric principles such
as triangulation can then be used to determine the position from the intersection of two lines
of bearing (LoB) formed by a radial line to each receiving antenna, as shown in Fig. 1.5. In a
two-dimensional plane, at least two receiving antennas are needed for position estimation.
while with at least three or more receiving antennas accuracy is improved. This method
works well in line-of-sight (LoS) situations, but suffers from decreased accuracy when faced
with signal reflections from surrounding objects. Therefore, a conventional shortcoming
that AoA shares with some of the other methods is its sensitivity to multipath interference.
Unfortunately, AoA becomes hardly usable in dense urban areas [19].

Time of Arrival

Time of Arrival (ToA) systems are based on the accurate estimation of the arrival time of a
signal transmitted from a MT to several receiving antennas [20]. Because signals propagate
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Figure 1.5: The AoA principle.

with a known speed (the speed of light (v) or about 300 meters per microsecond), the distance
between the MT and each receiving antenna can be defined as:

di = (ti − t0)× v (1.18)

where ti and t0 are the sending and receiving times of the signal (measured at the sender
and the receiver, respectively) and v is the signal velocity. Then, the position of the MT can
be measured by using trilateration [19]. Since this method needs exact time synchronization
between the MT and the receivers clocks, the involved MTs must be tightly synchronized,
and time-stamp of the transmission signal is essential. ToA techniques can estimate posi-
tion in two-dimensional as well as three-dimensional planes. By forming spherical instead
of circular models, 3D resolution can be achieved. A shortcoming of the ToA method is the
requirement for precise time synchronization of all MTs. Therefore, the position estimation
accuracy is affected by the high propagation speeds or very small mistakes in time syn-
chronization. For instance, a time measurement error as small as 100 nanoseconds can lead
to a positioning error of 30 meters. ToA-based positioning approaches usually have chal-
lenges in environments where a large amount of multipath, noise or interference exist. The
GPS is a common example of a ToA systems where precision timing is produced by atomic
clocks [19], [20].
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Received Signal Strength

A commonly observed feature in wireless devices is a received signal strength indicator
(RSSI), which can be used to measure the power of the incoming radio signal at the receiver.
The concept of RSS is that a signal decays and lose its energy with the distance travelled.
Therefore, as the distance between transmitter and receiver increases, the RSSI value de-
creases. There are two different strategies for positioning using RSS. The first solution is
trilateration, which calculates the position by distances obtained using RSS. In this method,
at least three reference points are required to accurately determine the position of the user in
two-dimensional coordinates. The second strategy is fingerprinting (FP) which is explained
in the next section and is based on a database that stores the power of the various points.
Several theoretical and empirical models could be used to state the correlation between RSSI
and distance [21], [22]. One of these models is the path loss model which is used for large-
scale fading. In a Free Space Path Loss (FSPL) model, the power of the received signal in the
LOS environment where there is no obstacle between the transmitter and receiver [23], [24]
is given by:

Pr =
PtGtGrλ2

(4π)2d2 (1.19)

where Pr and Pt are the received and transmitted signal’s power, and Gt and Gr are the re-
ceiver and transmitter antennas’ gains, respectively. λ is the wavelength obtained from the
transmitted signal’s central frequency and d is the distance separating the transmitter and
the receiver. All parameters are known in the FSPL model except d which can be calculated
by solving (1.19). The free-space path loss, PLF, without any system loss can be directly de-
rived from (1.19) as:

PLF(d)[dB] = 10 log
(

Pt

Pr

)
= −10 log

(
PtGtGrλ2

(4π)2d2

)
(1.20)

without antenna gains (i.e., Gt = Gt = 1 ), (1.20) is reduced to:

PLF(d)[dB] = 10 log
(

Pt

Pr

)
= 20 log

(
4λd
π

)
(1.21)

But, in LoS with multipath and NLoS conditions, channels are more complex because
many reflections, refractions, and attenuations happen for transmitted signals on their way
to the receiver. As a consequence, signal strength will be lost with increased distance [25]. In
fact, a more generalized form of the path loss model can be formed by modifying the FSPL
with the path loss exponent α varying with the propagation environments. This is known as
the Log-distance Path Loss (LDPL) model and is defined as:

Pr(d) = Pt − PLLD(d) (1.22)

13



PLLD(d)[dB] = PLF(d0) + 10α log
(

d
d0

)
(1.23)

where d0 is the reference distance below which the path loss inherits the characteristics of
free-space loss in (1.20). d0 must be suitably estimated for various propagation environ-
ments. For instance, the value of d0 typically varies from 1 km (for a cellular system with a
cell radius greater than 10 km) to 100 m or 1 m (for a microcellular system with a cell radius
of 1 km or a very small radius) [26]. It is clear that the path loss increases with the path loss
exponent. Even if the distance between the transmitter and receiver is equal, every path may
have different path loss since the surrounding environments may vary with the position of
the receiver in practice. However, all the aforementioned path loss models do not take this
particular situation into account. A log-normal shadowing model is useful when dealing
with a more realistic situation. If z denotes a Gaussian random variable with a zero mean
and a standard deviation of σ, then, the log-normal shadowing model is defined as:

PLLD(d)[dB] = PLF(d0) + 10α log
(

d
d0

)
+ z (1.24)

In other words, this particular model allows the receiver at the same distance d to have
a different path loss, which varies with the random shadowing effect z.

Fingerprinting

The fingerprinting (FP) technique is an enhancement of the Cell-ID method, where the in-
formation of neighbor cells are also gathered to find the position of the MT. In the literature
database correlation, pattern recognition and pattern matching can be used instead of FP. The
theory of FP is that each particular position in the site of interest has a unique fingerprint.
The FP method is simpler to use compared to other techniques such as AoA and TOA which
require LOS between the transmitter and the receiver to estimate the position. In a multi-
path environment, the signal would be affected by multipath, and as a result, the position
accuracy would be decreased. FP techniques have the potential to solve the problems stated
above. They estimate the position of a mobile device very precisely using signal properties.
These characteristics may be obtained from radio signals (i.e., RSS) [27], [28] and any other
information that is position-dependent to create a radio map for the MT. When the radio
map is made, MTs enter the second step where the position of a mobile can be recognized by
matching the received signal to the radio map entries. Therefore in machine learning (ML)
terminology, positioning by fingerprinting has two steps described as follows: the training
phase and the positioning phase.

• Training phase
The training phase can also be considered as the calibration phase which assists in
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creating the database before the positioning phase. Through the training phase a radio
database is constructed which includes a set of radio measurements made at a number
of known positions over the specified area. These parameters are available from radio
interface technologies, such as RSS, RTT, or the results of more complex processing
such as path loss profiles. The radio measurements stored in the database are called
fingerprints [29]. Each fingerprint stored in the database may be achieved by averaging
several radio measurements produced at the same position but at different moments,
or by averaging several measurements produced at different positions (as mentioned
in [30]). So, the database is created by using either experimental measurements or
theoretical modeling tools. The latter is used in the case of outdoor positioning where
large surfaces are to be covered by the fingerprinting system. Therefore, a large-scale
database is generated.

• Positioning phase
In the positioning phase, the real-time measurements received by the MT are used
to compare with the fingerprints existing in the database. Therefore, the coordinates
of the reference point whose fingerprint returns the closest match should be the esti-
mated position of the MT. At this stage, various positioning algorithms or matching
algorithms may also be used to determine the position of the mobile by comparing the
actual measurements (FP) to the ones stored in the database.

15



Chapter 2

Fingerprinting Positioning in
Distributed Massive MIMO Systems
Using Affinity Propagation Clustering
and Gaussian Process Regression

Résumé

Les systèmes massifs à entrées multiples et sorties multiples (M-MIMO) améliorent la préci-
sion de positionnement en plus d’améliorer les performances de communication. La mé-
thode d’empreinte digitale (FP) est largement utilisée pour les applications de position-
nement en raison de sa fiabilité, de sa rentabilité et de sa précision élevées. La méthode
FP basée sur la régression de processus gaussien (GPR) pourrait potentiellement être util-
isée dans les systèmes M-MIMO pour améliorer la précision de positionnement. Cependant,
elle est limitée par une complexité de calcul élevée. Dans ce chapitre, une méthode de posi-
tionnement FP basée sur le clustering de propagation d’affinité (APC) et le GPR est présen-
tée pour estimer la position de l’utilisateur dans un système MIMO massif distribué (DM-
MIMO) à partir de la force du signal reçu (RSS) sur la liaison montante. Dans le procédé
proposé, un schéma de regroupement optimal basé sur l’APC est présenté pour diviser la
zone cible en plusieurs petites régions, ce qui minimise l’espace de recherche des points de
référence et réduit la complexité de calcul et l’erreur d’estimation de position. Ensuite, un
modèle GPR est créé pour chaque région sur la base de la distribution de données RSS dans
chaque région pour fournir une précision de positionnement supplémentaire. Une méth-
ode améliorée basée sur l’arbre K-dimensionnel (KD-tree) est également présentée pour que
les utilisateurs de test trouvent leur région la plus probable. Ensuite, leurs positions sont es-
timées sur la base du modèle GPR de cette région. Les résultats de la simulation révèlent que
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le schéma proposé améliore considérablement la précision de positionnement par rapport à
l’utilisation du seul GPR pour toute la zone cible. Cette approche a une couverture élevée et
améliore les performances de la racine de l’erreur quadratique moyenne (RMSE) à quelques
mètres, ce qui est attendu dans les réseaux 5G. Par conséquent, il contribue également à
réduire la complexité de calcul du GPR dans les systèmes de positionnement.

Abstract

Massive multiple-input multiple-output (M-MIMO) systems improve positioning accuracy
besides enhancing communication performance. Fingerprinting (FP) method is widely used
for positioning applications due to its high reliability, cost-efficiency, and accuracy. The FP
method based on Gaussian process regression (GPR) could potentially be used in M-MIMO
systems to improve positioning accuracy. However, it is limited by high computational com-
plexity. In this chapter, an FP positioning method based on the affinity propagation cluster-
ing (APC) and GPR is presented to estimate the user’s position in a distributed massive
MIMO (DM-MIMO) system from the uplink received signal strength (RSS). In the proposed
method, an optimal clustering scheme based on APC is presented to split up the target area
into several small regions, which minimizes the searching space of reference points and re-
duces the computational complexity and position estimation error. Then, a GPR model is
created for each region based on the RSS data distribution within each region to provide
further positioning accuracy. An improved method based on the K-dimensional tree (KD-
tree) is also presented for test users to find their most likely region. Then their positions are
estimated based on the GPR model of that region. Simulation results reveal that the pro-
posed scheme improves positioning accuracy significantly compared to using only GPR for
the whole target area. This approach has high coverage and improves average root-mean-
squared error (RMSE) performance to a few meters, which is expected in 5G networks. Con-
sequently, it also helps to reduce the computational complexity of GPR in the positioning
systems.

2.1 Introduction

Increasing demand for location information makes positioning an important characteristic
in fifth-generation (5G) networks [3]. Positioning has been applied in different use cases of
inquiry and information services, community services, personal tracking, as well as location-
aware communications [4]. Therefore, besides providing higher data rates and lower latency,
high accuracy positioning is also required in 5G networks. Nowadays, the Global Position-
ing System (GPS) [5] is commonly used due to its availability. Although GPS provides a
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precise estimation of mobile terminals (MTs) position, it needs a direct line-of-sight (LoS)
to the satellites, which is blocked in urban areas with many tall buildings [6]. Therefore, it
suffers loss accuracy in most situations. Besides, GPS has high power consumption which
can quickly drain the battery on the mobile devices [31]. Consequently, there are ranging-
based positioning techniques [7–10] which are based on radio signal information received
from MTs such as time-of-arrival (ToA), angle-of-arrival (AoA), and received signal strength
(RSS). Among these, the RSS-based methods are effective because RSS is not only suitable
for line-of-sight (LoS) situations (AoA) [9], but can also be used for non-line-of-sight (NLoS)
conditions and it doesn’t need extra expensive hardware at the base station (BS) such as
high accuracy clocks for time synchronization (ToA) [10]. Moreover, RSS data can be eas-
ily measured for most wireless systems [32]. But, in complex environments, it suffers from
coarse range estimates that can be solved using fingerprint (FP) positioning methods based
on machine learning (ML) algorithms [14].

FP-based positioning methods have two phases, namely offline and online. In the of-
fline phase, a radio map of RSS information from the MT and their position is created and is
stored. Afterward, a new RSS data is compared with the stored data in the online phase
to estimate its position. Since FP-based positioning methods have a good performance
in complex environments [14], [33], they are flexible to be used in many systems such as
WiFi networks [34–36]. Apart from received signal information, channel state information
(CSI) [37], [38] is used as the position fingerprint. The FP-based positioning methods are at-
tracting growing interest in combining mobile positioning requirements into the 5G wireless
communication systems due to their broad applicability and high cost-efficiency without
any hardware requirement on the MTs [11].

In recent years massive multiple-input multiple-output (M-MIMO) has been introduced
in 5G networks to help improve positioning accuracy in addition to enhancing communica-
tion performance [3]. M-MIMO is an emerging technology which serves tens or hundreds
of UEs simultaneously with the same time-frequency resource to improve spectral and en-
ergy efficiencies [1], [2]. Two paradigms can be used to deploy the M-MIMO systems: col-
located massive MIMO (CM-MIMO) and distributed massive MIMO (DM-MIMO). In CM-
MIMO, the antenna arrays at the BS are located in a compact area, while in DM-MIMO, there
is a large number of single-antenna remote radio heads (RRHs) which are geographically
spread out over a large area and connected with high-speed front-haul links to a computing
unit (CU) [2]. DM-MIMO gives higher spectral efficiency, average throughput rate [39] and
bit-per-joule energy efficiency [40] and enhances coverage area compared to CM-MIM [39].
Therefore, to obtain such performance gains, DM-MIMO systems are useful for position-
ing [14]. User positioning with M-MIMO is still in its nascent stage. There are several
research works in this area. In [41], [42], and [43], AoA is estimated precisely in the M-
MIMO systems employing very large uniform rectangular arrays (URAs) to position users.
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In [44], a compressed sensing approach is proposed in order to estimate user location directly
from data acquired such as ToA information at multiple M-MIMO BSs. The authors in [45]
and [46] consider the combined information of time delay, angle of delay (AoD), and AoA
for positioning users in a M-MIMO system. The Gaussian process regression (GPR) method
is employed in [14] to estimate position users using a vector of RSS which is considered as a
fingerprint in a DM-MIMO system.

Several machine learning methods have been investigated for wireless user positioning,
such as GP methods [14], and, more recently, deep learning techniques [47]. Also, clustering
of the fingerprints has already been studied in several works. Since we consider a cluster-
based method in our work, we choose the affinity propagation clustering (APC) algorithm
[48] to divide the fingerprints of the target area into several clusters and the GPR method to
make a non-linear regression model for each cluster for reasons that will be explained later
in the chapter.

Studying positioning methods proposed for WiFi systems [49], [50], [37], we can see that
they are not applicable for massive MIMO systems, because WiFi-based positioning methods
do not consider the associated inter-user interference, which are present in multi-user MIMO
transmissions on the uplink. Also, the positioning in M-MIMO systems is operated on the
uplink, where the BS estimates the user’s position. In contrast, most RSS-based WiFi posi-
tioning schemes [49], [50] focus on the downlink, where the users estimate their positions by
handling the computational cost.

In this chapter, we consider a DM-MIMO system where first, the RRHs receive large
amounts of data, which are large vectors of RSS, on the uplink, and then the received data
is recorded at the BS [14]. Later, an affinity propagation clustering (APC) and Gaussian pro-
cess regression (GPR)-based fingerprinting positioning system is presented which consists
of two phases: the training phase and the positioning phase. In the first phase, a large area
is divided into small clusters using an optimal clustering method, which is based on the
APC algorithm, and the data distribution within each cluster, is precisely modeled using the
GPR method [51]. Then, in the positioning phase, the user’s cluster is first specified by a
proposed cluster identification algorithm which is based on finding nearest neighbors us-
ing K-dimensional tree (KD-tree) and its position is estimated using the GPR model of that
cluster. Simulation results of the proposed method indicate a significant improvement in
position estimation accuracy by reducing the average root-mean-square error (RMSE) to a
meter which is expected in 5G networks. It also exhibits better performance than the ex-
isting methods owing to RSS estimation using GPR [14]. Consequently, clustering helps to
minimize the searching space of reference points on the testbed and thus reduces the online
computational complexity of the positioning system.

The structure of this chapter is as follows. In Section 2.2, the system model for user

19



positioning is presented. In Section 2.3, we describe the details of the proposed position-
ing method. The results obtained through simulations are shown in Section 2.4. Finally,
conclusions are provided in Section 2.5.

2.2 Multi-User DM-MIMO System Model

Since we want to estimate the positions of users using the RSS at the BS, we consider the up-
link of a single-cell multi-user DM-MIMO system with K single-antenna users transmitting
signals to M single-antenna RRHs, which are connected to a central computing unit (CU) by
high-speed front haul links (Fig. 2.1). The RSS values from each RRH are gathered to form
an M× 1 RSS vector by the CU when users transmit on the uplink. Then, a machine learning
model, which gets the uplink RSS vectors as input and gives the position coordinates of the
K transmitting users as the output, is used in the CU [52], [53].

User Equipment 

(UE)

Remote Radio Head

(RRH)

Computing Unit

(CU)

Fronthaul Link Uplink Transmission

Figure 2.1: Multi-user DM-MIMO system model for position estimation.

To explain the uplink of a multi-user DM-MIMO system with more detail, let wk be the
symbol vector transmitted by user k with transmission power ρ. If gmk is the flat-fading chan-
nel gain between user k and RRH m, the sum symbol vector ym received at RRH m is given by

ym =
√

ρ
K

∑
k=1

gmkwk + nm (2.1)

In (2.1), gmk = qmk
√

hmk is a flat-fading channel where qmk denotes small-scale fading repre-
sented by an independent and identically distributed (i.i.d.) zero mean complex Gaussian
random variable with unit variance, i.e., qmk ∼ CN (0, 1), hmk is the large-scale fading coef-
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ficient, and nm ∼ N (0, σ2
nI) is the additive white Gaussian noise. Note that the large-scale

fading coefficient hmk can be modeled [54] as

hmk = b0d−α
mk 10zmk/10 (2.2)

where b0 is the path loss at a reference distance d0, dmk is the distance between user k and
RRH m, α is the path-loss exponent (typically dependent on the environment and the range),
and zmk is the log-normal shadowing noise coefficient with 10 log10 zmk ∼ N (0, σ2

z ).

For measuring the RSS, we consider the power of the received signal at RRH m which
is given by ||ym||2 according to (2.1). But we should note that ||ym||2 at RRH m is in fact the
multiuser RSS because the symbol vectors which are transmitted by all K users are combined
at RRH m. Consequently, ||ym||2 cannot be directly used to estimate the position of user k. So
the RSS of each user is not separately distinguishable. To overcome this, the symbol vectors
wk in (2.1) should be mutually orthogonal and should be already known at the RRH [14].

So, we need users to transmit an orthogonal set of pilot signals during channel estima-
tion [55]. The RSS pmk of user k can then be obtained from (2.1) [53] as

pmk = ρhmk|qmk|2 (2.3)

From (4.3), we can see that RSS is varied due to the small-scale fading and shadowing of
the wireless channel. The variation of small-scale fading can be decreased by averaging it
over multiple time-slots according to the channel hardening effect [56]. But the shadowing
effect, which is position-dependent and therefore depends on the user location, cannot be
averaged out [7]. Therefore, the RSS between user k and RHH m, which is obtained from
(2.2) and (2.3), when converted to dB scale, is given [53] by

pdB
mk = pdB

0 − 10α log10(dmk) + zmk (2.4)

where pdB
0 = 10 log10(ρb0) is the uplink RSS at the reference distance d0. Once the per-user

RSS values pmk, m = 1,. . . , M and k = 1,. . . , K, are extracted as above, the CU uplink RSS
vector pk is given by

pk = [pdB
1k , pdB

2k , . . . , pdB
Mk]

T (2.5)

which is considered as the fingerprint.
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2.3 Fingerprinting Positioning Method Based on Clustering and
GPR Model

The proposed position estimation scheme has two phases: a training phase and a position-
ing phase, as shown in Fig. 2.2. Briefly, in the training phase, the large target area is first
divided into small regions using an APC algorithm based on collected RSS samples. Then
the outcome of the clustering process is validated by a cluster validity index to obtain a set
of number of clusters that best fits natural partitions without any prior information. Also,
an improved cluster identification algorithm based on nearest neighbor is applied to find
the optimal number of clusters. The data distribution within each cluster is then accurately
modeled with GPR.

When a new vector of RSS is received in the positioning phase, its corresponding cluster
(cluster ID) is first determined using the cluster identification algorithm. Therefore, the small
region in which the new user is most probably located is distinguished. Within this region,
further position estimation is applied using the GPR model of related clusters to increase the
precision of the estimation.

2.3.1 Training Phase

In this phase, we aim to find optimal clustering results and create a GPR model based on
RSS distribution in each cluster. Therefore, the RSS samples collected in the target area are
analysed. First, the APC algorithm is used, and the clustering results are evaluated using a
cluster validity index. Then the cluster identification algorithm using the nearest neighbor
is applied. According to this, we can handle the trade-off between the accuracy of cluster
identification and the number of clusters to identify the optimal number of clusters. Finally,
a GPR model is fitted to each cluster.

Let us say we have L training locations. The L×M training RSS matrix P and the cor-
responding L× 1 training x-coordinates x and L× 1 training y-coordinates y are defined as
follows

P = [p1, p2, . . . , pL]
T,

x = [x1, x2, . . . , xL]
T,

y = [y1, y2, . . . , yL]
T

(2.6)

where each row in the training matrix P indicates the training RSS vector pl related to the
training x-coordinates xl and the the training y-coordinates yl , ∀l = 1, . . . , L.
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Figure 2.2: Overview of the proposed position estimation scheme.

RSS clustering using the APC and cluster validation

From among several clustering methods, we choose APC for our study because (i) it starts by
allocating the same chance to each data point to become an exemplar, while k-means (KM)
clustering begins by selecting a random set of initial exemplars [57], (ii) contrary to the KM
algorithm, it learns the number of clusters so there is no need to set the number of clusters
in advance, and (iii) it is stable and deterministic over many runs [58].

The APC divides the training matrix P into clusters by considering all pl , l = 1, 2, . . . , L
as potential cluster exemplars and then exchanges two kinds of messages, named responsi-
bility and availability, between them until a convergence is achieved [48]. When the exem-
plar of each cluster is selected, the clusters are formed by allocating each pl , l = 1, 2, . . . , L
to its most similar exemplar. APC has two kinds of real-valued input: (i) the similarities
matrix SSim; (ii) the preference pre f . APC uses a pairwise similarity s(pl , pl′′) (for l 6= l′′)
to represent the fitness of pl to be selected as the exemplar with respect to pl′′ . Since, in this
work, we aim to minimize the squared error, the similarity calculation in the APC process is
based on negative squared error (Euclidean distance) and is defined as
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s(pl , pl′′) = −||pl − pl′′ ||2 (2.7)

where 1 ≤ l, l′′ ≤ L and l 6= l′′.

In the APC, the number of clusters is affected by the value of pre f , i.e., a high value
of pre f forms many exemplars (clusters), while a low value leads to a small number of ex-
emplars (clusters). A good initial selection for the preference value is the median of the
similarities matrix SSim which is defined as

pre f = median(s(pl , pl′′)) (2.8)

where 1 ≤ l, l′′ ≤ L and l 6= l′′. To get the desired number of valid clusters, a set of pre f
values is needed to be set. Therefore, we increase the value of the initial preference to create
a set of preference values.

The training RSS clustering and cluster validation procedures are presented in detail in
Algorithm 2.1.

First, choose a parameter (such as the preference value) from the clustering parameters
prm (step 1). Use selected parameter prmj in the APC algorithm to split the training matrix
P into sub-matrices as clusters. Therefore, P is converted to T clusters and a set of clusters
Pprmj = {P1, P2, . . . , PT} and corresponding cluster ID set Cprmj = {c1, c2, . . . , cT} are created
(step 2). Assign a cluster ID to each training RSS pl . Therefore, each cluster can be denoted as
Sprmj,t = [Pt, ct] and each training RSS vector pl is specified by a cluster ID such that Sprmj =

{s1, s2, . . . , sL}, where sl = [pl , ct], ct ∈ ct (step 3). Then calculate the cluster validity index
such as the silhouette (SI) [59], the Davies-Bouldin (DB) [60], and the Calinski-Harabasz
(CH) [61] index, which are explained in Section 2.4.1, to validate the quality of clustering
(step 4). If the quality of clustering is not sufficient, ignore the created sets in steps 2 and 3,
and repeat the clustering with the next parameter prmj+1 (steps 5-6); otherwise, save all sets
and clusters obtained from clustering with the prmj parameter in steps 2-3 (step 8) and put
the cmprmj value in the cm list in descending order (step 9). Then, for the cluster identification
which is explained in the next section, use the validation set approach [62] to randomly select
a percentage of observations in each cluster and put them in set V as a validation set and put
the remaining observations in T R as the training set. Consequently, the validation set, V ,
has N elements and a the training set T R has L− N elements. Note that the cluster ID is
assumed unknown in the validation set (steps 10-12). Put the cluster ID of all observation of
set V in realID list (step 13).
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Algorithm 2.1 RSS clustering and cluster validation

Require:
Similarity matrix SSim
Clustering parameters prm = [prm1, prm2, . . . , prmJ ]
The training matrix P = [p1, p2, . . . , pL]

T

1: for j = 1→ J do
2: Apply APC algorithm to P using prmj
3: Assign a cluster ID to each training RSS pl
4: cmprmj = Compute cluster validity index
5: if cmprmj ≤ threshold then
6: Clustering with prmj is not valid and ignore all sets created in steps 2-3
7: else
8: Save all the sets created in steps 2-3
9: Put cmprmj in cm list in descending order

10: for t = 1→ T do
11: Select a percentage of observations in Sprmj,t and put them in Vprmj set and

the remaining in T Rprmj set
12: end for
13: Put clusterID of observation in Vprmj in realID
14: end if
15: end for

Cluster identification based on nearest neighbor

In this section, we focus on finding the cluster identification of the new data point based on
the nearest neighbors. For this purpose, KD-tree [63] is employed to find the nearest neigh-
bors. Then the accuracy of cluster identification is estimated. Based on this, we can manage
the trade-off between the accuracy of cluster identification and the number of clusters. The
process of cluster identification is described in detail in Algorithm 2.2.

First, choose the clustering which has the maximum quality and an element from the
validation set V (steps 1-2). Find Knn nearest neighbors of element from all the observations
in each cluster using KD-tree and calculate the RSS distance between them (steps 4-5). Select
the minimum distance and assign the cluster ID of that RSS vector to element as the esti-
mated cluster ID and put it into the estimatedID vector (step 7). Calculate the classification
identification accuracy by comparing the realID and the estimatedID vectors (step 9). If
the accuracy of the cluster identification is not sufficient, ignore the clustering with cmprmj ;
otherwise, put the c f mprmj

value in the cfm vector (steps 11-14). Select the item which has
the highest quality of clustering and highest cluster identification accuracy as the optimal
number of clustering and make the GPR model for them (step 17).
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Algorithm 2.2 Cluster identification based on nearest neighbor

1: for each cmprmj in cm do
2: for each element in Vprmj do
3: for t = 1→ T do
4: Find nearest neighbors of element from all observations in Sprmj,t using

KD-tree algorithm
5: Calculate RSS distance from element to its nearest neighbors and put them

in the distance vector
6: end for
7: Select minimum value of distance and find its cluster ID as estimated cluster

ID and put it into estimatedID vector
8: end for
9: c f m = Calculate cluster identification accuracy by comparing realID and

estimatedID vectors
10: if c f m ≤ threshold then
11: Ignore clustering with cmprmj selected
12: Delete cmprmj from cm
13: else
14: Put c f mprmj in cfm vector
15: end if
16: end for
17: Select clustering with highest cmprmj and highest c f mprmj as optimal clustering

Making the GPR model

Until now, an optimal number of clusters is determined. We aim to make a regression model
for each cluster based on their RSS vectors in matrix Pt, t = 1, . . . , T and their known loca-
tions [xt, yt]. Then, the trained regression model gets the RSS vector of a test user as input
and gives an estimate of the test user’s location as output. For simplicity, we focus on the
RSS vectors of a cluster, but the same procedure can be applied for other clusters as well.
Also, we consider the tth cluster has L′ training RSS samples.

In this case, fx(.) and fy(.) are defined as the functions which map the RSS vector pk of
any user k in cluster Pt to its 2-dimensional location coordinates (xk, yk), such that

xk = fx(pk) + vx,

yk = fy(pk) + vy
(2.9)

where the noise terms, vx and vy, are i.i.d. Gaussian random variables with zero mean and
variance σ2

vx
and σ2

vy
respectively. From (2.9), we can see that, the x-coordinate xk (and y-

coordinate yk) for any user k is a non-linear function of its uplink RSS vector pk with the
additional presence of shadowing noise zmk. Therefore, estimating the x-coordinate xk (and
y-coordinate yk) from pk is a non-linear regression problem in machine learning. There are
several non-linear regression methods. Among them, we focus on GPR as our method, be-
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cause (i) GP methods are non-parametric [64], (ii) the performance of GP methods is as good
as the other machine learning algorithm in term of multiple performance metrics, including
the squared prediction error [65], and (iii) include deep learning methods. The following
presents the detail of GPR model on the training. For simplicity, details of the GPR model
are presented only for the x-coordinates of the users, but the same procedure is employed
for the y-coordinates as well.

In (2.9), the function fx(.) is supposed to follow a Gaussian process with zero-mean and
covariance matrix Qt, whose elements are a user-defined function qt(.), such that

fx(.) ∼ GP
(
0, qt(.)

)
(2.10)

We choose the covariance function qt(.) between user k and user k′ in cluster Pt, as a weighted
sum of the squared-exponential, the linear and the delta function [66] which is defined as

qt(pk, pk′) = κe
− 1

2η2 ‖pk−pk′‖
2

+ βpkT pk′ + σ2
vx

δkk′ (2.11)

where the delta function δkk′ is one if k = k′ and zero otherwise.

From (2.11), we have an unknown GPR parameter or hyperparameter vector θt =

[κ, η, β] that needs to be optimized. According to the GP assumption, we know that xt is
Gaussian distributed, xt|Pt, θt ∼ N

(
0, Qt

)
[51]. The log-likelihood function is used to derive

the maximum likelihood estimator of parameter θt. The estimator θ̂t is obtained by solving

θ̂θθt = arg max
θθθt

log(p(xt|Pt, θθθt)) (2.12)

The optimization problem in (2.12) can be solved using a limited memory BFGS-B algorithm
[67].

2.3.2 Positioning Phase

In this phase, suppose there are L̂ test users whose location coordinates are unknown and
needs to be estimated. Therefore, there is an L̂×M test user RSS matrix P̂ which is used to
estimate the L̂× 1 x-coordinates vector x̂ which are unknown. For each test user RSS p̂, the
process of location estimation is described below.

• Step 1: Cluster Identification
The cluster ID ct of test user RSS p̂ is estimated by using the cluster identification based
on nearest neighbor Algorithm 2.

• Step 2: Position estimation
The GPR model related to cluster ct is used for estimating the x-coordinate x̂ of test
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user RSS p̂.
Now we would like to determine the posterior density of the position, i.e. x̂|xt, Pt, p̂.
According to [68], this distribution is Gaussian and the best estimate for x̂ is the mean
of this distribution, which is defined as

µ̂x = qT
t [Qt + σ2

vx
IL′ ]
−1xt (2.13)

where qt = (qt(p̂, p1)), . . . , qt(p̂, pu)) and u is the number of training RSS vectors in the
cluster t. Also, the uncertainty in our estimate is given by its variance which is given as

σ̂2
x = σ2

vx
− qt(p̂, p̂)− qT

t [Qt + σ2
vx

IL′ ]
−1qt (2.14)

2.4 Results and Discussion

In this section, we compare the position estimation performance of using GPR and the pro-
posed method (APC-GPR) in an DM-MIMO system. Therefore, GPR and APC-GPR posi-
tioning methods are simulated in order to be evaluated. A DM-MIMO system setup, with
M = 36 single antenna RRHs, L = 400 training locations, and L̂ = 25 test users is consid-
ered. Training users are distributed every 15 m in a grid configuration over the whole area
of 300 m × 300 m. Test users are also distributed in a grid and a random configurations, as
shown in Fig. 2.3. For training, the RSS matrix P is generated using (2.4) with user power
transmit ρ = 21 dBm, reference path loss b0 = −47.5 dB and different shadowing noise vari-
ance σ2

z = 1, 3, 5, 7 dB. Also, we set the path loss exponent to α = 0 for 0 < dmk < 10 m, α = 2
for 10 m < dmk < 50 m, and α = 6.7 for 50 m < dmk, according to the 3GPP Urban Micro
propagation model [69].

2.4.1 Clustering and Cluster Validation Results

As mentioned in the training phase, the APC algorithm is used to cluster the training RSS
matrix P. Before applying APC, according to (2.8), we select the median value of the similar-
ity matrix in (2.7) as the initial preference value. Then by increasing this value, we generate a
range of preference values because changes in the preference value can result in quite differ-
ent clustering results. Therefore, APC takes these values as an input to cluster the training
RSS matrix P. For evaluating the performance of the proposed method, first, the valid num-
ber of clusters should be specified. It should be noted that the clustering results would affect
the cluster identification accuracy, the computational complexity, and further affect the po-
sition estimation accuracy, as shown later in this section. For this purpose, first, the valid
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(b) Scenario B: Random configuration test user positions.

Figure 2.3: Simulation setup with M = 36 single antenna RHHs, L = 400 training positions,
and L̂ = 25 test users,

clusterings, which has high quality, are identified. To evaluate the quality of clustering re-
sults, clustering index validity such as the silhouette (SI) [59], the Davies-Bouldin (DB) [60],
and the Calinski-Harabasz (CH) [61] index are considered [70]. Then, the results of validity
indexes are averaged over 100 Monte-Carlo runs.

The SI is a well-known measure of how similar a training RSS vector pl , l = 1, . . . , L
is to its own cluster (cohesion) compared to other clusters (separation). It is then averaged
over all training RSS vectors and is defined [59] as
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SI =
1
L

L

∑
l=1

d(pl)− f (pl)

max{d(pl), f (pl)}
(2.15)

where d(pl) is the average distance between pl and all training RSS vectors in other clusters
and f (pl) is the average distance between pl and all training RSS vectors in the same clus-
ter. In Fig. 2.4a, the red line demonstrates the relation between the preference value and the
number of created clusters. We can see that changing the preference value of the APC algo-
rithm changes the clustering results and increasing the preference values almost increases
the number of clusters. i.e., the number of clusters is almost monotonically increasing with
preference values. Also, the blue line represents the relation between the number of clusters
and the quality of clustering based on the SI value. It should be noted that the value of SI
is in the range of 0 to 1. A larger value of SI represents higher clustering quality. Each clus-
ter can be separated significantly when SI > 0.5. We have an unsuitable cluster structure
when SI < 0.2. Among clustering results, the 4 highest silhouette values correspond to the
preference values which create 17, 19, 20 and 25 clusters.

Fig. 2.4b shows the validity of clustering using the DB index, which is the ratio of
within-cluster distances to between-cluster distances and is defined [60] as

DB =
1
T

T

∑
t=1

max
t′=1,...,T,t 6=t′

diam(ct) + diam(ct′)

d(pzt, pzt′)
(2.16)

where in this case, d(., .) is the Euclidean distance and the diameter of a cluster is defined as

diam(ct) =

√
1
ut

∑
p∈ct

d(p, pzt)2 (2.17)

with ut the number of RSS vectors and pzt the centroid of cluster ct. Since finding the clusters
with minimum intra-cluster distances is the objective in DB, small values for DB are taken
to be suitable. It is revealed that the lower value of the DB index belongs to the cases with
17, 19, 20 and 25 clusters.

The CH index is defined [61] as

CH =
∑T

t=1 ut.d(pzt, pztot)2

T − 1
L− T

∑T
t=1 ∑p∈ct

d(p, pzt)
(2.18)

where pztot is the centroid of all training RSS vectors. Since the goal is to obtain well-
separated and compact clusters, the maximum value for CH presents a proper separation
for the training RSS vectors. Fig. 2.4c indicates that the 4 highest values for the CH index
relates to the preference values with 17, 19, 20 and 25 clusters. By considering the results of
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validity indexes, we see that when there are 17, 19, 20 and 25 clusters, the training matrix is
partitioned well. Therefore, these partitioning are chosen as valid clustering.

2.4.2 Accuracy of Cluster Identification

According to the results in Section 2.4.1, the quality of clustering is sufficient when the num-
ber of created clusters are 17, 19, 20 and 25. Therefore, in this part, cluster identification
Algorithm 2.2 is applied in these valid cases to allocate validation data V to each cluster. We
consider 20% of all training data as validation data which is equal to 80 samples. To find the
nearest neighbor as a part of the cluster identification Algorithm 2.2, the KD-tree algorithm
with different values of Knn is considered and evaluated. Then, the accuracy of cluster identi-
fication is measured based on the error of cluster membership, which is done by comparing
the predicted and the real cluster ID of the validation RSS samples. Since the accuracy of
cluster identification is an important part of our method, a threshold is considered for the
accuracy of the cluster identification algorithm. If the accuracy of cluster identification in
each valid clustering case is less than the defined threshold, that clustering is ignored. Oth-
erwise, its validity check and the number of clusters of the clustering, which has the highest
validity and sufficient accuracy requirements for cluster identification, is selected as the op-
timal number of clusters. In our work, we consider 95% accuracy as threshold.

Fig. 2.5 shows the the cluster identification accuracy of Algorithm 2.2. It can be seen
that there is a relation between the number of clusters and cluster identification accuracy. We
can see that by increasing the number of clusters, i.e., 25 clusters, the cluster identification
accuracy decreases. In contrast, a lower number of clusters, i.e., 17 and 19 clusters, increases
the cluster identification accuracy. However, if there is only one cluster, the cluster identifi-
cation accuracy is 100 percent, but we will have poor accuracy of position estimation. But,
if there are many clusters, identifying the cluster will be difficult, and the clustering method
will finally become incapable for position estimation. Therefore, for accurate position esti-
mation, an optimal number of clusters is a critical factor. Also, as shown in Fig. 2.5, there
is a relationship between the accuracy of cluster identification and the number of nearest
neighbors Knn. Therefore, we need to choose the best number of nearest neighbors. Because
a lower value of Knn gives more weight to data, and the model learns to predict more locally,
while a higher value of Knn neglects outliers to the data, and the model learns to predict
more globally. If the value of Knn is too high, the algorithm will not be able to classify the
data. Therefore Knn needs to be relatively small. Therefore, we set Knn = 1, 3, and 5. We
can see that when Knn is equal to 3, the accuracy is maximum in all cases, and when Knn is
equal to 1 and 5, the accuracy is under the threshold. Therefore, we select the KD-tree with
Knn = 3 nearest neighbors. Also, it is observed that when the number of clusters is 17 and
19, the accuracy is almost the same and is the maximum. However, the validity of 19 clusters
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Figure 2.4: Cluster validation results using cluster validity indexes; a) Silhouette index, b)
Davies-Bouldin index, c) Calinski-Harabasz index.
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is better than clustering with 17 clusters. Therefore, 19 is selected as the optimal number of
clusters, which has 96.25 percent correct cluster-ID estimation accuracy. Therefore, we can
conclude that the optimal number of clusters is equal to 19.
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Figure 2.5: Average accuracy of cluster identification when the number of clusters is
17, 19, 20, and 25.

2.4.3 RMSE Performance

To evaluate the accuracy of the positioning of the proposed method, we measure the posi-
tion estimation performance in terms of the root mean squared error (RMSE) between the
real coordinates (xl , yl) of the test users and their estimates (x̂l , ŷl) as follows:

RMSE =

√√√√√ L̂
∑

l=1
(xl − x̂l)2 + (yl − ŷl)2

L̂
(2.19)

The simulation results of the APC-GPR positioning method are compared with the
method which only uses GPR [14] for positioning in DM-MIMO system. The RMSE results
are averaged over 100 Monte-Carlo runs. Several other investigations are also considered to
justify the impacts of the variations of important parameters in position estimation perfor-
mance, such as the effects of the number of single antenna RRHs, the effects of the number
of training samples, and the shadowing noise variance during the training phase.
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Impact of the number of RRHs

The average RMSE of the test user positions is evaluated as a function of the number of
RRHs. We plot the average RMSE performance of the proposed method for M = 25, 36, 49, 64,
81 and a shadowing noise variance of 5 dB. Fig. 2.6 shows that the average RMSE decreases
by increasing the number of RRHs. It can be also observed that increasing the number of BS
antennas results in performance improvement in positioning, which in turn motivates the
DM-MIMO usage. Although a similar decrease in average RMSE is observed in the GPR
method [14], by increasing the number of RRHs, the APC-GPR in the current study has a
significantly lower average RMSE compared to using only GPR in both grid and random
configuration. Also, we can see that we have better performance in scenario A compared
to scenario B. We can claim that there are two significant reasons that RMSE decreases with
increasing M: (i) there are extra RSS information that becomes available to the GPR models
because of the addition of the new RRHs, (ii) the increased average signal strength is a result
of the reduced RRH-to-MT distance.
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Figure 2.6: Average RMSE of the GPR and the APC-GPR methods for different numbers of
RRHs M = 25, 36, 49, 64, 81, when the shadowing noise variance is 5 dB and L = 400.

Impact of the number of training samples

Fig. 2.7 shows the average RMSE of positioning as a function of the number of training sam-
ples. It can be seen that the average RMSE decreases when the number of training samples is
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increased because there is more available RSS information in the whole environment, while
the lack of training samples leads to loss of position information.

It is also seen that the average RMSE in scenario A is better than scenario B. In both
scenarios, the APC-GPR method has a better performance than the GPR method.
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Figure 2.7: Average RMSE of the GPR and the APC-GPR methods for different numbers of
training samples L = 225, 400, 900, when the shadowing noise variance is 5 dB and M = 36.

Impact of shadowing noise variance

Fig. 2.8 shows the average RMSE performance of the APC-GPR method in the current study
and the GPR method as a function of shadowing noise variance [14] when M = 36 for
both scenarios, i.e., A and B. The RMSE performance is averaged over 100 Monte-Carlo
simulations for shadowing noise ranging from 1 dB to 7 dB. As seen in both methods, the
average RMSE increases by increasing the shadowing noise variance. However, the former
has lower average RMSE compared to the latter and scenario A has lower average RMSE
compared to scenario B.

Impact of channel correlation

Until now, it has been supposed that the shadowing noise coefficients of different uplink
channels are mutually uncorrelated. Since the RRH antennas that are close to each other
may share a common set of obstacles, the above assumption may not always hold in practice.
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Figure 2.8: Average RMSE performance of the GPR and the APC-GPR methods for different
shadowing noise levels, when M = 36 and L = 400.

Therefore, in this part, we discuss how the correlated shadowing among the test RSS vectors
affects the localization performance. The GP method employs the function qt(.) to map
the correlation among inputs to the correlation among outputs. When there is a notable
correlation among the inputs, the GP methods would require to make a smaller number
of independent predictions on the test datasets. That means, when the GPR model has an
accurate prediction on a test RSS vector, it tends to make accurate predictions on other test
vectors that have a high correlation with the considered test RSS vector. This leads to an
improvement in the RMSE performance.

2.4.4 Computational Complexity

Computational complexity is one of the problems found in many positioning methods. When
we use GPR for positioning, it has a high computational complexity according to (2.13) and
(2.14). Therefore, it is not efficient to use only GPR for positioning as in [14]. To overcome
this problem, we proposed an efficient positioning algorithm based on the APC and GPR to
decrease the GPR computational complexity in the positioning phase. The proposed method
uses APC to divide all the training data points in the target area into separate sets based on
the correlation of locations. In each cluster, the GPR is used to estimate new position. When
the GPR model is made, the training data that belongs to the same cluster is considered.
When all L training data points in the target area are considered in GPR, the complexity is
O(L3) [51]. But in the proposed method, the L training data points are divided into T clus-
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ters. When the number of training data in a cluster is L′, (3.34) and (3.35) are simplified in
the proposed method by only considering L′ training data points. Therefore, the complexity
is O(L′3) for a cluster, and the total complexity is T.O(L′3) for all T clusters. In general,
T.O(L′3) � O(L3) because L′ � L. So, the proposed method can efficiently decrease the
computational complexity of the GPR predictive model.

2.5 Conclusion

We proposed a cluster-based approach to estimate user’s position from their uplink RSS data
in a DM-MIMO system. In the proposed method of the current study, the whole testbed was
first divided into clusters using an optimal clustering algorithm based on the APC algorithm,
which reduces the computational cost of online positioning. In the proposed method, APC
was chosen for clustering due to its initialization-independent property and better selection
of cluster heads compared with K-means clustering. KD-tree was used for cluster identifi-
cation to allow for a quick finding of the related cluster. Also, GPR was used for further
location estimation within each cluster.

To evaluate the proposed method, which is based on clustering and GPR, we com-
pared it with the method which only uses GPR to estimate the position. Through simulation
results, we presented several new insights on RSS-based user positioning in DM-MIMO sys-
tem: (i) the average RMSE values of the proposed method decrease with increasing the num-
ber of RRHs, (ii) the average RMSE values of the proposed method decrease with increasing
the number of training samples, (iii) clustering the target area into several clusters helps to
minimize the computational complexity of online positioning, and (iv) the performance of
the proposed method is better than using only GPR for position estimation.
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Chapter 3

An Improved and Low-dimensional
Fingerprint-based Localization
Method in Collocated Massive
MIMO-OFDM Systems

Résumé

La localisation a attiré une attention significative dans la 5G en raison de la demande crois-
sante de service basé sur la localisation (LBS). Le MIMO massif (Massive Multiple-Input
Multiple-Output) a été introduit dans la 5G en tant que technologie puissante en raison de
son potentiel évident pour l’amélioration des performances de communication et la locali-
sation dans des environnements complexes. La localisation basée sur les empreintes digi-
tales (FP) est une méthode prometteuse pour les environnements de diffusion riches grâce
à sa fiabilité et sa précision élevées. La méthode de régression de processus gaussien (GPR)
pourrait être utilisée comme méthode de localisation basée sur le FP pour faciliter la locali-
sation et fournir une grande précision. Cependant, cette méthode présente une complexité
de calcul élevée, en particulier dans les environnements à grande échelle. Dans cette étude,
nous proposons une méthode de localisation améliorée et de faible dimension basée sur la
FP dans un systéme basé sur le multiplexage par division de fréquences orthogonales et le
MIMO massif colocalisé utilisant l’analyse en composantes principales (PCA), l’algorithme
de clustering de propagation d’affinité (APC) et la régression de processus gaussien (GPR)
pour estimer l’emplacement de l’utilisateur. Les empreintes digitales sont d’abord extraites
sur la base des informations d’état instantané du canal (CSI) en tirant pleinement parti des
domaines d’angle et de retard à haute résolution. Tout d’abord, le PCA est utilisé pour
prétraiter les données et réduire la dimension de l’entité. Ensuite, les empreintes digitales
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d’entraînement sont regroupées à l’aide de l’algorithme APC pour augmenter la précision
de la prédiction et réduire la complexité du calcul. Enfin, la distribution des données de
chaque "cluster" est modélisée avec précision à l’aide d’un GPR pour fournir un support
pour une localisation ultérieure. Les résultats de la simulation révèlent que la méthode
proposée améliore considérablement les performances de localisation en réduisant l’erreur
d’estimation de l’emplacement. En outre, cela réduit la complexité de la correspondance et
la complexité de calcul.

Abstract

Localization has drawn significant attention in 5G due to the fast-growing demand for loca-
tion-based service (LBS). Massive multiple-input multiple-output (M-MIMO) has been intro-
duced in 5G as a powerful technology due to its evident potentials for communication per-
formance enhancement and localization in complex environments. Fingerprint-based (FP)
localization are promising methods for rich scattering environments thanks to their high
reliability and accuracy. The Gaussian process regression (GPR) method could be used as
an FP-based localization method to facilitate localization and provide high accuracy. How-
ever, this method has high computational complexity, especially in large-scale environments.
In this study, we propose an improved and low-dimensional FP-based localization method
in collocated massive MIMO orthogonal frequency division multiplexing (OFDM) systems
using principal component analysis (PCA), the affinity propagation clustering (APC) algo-
rithm, and Gaussian process regression (GPR) to estimate the user’s location. Fingerprints
are first extracted based on instantaneous channel state information (CSI) by taking full ad-
vantage of the high-resolution angle and delay domains. First, PCA is used to pre-process
data and reduce the feature dimension. Then, the training fingerprints are clustered using
the APC algorithm to increase prediction accuracy and reduce computation complexity. Fi-
nally, each cluster’s data distribution is accurately modelled using GPR to provide support
for further localization. Simulation results reveal that the proposed method improves local-
ization performance significantly by reducing the location estimation error. Additionally, it
reduces the matching complexity and computational complexity.

3.1 Introduction

For supporting users with high quality of service, recognizing their location is essential.
Therefore, location information has recently become an important characteristic to drive lo-
cation and context-aware services in wireless communications [71]. Nevertheless, it is a
notoriously challenging problem to provide precise and reliable location information of user
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equipments (UEs) by using multipath propagation in wireless communications [72].

Currently, with the advent of the fifth-generation (5G) of wireless communications,
multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM)
systems have received great attention from the localization community due to their poten-
tial for improving user-localization accuracy [73]. Indeed, by employing a very large number
of antennas at the base station, massive MIMO-OFDM, besides improving spectral and en-
ergy efficiency [74], can obtain a higher multipath resolution in the angle and delay domains
to provide high-accuracy localization for location-based services [73]. Furthermore, the re-
silience against small scale fading is provided through processing measurements across the
massive array [47]. Therefore, the potential of massive MIMO-OFDM to support location-
based services is one of the main economic drivers of 5G wireless communications [75].

Global positioning system (GPS) is the most well-known localization technique. Al-
though it provides a precise estimation of mobile terminal’s (MT’s) position, it suffers a loss
of accuracy in areas where there is no direct line of sight (LoS) between transmitter and
receiver [76]. Consequently, there are range-based localization methods [7–10], which are
based on radio signal information received from MTs such as angle-of-arrival (AoA), time-
of-arrival (ToA), and received signal strength (RSS). However, the AoA-based methods deal
with the non-line-of-sight (NLoS) error [9]; in ToA-based methods, the base stations (BSs)
need to be synchronized [10] and using RSS has coarse range estimation error in complex
environments [32].

Another approach is fingerprinting (FP), which has achieved extensive attention for
localization in recent years due to its promising performance in complex multipath environ-
ments. It is flexible and can be used in many systems such as WiFi networks [35] and in
systems where channel state information (CSI) [38] is used as the location fingerprint. Un-
like traditional methods, it uses massive data to train a model and then it is employed for
localization [73]. For this purpose, many machine learning (ML) and deep learning (DL)
algorithms are used. However, the ML and DL algorithms often have to deal with data com-
plexity due to the high dimensionality of the data. Some solutions such as using dimension-
ality algorithms have been proposed to reduce complexity [77]. By considering all benefits
of the massive MIMO-OFDM system and the FP methods, integrating 5G and fingerprints
can be a good solution for localization in rich scattering environments.

Localization with massive MIMO is still in its nascent stage. In [41], AoA is esti-
mated precisely in massive MIMO systems employing very large uniform rectangular arrays
(URAs). The authors in [45] consider the combined information of time delay, angle of delay
(AoD), and AoA for localization of MTs in a massive MIMO system. In [44], a compressed
sensing approach is proposed to determine MT’s location directly from data acquired, such
as ToA information at multiple massive MIMO BSs. The Gaussian process regression (GPR)
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method is employed in [14] to estimate location of users using a vector of RSS, which is con-
sidered as a fingerprint in a DM-MIMO system. A fingerprinting method is presented in [78],
wherein an angle-delay channel power matrix (ADCPM) is first extracted as a fingerprint.
Then a system is employed for clustering the fingerprints with a mathematical model, such
as the joint angle-delay similarity coefficient (JADSC). However, efficiency is lost because the
effective range of the JADSC is dependent on the scatterers’ density.

In this chapter, we consider a collocated massive MIMO-OFDM system where the BS
is equipped with a large array of antennas to serve single antenna UEs over their cover-
age area. We propose a machine learning localization method using the CSI of collocated
massive MIMO-OFDM system to achieve accurate localization resolution. For this purpose,
the fingerprints are extracted from the known channel estimations. Then a combination
of principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-
SNE) is used to pre-process data, reduce the dimensions of the data features and visualize
the data. Later, an affinity propagation clustering (APC) and Gaussian process regression
(GPR)-based fingerprinting positioning system is presented, which consists of two phases:
the training phase and the online positioning phase. In the first phase, a large area is divided
into small clusters using an optimal clustering method based on the APC algorithm. The
data distribution within each cluster is precisely modeled using the GPR method. Then, in
the positioning phase, the user’s cluster is first specified by a cluster identification algorithm
based on a multi-layer perceptron (MLP) neural network. Its location is estimated using the
GPR model of that cluster.

The remainder of this chapter is structured as follows. In Section 3.2, we present the
system model of collocated massive MIMO-OFDM. In Section 3.3, we describe the proposed
machine learning localization method in detail. The results obtained through simulations
are shown in Section 3.4. Finally, conclusions are provided in Section 3.5.

3.2 System Description

3.2.1 Massive MIMO-OFDM Channel Model

In this section, we consider the uplink of a multi-user collocated massive MIMO-OFDM
system. In this system, we aim to localize the K single-antenna UEs, which are randomly
distributed in the coverage area. The UEs transmit signals to the BS, which is equipped with
M antennas in the form of a uniform linear array (ULA), through F � 1 different scattering
paths, as shown in Fig. 3.1.

According to Fig. 3.1, the wireless signals are propagated through multiple scattering
paths with AoA θ f ,k ∈ (0, π), and the distance d f ,k between the UE’s antenna and the first
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Figure 3.1: The wireless channel from an arbitrary user k to the BS.

receive antenna of the f th path. Assume that at this multipath wireless channel, the CSI is
known at the BS through the uplink channel. The channel impulse response (CIR) vector
associated with the f th path of the kth user is given by [78]

a f ,k = ω f ,ke(θ f ,k) (3.1)

where ω f ,k ∼ CN (0, σf ,k) is the complex attenuation of the f th path and e(θ) ∈ CM×1 is the
array response vector related to the AoA, θ, and is given [78] by

e(θ) =
[
1, e−j2π

dcos(θ)
λ , . . . , e−j2π

(M−1)dcos(θ)
λ

]T
(3.2)

where λ and d represent the carrier wavelength and the space between two antennas, re-
spectively. For OFDM systems, the channel frequency response (CFR) of the nth subcarrier
can be defined as the summation of the time domain CIRs with different delays [78] as

hk,n =
F

∑
f=1

ω f ,ke(θ f ,k)e
−j2π

nu f ,k
Nsc (3.3)

where u f ,k = b τf ,k
Ts
e and u f ,k

Nsc
indicates the temporal propagation delay corresponding to the

f th path. τf ,k =
d f ,k

v is the ToA of each path, v is the speed of light, Ts and Nsc are the sample
interval and the number of subcarriers in the OFDM system, respectively. Then the overall
CFR matrix is defined as

Hk = [hk,0, hk,1, . . . , hk,Nsc−1] (3.4)

3.2.2 Fingerprint Extraction

For creating a fingerprint, it is required to extract several characteristics that are constant in
the FP method. Therefore, wide-sense stationary features from the instantaneous CSI are
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considered as a fingerprint. Discrete Fourier transform (DFT) operations are employed to
establish a simple mapping from the CFR matrix to a sparse structure [78], and the angle-
delay channel power matrix (ADCPM) is given as

Ωk = FHHkG∗ (3.5)

where F ∈ CM×M indicates a phase-shifted discrete Fourier transform (DFT) matrix repre-
sented by [F]i,j , 1√

M
e−j2π

i(j−M/2)
M . G ∈ CNsc×Ng is defined as [G]i,j , 1√

Nsc
e−j2π

ij
Nsc and Ng

is the number of guard subcarriers. The left multiplication operator, FH, and the right mul-
tiplication operator, G∗, cause the frequency domain CFR map to the angle and the delay
domain, respectively. The complex gain related to the ith AoA and the jth ToA is repre-
sented by the (i, j)th element of the ADCPM fingerprint which is define as

Rk = E{Ωk �Ω∗k} =


r1,1 r1,2 · · · r1,Ng

r2,1 r2,2 · · · r2,Ng
...

...
. . .

...
rM,1 rM,2 · · · rM,Ng

 (3.6)

where� denotes the Hadamard product so that [Rk]i,j = E
{
|[Ωk]i,j|2

}
. As shown in Fig. 3.2,

the ADCPM represents the AoA, the ToA, and the channel power of each path related to the
scattering environment of user k.
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Figure 3.2: Example of ADCPM with M = 128 and Ng = 144.
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3.3 Fingerprinting Localization Method Based on Clustering and
Regression

Fig. 3.3 shows an overview of the architecture of the proposed localization method. The
ADCPM is extracted as a fingerprint from the channel estimation result known to the BS.
The remaining structure of the proposed location estimation method consists of two phases:
the training phase and the estimation phase.

In the training phase, the training data are collected from a grid of known location ref-
erence points (RPs). Then, the fingerprints are labeled with their corresponding location
coordinates, and the original dataset is created. The proposed method is based on four prin-
cipal component blocks: i) pre-processing, which is used to standardize, reduce dimensions
of the features, and visualize data, ii) clustering, where similar data are grouped and stored
in the database, iii) cluster identification, which is employed for coarse localization, and iv)
regression, where an accurate model is created for each cluster based on their similar data
distribution. We will describe each block in detail in the following subsections.

During the estimation phase, we randomly select some unknown locations to collect
the testing data. Similar to the training phase, the collected data is processed using the
same method to generate fingerprints. Then, its corresponding cluster (cluster ID) is first
determined using a cluster identification algorithm. Accordingly, the small region in which
the new user is most probably located is identified. Lastly, accurate position estimation is
applied using the GPR model of the corresponding cluster to improve the accuracy of the
location estimation.

3.3.1 Offline Phase

Let’s assume there are L training RPs. The ADCPM fingerprint of each RP is first converted
to a one-dimensional array such that we have

rl =
[
r1,1, · · · , r1,Ng , r2,1, · · · , r2,Ng , · · · , rM,1, · · · , rM,Ng

]
(3.7)

Therefore, each sample rl has B = M×Ng attributes, i.e., Ab, b = 1, . . . , B, and the radio map
is defined as

R =
[
r1, r2, · · · , rL

]T
(3.8)

where each row of R indicates a B-dimensional training vector rl related to the training
x-coordinates xl and the the training y-coordinates yl , l = 1, . . . , L. Therefore, the corre-
sponding L × 1 training x-coordinates x and L × 1 training y-coordinates y are defined as
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follows

x = [x1, x2, . . . , xL]
T,

y = [y1, y2, . . . , yL]
T

(3.9)
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Figure 3.3: Overview of the proposed position estimation scheme.

Pre-processing

Data pre-processing is the core stage in data mining and machine learning. Data transfor-
mation, dimensionality reduction, and data visualization are well-known techniques in this
step [79].

• Data transformation

Standardization is the main pre-processing step in data mining, where attributes val-
ues are standardized from different dynamic ranges to a particular range [79]. Stan-
dardized datasets learn the training model faster and have better quality, efficiency,
and accurate clustering results [80]. Based on the nature of the datasets for the anal-
ysis, it is essential to select an appropriate standardization method. In our case, for
each training vector rz, standardization of each value, rl,b, b = 1, . . . , B, of attribute
Ab, b = 1, . . . , B is done as follows

sl,b =
rl,b − µb

σb
(3.10)

where µb and σb represent the mean and the standard deviation of attribute Ab. After
standardization, the training vectors rl converts to sl where l = 1, . . . , L, and the radio
map R is changed into S ∈ Rl×B.
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• Dimensionality reduction

The number of attributes that describe the dataset is defined as its dimensionality.
These dimensions are represented as columns. Dimension reduction involves reduc-
ing the number of these columns to obtain a reduced or “compressed” representation
of the original data, especially with the presence of the curse dimensionality. If the
columns are correlated, there is some redundant information that affects the training
model results [81]. Therefore, it is crucial to use dimensionality reduction techniques
to avoid overfitting and reduce the model’s complexity. In our case study, we applied
principal components analysis (PCA) for dimensionality reduction.

PCA is a well-established method for dimensionality reduction. PCA is an orthogonal
linear transformation that maps the given dataset R present in a B-dimensional space
to a D-dimensional space such that D < B, while retaining the most relevant infor-
mation [82]. Before clustering, using PCA is a powerful method for clustering high
dimensional datasets. The procedure of PCA is explained in the following. After data
standardilation, which was explained in the previous section, i.e., the data transforma-
tion section, the covariance matrix of radio map S is computed by

Σ = (S)TS (3.11)

where Σ ∈ RB×B. In order to find the principal components in the new feature space,
we need to compute the eigenvalues λi and eigenvectors ei of the covariance matrix Σ,
satisfying Σei = λiei. For computing eigenvalues λi, we have

(Σ− λiI)ei = 0 (3.12)

Since ei is a non-zero vector, (3.12) can be equal to zero if det(Σ − λiI) = 0. Let I
eigenvalues in descending order form the diagonal matrix Λ:

Λ = diag[λ1, λ2, . . . , λI ] (3.13)

To discover the eigenvectors of Σ using eigenvalue decomposition, the matrix of eigen-
vectors is defined as

E = [e1, e2, . . . , eI ] (3.14)

where E ∈ RB×I . With the D largest eigenvalues of Σ, the eigenvector matrix is defined
as

E = [e1, e2, . . . , eD] (3.15)

where E ∈ RB×D and its columns represent the principal components (the new dimen-
sions) which are orthogonal to each other and arranged in decreasing order of vari-
ance. More precisely, the first eigenvector e1 is the direction in which the data varies
the most, the second eigenvector e2 is the direction of greatest variance among those
that are orthogonal (perpendicular) to the first eigenvector, and so on. The last step
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is transforming the standardized radio map to a new dimensions radio map which is
computed by

N = SE (3.16)

where N ∈ RL×D.

• Data visualization

The t-distributed stochastic neighbor embedding (t-SNE) algorithm is an innovative
probabilistic method for data visualization. It is well known in machine learning due
to its remarkable ability to transform high dimensional data to lower dimensions by
preserving the neighborhood structure of the dataset [83, 84]. If there are L standard-
ized training data points, in the t-SNE algorithm the similarity of data point sl to sl′ ,
where 1 ≤ l, l′ ≤ L and l 6= l′, is a conditional probability given [83] by

pl′|l =

exp
(
−‖sl−sl′‖

2

2σ2
l

)
∑l 6=l′′exp

(
−‖sl−sl′′‖

2

2σ2
l

) (3.17)

pl′|l is high for nearby data points, whereas it will be relatively small for widely sep-
arated data points. σl is associated with a predefined input parameter Perp known as
“perplexity” and can be loosely interpreted as the number of effective neighbors that
each data point has and is defined [85] as

Perp(pl) = 2(H(pl)) (3.18)

where H(pl) is the Shannon entropy, which is given by

H(pl) = −∑
l′

pl′|llog2 pl′|l (3.19)

Then the L× L similarity matrix PHigh in the original high dimensional space is formed
and its entries are defined [83] as

pl,l′ =
pl|l′ + pl′|l

2L
(3.20)

The t-SNE algorithm tends to learn a D-dimensional map {n1, . . . , nL}, nl ∈ R1×d of
the original data that reflects the similarities pl,l′ as well as possible. For this purpose,
a Student t-distribution with one degree of freedom is used. Using this distribution,
a L× L similarity matrix QLow in low dimensional space is defined whose entries are
given by

ql,l′ =

(
1 + ‖nl − nl′‖2

)−1

∑l 6=l′′
(

1 + ‖nl − nl′′‖2
)−1 (3.21)
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The t-SNE for finding the projections of the input data sl in lower dimension as nl , em-
ploys a gradient-based technique to minimizes the Kullback–Leibler distance, which is
defined as the cost function between PHigh and QLow [83] and is given by

C = KL(PHigh||Q) =
L

∑
l=1

L

∑
l′=1

pl,l′ log
pl,l′

ql,l′
(3.22)

The gradient of the Kullback-Leibler distance between PHigh and the Student-t based
joint probability distribution QLow is given [83] by

δC
δnl

= 4 ∑
l′
(pl,l′ − ql,l′)(nl − nl′)

(
1 + ‖nl − nl′‖2

)−1
(3.23)

Clustering and Clustering Validation

The training data clustering and cluster validation procedure are presented in Fig. 3.4. After
preprocessing, let us define N as the compressed radio map whose D-dimensions rows are
nl , l = 1, . . . , L. First a clustering algorithm is employed. Then, the quality of clustering
is evaluated by a cluster validity index. In our method, we consider a different clustering
algorithm which is explained in the following.

Data 

for process

Clustering algorithm

Validation of  results

Interpretation

Knowledge

Final Clusters

Algorithm 

results

Figure 3.4: The pre-processing scenarios.

• Affinity propagation clustering
The affinity propagation clustering (APC) algorithm [48] divides the training finger-
prints into clusters by allocating each fingerprint sample an equal chance to become a
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cluster-head (CH) [57]. Let us assume that the radio map N obtained after preprocess-
ing on the training phase is represented as follows

N =
[
n1, n2, · · · , nL

]T
(3.24)

where, each row of N is the fingerprint of the lth RP.

To divide the training fingerprints into several clusters, the affinity propagation cluster-
ing (APC) algorithm [48] is employed by allocating each fingerprint sample an equal
chance to become an exemplar. In K-means clustering, the number of output clus-
ters and the corresponding random set of initial exemplars must be identified in ad-
vance [57]. Therefore, APC outperforms K-means clustering because it benefits from
the initialization independent feature and better selection of the cluster exemplar.

The APC algorithm requires two types of real-valued input to divide N into clusters:
the similarities matrix SSim and the preference pre f . A pairwise similarity s(nl , nl′)

(for l 6= l′) is used to indicate the appropriateness of nl to be selected as the exem-
plar with respect to nl′ . Since we aim to minimize the squared error, the similarity
calculation in the APC is based on the negative squared error (Euclidean distance) as
follows:

s(nl , nl′) = −||nl − nl′ ||2 (3.25)

where 1 ≤ l, l′ ≤ L and l 6= l′. Also pre f is defined as follows

pre f = median(s(nl , nl′)) (3.26)

To evaluate the quality of clustering results, a clustering index validity such as the silhou-
ette (SI) is considered [70]. The SI is a well-known measure of how similar a training vector
nl , l = 1, . . . , L is to its own cluster (cohesion) compared to other clusters (separation). It is
then averaged over all training vectors and is defined [59] as

SI =
1
L

L

∑
l=1

d(nl)− f (nl)

max{d(nl), f (nl)}
(3.27)

where d(nl) is the average distance between nl and all training vectors in other clusters and
f (nl) is the average distance between nl and all training vectors in the same cluster.

Cluster Identification

In this section, to identify the corresponding cluster of each fingerprint, several algorithms
can be employed such as KD-tree which was used in Chapter 2 and the artificial neural net-
work (ANN). The KD-tree is not suitable for finding nearest neighbors in high dimensions
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due to the curse of dimensionality. The ANN that we use is the multi-layer perceptron (MLP)
which is employed and evaluated for coarse localization. For this purpose, a subset of the
clustered training data points is selected as a validation dataset, and it is supposed that their
cluster IDs are unknown. This subset is used to obtain the accuracy of the cluster identi-
fication model. Let us suppose there are D attributes after using dimensionality reduction
and 20% of the training data are selected as validation dataset. The details of this cluster
identification algorithm are described in the following.

• Multi-layer Perceptron (MLP) Neural Networks (NN)
MLP is a supervised learning algorithm that learns a function h(.) : RD ∼ RT by
training on a dataset, where D is the number of dimensions of attributes for the input
and T is the number of cluster IDs for the output. Given a set of attributes and a
target, MLP can learn a non-linear function for classification. MLP consists of three
layers: input, hidden, and output. As shown in Fig. 3.5, we associate the input nodes
with reference node A1 ∼ AD and the output nodes with predefined cluster-ID. The
leftmost layer, known as the input layer, consists of a set of neurons {A1, A2, . . . , AD}
representing the input attributes. The hidden layers are between the input and output
layers, where the transitional computations are performed. Each hidden layer uses the
output of the previous layer to perform a non-linear operation, which is defined as:

hk = φ(Wkhk−1 + bk) (3.28)

where Wk is a fully connected weight matrix that represents all the connections be-
tween each node of the (k− 1)th layer and each node of the kth layer. bk is the bias vec-
tor of kth layer, hk−1 represents the output from the previous layer. The weights and
biases in a neural network are initially set to random values but the model is trained
using the back-propagation (BP) method and the Adam optimizer [86] to minimize the
loss function and updates the network parameters (i.e., weights and biases) iteratively
until a convergence is achieved. φ(.) is the activation function. In our case, we use
Rectified Linear Unit (ReLU) [87] (i.e., φ(n) = max(n; 0)) as an activation function in
hidden layers and the softmax function is used as the activation function of the output
layer so that the sum of the output values of all output neurons is equal to 1 and is
defined as

φ(n)i =
eni

ΣT
t=1ent

(3.29)

The output layer receives the values from the last hidden layer and transforms them
into output values. Then the model is evaluated by comparing the real cluster-ID and
the estimated cluster-ID.
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Figure 3.5: Structure of MLP classifier for cluster identification.

Making a Regression Model

Let us suppose matrix N is divided into T clusters N′t, t = 1, . . . , T with known locations
[xt, yt]. Therefore, we have N = {N′1, N′2, . . . , N′T}. Consequently, the training data of each
cluster are modeled using a GPR model, which takes the fingerprint as an input and provides
the UE’s location as an output. For simplicity, the data of a cluster is only considered in this
part, but a similar procedure is applied for other clusters as well. Therefore, we consider the
tth cluster which has L′ training samples.

Let us define fx(.) and fy(.) as the functions which map the fingerprint vector nk of any
user k into cluster N′t to provide the 2-dimensional user’s location coordinates (xk, yk), such
that

xk = fx(nk) + vx,

yk = fy(nk) + vy
(3.30)

where vx and vy are error terms modeled as i.i.d. Gaussian random variables with zero
mean and variance σ2

vx
and σ2

vy
, respectively. From (3.30), we can see that, estimating the

x-coordinate xk (and y-coordinate yk) from nk is a non-linear regression problem in machine
learning. Among non-linear regression methods, we choose GPR because it is a powerful,
Bayesian non-parametric approach that provides a probability distribution over all possible
values [64]. Also, GPR methods have a good performance in terms of multiple metrics,
including the squared prediction error [65]. For simplicity, details of the GPR model are

51



presented for the x-coordinates of the users and the same procedure can be applied for the
y-coordinates.

In (3.30), function fx(.) is supposed to be random and follows a Gaussian process with
zero-mean and covariance matrix Ct (also known as a kernel matrix), such that

fx(.) ∼ GP
(
0, Ct

)
(3.31)

The covariance function between user k and user k′ in cluster N′t, is the weighted sum of the
squared-exponential, the linear and the delta function [66] and is defined by

ct(nk, nk′) = γe−
1

2ϑ2 ‖nk−nk′‖
2

+ vnT
k nk′ + σ2

vx
δkk′ (3.32)

where ct(nk, nk′) is an element of Ct and the delta function δkk′ is 1 if k = k′ and 0 otherwise.
According to (3.32), we need to estimate and optimize an unknown GPR hyperparameter
vector φt = [γ, ϑ, v] from the training data. Based on the GP assumption, i.e. data can
be represented as a sample from a multivariate Gaussian distribution, we know that xt is
Gaussian distributed, xt|N′t, φt ∼ N

(
0, Ct

)
[51]. The log-likelihood function is used to derive

the maximum likelihood estimator of parameter φφφt. The estimator φ̂φφt is obtained by solving

φ̂φφt = arg max
φφφt

log(p(xt|N′t, φφφt)) (3.33)

The optimization problem in (3.33) can be solved using a limited memory Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm which is an optimization algorithm in the family of
quasi-Newton methods that approximates the BFGS algorithm using a limited amount of
computer memory. It is a well-known algorithm for parameter estimation in machine learn-
ing that is explained in detail in [67].

3.3.2 Online Positioning Phase

In this phase, the position of a test user whose location is unknown is estimated. Let us
suppose there are L̂ test users. For this purpose, the L̂ × D testing matrix N̂ is used to
estimate the L̂ × 1 x-coordinate vector x̂. For each test user data n̂, the process of location
estimation is described below.

• Step 1: Cluster identification
Based on the cluster identification algorithm, the cluster ID t of testing data point n̂ is
estimated.

• Step 2: Location estimation
By using the GPR model of related cluster t, the x-coordinate x̂ of test user fingerprint
n̂ is estimated.
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Now we would like to determine the posterior density of the location, i.e. x̂|xt, N′t, n̂.
According to [68], this distribution is Gaussian and the best estimate for x̂ is the mean
of this distribution, which is defined as

µ̂x = cT
t [Ct + σ2

v IL′ ]
−1xt (3.34)

where ct = (ct(n̂, n1)), . . . , ct(n̂, nL′)) and L′ is the number of training data in the clus-
ter t. Also, the uncertainty in our estimate is given by its variance which is given as

σ̂2
x = σ2

v − ct(n̂, n̂)− cT
t [Ct + σ2

v IL′ ]
−1ct (3.35)

3.4 Results and Discussion

In this section, we compare the position estimation performance of the two-stage fingerprint
clustering method in [78], which is considered as a benchmark, and the proposed method. To
simulate a common urban wireless propagation scenario, a 120◦ sector with radius R = 500
m is considered. At the center of the sector, we place a BS which is equipped with a ULA
where the number of antennas M is 128. The major wireless parameters which are employed
in the simulation are set to those typical in LTE [69], [88], as listed in Table 3.1. Also, to have
a simple analysis, it is assumed that the location of a UE is estimated based on the 20 nearest
scatterers. The RPs are uniformly distributed every 10 m in a grid configuration over the
whole target area. However, the test users are randomly distributed in the sector. In our
case, the number of training RPs L is 893 and the number of testing data points L̂ is 157. For
each path, the location point of scattering is used to compute the AoA, the CFR of each UE
is calculated according to (3.1) and (3.3).

Table 3.1: Wireless Parameters

Parameters Value
Sampling interval 8.138 ns
Sampling frequency 122.88 MHz
Transmission bandwidth 100 MHz
Guard interval 4.7 MHz
Sub-carrier spacing 15 kHz
Carrier frequency 4650 MHz

3.4.1 Preprocessing Results

As mentioned in the offline phase, the fingerprints of the RPs are first extracted and stored
into the dataset with their corresponding coordinates. The training data R are standardized
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according to (4.8) and the pre-processing scenarios are employed. For evaluating the per-
formance of the proposed method, first, the new dimensions of the training data should be
specified using dimensionality reduction PCA. In PCA, a vital part is to estimate how many
principal components which explain the variance of the data are needed. The relation be-
tween the number of principal components and the percentage of data variance is shown in
Table 3.2. We can see that with the first 20 components, approximately 80% of the variance is
contained, while we need 58 components to describe close to 95% of the variance. Since we
aim to have 90% of the variance, the number of principal components is set to 35 and thus
the dimensions of the original data is reduced to 35.

Table 3.2: The projection loss of the principal components.

Principal components Variance percentage
20 80
30 85
35 90
58 95

In Fig. 3.6, shows the t-SNE visualization of applying the PCA on our localization dataset
with 35 principal components. We can see that the data are very clearly separated into sub-
groups. We can clearly see how all the samples are nicely spaced apart and grouped together
with their respective locations. If we now use a clustering algorithm to pick out the separate
clusters, we could probably automatically assign new points to a label.
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Figure 3.6: Preprocessing data using PCA and t-SNE.
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3.4.2 Clustering and Cluster Validation Results

For clustering the compressed training data, k-means, APC and agglomerative algorithms
are applied. Before applying APC, according to (3.26), we select the median value of the
similarity matrix in (4.10) as the initial preference value. Then by increasing this value,
we generate a range of preference values because changes in the preference value can re-
sult in quite different clustering results. Therefore, APC takes these values as an input to
cluster the compressed training matrix N. The maximum number of iterations in APC is
num_iterations = 200. For evaluating the performance of the proposed method, first, the
valid number of clusters should be specified. It should be noted that the clustering results
affect the cluster identification accuracy, the computational complexity, and further affect the
position estimation accuracy, as shown later in this section. For this purpose, first, the valid
clusterings which has high quality, are identified. Then, the results of validity indexes are
averaged over 100 Monte-Carlo runs.

Fig. 3.7 shows the quality of clustering of the training data points using k-means, affin-
ity propagation and agglomerative clustering algorithms based on the silhouette, SI, value.
It should be noted that the value of SI is in the range of 0 to 1. A larger value of SI represents
higher clustering quality. Each cluster can be separated significantly when SI > 0.5. We
have an unsuitable cluster structure when SI < 0.2. According to the clustering results, we
can see that when we use affinity propagation to cluster the training data points, we have
better average silhouette which means that the data are well separated. Also, we have a
good clustering quality when we use agglomerative clustering, especially when we have 5
clusters.

3.4.3 Accuracy of Cluster Identification

As mentioned in the offline phase, the MLP algorithm is applied for cluster identification.
To evaluate the accuracy of the MLP model, 20% of all training data are considered as a
validation dataset and it is supposed that their cluster-ID is unknown. Then, by comparing
the estimated cluster ID and the real one, the accuracy is obtained. In our analysis, the
accuracy of the model is 92%.

3.4.4 Positioning Performance

For estimating the position, the GPR model is trained by solving the log-likelihood maxi-
mization problem in (3.33).
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Figure 3.7: Comparison of clustering algorithms based on average silhouette.

During the online positioning phase, the fingerprints of the new UEs are extracted and
their position is estimated with our positioning method. Then the estimated positions are
compared with the true positions and the performance of the proposed fingerprint wireless
positioning system is evaluated.

In this part, by considering the two-stage fingerprint clustering method in [78] as a
benchmark, we first present the performance of the localization accuracy of the proposed
method. Simulation results are obtained to indicate that the proposed method is suitable in
massive MIMO-OFDM systems. Also, the effect of the number of BS antennas in location
estimation performance is evaluated. For evaluation, a massive MIMO-OFDM system with
128 BS antennas is considered. Fig. 3.8 shows the cumulative distribution of the estimation
errors for different methods. We can see that the accuracy of the proposed method is better
than the benchmark with 93% reliability for 10-meter accuracy. For comparison, in [78], the
reliability for 10-meter accuracy was 70%.

The impact of the number of BS antennas on the localization accuracy is demonstrated
in Fig. 3.9. When the number of antennas is increased from 64 to 128, the reliability for 10-
meter accuracy is increased from 81% to 90%. Also, we can see that increasing the number
of BS antennas increases the localization accuracy.
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Figure 3.8: The CDF of the location errors.
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Figure 3.9: The CDF of the location errors with different number of antennas M.

3.5 Conclusion

We proposed a low dimensional cluster-based approach to estimate the user’s location from
the CSI in a collocated massive MIMO-OFDM system. In the proposed method, first, all high
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dimension training data were map into a lower dimensional space. Then the whole testbed
was divided into clusters using different clustering algorithms, which reduces the compu-
tational cost of online positioning. APC was chosen for clustering due to its initialization-
independent property and better selection of cluster representative compared with k-means
and agglomerative clustering. A MLP was used for cluster identification to allow for a quick
finding of the related cluster. Also, GPR was applied for further location estimation within
each cluster. The proposed method was compared with a previous work in terms of localiza-
tion accuracy. Also, through simulation results, we showed that with increasing the number
of antennas, the localization performance is improved.
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Chapter 4

An Accurate, Robust and Low
Dimensionality Deep Learning
Localization Approach in DM-MIMO
Systems Based on RSS

Résumé

Actuellement, la localisation dans des systèmes MIMO massifs distribués (DM-MIMO) basée
sur l’approche d’empreintes digitales (FP) suscite un grand intérêt. Cependant, cette mé-
thode souffre de trajets multiples et d’une grace dégradation du signal, de sorte que sa pré-
cision est détériorée dans des environnements de propagation complexes, ce qui entraîne
des variations de la force du signal reçu (RSS). Par conséquent, le but de ce travail est de
fournir une localisation robuste et précise. Dans ce chapitre, nous proposons une approche
basée sur la FP pour améliorer la précision de la localisation en réduisant le bruit et les
dimensions des données RSS. Dans l’approche proposée, les empreintes digitales reposent
uniquement sur le RSS terminal mobile (MT) à antenne unique collecté au niveau de cha-
cun des éléments d’antenne de réception de la station de base MIMO massif. Après avoir
créé une carte radio, une analyse en composantes principales (PCA) est effectuée pour ré-
duire le bruit et la redondance. La PCA réduit la dimension des données, ce qui conduit à la
sélection des antennes appropriées et réduit la complexité. Un algorithme de clustering basé
sur K-means et le clustering de propagation d’affinité (APC) est utilisé pour diviser la zone
entière en plusieurs régions, ce qui améliore la précision du positionnement et réduit la com-
plexité et la latence. Enfin, afin d’avoir une estimation de localisation précise élevée, toutes
les données similaires dans chaque "cluster" sont modélisées à l’aide d’une régression de
réseau neuronal profond (DNN) bien conçue. Les résultats de la simulation montrent que le
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schéma proposé améliore considérablement la précision de positionnement. Cette approche
a une couverture élevée et améliore les performances de la racine de l’erreur quadratique
moyenne (RMSE) à quelques mètres, ce qui est attendu dans les réseaux 5G et au-delà. Par
conséquent, cela prouve également la supériorité de la méthode proposée sur les précédents
schémas d’estimation de localisation.

Abstract

Currently, localization in distributed massive MIMO (DM-MIMO) systems based on the fin-
gerprinting (FP) approach has attracted great interest. However, this method suffers from
severe multipath and signal degradation such that its accuracy is deteriorated in complex
propagation environments, which results in variable received signal strength (RSS). There-
fore, providing robust and accurate localization is the goal of this work. In this chapter,
we propose an FP-based approach to improve the accuracy of localization by reducing the
noise and the dimensions of the RSS data. In the proposed approach, the fingerprints rely
solely on the RSS from the single-antenna MT collected at each of the receive antenna ele-
ments of the massive MIMO base station. After creating a radio map, principal component
analysis (PCA) is performed to reduce the noise and redundancy. PCA reduces the data
dimension which leads to the selection of the appropriate antennas and reduces complex-
ity. A clustering algorithm based on K-means and affinity propagation clustering (APC) is
employed to divide the whole area into several regions which improves positioning preci-
sion and reduces complexity and latency. Finally, in order to have high precise localization
estimation, all similar data in each cluster are modeled using a well-designed deep neural
network (DNN) regression. Simulation results show that the proposed scheme improves
positioning accuracy significantly. This approach has high coverage and improves average
root-mean-squared error (RMSE) performance to a few meters, which is expected in 5G and
beyond networks. Consequently, it also proves the superiority of the proposed method over
the previous location estimation schemes.

4.1 Introduction

Location-based services (LBSs) have recently attracted significant attention in wireless net-
work applications. Today, several consumer goods are equipped with user location fea-
tures which provide immediate and accurate localization of lost, delayed, or damaged as-
sets [3]. Location information has a great application potential in industry, medicine, emer-
gency management, surveillance, controlling autonomous vehicles, and many other vari-
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ous fields [89]. At the same time, the demand for recognition of a mobile terminal’s (MT)
location has greatly increased so that numerous researches have been conducted on MTs’
location [81]. Therefore, developping localization technology is becoming more and more
important. The source of most localization systems are based in urban settings [81]. Today,
the global positioning system (GPS) is the most used technology for outdoor localization
due to its availability [5]. However, its accuracy deteriorates in shadowed locations and
in the vicinity of high-rise buildings due to diminished satellite signals in the absence of
line-of-sight (LoS) propagation [6]. Also, it requires too much power on an MT. Therefore,
LBSs significantly need accurate and real-time localization to obtain notable performance
improvement over existing cellular localization networks.

Currently, with the advent of 5G, the use of massive multiple-input multiple-output
(M-MIMO) systems is drawing attention from the localization research community [89]. M-
MIMO systems have been introduced as an enabling technology for 5G networks to improve
localization accuracy in addition to enhancing communication performance [3]. In our work,
we consider positioning multiple users simultaneously in a distributed massive MIMO (DM-
MIMO) system, wherein the users are served on the same time-frequency resource by a large
number of spatially-separated remote radio heads (RRHs) distributed over the whole area
[2].

DM-MIMO systems potentially provide higher spectral efficiency [39], energy efficiency
[90], average throughput rate, and coverage probability compared to conventional co-located
massive MIMO (CM-MIMO) systems, where the base station (BS) is equipped with an array
of co-located antennas [39]. Although DM-MIMO systems have significant benefits, user lo-
calization has not yet been as well established as with CM-MIMO systems [91]. A variety of
wireless signal properties have been considered in M-MIMO systems for MT’s localization.
Among them, we concentrate on the received signal strength (RSS) since it has lower cost
and complexity [91]. Machine learning (ML) approaches are then employed on the extracted
signal properties, which are considered as to be a unique fingerprint of a specific location.
Therefore, the localization problem can be solved using pattern recognition, which consists
of fingerprint extraction, fingerprint matching, and ultimately location estimation [91].

In this chapter, we propose a robust and precise localization method using a dimension
reduction technique, clustering, and regression, which are accomplished via two modes:
the offline mode and the online mode. The extracted RSS samples from the whole area
are analyzed during the offline mode. First, the dimensions of RSS samples are reduced
using principal component analysis (PCA). The whole area is then split into several sub-areas
using a combination of clustering algorithms based on the K-means and affinity propagation
clustering (APC) algorithms. Ultimately, a deep neural network (DNN) regression is applied
to the RSS samples of each cluster. The accuracy of the model is estimated using a validation
dataset. When a new fingerprint is given in the online mode, it is first preprocessed, then
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its cluster is specified, and finally, its location is estimated. We now summarize our major
contributions in four aspects.

1. In the preprocessing step, we apply the PCA technique on all data samples to de-
noise the RSS sample and extract effective features and reduced unimportant features
from RSS vectors. Preprocessing leads to speed up and improve the accuracy of our
proposed machine learning-based method since the training time and complexity are
reduced significantly with fewer dimensions (features). Also, it helps us to select a
proper set of RRHs.

2. In the clustering step, a fast convergence, and initial value independent clustering
method relying on a combination of K-means and AP clustering algorithms is pro-
posed. This method reduces latency and computational complexity and helps to im-
prove localization accuracy.

3. We propose a DNN regression for each cluster using all the data of the corresponding
cluster to estimate the location more precisely.

4. The performance of the proposed localization method is evaluated in terms of root-
mean-squared-error (RMSE) via simulations and compared to the works in [91].

The rest of the chapter is organized as follows. Section 4.2 overviews existing tech-
niques and related works for localization. In Section 4.3, we present the system model. The
positioning method is proposed in Section 4.4. Simulations results are presented and dis-
cussed in Section 4.5. A conclusion is presented in Section 4.6.

4.2 Related Work

4.2.1 User Positioning in Massive MIMO System

In recent years, user positioning in M-MIMO has attracted much attention and there are
several research works in this area. The authors in [41], [42], and [43] use angle-of-arrival
(AoA) information to estimate UE position in M-MIMO systems. In [45] and [46], the com-
bined information of AoA, angle-of-delay (AoD), and time delay is used for user positioning
in M-MIMO, where in [45] a mm-Wave M-MIMO system including LOS scenarios is con-
sidered. In [44], a compressed sensing approach is proposed to estimate the location of a
MT from time-of-arrival (ToA) data recorded at multiple M-MIMO BSs. In [92], an envi-
ronment sensing method is employed in a highly directional 60 GHz mm-Wave network to
estimate MT’s positions. However, the localization in all of the above techniques is based
on the information obtained from a CM-MIMO system configuration, where the BS hosts
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an array of antennas. But, these methods are not applicable in DM-MIMO systems, where
single-antenna remote radio heads are considered. In [14] and [93], the Gaussian process
regression (GPR) ML algorithm is employed based on RSS measurements in DM-MIMO
systems. In [81], the performance of several ML algorithms, which are used in conjunction
with fingerprint-based MT localization for DM-MIMO wireless systems configurations, is in-
vestigated and evaluated. In [91], RSS-based positioning using a machine learning method
relies on the affinity propagation clustering algorithm and the GPR algorithm. Among the
relevant works, the study of [91] is the most pertinent for our investigation, wherein the fo-
cus of the analysis is based on GPR. We expand on the work presented in [91], using data
compression and deep learning algorithms to provide higher localization accuracy and less
computational complexity.

4.2.2 Machine Learning and Deep Learning for User Positioning

Localization techniques are classified into four main categories: proximity-based, angle-
based, range-based, and fingerprinting-based. The proximity-based is the most straightfor-
ward technique where the location is provided approximately in a particular radio coverage
area based on the locations of the BSs. Therefore, BSs are required, which is not suitable for
large areas [94]. The angle-based technique, which is based on the AoA of the received signal,
is not efficient in non-line-of-sight (NLoS) situations because it produces a coarse error for
positioning [9], [95]. In range-based techniques, one must compute the distance between the
MT and at least three BSs. Then the MT location is estimated using trilateration. This can be
accomplished through radio signal information received from MTs such as ToA and received
signal strength (RSS). The ToA method is known for its complexity because it requires very
expensive hardware at the BS, such as high accuracy clocks for time synchronization [10]. In
addition, it has low performance in NLoS environments. It has been demonstrated that the
RSS method is appropriate in non-urban environments because by increasing the distances
the path loss is expected to decrease steadily [81]. This issue can be mitigated when the RSS
method is employed in conjunction with a fingerprinting (FP) based method [14].

In a FP-based method, the location of MTs is estimated based on a pre-recorded data,
called fingerprint, using ML and deep learning (DL) algorithms [14]. Since FP-based posi-
tioning methods have a good performance in highly-cluttered multipath environments [14],
[33], they can be used in many systems such as WiFi networks [34–36, 96–98]. In addition to
received signal information, channel state information (CSI) [37], [38] is used as the position
fingerprint. In recent years, the FP-based localization method has attracted significant inter-
est by combining mobile positioning requirements into 5G wireless communication systems
due to its broad applicability and high cost-efficiency without any hardware requirement on
the MTs [11].
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Several machine learning methods including GP methods [14], and more recently, deep
learning methods [47], [37] have been applied and investigated for wireless user positioning.
However, the proposed methods for WiFi systems [37,49,50] are not applicable for M-MIMO
systems because they do not consider the associated inter-user interference. In addition, they
concentrate on the downlink, where the MTs estimate their positions by managing the com-
putational cost while in M-MIMO systems, positioning is performed on the uplink, where
the BS estimates the MTs’ position.

4.3 System Description

In the considered single-cell DM-MIMO system (Fig. 4.1), there are K single-antenna users
that transmit signals to M single-antenna RRHs on the same time-frequency resource. The
high-speed front-haul links connect RRHs to a central processor unit (CU). When the RRHs
receive signals transmitted by the users on the uplink, individually record their own multi-
user RSS values and send them to the CU. The CU handles the multi-user interference and
extracts the per-user RSS values from the multi-user RSS values. Then the CU from each
user forms an M× 1 RSS vector to perform localization [52], [53]. Details are as follows.

User Equipment 

(UE)

Remote Radio Head

(RRH)

Computing Unit

(CU)

Fronthaul Link Uplink Transmission

Figure 4.1: Multi-user DM-MIMO system model for location estimation.
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4.3.1 Propagation Model

To explain the uplink of a multi-user DM-MIMO system in more detail, let wk be the symbol
vector transmitted by user k with transmission power ρ. If gmk is the flat-fading channel gain
between user k and RRH m, the sum symbol vector ym received at RRH m is given by

ym =
√

ρ
K

∑
k=1

gmkwk + nm (4.1)

In (4.1), gmk = qmk
√

hmk is a flat-fading channel where qm,k denotes small-scale fading repre-
sented by an independent and identically distributed (i.i.d.) zero mean complex Gaussian
random variable with unit variance, i.e., qmk ∼ CN (0, 1), hmk is the large-scale fading coef-
ficient, and nm ∼ N (0, σ2

nI) is the additive white Gaussian noise. Note that the large-scale
fading coefficient hmk can be modeled [54] as

hmk = b0d−α
mk 10zmk/10 (4.2)

where b0 is the path loss at reference distance d0, dmk is the distance between user k and RRH
m, α is the path-loss exponent (typically dependent on the environment and the range), and
zmk is the log-normal shadowing noise coefficient with 10 log10 zmk ∼ N (0, σ2

z ).

4.3.2 Mitigating Multi-user Interferences

For measuring the RSS, we consider the power of the received signal at RRH m which is
given by ||ym||2 according to (4.1). But we should note that ||ym||2 at RRH m is in fact the
multiuser RSS because the symbol vectors which are transmitted by all K users are combined
at RRH m. Consequently, ||ym||2 cannot be directly used to estimate the position of user k. So
the RSS of each user is not separately distinguishable. To overcome this, the symbol vectors
wk in (4.1) should be mutually orthogonal and should be already known at the RRH [14].

So, we need users to transmit an orthogonal set of pilot signals during channel estima-
tion [55]. The RSS pmk of user k can then be obtained from (4.1) [53] as

pmk = ρhmk|qmk|2 (4.3)

From (4.3), we can see that the RSS varies due to small-scale fading and shadowing of the
wireless channel. The variation of small-scale fading can be decreased by averaging it over
multiple time-slots according to the channel hardening effect [56]. But the shadowing effect,
which is position-dependent and therefore depends on the user location, cannot be averaged
out [7]. Therefore, the RSS between user k and RHH m, which is obtained from (4.2) and (4.3),
when converted to dB scale, is given [53] by

pdB
mk = pdB

0 − 10α log10(dmk) + zmk (4.4)
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where pdB
0 = 10 log10(ρb0) is the uplink RSS at reference distance d0. Once the per-user RSS

values pmk, m = 1,. . . , M and k = 1,. . . , K, are extracted as above, the CU uplink RSS vector
pk is given by

pk = [pdB
1k , pdB

2k , . . . , pdB
Mk]

T (4.5)

which is considered as the fingerprint.

4.4 A Clustering and Deep Learning Approach-Based
Fingerprinting

An overview of the structure of the proposed localization method is shown in Fig. 4.2, which
consists of two distinct modes: the offline mode and the online mode.

During the offline mode, the system captures the RSS fingerprints from a grid of known
location reference points (RPs). Then, each fingerprint is labeled with corresponding location
coordinates. The labeled data is divided into training, validation, and testing datasets. In the
proposed method, learning is done with the training dataset and the performance is checked
with the validation dataset. The accuracy of the localization system is then presented based
on the testing dataset. Then PCA is applied for dimension reduction. After that, only a
subset of dimensions (features) that have the maximum variance is selected. Therefore, an
efficient feature set is produced. In the clustering step, the reduced-dimension training data
is divided into several clusters using an efficient clustering method, which is based on K-
means and AP. Later a cluster identification is employed for cluster matching and coarse
localization. Ultimately, a DNN regression is trained for each cluster based on their similar
data distributions. The accuracy of the model is evaluated using the validation dataset. If the
accuracy of the proposed model is not sufficient, the clustering and regression parameters
are modified in each iteration until convergence is achieved.

During the online mode, we provide the learned model to estimate the unknown lo-
cations of the test data. We first input the test data to the preprocessing level to transform
the test data and reduce its dimensions. Then, its cluster or regions is identified using the
cluster identification algorithm. Finally, the DNN regression of the related cluster is used to
estimate the location.

66



4.4.1 Offline Mode

Let’s assume there are L training data points which correspond to different RPs. Therefore,
the radio map is formed as

P = [p1, p2, · · · , pL]
T =


p1,1 p1,2 · · · p1,M

p2,1 p2,2 · · · p2,M
...

...
. . .

...
pL,1 pL,2 · · · pL,M

 (4.6)

where each row pl of radio map P is an M-dimensional fingerprint that corresponds to the
training x-coordinates xl and the training y-coordinates yl , l = 1, . . . , L.

x = [x1, x2, . . . , xL]
T,

y = [y1, y2, . . . , yL]
T

(4.7)

Offline mode

Training DNNs 

regression for each 

cluster 

Clustering using 

AP and K-means

Online mode

Fingerprint extraction

Training Fingerprint 

Transfer 

matrix

Testing Fingerprint 

Training cluster 

identification

Preprocessing

Data transformation

Dimension reduction

Preprocessing

Data transformation

Dimension reduction

Cluster 

selection (tth

cluster) 

Estimated 

location (ො𝑥, ො𝑦)

tth regression

Figure 4.2: Overview of the proposed position estimation scheme.
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Pre-processing

The core step in data mining and machine learning is data pre-processing, which consists
of data transformation and noise reduction, and dimensionality reduction with PCA in our
method [79]. Each step is explained in detail as follows.

• Data Transformation

In data transformation, each feature value pl,m, m = 1, . . . , M of each training finger-
print pl is standardized [79] using

sl,m =
pl,m − µm

σm
(4.8)

where µm and σm are the mean and the standard deviation of the mth feature. With
standardization, the training vector pl converts to sl where l = 1, . . . , L, and the radio
map P is changed into S ∈ RL×M.

• Dimensionality reduction

PCA is employed for denoising and dimension reduction in order to map the standard-
ized radio map S, which is in an M-dimensional space, to an D-dimensional space such
that D < M, while the most relevant information is maintained [82]. In PCA, in order
to find the principal components (PCs) in the new feature space, we need to compute
the eigenvalues λi and eigenvectors ei of the covariance matrix of S, Σ = STS, where
Σ ∈ RM×M and satisfying Σei = λiei. The details for computing the eigenvalues λi are
presented in [82].
Let us assume there are I eigenvalues which are placed in descending order form the
diagonal matrix Λ = diag[λ1, λ2, . . . , λI ]. Choosing the D largest eigenvalues of Σ,
we form eigenvector matrix E = [e1, e2, . . . , eD] where E ∈ RM×D. Each column of E
outlines the PCs, which are orthogonal to each other and in decreasing order. More
precisely, the first eigenvector e1 is the direction that captures the maximum variance
of data. The second eigenvector e2 is the direction that has the greatest variance among
those that are orthogonal to the first eigenvector, and so on. Therefore, the low dimen-
sionality radio map is U = (S)E, where U ∈ RL×D and is defined as

U = [u1, u2, · · · , uL]
T (4.9)

where l = 1, 2, . . . , L.

Clustering

A clustering algorithm is required to split the whole area into several regions based on the
collected RSS data. K-means is a very popular clustering algorithm that is extensively used
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due to its fast convergence. However, it is sensitive to the initial condition wherein the
number of clusters is predefined, and a random set of initial exemplars is selected in advance.
Therefore, in K-means, many runs are needed to get a good clustering result. However,
it does not guarantee i) that an appropriate initialization will occur during the repetitious
running, and ii) unique clustering because we get different results with randomly chosen
initial clusters.

In contrast, the affinity propagation (AP) clustering algorithm [48], has the initialization-
independent property wherein all RSS samples have an equal chance to be a cluster head
(CH). The optimal number of clusters is then obtained by passing iteratively two kinds of
messages, named validity and responsibility, to maximize a fitness function until a good set
of CHs emerges [48]. Therefore, APC can provide a good set of CHs with high speed. How-
ever, it can sometimes fail to converge, particularly for large similarity matrices. Considering
the convergence property of K-means and the good performance of affinity propagation, a
new clustering method is employed. The APC algorithm is first used to determine the opti-
mal number of clusters and the initial CHs. Then, K-means is employed to create the final
clustering results by iteration based on the initial CHs.

As mentioned in [91], the AP clustering algorithm requires two inputs to divide U
into clusters: the similarities matrix SSim and the preference pre f , which are defined as fol-
lows [48]:

sSim(ul , ul′) = −||ul − ul′ ||2

pre f = median(sSim(ul , ul′))
(4.10)

where 1 ≤ l, l′ ≤ L and l 6= l′.

The cluster algorithm used in our research is summarized in Algorithm 4.1. The valid-
ity of clustering is measured by the silhouette which is a well-known measure of how similar
a training RSS vector ul , l = 1, . . . , L is to its own cluster (cohesion) compared to other clus-
ters (separation). It is averaged over all training RSS vectors and is defined [59] as

SI =
1
L

L

∑
l=1

d(ul)− f (ul)

max{d(ul), f (ul)}
(4.11)

where d(ul) is the average distance between ul and all training RSS samples in other clusters
and f (ul) is the average distance between ul and all training RSS samples in the same cluster.
A clustering which has sufficient SI value is regarded as a valid clustering.
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Cluster selection

To determine the cluster corresponding to a new data point, a cluster identification based on
KD-tree is used, and its accuracy is evaluated based on the valid clustering. For this pur-
pose, a subset of clustered training RSS samples is selected as a validation dataset, and it is
supposed that their cluster ID are unknown. This subset is used to obtain the accuracy of
the cluster identification algorithm. First, the KD-tree algorithm, which finds similar data
quickly, is employed for each cluster. Then the KD-tree uses each RSS sample of the valida-
tion dataset to find their Knn nearest neighbors from each cluster; among them, the one that
has the minimum distance is selected. Therefore, the predicted cluster ID of the validation
RSS sample will be the cluster ID of its nearest neighbor.

To estimate the accuracy of clustering, we need to determine the error of cluster mem-
bership by comparing the predicted and the real cluster ID of the validation RSS samples. A
threshold is considered for the accuracy of the cluster identification algorithm. If the accu-
racy of the valid clustering is less than the threshold, that clustering is ignored. Otherwise,
its validity check and the number of clusters of the clustering which has the highest validity
and sufficient accuracy requirements for cluster identification is selected as the best number
of clusters.

Algorithm 4.1 Clustering based on APC and K-means

Require:
Preference value pre f
The training matrix U = [u1, u2, . . . , uL]

T

1: Compute similarity matrix SSim
2: Run APC algorithm to get CHs C = {C1, C2, ..., CT}
3: Calculate the number of clusters T and the initial centers for the K-means clustering
4: Run K-means clustering

Regression

In order to have very precise localization, we use a DNN to solve the regression problem in
each cluster.

Fig. 4.3 shows the fully connected multi-layer neural network structure in our method,
which consists of an input layer, hidden layers, and an output layer. The input layer consists
of artificial input nodes and receives the initial data for further processing. After dimension
reduction, each RSS vector is composed of D RSS values. Therefore, the number of input
nodes is equal to the number of dimensions of each RSS vector. The output layer produces
the required output. The position information of the MT is set as output. Therefore, the
number of output nodes is two. The hidden layers are between the input and output layers,
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where the transitional computations are performed. Each hidden layer uses the output of
the previous layer to perform a non-linear operation, which is defined as:

hk = φ(Wkhk−1 + bk) (4.12)

where Wk is a fully connected weight matrix that represents all the connections between
each node of the (k − 1)th layer and each node of the kth layer. bk is the bias vector of the
kth layer, hk−1 represents the output from the previous layer. The weights and biases in a
neural network are initially set to random values but the model is trained using the back-
propagation (BP) method and the Adam optimizer [86] to minimize the loss function and
the network parameters (i.e., weights and biases) are updated iteratively until convergence
is achieved. φ(.) is the activation function and in our case, we use a Rectified Linear Unit
(ReLU) [87] (i.e., φ(x) = max(x; 0)) in the hidden layers and a linear function (i.e., φ(x) = x)
in the output layer, since the localization is a regression problem.
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RSS from RRH 2
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. .
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Figure 4.3: The DNN structure.

4.4.2 Online Mode

In this phase, the position of a test user whose location is unknown is estimated. Let us
suppose there are L̂ test users. After using dimensionality reduction, the L̂×D testing matrix
Û is used to estimate the L̂ × 2 location coordinates (x̂, ŷ). For each test user data û, the
process of location estimation is described below.
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• Step 1: Cluster selection
The cluster ID t of testing data point û is determined using the cluster selection algo-
rithm.

• Step 2: Location estimation
The DNN regression model of cluster t is used to estimate the location (x̂, ŷ) of finger-
print û.

4.5 Performance Evaluation

In this section, we compare using simulations, the location estimation using GPR [14], APC-
GPR [91], and the proposed method in a DM-MIMO system with M = 36 single antenna
RRHs, L = 400 training locations, and L̂ = 16 test users. Training users are distributed every
10 m in a grid configuration over the whole area of 200 m× 200 m. Test users are distributed
in a random configuration, as shown in Fig. 4.4. For training, the RSS matrix P is generated
using (4.4) with user transmit power ρ = 21 dBm, reference path loss b0 = −47.5 dB and dif-
ferent shadowing noise variance σ2

z = 1, 3, 5 dB. Also, we set the path loss exponent to α = 0
for 0 ≤ dmk < 10 m, α = 2 for 10 m ≤ dmk < 50 m, and α = 6.7 for 50 m ≤ dmk, according to
the 3GPP urban micro propagation model [69]. The PCA technique is applied on P to reduce
the dimensions of RSS vectors and to generate the transformed RSS radio map U. Then the
clustering algorithm is applied to cluster all the training data using a similarity matrix and
preference values which are generated by (4.10). When the optimal number of clusters is
obtained, K-means algorithm is run for 100 times where the number of clusters is equal to 6.
Also, the KD-tree is evaluated with different K. Finally, the proposed DNN model is trained
with different hidden layers and activation functions. The root-mean-squared error (RMSE)
between the real coordinates (xl , yl) of the test users and their estimates (x̂l , ŷl) is considered
as a performance metric, which is defined as

RMSE =

√√√√√ L̂
∑

l=1
(xl − x̂l)2 + (yl − ŷl)2

L̂
(4.13)

The RMSE, is averaged over the Monte-Carlo realizations. Lower RMSE values indicate
better location estimation performance.
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Figure 4.4: Simulation setup with M = 36 single antenna RHHs, L = 400 training positions,
and L̂ = 16 test users.

4.5.1 Preprocessing

For an efficient and accurate clustering algorithm, we need to extract the essential RSS values
received by RRHs by reducing the noise and the high dimensionality of the data. As men-
tioned, the PCA is employed in the offline mode to extract the more important feature set
from the original RSS data set, while assuring the same level of positioning accuracy. Also,
each RSS sample vector in the online mode is transformed into its low-dimension represen-
tation and is then compared with the corresponding low-dimension radio map. Using PCA,
the optimal number of components that capture the greatest variance in the data are found.
In this work, a 98% variance criterion is considered. Note that different variance thresholds
may be chosen depending on the applications specific requirements. Fig. 4.5 shows how
the variance is captured by principal components. We see that the first three components
explain the majority of the variance in our data.

From Fig. 4.6, we can see that with the first 27 components, 98% of the variance is
contained. Therefore, the number of principal components is set at 27, and the dimension of
the original data is reduced.

4.5.2 Clustering

By running AP, the optimal number of clusters is equal to 6, which is considered in the k-
means clustering as the input. In the case of 6 clusters, we have a maximum of silhouette
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Figure 4.5: Variance of the principal components.
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Figure 4.6: The cumulative sum of PCA components’ variance. The first component already
contains more than 20% of the total variance, 27 components take into account 98% of the
RSS.

value. Also, the KD-tree algorithm with Knn = 3 is used for cluster identification as consid-
ered in [91].
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4.5.3 Comparison of Different Localization Methods

Fig. 4.7 shows the average RMSE of the test user’s location estimation as a function of dif-
ferent shadowing noise variance ranging from 1 dB to 5 dB for different methods. We can
see that the average RMSE is increased by increasing the shadowing noise variance in all
methods. When we apply PCA in GPR and AP-GPR methods in [14] and [91] respectively,
although a similar increase in average RMSE is observed by increasing the shadowing noise
variance, the methods where PCA is used have lower average RMSE than those with no
PCA and also the proposed method in the current study has a significantly lower average
RMSE compared to the others. Also, we can see that the proposed method has a superior
performance compared to the previous methods. Using PCA reduces noise and the num-
ber of dimensions of the data, that leads to increase stability, and reduces the computational
complexity.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Shadowing noise(dB)

2

3

4

5

6

7

A
ve
ra
ge

 R
M
SE

(m
)

GPR
PCA-GPR
APC-GPR
PCA-APC-GPR
Proposed method

Figure 4.7: Average RMSE of using GPR [14], APC-GPR [91] and the proposed methods with
M = 36, when the shadowing noise variance is 1, 3, and 5 dB and L = 400.

4.6 Conclusion

We proposed an efficient and low dimension FP-based method using PCA, APC and k-
means, and DNN to estimate the user’s location based on RSS values in a DM-MIMO sys-
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tem. In the proposed method, after preprocessing the data such as denoising and dimension
reduction, the whole testbed was first divided into clusters using the AP and k-means al-
gorithms, which reduces the computational cost of online positioning. AP was chosen for
clustering due to its initialization-independent property and a better selection of CHs and
k-means was combined with AP due to its great convergence. Then, KD-tree was used for
cluster identification to allow for a quick finding of the related cluster. Also, DNN was
applied for further location estimation within each cluster. The proposed method was com-
pared to previous works in terms of localization accuracy. Numerical results have justified
our proposed localization system over previous schemes. Also, through simulations, we
showed that increasing the shadowing noise variance decreases localization performance.
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Conclusion

Summary of the thesis

The main goal of this doctoral research was to present accurate localization methods in M-
MIMO systems such as DM-MIMO and CM-MIMO. In other words, a M-MIMO system
should be able to localize the MTs with high accuracy. Different researches have been done
in this field in the past to provide localization systems. However, providing more accurate
localization was a problem in the majority of these researches. In this thesis, the main focus
was on presenting a method that overcomes this problem. In other words, the presented
localization system has the ability to estimate the location of MTs with high accuracy while
having low computational complexity and high speed. A cluster-based approach using affin-
ity propagation clustering (APC) and Gaussian process regression (GPR) was presented in
Chapter 2 to estimate MT’s location from their uplink RSS data in a DM-MIMO system. The
modified version of this structure combined with PCA was presented in Chapter 3 to esti-
mate the user’s location from the CSI in a collocated massive MIMO-OFDM system. Also,
low dimension FP-based method using PCA and DNN was presented in Chapter 4 to esti-
mate the user’s location based on RSS values in a DM-MIMO system.

Contributions

The first contribution presented in this thesis was to propose a method using clustering
based on APC, and regression based on GPR in DM-MIMO. Since the FP-based techniques
in localization systems have high computational complexity, we used clustering to divide
the whole environment into several regions, which leads to reducing computational com-
plexity and average searching cost. APC was chosen for clustering due to its initialization-
independent property and better selection of cluster heads compared with k-means cluster-
ing. KD-tree and GPR were selected for cluster identification and location estimation within
each cluster, respectively. The goal of the proposed model was first to distinguish the region
or cluster of MTs, then estimating their location. The main idea in this contribution was to
increase the accuracy of location estimation while reducing the computational complexity
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of using GPR. Referring to the results of Chapters 3, the presented localization system pro-
vides better performance in estimating MT’s location. Also, its performance was evaluated
as a function of different parameters. We proved that i) the average RMSE values of the
proposed method decrease by increasing the number of RRHs and the number of training
samples, (ii) clustering the whole area into several clusters helps to minimize the computa-
tional complexity of online positioning.

Then, a low dimensional cluster-based approach was presented for a collocated mas-
sive MIMO-OFDM system to estimate the user’s location from the CSI. A collocated massive
MIMO with OFDM modulation was selected for the system model. Also, the CSI was used
for extracting ADCPM fingerprints in multipath situations. PCA and APC were selected for
dimensionality reduction and clustering, respectively. MPL was chosen for cluster identifi-
cation to allow for a quick finding of the related cluster or region. Also, GPR was applied for
further location estimation within each cluster. Referring to the results of Chapter 4, the pro-
posed method provides higher accuracy compared with a previous work and by increasing
the number of antennas, the localization performance is improved.

Finally, an efficient and low dimension FP-based method using PCA, a combination of
APC and K-means, and DNN regression was proposed to improve the localization accuracy
of the approach offered in the first contribution. In this method, preprocessing using PCA
was applied to denoise the RSS data and reduce the dimensions of the RSS vectors which
lead to selecting antennas that are essential for DM-MIMO systems implementation. Then,
a clustering based on APC and K-means was employed to hold the convergence property
of K-means and the good performance of affinity propagation. For this purpose, the APC
algorithm was first used to determine the optimal number of clusters and the initial CHs.
Then, K-means was applied to form the final clustering results by iteration based on the
initial CHs. The DNN regression was selected for more accuracy of location estimation.
The proposed method was compared to previous works in terms of localization accuracy.
Through numerical results, it was proved that the proposed localization system is better
than previous schemes.

Future works

As localization in massive MIMO using ML and DL techniques is still a relatively new re-
search area in wireless communications, there are many topics for future works, including
propagation models, big datasets, deep learning algorithms, system designs, and imple-
mentation issues. Related to the work in this thesis, we can consider the following topics for
future studies.
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1. Assuming the channel is unknown to the BS and estimating the channel considering
there is pilot contamination.

2. Using uniform rectangular antenna arrays and 3D propagation model for the M-MIMO
systems.

3. Combining mmWave and M-MIMO technologies to have a broad spectrum of advan-
tages such as i) high multiplexing gains due to a large number of antenna arrays in
M-MIMO, ii) huge available bandwidth that is found at millimeter frequencies, and
iii) reduced interference due to narrow beamforming. These combinations make an
opportunity to support a high-speed service such as localization. For this purpose, 5G
heterogeneous networks (HetNets) can be considered as the candidate system for lo-
calization which is made up of macrocell and small cell BSs, all with massive MIMO
and mmWave communication capacities.

4. Even if the results of this thesis are promising, the data set used for evaluation was
limited. More data would give the machine learning algorithms a larger learning set
which could boost the performance of the positioning methods. A larger data set hav-
ing more overlapping data points could make it possible to evaluate the machine learn-
ing algorithms.

5. Using longer sequences of estimated positions from the machine learning algorithms,
for tracking the MTs in urban areas.

6. Trying a variational autoencoder (VAE), which has been used to remove noise, and
convolutional neural network (CNN), which has been used to obtain promising posi-
tioning accuracy from earlier research in both CM-MIMO and DM-MIMO.

7. Developing new detection algorithms to confirm that the LoS and NLoS classifications
made in this thesis are of interest.
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