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Résumé 

La géométrie et la flexibilité d'un canyon sont les paramètres qui affectent grandement la valeur des périodes 

naturelles dans les barrages en terre. Le canyon entourant des barrages peut être considéré comme un domaine 

illimité. Pour prendre en compte ces deux effets, le canyon a été modélisé par SBFEM et le barrage en terre, à 

géométrie limitée, par FEM. La technique hybride SBFEM-FEM pour l'analyse tridimensionnelle dynamique de 

l'interaction sol-barrage a été validée avec les résultats disponibles dans la littérature. Comme la matrice de 

rigidité dynamique du domaine non borné est complexe et dépendante de la fréquence, la méthode classique 

de superposition de modes n'est pas simple pour le système d'interaction sol-structure. Ainsi, pour obtenir la 

fréquence propre fondamentale, le barrage a été excité en direction amont-aval. Les périodes naturelles du 

barrage de terre pour des canyons de formes géométriques et de coefficient de impédance différents ont été 

obtenues. Ils se sont avérés avoir des effets significatifs sur la période naturelle. Les résultats ont été comparés 

aux données enregistrées réelles. Il a été constaté que les graphiques proposés dans cette étude peuvent être 

utilisés par des concepteurs de barrages pour l'estimation des périodes naturelles des barrages en terre dans 

des canyons de formes et de propriétés matérielles différentes. Plusieurs fonctions d'amplification 

correspondant à différentes conditions de canyon ont été obtenues en appliquant un déplacement uniforme à la 

limite du canyon. Une étude approfondie a été réalisée pour examiner les effets de la géométrie et de la flexibilité 

du canyon sur la réponse en régime permanent du barrage. Ces deux effets ont influencé de manière importante 

les fonctions d'amplification. Alors que la flexibilité du canyon affecte de manière significative la valeur de la 

fonction d'amplification maximale, cette valeur ne change pas pour les barrages en terre dans lesquels les 

canyons ont des formes différentes et la même longueur. De plus, la réponse latérale du barrage de terre dans 

le domaine temporel a été calculée pour analyser les effets susmentionnés lors d'un tremblement de terre réel. 

Les fonctions d'amplification proposées ont été utilisées pour comparer les spectres de réponse enregistrés du 

barrage d'El Infiernillo lors des tremblements de terre de 1966 avec la fonction d'amplification calculée. Un 

accord raisonnable a été observé entre eux. La méthode linéaire équivalente (EQL) a été implémentée dans le 

FEM. La technique FEMSBFEM a été étendue pour prendre en compte l'effet du comportement non linéaire des 

barrages en terre. Il a été observé que le comportement non linéaire affecte grandement la fréquence naturelle, 

la fonction d'amplification et l'accélération de crête maximale du barrage de terre situé dans les canyons. Les 

effets de la géométrie et de la flexibilité du canyon sur le comportement non linéaire ont été examinés, et on a 

vu qu'en augmentant la flexibilité du canyon, l'effet de la non-linéarité était diminué. Le barrage d'El Infiernillo a 

été modélisé par FEM-SBFEM non linéaire 3D, et une comparaison de la fonction d'amplification de crête 

obtenue par la méthode proposée avec les données enregistrées montre la précision du FEM-SBFEM non 

linéaire. 
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Abstract 

The canyon surrounding a dam can be assumed as an unbounded domain, and the geometry and flexibility of 

a canyon are parameters that greatly affect the values of natural periods in earth dams. In this thesis, in order 

to take into account these two effects, canyons are modeled by SBFEM, and earth dams, which have limited 

geometries, are modeled by FEM. The hybrid FEM-SBFEM technique used for the dynamic three-dimensional 

analysis of soil-earth dam interactions is validated with results available in the literature. Because the dynamic-

stiffness matrix of the unbounded domain is complex and frequency-dependent, the classical mode-

superposition method is not straightforward for a soil-structure interaction system, and thus, to obtain their 

fundamental natural frequencies, the modeled dams were excited in the upstream-downstream direction. The 

natural periods of earth dams in canyons with different geometries shapes and impedance ratios are obtained, 

and are found to have significant effects on the dams’ natural periods. The results are compared with actual 

recorded data, and it is found that the graphs put forward in this study may be used by practical engineers for 

the estimation of natural periods of earth dams in canyons with different shapes and material properties. Several 

amplification functions corresponding to different canyon conditions are obtained by applying a uniform 

displacement at the canyons’ boundaries. A comprehensive study is performed to examine the effects of canyon 

geometry and flexibility on the steady-state responses of the dams, and it is found that these two effects 

significantly influence the amplification functions. While the flexibility of the canyon does affect the maximum 

amplification function value, this value does not change for earth dams in canyons that have different shapes 

but the same length. In addition, the lateral responses of earth dams in the time domain are computed in order 

to analyze the aforementioned effects under an actual earthquake. The proposed amplification functions are 

used to compare the recorded response spectra of the El Infiernillo dam under the two 1966 earthquakes with 

the calculated amplification function, and a reasonable agreement is observed between them. The equivalent 

linear method (EQL) is implemented into the FEM, and the FEM-SBFEM technique is extended in order to take 

into consideration the effect of earth dams’ nonlinear behavior. It is observed that such nonlinear behavior greatly 

affects the natural frequency, the amplification function, and peak crest acceleration of earth dams located in 

canyons. The effects of canyon geometry and flexibility on the nonlinear behavior are examined, and it is found 

that by increasing canyon flexibility, the effect of nonlinearity is decreased. The El Infiernillo dam is modeled by 

the 3D nonlinear FEM-SBFEM, and comparison of the crest amplification function obtained by the proposed 

method with the recorded data shows the accuracy of the nonlinear FEM-SBFEM 
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Introduction 

Dams are built for different purposes, such as hydropower, water supply, flood control, sediment control, etc. 

Earth dams constitute 75% of all of the dams in the world, and they are subjected to a wide variety of natural 

hazards; e.g., landslides, earthquakes, flooding, etc. Earthquakes are the most significant natural disasters 

regarding dam stability and safety. Though many studies have been done to investigate the behavior of earth 

dams under earthquake loading, more in-depth study is still required to further understand of the seismic 

behavior of earth dams.  

There exist over 10,000 dams in Canada, with more than 8000 dams and dikes in Quebec, and around 72% of 

these structures are earth-filled or rock-filled. The majority of dams are located in the western and eastern parts 

of the country, which are considered to be the areas with the most significant seismic activities in Canada. Dams 

have experienced Richter magnitude 7.2 and 6 earthquakes in just the last century in British Columbia (1949) 

and Saguenay, Québec (1988), respectively.  

Statement of problems 

The seismic response of an earth dam to earthquake loading is affected by interactions between the dam and 

the soil (or rock) surrounding the dam. The geometry and material of the canyon play a key role in determining 

the characteristics of an earth dam’s seismic response. A geometrically limited earth dam has dynamic 

interactions with the surrounding soil or rock, which has an unlimited geometry. In the literature, this effect is 

known as earth dam-foundation interaction, canyon-earth dam interaction, etc. In the present work, the term 

unbounded- earth dam will be used to refer to this effect.  

Some parts of the soil adjacent to an earth dam exhibit nonlinear behavior. This region and the earth dam’s 

dimensions are finite and make a bounded domain. Many approaches are capable of doing a nonlinear dynamic 

analysis of a bounded domain, with the finite element method (FEM) being the most popular. Although FEM is 

well suited for modeling the complex geometry and nonlinear behavior of materials, it is not possible to model 

an unbounded domain by FEM, as an unbounded domain must be terminated by an artificial boundary. To 

compensate for this weakness, different techniques have been utilized, and the scaled boundary finite element 

method (SBFEM) has received increasing attention as an appropriate approach for modeling unbounded 

domains for different soil-structure interaction problems. The nonlinear interaction of an earth dam and 

unbounded soil occurs at the boundary (Figure 1) by using the coupled FEM-SBFEM. This is divided into two 

parts: bounded and unbounded domains, which are modeled by the FEM and SBFEM, respectively. 
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As the SBFEM can successfully model even unbounded domains with complex geometries, boundary 1 can be 

chosen at the nearest possible distance to the dam body (Figure 2). This computational-efficient model is 

capable of doing a 3D nonlinear analysis considering all three effects.  

 

Figure 0-1. Earth dam: foundation layer (FEM), and elastic half-space (SBFEM) 

The 3D FEM-SBFEM equation is derived in order to conduct a comprehensive study of the effects of the flexibility 

and geometry of canyons on the seismic responses of earth dams. Therefore, the objectives of this thesis are 

as follows: 

(1) Introducing the 3D FEM-SBFEM hybrid technique as an appropriate tool for the dynamic analysis of 

earth dam-canyon interaction systems in the frequency domain 

(2) Examining the effects of the flexibility and geometry of canyons on natural periods 

(3) Proposing new graphs for the estimation of natural periods in canyons with different shapes and 

material properties 

(4) Developing the FEM-SBFEM technique to calculate the amplification function of earth dam-flexible 

canyon systems 

(5) Studying the flexibility and geometry effects of canyons on the seismic responses of dam crests 

(6) Suggesting several amplification functions relevant to different canyon conditions that can be 

straightforwardly used to obtain earth dam time and frequency domain responses considering the effect 

of canyon flexibility and geometry 

(7) Developing the FEM-SBFEM technique to consider the effect of nonlinearity 
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(8)  Examining nonlinear behavior effects on the natural frequency, amplification function, and peak crest 

acceleration of earth dams located in canyons with different material and geometry conditions 

Scope of research 

In Chapter 1, the importance of the effects of unbounded-dam interaction, canyon-dam interaction, and 

nonlinearity are discussed, and state-of-the-art knowledge is presented. Although a lot of work has been done 

to consider these effects separately, there is limited work taking into account all three effects simultaneously, 

and this is especially true for earth dams.   

Chapter 2 presents a paper published in the journal “Computers and Geotechnics”. The FEM-SBFEM hybrid 

technique is introduced in order to estimate the natural periods of earth dams, incorporating the effects of a 

canyon’s 3D geometry and flexibility. The canyon was modeled by SBFEM and the earth dam, which has limited 

geometry, by FEM. The proposed method is validated with results available in the literature, and the calculated 

natural periods are compared with actual recorded data. 

Chapter 3 presents a paper submitted to the journal “Earthquake Engineering and Structural Dynamics” in which 

the FEM-SBFEM hybrid technique is developed to obtain the linear crest amplification function (AF). The 

methodology is verified with results available in the literature. The effects of geometry and flexibility canyon on 

an AF are considered, and the calculated AF is compared with corresponding data recorded under an actual 

earthquake.  

Chapter 4 presents a paper submitted to the journal “Géotechnique”. The finite element method (FEM) is a 

powerful tool for the nonlinear modeling of dynamic problems, and in this chapter, the equivalent linear method 

(EQL) is implemented in the FEM. To satisfy the radiation damping condition and rigorously model a canyon as 

an elastic unbounded domain, the scaled boundary finite element method (SBFEM) is utilized. The FEM is 

coupled with the SBFEM to take into consideration the effect of an earth dam’s nonlinear behavior. The linear 

and nonlinear amplification functions are compared, and the effects of canyon geometry and flexibility on the 

nonlinear amplification function and natural frequency are examined. The El Infiernillo dam was modeled by 3D 

nonlinear FEM-SBFEM, and the crest amplification function obtained by the proposed method is compared with 

recorded data. 

Chapter 5 gives a summary of the thesis, followed by conclusions, and also provides directions for future work. 
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Figure 2  Schematic view of the proposed model 
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Chapter 1 A review of earth dam-canyon interaction 

Until the 1960s, theoretical models were widely used to simulate the simplified behavior of earth dams under 

earthquakes. However, the emergence of high-performance computers has stimulated the development of 

numerical methods. The capability of numerical methods to solve complex problems has made them popular as 

highly efficient tools in engineering fields. The first analyses of earth dams under dynamic loadings by numerical 

methods were done in the 1960s [1], [2].     

After over a half-century of developing numerical methods for the dynamic analysis of earth dams, numerous 

factors have been found to affect the responses of such dams. However, a few factors are considered as the 

most influential, and the remaining are treated as of secondary importance. The nonlinear behavior of an earth 

dam, earth dam-far field interaction, reservoir-earth dam interaction, and canyon (or foundation)-earth dam 

interaction effects have a great impact on the dynamic behavior of these dams, while the compressibility of 

water, absorption due to sediments, advanced soil models, etc., are of lower importance. 

Although researchers have aimed to introduce the most accurate models possible, it should be noted that taking 

into consideration all influential effects results in a highly demanding computational problem. Furthermore, to 

reach an optimum model, the four more important effects must be taken into account. Therefore, the literature 

review is dedicated to considering these effects. 

1.1 Unbounded domain  

As mentioned earlier, earth dams have bounded media, and it is straightforward to solve dynamic analysis 

problems with existing numerical methods like the FEM and FDM (Finite Difference Method). However, in reality, 

an earth dam interacts dynamically with the surrounding soil, which is an unbounded domain. For example, a 

finite element model of an earth dam which is solved under dynamic loading, like an earthquake, when the 

inducing wave from the vibration of the earth dam reaches the fictitious boundary is reflected inside the 

discretized bounded domain while the wave should be passed through the boundary and goes toward infinity.  

To solve this issue, various techniques have been suggested in the last few decades. These approaches are 

divided into two groups, i.e., local and global procedures. The local procedure, like absorbing layer, transmitting 

boundary conditions, and infinite elements, are simple techniques that enforce an artificial boundary to attenuate 

the outgoing waves, and are easily implemented in the FEM. Global procedures like the boundary element 

method (BEM), thin layer method (TLM), and SBFEM, however, are approaches that have their own equations 

and are independent of FEM. As global procedures provide the capability to model the unbounded domain and 

the stiffness and mass matrices could be obtained in the same way in the FEM, they can be coupled with the 

FEM to overcome the weakness of FEM in modeling the unbounded domain. Global procedures are well-known 
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for their accuracy in comparison with local methods, and the literature review of the local and global procedures 

is presented separately in the following sections. 

 Non-reflecting boundary conditions 

Non-reflecting boundary conditions (NRBCs), which have been called by different names such as “absorbing 

boundary conditions”, were proposed in the late 1960s. The classical viscous boundary condition was proposed 

by Lysmer and Kuhlemeyer (LC ABS) [3], and both scalar and vector waves have been solved using the 

superposition boundary condition [4]. Viscous boundary conditions are simple and can be implemented in the 

FEM, and Sommerfeld-like NRBCs were widely used until the late 1970s [5]. Today, these boundary conditions 

are known as zero-order boundary conditions. Low-order NRBCs have been introduced from the late 1970s. 

Although accuracy is increased by increasing the order of approximation, only second-order equations can be 

implemented in the FEM. Today, second-order formulations are widely used, and Engquist–Majda NRBCs [6] 

are among the most well-known. Different types of NRBC are available in commercial software; e.g., the LC 

ABS technique is available in ABAQUS and ANSYS. 

This technique only effectively absorbs waves arriving at the boundary with an angle larger than 30 degrees. 

Also, this method is suitable for soil-structure interaction problems, with the source of dynamic excitation inside 

the model. If the source is alongside the boundaries, the absorbing boundary cannot attenuate the waves 

properly, and consequently, the free boundary condition, which is a combination of a viscous boundary and a 

load history, has been introduced for earthquake loading. This approach is available in FLAC, DIANA, and 

PLAXIS, which are the most common software for seismic geotechnical engineering. Figure 1-1 shows the 

viscous boundary and free-field boundary that are utilized in FLAC. 

 

Figure 1-1. Model for seismic analysis of surface structures and free field [7] 
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These software are widely used by designers, engineers, and researchers for the dynamic analysis of earth 

dams, and FLAC and DIANA have been utilized for modeling of different types of earth dams,  and the viscous 

and free field boundary conditions have been implemented in the models [8]–[10]. Similarly, ABAQUS has been 

utilized with using viscous dashpot element [11].  

To sum up, although the viscous boundary technique is not an accurate approach, because of its simplicity and 

being straightforward to implement in commercial software, it is widely used. Also, this technique usually is used 

for unbounded domains with simple geometries.  

 Infinite Elements 

The infinite element method (IEM) [12] is very similar to the FEM. This method was introduced in order to extend 

the FEM to satisfy the radiation condition. The IEM has been developed by many researchers, including Bettes 

[13], Valiappan and Zhao, Khalili et al. [14], and Astely [15] to model wave propagation in unbounded domains. 

In this approach, the bounded domain is modeled by the FEM and the unbounded domain by the IEM. In the 

IEM, the wave propagating toward infinity is represented by decay functions in shapes functions of 

displacements. As the equations cannot be directly derived in the time domain, the IEM has mostly been 

developed for time-harmonic analyses.     

The IEM has been used to analyze gravity dam-foundation-reservoir interactions. Saini et al. [12] utilized the 

FEM-IEM to model the seismic behavior of a dam-reservoir system. The dam was assumed to be located on 

rigid bedrock, and the effect of the unbounded foundation was neglected. As well, Hariri-Ardebili and 

Mirzabozorg [16] conducted a time-domain analysis to take into account the effects of the reservoir and 

unbounded foundation in the FEM-IEM.  

 Perfectly matched layer technique 

The perfectly matched layer (PML) technique was introduced by Bérenger [17] for the absorption of 

electromagnetic waves. In this technique, the unbounded domain is modeled by an absorbing layer with a finite 

thickness that reduces the reflected waves. The PML technique has been developed for the scalar wave 

equation and the Helmholtz equation [18], [19]. 

Basu and Chopra [20] employed a complex coordinate system in PLM for implementing in FEM elastodynamic 

equations. A dam-reservoir system has been solved using PLM [21], and it was shown that in order to achieve 

proper accuracy, the length of the reservoir should be two times greater than the height of the dam. This number 

is increased to six times when the excitation source has a vertical component. Hence, to absorb the waves, the 

reservoir should be sufficiently large which results in a time demand analysis. Different time and frequency 

domain problems have been solved, and results have been compared with obtained results by utilizing absorbing 
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boundaries [20], [22], [23]. For example, for the problem shown in Figure 1-2, with a 5 percent damping ratio, 

the computed results are shown in Figure 1-3. While highly accurate results have been obtained from the PLM, 

the results of models utilizing the absorbing boundary conditions show appreciable inaccuracies. More examples 

can be found in the aforementioned references.  

 

Figure 1-2. (a) Homogeneous isotropic, (b) a PML model [20] 

 

Figure 1-3. Dynamic stiffness coefficients of elastic semi-infinite layer on fixed base computed using a PML model, as well 
as a viscous dashpot boundary model: L = d/2, LP = d, nb = np = 15, nd = 15, f1(x1)= 10(x1 –L)/LP [20] 
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In conclusion, the PML method is highly accurate for problems with the source of excitation inside a bounded 

domain, such as moving loads, foundation vibration, etc. For loading on a boundary, such as earthquake loading, 

the method is more complicated. As stated in [24], “PML media only absorb waves generated in the bounded 

domain. Hence, a particular approach should be employed to incorporate incident waves generated in the 

exterior domain due to vertical ground motions at the reservoir bottom.” 

   Thin layer method 

The thin layer method (TLM) is a global procedures introduced by Lysmer and Wass [24]. As shown in Figure 

1-4, the bounded finite element model is surrounded by the unbounded domain. The unbounded domain is 

constituted in three parts: the left and right parts, which are discretized consistent with the FEM domain, and the 

rigid bedrock located below the model. The two lateral parts are extended to infinity in the horizontal direction. 

The TLM is suitable for models with horizontal layers in which the material properties are constant for each layer 

and change with depth. The displacements vary linearly and exponentially in the vertical and horizontal 

directions, respectively. This technique has been developed for axisymmetric models [25], and has been 

extended for poroelastic materials [26], time-domain analysis [27], and layered strata with zigzag boundaries 

[28].  

 

Figure 1-4.  Schematic model discretized in TLM  

Bougacha and Tassoulas [29] utilized this technique in their analysis of dam-reservoir-foundation interactions, 

taking into account the effects of a horizontally infinite foundation and a reservoir resting on rigid bedrock. 

As a result, the TLM is easily implemented in the FEM and is well-suited for an unbounded domain with horizontal 

layers. However, the assumptions of horizontal and rigid bedrock limit the application of the method in practical 

geotechnical analyses.  

 Exact non-reflecting boundary conditions (ENRBCs) 

Similar to the other global procedures, the exact solution is formulated exactly at the artificial boundary. Givoli 

and Keller [30] obtained an exact solution for 2D time-harmonic problems with a circular artificial boundary, while 

the technique has been developed for 3D spherical boundary conditions by Grote and Keller [31]. It has also 
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been implemented in the FDM and FEM [32]. The method has further been developed for non-circular and non-

spherical boundaries by enclosing the actual artificial boundary between two addition boundaries, circular 

boundaries for 2D and spherical boundaries for 3D, and then applying the interpolation technique [33].  

As a result, ENRBC is formulated based on an exact solution on the boundaries. As the exact solution is available 

only for boundaries with simple geometries and materials, the practical problems that can be solved with this 

method are limited.  

  Boundary element method (BEM) 

Using the BEM, the radiation condition at infinity can be exactly satisfied through the use of suitable fundamental 

solutions; however, the fundamental solutions can be very complicated. The coupling of the FEM and BEM can 

be beneficial by obtaining the advantages of each. Linear and nonlinear models based on the coupled FEM-

BEM technique have been successfully implemented to investigate the behavior of dams under seismic loading 

[34]. 

Yazdchi et al. [35] considered the transient responses of elastic dams by utilizing the FEM-BEM. For a block 

under transit loading, two different meshes for models with an absorbing boundary have been used (Figure 1-5). 

The results have been compared with the BEM and FEM-BEM results (Figure 1-6); i.e., “This indicates that even 

though absorbing boundaries are efficient in absorbing the energy, the accuracy of the results is dependent on 

the extent of the mesh used. Naturally, this large number of elements in the FEM will increase the computational 

cost, especially in non-linear analysis in which coefficient matrices have to be evaluated at every time step” [35]. 
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Figure 1-5. Finite element mesh using absorbing boundaries [35] 

 

Figure 1-6. Vertical displacement at point A due to a vertical impulse load with different methods [35] 

 The scaled boundary finite-element method (SBFEM) 

The SBFEM, a novel semi-analytical method in computational mechanics combining the advantages of both the 

FEM and BEM, was originally developed by Wolf and Song [36] for the dynamic analysis of unbounded domains. 

Only the boundary is discretized, no fundamental solution is necessary, and general anisotropic materials can 

be analyzed without additional efforts. The method proved far more versatile than initially envisaged, and was 



 

12 

extended successfully for static and bounded domains. It has also been extended for the dynamic analysis of 

non-homogeneous unbounded domains, with the elasticity modulus and mass density varying as power 

functions of spatial coordinates [37], [38]. In this method, the analytical nature of the solution in the radial 

direction allows accurate stress intensity factors in fracture mechanics to be determined directly from the 

definition. In statics, an eigenvalue problem is solved, leading to displacement and stress amplitudes. In the 

frequency domain, the SBFE equation is expressed regarding the dynamic-stiffness matrix, while in the time 

domain, the SBFE equation in acceleration unit-impulse response including convolution integrals are obtained. 

To increase the computational efficiency of the technique, a reduced set of base functions is constructed by 

excluding the higher-order modes determined from the eigenvalue problem used in static analysis [39]. The 

sparsity and the lumping of the coefficient matrices of the SBFEM are exploited to further reduce the 

computational costs [40]. A Padé series solution for the SBFEM equation in dynamic stiffness has also been 

developed for frequency-domain analyses [41].  

Ekevid and Wiberg [42] and Ekevid et al. [43] used the SBFEM to simulate ground responses to high-speed 

trains moving over ground surfaces, and Syed and Maheshwari [44] improved the efficiency of the 3D FEM-

SBFEM approach for soil-structure interaction (SSI) analysis in the time domain. The hybrid technique was used 

for the nonlinear analysis of a soil-pile system [45]. Xu et al. [46] and Seiphoori et al. [47] modeled CFRD-

reservoir systems by FEM-SBFEM in order to consider the effects of hydrodynamic pressure on the dynamic 

stresses in slabs of high CFRD. Chen et al. [48] introduced an efficient nonlinear SBFEM with octree mesh for 

the dynamic analysis of some complicated geotechnical structures such as earth dams, while Lin et al. [49] 

proposed the SBFEM as an efficient method for dynamic dam-reservoir interaction systems. Also, Zhao et al. 

[50] used the FEM-SBFEM to consider the seismic responses of dams and offshore structures, with the SBFEM 

being applied at the water-structure interfaces. 

The 3D SBFEM has been introduced as an appropriate tool for the dynamic analysis of geotechnical structures 

[51]. The SBFEM (Figure 1-7) and FEM (Figure 1-8) models have been compared for analysis of a tunnel under 

train-loading. While the SBFEM shows accurate results, the results of the FEM are only valid for times less than 

t=0.25s (early times of the response). After 0.25 s, the response obtained from the FEM deteriorates, as the 

enforced boundary conditions are not able to accurately capture the unbounded domain and absorb the energy 

of outgoing waves. The inducing waves from the vibration have been reached the fictitious boundary and 

reflected inside the domain and received at the observing points before 0.25s. It can be seen, the model with 

SBFEM has a small bounded domain. It leads to an effective computational model [51].   
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Figure 1-7. SBFE mesh for modeling the bounded half-space domains in the dynamic analysis of underground train-
induced vibrations [51] 

 

 

Figure 1-8. 3D FE extended mesh used for dynamic analysis of underground train-induced vibrations [51] 

1.1.7.1 SBFEM equation 
The SBFEM equation for modeling the unbounded domain is briefly presented here. The scaled boundary 

coordinate system is defined in a local coordinate system ξ, η, ζ. The radial coordinate ξ is measured from O 

(the scaling center), and the circumferential coordinates are defined by η and 𝜁.  
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Figure 9 Scaled boundary coordinates: (a) scaling center O, radial coordinate ξ and boundary dis- cretization in circumferential 
coordinates η and for 3D modeling; (b) representation of the unbounded domain in 2D problems. 

For 3D problems, only the doubly-curved surface boundary 𝛤 is discretized. The unbounded domain Ω  in radial 

coordinate 𝜉 starts from 𝜉=1 on the boundary 𝛤 to 𝜉 =  ∞. Each point (𝑥, 𝑦, �̂�) is represented by scaling its 

corresponding point (x, y, z) on the surface boundary 𝛤 and by using the mapping shape functions [𝑁 (𝜂, 𝜁)] 

along the circumferential coordinates. While node positions are defined in the scaled boundary coordinate 

system, stresses, strains, and displacements are specified in the Cartesian coordinate system. Using the shape 

function )],([ uN , the nodal displacements inside the domain at a node (ξ, η) from the displacement 

function. The displacement at a node (ξ, η) inside the domain is interpolated from the displacement functions

)}({ u T(ξ) . 

 )}( {],...])[,(, ])[,([)}( {)],([= )},, ( { 21  uININuNu u    

 

)1-1( 

which [I] is a 3×3 identity matrix. By applying the virtual work method in the circumferential directions ,  [52] 

or by Galerkin’s weighted residual technique [36], the scaled boundary finite-element equation is obtained. As 

the dynamic analysis in this work has been done in the frequency domain, only the SBFEM equations in the 

frequency domain are presented. The 3D scaled boundary finite-element equation in displacement for the 

frequency domain is presented as: 
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where   denotes the excitation frequency and  ][ 0E , ][ 1E , ][ 2E , and ][ 0M  represent the coefficient matrices 

achieved by assembling their corresponding coefficient matrices for each element, as in the finite-element 

method [36]. They are independent of 𝜉. The coefficient matrices ][ 0E  and ][ 0M  are positive-definite, ][ 1E  is 

non-symmetric, and ][ 2E  is positive-definite. Analogous to the standard finite element, the nodal force-

displacement relationship is obtained. The internal nodal forces {𝑞(𝜉)}, which are the results of the surface 

tractions, are determined.  
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The internal nodal forces {𝑄(𝜉)} are equal to the external nodal loads {𝑅(𝜉)}.  
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Using Equations (1-2), (1-3), and (1-4) and eliminating )}({ q  and )}({ u  results in the scaled boundary finite 

element equation in dynamic stiffness in the frequency domain for unbounded domain:  
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) 

where [𝑆 (𝜔)] is the dynamic-stiffness matrix of an unbounded domain.  

1.1.7.2 Solution procedure  
Equation (1-5) is a system of first-order nonlinear ordinary differential equations with respect to the frequency 

𝜔, which is solved numerically using a fourth-order Runge-Kutta method. An asymptotic expansion of the 

dynamic-stiffness matrix for high frequency is used to start numerical integration:  
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in which ][ C , ][ K , and ][ )(iA  are coefficient matrices [52]. [𝑆 (𝜔 )] is obtained for a sufficiently high 

but finite value of the frequency 𝜔  and is used as an initial point to numerically solve Equation (1-5). Therefore, 

the dynamic-stiffness matrix of the unbounded domain is [𝑆 (𝜔)], calculated for the desired frequencies. 

1.1.7.3 Coupling of bounded and unbounded domains  
As discussed earlier, the coupling of FEM (Ω ) and SBFEM (Ω ) is done using the interface 𝛤. Using the 

obtained nodal force-displacement relationships for SBFEM (Equation (1-4)) and that of FEM, the assembled 

relationship is obtained as: 

 
[𝑆 ] [𝑆 ]

[𝑆 ] [𝑆 ] + [𝑆 ]

{𝑢 }

{𝑢 }
=

{𝑃 }

{𝑃 }
 )7-1(

[𝑆] is the dynamic-stiffness matrix of the bounded domain, which is obtained as: 

 [𝑆] =
[𝑆 ] [𝑆 ]

[𝑆 ] [𝑆 ]
= [𝐾] − 𝜔 [𝑀] )8-1(

in which [K] and [M] are respectively the static-stiffness matrix and mass matrix of  the eight-node hexahedral 

brick element [53]. 

1.2 Amplification function 

Transfer function or amplification function are defined as the relationship between the input and output of a 

dynamic system, and shows how the system amplifies or deamplifies an input signal. For an earth dam-canyon 

system, the amplification function (AF) can be defined as the ratio of the crest motion to the canyon motion. The 

amplification function of an earth dam at the crest point determines how a ground motion like an earthquake in 

each frequency is amplified or deamplified. The amplification function represents the influence of an earth dam’s 

and canyon’s properties, including the geometry and material properties. Utilizing the superposition principle, 

the crest response of an earth dam due to an earthquake is obtained by the production of amplification function 

and the earthquake ground motion. 

For the soil deposits (Figure 1-10), the amplification function is defined as the ratio of the free surface to the rigid 

bedrock motions. Kramer [54] proposed several AFs corresponding to different soil deposit conditions. K shows 

the wave number.  
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Figure 1-10. A linear elastic soil deposit [54] 

For a linear elastic soil deposit, the AF was presented as [54]: 

 |𝐴𝐹(𝜔)| =
1

|cos(𝜔𝐻/𝑉 )|
 )9-1( 

where is the circular frequency, H is the height of the soil layer, and 𝑉  is the shear wave velocity of the layer.  

 

Figure 1-11. Amplification function of an elastic undamped soil layer [54] 

Figure 1-25 shows that the surface displacement is always either greater than or equal to the bedrock 

displacement. When the denominator in Equation (1-9) approaches zero, the limit of AF is infinity. The 

corresponding 𝜔 that makes the denminator zero are the natural frequencies. This case never happens in a 

realistic problem where the soil layer has material damping and it always dissipates the energy. For a damped 

soil layer on rigid bedrock, AF was obtained in [54] as: 

 
|𝐴𝐹(𝜔)| =

1

cos
𝜔𝐻
𝑉

+ (𝛽𝜔𝐻/𝑉 )

 
)10-1( 

where 𝛽 is the material damping of the soil layer. Figure 1-12 indicates the AF of a damped soil layer. The local 

maximum represents the natural frequencies of the system. With increases in the material damping ratio, the AF 

is decreased. 
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Figure 1-12. The AF of the damped soil on rigid bedrock [54] 

The nth natural frequency of the soil layer is obtained by: [54]  

 𝜔 =
𝑉

𝐻
(
𝜋

2
+ 𝑛𝜋) )11-1( 

The first natural frequency is presented as:  

 𝜔 =
𝑉 𝜋

2𝐻
 )12-1( 

However, the assumption of rigid bedrock is not realistic. In the equation, it is assumed that the boundary 

between the rigid bedrock and soil layer is fixed, and when the reflected wave from the surface reaches the fixed 

boundary, it is reflected into the soil layer. If the soil layer is on elastic bedrock, part of the wave will be transmitted 

into the rock layer (see Figure 1-13).   

 

Figure 1-13. Elastic soil layer on elastic bedrock [54] 

The amplification function for the soil layer on the elastic bedrock is obtained as: [54] 
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|𝐴𝐹(𝜔)| =

1

cos
𝜔𝐻
𝑉 ∗ + iα∗sin(𝜔𝐻/𝑉 ∗)

 
)13-1( 

where α∗ is the complex impedance ratio defined as α =
∗∗
∗∗

 and 𝑉 ∗ shows the complex shear wave 

velocity. Figure 1-14 depicts the effect of the impedance ratio on the AF. With increases in the impedance ratio, 

the AF is decreased.  

 

Figure 1-14. Effect of impedance ratio on the AF [54] 

The amplification is greatly affected by the material damping and the radiation damping, which is related to the 

elasticity of the bedrock.  

Several methodologies including analytical and numerical approaches have been developed to seek the 

geometry and flexibility effects of the canyon on the earth dam amplification function. The shear beam method 

was used by Ambraseys [55] to model an earth dam as a variable wedge-shaped cross-section, and a closed-

form solution was presented to obtain different vibration modes of an earth dam in a rectangular canyon. 

Dakoulas and Hashmi [56] presented an analytical approach for the steady-state response of earth dams in 

rectangular canyons. The dam was modeled as a 2D homogeneous triangular shear wedge with a linearly 

hysteretic material, and the canyon was idealized as a rectangle with elastic materials. Figure 1-15 portrays the 

dam cross-section and the perspective of the model.  
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Figure 1-15. a) Dam Cross-Section; b) Perspective View of Dam Geometry [56]  

Figure 1-16 illustrates the mid-crest amplification function of an earth dam located in a rectangular canyon under 

incident excitation, with the different θ angles defining the angle between the incident excitation and the vertical 

axis. A parametric study was done to investigate the effect of the impedance ratio on the response of the dam 

[57].  

 

Figure 1-16. The mid-crest amplification function of an earth dam located in a rectangular canyon under incident excitation 
with different angles [56] 

Dakoulas and Gazetas [57] suggested an analytical solution to estimate the steady-state response of earth dams 

in rigid semi-cylindrical canyons under harmonic base excitation (see Figure 1-17).  

 
Figure 1-17. Three-dimensional view of darn in a rigid semi-cylindrical canyon [57]. 

In [57], it was shown that the presence of a rigid canyon enhances the seismic response. For the hysteretic 

damping ratio β=10%, the maximum amplification functions are obtained as AFmax ≈ 10 and AFmax ≈ 8 for the 
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3D developed theory and 2D plane strain shear beam, respectively ( Figure 1-18(a)). As well, it was concluded 

that: “AF is independent of the exact canyon shape” (Figure 1-18(b)). 

 

Figure 1-18. a) Steady-state response to harmonic base excitation for 2D and 3D models; b) effect of canyon shape on the 
mid-crest amplification function [57]  

Dakoulas and Hsu [58] similarly proposed an analytical solution for semi-elliptical rigid canyons, and it was 

shown that the amplification effect is higher for a dam in narrow canyons compared to dams in wide canyons. 

Figure 1-19 shows the effect of the impedance ratio on the amplification function. 

 

Figure 1-19. Effect of impedance ratio on the amplification function.   

Abouseeda and Dakoulas [34] utilized an FEM to model earth dams and BEM to model their foundations as an 

elastic half-space for seismic soil-structure interactions in two dimensions (Figure 1-20). Figure 1-21 shows the 

horizontal crest amplification function for a 2D earth dam on an elastic foundation.  
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Figure 1-20. 2D dam on an elastic foundation [34]   

 

Figure 1-21. The horizontal crest amplification function for a 2D earth dam on an elastic foundation 

 

 Natural frequency 

If an earth dam-canyon system experiences a seismic event with a fundamental frequency close to its natural 

frequency, the responses of the system are amplified. These amplifications may cause structural damage, and 

thus the natural frequency of dams has always been an important area of study. Ambraseys [59] initially utilized 

the shear beam method to investigate the natural frequencies and vibration modes of earth dams in the 

upstream-downstream direction, with the dam model being a truncated wedge (Figure 1-22).  
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Figure 1-22. Model proposed by Ambraseys [59] 

The undamped natural frequencies of the wedge were proposed as: [59] 

 𝜔 =
𝑉

𝐻
A +

𝑟𝜋

𝜇
 )14-1( 

where 𝑘 is the ratio of ℎ  to H, 𝑉  is the shear wave velocity; n and r are the mode numbers with respect to the 

y-axis and x-axis directions, respectively; and 𝜇 is the ratio of L to H. The A  calculated for different mode 

numbers is chosen from Table 1-1. 

Table 1-1. 𝐴  [59] 

k' n=1 n=2 n=3 n=4 n=5 n=6 
0.00 2.4 5.52 8.65 11.79 14.93 18.07 

0.10 2.45 5.72 9.3 12.6 15.98 19.41 

0.16 2.51 5.97 9.66 13.26 16.9 20.66 

0.20 2.57 6.23 10.05 13.92 17.81 21.71 

0.22 2.61 6.39 10.33 14.3 18.38 22.34 

0.25 2.67 6.58 10.67 14.8 18.96 23.13 

0.30 2.79 6.99 11.39 15.83 20.29 24.76 

0.32 2.83 7.14 11.66 16.2 20.78 25.3 

0.33 2.88 7.31 11.93 16.6 21.29 25.99 

0.40 3.11 8.07 13.22 18.42 23.64 28.86 

0.45 3.31 8.72 14.28 19.8 25.45 31.3 

0.50 3.59 9.6 15.82 22.07 28.34 34.61 

0.55 3.9 10.59 17.7 24.6 30.64 38.3 

0.60 4.34 11.93 19.73 27.56 35.4 43.24 

0.63 4.68 12.95 21.42 30.01 38.6 46.91 

0.67 5.1 14.28 23.65 33.05 42.46 51.88 

0.70 5.62 15.85 26.26 36.71 47.17 57.64 

0.71 5.88 16.63 27.57 38.54 49.5 60.51 
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0.77 7.17 20.55 34.11 47.7 61.3 74.91 

0.80 8.21 23.69 39.34 55.03 70.73 86.43 

0.83 9.77 28.39 47.19 66.02 84.86 103.71 

0.87 12.39 36.25 60.28 84.35 108.42 132.5 

0.90 16 47.26 78.61 109.99 141.41 172.82 

0.93 21.54 63.73 106.1 148.49 190.89 233.3 

0.94 28.08 83.36 138.82 194.3 249.79 305.29 

0.95 34.08 101.37 168.83 236.32 303.82 371.32 

1.00 ∞ ∞ ∞ ∞ ∞ ∞ 
The first natural period in the upstream-downstream direction is obtained by: 

 𝑇 = 2.61
𝑉

𝐻
 )15-1( 

Chopra et al. [60] used the finite element method (FEM) to obtain the natural frequencies and mode shapes of 

earth dams with typical 2D cross-sections.  

The 3D geometry of the canyon is an important factor with a great influence on a dam’s response. Dams located 

in wider canyons show softer behaviors than dams in narrow canyons. 

However, the assumption of a 2D plain strain is valid only for dams in rectangular canyons with infinitely long 

lengths [61]. Hatanaka et al. [62] investigated canyons’ 3D geometry effects on the responses of dams. In an 

experiment comparing the natural frequencies of 2D and 3D earth dams in triangular and rectangular canyons 

by FEM. Martinez and Bielak [63] used a 2D FEM and a Fourier transform in the direction perpendicular to the 

cross-section in order to model a dam three-dimensionally, and they considered the effect of geometry on the 

natural frequencies. Figure 1-23 displays the natural frequencies of earth dams with different canyon shapes.  

 

Figure 1-23. Natural frequencies of earth dams with different canyon shapes 
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Mejia and Seed [64] found that for narrow canyons, the 3D FEM natural frequencies obtained were 2.5 times 

higher than those for the 2D FEM models. Figure 1-24 depicts the ratio of 3D natural frequencies to 2D natural 

frequencies of an earth dam located in a rectangular and triangular canyon. 

 

 

Figure 1-24. Ratio of 3D natural frequencies to 2D natural frequencies of an earth dam located in a rectangular and 
triangular canyon [64] 

Comprehensive work was done by Dakoulas and Gazetas [65], with canyons of different geometries being 

considered. Figure 1-25 shows the findings in which 𝑇  is the fundamental period and 𝑇  is the period of a 

dam in an infinitely wide canyon. As can be seen in Figure 1-25, the geometry of the canyon has a great impact 

on the response of dams. Dakoulas and Gazetas [65] found that for triangular canyons, the fundamental periods 

of earth dams in wide canyons were five times greater than for corresponding dams in narrow canyons. This 

suggests that the 3D geometry of a canyon effect greatly affects the fundamental periods of earth dams.  
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Figure 1-25. Effect of canyon geometry on the fundamental natural period, T1 of a dam [65] 

Papalou and Bielak [9, 10] analyzed the La Villita earth dam in Mexico by using shear beams and FEM to model 

the dam and the canyon, respectively. The dynamic response of the dam was assessed for canyons with 

different material properties. 

The assumption of a rigid canyon is not always close to the actual conditions, however. In reality, an earth dam 

interacts dynamically with the surrounding soil or rock, which is an elastic unbounded domain. Chopra and 

Perumalswami [68] used an analytical procedure and 2D FEM to show how the natural frequencies and mode 

shapes of earth dams surrounded by elastic half-spaces are influenced by the effects of the dam-foundation 

interaction.  

1.3 Nonlinear behavior of earth dams  

The nonlinear behavior of soil may affect the seismic response of earth dams, and a wide variety of nonlinear 

soil models have been applied for the dynamic analysis of earth dams under earthquakes. A hardening soil 

model was used in the FEM analysis of a homogeneous earth dam [69], while a tailing dam using PLAXIS was 

studied under seismic loading by applying the Mohr-Coulomb model [70]. Parish et al. [8] showed that plasticity 

should be considered in the study of earth dams under earthquake loading, as the seismic responses of earth 

dams are significantly affected by their plastic behavior; for example, “consideration of plasticity in the shell leads 

to a decrease of about 50% in the seismic amplification.” 

Papalou and Bielak [67] considered the nonlinear behavior of earth dams under earthquake loading as well, and 

dams’ nonlinear behavior was studied using a multi-yield surface plasticity theory. As a result, it was shown that: 

“the effects of nonlinearity are most pronounced within the interior of the dam, where shear strains are largest. 

The reduction due to nonlinearity in the peak acceleration at a point 40 m below the crest of the dam is on the 

order of 25–30%, for a given canyon stiffness” (Figure 1-26).  
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 Figure 1-26. Time history of shear strain γyz at a point 40 m the crest of linear and nonlinear models of dam [67] 

In a linear analysis, the shear modulus and damping ratio are used with the assumption of low strain, and the 

amplification function, natural frequency, and time-domain responses are calculated with this assumption. Under 

severe earthquakes, some parts of earth dams exhibit nonlinear behavior. Idriss and Seed [71] introduced the 

equivalent linear method (EQL) to take into consideration the effect of soil nonlinearity during strong 

earthquakes, and SHAKE [72] and FLUSH [73], which incorporate EQL, have been widely used in practical 

problems in geotechnical earthquake engineering. 

In EQL first, with the assumption of small strain,  𝛾 < 10  , the shear modulus 𝐺  and damping ratio 𝛽  

are selected for each FEM element, and the maximum shear strain (𝛾(𝜔) ) for each element for each 

frequency is evaluated. Transferring the strain into the time domain and obtaining the maximum strain will be 

time-consuming. The maximum shear strain in the time domain is obtained by the root mean square of the 

maximum strain in the frequency domain as:  

 𝛾(𝑡) = 𝐶 ∗ 𝑅𝑀𝑆(𝛾(𝜔) ) )16-1(

where the constant C can be estimated by: 
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 𝐶 = 𝑚𝑎𝑥|{�̈� (𝑡)}|/𝑅𝑀𝑆({�̈� (𝜔)}) )17-1( 

in which {�̈� (𝑡)} and {�̈� (𝜔)} are the input seismic acceleration excitations on the canyon in the time and 

frequency domains, respectively. The effective shear strain is estimated by: 

where 0.65, which is the strain ratio, is an empirical value. As the degradation curve ((1-18) is obtained in 

laboratory loading conditions, which are more severe than actual earthquake loading conditions, 𝛾(𝑡)  is 

multiplied by 0.65. The estimated shear strain 𝛾(𝑡)  is used to obtain the corresponding shear modulus 𝐺 

and damping ratio 𝛽 from Figure 1-27. The second iteration is done similarly. The results usually converge to 

the desired accuracy after 3 iterations.   

 

Figure 1-27. Strain-compatible soil properties [71] 

Abdel-Ghaffar and Scott [74] developed EQL to analyze the Santa Felicia earth dam, which had been subjected 

to two strong earthquakes. Choudhury and Savoikar [75] carried out 1D equivalent-linear analysis utilizing 

DEEPSOIL software in order to model municipal solid waste landfills under earthquake loadings, while Mejia et 

al. [76] showed that the natural frequencies of earth dams modeled by the equivalent linear FEM vary with the 

intensity of the input motions. Cascone and Rampello [77] performed a seismic analysis of earth dams by 

decoupled displacement analysis, and the nonlinear behavior was incorporated by the EQL.  

1.4 Conclusion 

The research in the literature can be categorized into the following three groups: 
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I. In 2D-hybrid techniques, the approach can satisfy the radiation damping, but it does not take into 

consideration the 3D-geometry effect. Moreover, the surrounding soil is always modeled as a flexible 

foundation [34], [78].  

II. In 3D models, the canyons are assumed to be constrained by rigid boundary conditions, while no 

influence of flexibility is examined [58], [79]. 

III. In 3D-hybrid models, the canyon behaves as an elastic half-space. The mathematical restrictions, 

however, limit the shape of the canyons to only some pre-determined profiles like semi-elliptical forms 

[80]. 

In this thesis, the 3D FEM-SBFEM equation is derived to conduct a comprehensive study of the effects of the 

flexibility and geometry of canyons on the seismic responses of earth dams, and the EQL has been implemented 

to consider the effect of earth dams’ nonlinear behavior. 
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Chapter 2 Analysis of Earth Dam-Flexible Canyon 
Interaction with 3D Coupled FEM-SBFEM 

2.1 Résumé 

La géométrie et la flexibilité d'un canyon sont des paramètres qui affectent grandement la valeur des périodes 

naturelles de résonance dans les barrages en terre. Le canyon entourant un barrages peut être considéré 

comme un domaine illimité. Pour prendre en compte ces deux effets, le canyon a été modélisé par par la 

méthode des éléments finis de frontières à l'échelle (SBFEM) et le barrage en terre, à géométrie limitée, par la 

méthode des éléments finis (FEM). La technique hybride de SBFEM-FEM pour l'analyse tridimensionnelle 

dynamique de l'interaction sol-terre barrage a été validée avec les résultats disponibles dans la littérature. 

Comme la matrice de rigidité dynamique du domaine non borné est complexe et dépendante de la fréquence, 

la méthode classique de superposition de modes n'est pas simple pour le système d'interaction sol-structure. 

Ainsi, pour obtenir la fréquence propre fondamentale, le barrage a été sollicité en direction amont-aval. Les 

périodes naturelles de résonance des barrages en terre pour des canyons de formes géométriques et de 

coefficients d’impédance différents ont été obtenues. Elles se sont avérées avoir des effets significatifs sur la 

période naturelle de résonnance. Les résultats ont été comparés aux données enregistrées réelles pour des 

barrages existants. Il a été constaté que les graphiques proposés dans cette étude peuvent être utilisés par des 

concepteurs de barrages pour l'estimation des périodes naturelles des barrages en terre construits dans des 

canyons de formes et de propriétés des matériaux diverses.  

2.2 Abstract 

The geometry and flexibility of a canyon are the parameters that greatly affect the value of natural periods in 

earth dams. The canyon surrounding dams can be assumed as an unbounded domain. To take into account 

these two effects, the canyon was modeled by SBFEM and the earth dam, which has limited geometry, by FEM.  

The hybrid technique of SBFEM-FEM for dynamic three dimensional analysis of soil-earth dam interaction was 

validated with available results in the literature. Because the dynamic-stiffness matrix of the unbounded domain 

is complex and frequency dependent, the classical mode-superposition method is not straightforward for the 

soil-structure interaction system. Thus, to obtain the fundamental natural frequency, the dam was excited in the 

upstream-downstream direction. The natural period of the earth dam for canyons with different geometry shapes 

and impedance ratios were obtained. They were found to have significant effects on the natural period. The 

results were compared with actual recorded data. It was found that the proposed graphs in this study may be 

used by practical engineers for the estimation of natural periods of earth dams in canyons with different shapes 

and material properties. 
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2.3 Introduction  

If an earth dam-canyon system experiences a seismic event with a fundamental frequency close to its natural 

frequency, the responses of the system are amplified. These amplifications may cause structural damage [81]. 

Thus, the natural frequency of dams have always been an important area of study. Ambraseys et al. [59] initially 

utilized the shear beam method to investigate the natural frequencies and vibration modes of earth dams in the 

upstream-downstream direction. Chopra et al. [60] used the finite element method (FEM) to obtain natural 

frequencies and mode shapes of earth dams with typical 2D cross sections.  

However, the assumption of the 2D plain strain is valid only for dams in rectangular canyons with infinitely long 

lengths [61]. Hatanaka et al. [62] first investigated the canyon 3D geometry effects on the response of dams. In 

an experiment comparing the natural frequencies of 2D and 3D earth dams in triangular and rectangular canyons 

by FEM. Mejia and Seed [64] found that for narrow canyons, the 3D natural frequencies that are obtained are 

2.5 times higher than those for the 2-D models. Dakoulas and Gazetas [57] obtained the fundamental periods 

of earth dams in rigid canyons with five different geometries. They found that for triangular canyons, the 

fundamental periods of earth dams in wide canyons were five times higher than for the corresponding dam in 

narrow canyons. This suggests that the 3D geometry canyon effect greatly affects the fundamental periods of 

the earth dams.  

The assumption of a rigid canyon is not always close to the actual condition. In reality, the earth dam interacts 

dynamically with the surrounding soil which is an elastic unbounded domain. Chopra and Perumalswami [68] 

used an analytical procedure and 2D FEM to show how natural frequencies and the mode shapes of earth dams 

surrounded by elastic half spaces are influenced by dam-foundation interaction effects. Dakoulas and Gazetas 

[65] have utilized shear beams to model the earth dams on the elastic foundation with limited depth. Papalou 

and Bielak [9, 10] analyzed the La Villita dam in Mexico by using shear beams and FEM for modeling the earth 

dam and the canyon, respectively. The dynamic response of the dam was assessed utilizing canyons with 

different material properties. 

FEM is not capable of modeling a half space to satisfy the radiation condition rigorously. Using the boundary 

element method (BEM), the radiation condition at infinity may be exactly satisfied through the use of suitable 

fundamental solutions. Abouseeda and Dakoulas [34] utilized FEM to model earth dam and BEM to model 

foundation as an elastic half space for seismic soil-structure interaction in two dimensions. Yazdchi et al. [35] 

considered the transient response of an elastic dam by utilizing the FEM-BEM.  
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Wolf and Song [36] proposed the scaled boundary finite-element method (SBFEM) for the dynamic analysis of 

unbounded domains. This novel semi-analytical method combines the advantages of BEM and FEM and also 

demonstrates the following benefits [82]: 

 Reduction of the spatial dimension by one. 

 No need for fundamental solutions. 

 Radiation damping at infinity satisfied exactly for unbounded media. 

 Exact and analytical solution in the radial direction for static problems. 

Previous studies have extended this method to the dynamic analysis of non-homogeneous unbounded domains 

with the elasticity modulus and mass density varying as power functions of spatial coordinates [38], [83]. 

Futhermore, a Padé series solution for the SBFEM equation in dynamic stiffness was developed for frequency-

domain analyses [41]. The sparsity and the lumping of the coefficient matrices of the scaled boundary finite-

element equation were exploited to further reduce the computational costs [40]. A high-order local transmitting 

boundary constructed from a continued-fraction solution of the dynamic-stiffness matrix is developed [84]. 

SBFEM has been widely coupled with other numerical methods in different soil structure analyses [85] [86] and 

fracture mechanic problems [87] [88] [89]. Deeks and Augarde [90] coupled SBFEM with the meshless local 

Petrov–Galerkin modeling of the bounded domain.  

Ekevid and Wiberg [42] and Ekevid et al. [43] used SBFEM to simulate ground response to high-speed trains 

moving on the ground surface. Syed and Maheshwari [44] improved the efficiency of the 3D FEM-SBFEM 

approach for soil-structure interaction (SSI) analysis in the time domain. The hybrid technique was used for 

nonlinear analysis of a soil-pile system [45]. Chen et al. [48] introduced an efficient nonlinear SBFEM with octree 

mesh to the dynamic analysis of some complicated geotechnical structures. Yaseri et al. [51] applied 3D FEM-

SBFEM to analyze ground vibrations due to passing trains in tunnels. The equations of SBFEM for 2.5D 

numerical model were proposed for the dynamic analysis of moving trains [91]. The 2.5D is utilized for 3D models 

that have longitudinally invariant geometry and material properties.  

Although this method has been used to model CFRD-reservoir systems [46], [47] and to be a useful tool for SSI 

problems, there are a lack of studies examining the natural frequency of earth dams using SBFEM. Most of the 

studies investigating the natural frequency of earth dams have been carried out assuming that the foundation 

and canyon are rigid or the radiation damping is not satisfying exactly.  Therefore, the objective of this research 

is to (1) introduce the 3D FEM-SBFEM hybrid technique as an appropriate tool for dynamic analysis of an earth 

dam-canyon interaction system in the frequency domain; (2) examine the effects of flexibility and geometry of 
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canyons on natural periods and (3) propose new graphs for the estimation of natural periods in canyons with 

different shapes and material properties. In this study, the 3D canyon is modeled using fourth-node SBFEM 

surface elements. The FEM with eight-node hexahedral brick elements [53] is utilized for modeling the earth 

dam and the fundamental periods of an earth dam is expressed for canyons with four different geometry shapes. 

2.4 Methodology  

The 3D domain is decomposed as the bounded domain (earth dam) and the unbounded domain (surrounding 

foundation and canyon). The subscripts s (s for structure) denotes the nodes of the unbounded domain and b 

(b for base) indicates nodes associated with the generalized structure–soil interface, respectively (Figure 2-1). 

The bounded domain (Ω ), including the earth dam, is discretized with FEM and the unbounded domain (Ω ), 

including the canyon and foundation, is modelled using SBFEM to satisfy the radiation damping condition. With 

fulfilling equilibrium and compatibility conditions on the interface 𝛤 the coupling of FEM (Ω )-SBFEM (Ω ) is 

done.  

 

Figure 2-1. Schematic view of a symmetric soil-structure interaction system 

 SBFEM equation 

The equation of SBFEM for modeling the unbounded domain is briefly presented. The scaled boundary 

coordinate system is defined in a local coordinate system ξ, η, ζ (Figure 2-2 (a)). The radial coordinate ξ is 

measured from O (the scaling center) and the circumferential coordinates are defined by η and 𝜁. For 3D 

problems only the doubly-curved surface boundary 𝛤 is discretized. The unbounded domain Ω  in radial 

coordinate 𝜉starts from 𝜉=1 on the boundary 𝛤 to 𝜉 =  ∞. Each point (𝑥,𝑦, �̂�) is represented by scaling its 

corresponding point (x ,y, z) on the surface boundary 𝛤 and by using the mapping shape functions [𝑁 (𝜂, 𝜁)] 

along the circumferential coordinates. 
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Figure 2-2. Scaled boundary coordinates: (a) scaling center O, radial coordinate ξ and boundary discretization in 
circumferential coordinates η and 𝜁 for 3D modeling; (b) representation of the unbounded domain in 2D problems 

While node positions are defined in the scaled boundary coordinate system, stresses, strains and displacements 

are specified in the Cartesian coordinate system. Using the shape function )],([ uN , the nodal 

displacements inside the domain at a node (ξ, η) from the displacement function. The displacement at a node 

(ξ, η) inside the domain is interpolated from displacement functions )}({ u T(ξ) . 

 )}( {],...])[,(, ])[,([)}( {)],([= )},, ( { 21  uININuNu u    

 

)1-2( 

which [I] is a 3×3 identity matrix. By applying the virtual work method in the circumferential directions  ,  [52] 

or the Galerkin’s weighted residual technique [36], the scaled boundary finite-element equation is obtained. As 

the dynamic analysis in this work has been done in the frequency domain, only the equations of SBFEM in the 

frequency domain are presented. The 3D scaled boundary finite-element equation in displacement for frequency 

domain is presented as 
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where   denotes the excitation frequency and  ][ 0E , ][ 1E , ][ 2E  and ][ 0M  show coefficient matrices achieved 

by assembling their corresponding coefficient matrices for each element as in the finite-element method [36]. 
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They are independent of 𝜉. The coefficient matrices ][ 0E  and ][ 0M  are positive-definite, ][ 1E  is non-symmetric, 

][ 2E  is positive-definite. Analogous to standard finite element, the nodal force-displacement relationship is 

obtained. The internal nodal forces {𝑞(𝜉)}, which are the resultants of the surface tractions, are determined.  

  )}) ({ ][+ )} ({ ]([= )}({ T1
,

02   uEuEq   

 

)3-2( 

The internal nodal forces{𝑄(𝜉)}are equal to the external nodal loads{𝑅(𝜉)}.  

  )} ({ )],([)} ({ = )}({  uSqR    

 

)4-2( 

Using Equations (2-2), (2-3) and (2-4) and eliminating )}({ q  and )}({ u  results in the scaled boundary 

finite element equation in dynamic stiffness in the frequency domain for unbounded domain:  
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) 

where [𝑆 (𝜔)] is the dynamic-stiffness matrix of an unbounded domain.  

2.4.1.1 Solution procedure  
Equation (2-5) is a system of nonlinear ordinary differential equations of first order with respect to the frequency 

𝜔, which is solved numerically using a fourth-order Runge-Kutta method. An asymptotic expansion of the 

dynamic-stiffness matrix for high frequency is used to start numerical integration:  
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which ][ C , ][ K  and ][ )(iA  are coefficient matrices [52].  [𝑆 (𝜔 )] is obtained for a sufficiently high but 

finite value of the frequency 𝜔  and used as an initial point for numerically solving the Equation (2-5). Therefore, 

the dynamic-stiffness matrix of the unbounded domain is [𝑆 (𝜔)] calculated for the desired frequencies. 

2.4.1.2 Coupling of bounded and unbounded domains  
As discussed earlier, the coupling of FEM (Ω )-SBFEM (Ω ) is done using the interface 𝛤 (Figure 2-1). Using 

the obtained nodal force–displacement relationships for SBFEM (Equation (2-4)) and that of FEM, the 

assembled relation is obtained as 
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[𝑆 ] [𝑆 ]

[𝑆 ] [𝑆 ] + [𝑆 ]

{𝑢 }

{𝑢 }
=

{𝑃 }

{𝑃 }
 )7-2(

[𝑆] is dynamic-stiffness matrix of the bounded domain which is obtained as 

 [𝑆] =
[𝑆 ] [𝑆 ]

[𝑆 ] [𝑆 ]
= [𝐾] − 𝜔 [𝑀] )8-2(

 

which [K] and [M] are, respectively, the static-stiffness matrix and mass matrix  of  the eight-node hexahedral 

brick element [53]. Figure 2-3 shows a flowchart for obtaining dynamic stiffness matrices by SBFEM and FEM 

and the coupling process. 

 

Figure 2-3. Algorithm for coupled FEM-SBFEM solution 

 



 

38 

2.5 Numerical examples 

 The rigid square massless plate on an isotropic homogeneous elastic half 
space 

 To validate the 3D FEM-SBFEM hybrid technique in the frequency domain, the popular example of the rigid 

square massless plate on an isotropic homogeneous elastic half space (Figure 2-4) is utilized. The obtained 

results of the proposed method are compared with available results in the literature. Only one quarter of the 

geometry is discretized by taking advantage of symmetry. As shown in Figure 2-4, the bounded and unbounded 

domains are discretized by FEM and SBFEM, respectively. The width of the plate is B = 30 m and the thickness 

is 0.1B. The bounded domain includes a domain with the size of 2B*2B*2B and the plate has a size of B*B*0.1B. 

The bounded domains of the soil and plate are discretized using an 8-node hexahedral brick element and the 

unbounded domain is modeled using 4-node surface elements. 

 

Figure 2-4. FEM-SBFEM mesh for a rigid square massless plate resting on an isotropic homogeneous elastic half-space 

 A vertical force P is applied at the center of the base of the plate. Vertical and horizontal compliance coefficients 

of the point O, due to vertical and horizontal loading P at point O, are obtained and are non-dimensionalized as 

𝐶 (𝑎 ) = 𝐺𝐵𝑈 /𝑃 and 𝐶 (𝑎 ) = 𝐺𝐵𝑈 /𝑃 where 𝐺 is the shear modulus of the soil domain and 𝑈  

and 𝑈  are the vertical and horizontal displacements, respectively. 𝐶 (𝑎 ) =  is the rocking 

compliance. M and 𝜃 are the dynamic moment and the rotation of the plate around the horizontal axes, 

respectively. The non-dimensionalized compliance coefficients are decomposed into the dimensionless real and 

imaginary coefficients.Figure 2-5 compares the results from the present study with those obtained by Shahi and 

Noorzad [92], Zhao and Valliappan [14] and Wong and Luco [93]. The dimensionless frequency 𝑎  is defined 
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as 𝑎 =
 

 where 𝑐  is the shear wave velocity. Reasonable agreement is observed showing the accuracy 

and applicability of the hybrid method in modeling real 3D dynamic problems.  

. 

 

Figure 2-5. Vertical compliance of a rigid square massless plate resting on an isotropic homogeneous elastic half-space; 
(a) real part; (b) imaginary part  

 Earth dam foundation under an horizontal excitation 

In this section, the earth dams are analyzed in three-dimension in order to consider the effects of 3D geometry 

and flexibility of canyon on dynamic behavior of earth dam. As discussed in the  introduction, Dakoulas and 

Gazetas [65] showed how different geometries of canyons affect the natural periods of earth dams. Some graphs 

were proposed which are used for estimation of natural periods of earth dams in different canyon shapes. These 

graphs still are used by researchers [94]. It has been assumed that canyons are rigid. However, the assumption 

of a rigid canyon is not always close to reality. To take into account the effect of the flexibility of the canyon, the 
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impedance ratio 𝛼 =    is defined, which is the ratio of the shear wave velocity of the earth dam 𝑉  and 

the shear wave velocity of the unbounded domain 𝑉 . The analysis is done for 𝛼 =

0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. 𝛼 = 0 represents a rigid canyon.  

It is assumed that the earth dam has a linear behavior. Therefore, the interface between FEM and SBFEM is 

located at the boundary between the earth dam and canyon. The earth dam is modeled by the FEM and the 

canyon by the SBFEM. Cross-section of the earth dam and its location in the canyon are sketched in Figure 

2-6(a) and Figure 2-6(b). The geometries of four different canyons, a) rectangular canyon, b) wide trapezoidal 

canyon, c) narrow trapezoidal canyon and d) triangular canyon, are shown in Figure 2-7.   

 

Figure 2-6. a) The geometry of the earth dam model; b) The location of earth dam in the canyon 

 

Figure 2-7. Different canyons geometries: (a) Rectangular Canyon; (b) Wide trapezoidal canyon; (c) Narrow trapezoidal 
canyon; (d) Triangular canyon 

Full 3D analysis have been done for the 4 canyon geometry types, 8 different values of L/H and 7 values of 𝛼 

for each canyon geometry. In total, more than 224 3D model were created in Autocad and then the geometries 

were exported to GAMBIT to generate the mesh. The analyses were completed by a Fortran computer code in 

the Linux operating system. The obtained results were visualized in Tecplot. Figure 2-8 shows how different 

software were utilized in different stages as follows: 1) Autocad and Gambit as preprocessors; 2) Fortran as a 

solver and 3) Matlab and Tecplot as postprocessors. As the dynamic-stiffness matrix of the unbounded domain 
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is complex and frequency dependent, the classical mode-superposition method is not straightforward for the 

soil-structure interaction system. The dam is excited in upstream-downstream direction and the fundamental 

natural frequency of earth dam for the first mode of vibration is defined by the first peak in the acceleration 

amplification function at the crest of the dam [76]. The natural periods were obtained for different values of L/H 

and 𝛼. 
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Figure 2-8. General algorithm of the study 

 

 Figure 2-9 shows that the two first peaks of amplitude correspond with the natural frequencies of the first and 

second modes of vibrations for the earth dam in the rectangular canyon with L/H=2.5 and impedance ratio 𝛼 

=0.4.  

 

Figure 2-9. Displacement amplitude at the crest of dam in a rectangular canyon with L/H=2.5 and 𝛼 =0.4 

The calculated fundamental period of the earth dam (𝑇 ) in the rectangular canyon for different values of  𝛼  and 

L/H are shown in Figure 2-10. Fundamental period 𝑇  has been normalized by 𝑇 = 2.61 , which represents 

the fundamental period of an infinitely long dam [1, 6]. The solid lines represent the obtained results for different 

impedance ratio values and that of rigid canyon (𝛼 = 0) is marked by asterisk. The results of the proposed 

technique, FEM by Martinez and Beilak [63] and the shear beam method by Gazetas [61]  for the rigid canyon  

are depicted by the asterisk, dashed-dotted line and dotted line, respectively. While there is an excellent 

agreement between the obtained results and those of FEM, the results using shear beam analysis show 

underestimated values of the natural periods (Figure 2-10). Figure 2-10 shows that the fundamental natural 

period is highly influenced by the ratio 𝛼, representing the flexibility of the canyon. Increasing values of 𝛼 leads 

to an increase in 𝑇 . The effect of flexible canyon is more remarkable in wider canyons. 
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Figure 2-10. Effect of rectangular canyon geometry on the fundamental period 

For the lower values of 𝛼 and (L/H)>4, 𝑇  remains constant. Furthermore, the results of the wide enough 

rectangular canyon, with L/H=5 (Figure 2-11), were compared with the 2D available results in the literature. A 

reasonable agreement is observed between the results of the proposed technique 3D FEM-SBFEM (blue line 

and green dash line) and those of 2D FEM-BEM (red circle and black triangular) obtained by Touhei and 

Ohmachi [95] for the first and second modes of vibration for different values of 𝛼 (Figure 2-12).The values of 

natural frequencies for 2D and 3D results are compared in Table 2-1, E is the differences percentage. The real 

and imaginary parts of the first mode of vibration have been shown respectively in Figure 2-13 (a) and Figure 

2-13(b) for an earth dam in rectangular canyon with L/H=3 and 𝛼=0.6. 
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Figure 2-11. Deformation plot due to the excitation in direction of upstream-downstream(y direction) for the earth dam in 
the rectangular canyon with L/H=5 

 

 

Figure 2-12. Comparison between natural frequencies of 2D and 3D models for the rectangular canyon with L/H=5 
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Figure 2-13. a) Real and b) imaginary parts of first mode shape of earth dam located in a rectangular canyon 

Figure 2-14 shows how the flexibility of the wide trapezoidal canyon affects the fundamental natural period. For 

an earth dam in a wide trapezoidal canyon with L/H=5 and 𝛼=0.1, the real and imaginary parts of the first mode 

of vibration are shown, respectively, in Figure 2-15 (a) and Figure 2-15 (b). 

Table 2-1. Comparison of obtained natural frequencies for 3D canyons with L/H=5 and 2D results 

 

Figure 2-7(c) shows the geometry of the narrow trapezoidal canyon. In the same way, the fundamental natural 

periods of the earth dam located in the narrow trapezoidal canyon are obtained (Figure 2-16). Figure 2-17(a) 

and Figure 2-17(b) represent the real and imaginary parts of the first mode, respectively, for an earth dam in a 

wide trapezoidal canyon with L/H=5 and 𝛼=0.1. 
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Figure 2-14. Effect of wide trapezoidal canyon geometry on the fundamental period 

 

Figure 2-15. a) Real and b)imaginary parts of first mode shape of earth dam located in a wide trapezoidal canyon 

The last canyon geometry is the triangular canyon Figure 2-7(d). Figure 2-18 shows the increasing fundamental 

natural periods with increasing L/H and 𝛼. The real and imaginary parts of the first mode of vibration of earth 

dam locating in the triangular canyon with L/H=5 and 𝛼=0 are shown in Figure 2-19(a) and Figure 2-19(b), 

respectively.  
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Figure 2-16. Effect of narrow trapezoidal canyon geometry on the fundamental period 

 

 

Figure 2-17 a) Real and b) imaginary parts of first mode shape of earth dam located in a narrow trapezoidal canyon. 

A comparison of outcomes associated with the rigid canyon, between the proposed method (asterisks) and 

shear beam (dotted lines), reveals that the shear beam method always underestimates the values of natural 

periods (Figures 2-10, 2-14,2-16 and 2-18). This under prediction is approximately 15% at L/H=5 and is 

consistent across all four diverse canyon geometries.  

A comparison of natural periods in different canyon geometries indicates that the earth dams behave more 

flexible in wider canyons. For L/H > 3, the behavior of the natural periods of the rigid canyons plateaus, 
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whereas that of the relatively flexible canyon (𝛼 = 0.6) continues to slightly increase (Figures 2-10, 2-14,2-16 

and 2-18). 

 

Figure 2-18. Effect of triangular canyon geometry on the fundamental period 

 

 

Figure 2-19. a) Real and b) imaginary parts of first mode shape of earth dam located in a triangular canyon 
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The effect of geometry on natural periods is shown in Figure 2-20. In comparison with the rectangular canyons, 

triangular canyons demonstrate stiffer responses. As apparent in Figure 2-20 (b), at 𝐿/𝐻 =5, triangular canyons 

demonstrate a 21% lower natural period compared to the rectangular ones. However, in the case of relatively 

flexible canyons, Figure 2-20 (a), their difference is approximately 29%. These results suggest that the effect of 

geometry is of more importance for flexible canyons. 

 

Figure 2-20. The effect of canyon geometry on natural periods of earth dams with 𝐿/𝐻 = 5  for: a) 𝛼 = 0.6 and b) 𝛼 =
0 

The impedance ratio variations for different canyons with 𝐿/𝐻 = 5 is illustrated in Figure 2-21.  For the 𝛼 =

0.6 in the wide rectangular canyon, it can be observed that the natural period increases by 39% compared with 

the results of the rigid canyons (𝛼 = 0.0).  

 

Figure 2-21. Comparison of natural periods for different values of 𝛼 and L/H=5 



 

50 

The final example shows how the proposed graphs may be used to estimate the natural period of an actual dam. 

The calculated natural periods by FEM-SBFEM are compared with the actual recorded data. Cogswell is a rockfill 

dam located north of Whittier, California, in the San Gabriel Mountains. The crest length and maximum height 

of the dam are 175 m and 85 m, respectively. The shear wave velocity of the foundation rock mass is estimated 

to be about 1200-1500 m/s and 365 m/s for the rockfill. Based on the available data, 𝛼 is determined to be 

around 0.2. As the canyon is an intermediate shape between narrow trapezoidal and triangular, the 

corresponding graphs of the case 𝛼 = 0.2 were chosen. For the L/H=0.2, the ratio of the fundamental natural 

period of the earth dam to the fundamental natural period of the infinitely long earth dam was estimated by  =

0.75 [black line and circle (Figure 2-23)]. This is in accordance with the fundamental natural period recorded 

during the Sierra Madre earthquake 𝑇 =0.48, normalized by 𝑇  [asterisk* (Figure 2-23]) 

 

Figure 2-22. Transverse and longitudinal cross sections of Cogswell Dam [96] 
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Figure 2-23. Comparison of obtained natural period by FEM-SBFEM and recorded natural periods under the Sierra Madre 
earthquake  

 

2.6 Conclusion 

The major objective of this research was developing the FEM-SBFEM hybrid technique to estimate natural 

periods of earth dams, incorporating the effects of 3D geometry and flexibility of canyon. The main conculision 

summarized as follow: 

 The first-order nonlinear ordinary differential equations of SBFEM was solved numerically respect to 

the frequency 𝜔 using a fourth-order Runge-Kutta method. An asymptotic expansion of the dynamic-

stiffness matrix for high frequency is used to start numerical integration.  

 The equilibrium equations and the compatibility conditions were applied at boundary of canyon and 

earth dam to couple the dynamic stiffness obtained by FEM with the that of SBFEM. 

 As the dynamic-stiffness matrix of the unbounded domain is complex and frequency-dependent, the 

classical mode-superposition method is not straightforward. Therefore, the dam was excited in the 

upstream-downstream direction. 

 The results of the proposed technique were validated with available results in the literature. The natural 

periods of earth dams for different canyon geometries were obtained.  

 It was observed that for the rigid rectangular canyons, the calculated fundamental natural periods are 

in agreement with the results of FEM in the literature. However, underestimations from the shear beam 

method were also observed. 

 The role of flexibility and canyon geometry were also considered. These results suggest that the effect 

of geometry is of more importance for flexible canyons. 

 Some graphs were proposed may be used by practical engineers for estimation of natural periods of 

earth dams in canyons with different shapes and material properties. 

 Relationships were developed for obtaining the natural frequency of the earth dam based on the 

geometry and material properties of the canyon. 
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 A comparison of the calculated natural periods with actual recorded data demonstrates good 

agreement. In conclusion, the hybrid FEM-SBEFEM is an accurate approach for modeling earth dams 

under dynamic loadings.  

2.7 Appendix 

2.7.A 

The equation of the fundamental period for the shear beam method, 𝑇 = 2.61 , was improved to consider 

the effect of the flexibility of the canyon. The modified natural period equations for different shapes of canyon 

with L/H=5 are presented in Equations (A.2-9).  

 

Triangular canyon  𝑇1  = (0.45 𝛼2 + 0.17 𝛼 + 0.87) 2.61  )9-2.A(

 

Narrow trapezoidal canyon 𝑇1  = (0.58 𝛼2 + 0.1 𝛼 + 1.01) 2.61  )10-2.A(

 

Wide trapezoidal canyon 𝑇1  = (0.79 𝛼2 - 0.03 𝛼 + 1.11 ) 2.61  )11-2.A(

 

Rectangular canyon 𝑇1 = (1.38 𝛼2 - 0.12 𝛼 + 1.11 )2.61  )12-2.A(

2.7.B 

A modified equation for the natural periods is proposed which may take into the account the effect of the flexibility 

of canyon:  

 𝑇1 = 𝛽 2.61  )B.1(

where 𝛽 is obtained form Table 2-2, which is based on the calculated results. 
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Table 2-2. β parameter for different values of impedance ratio and L/H for different canyon shapes 
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Chapter 3 Computation of Amplification Functions 
of Earth Dam-Flexible Canyon Systems by the 
Hybrid FEM-SBFEM Technique 

3.1 Résumé 

Les effets de géométrie et de flexibilité du canyon environnant peuvent amplifier la réponse du barrage. Pour 

modéliser le canyon comme un domaine élastique non borné, la condition d'amortissement du rayonnement doit 

être satisfaite. En conséquence, la méthode des éléments finis de frontières à l'échelle (SBFEM) s'avère être 

un outil puissant à cet égard. Dans cet article, une méthode de sous-structure a été utilisée pour enchevêtrer 

FEM-SBFEM. La technique hybride traite le barrage en terre en utilisant FEM et le canyon élastique non borné 

par SBFEM. L'approche proposée a été vérifiée par quelques données disponibles dans la littérature. La 

réponse sismique du système de canyon flexible de barrage de terre a été étudiée en utilisant 3D FEM-SBFEM. 

Plusieurs fonctions d'amplification correspondant à différentes conditions de canyon ont été obtenues en 

appliquant un déplacement uniforme à la limite du canyon. Une étude approfondie a été réalisée pour examiner 

les effets de la géométrie et de la flexibilité du canyon sur la réponse en régime permanent du barrage. Ces 

deux effets ont influencé de manière importante les fonctions d'amplification. Alors que la flexibilité du canyon 

affecte de manière significative la valeur de la fonction d'amplification maximale, cette valeur ne change pas 

pour les barrages en terre dans lesquels les canyons ont des formes différentes pour une même longueur. De 

plus, la réponse latérale du barrage de terre dans le domaine temporel a été calculée pour analyser les effets 

susmentionnés lors d'un tremblement de terre réel. Les fonctions d'amplification proposées ont été utilisées pour 

comparer les spectres de réponse enregistrés du barrage d'El Infiernillo lors des tremblements de terre de 1966 

avec la fonction d'amplification calculée. Un accord raisonnable a été observé entre eux. 

3.2 Abstract  

A dam’s responses can be amplified by the geometry and flexibility of its surrounding canyon. To modeling a 

canyon as an elastic unbounded domain, the radiation damping condition should be satisfied, and in this regard, 

the Scaled Boundary Finite Element Method (SBFEM) is a powerful tool. In this article, a substructure method 

was used to combine the standard Finite Element Method (FEM) with the SBFEM, resulting in the hybrid FEM-

SBFEM technique. This hybrid technique treats an earth dam by using FEM and a corresponding elastic 

unbounded canyon by SBFEM. The proposed approach was verified by data available in the literature. The 

seismic response of an earth dam-flexible canyon system was investigated by employing a 3D FEM-SBFEM 

method. Several amplification functions corresponding to different canyon conditions were obtained by applying 

a uniform displacement for the canyon boundary, and a comprehensive study was performed to examine the 

effects of canyon geometry and flexibility on the steady-state response of the dam, as these two effects 
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influenced the amplification functions. While the flexibility of the canyon significantly affects the maximum 

amplification function value for a dam, this value does not change for earth dams in canyons with different 

shapes but the same length. In addition, the lateral response of earth dams in the time domain was computed 

in order to analyze the aforementioned effects under an actual earthquake. The proposed amplification functions 

were used to compare the recorded response spectra of the El Infiernillo dam under the 2 earthquakes in 1966 

with the calculated amplification function, and a reasonable agreement was observed between them.  
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3.3 Introduction 

The amplification function is defined as the relationship between the input and output of a dynamic system, and 

reflects how the system amplifies or deamplifies the input signal. For an earth dam-canyon system, the 

amplification function (AF) can be defined as the ratio of the crest motion to the canyon motion. The amplification 

function of an earth dam at the crest point determines how ground motion like an earthquake is amplified or de-

amplified for a given frequency. The amplification function represents the influence of earth dam and canyon 

properties, including their geometry and material properties. Utilizing the superposition principle, the crest 

response of an earth dam due to an earthquake is obtained by the production of amplification function and the 

earthquake ground motion.  

Several methodologies, including analytical and numerical approaches, have been developed to try to determine 

the geometry and flexibility effects of a canyon on the earth dam amplification function. The shear beam method 

was used by Ambraseys [55] to model an earth dam as a variable wedge-shaped cross-section, and a closed-

form solution was presented to obtain different vibration modes of an earth dam in a rectangular canyon. 

Dakoulas and Gazetas [57] suggested an analytical solution to estimate the steady-state response of earth dams 

in rigid semi-cylindrical canyons under harmonic base excitation, and it was shown that the presence of a rigid 

canyon enhances the seismic response. For the hysteretic damping ratio β=10%, the maximum amplification 

functions were obtained as AFmax ≈ 10 and AFmax ≈ 8 for the 3D developed theory and 2D plane strain shear 

beam, respectively. Also, Dakoulas and Gazetas [57] concluded that: “AF is independent of the exact canyon 

shape.” Dakoulas and Hsu [58] similarly proposed an analytical solution for semi-elliptical rigid canyons, and it 

was shown that the amplification effect is higher in dams in narrow canyons compared to dams in wide canyons. 

Further, Dakoulas and Hashmi [56] presented an analytical approach for examining the steady-state response 

of earth dams in rectangular canyons. The dam was modeled as a 2D homogeneous triangular shear wedge 

with a linearly hysteretic material, and the canyon was considered to be a rectangle with elastic materials, with 

a parametric study being done to investigate the effect of impedance ratio on the response of the dam.  

A 2D finite element method (FEM) was used by Clough and Chopra [1] to conduct a linear dynamic analysis of 

a homogenous earth dam on a rigid foundation. Similarly, 2D FEM was applied by Hall and Chopra [97] for the 

prediction of dynamic reservoir-dam interactions. In comparison with gravity dams, the presence of a reservoir 

does not significantly influence an earth dam’s responses. The calculated AFmax for both situations, i.e., with and 

without the reservoir, was almost 8. To resolve the erroneous rigid foundation assumption, a finite element model 

of the earth dam was coupled with an analytical solution to simulate earth dam-flexible foundation interactions 

[68], with the foundation being assumed to be a linear elastic half-space.  
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Domínguez [98] was the first to apply the boundary element method (BEM) for the dynamic soil-structure 

interaction (SSI) problem. BEM accurately simulates the soil medium as a half-space, and also rigorously 

satisfies the Sommerfeld radiation condition [99]. BEM has been used for different SSI problems, including 

gravity dams [100] and arch dams [101]. The coupling of FEM and BEM [102] can be beneficial through gaining 

the advantages of both. Touhei and Ohmachi [103] determined the impulsive crest responses of a dam-

foundation system by using the FEM-BEM approach in the time domain, and the effect of a flexible foundation 

with different impedance ratios was considered. Guan and Moore [104] coupled FEM and a layer transfer matrix 

for the 2D frequency domain analysis of an earth dam on a multi-layer foundation, while Dakoulas and 

Abouseeda [105] employed 2D FEM-BEM to obtain the seismic responses of an earth dam-foundation system. 

The hybrid methodology was developed to consider the inelastic response of the earth dam [34].  

A fundamental solution satisfying the governing equation in BEM is often complicated to obtain and sometimes 

impossible, as it shows singularities and may not exist for some anisotropic problems [82]. Wolf and Song [36], 

[106] developed a novel semi-analytical approach for calculating the dynamic stiffness matrix of a half-space, 

which is called the scaled boundary finite element method (SBFEM). As SBFEM is independent of the 

fundamental solution, it does not have the difficulty of BEM and rigorously satisfies the radiation damping by 

combining the advantages of FEM and BEM. Equations for SBFEM have also been promoted by other 

researchers; for example, Bazyar and Song [38] extended the SBFEM equation for non-homogeneous elastic 

unbounded domains in time-harmonic and transient domains. SBFEM has also been used for other geotechnical 

problems, including steady-state confined and unconfined seepage problems [20], [21], transient seepage [109], 

and non-linear problems [110]. Further, Chen et al. [111] advanced the polygon-scaled-boundary finite element 

method for the nonlinear analysis of concrete-faced rockfill dams.  

A renewed interest has been seen in applying the FEM-SBFEM method for different SSI problems with dynamic 

loadings [45], [47], [112], [113]. Yaseri et al. [51], [91] coupled FEM with SBFEM to analyze induced ground 

vibration due to passing trains, and Lin et al. [49] proposed SBFEM as an efficient method to evaluate dynamic 

dam-reservoir interaction systems. Zhao et al [50] used FEM-SBFEM to consider the seismic responses of dams 

and offshores structures, with SBFEM being applied at the water-structure interfaces. The authors of [114] 

successfully utilized the hybrid FEM-SBFEM technique for estimating the natural periods of different earth dam-

canyon systems, with several graphs and equations being produced to obtain the natural period of earth dams 

while taking into account the geometry and flexibility effects of the canyon. 

The research in the literature can be categorized into three groups, as follows: 
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 In 2D-hybrid techniques, the approach can satisfy the radiation damping, but it does not take into 

consideration the 3D-geometry effect. Moreover, the surrounding soil has always been modeled as a 

flexible foundation [34], [78].  

 In 3D models, canyons have been assumed to be constrained by rigid boundary conditions, while no 

influence of flexibility has been examined [58], [79]. 

 In 3D-hybrid models, the canyon behaves as an elastic half-space. The mathematical restrictions, 

however, have limited the shapes of canyons to only some pre-determined profiles like semi-elliptical 

forms [80]. 

 In this work, a 3D FEM-SBFEM equation is derived to conduct a comprehensive study of the effects of canyon 

flexibility and geometry on the seismic responses of earth dams. The objectives of the current work are as 

follows:  

 Introducing the FEM-SBFEM technique as a powerful tool for the dynamic analysis of earth dam-flexible 

canyon interactions.  

 Studying the flexibility and geometry effects of a canyon on dam-crest seismic responses. 

3.4 Formulation 

Utilizing the substructure method, the soil-earth dam interaction system is divided into two simpler sub-models 

(see Figure 3.1) and the bounded domain (ΩF) of the earth dam is discretized for analysis by FEM. The mesh 

is built with the nodes of the earth dam 𝛤  and the interface 𝛤 . In the same way, the unbounded domain (Ωs) 

of the canyon is meshed by SBFEM, including canyon nodes 𝛤  and interface nodes 𝛤 . While FEM is simulated 

by 3D brick elements, the surface element is utilized in SBFEM. To take into account the flexibility effect of the 

canyon, the impedance ratio is defined as 𝛼 = , where 𝑉  and 𝑉  are the shear wave velocities of the earth 

dam and the canyon, respectively. 𝜌 is the mass density and S.C represents the scaling center in the scaled 

boundary finite element coordinate system. 
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 FEM formulation 

The equation of motion for the bonded domain is presented as Equation (3-1). The bounded domain is an earth 

dam including the interface nodes 𝛤  and ones of the earth dam having no contact with the canyon 𝛤  (Figure 

3-1).  

 [𝑆 (𝜔)]{𝑢(𝜔)} = {𝑃(𝜔)} )1-3( 

where 𝜔 is frequency, and {𝑢} and {𝑃} are the displacement and the load vectors, respectively. [𝑆 ] is the 

dynamic-stiffness matrix of the bounded domain. If it is decomposed into two parts, 𝛤  and 𝛤 , it will be 

converted into: 

 [𝑆 ] =
[𝑆 ] 𝑆

𝑆 𝑆
= [𝐾 ](1 + 2𝑖𝛽) − 𝜔 [𝑀 ] )2-3( 

where [𝐾 ] is the stiffness matrix, [𝑀 ] is the mass matrix and 𝛽 is the material hysteretic damping ratio. 

 SBFEM formulation 

For 3D problems, the SBFEM equation of the dynamic stiffness matrix is presented as: 

 

 
([𝑆 (𝜔)]  + [𝐸 ])[𝐸 ] (+[𝑆 (𝜔)]  + [𝐸 ] ) − ([𝐸 ]) − 𝜔[𝑆 (𝜔)] ,

+ 𝜔 [𝑀 ] 𝜉 = 0 
 

 

)3-3( 

where [𝐸 ]-[𝐸 ] and [𝑀 ] are the coefficients matrices of SBFEM; their derivations are discussed in 

references [36], [52], [82], [115]. These are obtained by the assemblage of the corresponding coefficient matrices 

of every individual element, similar to the standard FEM methodology. Equation (3-3) is a non-linear first-order 

ordinary differential equation in which the variable 𝜔 is the only independent variable. The Runge- Kutta scheme 

Figure 3-1. Symmetric earth dam-canyon interaction system 
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is used for the numerical integration of Equation (3-3). To obtain an initial value, an asymptotic expansion is 

used: 

 𝑆 (𝜔) = [𝐾 ] + 𝑖𝜔[𝐶 ] + [𝐴 ](𝑖𝜔)   

 

)4-3( 

[𝐶 ], [𝐾 ] and [𝐴 ] are the coefficient matrices [52]. 𝑆 (𝜔 )  is calculated for sufficiently high (but not 

infinite) values of the frequency 𝜔 . The solution algorithm uses initial value 𝑆 (𝜔 )  as an initial value and 

solves Equation (3-4) step-by-step with respect to 𝜔. There will be a stiffness matrix of the unbounded domain 

resulted from each 𝜔. the lower band, 𝜔 , would approach zero. 

 Coupled FEM-SBFEM formulation 

Equation (3-5) indicates the equations of motion for earth dam-canyon interaction in the frequency domains. 

 [𝑆(𝜔)]{𝑢(𝜔)} = {𝑃(𝜔)} )5-3( 

If the above equation is decomposed into two domains 𝛤 and 𝛤  (Figure 3-1), it is rewritten as: 

[𝑆 ] 𝑆

𝑆 𝑆

{𝑢 }

{𝑢 }
=

{𝑃 }

{𝑃 }
 

 

)6-3( 

The seismic excitation input motion {𝑢 (𝜔)} is applied to all nodes of the canyon, 𝛤 and 𝛤  (Figure 3-1). 

Superscript g indicates the ground system. The interaction force on the interface nodes obtained from the 

product of Equation (3-3) by relative motion as illustrated by:  

 

 {{𝑅 (𝜔)}} = 𝑆 𝑆
𝑢 (𝜔) − 𝑢 (𝜔)

{𝑢 (𝜔)} − 𝑢 (𝜔)
  )7-3( 

Subscript t shows the total displacement with respect to a fixed reference. The seismic motion {𝑢 (𝜔)} is 

converted to an equivalent load which applies to the interface nodes 𝛤 . The equation of motion for the canyon 

nodes that do not have contact with the earth dam (𝛤 ) is as follows: 

 [𝑆 ] {𝑢 (𝜔)} − 𝑢 (𝜔) + 𝑆 𝑢 (𝜔) − 𝑢 (𝜔) = 0 )8-3( 
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By substituting {𝑅 (𝜔)} (Equation (3-7)) for {𝑃 } (Equation (3-6)) and utilizing Equation (3-8), Equation (3-6) 

is rearranged as: 

which is the equation of motion of an earth dam-canyon system under seismic excitation. This equation can be 

solved for each frequency.  

 Amplification Function 

To calculate the amplification function, a unit displacement {𝑢 (𝜔)} applied at all nodes of the canyon (𝛤  and 

𝛤 ). Equation (3-9) is solved for {𝑢 (𝜔)} = 1; then, the displacement at the crest of the dam is obtained in 

the upstream-downstream direction and is introduced as the amplification function (AF) of the crest (point S.C 

in Figure 3-1). As can be seen from Figure 3-2, by multiplying the amplification function by the Fourier amplitude 

spectrum of a seismic event ({�̈� (𝜔)}), the crest dam response {�̈� (𝜔)} is obtained. The corresponding 

response to the seismic event in the time domain is obtained by using the inverse Fourier transform {�̈� (𝑡)}.  

 

Figure 3-2. Diagram of AF application 

 

 

3.5 Verification 

To validate the proposed methodology, the example of a rigid massless foundation on an elastic half-space is 

used. More details can be found in the companion paper [114]. The width equals B=30 m and the thickness is 

0.1B. The bounded domain, a cube with the size 2B*2B*2B, is modeled by FEM and the half-space is discretized 

by SBFEM. The FEM and SBFEM are constituted by 216 8-nodes brick elements and 108 four-node surface 

 

[𝑆 ] 𝑆 0

𝑆 𝑆 + 𝑆 𝑆

0 𝑆 [𝑆 ]

{𝑢 }

𝑢

{𝑢 }

=

0
𝑆 𝑢 (𝜔) + 𝑆 𝑢 (𝜔)

𝑆 𝑢 (𝜔) + [𝑆 ] 𝑢 (𝜔)

 )9-3( 
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elements, respectively. The material properties are chosen as modulus of elasticity =24 *106 kPa, Poisson’s ratio 

= 0.33 and unit weight = 24 kN/m3. The material properties for the bounded and the unbounded domains are 

the same (impedance ratio=1). 

Figure 3-3 compares the results calculated by FEM-SBFEM with results available in the literature [40, 41] for 

different loading conditions. Figure 3-3(a) and Figure 3-3(b) represent the real and imaginary parts of the vertical 

and horizontal compliances (𝐶  and 𝐶 ), respectively. 𝑎  is dimensionless frequency 𝑎 =
 

 , where 𝑐  is 

the shear wave velocity. Equations (3-10) and (3-11) indicate the non-dimensionalized vertical and horizontal 

compliance coefficients, respectively. 

 𝐶 (𝑎 ) =
𝐺𝐵𝑈

𝑃
 )10-3(

 

 𝐶 (𝑎 ) =
𝐺𝐵𝑈

𝑃
 )11-3(

where 𝐺 is the shear modulus and, 𝑈  and 𝑈  are the vertical and horizontal displacements under the loading 

P, respectively. Figure 3-3(c) depicts the rocking compliance results normalized as: 

 𝐶 (𝑎 ) =
𝐺𝐵 𝜃

𝑀
 )12-3(

where which  M is the dynamic moment and θ is the rotation of the plate around the horizontal axe. The good 

agreement between the results of the proposed method and the available data in the literature shows the 

applicability and accuracy of FEM-SBFEM under different loading conditions (Figure 3-3).  
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Figure 3-3. (a) Vertical compliance; (b) Horizontal compliance; and (c) Rocking compliance of a rigid square massless plate 
resting on an isotropic homogeneous elastic half-space [114]  

Figure 3-4 compares the obtained maximum amplification function with other results available in the literature 

[65], [116]. AFmax changes with variations of the rigidity factor IR, which is the inverse of the impedance ratio. 

The results of FEM-SBFEM for the earth dam in a rectangular canyon with L/H=5 show a reasonable agreement 

with the results by Dakoulas (1993) for a semi-cylindrical canyon. When the IR approaches 10, the AF max also 

approaches 10, which is approximately equal to the value reported in [116] for a rigid canyon with different 

shapes. In addition, the AFmax for higher values of IR for a rectangular canyon with L/H=10 approaches 8, which 

is close to the value obtained by 2D models. 
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Figure 3-4. Amplification value for the first natural frequency 

3.6 Numerical Examples 

The programming was written in FORTRAN and run on the Linux CentOS 7 operating system and the analysis 

was carried out on the Niagara High-Performance Computing (HPC) cluster under the administration of Compute 

Canada. The machine configuration was 2 x CPU: Intel Sylake 2.4GHz, 20 cores each, a total of 40 cores, and 

202 GB of RAM. The calculation time for a model as depicted in Figure 3-5 was almost 8 hours.  

To obtain the effect of the impedance ratio (α) on the amplification function (AF), the wide ranges of α are defined 

as α=0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6. Figure 3-1 depicts the geometry of the model, where. L is the length of 

the canyon, H is the height of the dam, and B is the width of the dam (which is B=2*H). Also, to for considering 

the effect of canyon geometry, the L/H ratios of 2.5, and 5, as well as four shape types (rectangular canyon, 

wide trapezoidal canyon, narrow trapezoidal canyon, and triangular canyon) are chosen. The length L' (Figure 

3-1) is 𝐿/2 and 𝐿/5 for the wide and the narrow trapezoidal canyons, respectively. For the triangular canyon, 

𝐿 = 0. The damping ratios for the earth dam are β=0%, 5%, and 10%, and 0% for the unbounded domain (i.e., 

the foundation and the canyon). 

For the narrow trapezoidal canyon (L/H=5) the generated mesh is shown in Figure 3-5 and the symmetric 

boundary condition is assigned. For this model, the number of nodes is 3,568, and the unbounded canyon 

consists of 664 4-nodes surfaces elements (Figure 3-5(a)). The model also comprises an earth dam with 2,626 

hexahedral elements having 8 nodes (Figure 3-5(b)). Figure 3-5 represents the downstream-upstream direction 

displacement under harmonic excitation in the same direction.   
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Figure 3-5. Displacement contours in upstream-downstream direction under harmonic canyon excitation for: a) the 

canyon mesh; b) the assembled earth dam-canyon mesh 

 Results and discussions  

In this part, the amplification functions calculated by FEM-SBFEM are presented. First, the effects of canyon 

flexibility of (α) and the material damping ratio (β) on the amplification function are studied. Secondly, Two 

parameters are studied in order to consider the effect of geometry: 1) the length of the canyon for L/H=2.5 and 

5 (Figure 3-6-Figure 3-9); and 2) the shape of the canyon (Figure 3-10).  

 
Figure 3-6. Amplification function of the earth dam in a rectangular canyon with different values α, L/H and β 
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Figure 3-6 indicates the AF of the earth dam located in a rectangular canyon. The AFmax values of the stiff canyon 

(α=0) for L/H=5 are 21.5 and 10 with regard to the damping ratios β=5 and 10%, respectively, and the 

corresponding AFmax magnitudes are 23.12 and 11.38 for L/H=2.5. The decreasing effect of β on the wider 

canyon is more noticeable; doubling L leads to a 12% decrease in AFmax (Figure 3-6(a),(c)), while for higher 

values of α (more flexible canyons), the material damping effect is lighter. To clarify, for α=0.6, if L/H=5, Figure 

3-6(d, c) yields AFmax values of  2.6 and 2.29 for β=5% and 10% respectively. 

The amplification functions are similarly computed for an earth dam located in a wide trapezoidal canyon, as 

shown in Figure 3-7.  

 
Figure 3-7. Amplification function of an earth dam in a wide trapezoidal canyon with different α, L/H and β 

 
Figure 3-8 represents the amplification function for a narrow trapezoidal canyon with L/H=2.5 and L/H=5 and β= 

5% and 10%. 
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Figure 3-8. Amplification function of an earth dam in a narrow trapezoidal canyon with different α, L/H, and β 

For the sake of completeness, the amplification function of an earth dam located in a triangular canyon is 

presented in Figure 3-9.  
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Figure 3-9. Amplification function of an earth dam in a triangular canyon with different values α, L/H and β 

Figure 3-10 compares the effect of canyon geometry on the amplification function for canyons of L/H=2.5 

associated with β= 10%. The calculated AFs for the rectangular, wide trapezoidal, narrow trapezoidal, and 

triangular canyons are shown in sequence by (-), (- -), (.-), and (.). Each color corresponds to a specific 

impedance ratio. 
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Figure 3-10. Comparison of the effect of canyon geometry on the first amplitude for an earth dam located in a canyon with 
L/H=2.5 and β=10% 

3.7 Application of the calculated amplification functions 

The amplification function can be utilized to obtain a wide variety of crest response parameters, including 

acceleration, velocity, displacement, etc. As mentioned above, the amplification function is the ratio of the 

amplitude of the crest motion to the amplitude of the canyon motion. By applying the ground vibration as an input 

for the canyon, the crest response is calculated based on the superposition principle. First, the time history of 

an earthquake is converted to the frequency domain by a fast Fourier transform. Then, the seismic vibration in 

the frequency domain is multiplied by the amplification function to obtain the crest response in the frequency 

domain. Using the inverse Fourier transform for the crest response yields the time domain response. Each 

earthquake frequency is amplified based on the amplification function.  

As an example, the response of an earth dam located in a narrow trapezoidal canyon with L/H=5 is calculated 

step by step. In this case, the following specifications are considered: H=100, B=200, β=5%, and earth dam 

shear wave velocity=300 m/s. The S90W El-Centro earthquake (1940) horizontal ground motion is applied in 
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this example (Figure 3-11(a)), and the Fourier series of the input motion on the canyon is computed (Figure 

3-11(b)). Figure 3-11(c) represents the amplification function of the earth dam obtained in the previous section 

by FEM-SBFEM for α=0.1. The product of each term of the amplification function (Figure 3-11(c)) and the Fourier 

series of the input motion (Figure 3-11(b)) results in the crest response in the frequency domain (Figure 3-11(d)). 

Figure 3-11(e) portrays the crest response of the dam in the time domain under the El Centro earthquake.  

 

 The El Infiernillo dam 

As the last example, a calculated AF is used as an estimate in order to find the crest response of an existing 

earth dam under an actual earthquake. The El Infiernillo dam is an earth dam on the Balsas River in Mexico. 

The dam is situated in a high seismicity region in a narrow valley. It has been subjected to several precisely 

monitored earthquakes [61], [117], [118]. The dam’s height and length are 148m and 350m, respectively (Figure 

3-12). The material properties of the three sections of the dam are shown in Table 3-1 [117]. These properties 

include the shear modulus, mass density, and passion ratio. The sections of the dam are made of: (1) compacted 

rockfill; (2) impervious core; and (3) dumped rockfill (Figure 3-12(a)). 

Table 3-1. Material Properties of the El Infiernillo dam 

 Material  Shear Modulus (MPa) Mass Density (Kg/m3) ν 
1) Compacted Rockfill 682 2100 0.42 

2) Impervious Core 227 2000 0.49 
3) Dumped Rockfill 245 2100 0.38 

 
To be able to use the calculated amplification functions, a simplified model with volume-averaged properties was 

used, and it is assumed that the dam is homogenous. Therefore, the average shear modulus and mass density 

are respectively estimated as 404 MPa and 2100 kg/m3. The canyon is simplified as a narrow trapezoidal canyon 

with L/H=2.5.  

The impedance ratio and damping ratio are chosen respectively α=0.3 and β=8% [61]. Two earthquakes shook 

the dam in the year 1966, and the earthquake motions were recorded at two stations, one at the dam crest and 

one near the base. The ratio of the crest response to the base response is defined as the response spectra ratio. 

Similar to the site effect in soil deposits, the response spectra ratio can be used as an estimation for the steady-

state AF [61].  

Figure 3-13 shows the response spectra recorded by the accelerograms at the canyon during the 1966 events. 

There is a reasonable agreement between the AF obtained by FEM-SBFEM (dash-dot-dot line line) and the 

response spectra (dash-dot line and dot line) recorded at the crest. The solid line shows the results of FEM-
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SBFEM for β=10%, which have a smaller discrepancy with the recorded data for the maximum amplitude in 

comparison with the results for β=8%.  

 

Figure 3-11. Different steps to obtain the crest response due to an earthquake: a) The S90W El-Centro earthquake (1940) 
horizontal ground motion; b) Fourier amplitude spectrum of the earthquake; c) The transfer function obtained by FEM-

SBFEM for α=0.1 and L/H=5; d) product of the amplification function (c) and the Fourier series of the input motion (b); e) 
time history of the crest under the earthquake obtained by inverting the Fourier series from (d) 
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Figure 3-12. El Infiernillo dam: (a) maximum cross section; (b) geological profile [117] 

 
 

Figure 3-13. Response Spectra of El Infiernillo rockfill dam due to two earthquakes during the year 1966 

3.8 Conclusion 

This work introduced the 3D FEM-SBFEM equation in order to investigate the seismic responses of earth dams. 

FEM represents the earth dam domain, while SBFEM models unbounded canyon domains. The hybrid technique 
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was validated through a benchmark example and available 2D results. A comprehensive study was done in 

order to seek the flexibility and geometry effects of canyons, and 112 3D models were created corresponding to 

2 different material damping ratios, 2 different canyon lengths, 7 different impedance ratios, and 4 canyon 

geometry shapes. Dam crest acceleration due to an actual earthquake was obtained using a fast Fourier 

transform. The recorded response spectra of the El Infiernillo dam under the 1966 earthquakes were utilized for 

comparison with a proposed amplification function, and a reasonable agreement was seen between the recorded 

data and the FEM-SBFEM results. 

. 
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Chapter 4 Shear Strain Dependent Amplification 
Function of Earth Dam-Flexible Canyon system 

by the Hybrid FEM-SBFEM Technique 

4.1 . Résumé 

 La méthode linéaire équivalente (EQL) a été implémentée dans la FEM. La technique FEM-SBFEM a été 

étendue pour prendre en compte l'effet du comportement non linéaire des barrages en terre. Il a été observé 

que le comportement non linéaire affecte grandement la fréquence naturelle de résonnance, la fonction 

d'amplification et l'accélération de crête maximale d’un barrage en terre situé dans un canyon. Les effets de la 

géométrie et de la flexibilité du canyon sur le comportement non linéaire ont aussi été examinés. En augmentant 

la flexibilité du canyon, il a été montré que l'effet de la non-linéarité diminuait. Le barrage d'El Infiernillo a été 

modélisé par FEM-SBFEM non linéaire 3D, et une comparaison de la fonction d'amplification de crête obtenue 

par la méthode proposée avec les données enregistrées montre la précision de la méthode FEM-SBFEM non 

linéaire. 

4.2 Abstract 

The finite element method (FEM) is a powerful tool for the nonlinear modeling of dynamic problems. In the 

present work, the equivalent linear method (EQL) has been implemented into the FEM. For stratifying the 

radiation damping condition and rigorously modeling canyon as an elastic unbounded domain, the scaled 

boundary finite element method (SBFEM) was utilized. The FEM-SBFEM technique, wherein FEM is coupled 

with SBFEM, has been extended to take into consideration the effect of earth dam nonlinear behavior. It was 

observed that the nonlinear behavior greatly affects the natural frequency, the amplification function, and peak 

crest acceleration of the earth dam located in canyons. The effects of canyon geometry and flexibility on the 

nonlinear behavior were examined, and it was seen that by increasing the flexibility of the canyon, the effect of 

nonlinearity was decreased. The El Infiernillo dam was modeled by 3D nonlinear FEM-SBFEM, and comparison 

of the crest amplification function obtained by the proposed method with the recorded data shows the accuracy 

of the nonlinear FEM-SBFEM.   
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4.3 Introduction 

The dynamic response of an earth dam is highly affected by the shape, geometry, and flexibility of a canyon, 

and an earth dam-flexible canyon system may amplify or deamplify the canyon’s seismic acceleration. The crest 

amplification is represented by a frequency-dependent amplification function, and the first peak in the 

amplification function corresponds to the natural frequency.  

Generally, dams located in narrow canyons show a stiffer behavior than dams in wider canyons. This stiffening 

effect leads to smaller natural periods [119]. Mejia and Seed [120] compared the natural frequencies of 2D and 

3D dams in triangular and rectangular canyons, and it was concluded that by decreasing the length to height 

ratio, the 3D natural frequency is increased in comparison with the 2D natural frequency. For a triangular dam 

with a length to height ratio of one, the 3D natural frequency is 2.5 times higher than for a 2D dam. Dakoulas 

and Gazetas [65] studied more canyon geometries. For the lower value of the length to height ratio, the 

fundamental period of a dam in a narrow canyon was obtained a fifth of the corresponding value for the dam in 

a wide canyon. It was also shown that the amplification function is greatly affected by the geometry of the canyon, 

and that the amplification function in narrow canyons is higher than for dams in wide canyons. 

The amplification function of a dam located in a flexible semi-cylindrical canyon was calculated, and it was shown 

by Dakoulas and Gazetas [65] that by increasing the flexibility of the canyon, the amplification function is 

decreased. Papalou and Bielak [66] modeled earth dams and canyons by the shear beam method and FEM, 

respectively, and it was concluded that by reducing the canyon stiffness, the acceleration response of the dam 

decreases. Touhei and Ohmachi [103] utilized the 2D FEM-BEM hybrid technique to investigate the effects of 

foundation flexibility on the crest response. Abouseeda and Dakoulas [121] studied the seismic behavior of earth 

dams with a flexible foundation by the 2D FEM-BEM method, and the amplification functions of earth dams 

under earthquakes with different peak accelerations were compared.  

In the linear analysis, the shear modulus and damping ratio are used with the assumption of low strain ( 𝛾 <

10 ). The amplification function, natural frequency, and time-domain response are calculated with this 

assumption. Under severe earthquakes, some parts of earth dams exhibit nonlinear behavior. Idriss and Seed 

[71] introduced the equivalent linear method (EQL) to take into consideration the effect of soil nonlinearity during 

strong earthquakes, and SHAKE [72] and FLUSH [73], which incorporate EQL, have been widely used in 

practical problems in geotechnical earthquake engineering. Abdel-Ghaffar and Scott [74] developed EQL to 

analyze the Santa Felicia earth dam which was subjected to two strong earthquakes. Choudhury and Savoikar 

[75] carried out 1D equivalent-linear analysis utilizing the DEEPSOIL software in order to model municipal solid 

waste landfills under earthquake loadings, while Mejia et al. [76] showed that the natural frequencies of earth 

dams modeled by the equivalent linear FEM vary with the intensity of the input motions. Cascone and Rampello 
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[77] performed a seismic analysis of earth dams by the decoupled displacement analysis and the nonlinear 

behavior was incorporated by the EQL.  

The scaled boundary finite element method (SBFEM) is a semi-analytical fundamental solution-less boundary 

element method introduced by Song and Wolf [52],[36]. It combines the advantages of FEM and BEM while it 

avoids their shortcomings. The unbounded domain has been modeled by SBFEM to satisfy the radiation 

damping condition, and it has been widely used in different dynamic problems: dam-reservoir interaction analysis 

[46], [122]–[125], moving loads [43], [51], [91], pile-soil interaction [45], concrete dam-foundation interaction 

[113], and earth dam-canyon interaction [29],[30]. 

FEM is a powerful tool for the nonlinear modeling of dynamic problems. In the present work, the EQL has been 

implemented into the FEM. For stratifying the radiation damping condition and rigorously modeling a canyon as 

an unbounded domain, FEM has been coupled with SBFEM. The FEM-SBFEM technique has been extended 

to take into consideration the effect of earth dams’ nonlinear behavior. The canyon is modeled by SBFEM to 

study the effect of flexibility and geometry of the canyon, and how nonlinear behavior affects the natural 

frequency, amplification function, and peak crest acceleration of earth dam located in canyons with different 

material and geometry conditions has been examined. 

4.4 Formulation 

Figure 4.1 illustrates an earth dam-canyon interaction system. The substructure method is utilized in which the 

domain is divided into two subdomains: a bounded domain (ΩF) and an unbounded domain (Ωs). The subscripts 

F and S denote the finite element method (FEM) and the scaled boundary finite element method (SBFEM) 

respectively. It is assumed that the canyon has a linear elastic behavior and that under severe loadings, the dam 

experiences nonlinearity in its material behavior. Therefore, the earth dam is modeled by FEM and the canyon 

by SBFEM. Coupling of FEM and SBFEM is done on the interface 𝛤 . The earth dam mesh nodes  and canyon 

meshes not contacted by the earth dam are shown by domains 𝛤  and 𝛤 ,  respectively. To quantitatively 

examine the effect of an elastic canyon, the impedance ratio is defined as 𝛼 = , where 𝑉  and 𝑉  are the 

shear wave velocities of the earth, for the initial shear modulus, and the canyon, respectively. 
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 FEM formulation 

The equation of motion for an earth dam is expressed by the dynamic stiffness matrix [𝑆 (𝜔)], the 

displacement vector{𝑢(𝜔)}, and load vector {𝑃(𝜔)} as: 

 [𝑆 (𝜔)] {𝑢(𝜔)} = {𝑃(𝜔)} )1-4( 

where 𝜔 is the frequency. [𝑆 ] is decomposed into two parts, 𝛤  and 𝛤 : 

 [𝑆 ] =
[𝑆 ] 𝑆

𝑆 𝑆
= [𝐾 ] (1 + 2𝑖𝛽 ) − 𝜔 [𝑀 ] )2-4( 

where [𝑀 ] and [𝐾 ]  are the mass and stiffness matrices, respectively, and 𝛽  is the material hysteretic 

damping ratio. The coefficient matrices are obtained by the classical FEM equation for each element, and 

assembling them results in [𝑆 ] . The superscript j shows the iteration number in the nonlinear analysis that 

will be discussed in detail in section 1.4.  

 SBFEM formulation 

The SBFEM equation in displacement for 3D problems in the time domain is expressed as [126]: 

 
[𝐸 ]𝜉 {𝑢 (𝜉, 𝑡)}, + (2[𝐸 ] − [𝐸 ] + [𝐸 ] )𝜉{𝑢 (𝜉, 𝑡)},

+ ([𝐸 ] − [𝐸 ]){𝑢(𝜉, 𝑡)} − [𝑀 ] 𝜉 {�̈�(𝜉, 𝑡)} +  {𝐹(𝜉)} = 0        
(4-3) 

where , , , and  are coefficient matrices and 𝜉 is the dimensionless radial coordinate. 

Analogous to FEM, the coefficient matrices are achieved by assembling the coefficient matrices of each element 

[36]. Applying the harmonic excitation 𝑢 (𝜉, 𝑡) = 𝑢 (𝜉)𝑒  in Equation (4-1) results in: 

 
[𝐸 ]𝜉 {𝑢 (𝜉)}, + (2[𝐸 ] − [𝐸 ] + [𝐸 ] )𝜉{𝑢 (𝜉)}, + ([𝐸 ] − [𝐸 ]){𝑢(𝜉)}  

+  𝜔 [𝑀 ] 𝜉 {𝑢(𝜉)} +  {𝐹(𝜉)} = 0        
(4-4) 

][ 0E ][ 1E ][ 2E ][ 0M

Figure 4-1. a symmetric earth dam-canyon interaction system 
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which represents the SBFEM equation in displacement for the frequency domain. The boundary tractions are 

defined as equivalent boundary nodal forces:  

 {𝑅(𝜉)} = 𝜉 [𝐸 ] {𝑢 (𝜉)}, +  𝜉[𝐸 ]  {𝑢(𝜉)}  )5-4( 

The amplitudes of the nodal displacement and those of the force are related as:  

 {𝑅(𝜉)} = [𝑆 (𝜔)] {𝑢(𝜉)}  )6-4( 

where [𝑆 (𝜔)] is the dynamic stiffness matrix of an unbounded domain. Substituting Equations (4-5) and (4-6) 

in Equation (4-4) leads to: 

 

 
([𝑆 (𝜔)]  + [𝐸 ])[𝐸 ] (+[𝑆 (𝜔)]  + [𝐸 ] ) − ([𝐸 ]) − 𝜔[𝑆 (𝜔)],

+ 𝜔 [𝑀 ] 𝜉 = 0 
 

 

)7-4( 

The Runge-Kutta scheme is utilized for the numerical solution of Equation (4-7), which is a non-linear 1st-order 

ODEs with an independent variable of 𝜔. Asymptotic expansion of the unbounded dynamic-stiffness matrix 

provides an initial condition for the numerical solution [126]. The asymptotic expansion is obtained for a high 

(but finite) value of 𝜔 .  

 𝑆 (𝜔 ) = [𝐾 ] + 𝑖𝜔 [𝐶 ] + [𝐴 ](𝑖𝜔 )   

 

)8-4( 

where [𝐶 ], [𝐾 ] and [𝐴 ] are the coefficient matrices [52]. 

 Coupled FEM-SBFEM formulation 

Equation (4-1) is decomposed into two domains, 𝛤 and 𝛤 , as: 

[𝑆 ] 𝑆

𝑆 𝑆

{𝑢 }

{𝑢 }
=

{𝑃 }

{𝑃 }
 

)9-4( 

 

Equation (4-6), the interaction force, for the interface nodes (𝛤 ) is rewritten for the decomposed unbounded 

stiffness matrix as: 

 
𝑅 (𝜔)
𝑅 (𝜔)

=
𝑆 𝑆

𝑆 [𝑆 ]

𝑢 (𝜔) − 𝑢 (𝜔)

{𝑢 (𝜔)} − 𝑢 (𝜔)
  )10-4( 

where the subscripts t and g show the total and the ground system, respectively. The displacement vector 

represents the relative motion. {𝑢 (𝜔)} is the seismic excitation input motion acting on all nodes of the canyon, 

𝛤 and 𝛤  (Figure 4-1). By substituting {𝑅 (𝜔)} for {𝑃 } in Equation (3-6), it is then formulated as:  
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which is the algebraic equations of motion amplitudes in the frequency under seismic excitation domain for earth 

dam-unbounded canyon system. 

 Amplification function  

The amplification function (AF), or the transfer function, is defined as a system’s ratio of output to input. For the 

earth dam-canyon system, the AF is obtained by setting {𝑢 (𝜔)} as equal to 1. The crest displacement is 

considered as the crest amplification function. The AF can be utilized to obtain other response types, including 

acceleration and velocity. Benefiting from the amplification function, the response of a linear elastic earth dam-

canyon system to any load combination is achieved by multiplying the AF with the load combination. The 

amplification functions also expresses how the input canyon motion is amplified or de-amplified for each 

frequency. If {𝑢 (𝜔)} = 1 in Equation (4-11), it is rewritten as:   

Solving equation (4-12) will result in the amplification functions. By multiplying the amplification function of the 

desired points (crest for instance) by the Fourier amplitude spectrum of a seismic event, the response of the 

dam is computed:  

 
{�̈� (𝜔)} = {𝐴𝐹(𝜔)}{�̈� (𝜔)} 

 )13-4( 

The inverse Fourier transform is used to obtain the corresponding response in the time domain: 

 
{�̈� (𝑡)} = 𝐼𝐹𝐹𝑇({�̈� (𝜔)}) 

 )14-4( 

 

 Equivalent linear analysis  

Under severe seismic events, some parts of an earth dam experience large strains that cause nonlinear 

behavior. The equivalent linear method is used to take the nonlinear effect into account.  Figure 4-2 depicts the 

different steps in the proposed methodology. First, with the assumption of small strain,  𝛾 < 10  , the 

shear modules 𝐺  and damping ratio 𝛽  are selected for each FEM element. The superscripts refer to the 

iteration number. [𝑆 (𝜔)]  and [𝑆 (𝜔)] are calculated for the earth dam and the canyon, respectively. The 

 

⎣
⎢
⎢
⎡[𝑆 ] 𝑆 0

𝑆 𝑆 + 𝑆 𝑆

0 𝑆 [𝑆 ]⎦
⎥
⎥
⎤ {𝑢 }

𝑢

{𝑢 }

=

0
𝑆 𝑢 (𝜔) + 𝑆 𝑢 (𝜔)

𝑆 𝑢 (𝜔) + [𝑆 ] 𝑢 (𝜔)
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unit displacement, {𝑢 (𝜔)} = 1, is applied on the canyon nodes. The maximum shear strain (𝛾(𝜔) ) for 

each element for each frequency is evaluated. Transferring the strain into the time domain and obtaining the 

maximum strain will be time-consuming. The maximum shear strain in the time domain is obtained by the root 

mean square of the maximum strain in the frequency domain as:  

 𝛾(𝑡) = 𝐶 ∗ 𝑅𝑀𝑆(𝛾(𝜔) ) )15-4(

where the constant C can be estimated by: 

 𝐶 = 𝑚𝑎𝑥|{�̈� (𝑡)}|/𝑅𝑀𝑆({�̈� (𝜔)}) )16-4( 

in which {�̈� (𝑡)} and {�̈� (𝜔)} are the input seismic acceleration excitations on the canyon in the time and 

frequency domains, respectively. The effective shear strain is estimated by: 

where 0.65, which is the strain ratio, is an empirical value [73]. As the modulus reduction curve (Figure 4-3) is 

obtained in the laboratory loading conditions, which are more severe than actual earthquake loading conditions, 

𝛾(𝑡)  is multiplied by 0.65. The estimated shear strain 𝛾(𝑡)  is used to obtain the corresponding shear 

modulus 𝐺  and damping ratio 𝛽  from Figure 4-3. The second iteration is done similarly. The results usually 

converge to the desired accuracy after 3 iterations.   

 𝛾(𝑡) = 0.65 ∗ 𝛾(𝑡)  )17-4( 
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Figure 4-2. The different steps of the nonlinear FEM-SBFEM methodology 
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Figure 4-3. Strain-Compatible Soil Properties [71] 

4.5 Numerical examples and discussion 

It is of interest to first validate the coupled hybrid technique and then validate the 3D modelling. It should be 

noted that the FEM-SBFEM has already been validated by authors with several examples in [114]; however, for 

the sake of completeness, the example of a rigid foundation on an half-space is reviewed here. More details can 

be found in the mentioned article. A comparison of the FEM-SBFEM with results available in the literature for 

different loading conditions shows that the methodology is correctly implemented in this work (Figure 4-4). 
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Figure 4-4. (a) Vertical compliance; (b) Horizontal compliance and; (c) Rocking compliance of a rigid square 

 

Several examples were analyzed to consider the effect of nonlinear earth dam behavior in different canyon 

conditions. Three canyon geometry shapes, including triangular, trapezoidal, and a rectangular canyon with 

L/H=2.5 and 5, were modeled. The values of the impedance ratio were chosen as α=0.1, 0.3, and 0.5. Material 

damping was selected as β=10%.  

For  𝛾(𝑡) > 10 , with increasing the effective shear strain, shear modulus, and damping ratio are 

decreased. For high-intensity excitation, the earth dam shows nonlinear behavior. Against the linear elastic 

analysis of an earth dam in which the response can be nondimensionalized, for the nonlinear analysis, the actual 

values of the parameters should be utilized. In the linear analysis, the stiffness matrix is independent of the 

loading condition, while in the nonlinear analysis, the stiffness matrix changes with the shear strain level.  
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The earth dam is a homogenous dam with an initial shear wave velocity of 𝑉 = 300𝑚/𝑠, Poisson ratio of 

u=0.25, H=100m, and B=200m. The El Centro record for the 1940 Imperial Valley Earthquake is applied to the 

canyon domain, and the coefficient C (Equation (4-16)) for the El Centro record is obtained as 0.067. First, the 

amplification function for the different canyon geometries and material properties is obtained. It should be noted 

that the nonlinear AF is corresponding with the loading condition.  

4.6 The results and discussion  

The analysis is begun with the assumption of  𝛾 < 10 . The initial shear wave velocity and dam ratio are 

chosen. The effective shear strain obtained for each element is obtained, and the shear modulus and damping 

ratio are updated according to the shear strain level. Figure 4-5 represents a) the effective shear strain, and b) 

G/Gmax ratio for the earth dam located in the rectangular canyon with L/H=2.5. Figure 4-6-Figure 4-8 show the 

AF obtained by FEM-SBFEM. The bullet points indicate the values of the first natural frequencies and AFmax. The 

non-dimensional natural frequency is defined as a0=wH/𝑉 . The blue and red lines show the nonlinear and 

linear AF values, respectively.  

 
Figure 4-5. a) the effective shear strain, b) G/Gmax ratio for the earth dam located in the rectangular canyon with L/H=2.5 

Generally speaking, by increasing the strain levels, the shear modulus decreases and the damping ratio 

increases. This leads to decreasing the natural periods and increasing the AFmax (Figure 4-6-Figure 4-8).  

Figure 4-6 compares the linear and nonlinear AF for the earth dam located in the triangular canyon with L/H= 

2.5 and 5. The AFmax values for the relatively stiff canyon with linear analyses are 10.8 and 11.3  for L/H=2.5 and 

5 respectively (Figure 4-6(a), (d)). The corresponding values for the nonlinear analysis are obtained as 28.8 and 

33.6, which shows a 167% increase for L/H=2.5 and 197% for L/H=5 (Table 4-1). By increasing the impedance 
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ratio value (α), the effect of nonlinearity is decreased. Earth dams with relatively stiff canyons show a higher 

level of nonlinearity. For the earth dam located in a wide triangular canyon(L/H=5) with a relatively flexible 

material (α=0.5), the AFmax are 7.12 and 4.19 for the nonlinear and linear analyses, respectively (Figure 4-6(f)). 

This shows a 70% increase, which is remarkably lower than the corresponding percentage of the relatively stiff 

canyon (α=0.1), which is obtained as 197%. Comparing the linear and nonlinear AFs for different canyon 

conditions (Figure 4-6-Figure 4-8) proves that the presence of the flexible canyon acts as a radiation damping 

which significantly decreases the dynamic response. Increasing the impedance ratio value, representing the 

radiation damping, leads to increasing the dissipated energy into infinity. It is observed that this effect is more 

important in the nonlinear analysis. For example, for the rectangular canyon with L/H=2.5 (Figure 4-8(a), (b)), 

the linear AFmax values are 11.22 and 7.48 for α=0.1 and 0.3, respectively, while corresponding values for the 

nonlinear AFmax values are 28.4 and 16.7 respectively. The nonlinear analysis shows a 70% increase, while the 

percentage is 40% for the linear analysis.  

Natural frequency is the other factor that is affected by the nonlinearity effect. The first peak of the amplification 

function of the dam crest is defined as the fundamental natural frequency. Table 4-1 quantitively compares the 

calculated linear and nonlinear normalized natural frequencies, and it is observed that the nonlinear natural 

periods have lower values in comparison with the corresponding linear values. The nonlinearity effect is more 

important in relatively stiff canyons (α=0.1). For the earth dam located in a trapezoidal canyon with L/H=5, the 

natural periods a0 of linear and nonlinear FEM-SBFEM are obtained as 2.46 and 1.64 respectively (Figure 

4-7(d)), which shows a 33% decrease. Similar to the linear natural frequencies, the nonlinear natural frequencies 

of relatively wide canyons (L/H=5) show lower values than the corresponding values for relatively narrow 

canyons (L/H=2.5) for the same geometric shapes. By increasing the impedance ratio value, the nonlinear 

natural frequency value is decreased. The nonlinear natural frequency is also affected by the canyons’ shapes. 

Earth dams located in rectangular canyons have higher nonlinear natural frequency and Earth dams in triangular 

canyons have a lower nonlinear natural frequency. 
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Figure 4-6. Nonlinear and linear amplification functions of earth dams in triangular canyons with different values of α and 

L/H  
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Figure 4-7. Nonlinear and linear amplification functions of the earth dams in trapezoidal canyons with different values of α 

and L/H 
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Figure 4-8. Nonlinear and linear amplification functions of the earth dams in  rectangular canyons with different values of 
α and L/H 
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Table 4-1. The linear and nonlinear natural frequency and AFmax calculated by FEM-SBFEM 

 
Figure 4-9 illustrates step by step how the calculated amplification functions are utilized to obtain the time domain 

response of an earth dam under the S90W El-Centro earthquake horizontal ground motion (1940) (Figure 

4-9(a)). The input motion is converted to the frequency domain by the fast Fourier transform (Figure 4-9(b)). 

Figure 4-9(c) represents the calculated crest amplification functions by the linear and nonlinear FEM-SBFEM for 

the earth dam, with β=10%, located in a rectangular canyon with L/H=5 and α=0.5. Multiplying the crest 

amplifications (Figure 4-9(c)) and the input Fourier amplitudes (Figure 4-9(b)) results in the crest response under 

the earthquake in the frequency domain (Figure 4-9(d)). The crest response in the time domain is obtained by 

converting the frequency domain response (Figure 4-9(d)) to the time domain by utilizing the inverse Fourier 

transform (Figure 4-9(e)).  



 

91 

The crest response in the time domain is similarly obtained for the earth dams with different impedance ratio 

values. Figure 4-10 compares the linear and nonlinear crest response of the dam embedded in a rectangular 

canyon with L/H=5 and α=0.1, 0.3, and 0.5. The nonlinear peak crest accelerations show remarkably higher 

values in comparison to the corresponding linear values. Similar to the linear response, the nonlinear 

amplification functions are amplified by decreasing the impedance ratio values. The calculated peak crest 

acceleration for different canyon conditions, in terms of geometry and material,  are compared quantitatively in 

Table 4-2. The nonlinear effect reaches to 120% increase in the peak crest acceleration value in comparison 

with the linear one for an earth dam in the rectangular canyon with L/H=5 and α=0.3. 
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Figure 4-9. a) The S90W El-Centro earthquake horizontal ground motion (1940); b) The input motion in the frequency 

domain; c) The calculated crest amplification functions by the linear and nonlinear FEM-SBFEM for the earth dam, with 
β=10%,  located in a rectangular canyon with L/H=5 and α=0.5; d) Multiplying the crest amplifications (c) and the input 

Fourier amplitude (b); e) The crest response in the time domain  

 

 

 
Figure 4-10. Crest acceleration time history, obtained by linear and nonlinear FEM-SBFEM under the El Centro 

earthquake, for the earth dam with L/H=5 located in a rectangular canyon with different values of the impedance ratio (α), 
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Table 4-2. Comparison of the crest acceleration obtained by linear and nonlinear FEM-SBFEM 

 
 

 The El Infiernillo dam 

The El Infiernillo dam is an earth and rockfill dam located on the Balsas River, Mexico. Figure 4-11 depicts the 

plan view and the maximum cross-section of the dam. The dam is 148 m in height and 350 m in length. The 

dam is located in a very active seismic region and has undergone several severe earthquake loadings, including 

the event on 14/3/79. The material properties of the different parts of the dam are shown in Table 4-3. The 

foundation and canyon were made with similar materials [118]. The impedance ratio α and damping ratio β for 

the El Infiernillo dam have been reported in the literature [61] as 0.3 and 8%, respectively.  
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Table 4-3. Material properties  

 
To accurately model the geometry of the canyon and the earth dam, the elevation contour lines (Figure 4-11(a)) 

were imported into AUTOCAD to make a 3D model (Figure 4-12(a)). The 3D model was simplified to be exported 

to Gambit to generate a 3D mesh. The earth dam was discretized with 590 brick 8-node elements, and the 

canyon with 286 4-node surface elements (Figure 4-12(b)).   

 

  
Figure 4-11. a) Plan view of the El Infiernillo Dam; b) Cross-section of the El Infiernillo Dam 

(b) (b) 

(a) 
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Figure 4-12. a) 3D CAD model of El Infiernillo; b) 3DFEM model of El Infiernillo 

Figure 4-13 shows the recorded crest-bedrock amplification spectra of the El Infiernillo dam due to  the 

earthquake on November 15, 1975. The nonlinear AFs of the earth dam-canyon system (with α=0.3 and β=8%) 

in the upstream-downstream direction were obtained by 3D FEM-SBFEM (red dotted line in Figure 4-13). The 

first natural frequency obtained by the nonlinear FEM-SBFEM is f1=1.68Hz, and the AFmax is calculated as 13. 

A comparison of the crest amplification function obtained by the proposed method with the recorded data shows 

the accuracy of the nonlinear FEM-SBFEM. It indicates really good fits for the first nonlinear natural frequency 

and the maximum amplification function. 

 
Figure 4-13. a) The AF of the earth dam-canyon system with α=0.3 and β=8% by nonlinear FEM-SBFEM, and the 
response spectra of the 1975 earthquake  

4.7 Conclusion  

The FEM-SBFEM was developed for the nonlinear analysis, and the shear modulus and damping ratio are 

adapted by changing the strain level. The linear natural frequency and amplification function are independent of 

loading conditions. As the nonlinear natural frequency and amplification function are dependent on the strain 

level and the intensity of the excitation, it is assumed that the earth dam-flexible canyon system is under the 
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S90W El-Centro earthquake horizontal ground motion (1940). With this assumption, the nonlinear natural 

frequency and amplification function for earth dams in different canyon conditions were obtained. The following 

conclusions are obtained from the results calculated by the nonlinear FEM-SBFEM: 

The amplification function: 

 By increasing the strain levels, the shear modulus decreases, and the damping ratio increases, which 

leads to an increasing AFmax. Comparison of the linear and nonlinear AFmax values for the triangular 

canyon with L/H=5 shows a 197% increase in comparison with the corresponding linear value.  

 By increasing the impedance ratio value (α), the effect of nonlinearity is decreased. For the earth dam 

located in a wide triangular canyon with an elastic material (α=0.5), the effect of nonlinearity was 70%. 

This effect for the relatively stiff canyon (α=0.1) was 197%. 

 The effects of the impedance ratio and the flexible canyon are more important in the nonlinear analysis 

in comparison with the linear analysis. For the rectangular canyon with L/H=2.5, the nonlinear AFmax for 

α=0.3 shows a 70% increase in comparison with that of α=0.1, while the corresponding percentage for 

the linear analysis is 40%. 

The natural frequency: 

 The nonlinearity effect is more important in relatively stiff canyons (α=0.1). In comparison with the linear 

natural frequency, the nonlinear natural frequency shows a 33% decrease for the earth dam located in 

the trapezoidal canyon with L/H=5.  

 By increasing the impedance ratio, the nonlinear natural frequency is decreased.  

 For the same geometric shapes, the nonlinear natural frequency of relatively wide canyons shows lower 

values in comparison with the corresponding values for the relatively narrow canyon.  

 The nonlinear natural frequency is also affected by the canyon shapes. Earth dams located in 

rectangular, trapezoidal, and triangular canyons show higher to lower values, respectively, for nonlinear 

natural frequency. 

The crest acceleration response in the time domain: 

 The nonlinear peak crest accelerations show remarkably higher values in comparison to the 

corresponding linear values. The nonlinear effect reaches to 120% increase in the peak crest 
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acceleration value in comparison with the linear one for the earth dam in the rectangular canyon with 

L/H=5 and α=0.3. 

 Similar to the linear response, the nonlinear amplification functions are amplified by decreasing the 

impedance ratio values.  

The El Infiernillo dam was modeled by the 3D nonlinear FEM-SBFEM method, and nonlinear responses of the 

dam under the 14/3/79 earthquake scenario were calculated. It shows a reasonable agreement with the recorded 

data.  
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Conclusion 

The objective of this research was to develop the FEM-SBFEM hybrid technique to estimate the natural periods 

of earth dams, incorporating the effects of 3D geometry and canyon flexibility. The main conclusions are 

summarized as follows: 

 First-order nonlinear ordinary differential SBFEM equations were solved numerically with respect to the 

frequency 𝜔 by using a fourth-order Runge-Kutta method. An asymptotic expansion of the dynamic-

stiffness matrix for high frequency was used to start the numerical integration.  

 The equilibrium equations and the compatibility conditions were applied at the boundary of the canyon 

and earth dam to couple the dynamic stiffness obtained by FEM with that of SBFEM. 

 As the dynamic-stiffness matrix of the unbounded domain is complex and frequency-dependent, the 

classical mode-superposition method is not straightforward. Therefore, the dam was excited in the 

upstream-downstream direction. 

 The results of the proposed technique were validated with results available in the literature, and the 

natural periods of earth dams for different canyon geometries were obtained.  

 It was observed that for rigid rectangular canyons, the calculated fundamental natural periods are in 

agreement with the results of FEM in the literature. However, underestimations from the shear beam 

method were also observed. 

 The roles of flexibility and canyon geometry were also considered. These results suggest that the effect 

of geometry is of more importance for flexible canyons. 

 Some graphs were proposed that may be used by practical engineers for the estimation of the natural 

periods of earth dams in canyons with different shapes and material properties. 

 Relationships were developed to obtain the natural frequencies of earth dams based on the geometry 

and material properties of their canyons. 

 A comparison of the calculated natural periods with actual recorded data demonstrated good 

agreement. In conclusion, the hybrid FEM-SBEFEM is an accurate approach for modeling earth dams 

under dynamic loadings.  
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One hundred and twelve 3D models were created corresponding to 2 different material damping ratios, 2 

different canyon lengths, 7 different impedance ratios, and 4 canyon geometries. The conclusions from the 

results calculated by the FEM-SBFEM are summarized as follows: 

 The declining effect of material damping β is more noticeable in wider canyons, and doubling the 

canyon length leads to a 12% decrease in the maximum amplification function value AFmax in 

rectangular canyons.  

 With increases in the α ratio, the AF is significantly reduced, for higher values of α, more flexible 

canyons, the material damping effect is lower. 

 While the amplification function is affected by the canyon shape, The AFmax stays constant for different 

canyon shapes, with the same L/H.  

The main practical application of the proposed amplification functions is in the prediction of a dam crest’s seismic 

response parameters, including acceleration, velocity, and displacement. Dam crest acceleration due to an 

actual earthquake was obtained by using a fast Fourier transform, and the recorded response spectra of the El 

Infiernillo dam under the two 1966 earthquakes were utilized to compare with a proposed amplification function. 

A reasonable agreement was seen between the recorded data and the FEM-SBFEM results. 

The FEM-SBFEM was developed for the nonlinear analysis, and the shear modulus and damping ratio are 

adapted by changing the strain level. The linear natural frequency and amplification function are independent of 

the loading conditions. As the nonlinear natural frequency and amplification function are dependent on the strain 

level and intensity of the excitation, it is assumed that the earth dam-flexible canyon system is under the S90W 

El-Centro earthquake horizontal ground motion (1940). With this assumption, the nonlinear natural frequencies 

and amplification functions for earth dams in different canyon conditions were obtained. The following 

conclusions are drawn from the results calculated by the nonlinear FEM-SBFEM: 

Amplification function: 

 By increasing the strain levels, the shear modulus decreases and the damping ratio increases, which 

leads to increases in the AFmax. Comparison of the linear and nonlinear AFmax values for the triangular 

canyon with L/H=5 shows a 197% increase in comparison with the corresponding linear value.  

 By increasing the impedance ratio value (α), the effect of nonlinearity is decreased. For the earth dam 

located in a wide triangular canyon with an elastic material (α=0.5), the effect of nonlinearity was 70%, 

while this effect for the relatively stiff canyon (α=0.1) was 197%. 
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 The effects of the impedance ratio and flexible canyon are more important in the nonlinear analysis 

compared to the linear analysis. For the rectangular canyon with L/H=2.5, the nonlinear AFmax for α=0.3 

shows a 70% increase in comparison with that of α=0.1, while the corresponding percentage for the 

linear analysis is 40%. 

Natural frequency: 

 The nonlinearity effect is more important in relatively stiff canyons (α=0.1). In comparison with the linear 

natural frequency, the nonlinear natural frequency shows a 33% decrease for the earth dam located in 

the trapezoidal canyon with L/H=5.  

 By increasing the impedance ratio, the nonlinear natural frequency is decreased.  

 For the same geometric shapes, the nonlinear natural frequency of relatively wide canyons shows lower 

values in comparison with the corresponding values for relatively narrow canyons.  

 The nonlinear natural frequency is also affected by the canyon shape. Earth dams located in 

rectangular, trapezoidal, and triangular canyons show higher to lower values, respectively, for the 

nonlinear natural frequency. 

Crest acceleration response in the time domain: 

 The nonlinear peak crest accelerations show notably higher values in comparison with the 

corresponding linear values. The nonlinear effect reaches a 120% increase in the peak crest 

acceleration value in comparison with the linear one for the earth dam in the rectangular canyon with 

L/H=5 and α=0.3. 

 Similar to the linear response, the nonlinear amplification functions are amplified by decreasing the 

impedance ratio values.  

The El Infiernillo dam was modeled by the 3D nonlinear FEM-SBFEM method, and the nonlinear responses of 

the dam under the 15 November 1975 earthquake scenario were calculated, showing a reasonable agreement 

with the recorded data.   
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Discussion  

In this part, it is shown that how the suggested the amplification function can be utilized. 

Step 1) the earthquake acceleration or responses are selected.   

Step 2) the response of the earthquake in frequency domain using FFT is calculated.  

Step 3) the shear wave velocity of earth dam and canyon are obtained, the impedance ratio is calculated. 

Step 4) the ratio of length L of canyon per height H of earth dam is determined. 

Step 5) Based on the impedance ratio and L/H the amplification function is selected from Figure 3-6 to Figure 3-

9. 

Step 6) Production the amplification and response of earthquake from step 2 gives crest response in frequency 

domain.  

Step 7) Using IFFT gives the crest response in time domain. 
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