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Résumé 
 

La disponibilité de capteurs de numérisation 3D rapides et précis a permis de capturer de très 

grands ensembles de points à la surface de différents objets qui véhiculent la géométrie des 

objets. La métrologie appliquée consiste en l'application de mesures dans différents domaines 

tels que le contrôle qualité, l'inspection, la conception de produits et la rétro-ingénierie. Une 

fois que le nuage de points 3D non organisés couvrant toute la surface de l'objet a été capturé, 

un modèle de la surface doit être construit si des mesures métrologiques doivent être 

effectuées sur l'objet. 

 

Dans la reconstruction 3D en temps réel, à l'aide de scanners 3D portables, une représentation 

de surface implicite très efficace est le cadre de champ vectoriel, qui suppose que la surface 

est approchée par un plan dans chaque voxel. Le champ vectoriel contient la normale à la 

surface et la matrice de covariance des points tombant à l'intérieur d'un voxel. L'approche 

globale proposée dans ce projet est basée sur le cadre Vector Field. Le principal problème 

abordé dans ce projet est la résolution de l'incrément de consommation de mémoire et la 

précision du modèle reconstruit dans le champ vectoriel. 

 

Cette approche effectue une sélection objective de la taille optimale des voxels dans le cadre 

de champ vectoriel pour maintenir la consommation de mémoire aussi faible que possible et 

toujours obtenir un modèle précis de la surface. De plus, un ajustement de surface d'ordre 

élevé est utilisé pour augmenter la précision du modèle. Étant donné que notre approche ne 

nécessite aucune paramétrisation ni calcul complexe, et qu'au lieu de travailler avec chaque 

point, nous travaillons avec des voxels dans le champ vectoriel, cela réduit la complexité du 

calcul. 
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Abstract 
 

The availability of fast and accurate 3D scanning sensors has made it possible to capture very 

large sets of points at the surface of different objects that convey the geometry of the objects. 

Applied metrology consists in the application of measurements in different fields such as 

quality control, inspection, product design and reverse engineering. Once the cloud of 

unorganized 3D points covering the entire surface of the object has been captured, a model 

of the surface must be built if metrologic measurements are to be performed on the object.  

In real-time 3D reconstruction, using hand-held 3D scanners a very efficient implicit surface 

representation is the Vector Field framework, which assumes that the surface is approximated 

by a plane in each voxel. The vector field contains the normal to the surface and the 

covariance matrix of the points falling inside a voxel. The proposed global approach in this 

project is based on the Vector Field framework.  The main problem addressed in this project 

is solving the memory consumption increment and the accuracy of the reconstructed model 

in the vector field. 

This approach performs an objective selection of the optimal voxels size in the vector field 

framework to keep the memory consumption as low as possible and still achieve an accurate 

model of the surface. Moreover, a high-order surface fitting is used to increase the accuracy 

of the model. Since our approach do not require any parametrization and complex calculation, 

and instead of working with each point we are working with voxels in the vector field, then 

it reduces the computational complexity.    
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Introduction  

 

Over the years, 3D sensors have become very popular because they are cheaper and easier to 

use than classical Coordinate Measuring Machines (CMM) while still achieving metrologic 

accuracy. In addition, 3D sensors can capture dense point clouds that convey the geometry 

of the object in real-time. Comparatively, capturing dense 3D point clouds with a CMM can 

be a very tedious and time consuming process. Capturing the geometry of parts is not only 

important in metrology but is also useful in many fields such as reverse engineering, design 

intent assessment and graphics rendering. 

Applied metrology consists in the application of measurements in different fields such as 

quality control, inspection, product design and reverse engineering. By considering accuracy 

and precision as two important components of metrology, the time needed to achieve the 

measurements is a relevant issue, especially in the context of quality control in an industrial 

context for which a large number of parts have to be processed. The ease with which the scan 

can be obtained by users is also important when such users are domain specialists but not 

necessarily experts in 3D scanning. Handheld 3D sensors have become more popular because 

they allow the user to scan an object by moving the sensor around its surface while collecting 

the 3D coordinates of points on the surface. 

Transforming an unstructured set of 3D points captured by these devices into a meaningful 

digital representation of the scanned object is called 3D surface reconstruction. This 3D 

surface reconstruction can be categorized into explicit surface reconstruction as summarized 

in [1, 2, 3] and implicit surface reconstruction as summarized in [4, 5]. 

The vector field representation is a novel real-time implicit representation approach proposed 

by Tubic, et.al. [5].  As described in the next chapters, the vector field is a volumetric 

structure composed of cubic voxels. The vector field has demonstrated its ability to support 
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in real-time the three most important steps in 3D modeling which are: view registration, view 

integration and model visualization. The vector field implicit surface representation enables 

all modeling steps to execute with linear complexity. However, if an accurate model needs 

to be built, the voxel size must be small which may lead to huge memory requirements 

specially where large objects must be modeled. 

The overall goal of the research project presented in this thesis is to reconstruct an accurate 

3D model using the vector field framework while keeping the memory requirements as low 

as possible and decreasing the processing time since the processing focuses on voxels instead 

of individual points. 

The processing steps to achieve our goal are as follows: 

 Identifying different surface types in the vector field 

In this step, the proposed technique combines covariance-based differential geometry and the 

vector field implicit surface representation to identify the different surface types in each voxel 

of the vector field framework. Instead of working with each point and the neighborhood 

around that point, we rather propose to work with the voxels in the volumetric grid containing 

the vector field and their 26 possible neighbors in the grid. This step results into the 

identification of six (ridge, peak, valley, pit, planar and saddle) different surface types. We 

can consider this step as an initial segmentation.  

 Selecting an optimal voxel size in the vector field representation 

In the commercial metrology software, the voxel size in the implicit surface representation is 

usually selected arbitrarily by the user irrelevant of the number of points falling inside each 

voxel. This often results in huge vector fields.  

 In a metrology workflow using handheld 3D scanners based on an implicit surface 

representation, the processing step consists in selecting of the voxel size by the user, the 

scanning of a given object and then the observation of the model.  Choosing the voxel size 

arbitrarily is not optimal. A good final model may not be achieved by choosing a large voxel 

size. In contrast, choosing a small voxel size results in the allocation of a large number of 
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voxels, which increases memory consumption. In addition, if very few points fall inside a 

voxel, the surface reconstruction in such a voxel may not be reliable. To solve such a problem 

we propose an approach that enables the voxel size to be selected systematically, which 

allows a good final model of the surface to be achieved while keeping the number of voxels 

as small as possible. 

 3D Segmentation method in the vector field 

In this step, a K-means segmentation approach is implemented to group voxels belonging to 

the same surface type. 

 Fitting a high order surface representation to the extracted segments 

In this step, a high-order surface representation using 3L-Implict B-Splines is implemented. 

This technique can provide shape descriptor through their zero-sets and reconstruct surfaces. 

These techniques are based on locally controlled functions that are combined via control 

points. This local control allows patch-based object representation. In this step, a high order 

surface is thus fitted to each segment corresponding to a given surface type.  

 Merging different surface patches to obtain a single 3D mesh 

The last step to achieve a final high order model is blending different surface patches obtained 

from the fitting step. To obtain such a model, Creaform’s VXelements is used to merge the 

different patches and results in a final mesh. 

To test the proposed approach, we used a set of 3D data provided by the Stanford repository, 

a handheld 3D scanner provided by Creaform and synthetic data generated in MATLAB.  

 

This thesis is organized as follows: Chapter 1 presents an overview of related works. The 

methodology for producing a high-order model based on the vector field framework is 

explained in Chapter 2. The experimental results are discussed in Chapter 3. Conclusion and 

future work complete the document. 
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Chapter 1  

1. Literature Review 

 

This chapter presents a review of the most relevant literature to our project.  

 

1.1 Differential geometry 
 

Differential geometry is a field of mathematics that focuses on the geometry of curves, 

surfaces, and manifolds. Riemannian computations based on the geometry of underlying 

manifolds are often faster and more stable than their classical, Euclidean match. Therefore, 

Riemannian computations and topological computing are becoming increasingly popular in 

the computer vision and machine learning communities [6]. 

In the following, more details on differential geometry will be described, such as the first 

fundamental form, second fundamental form, Normal, principal, mean and Gaussian 

curvatures.    

 

1.1.1 First fundamental form 

 

   The first fundamental form is a way of measuring the distance on a surface and allows the 

determination of the length of a tangent vector in a tangent plane [7, 8]. 

   The first fundamental form is invariant to the translation and rotation of the surface and is 

invariant to surface parametric change as well. Therefore, it is an intrinsic property of a 

surface [3].   Let r: D →S be a map of surface S. A geometric illustration of the first 

fundamental form is shown in Figure 1.1 [9]. 
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Figure 1.1 : Geometric illustration of the first fundamental form [9] 

  

 

1.1.2 Second fundamental form 

 

   Like the first fundamental form, the second fundamental form is a symmetric bilinear form 

on each tangent space of a surface [10].  The second fundamental form is a way for measuring 

the correlation between the change in normal vector 𝑑𝑛 and the change in the surface position 

𝑑𝑥 at a surface point (𝑢, 𝑣) as a function of a small movement (𝑑𝑢, 𝑑𝑣) in parameter space 

[11]. The second fundamental form of a surface in the Euclidean space measures the change 

of the unit normal direction from point to point on the surface. Suppose 𝑉 and 𝑊 are tangent 

vector fields on a surface 𝑀 ⊆  𝐸3, a geometric illustration of the second fundamental form 

is shown in figure 1.2. 

The first fundamental form is an intrinsic property of a surface while the second fundamental 

form is extrinsic [10]. More detail in mathematical concept of the first fundamental form and 

second fundamental form is given in section 1.3. 

 

 

    

 

 

 

Figure 1.2: The second fundamental form keeps track of the change of the unit normal 

vector as a function of a displacement on the surface [12]. 
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1.1.3 Normal curvature  

 

   The intersection of a surface and a plane containing the normal is described as a normal 

curve. As indicated in figure 1.3, the curvature of a normal curve, which is belonging to the 

plane containing the normal and the surface, is called a normal curvature 𝑘𝑛 [13]. 

 

Figure 1.3: Normal curvature. Figure taken from [13] 

 

The ratio of the second fundamental form to the first fundamental form as 𝑘𝑛 =  
𝐼𝐼

𝐼
  is also 

called the normal curvature [14]. 

 

1.1.4 Principal curvature  

    

At any given point on a surface, the maximum (k1) and minimum (k2) of the normal curvature 

are called the principal curvatures. The principal curvatures measure the maximum and 

minimum bending of a regular surface at each point [15]. 

In fact, the normal curvature varies between some maximum and minimum, which are the 

principal curvatures k1 and k2. An illustration of the principal curvatures is given in figure 

1.4. 
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Figure 1.4 : The definition of principal curvatures, k1 (Minimum) and k2 (Maximum) [16] 

 

1.1.5 Gaussian curvature 

  

Gaussian curvature is an intrinsic property of a space independent of the coordinate system 

used to describe it. The Gaussian curvature of a regular surface in 𝑅3 at a point 𝑝 is defined 

as 

 

where 𝑆 is the shape operator and 𝑑𝑒𝑡 denotes the determinant  [17]. The Gaussian curvature 

(K) is also defined as the product of the principal curvatures 𝐾 = 𝑘1. 𝑘2 [14]. An illustration 

of positive, negative and zero Gaussian curvature is given in Figure 1.5.  

  

  

 

 

 

 

Figure 1.5 : Gaussian curvature. a) Positive Gaussian curvature (tangent plane intersects the 

surface at one point). b) Negative Gaussian curvature (tangent plane intersects the surface 

along two curves). c) Zero Gaussian curvature (tangent plane intersects the surface along one 

curve). Figure taken from [13]. 

 

𝐾(𝑝) = det (𝑆(𝑝)) (1.1) 

(a) (c) (b) 
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1.1.6 Mean curvature  

 

   The mean curvature of a surface is an extrinsic measure of curvature that comes from 

differential geometry and that locally describes a surface embedded in some ambient space 

such as a Euclidean space [10]. See figure 1.6. 

 

 

 

 

 

 

 

 

Figure 1.6 : Mean curvature. Figure taken from [18] 

 

The mean of the principal curvatures 𝐻 =  
1

2
(𝑘1 + 𝑘2) is also called the mean curvature. 

1.1.7 Local description of smooth surfaces by classical differential geometry  

   

 Classical differential geometry provides a complete local description of smooth surfaces 

[11]. The first and second fundamental forms of surfaces provide a set of differential-

geometric shape descriptors that capture domain independent surface information [11]. The 

Gaussian curvature, which refers to an isometric invariant of a surface, represents an intrinsic 

property of a surface and the mean curvature represents an extrinsic property of a surface. 

Both Gaussian and mean curvatures share the property of being translationally and 

rotationally invariant [19]. The Mean and Gaussian curvatures are important in computer 

vision because using the sign of these curvatures can be used to classify a range image into 

one of eight basic viewpoint-independent surface types [11].  More details for this approach 

are given in section 1.3. 
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1.2 Surface Representation Methods  

 

 

   The set of unorganized 3D points covering the entire surface of the object generated by 3D 

scanning devices typically needs to be converted into a meaningful digital representation of 

the scanned objects to facilitate its use in various application domains such as computer-

aided design, medical imaging, reverse engineering, virtual reality, and architectural 

modelling [20]. The representation of data determines the structure and complexity of the 

algorithms used in the classical sequential modeling steps in 3D view which are integration, 

surface integration and visualization [20]. In the following discussion, the surface 

representation methods are classified into explicit surface representation and implicit surface 

representation. 

 

1.2.1 Explicit surface representation  

 

Explicit surface representation is a prescription of the precise location of the surface. It means 

that an explicit representation of a reconstructed surface from a point cloud lies on the points 

that are scanned from a real object and are present in the cloud [20]. For the explicit surface 

representation technique, no postprocessing is required to obtain the model. In this case, the 

representation of the surface is directly available and is defined by its geometry. In this 

method, when the surface evolves gradually, then all of the points on the surface are stored 

and these points define the entire surface. It means that the points that are captured with a 3D 

scanner are the ones that are forming the mesh. More formally, explicit surface 

representations rely on the points that are obtained by a scanner when scanning a real object. 

There are two different kinds of explicit surfaces: (1) parametric and (2) triangulated.  

A parametric surface is the deformation of an initial model that covers an arbitrary part of 

the points. Some of the primitives being used are B-Spline, NURBS, plane, sphere and 

ellipsoid. By using parametric surfaces, complicated surfaces are not representable simply 

and they may need a mixture of primitives because the initial model topologically limits the 

parametric surfaces [20]. 
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Triangulated surfaces are the most common version for explicit surface representation in 

which the surface is described by connected triangles made from the input points using k-

nearest neighbors of a point to build the connectivity. A surface representation using a 

triangle mesh consists of a set of vertices 𝑉 =  {𝑣1, … , 𝑣𝑛}  and these vertices are connected 

by a set of triangular faces 𝐹 =  {𝑓1, … , 𝑓𝑚}. The geometric embedding of a triangular mesh 

into 𝑅3, which is shown in figure 1.7, is specified by assigning a 3D position 𝑝𝑖 to each vertex 

[21]. 

 

 

 

Figure 1.7 : Mesh definition; vertices: blue points, edges: green lines, faces: yellow 

triangles [22]. 

 

1.2.2 Implicit surface representation  

 

Implicit surface representation is defined by a function which one of its isosurface is a close 

estimation to represent the input data.  A surface can be described implicitly in a closed 

mathematical form by a single equation [20, 23]: 

 𝐹(𝑥, 𝑦, 𝑧) – 𝑇 =  0                                                 (1.2) 

Different surfaces by changing the value of constant 𝑇 will be generated. Each generated 

surface is called an isosurface and function 𝐹 always returns a scalar value. Function F is 

therefore called a scalar function [23].  The basic concept behind the implicit representation 

is to characterize the entire surface by classifying each 3D point to lie either inside, outside, 

or exactly on the surface. The negative value of function F defines points inside the object 

and positive value defines points outside the object. The zero-level isosurface contains the 

points located exactly on the surface, separating the inside from the outside. 



11 
 

    Implicit surface reconstruction is actually the process of finding a function that best fits 

the input data and needs to be postprocessed in order to be visualized. The most common 

method to generate a triangulated surface from the implicit representation of the surface is 

the marching cubes algorithm [20]. 

There are different forms of implicit surface representation such as point clouds, signed 

distance fields and vector fields, see figure 1.8, which in order to be visualized as a surface, 

all need to be postprocessed.  

 

 

 

 

 

 

 

 

 

Figure 1.8 : Different forms of implicit surface representation. a) Point Cloud. b) Signed 

distanced field. c) Vector field. Figure taken from [24]. 

 

   An implicit surface representation guarantees the most compact mathematical information 

representation. However, they do not guarantee memory compactness. This means that a 

large amount of memory space is consumed to represent the model.  Generally, implicit 

surface representations are hard to deform and render, but they are well adapted to topological 

changes such as merging, twisting and pinching [23]. 

By contrast with the explicit representation, implicit surface representations are hard to 

deform and render, but they are well adapted to topological changes such as merging, twisting 

and pinching [25]. Explicit representations are not ideal for fitting surfaces to potentially 

noisy and incomplete data such as 3D points because fitting implies the minimization of a 

(a) (c) (b) 
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non-differentiable distance function [20, 23, 25]. Besides that, building a model in real time 

is very difficult with current computer hardware because of the computational complexity. 

 

1.2.3 Signed distance field 

 

 Masuda [26] proposed a framework named signed distance field in which the registration 

and integration were solved together to generate a geometric model from multiple range 

images. The signed distance field is a volumetric representation which is a scalar field 

determined by the signed distance of an arbitrary 3-D point from the object surface. In the 

signed distance field there is no need to consider the partial duplication such as the pairwise 

registration because an integrated shape will be generated in advance and  each data can be 

registered to the integrated shape.  

In the aforementioned method described in [26], first all the views of a given object were 

transformed to a reference coordinate system using the initial estimation of rigid motion. A 

set of key points is generated on a 3D space and the closest point to every key point is 

searched for in order to find the correspondences needed for the estimation of the rigid motion 

[27]. Note that this algorithm is not suitable for real time applications since all views should 

be available to compute this estimation [27, 28].  This process is repeated until convergence 

is achieved and an integrated model is built. At each iteration, the closest points are computed 

using the normal vectors and signed distance fields.  

A major issue when performing view registration and view integration is to find the closest 

point on a surface to a given point. Defining the distance for the closest point in the signed 

distance field only means that the closest point to a surface can be anywhere on a sphere 

whose radius is equal to the distance. In addition, this method is not suitable for all of the 3D 

modeling steps such as visualization. It sometimes requires transforming a representation 

into another during the process which may cause errors [29, 24]. Therefore, the problem of 

computational complexity of finding the closest point to a surface still exists with this method 

and it cannot achieve real time performance since the complexity of finding the closest point 

grows exponentially with the number of data points. As a solution for the above problem, 

Tubic et.al. [5] proposed a framework based on the vector field.  
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1.2.4 The Vector Field surface representation 

 

The vector field is a volumetric framework for 3D data representation proposed by Tubic 

et.al. [5]. In the vector field representation, the main point is that this representation allows 

registration, integration and visualization to be achieved in real time. For doing so, the key 

element is searching for the closest point efficiently. In the case of a large number of points, 

visiting all of the points to find the closest one would be very complex. But with the vector 

field representation as demonstrated below, finding the closest point is done simply by using 

Equation (1.7) which makes this process efficient. In the following, more details are given 

relative to finding the closest point using the vector field representation. 

As shown in Figure 1.9 (a), the vector field is composed of a regular grid made of cubic 

voxels with side length L. Each voxel in the grid is addressed by the coordinate of its center 

𝑣𝑖𝑗𝑘 in a reference frame 𝑊𝑟. Let us assume that 3D points with coordinates 𝑝𝑢 on the surface 

𝑆 are collected by the sensor in frame 𝑊𝑟. The covariance matrix 𝐶𝑖𝑗𝑘 of the points falling in 

voxel 𝑖𝑗𝑘 is defined as in Eq. (1.3):  

𝐶𝑖,𝑗,𝑘 =  
1

𝑁
∑(𝑝𝑢 − 𝑝̅)(𝑝𝑢 − 𝑝̅)𝑡

𝑁

𝑢−1

 

where 𝑝̅ is the mean vector of points 𝑝𝑢 as defined in Eq. (1.4). 

 
 

𝑝̅ =  
1

𝑁
 ∑ 𝑝𝑢

𝑁

𝑢−1

 

 

 

If the voxel size L is small enough, it is assumed that the object surface in the voxel can be 

approximated by the plane Π𝑇 tangent to the surface. The normal vector to tangent plane 

Π𝑇  is the eigenvector corresponding to the smallest eigenvalue 𝜆𝑚𝑖𝑛 of 𝐶𝑖𝑗𝑘.  

The eigenvector associated with the smallest eigenvalue of the covariance matrix represents 

the normal vector N to the tangent plane at the closest point [29]. The direction of the vector 

field F(v) at the voxel v is computed as  

(1.3) 

(1.4) 
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𝐹(𝑣𝑖𝑗𝑘) = 𝑁 〈𝑁, 𝑝̅  − 𝑣𝑖𝑗𝑘〉 

where 〈, 〉 is the scalar product. 

𝐹(𝑣𝑖𝑗𝑘), 𝑐𝑣 and 𝐶𝑖𝑗𝑘 are stored in each voxel. In the voxel, point 𝑐𝑣 on the tangent plane 

that is closest to 𝑣𝑖𝑗𝑘 is given by Equation. (1.6). 

 

𝑐𝑣 = 𝐹(𝑉𝑖,𝑗,𝑘) + 𝑉𝑖,𝑗,𝑘 

 

As new points are collected by the sensor, 𝐶𝑖𝑗𝑘, 𝜆𝑚𝑖𝑛, 𝐹(𝑣𝑖𝑗𝑘) and 𝑐𝑣  can be updated in real-

time. Now, let us assume that the closest point 𝑐𝑡 to the surface approximated by Π𝑇 has to 

be found for a point b falling in voxel 𝑖𝑗𝑘. The coordinates of 𝑐𝑡  can be computed from the 

content of the vector field with Equation. (1.7) where 〈, 〉 represents the scalar product 

and ‖ ‖is the norm of a vector. 

𝑐𝑡 = 𝑏 + 𝐹(𝑉𝑖,𝑗,𝑘) +  
〈𝐹(𝑉𝑖,𝑗,𝑘, 𝑉𝑖,𝑗,𝑘 − 𝑏)〉

‖𝐹(𝑉𝑖,𝑗,𝑘)‖
 

 

As shown in Figure.1.9 (b) , the closest point 𝑐𝑡 estimated by Equation. (1.7) is a very good 

approximation of the true closest point on the surface 𝑐𝑏. In addition, for a single unit of data 

b, the computational complexity of finding its closest point on the surface is constant 𝑂(1) 

and is of order 𝑂(𝑛) for 𝑛 units of data (i.e. 𝑛 points for which the closest points on the 

surface needs to be computed). This is more efficient than classical nearest neighbor finding 

approaches which show O(n2) or 𝑂(𝑛 𝑙𝑜𝑔(𝑛)) computational complexity. The vector field 

representation thus allows the view registration and view integration steps to execute in real-

time. As mentioned above, with the vector field representation, the price to pay for 

computational efficiency is the amount of memory that is needed to store the voxel grid at a 

resolution for which the planar approximation is valid. 

 

(1.5) 

(1.6) 

(1.7) 
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Figure 1.9 : The Vector Field implicit representation [30]. 

 

 

   1.3 3D Segmentation  

 

3D point cloud segmentation is the process of categorizing the point cloud into homogenous 

regions whereas classification is the step that tags these regions with the name of different 

surface categories depending of the application. In the following, more details on 

segmentation methods will be described, such as the surface based segmentation algorithm 

and covariance based segmentation algorithm. 

   Besl [31] proposed a surface-based segmentation algorithm in 1988 that simultaneously 

segments a large class of images into regions of arbitrary shape and approximates image data 

with bivariate functions. It makes possible to compute a complete, image reconstruction 

based on the extracted functions and regions. In the approach proposed by Besl, surface 

curvature sign labeling provides an initial coarse image segmentation, which can be  refined 

by an iterative region growing method based on variable-order surface fitting. As presented 

by Besl [31], the surface can be segmented into a group of simple surface patches that are 

approximated by bivariate polynomials by using the sign of the Gaussian and mean 

curvatures at points on a surface. The detail of the aforementioned algorithm is given in the 

following.    

In differential geometry, the coefficients of the first and second fundamental forms of a 

surface patch 𝝈(𝒖, 𝒗) on a surface S in a differential neighborhood of a point P completely 

describe its intrinsic and extrinsic properties and, ultimately, its shape [14]. As shown in 
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Figure 1.10, given a parameterization (𝒖, 𝒗), a differential surface patch 𝝈(𝒖, 𝒗) at a point P 

has a surface normal 𝑵𝒔 that is orthogonal to the tangent plane 𝚷𝒕 at P. A tangent vector 𝒗 

on 𝚷𝒕  can be expressed as a linear combination of 𝝈𝒖 and 𝝈𝒗. Defining the linear maps 

 du v  and  dv v  , we obtain Equation. (1.8). 

𝑣 = 𝜆𝜎𝑢 + 𝜇𝜎𝑣 

 

Applying the inner product  to vector v and using Equation. (1.8) yields Equation. (1.9). 

 

〈𝑣, 𝑣〉 =  𝜆2〈𝜎𝑢, 𝜎𝑢〉 + 2𝜆𝜇〈𝜎𝑢, 𝜎𝑣〉 + 𝜇2〈𝜎𝑢, 𝜎𝑣〉 

 

Writing 𝐸 =  ‖𝜎𝑢‖2 , 𝐹 =  𝜎𝑢. 𝜎𝑣, 𝑎𝑛𝑑 𝐺 =  ‖𝜎𝑣‖2 and using the maps  du v and  dv v

above, the expression for ,v v  writes as Equation. (1.10). 

 

〈𝑣, 𝑣〉 = 𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2 

 

Equation. (1.10) is referred to as the First Fundamental Form 𝛪 of the surface. In an 

infinitesimal neighborhood of P, 𝛪 describes the measurement of a length on the surface. 

Although 𝐸, 𝐹, 𝐺, 𝜎𝑢and 𝜎𝑣 depend on the parameterization of the surface, the first 

fundamental form 𝛪 depends only on S and P. It is an intrinsic property of the surface since it 

is independent of how the surface is embedded in 3D space. This can be better understood 

by visualizing the distance between two points on a flat sheet of paper. When the sheet is 

bent, the distance between the points remains the same. It is thus an invariant property of S 

and is not affected by rotations and translations. 

(1.9) 

(1.10) 



17 
 

 

 

 

 

 

 

 

 

 

Figure 1.10 : A small patch near a point P on surface (u,v) and the tangent plane t 

 

The Second Fundamental Form 𝜤𝜤 of S describes the extrinsic properties of the surface 

around a point and is linked to the curvature of this surface, i.e. the way the surface pulls 

away from the tangent plane 𝚷𝒕 at P. Considering again Figure.1.10, it can be seen that the 

surface at point 𝑷𝒊  pulls away from the tangent plane at P by a distance 𝑺𝒊 given in Equation. 

(1.11). 

 

 
𝑺𝒊 =     , , , su u v v u v N     (1.11) 

 

 Approximating     , ,u u v v u v     by its Taylor expansion and neglecting the 

high order terms, one obtains Equation. (1.12). 

 

σuΔu+σvΔv+
1

2
 (σuu(Δu)2+2σuvΔuΔv+σvv(Δv)

2
) 

The points that needs to be considered is that, at least two orders are needed to compute the 

curvature, because it is a second derivative. So the orders equal or greater than 3 are 

neglected. 

Since 𝜎𝑢and 𝜎𝑣 are tangent to the surface and are thus perpendicular to Ns, Equation. (1.12) 

becomes Equation. (1.13) 

 
    2 21

2
2

L u M u v N v       (1.13) 

(1.12) 
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with , ,uu uv vvL M N     . For small Δ𝑢and Δ𝑣, Equation. (1.13) can be written as 

Eq. (1.14) (if ½ is dropped) 

 

 2 2Ldu M du dv Ndv     (1.14) 

 

Equation. (1.14) is called the Second Fundamental Form II of the surface at P. 

The Shape Operator, also called the Weingarten Map, S in Equation. (1.15) can be defined 

at a point using the coefficients of the first and second fundamental forms [14]. 

 

 

 

The eigenvectors of S determine the directions in which the surface bends at each point and 

the eigenvalues 𝑘1and 𝑘2 are the principal curvatures (i.e. the maximum and minimum 

normal curvatures at the point). It is possible to compute two very important invariant surface 

properties of a surface at a point: the Mean curvature H and the Gaussian curvature K. H and 

K are defined in Equation. (1.16) and (1.17) respectively. 

 
1 2

2
H

 
  

(1.16) 

 
1 2K    (1.17) 

 

Although Equation. (1.16) and (1.17) are useful, it is more convenient to use the coefficients 

of I and II to compute H and K. The Gaussian curvature K is given by Equation . (1.18) while 

the Mean curvature H is given by Equation . (1.19) [32]. 

 2

2

LN M
K

EG F





 

(1.18) 

 

 

2

2

2( )

LG MF NE
H

EG F

 



 

(1.19) 
 

 

 

 
1

2
LG MF MG NF

S EG F
ME LF NE MF

   
   

  
 (1.15) 
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Looking at Equation. (1.18) and (1.19), K and H can be obtained from differentials. Using 

the signs of K and H, it is also possible to characterize the type of surface to which a 3D point 

on a surface belongs to [31]. As shown in Table 1.1, seven types of surface can be described 

by the combination of the signs of K and H. 

The usual approach that was proposed for finding the type of surface at a given point 

consisted in fitting a quadratic surface model in the N x N neighborhood of each point in a 

smoothed range map and then in computing the partial derivatives needed to extract K and 

H [31]. A range map is a 3D image defined as in Equation. (1.20) for which the surface 

parameterization is such that there is a depth value z corresponding to a coordinate pair (x,y) 

in a plane. The connectivity between 3D points in a range map is thus known compared to a 

point cloud for which the connectivity between points is unknown. 

       ( , ) ( , )z x y f x y  (1.20) 
 

 

Although this fitting approach can achieve good results, computing the derivatives on the 

raw depth map (i.e. without fitting) is unpractical because of sensor noise. For large depth 

maps or, in a more general case for large point clouds, the fitting step is very time consuming. 

In addition, a different fit is implemented at each point even when points lie in the same 

neighborhood and may belong to the same surface type. However, as pointed out in [31], 

correcting this may require a priori assumptions on the surface type. Making such 

assumptions is very restrictive and does not allow generalization of the approach. When each 

point has been labelled with a given surface type, it is possible to group connected points 

sharing the same label and to fit a high-order polynomial (or spline model) to the region in 

order to obtain a high-level model. 
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  K 

  + 0 - 

 
H 

- Peak 

 

Ridge 

 

Saddle 
Ridge 

 
0 none Flat 

 

Minimal 
surface 

 
+ Pit 

 

Valley 

 

Saddle 
Valley 

 
 

Table 1.1 : Types of surface as a function of the signs of the Gaussian and Mean Curvatures 

 

1.3.1 Segmentation using covariance techniques 
 

A different method using covariance-based differential geometry to segment range image 

was proposed by Berkmann and Caelli in 1994 [33]. Returning to Figure 1.10, one can 

compute a local covariance matrix CI at point P of a range map as Equation. (1.21). 

  
  

1

1 N
t

I m m

i

C P P P P
N 

    (1.21) 

 

Pm is defined as in Equation. (1.22) where Pi is a point in the neighborhood of P on the 

range map. It is assumed that N points are selected in the neighborhood of P.  

 

1

1 N

m i

i

P P
N 

   (1.22) 

 

As described in [33], the eigenvectors of CI are three orthogonal vectors, two of which, t1 and 

t2, lie on the tangent plane to the surface at P (plane t in Figure 1.10) and the third one, 

corresponding to the smallest eigenvalue of CI, is the normal Ns to the tangent plane (and the 

surface) as suggested in [34]. In [33], the two-dimensional covariance matrix in Equation. 

(1.23) is defined. In Eq. (1.23), Wi is a two-dimensional vector defined as in Equation. (1.24) 

with si being defined as in Equation. (1.25). 



21 
 

 
  

1

1 N
t

II i m i m

i

C W W W W
N 

    
(1.23) 

  

 

1

2

t

i

i i t

i

P P t
W s

P P t

 
 
  

 

(1.24) 

  
t

i i ss P P N   (1.25) 

 

As shown in Figure 1.11, vector Wi is thus the difference between a point Pi in the 

neighborhood of P projected on the vectors in the tangent plane weighted by the distance si 

between Pi and the tangent plane Π𝑡 at P. 

 

 

 

 

 

 

 

 

Figure 1.11 : Geometry for the vectors in Equations (1.23), (1.24) and (1.25) 

 

Berckman et al. [33] define the quadratic form in Equation. (1.26) as a “covariance-based 

Weingarten map” for a vector v in the tangent plane. 

 

 t

C IIII v C v  (1.26) 

 

Beckman et al. claim that the eigenvectors of CII are the principal directions on the surface, 

i.e. the directions of minimum and maximum normal curvature. They also define a 

covariance-based approach analogous to the Gauss map at a point P of the range map as in 

Equation. (1.27) with vector 𝑣𝑖  defined as in Equation. (1.28). 
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  
1

1 N
t
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i

C
N

   


    (1.27) 

 
1

2

t

i

i t

i

n t

n t


 
  
 

 (1.28) 

 

The 2 x 2 matrix CP in Equation. (1.27) is the covariance matrix of the projections of the 

normal vector ni at points Pi in the neighborhood of P, 𝑣𝑚 being the average vector of the 

projections. The eigenvectors of CP are the principal directions. The eigenvalues of CP 

provide information on the way the surface normal in the neighborhood of P project onto the 

tangent plane. For instance, if the surface in the neighborhood of P is a plane, the normal 

vectors all map into a single point, point P itself. When one eigenvalue is large and the other 

is small, the projection of the surface normal vectors map on a straight line and the underlying 

surface is a developable parabolic surface. Finally, when both eigenvalues are large, the 

surface is locally curved near P. Berckman et al. have applied the above covariance-based 

approach to segment points in a range map. In comparison with pure differential geometry 

approaches such as the one presented in [31], Berckman’s covariance-based approach can 

only identify three different types of surface: planar, parabolic and curved.  

A planar surface is identical to the “flat” surface type (with K = H = 0) in Table 1.1. A 

parabolic surface covers the cases of ridge (K=0, H<0) and valley (K=0, H>0) in Table 1.1 

while a curved surface covers the other in Table 1.1. Consequently, the segmentation 

obtained by covariance-based differential geometry is less rich than the one obtained with 

classical differential geometry for the reason that, as demonstrated in [35], even though the 

eigenvectors of CP correspond to the principal directions, the eigenvalues of CP are not equal 

to the principal curvatures 𝑘1and 𝑘2 but are rather functions of their squared value as 

expressed in Equation. (1.29) and Equation. (1.30) (where r is the radius of the ball centered 

at P). 
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r
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 
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Because of this, it is not possible to find the sign of H and, consequently, to differentiate 

between ridge or valley or peak / pit in Table 1.1. 

 

 

1.4 Surface fitting for 3D point clouds 
 

Surface fitting for scattered data sets with continuous representation is a problem frequently 

faced in the fields of geometric modeling, geometric processing, reverse engineering and 

computer vision [36]. The problem of surface fitting can be described as follows. Let assume 

a given set of data points 𝑝𝑟 ∈ 𝑅𝑛 and associated threshold 𝜀𝑟 ∈ 𝑅+. Surface fitting consist 

in finding the most promising surface 𝑆, which can approximate each point 𝑝𝑟 within 

threshold 𝜀𝑟 as described in Equation 1.31 [37]. 

 

‖𝑆𝑝𝑟
− 𝑝𝑟‖ ≤ 𝜀𝑟,   𝑟 ∈ {1, … , 𝑚}  

 

where  𝑆𝑝𝑟
  is a point on the fitting surface corresponding to the data point  𝑝𝑟. Note that this 

formulation is not a direct algorithm for the calculation of  𝑆. There are different methods for 

choosing 𝑆𝑝𝑟
 and the norm [37]. 

Well-known mathematical tools for continuous surface representation consist in implicit 

surface, subdivision surface, and parametric spline surface. There is a significant bulk of 

work dedicated to theoretical study or algorithm development for the surface fitting problem 

with different splines such as classical B-splines and Bézier basis [38], RBF (Radial Basis 

Function) [39], Triangular B-splines [40] and spherical volumetric simplex splines [41]. B-

splines show the most attractive properties between the mentioned approaches. They are one 

of the industry standards for shape modeling. In B-spline surface fitting, the data points are 

usually estimated by using a least-squares formulation regarding to parameterization of the 

input data, knot vectors and control points of B- splines [36]. 

Since the parametric fitting methods suffer from parametrization problem and the focus of 

this project is on the fitting methods without requiring any parametrization, the reader is 

(1.31) 
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referred to [20] for a good review of the parametric representation. In this section, two 

implicit fitting methods are explained: Implicit polynomial fitting and implicit B-spline 

fitting. 

1. 4.1 Implicit polynomial fitting  
 

The goal of implicit fitting is to define a given cloud of points through the zero level set of 

an implicit function. An implicit polynomials (IP) provides one of the simplest solution to 

define curves and surfaces; it is described as [42, 43]: 

 

𝑓𝑐(𝑥) =  ∑ 𝑐𝑖,𝑗,𝑘𝑥𝑖𝑦𝑗𝑧𝑘

(𝑖+𝑗+𝑘)≤𝑑
{𝑖,𝑗,𝑘}≥0

 

 

Where 𝑐𝑖,𝑗,𝑘 are the coefficients of the implicit polynomial (IP), d is the degree of the IP and 

𝑥𝑖𝑦𝑗𝑧𝑘 are the monomials. The coefficients 𝑐𝑖,𝑗,𝑘 must be solved through the values of 𝑓 in 

the given data set close to zero [44].  

The linear system of IP coefficients may lead to the lack of the geometric meaning and the 

instability problem in the classical algebraic methods. Blane et.al. [43, 45] proposed the 3L 

algorithm to solve the aforementioned shortcomings. 

The 3L algorithm is an algebraic method for Implicit Polynomial fitting [43]. The processing 

steps of this algorithm are as follows. First constructing two additional level sets from inside 

and outside of the boundary. Second, the problem is modelled as the optimal IP, which comes 

close zero in the original set and leads to a sign transition from inside to outside of a region 

of space delimited by the surface .  

 

(1.32) 
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Figure 1.12 :  Inner offset (blue), outer offset (red) and original data (black) for 2D objects 

[45]. 

 

 

 

The 3L algorithm generates an inner offset 𝜌+𝛿 and an outer offset 𝜌−𝛿 at the distance ±𝛿 

from the original data set 𝜌0 [45]. An illustration is given in Figure 1.12. The inner and outer 

offsets can be achieved through the triangulation or the PCA applied in each local 

neighborhood of a fixed point [46]. By computing three level sets {𝜌−𝛿 , 𝜌0, 𝜌+𝛿}, an implicit 

polynomial can be found by approaching +𝜖 inside, −𝜖 outside and zero in the original data 

set. The 3L fitting algorithm can be formulated as an over determined system  𝑀3𝐿𝑐 = 𝑏  

where  

 

𝑀3𝐿 =  [

𝑀𝜌−𝛿

𝑀𝜌0

𝑀𝜌+𝛿

] , 𝑏 =  [
+𝜖
0

−𝜖
] 

 

and where 𝑀𝜌−𝛿
, 𝑀𝜌0

 , 𝑀𝜌+𝛿
 are matrices of monomials calculated in the outer, original and 

inner set respectively. The ±𝜖 are the corresponding expected measures in the inner and outer 

offsets. Solving Equation (1.33) is similar to minimizing Equation (1.34):  

  

𝐸(𝑐) =  ‖𝑀3𝐿𝑐 − 𝑏‖2 =  𝑐𝑇𝑀3𝐿
𝑇 𝑀3𝐿𝑐 − 2𝑐𝑇𝑀3𝐿

𝑇 𝑏 + 𝑏𝑇𝑏 

 

The polynomial can be computed by finding the least-squares solution to this linear system 

of equations. 
 

(1.33) 

(1.34) 

𝜌0 

𝜌+𝛿  𝜌−𝛿  𝜌+𝛿  

𝜌0 

𝜌−𝛿  
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The 3L algorithm is a fast method for fitting a set of points through implicit curves or 

surfaces, but it is not a flexible representation for IP space because by increasing the IP degree 

and for complex objects, some artifacts and outliers can be created around the object [46]. 

 

Implicit B-spline fitting  

 

An implicit B-Spline is described as a zero set of B-Splines tensor products :  

 

𝑓(𝑥) = ∑ 𝑐𝑖,𝑗,𝑘𝐵𝑖(𝑥)𝐵𝑗(𝑦)𝐵𝑘(𝑧)

𝑁

𝑖,𝑗,𝑘=1

 

 

where 𝑐𝑖,𝑗,𝑘 are the lattice of size 𝑁 × 𝑁 × 𝑁 of control coefficients, and 𝐵𝑖(𝑥)𝐵𝑗(𝑦)𝐵𝑘(𝑧) 

are the tensor product of spline basis functions. 

 

 

To compensate the lack of flexibility of the 3L algorithm for IP space, Rouhani et.al. [42] 

proposed an approach which is extended to implicit B-spline curves and surfaces. Since the 

implicit B-Spline fitting is used in our project, more details for the extended 3L algorithm 

proposed by [46] are given in the next chapter. 

 

1.5 Blending different curves and surfaces 
 

A blending operation smoothly merges two or more primary surfaces and prevents 

intersections at the edges where the two surfaces met [47]. Blending two functions is possible 

by applying a method similar to the linear interpolation of two points. Consider 𝑓(𝑥) and 

𝑔(𝑥) as two different functions, a blending could be achieved by using a third function 𝑎(𝑥) 

with range  [0,1] as in Equation 1.36 [48]:  

ℎ(𝑥) = 𝑓(𝑥)𝑎(𝑥) + 𝑔(𝑥)(1 − 𝑎(𝑥)) 

ℎ(𝑥) could be anywhere between 𝑓(𝑥) and 𝑔(𝑥) unless either  𝑎(𝑥) = 1 such that ℎ(𝑥) =

 𝑓(𝑥) or 𝑎(𝑥) = 0  then ℎ(𝑥) = 𝑔(𝑥). An illustration is given in  Figure 1.13 

(1.35) 

(1.36) 
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1.5.1 Merging B-Spline curves or surfaces  

 

Merging separate patches of B-Spline curves or surface is popular in geometric modeling. It 

is one of the main procedures to combine two or more given geometric models. Different 

approaches were developed to merge B-spline curves or surfaces. The method presented in 

[49] is a  merging procedure of B-spline curves that is formulated as a linear optimization 

problem. This method is representing the spline curves or surfaces by explicit parametric 

vector functions in matrix form.  

The matrix representation achieves the efficiency and stability of the integral computation 

while minimizing the objective function. In the aforementioned approach, the B-spline curve 

is updated each time by joining the new B-spline segment to the previous resulting curve, 

where the number of unknown control points is six at each step. In such a method, the number 

of linear equations to be solved is independent of the number of curves to be merged. 

Moreover, in this iterative procedure, by setting appropriate weighting of the error function, 

the shape of the final merged curve can be modified piecewise. For more detail, the interested 

reader is referred to [50], [51] and [52]. An illustration of merging B-spline curves is given 

in Figure 1.14. 

𝑦 

𝑥 

𝑓(𝑥) 

ℎ(𝑥) 

𝑎(𝑥) 

𝑥 

(a) (b) 

Figure 1.13 : (a) Blending two functions 𝒇(𝒙) , 𝒈(𝒙). (b) Resulting blended 

function 𝒂(𝒙). Figure taken from [48]. 

 

𝑔(𝑥) 
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Figure 1.14 : Merging two B-spline curves with C^0 continuity (i.e. curves are connected at 

a joint). Figure taken from [49]. 

 

1.5.2 Stitching Triangles  

 

Another merging surface approach consist of the stitching of the triangles of the meshes such 

as the methods proposed in [53] and [54]. The method proposed by Cohen-Steiner and Da 

[53] uses a greedy approach to select the triangles. In this approach, the Delaunay 

triangulation of the input points is produced first. Then candidate triangles are selected 

according to some topological constraints. The output surface is reconstructed incrementally 

by choosing the triangles from the prioritized list of candidate triangles and stitching them 

together [20]. 

1.5.3 Zippered Polygon Meshes 

 

Turk and Levoy [54] proposed an approach to combine a group of range images into a single 

polygonal mesh that completely represents an object to the extent that it is visible from the 

outside. This method combines different views of an object, each view being sampled by a 

range scanner, and blending these views into one unbroken continuous polygonal surface. 

Some applications for such an algorithm consist of [54]:  “Digitizing complex objects for 

animation and visual simulation”. “Digitizing the shape of a found object such as an 

archaeological artifact for measurement and for dissemination to the scientific community”. 

“Digitizing human external anatomy for surgical planning remote consultation or the 
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compilation of anatomical atlases”. “Digitizing the shape of a damaged machine part to help 

create a replacement.” 

The processing steps of this method are as follows: 

-  Align the meshes with each other using a modified iterated closest-point algorithm 

Turk and Levoy [54] defined their own variant of the ICP algorithm. As shown in Figure 

1.15, first nearest position on mesh H to each vertex of mesh K is found. Then pairs of points 

far apart or located on the mesh boundary are removed. The next step finds the rigid 

transformation that minimizes a weighted least-squared distance between the pairs of points. 

The process continues until convergence and the ICP is applied on a more detailed mesh in 

the hierarchy. 

 

 

 

 

 

Figure 1.15 : Searching for corresponding points for mesh registration. Dotted arrows show 

the matches that should be prevented since they cause the mesh K to be dragged up and left 

by mistake. Figure borrowed from [54]. 

 

 

- Zip together adjacent meshes to form a continuous surface that correctly captures the 

topology of the object 

The main level in combining range images is the integration of multiple views into a single 

model view. Integration aims to achieve the overall topology of the object being scanned. 

The complete topology of a surface is achieved by zippering new range scans one by one into 

the final triangle mesh. There are three steps to zip the two triangle meshes such as to: (1) 

Remove overlapping portions of the meshes. (2) Clip one mesh against another, and (3) 

Remove the small triangles introduced during clipping. 
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  In addition, the last step of the proposed method in [54] is: 

-Compute local weighted averages of surface positions on all meshes to form a consensus 

surface geometry. 

The method proposed by Turk and Levoy [54] is used in the last step of our project to merge 

the different patches of the B-Splines. More details are given in the Chapter 2, proposed 

approach and methodology.  

 

In the current chapter, the work related to the project is explained. The objective of this 

project is to achieve a model of a surface in an efficient way. In this chapter, explicit and 

implicit surface representation, segmentation as well as higher level modelling approach are 

described.  In the next chapter, the proposed methodology to achieve the research objectives 

are explained in detail.  
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Chapter 2 

2. Proposed Approach and Methodology 
  

The recent availability of powerful 3D scanning devices has made it possible to capture very 

large sets of points at the surface of objects of various sizes such as man-made objects up to 

car-sized objects. Transforming an unstructured set of 3D points captured by these devices 

into a meaningful digital representation of the scanned object is called 3D surface 

reconstruction. The main objective of the current research is to build a 3D representation 

approach able to provide an accurate mesh everywhere on the surface with the less possible 

memory consumption.  The methodology that is proposed to build the 3D representation 

model is presented in this chapter. 

2.1    Data Acquisition and Sensor Position 
 

Among 3D sensors, handheld 3D sensors are of great interest because they allow the capture 

of 3D data on the specimens to be inspected in a very natural way, which, in many aspects, 

resembles spray painting. As shown in Figure 2.1, scanning an object with a handheld 3D 

sensor consists in moving the sensor around the surface of the object of interest while the 3D 

coordinates of points at the surface are collected.  

Figure 2.1 : The 3D scanning process using a handheld scanner [30] 
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Most 3D handheld sensors are active sensors that project some sort of light pattern (laser 

point, laser stripes, laser crosses, white light patterns, Moiré fringes, etc., see [55] for an 

overview of different 3D sensing technologies) on the object to ease the image analysis 

process leading to the measurement of 3D coordinates. The 3D coordinates of points acquired 

from a pose (i.e. position and orientation) of the sensor are expressed in this local reference 

frame. The estimation of the rigid transformation (rotation and translation) between each pose 

of the sensor and a “global” reference frame is needed if the 3D points are to be expressed in 

a common reference frame. This global reference frame can be the initial pose of the sensor 

when the scanning process starts. The estimation of the rigid transformations is made easier 

if a real-time self-positioning strategy is used to compute the position and orientation of the 

sensor with respect to the object. One way of implementing self-positioning is to install 

markers (often retroreflective markers (shown in Figure 2.1)) at the surface of the object and 

to estimate the pose of the sensor with respect to these markers. 

Observing the whole surface of the object from a single point of view regardless the type of 

3D sensor is impossible. It is thus necessary to move either the object or the sensor (or in 

some cases both) in order to capture the point from entire surface of an object, see Figure 2.2 

[5].  

 

Figure 2.2 : Multi view acquisition of range data [24] 
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When the sensor is moving around the surface of the object thus, it is necessary to compute 

the sensor position to cover the whole surface and reconstruct a complete model of the desired 

object. In the proposed approach, the sensor position is computed as presented in Algorithm 

2.1.  

Algorithm 2.1:  Obtain sensor position in the vector field framework 

 

Input :  3D point clouds obtained by the scanner  

Initialize the sensor position to zero 

for i = 1 : Number of points do 

   Sensor position = ((i-1)/i) * Sensor position + (1/i) * Input(:,i) 

end 

 
 

 

An illustration of obtain sensor position in the vector field framework using the Algorithm 

2.1 is given in Figure 2.3. In which the surface shown in green color is the original data, the 

dashed lines shown in blue color indicate the sensor position’s path. Points P1 to P8 are the 

points for which the sensor positions, S1 to S8, are computed. 

 

 

 

 

 

 

Figure 2.3:  Obtain sensor positions in the vector field framework: Surface in green color represent 

the original data. P1 to P8 indicate the original input points. Dashed lines shown in Blue color present 

the sensor position’s path. S1 to S8 shown in blue color indicate the sensor positions associated to 

each original points with the same indices number. 
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The information provided by Algorithm 2.1 is used to obtain the angle between the normal 

vector to the surface and the sensor position. This gives the information that is needed to 

distinguish surface shape (i.e. pit or peak). 

Once the cloud of unorganized 3D points covering the entire surface of the object has been 

captured, a model of the surface must be built if metrologic measurements are to be 

performed on the object. This model can also be used to analyze the geometry of the object. 

Two main representations can be exploited to build this model: explicit representations and 

implicit representations. The explicit representation makes the geometry supported by the 

point cloud explicit, for instance by building a triangular mesh [56]. Such a mesh contains 

the connectivity between points in the cloud and is a compact representation of the geometry 

of the surface. This connectivity can take the form of a vertex-triangle list and a triangle-

vertex list and can also include the information on the normal to the surface at each vertex. 

The implicit representation rather encodes the geometric information contained in the point 

cloud implicitly into a volumetric structure composed of voxels. Two main types of voxel-

based implicit representations have been proposed: the distance field [57] and the vector field 

[5]. The volumetric structure must be processed a posteriori to produce a mesh representing 

the geometry explicitly. The Marching Cubes algorithm is often used for this task [58].  More 

explanation on explicit and implicit representation is given in chapter 1 , section 1.2.  

When handheld 3D sensors are used for real-time modelling (i.e. the model of the surface is 

built as the 3D points are measured), three tasks must be achieved: i) view registration, ii) 

view integration and iii) model visualization. View registration consists in the estimation of 

the rigid transformation between points of view from which the 3D data is collected. View 

integration aims at merging redundant 3D data common to two or more views. Finally, model 

visualization is the task of rendering the 3D model as it is being built so the user can observe 

the progression of the scan and plan the scanning strategy as points are being collected. 

The advantage offered by an explicit representation is that a low-level model is readily 

available. However, it is not adapted to real-time modelling. The main reason for this is that 

the registration and integration steps rely on finding nearest neighbours and that the search 

for nearest neighbours to a point becomes too computationally expensive when the number 
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of points increases. Updating a mesh as new 3D points are being collected is also impossible 

to achieve in real time. The advantage of using implicit representations is that some, such as 

the vector field, have demonstrated the ability to support the three modelling steps in real-

time. As described in chapter 1, a major advantage of the vector field representation is that it 

encodes the surface normal as well as information on the nearest neighbors in each voxel, 

thus enabling nearest neighbor search in linear time complexity.  

However, the main problem with the current implementation of the vector field in the context 

of metrology using handheld 3D sensors is approximating a surface by a plane. For describing 

regions with small details, the planar approximation is not always sufficient in a metrology 

context.  The first solution consist of decreasing the voxel size in the vector field. By doing 

so, two issues will arise. First, decreasing the voxel size causes an increase in the number of 

voxels, which increases memory requirement significantly. For instance, in a metrology 

context, decreasing the voxel size by an order of magnitude leads to an increase in the number 

of voxels by 1000. Therefore, the problem of memory requirement will also appear since it 

is unlikely that the vector field will fit in computer memory.   

The second issue is that, by decreasing the voxel size, each voxel may not receive enough 

points. During 3D data collection, if the accumulated data in a voxel is not large enough (not 

enough points fall inside a given voxel), the covariance matrix may not be robust and reliable. 

For example, for current handheld sensors and with “regular” voxel sizes, a voxel can usually 

receive between 20 and 100 points. If the voxel size is decreased by an order of magnitude, 

several voxels on a surface being scanned would not receive any point ever though they are 

on the surface.  

The first step of the proposed method to build the best possible surface representation is to 

identify the different surface types using the covariance based differential geometry in each 

voxel in the vector field framework. 
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2.2 Identification of the Different Surface Types in the Vector Field Framework 

Using Covariance Based Differential Geometry 
 

As mentioned in section 1.3.2 the sign ambiguity of the eigenvalues obtained by 𝐶𝐼𝐼 in 

Equation 1.23 prevents us from distinguishing some surface types. We propose a new 

technique that combines covariance-based differential geometry and the vector field implicit 

surface representation to identify the different surface types in each voxel of the vector field 

framework. Instead of working with each point and the neighborhood around that point, we 

rather propose to work with the voxels in the volumetric grid containing the vector field and 

its 26 possible neighbors in the grid.  

As mentioned above, handheld scanners for metrologic applications use retroreflective 

markers or natural features to estimate the pose of the sensor with respect to a reference frame 

chosen as the “world” reference frame. Secondly, using the vector field implicit surface 

representation, view registration, view integration and the estimation of the normal to the 

surface in each voxel of the field can be performed in real time as the 3D data is collected by 

the handheld sensor. The vector field is also built in the world reference frame. Since the 

pose of the sensor in the world reference frame is estimated in real-time, it is also possible to 

know on which side of the surface the sensor is when 3D data is collected and integrated in 

a voxel of the vector field. 

The first step in computing the vector field consists in obtaining the normal at all points of a 

surface. All normal should be consistently oriented such that the scalar product between the 

direction of the optical axis of the sensor and the surface normal should be positive. When it 

is not the case, the orientation of the normal should be flipped.  

 Knowing on which side of the surface the sensor is located when the data is collected as well 

as the surface normal in the voxel allows the orientation of this normal to be defined with 

respect to the direction of the optical axis of the sensor.  

This also allows the differentiation between peak/pit or ridge/valley and eliminates the 

limitations of covariance-based differential geometry (expressed in Equation 1.29 and 

Equation 1.30) for identifying the surface types. Based on the above, the strategy of the 

proposed method is to apply covariance-based geometry on the vector field implicit surface 
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representation instead of on individual points, thus reducing the computational load 

considerably since hundreds of points if not thousands fall in a single voxel. 

In the context of the differential geometry, when the orientation of the normal vector is 

given, then it is possible to observe that if   

a) All points in a certain neighbourhood around the point of interest lie on only one side 

of the tangent plane (above or below) then it is an elliptic surface (Shown in Figure 

2.4 (a)). 

b) The points in a certain neighborhood of the point of interest are distributed on both 

sides of the tangent plane then it is a hyperbolic surface (Shown in Figure 2.4 (b)). 

c) If the neighbourhood around the point of interest has a line in common with the 

tangent plane then it is a parabolic surface (Shown in Figure 2.4 (c)) 

d) If the neighbourhood around the point of interest lie on the tangent plane then it is a 

planar surface. 

 

 

Figure 2.4 : Position of the different surface type to the tangent plane: (a) Elliptic surface (b) 

Hyperbolic surface (C) Parabolic surface. Figure taken from [59] 

 

We extend this concept into the vector field framework. Therefore, instead of using points 

we rather use a voxel and the neighbours around that voxel to find the type of surface. With 

the additional knowledge of the direction of the surface normal (available in each voxel of 

(a) (b) (c) 
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the field), it is possible to exploit Equation 1.25 on the neighborhood of a voxel to identify 

to which type of surface the points in this voxel belong to. Working on voxels instead of 

points significantly reduces the computation load associated with this tool. 

Implementation  

 

Since the covariance matrix of the points falling inside a voxel is computed in real time, 

computation of the normal vector is also achieved in real time and is the eigenvector of the 

covariance matrix corresponding to the smallest eigenvalue. By implementing the vector 

field framework, the normal vector, the closest point to the surface (Equation1.7) the sensor 

position and the voxel center are all stored in a voxel of the 3D grid. Therefore, all of the 

values needed to compute the orthogonal distance from the tangent plane of a particular voxel 

to the neighboring voxels are available.  For each voxel in the 3D volumetric grid, there are 

26 possible neighbors. We have to consider the neighboring voxels which contain much more 

than 3 points inside in order to have a reliable covariance matrix in each voxel. This is not a 

problem since modern scanners can capture 250,000 points per second and can thus provide 

a density of points that is sufficient for our purpose, assuming that the scanner is not moved 

too fast. With current handheld sensors with typical voxel size, a voxel can usually receive 

between 20 and 100 points.  

We define the orthogonal distance form as Equation 2.1 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 = (𝑐𝑡(𝑗) − 𝑐𝑡(0))𝑇 . 𝑛         (2.1) 

 

where j = 1 to 26 is the number of the neighbouring voxels around the voxel  𝑣0 . 𝑐𝑡(𝑗) is the 

point on the plane approximating the surface in the jth neighboring voxel (point  𝑐𝑣 in Figure 

1.9),  𝑐𝑡(0) is the point on the plane approximating the surface in the voxel of interest, n is 

the normal vector obtained from the covariance matrix in the voxel of interest of the vector 

field. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗, is a  𝑗 × 1  vector stored in each voxel of the vector field framework. An 

illustration in 2D to simplify visualization is given in Figure 2.5. 
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Figure 2.5: An illustration of 𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆𝒋 stored in the voxel of interest whose sides are in dotted 

lines. 

. 

The information of the matrix 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 allows us to recognize the surface type in a given 

voxel as follow: 

 If all of the values of the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 are positive, then the surface in the particular voxel is 

peak surface. 

 If all the values of the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗  are negative, then the surface in the particular voxel is pit 

surface. 

 If some of the values of the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 are negative while others are positive, then the 

surface in the particular voxel is a saddle surface. 

 If some of the values of the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 are negative while others are positive, and the 

eigenvalues obtained by Equation 1.29 and 1.30 are equal then the surface in the particular 

voxel is a minimal surface. Which, in this paper are considered as belonging to the same 

category as the saddle surfaces. 

 If the values of the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 are both positive and zero, then the surface in the particular 

voxel is ridge surface. 
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 If the values of the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 are both negative and zero, then the surface in the particular 

voxel is valley surface. 

 If all of the values of the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 are zero within a given threshold, then the surface in 

the particular voxel is planar. 

 

To demonstrate the performance of the method proposed for identifying the different surface 

types in the vector field framework, it has been applied to 3D synthetic data as well as 3D 

data which was obtained from a real metrologic scanner and from Stanford repository. The 

color map for different surface types is shown in Table 2.1.  

 

 

 

 

 

 

Table 2.1 : Color map corresponding to different surface types 

 

 

The surface types of voxels belonging to the synthetic spherical surfaces are shown in Figure 

2.6. The color in the voxels is coherent with the surface types in each voxel according to 

Table 2.1. 

 

Surface Type Colour list 

Pit surface Yellow 

Ridge surface Green 

Valley surface Black 

Saddle and Minimal surface Cyan 

Peak surface Blue 

Plane surface Red 
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Figure 2.6: Identifying the surface type at each voxel on a synthetic sphere. (a) Shows the peak in 

blue color. (b) Shows the peak in blue color and pit in yellow color. 

 

The results on the synthetic cylindrical surfaces, which are valley (black) and ridge (green) 

surfaces, are shown in Figure 2.7. 

 

 

 

 

 

Figure 2.7:  Identifying the surface types on synthetic cylinders. (a) Shows the ridge surface in 

green (b) Show the ridge surface in green and valley surface in black color 

 

 

(b) 

(b) 

(a) 

(a) 
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By referring to Figure 2.8 (a), it can be observed that the upper side of the bunny’s belly is 

peak surface and under the belly is more ridge and the regions around the claws of the bunny 

are mostly pit and valley. Clearly the regions between the belly and claws are saddle, and 

Figure 2.8 (b) provides a qualitative validation of our approach on the 3D points of the bunny  

 

 

 

  

 

 

 

Figure 2.8: Identifying the surface types on 3D points provided by Stanford repository. (a) Object 

mesh data. (b) Shows the different surface types 

 

More results for the synthetic data and the scanned objects are given in the next chapter on 

the Experimental Results. 

In currently available commercial metrology software tools, the voxel size is selected 

arbitrarily irrelevant of the number of points falling inside each voxel for the verification of 

the planarity of the surface hypothesis. In the next section, the surface variation is given as 

an objective criterion to select an optimal voxel size systematically. 

2.3 Surface Variation Method in the Vector Field Framework 
 

In a metrology workflow using handheld 3D scanners based on an implicit surface 

representation, the first step consist in selecting the voxels size (i.e. the resolution of the 

model) and then start to collect the 3D data. For selecting the voxel size, two points need to 

be considered: the memory consumption and the accuracy of the reconstructed model that 

we plan to achieve.  A fact that needs to be considered is that, in a metrology framework, the 

(a) (b) 
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size of the voxels of the vector field is usually chosen arbitrarily by the user. The process is 

that a user chooses the voxel size, scans a given object and then observes the model.  

Choosing the voxel size arbitrarily is not optimal. By choosing a large voxel size, we may 

not get a good model. In contrast, choosing a small voxel size will require the allocation of a 

large number of voxels, which increases memory consumption. For instance, in a metrology 

context, decreasing the voxel size by an order of magnitude leads to an increase in the number 

of voxels by 1000. Therefore the problem of memory requirement will appear, since it is 

unlikely that the vector field fits in the computer memory. This is why we propose an 

approach that allows to select the voxel size systematically that is sufficient to achieve a good 

construction of the final model of the surface while keeping the number of voxels as small as 

possible. The approach exploiting covariance-based differential geometry proposed above 

can then be applied for building the model using high level surface reconstruction as 

presented in the next section. 

The surface variation is defined as the ratio of the smallest eigenvalue over the sum of all 

eigenvalues of the covariance matrix of a set of 3D points.  Pauly et al. [60] define the surface 

variation at point 𝑝 in a neighbourhood of size 𝑛 as: 

 

𝜎𝑛(𝑝) =  
𝜆1

𝜆1 + 𝜆2 + 𝜆3

 

 

where 𝜆1, 𝜆2, 𝜆3 are the three eigenvalues of the covariance matrix of a set of 3D points such 

that  𝜆1 < 𝜆2 < 𝜆3. 

 

 An interesting property of 𝜎𝑛(𝑝) that it is bounded between 0 and 1/3.  All the points in a 

set are located on a plane if 𝜎𝑛(𝑝) = 0. When 𝜎𝑛(𝑝) = 1/3 all the points in the neighbourhood 

are distributed evenly in space. 

Note that 𝜆1 defines the variation along the surface normal and  𝜆2 , 𝜆3 describe the variation 

of the sampling distribution in the tangent plane. These two latter eigenvalues can be used to 

estimate local point distribution anisotropy accordingly. If the surface in a given 

(2.2) 
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neighborhood is highly curved, its surface variation should be high and if the neighborhood 

is flat the surface variation should be small [60]. 

These are two main reasons why the surface variation is of interest in our work: the fact that 

it is bounded between 0 and 1/3 and that it is simple to compute it in the vector field 

framework since the covariance matrix is already available in each voxel. 

We thus propose to exploit surface variation to achieve the optimal selection of the voxel size 

in the vector field framework. In each voxel of the vector field, the surface variation, as 

defined in Equation 2.2, is computed and stored in the voxel. As mentioned in section 1.2.4, 

the eigenvalues and the covariance matrix are already available in each voxel of the vector 

field. Therefore, this implies that the surface variation is very easy to compute.  This value 

𝜎𝑛(𝑝) can be computed in real time without the need for surface fitting and other complex 

computations. It is important to mention that the vector field itself is computed and updated 

in real-time. See Tubic et al [5]. 

First based on the above reasoning, a reasonably large voxel size for the vector field is 

selected according to the size of the object and the size of the available computer memory, 

and the surface variation 𝜎𝑛(𝑝) is computed.  Then the interval of possible values for 𝜎𝑛(𝑝), 

which is [0 , 1/3] is divided in 100 bins and the histogram of the number of voxels 

corresponding  to each bin is computed on the vector field. In our work the interval values in 

[0 , 0.0033] are considered as the planar area. 

These aforementioned steps are repeated with the difference that each time the voxel size is 

decreased one unit. This method is repeated until it is observed that the number of the voxels 

falling in the planar area (first bin of each histogram) are larger than others at its right. In this 

stage, we can conclude that the size of the voxel is small enough to get an accurate model of 

the surface and the corresponding voxel size is selected as the optimal one.  It is clear that 

choosing the voxel size smaller than the aforementioned size, the number of voxels 

corresponding to the first bin (Planar region) will increase with no significant improvement 

in model quality.  Note that in the proposed method, the size of the side of a voxel is measured 

in mm.  
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Implementation  

 

To visualize the performance of the method proposed for selecting the optimal voxel size in 

the vector field, it has been applied to different 3D objects. In this section, the results related 

to the bunny provided by the Stanford repository are shown in Figure 2.9 (a) to (g).  The 

results shown in Figure 2.9 are related to the surface variation computed for voxel sizes 

between 10 mm to 3 mm.    

To show the results of the value of the surface variation we have considered 100 bins to 

represent 𝜎𝑛(𝑝) between 0 <  𝜎𝑛 <  1
3 ⁄ . Each colour corresponds to a bin. 

 

 

Figure 2.9: Number of voxels corresponding to the surface variation (Bin in blue colour corresponds 

to the planar area):  (a) Voxel size = 10 mm (b) Voxel size = 9 mm 

 
Figure 2.9. Number of voxels corresponding to the surface variation:  (c) Voxel 

size = 8 mm (d) Voxel size = 7 mm 

(a) (b) 

(c) (d) 
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As shown in Figure 2.9 (g) the number of the voxels corresponding to the planar area is larger 

than the second bin. Therefore, it is decided that, 4 mm is the optimal voxel size for the 3D 

model of the Bunny model. As shown in Figure 2.9 (h), if the voxel size still decreases to 3 

mm, it is obvious that the number of voxels related to the planar areas is still greater than the 

second bin and that there is no need to decrease the voxel size anymore. In addition of voxel 

size of 3 mm increases the number of voxels which causes a large memory consumption. In 

addition, decreasing the voxel size may result in voxels containing less points, then 

decreasing the robustness of the covariance matrix. 

(f) 

Figure 2.9. Number of voxels corresponding to the surface variation:  (e) 

Voxel size = 6 mm (f) Voxel size = 5 mm 

Figure 2.9. Number of voxels corresponding to the surface variation:  (g) Voxel 

size = 4 mm (h) Voxel size = 3 mm 

(g) (h) 

(e) 
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In the next sections, a method is proposed to compensate the fact that the planar 

approximation may not verified in all voxels by fitting and then blending the patches. Before 

doing fitting, we need to connect the surface patches that share the same surface type. To do 

so, a segmentation approach is proposed in section 2.4 that aims to group the patches with 

the same surface type into connected regions.   

 

2.4 3D Segmentation method in the vector field 
 

3D point cloud segmentation is the process of categorizing the point cloud into homogenous 

regions whereas classification is the step that tags these regions with the name of different 

categories depending of the application. The aim of segmentation is to group data such that 

similar objects are in one segment and the objects of different segments are dissimilar. As 

explained in section 2.2, identifying the surface type for each voxel is first applied to the 

vector field built from the scan of the 3D object. Then six different surface types are 

identified. Each surface type is a classification, the regions belonging to the same 

classification need to be connected together. Since the initial step of the segmentation has 

been described in section 2.1, the K-means algorithm is an appropriate method to connect 

voxels with the same surface type into a region (or segment), this procedure is described 

below. 

K-means is a simple algorithm that groups a point cloud into a number of K clusters specified 

by a user.  In other words, the K-means method defines K centroids to define clusters and 

then allocates an element to a particular cluster if it is closer to that cluster’s centroid than 

any other centroid [61]. This method segments the data into K segments even if K is not the 

correct number of segments to use. Therefore, users need to find a way to identify whether 

the right number of clusters K is used or not [61]. 

The method that is used in our work to validate the number K is the elbow method. The idea 

behind the elbow method is to run the K-means method on the data with a range of values 

for K [62, 63]. Then for each value of K, the sum of squared distances from each point to its 

assigned center is computed. Then the sum of squared distances for each value of K is plotted. 

If the plot looks like an arm, then the elbow on the arm is the best value for K [62, 63]. 
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To visualize the concept of the K-means using the elbow method, a simple sample of cloud 

of 3D points is considered as shown in Figure 2.10. 

 

 

 

 

 

 

 

 

Figure 2.10: Sample data point to show the K-means segmentation that uses the elbow method 

 

Then the elbow method to obtain the best K value is applied on the sample points shown in 

Figure 2.10. The result of the elbow method is shown in Figure 2.11. The elbow in the arm 

is shown with a red circle which has assigned the value 9 to K. 
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Figure 2.11: The elbow method for determining the number of segments 

  

When the best value for K is determined using the elbow method, the K-means is used to 

obtained value of K for segmentation. The result of the segmentation for the sample points 

shown in Figure 2.9 is shown in Figure 2.12. 

 

 

 

 

 

 

 

 

 

Figure 2.12: Segmentation of a point cloud using K-means elbow method. 

 

Implementation 

 

As explained above, since the initial classification of voxels is done using the surface type 

method described in section 2.1. Then segmenting a 3D object into the regions of the same 

surface type by using the aforementioned segmentation algorithm is very simple. 

In this section, the results of the segmentation are given in Figure 2.13 to Figure 2.16 for the 

Bunny model.  More results will be presented  in the next chapter. Figure 2.13 illustartes the 

segmented area for ridge surface, Figure 2.14 shows the result of the segmentation for the 

peak surface. The segmentation results for valley surface are given in Figure 2.15. The 

segmentation of the saddle region is shown in Figure 2.16. 
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Figure 2.13: Segmentation of the Ridge region. (a) Initial data points. (b) Segmented regions 

  

 

Figure 2.14: Segmentation of the Peak region. (a) Initial data points. (b) Segmented regions 

 

 

Figure 2.15: Segmentation of the valley region. (a) Initial data points in the valley region. (b) 

Segmented regions  

 

 

(a) (b) 

(a) (b) 

(b) (a) 
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Figure 2.16: Segmentation of the saddle region. (a) Initial data points in the saddle region. (b) 

Segmented regions 

                                

In Figure 2.17, the workflow of segmentation of all different surface types is shown. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17: All segmented regions. (a) Segmented ridge and peak surface (b) Segmented Ridges, 

Peak and valley surface (c) Segmented Ridges, peak, valley and Pit region (d) Segmented Ridges, 

peak, valley, Pit and saddle region. 

 

 

(a) (b) 

(c) (d) 

(a) (b) 
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3D points falling into a voxel need to be presented by a high order surface representation. 

The advantage of the segmentation step in this project is that instead of fitting the surface in 

each voxel of the vector field separately, a high order surface representation can be built on 

a segment of the connected voxels with the same surface types. Which results in decreasing 

the computational complexity.  

The next section presents the fitting method that has been implemented to build a high order 

surface representation. 

 

2.5 Fitting a high order surface representation 
 

In this step, an approach is proposed to build a high order representation of each segment 

obtained from the previous step (K-means segmentation).  

Implicit B-splines (IBS) are a way of building a representation that can provide shape 

descriptors through their zero-sets and reconstruct surfaces. This technique is based on 

locally controlled functions that are combined via control points. This local control allows 

patch-based object representation [64]. In such a method, each parameter has a local 

contribution to the shape, which makes it useful for algebraic fitting methods, although it can 

be also used in a geometric framework [65].  

To represent the surfaces in the segmented regions obtained from the segmentation step 

(section 2.4), we adapt an implicit B-spline method proposed by [42, 44].  The method 

proposed by Rouhani et al. presented an extension of the 3L Implicit Polynomial algorithm 

(section 1.4) to the implicit tensor-product B-spline. One limitation of the 3L- IP approach is 

that although increasing the IP degree enables the description of objects with more complex 

geometries, it causes some artifacts and outliers to appear on the object. This limitation has 

been eliminated by 3L- Implicit B-spline (IBS). 
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The IBS definition in Equation 1.35 can be reformulated (see Equation 2.3) as the inner 

product of the coefficient vector c, which includes control values {𝑐𝑖,𝑗,𝑘} and the basis vector 

m(x) which is a vector form of monomials {𝐵𝑖(𝑥)𝐵𝑗(𝑦)𝐵𝑘(𝑧)} [34]: 

 

𝑓(𝑥) =  𝑐𝑇𝑚(𝑥) = 𝑚(𝑥)𝑇𝑐 
 

According to Rouhani et al. [44], the B-spline functions can be constructed through the 

following blending patches: 

 
𝑏0 (𝑢) =  (1 − 𝑢3) 6⁄  ,    𝑏1(𝑢) =  (3𝑢3 − 6𝑢2 + 4) 6⁄   , 

𝑏2(𝑢) =  (−3𝑢3 + 3𝑢2 + 3𝑢 + 1) 6⁄  ,  𝑏3 =  𝑢3

6⁄  

 

To determine the control point vector c , the point cloud is normalized  into a unit cube 

[0  1]3. Then the IBS definition in Equation 1.35 can be directly reformulated based on the 

blending functions as:  

 

𝑓(𝑥) =  ∑ 𝑐𝑖+𝑟,𝑗+𝑠,𝑘+𝑡𝑏𝑟(𝑢). 𝑏𝑠(𝑣). 𝑏𝑡

3

𝑟,𝑠,𝑡=0

(𝑤) 

 
 
 
 

where                                 𝑖 =  ⌈𝑥 ∆⁄ ⌉ , 𝑗 =  ⌈𝑦 ∆⁄ ⌉ , 𝑘 =  ⌈𝑧 ∆⁄ ⌉  
 

𝑢 =  
𝑥

∆
−  ⌊

𝑥

∆
⌋ , 𝑣 =  

𝑦

∆
−  ⌊

𝑦

∆
⌋  , 𝑤 =  

𝑧

∆
−  ⌊

𝑧

∆
⌋   

 

∆ =  1 (𝑁 − 3)⁄  

 

Therefore, the unit cube is split into a 𝑁 × 𝑁 × 𝑁 voxel grid where 𝑁 is the IBS resolution. 

Each control point in c is defined with an index number, which indicates the vertex of this 

grid at which the related control point is located [66]. For more detail on the 3L algorithm, 

the reader is referred to section 1.4.1. 

 

(2.3) 

(2.4) 

(2.5) 
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Implementation 
 

The IBS method proposed by Rouhani et al. and adapted to our problem has been 

implemented on the segmented regions that were obtained form the segmentation of the 

vector field into regions composed of connected voxels sharing the same surface type. To 

show the performance of the method in this context, fitting results are presented in Figure 2. 

18 to Figure 2. 22.  

 

 

 

 
  

 

 

Figure 2.18: IBS fitting. (a) Generating inner offset (red) and outer offset (blue). (b) IBS fitted to 

the Ridge segmented regions 

 

 

 

 

  

 

 

 

 

 

Figure 2.19: IBS fitting. (a) Generating inner offset (red) and outer offset (blue). (b) IBS fitted to 

the Valley segmented regions 

(a) (b) 

(a) (b) 
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Figure 2.20: IBS fitting. (a) Generating inner offset (red) and outer offset (blue). (b) IBS fitted to 

the Peak segmented regions 

 

Figure 2.21: IBS fitting. (a) Generating inner offset (red) and outer offset (blue). (b) IBS fitted to 

the Pit segmented regions 

 

Figure 2.22: IBS fitting. (a) Generating inner offset (red) and outer offset (blue). (b) IBS fitted to 

the Saddle segmented regions 

(a) (b) 

(a) (b) 

(a) (b) 
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Since each segmented region is represented by IBS, there are thus multiple B-spline patches 

which need to be merged together in order to represent a single surface. In the next section, 

the proposed approach to blend the surface patches is described. 

 

2.6 Merging different surface patches to obtain a single 3D mesh 

 

Once the different segments have been fitted, merging the different fitted segments is the last 

step in our workflow. Once the patches are constructed by fitting the B-spline in each 

segmented region, then they need to be blended to build a single surface representation. To 

merge these patches, the approach proposed by [54] called “Zippered polygon meshes” is 

applicable to our work. It uses geometric fusion to integrate multiple surface patches to obtain 

a single surface. Thus, the output of this method is a merged mesh. The details on this 

approach are given in section 1.5.3. 

Fusion of multiple meshes requires an ‘overlap’ test to determine if surface measurements 

from different meshes in close spatial proximity correspond to the same or different regions 

of the measured object surface [67]. See Figure 2.23.  Geometric constraints are used to 

estimate if overlapping measurements correspond to the same surface region. To find more 

details on geometric constraints to estimate the overlap the reader is referred to [67]. 

 

 

Figure 2.23: Fusion of field-functions for cross-sections through overlapping volumetric envelopes 

(a) Overlapping field-functions (M1, M2) (b) Integrated field-function (M). Taken from [67, 68]. 
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Instead of coding from scratch to blend the patches and guarantee the continuity between the 

patches, we rather work with Creaform’s VXelements (3D Software Platform) in which 

different patches can be merged to achieve a single 3D mesh and works similarly to the 

method proposed by Levoy et al. [54].  

Implementation  

 

To merge different implicit B-spline patches, the first step consist in the conversion of these 

aforementioned patches into a mesh. This step has been implemented in MATLAB by a 

simple code to extract isosurface data from volume data and then converting this data into a 

“PLY” or “STL” mesh file format. Then, the triangular meshes are imported into 

VXelements. Next, the “Merge” option in this tool allows us to select different 3D meshes 

and then blend them together to achieve a final surface. 

 In the case of the “Bunny” object, five different patches shown in Figure 2.18 (b), Figure 

2.19 (b), Figure 2.20 (b), Figure 2.21 (b) and Figure 2.22 (b),  are merged to achieve the final 

model. There is a red right brace shown in Figure 2.24 which indicates “VXmodel” section 

that shown different patches which are fitted in each segment of the bunny object that are 

imported into VXelements. The next step is choosing “Merge” as indicated by a red rectangle 

in Figure 2.24. Then the red box shown in Figure 2.25 will appear. From the list of meshes 

that are shown in the red box, the desired surface patches should be selected to be merged. 

Each patch is shown with a different color as illustrated in the black box shown in Figure 

2.25. 
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Figure 2.24: Merge different meshes in the VXelements software platform. 

 

 

Figure 2.25: Merge different meshes in the VXelements software platform. 

 

The surface obtained by merging the different surface patches belonging to the “Bunny” 

object is shown in Figure 2.26. 
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Figure 2.26: The surface obtained from merging different meshes. (a) The result with less 

smoothing weight (b) The result with higher smoothing weight. 

 

 

In this chapter, the proposed approach on how the vector filed is combined with covariance 

based differential geometry to build the model of an object from an unstructured point cloud 

is explained and how the proposed surface variation method can reduce memory requirement 

through the selection of an adequate resolution of the implicit representation. 

In the next chapter, more results are presented to validate the surface representation approach 

proposed in this thesis. A brief discussion is also given for each 3D object reconstructed by 

this approach. 
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Chapter 3 

3. Experimental Results 
 

In this chapter, we present and discuss the experimental results obtained with the approaches 

mentioned in chapter 2. The ordering of the sections is the same as the one in the previous 

chapter in order to present the results of the different steps coherently. We have implemented 

the proposed approach on MATLAB R2016a (9.0.0.341360). The experiments are executed 

on a computer running Windows 7 with an Intel® Core(TM) i7-5820K CPU @ 3.30 GHz 

and 48GB of RAM.  

 

3.1. Preparing the data 
 

To test the proposed approach, we used a set of 3D data provided by the Stanford repository, 

a Creaform handheld 3D scanner and synthetic data generated in MATLAB.  

 
 

3.2. Identifying the surface type in the vector field  
 

This section presents the results on the identification of the different surface types using the 

vector field framework. Figure 3.1 and 3.2 illustrate the results of surface type identification 

on a model captured by a handheld 3D scanner provided by Creaform and a synthetic data 

generated in MATLAB.  The generated synthetic data is a combination of a cylinder and two 

planes. The color map for different surfaces is the same as the one shown in Table 2.1 such 

that Peak surfaces are shown in blue, Pit in yellow color, Ridge, Valley shown in green and 

black color respectively. Saddle and minimal surface in cyan color and Planar region shown 

in red color. 

The object shown in Figure 3.1 is a synthetic object generated in MATLAB and which is a 

combination of a cylinder and two planes.  
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The result shown in Figure 3.1 (b) demonstrates that we obtained the corresponding ridge 

(cylindrical) surface type in green color and the corresponding planar surface type in red as 

expected. The black arrow in Figure 3.1 (a) shows that some stripes exist in the object mesh 

data. The black arrow in Figure 3.1 (b) presents some green points in the planar region, which 

demonstrate that the proposed approach is sensitive enough to detect the surface types other 

than a plane. 

 A HandyScan scanner by Creaform collected the 3D points of the object shown in Figure 

3.2. Since the scanner is designed for metrology applications, the accuracy of the 3D data is 

high and the level of noise is low. As labeled in Figure 3.2 (a), the red arrow points to the 

regions with high curvature and belonging to the spherical surface type. The region shown 

by the purple arrow correspond to the ridge type. The blue arrow corresponds to a saddle 

surface. In addition, the black arrows points to the valley surface type. The corresponding 

surface types shown  in Figure 3.2. (b) show a graphic representation of these surface types.  

The ground truth surface types were established manually since the scan was obtained from 

a real engine part for which “independent” ground truth does not exist. 

 

 

 

Figure 3.1 : The result of identifying the surface types on a 3D point cloud generated in 

MATLAB  

Voxel size = 3 mm (a) Object mesh data. (b) The result of the proposed approach on the 3D 

point cloud for the identification of the surface type using the vector field. 

(a) (b) 
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Figure 3.2 : The result of the identifying the surface types on a 3D point cloud collected by 

HandyScan (Creaform) scanner. 

Voxel size = 5mm (a) Object mesh data. (b)  The result of the proposed approach on the 3D 

point cloud for the identification of the surface type using the vector field. 

 

 

 

3.3. Surface variation method in the vector field framework 
 

As mentioned earlier in this document, MATLAB was used for the development of the 

algorithms and for the experiments. However, it happens that memory limitation associated 

with MATLAB prevent the use of very large vector fields. Although this could be seen as a 

problem in the general case, it is rather considered as an interesting limitation in the context 

of this project and serves the purpose of demonstrating the approach for the selection of the 

optimal voxel size. There is no need to use very large point clouds to show that the approach 

based on surface variation for the automatic selection of the size of the voxels works well 

and that it could translate to large point clouds (of large objects) if the approach was fully 

implemented in C++ for instance. Consequently, the reader should not be surprised if the 

object used in the experiments are not large. 

(a) 
(b) 
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To further validate the approach proposed for choosing an optimal voxel size and keep the 

number of voxels as small as possible, the approach using surface variation was used (see 

section 2.3). The method is applied on different objects as shown in Figure 3.3 to Figure 3.6. 

As mentioned in section 2.3, when the surface variation in each voxel is computed, then the 

interval of the surface variation value [0, 1/3] is divided into 100 bins and the number of 

voxels with a value of surface variation falling in each bin is computed.  

Figure 3.3 to 3.6 illustrate the histograms of the number of the voxels assigned to each bin. 

The strategy in our proposed approach is to stop decreasing the voxel size when it is observed 

that the number of the voxels falling in the first bin (planar region) is greater than others. 

Figure 3.3 to 3.6 show the surface variation histogram corresponding to the object scanned 

by the HandyScan Creaform scanner.  At the first step, 7 mm is selected for the starting voxel 

size as shown in Figure 3.3. Then the size is decreased progressively by one mm down to 4 

mm. Figure 3.5 illustrates the results of the surface variation related to “voxel size = 5 mm”. 

It is clear that the number of the voxels in the planar bin (shown in Blue color) is greater than 

the bin on its right. So, as described in section 2.3, this is the size that is selected to reconstruct 

the model.  

To illustrate the reason to justify the implementation of this method, the size of the voxels is 

decreased one more unit to 4 mm as shown in Figure 3.6. The result shown in this figure is 

close to the results shown in Figure 3.5 (the number of voxels in the planar region is greater 

than the bin next right to it). The difference is that with a voxel size of 5 mm, the number of 

voxels in the vector field is 35805. In contrast, the number of the voxels in the vector field 

for a voxel size of 4 mm is 57561. The largest point-to-point measure of the object collected 

by Creaform’s scanner (shown in Figure 3.1(a)) is 125 cm and reduction of the number of 

voxels would be even great for objects with a large size. 

The reason why a voxel size equal to 5 mm is selected to perform further processing to 

construct the model is thus clear: choosing 5 mm as the voxel size reduces the number of 

voxels by 22K, which is a significant reduction in size and reduces memory consumption. 

With a voxel size of 5 mm, there are enough voxels to achieve a good construction of a model 
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while keeping the memory usage as low as possible. The fitting/blending step will contribute 

to enhance the final model. 

 

 

  

 

 

 
Figure 3.3 : Number of voxels corresponding to the 

surface variation (Bin in blue colour corresponds to the 

planar area): Voxel size =7 mm 

 

 

 

 Figure 3.4 : Number of voxels corresponding to the 

surface variation (Bin in blue colour corresponds to the 

planar area): Voxel size =6 mm 

 

 

 

 

Figure 3.5 : Number of voxels corresponding to the 

surface variation (Bin in blue colour corresponds to the 

planar area): Voxel size =5 mm 

 

Number of voxels in the vector field:  

29 × 27 × 31 

 

Number of voxels in the vector field:  

33 × 31 × 35 

 

Number of voxels in the vector field:  

39 × 36 × 41 
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3.4. 3D segmentation method in the vector field 
 

Once the optimal voxel size has been selected with the approach presented in the previous 

section then the next processing step consists of the construction of a model using this voxel 

size. As presented in section 3.2, the surface types have been identified in each voxel of the 

vector field. To connect the neighbouring voxels with the same surface type, a K-means 

segmentation algorithm is used as explained in section 2.4. In the segmentation step, the 

elbow method is applied to achieve the best K value. This section presents additional example 

of the segmentation in the vector field on the object collected by the Creaform HandyScan in 

Figure 3.7. The result shown in Figure 3.7 (a) is the segment region of ridge surface type that 

contains different connected sub-segments (shown in different colors). The region related to 

the segmented peak surface type contains different sub-segments (illustrated in different 

colors) and is shown in Figure 3.7 (b). Figure 3.7 (c) and 3.7 (d) show the segments of valley 

surface type and segmented saddle surface type respectively. Each different color in the 

segmented area correspond to a connected sub-segment of the given surface type. As 

mentioned earlier, these aforementioned sub-segments in each specific surface type area are 

connected to each other.  

Once the segmentation is complete and connected regions with the same surface type have 

been found, the next step is to build the high order representation of the surface for each 

segment.   

 

 

 

 

Figure 3.6 : Number of voxels corresponding to the 

surface variation (Bin in blue colour corresponds to 

the planar area): Voxel size =4 mm 

 

Number of voxels in the vector field:  

48 × 44 × 50 

 



66 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7: 3D segmentation of the object provided by Creaform according to the different surface 

types. (a) Ridge segments (b) Peak segments (c) Valley segments (d) Saddle segments 

 

The next section presents the results of the surface representation using the 3L-IBS method 

presented in section 2.5 to represent each segment area associated to a certain different 

surface types (Ridge, valley, peak, pit, saddle and plane). 

 

3.5. Fitting a high-order surface representation 
 

Once the set of segmented regions has been found, we represent the points of each segment 

with the control points of Implicit B-Splines (IBS).  The detail about the IBS fitting method 

that is used for this purpose has been presented in section 2.5.  This method represents the 

surface without requiring any parametrization.  This aforementioned method proposed by 

Rouhani, et.al [44] is used to describe the surface in each segment through its zero-level set. 

Then, to visualize the surface, the marching cubes algorithm is used to build a mesh. For a 

better visualization of the fitted surface the results shown in this section on Figure 3.8 to 3.9 

are using a proper regularization term. This term is added to the objective function of the 3L-

(a) (b) 

(c) (d) 
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IBS which has been shown in Equation 1.34. This term which uses regularization parameter 

𝜇 to control the rigidity of the implicit fitted function, is shown in Equation 3.1. Increasing 

the value of this regularization parameter results in smoother surface and vice versa [34].  

 

𝑐 = (𝑀3𝐿
𝑇 𝑀3𝐿 + 𝜇𝐷)−1𝑀3𝐿

𝑇 𝑏 

 

In Equation (3.1), D is a 𝑁3 × 𝑁3 sparse matrix including the integral of overlapping basis 

functions and their derivatives [33, 53]. For more detail on the regularization term, the reader 

is referred to [55]. However, the point that need to be considered is that before using the 

regularization term, the IBS is obtained and control points and the basis functions are 

computed. Then the IBS patches are converted into meshes in order to blend the patches 

together.  Figure 3.8 and Figure 3.9 illustrate the fitting process in each segment of the 

synthetic data.  

 

Figure 3.8 (a) and 3.9 (a) shown the two offsets supporting the original data (shown in green 

color). The inner offset is shown in red color and the outer one is shown in blue color. Figure 

3.8 (a) refer to the cylindrical segmentation that we want to represent by a high order surface 

description (using IBS fitting). The representation results achieved for this segment using the 

3L-IBS method is shown in Figure 3.8 (b). Figure 3.9 (a) show the segmented region 

corresponding to the planar surface type. Figure 3.9 (b) illustrates the fitting result for this 

planar segment using the 3L-IBS method to represent the surface. In this workflow, the voxel 

size for processing the synthetic data (cylinder and two planes) has been set to 3 mm.  

 

 

(3.1) 
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Figure 3.8 : 3L-IBS fitting for synthetic object. (a) Generating inner offset (red) and outer 

offset (blue), original data (green) for cylindrical segment. (b) IBS fitted to the cylindrical 

segment area. Voxel size = 3 mm 

 

 

 

There are some ripple areas pointed by the orange arrow in Figure 3.8 (b). The following 

explanation describes the presence of this ripple. Figure 3.10 illustrates a 2D image of a 

synthetic cylinder on a 2D grid. Each small square is a voxel (a voxel is shown with the red 

arrow). As shown by the black arrows from top to the bottom of the object in Figure 3.10 (a), 

(b) the step of moving to the next voxel changes with the size of the voxel. Since we are 

 

 

 

 

 

 

 

Figure 3.9 : 3L-IBS fitting for synthetic object. (a , b) Generating inner offset (red) and 

outer offset (blue), original data (green) for planar segment. (c , d) IBS fitted to the planar 

segment area. Voxel size = 3 mm 

 

(b) (a) 

(a) (b) 
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working with closest points in voxels instead of dense point cloud, these steps lead to small 

ripples in the fitted surface shown in Figure 3.8 (b). In other words, the location of the closest 

points in neighbouring voxels and how they placed relative to each other are the reason for 

these ripples. The results in Figure 3.10 was also generated to illustrate the importance of 

choosing a good voxel size. The voxels in Figure 3.10 (a) are larger than the voxels in Figure 

3.10 (b). It is shown that the ripple is more visible in Figure 3.10 (a) than in Figure 3.10 (b). 

It means the ripple effect is more visible for larger voxel sizes. 

 

 

 

 

 

Figure 3.10 :  (a) 2D illustration of simulated cylindrical data in larger voxel size (Red, green and 

purple line show the ripples). (b) 2D illustration of simulated cylindrical data in smaller voxel size 

(Purple and red line show the ripples). 

 

In the Creaform VXelement application, there are functions such as “clean mesh”, “remove 

spike, “fill holes” and etc. that could help to remove the spikes, ripples and smooth the 

surface.  The Figure 3.11(a) shows how the ripple on the mesh shown in Figure 3.8 (b) can 

be disappear and how the aforementioned surface could be made smoother. In the area 

indicated by green brace, the smoothing weight could be selected. In this case, the smoothing 

weight is 25, this value can change depend to the object and the level of the ripple appearing 

on each object.  

 

 

 

 

 

(a) (b) 

Voxel 



70 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: (a) Smoothing mesh in VXelements application. (b) The result of using smooth mesh 

tools in VXelements (Voxel size = 3mm). 

 

Figure 3.12 to Figure 3.15 shows the fitting process for the object provided by the Creaform 

HandyScan scanner. 

 

Figure 3.12 (a) shows the two offset (in blue and red) generated for the ridge segmentation 

area that need to be represented by a high order surface representation method. The fitting 

results for this segment using the 3L-IBS method are shown in Figure 3.12 (b). Figure 3.13 

(a), Figure 3.14 (a) and Figure 3.15 (a) illustrate the offset generated for valley, peak and 

saddle segmented areas respectively. For all the figures, the inner offset is shown in red color 

and the outer one is shown in blue color. The results shown in Figure 3.13 (b), Figure 3.14(b) 

and Figure 3.15 (b) are the high order surface that were fitted by the 3L-IBS method to the 

valley, peak and saddle segment areas respectively.  

(a) 

(b) 
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In the results shown in Figure 3.12 (b) to Figure 3.15 (b), it can be observed that some regions 

are bumpy. Everywhere the surface is bumpier means that there is less points to fit. As 

mentioned above in Creaform VXelements application, some features can be used to make 

the surface smoother and remove the spikes available in the surface. 

Once a surface patch representing each different segmented regions (ridge, valley, peak, pit, 

planar, saddle) have been fitted, the next step consist in blending those patches to achieve a 

single final model.  For doing so, the Creaform VXelements application is used. 

 

 

 

 

 

 

 

 

Figure 3.12 : 3L-IBS fitting. (a) Generating inner offset (red) and outer offset (blue) for 

ridge segment. (b) IBS fitted to the ridge segment area. Voxel size = 5 mm 

 

 

 

 

 

 

 

 

 

Figure 3.13 : 3L-IBS fitting. (a) Generating inner offset (red) and outer offset (blue) for 

valley segment. (b) IBS fitted to the valley segment area. Voxel size = 5 mm 

  

(a) (b) 

(a) (b) 



72 
 

 

 

  

 

 

 

 

 

 

Figure 3.14 : 3L-IBS fitting. (a) Generating inner offset (red) and outer offset (blue) for peak 

segment. (b) IBS fitted to the peak segment area. Voxel size = 5 mm 

 

 

 

 

 

 

 

 

 

 Figure 3.15 : 3L-IBS fitting. (a) Generating inner offset (red) and outer offset (blue) 

for saddle segment. (b) IBS fitted to the saddle segment area. Voxel size = 5 mm 

 

(a) 
(b) 

(a) (b) 
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3.6. Merging different surface patches to obtain a single 3D mesh 
 

 

This section presents the last step to achieve a final high-order surface model. The details 

about the blending approach are given in section 2.6. After IBS fitting on each segment, it is 

proposed to merge those patches to achieve a final model.  To obtain such a model, the 

VXelements application is used. Figure 3.16 to 3.18 show the process of blending different 

patches for synthetic data. 

 

 
 

 

Figure 3.16: Surface representation for planar regions of the synthetic object displayed in 

VXelements 
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Figure 3.17: Surface representation for the cylindrical region of the synthetic object displayed in 

VXelements 

 
 

 
 
 
 

Figure 3.18: Merging the ridge and planar area obtained from the synthetic object 
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As indicated by the green braces in Figure 3.18, different patches are selected and then as 

pointed by the red braces, maximum distance and the smoothing layer for merging the 

patches is selected. Finally, by using the “Apply” button the different selected patches are 

merged together. 

The “Max distance” indicates the maximum distance between the different patches that is 

needed for the merging model. The “Smoothing layer” is the parameter that could smooth 

the boundary’s vertices of each mesh.  

In this example, the Max distance is chosen as to 5 mm and the smoothing layer is chosen as 

“2”. The spike level has been set to “25” and the smooth weight has been also set to “25”. 

Then these parameters are applied to the merging patches. These values may vary depending 

of the changes that need to be make in each mesh. 

The final result of the merging patches in order to achieve a single model for the synthetic 

data generated in MATLAB  is shown in Figure 3.19.  

 
 

 

 

 

 

 

 

 

 

 

Figure 3.19 : The result of merging the different patches for the synthetic data. 

 

The final model in Figure 3.19 is as expected. To achieve a smoother mesh, the smooth 

weight parameter could be increased.  

 

Figure 3.20 (a) illustrates the results of merging four different patches to achieve a single 3D 

mesh of the object scanned by the HandyScan and Figure 3.20 (b) and 3.20 (c) show the 

single mesh achieved after merging the patches. As shown in Figure 3.12 (b) to Figure 3.15 
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(b), some part the regions fitted by high order surface representation are bumpy, which can 

be removed in the VXelements application. 

 

 
 

 
Figure 3.20: Merging patches for the 3D point collected by the HandyScan Creaform scanner. (a) 

Merging four different patches (b) 3D mesh achieved by merging (c) different view of the 3D mesh 

 

 
 
 

 

  

(a) 

 

(a) 

(c) 

 

(c) 

(b) 

 

(b) 
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3.7. Experimental results achieved of the implementation in C++ 

 

Due to the limitation of the memory in MATLAB, using large objects to show the results of 

our proposed approach was a problem. To remove the shortcomings of this problem, 

Christophe Bolduc has implemented our approach during a summer internship in C++. Figure 

3.21 to 3.23 illustrates our approach by this C++ implementation for different large objects.  

The results shown in Figure 3.21 is for a cube. It is clear that the faces of the cube are planar. 

The result shown in Figure 3.21 (b) is demonstrate our expectation to see the planar surface 

type in each face of the cubic shape. While the edges are mix of peak and ridge surface types. 

The resolution for the vector field is consider 40 × 40 × 40  for this object. The final model 

of the cube is shown in Figure 3.21 (c). 
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Figure 3.21: Results of the proposed methods on a cube object. (a) Object mesh data (b) Identifying 

different surface type (c) constructed model with 40×40×40  resolution in vector field. 

 

The results shown in Figure 3.22 are for an electrical outlet. The area indicated by red arrows 

are planar and the region indicated by blue arrows are spherical. The results shown in Figure 

3.22 (b) and 3.22 (d) demonstrate our approach and the results are obtained as expected.  The 

final model of the electrical outlet with 50 × 50 × 50 resolution for vector field is shown in 

Figure 3.22 (e). 

 

 

 

(a) 

 

(a) 

(b) 

 

(b) 

(c) 

 

(c) 
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Figure 3.22: Results of the proposed methods for an electrical outlet. (a) , (b) Object mesh data (c)  , 

(d) Identifying different surface types. (e) Constructed model with 50×50×50 resolution in vector 

field 
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(a) 

(d) 

 

(d) 

(e) 

 

(e) 
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Figure 3.23: Results of the proposed methods for a car body. (a) Object mesh data (b) Identifying 

different surface types. (c) Constructed model with 50×50×50  resolution in vector field 
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Figure 3.23 illustrate the results for car body. It is clear that the car side windows, and some 

areas close to the car doors are basically planar and the body specially around the wheels is 

spherical.  

Figure 3.23 (b) validate the identification surface types as expected. Planar region are shown 

in red, peak region are shown in blue. The final model achieved with 50 × 50 × 50  

resolution in vector field is shown in Figure 3.23 (c).  

 

3.8. More results for different sample objects obtained in MATLAB  
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(a) 

 

(a) 
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Figure 3.24 : Results of the proposed method on a teapot. (a) Object mesh data. (b) Identifying 

different surface types. (c) Different views of the constructed model after applying the post 

processing methods. Voxel size = 6mm 

 

It is apparent that for the teapot that the main body is basically cylindrical. And it is also clear 

that the knob of the teapot is peak and the spout is a saddle surface. Figure 3.24 (a), (b) show 

the main body in green color, which is a ridge surface, and the knob in blue colour, which 

demonstrate that the region is peak as expected. Different views of the constructed model of 

the teapot after applying the post processing methods with 6 mm resolution is illustrated in 

Figure 3.24 (c). 

 

 

 

 

 

  

 

 

 

 

 

Figure 3.25: Results of the proposed method on a Bunny. (a) Object mesh data. (b) Identifying 

different surface types. (c) Constructed model after applying the post processing methods. Voxel 

size = 6mm 

(a) 

 

(a) 
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It can be observed on the model data shown in Figure 3.25 (a) that the regions around the 

muzzle, nose, belly and tail are peak and the regions inside the ears and between the legs are 

saddle. The region between the leg and belly are valley. So as expected, Figure 3.25 (b) shows 

the region around expected peak region in blue and voxels around the expected valley region 

in black, and expected saddle surface in cyan. The constructed model after applying the post 

processing methods with the 6 mm resolution in the vector field is shown in Figure 3.25 (c). 

 

Figure 3.26 shows the result of our approach on a pure synthetic saddle shape in voxel size 

equal to 6 mm. Figure 3.26 (a), illustrate identification of surface type. It can be seen that just 

a small amount of voxels around the edge belonging to the spherical surface types, the rest 

are saddle. Figure 3.26 (b) show the final model after applying the post processing approach. 

 

 

 

 

 

 

 

 

 

 

Figure 3.26 : Results of the proposed method on a synthetic saddle data. (b) Identifying different 

surface types. (c) Constructed model after applying the post processing methods. Voxel size = 6 

mm 
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Figure 3.27 : Results of the proposed method on a synthetic plane data. (b) Identifying different 

surface types. (c) Constructed model. Voxel size = 6 mm 

 

Figure 3.27 shows the result of our approach on a pure synthetic planar shape in voxel size 

equal to 6 mm. Figure 3.27 (a), illustrate identification of surface type. Figure 3.27 (b) shows 

the final model after applying the post processing approach. 
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Conclusion 
 

 The recent availability of powerful 3D scanning devices has made it possible to capture very 

large sets of points at the surface of objects of various sizes such as man-made objects up to 

car-sized objects. These scanners provided 3D point cloud data for application such as 

computer-aided design, reverse engineering, metrology, industrial inspection and virtual 

reality to name a few. Transforming an unstructured set of 3D points captured by these 

devices into a meaningful digital representation of the scanned object is called 3D surface 

reconstruction. 

Tubic et al. [5] proposed a novel real-time implicit representation technique called the vector 

field framework, in which registration, integration and visualization can be achieved in real 

time. A major advantage of the vector field representation is that it encodes the surface 

normal as well as information on the nearest neighbors in each voxel, thus enabling nearest 

neighbor search in linear time complexity. However, if an accurate model needs to be built, 

the voxel size must be small which may lead to huge memory requirements. 

 

 In this thesis, a set of approaches has been presented for the accurate reconstruction of the 

model of an object while keeping the memory requirements as low as possible. 

The contributions of this thesis are: 

1) An approach of the identification of six different surface types using covariance-

based differential geometry applied to the vector field implicit representation. 

2) A surface variation approach in the vector field representation to select an optimal 

voxel size. 

3) A segmentation algorithm to connect the neighboring voxels belonging to the same 

surface type. 

4) An implicit surface fitting approach to represent each segment by a high order surface 

representation 
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5) An approach to blend the different surface patches and to produce a non-overlapping 

mesh as a final model. 

Overall, we demonstrate that it is possible to combine covariance-based differential geometry 

and implicit surface representation methods to perform the identification of different surface 

types of an unorganized point cloud (and not just a range map) into six surface types. The 

advantages of combining covariance-based differential geometry and implicit surface 

representation are that the initial segmentation does not require surface fitting, 

parametrization and complex calculations nor does it require that all points be processed, thus 

reducing computational complexity. The key point in our approach is that instead of working 

with points, we are working with voxels and their neighbors, which clearly reduces the 

computational complexity.  Since the number of voxels is much smaller than the number of 

points which can amount to several millions. 

Choosing a random voxel size in 3D volumetric representation is not optimal. The surface 

variation method represented in the vector field enables the objective selection of the optimal 

voxels size while keeping the memory consumption as low as possible and still achieve an 

accurate model of the surface. 

The 3L-Implict B-Splines method is adapted to represent each segment of the different 

surface types by a high order model. At the end, different surface patches need to be blended 

to achieve a single model as our final goal. 

To blend the patches, VXelements is adapted to finalize the blending of these patches and 

the construction of the final model. 

By comparing our approach with an alternative approach such as quadratic fitting, differential 

geometry approach [31] , it can be observed that since we are working with voxels instead of 

working with each point the computational performance is much better than the alternative 

approaches. Our approach can manage memory requirements by choosing an optimal voxel 

size for the vector field and reduces the computational complexity because it can segment an 

unorganized set of points without any surface fitting and the estimation of derivatives. The 

vector field approach combined with the marching cubes requires very small voxels since the 
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planar approximation must be satisfied.  In contrast, since a higher-order surface fitting is 

used, there is no need for satisfying the planar approximation everywhere on the surface. 

The acquisition of the point cloud data has been achieved with handheld scanners used in 

metrology applications.  Our approach has been validated on synthetic data as well as point 

clouds borrowed from common datasets.  Scans obtained from commercial metrologic 

handheld 3D sensors are also used for validation.  

For future work, to improve the algorithm for identifying different surface types, an approach 

to find the eight different surface types instead of six different surface types without requiring 

parametrization and surface fitting could be implemented. By using the eight different surface 

types the accuracy of the reconstructed model could be could improved. Moreover, the 

quality of the fitting could also be improved.  
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