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Abstract: Activity cliffs (ACs) are formed by pairs of 

structurally similar compounds with large differences in 
potency. Predicting ACs is of high interest in lead 
optimization for drug discovery. Previous AC prediction 
models that focused on matched molecular pair (MMP) 
cliffs produced adequate performances. However, the 
extrapolation ability of these models is unclear because 
the main scaffold for MMPs, the core structure, could 
exist in both training and test data sets. Also, 
representation of MMPs did not consider the attachment 
points where the core and R-group substituents are 
connected.  

In this study, we aimed to improve a ligand-based AC 
prediction method using molecular fingerprints. We 
incorporated applicability domain, which was defined using R-
path fingerprints to consider the local environment around an 
attachment point.  
Rigorous evaluation of the extrapolation ability of AC 
prediction models showed that MMP-cliffs were accurately 
predicted for nine biological targets. Furthermore, 
incorporation of training MMPs with cores distinct from those 
of test MMPs improved the predictability compared with using 
training MMPs with only similar cores. 
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1 Introduction 

Activity cliffs (ACs) are formed by pairs of structurally similar 
compounds with large differences in potency.[1,2] ACs can be 
found during lead optimization in drug discovery because a 
series of analogous compounds are synthesized. Modifying R-
group substituents to find compounds with better 
characteristics, including absorption, distribution, metabolism, 
and toxicity,[3,4] is a common optimization approach. A useful 
representation of structural similarity among such analogous 
compounds is the matched molecular pair (MMP) formalism. 
An MMP is a pair of compounds that share a core substructure 
and differ at a single site.[5] ACs based on MMPs, termed 
MMP-cliffs, are used to associate potency change with the 
corresponding substructure change.[6] 

The existence of MMP-cliffs in a series of analogous 
compounds indicates discontinuity of structure–activity 
relationships (SARs). Although this might impair rational 
compound development, MMP-cliffs help to understand 
molecular interactions between a compound and a protein 
target by focusing on the key interactions suggested by 
structural differences among MMP-cliffs.[7] Hence, prior to 
synthesis of compounds, prediction of individual 
compounds forming an MMP-cliff is of great importance.  

In ligand-based approaches, predicting ACs is 
fundamentally inapplicable in quantitative structure–
activity relationship (QSAR) models.[8] The similarity 
principle in QSAR, which states that similar compounds 
have similar properties,[9] is not valid in AC prediction. 
Therefore, ordinal descriptors, such as molecular weight, 
number of hydrogen bond donor/acceptor atoms, and 
lipophilicity (logP), cannot be used for this purpose. 

Previous approaches to the prediction of MMP-cliffs 
have taken both core and substituents information into 
account by introducing a kernel function or a set of 
engineered descriptors.[10,11] Combining support vector 
machine (SVM) models[12] with a well-designed kernel 
function (MMP kernel) specified for AC prediction gave 
sufficient overall predictivity for test MMP-cliffs. However, 
because of the random split of training and test data, the 
extrapolation ability of these models, i.e., their predictive 
performance when applied to an MMP with a core 
structure that is not in the training data set, has not been 
investigated. Furthermore, because the MMP kernel was 
the multiplication of individual kernels for a core and 
substituents, attachment points, which are the connection 
point between a core and a substructure inside the 
compound structure, were not considered at all. Another 
approach to MMP-cliff prediction used the reaction-based 
representation for MMPs.[11] The prediction performance 
of this approach was similar to those of the SVM models 
that used an MMP kernel. Although a validation scheme 
for the AC prediction models was carefully set up, the 
same core structures between training and test 
compounds might exist, leading to a limited estimation of 
the extrapolation ability of the models.  
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In this study, we aimed to improve the AC prediction 
method previously proposed by Heikamp et al.[10] and 
investigated the extrapolation ability of AC prediction 
schemes. The proposed AC prediction method that uses 
R-path fingerprints[13] to consider the local environment 
around attachment points performed better than a 
conventional one when applicability domain of the 
prediction models was introduced. Because R-path 
fingerprints can quantify similarity focusing on an 
attachment point, MMP cores with distinct attachment 
points can be correctly quantified (vide infra). For rigorous 
validation of the extrapolation ability of AC prediction 
models, MMPs were split into training and test data sets 
so that no MMP cores and compounds overlapped 
between the two data sets. 

We found that for the nine selected biological targets, 
MMP-cliffs were accurately predicted after taking 
applicability domain into account. In addition, instead of 
using only MMPs with similar cores as the training set, 
incorporating MMPs with distinct cores from the test 
MMPs into the training data set improved the prediction 
performance. 

2 Computational Methods 

2.1 Data Sets 

Nine protein targets were selected based on the number 
of active compounds. Compounds active against the 
protein targets were extracted from the ChEMBL 
database (version 24)[14] using the following criteria: 
maximal assay confidence score of 9, interaction 
relationship type ‘D’, and equilibrium constant (Ki) as a 
potency measurement. When multiple Ki values were 

available for a compound, their geometric mean (the 
mean of pKi) was calculated to obtain its potency value, 
otherwise the compound was discarded. In the present 
study, MMP-cliffs were employed as a definition of ACs.[6] 
MMPs with differences in potency >2 were defined as ACs 
and <1 as non-ACs. The other MMPs (differences in 
potency 1–2) were discarded. Target-wise MMPs were 
generated systematically as described previously.[10] 
MMPs were generated computationally using the efficient 
algorithms[15] implemented by Wawer and Bajorath.[16] For 
MMP generation, the following size restriction criteria 
were applied: substructure exchange no more than 13 
heavy atoms, and maximum difference between 
substructures of a compound no more than eight heavy 
atoms. MMPs that shared the same core were collected 
as a matching molecular series (MMS).[17] In our analysis, 
MMSs containing at least one AC MMP and one non-AC 
MMP were used. Data set profiles for the nine targets are 
provided in Table 1. 

2.2 MMP Fingerprints 

MMP fingerprints were assembled as described previously[10] 
as shown in Figure 1. From each MMP, fingerprints were 
calculated individually for one core and a pair of substructures. 
Extended connectivity fingerprints of bond diameter 4 
(ECFP4)[18] were used as the fingerprint algorithm. The 
calculated identifiers of ECFP4 were folded into a 4096-bit 
vector using the modulo operation. The individual vectors 
were concatenated after changing bits with one to zero when 
the bits were both on for the substructures, to focus on the 
transformation.

Table 1. Profiles of the Data Sets Used in This Study. 

ChEMBL 
ID 

Target Abbreviation #CPDs #MMPs #MMSs 
Potency (pKi) MW #HA 

Max Min Max Min Max Min 

244 Factor Xa fxa 632 4728 62 11.40 3.90 711.91 361.46 50 25 

259 
Melanocortin 

receptor 4 
mc4 444 2877 39 9.30 4.07 672.57 447.06 46 28 

237 
Kappa opioid 

receptor 
kor 555 6590 50 10.82 4.09 605.64 271.4 44 20 

204 Thrombin thr 221 840 28 10.30 2.81 693.86 280.75 50 19 

217 
Dopamine D2 

receptor 
dd2 612 6574 56 10.24 2.85 588.33 205.3 40 15 

226 
Adenosine A1 

receptor 
aa1 621 2624 75 12.23 4.60 616.47 215.21 40 12 

251 
Adenosine A2a 

receptor 
aa2 989 5192 105 11.38 4.00 713.87 230.23 53 13 

261 
Carbonic 

anhydrase I 
ca1 293 818 51 11.00 -4.18 702.66 154.12 50 11 

205 
Carbonic 

anhydrase II 
ca2 362 994 69 11.00 0.70 678.36 153.14 42 11 

For each data set, the CHEMBL ID, number of compounds (CPDs), number of matched molecular pairs (#MMPs), number of 
matching molecular series (#MMSs), maximum and minimum potencies (pKi values), maximum and minimum molecular weight 
(MW), and heavy atom counts (#HA) are listed. 
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Figure 1. Overview of Fingerprint Generation for MMP based 
Activity Cliff Pairs. A matched molecular pair (MMP) is formed 
by two compounds with an activity cliff relationship. The two 
compounds share the main scaffold (core) and differ only in their 
substructures. Generally, one core and two substructures are 
present in MMPs. MMP fingerprint generation starts from 
individual fingerprints for these three parts. The fingerprints for 
the two substructures were concatenated after changing bits 
with one to zero when the bits were both on, to focus on the 
molecular transformation. Then the core fingerprint was 
appended to the concatenated vector. Two types of MMP 
fingerprints (Forward and Reverse) were generated in opposite 
concatenation order of substructure fingerprints. 

Two MMP fingerprints were generated in the opposite 
concatenation order of substructure fingerprints, termed 
Forward and Reverse. In the model construction phase, a 
substructure for the lower potent compound was assigned 
to be the first and for the higher potent compound it was 
assigned to be the last (Forward in Figure 1). 

2.3 AC Prediction Models 

AC prediction models have been constructed using support 
vector machine (SVM), which is a supervised learning 
algorithm that aims to identify a hyperplane for separating two 
classes while maximizing the margin from the hyperplane.[12] 
SVM was proposed originally as a linear classification method 
but it can be extended to a nonlinear classification method 
using a kernel function. In this study, we used an MMP kernel 
based on Tanimoto similarity[19] of MMP fingerprints for 
nonlinear projection.[10] A schematic representation of an 
MMP kernel calculation is shown in Figure 2. Two individual 
Tanimoto kernel functions for the core and substructures were 

 

Figure 2. Schematic Representation of the Kernel Function for 
Matched Molecular Pairs (MMPs) for Activity Cliff Prediction. 
Following the procedure shown in Figure 1, MMP fingerprints 
were generated for the MMPs. The kernel function is the 
multiplication of two individual kernels for cores (represented as 
c) and substructures (represented as s). 

calculated and combined by multiplication. Hyperparameter 
C in SVM was set to 1.0, which is the default setting in scikit-
learn, a machine learning library,[20] because of the limited 
number of MMPs in the training data sets. 

2.4 Evaluation of AC Prediction Models 

The proposed AC prediction scheme illustrated in 
Figure 3, takes applicability domain of the SVM models 
into account. The applicability domain can be determined 
based on the distance to the training data set.[21] In our 
prediction scheme, the distance metric was Tanimoto 
similarity using R-path fingerprints to evaluate similarity 
by considering the attachment point. An MMS was 
iteratively selected as a test set and the other MMSs 
formed the training set to avoid using the same core in 
both data sets (leave one MMS out). All compounds in the 
test MMPs were different from those in the training data 
set simply by eliminating training MMPs consisting of 
duplicated compounds. For each test MMS, similarity 
values to the training MMS cores were calculated. When 
at least one training core with a similarity value over a set 
threshold was found, an SVM model was constructed and 
the AC was predicted accordingly. Otherwise, the test 
MMS was labelled as unpredictable and no prediction was 
made. All the MMPs, except those in the test MMS, were 
used in the training data set. MMPs in an MMS that had a 
core that was dissimilar to that of the test MMS were 
included in the training data set. The effect of 
incorporating MMPs distinct to test MMPs will be 
discussed in section 3.1. Each SVM model was trained 
using Forward MMP fingerprints and tested using both 
Forward and Reverse MMP fingerprints. Therefore, the 
AC prediction models learned whether an MMP was AC 
or non-AC for a chemical transformation from the first 
substructure to the second substructure (low to high). The 
interpretations of the model outputs are summarized in 
Table 2. In this study, true-positive (TP) was assigned 
only to the AC MMPs that were previously predicted as 
AC using Forward fingerprints and non-AC using Reverse 
fingerprints. True-negative (TN) was assigned to the non-
AC MMPs, predicted as non-AC using both fingerprints. 
False-positive (FP) was assigned to the non-ACs initially 
predicted as AC using either Forward or Reverse 
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Figure 3. Model Construction and Prediction Scheme on the 
Basis of Core Structures. The activity cliff (AC) prediction 
scheme for testing the extrapolation ability of SVM models is 
shown. Matched molecular pairs (MMPs) with the same core 
were joined as a set of MMPs. Training compounds had cores 
different from that of the test set. Each MMP set (each core) was 
iteratively selected as a test set and the rest of the cores formed 
the training set. Training data selection was based on the 
similarity of cores to the test cores using R-path fingerprints. 
When at least one training core similar to the test core was found, 
an SVM model was constructed and the AC was predicted 
accordingly. Otherwise, the test data were labeled as 
unpredictable and the prediction was not performed. 

Table 2. Evaluation of the Activity Cliff (AC) Prediction Results 

Actual class Predicted class Interpretation 
Forward Reverse 

AC AC AC - 

AC AC Non-AC TP 

AC Non-AC AC FP 

AC Non-AC Non-AC FN 

Non-AC AC AC - 

Non-AC AC Non-AC FP 

Non-AC Non-AC AC FP 

Non-AC Non-AC Non-AC TN 
Interpretation of the label assignment from the actual class and the 
predicted results is shown. TP, true-positive; FP, false-positive; TN, 
true-negative; FN, false-negative. 
 
fingerprints and to the AC MMPs predicted as non-AC 
using Forward and AC using Reverse fingerprints. These 
MMPs were regarded as FP because the direction of 
potency was wrong. False-negative (FN) was assigned to 
the AC MMPs predicted as non-AC using both fingerprints. 
When predicted classes were AC using both types of 
fingerprints, the results were regarded as inconsistent 
and ignored. The AC prediction model performance was 
measured by Matthew’s correlation coefficient (MCC) 
based on these labels. 

2.5 Incorporation of MMS with Dissimilar Cores into 
Training Data Set 

For accurate prediction of activity for a test compound, the 
similarity principle[9] requires that the compounds similar to the 

test compound are included in a training data set. We 
investigated whether using only the MMS with cores that were 
similar to those of the test MMS was sufficient or whether 
incorporating MMS with cores that were dissimilar to those of 
the test MMS might improve predictability of the models. For 
this investigation, two types of analyses were conducted.  

First, the training MMS core was kept similarity to the 
test MMS core using R-path fingerprints. For each 
biological target, the thresholds were increased from 0.2 
to 0.8 in steps of 0.1, and the performances of the AC 
prediction models were evaluated.  

Second, two types of training data sets were prepared 
and AC predictions were conducted using the models built 
with these data sets. One data set contained only an MMS 
with cores similar to the test MMS core (only similar cores), 
and the other data set contained all the MMPs in the 
original training set (filtered cores). The performances of 
the models with these two types of training data sets were 
expected to reveal the effect of incorporating MMPs with 
distinct cores from the test set into the training data set. 
The threshold for defining similar core was set as 0.6 
using R-path fingerprints. 

3 Results and Discussion 

3.1 Incorporation of MMS with Dissimilar Cores into 
Training Data Set 

The leave one-MMS out MCC values for the nine biological 
targets are shown in Figure 4.  

 

Figure 4. Effects of Incorporating Distinct Cores from a Test 
Data Set into the Training Data Set. Matthew’s correlation 
coefficient (MCC) values indicate the model performance for 
each target. Only similar (orange), models built using matched 
molecular pairs (MMPs) with cores similar to those in the test 
data set; Filtered (green), models built using MMPs with both 
similar and dissimilar cores to those in the test data set. The 
data set abbreviations (fxa, mc4, kor, thr, dd2, aa1, aa2, ca1, 
ca2) are defined in Table 1. 

For seven of the nine biological targets, the filtered 
model had higher MCC values than the only similar model, 
which indicated that to obtain AC prediction models with 
high predictability the training data set should contain 
MMPs with both similar and dissimilar cores. For the AC 
prediction models that were trained using solely MMPs 
with similar cores (only similar), the contribution of the 
substructure kernel became dominant in the MMP kernel 
function. Substructure fingerprints are usually very sparse 
because, by definition, substructures were smaller than 
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cores, which made extrapolation based on the 
substructure fingerprints difficult. 

Conversely, the filtered method was able to build 
robust AC prediction models using information about both 
core and substructures. However, for the adenosine A2a 
receptor MMPs, the only similar method performed better 
than the filtered method; only 5 FP MMPs with the only 
similar method but 39 FP MMPs with the filtered method. 
We manually examined the FP MMPs in the test set and 
found that most of them shared substructure pairs with 
training MMPs. Two such typical MMPs are depicted in 
Figure 5. The similarity between these two MMPs in the 
MMP kernel was 0.49 (core part 0.49; substructure part 
1.0), which was much higher than the average pairwise 
similarity of the training MMPs (0.0081). Furthermore, this 
was the maximum similarity value between the test MMP 
and training MMP data sets in terms of the kernel function. 
Because the training MMP was categorized as an AC, it 
was reasonable to speculate that the test MMP also was 
an AC. This situation might be avoided by introducing a 
stringent similarity threshold value for selecting the test 
MMS that can be predicted using AC prediction models in 
the proposed scheme (Figure 3). 
 

 

Figure 5. Typical MMPs for which the AC Prediction Model 
Failed Using the filtered Data Set. The activity cliff (AC) 
prediction failed for the matched molecular pair (MMP) in the test 
data set (left) using the filtered data set. The training MMP (right) 
was not included in the only similar data set but was included in 
the filtered data set. 

The three targets: thrombin (thr), carbonic anhydrase 
I (ca1), and carbonic anhydrase II (ca2), for which the 
filtered method outperformed the only similar method by 
the greatest margins, were chosen to further investigate 
the rationale of introducing MMPs with distinct cores in 
training data sets. An additional method, termed “only 
dissimilar” was tested. For these three targets, AC 
prediction models were trained only on MMPs with cores 
dissimilar to the test. Similarity thresholds varied from 0.2 
to 0.6 by 0.2 using R-path fingerprints. 

When using a similarity threshold of 0.6, the MCC 
values were 0.46 and 0.60 for ca1 and ca2, respectively. 
For thr, models predicted non-cliff for all the test MMPs, 
failing to calculate the MCC values. By reducing the 
similarity threshold to 0.4 (0.2), the MCC values 
decreased to 0.33 (0.28) and 0.51 (0.39) for ca1 and ca2, 
respectively. Therefore, the only dissimilar method was 
inferior to the filtered method for the three targets. 

During the validation process in this study, the same 
training compounds as in the test set were eliminated, as 
mentioned in 2.4 section. In this situation, diverse MMPs 
with both distinct and similar cores were found to be 
needed for more accurate AC prediction.  

 

3.2 AC Prediction in MMS 

All the studies so far focused on predicting ACs for MMPs 
with cores different from in training data sets. AC 
prediction within an MMS (termed shared core) was also 
conducted along with adding MMPs with dissimilar cores 
into training. Similarity threshold was set to 0.6 and 
adding MMPs with dissimilar cores to the training was 
controlled by adjusting the number of training MMPs in the 
MMS to be a certain ratio. Three ratios: 0.25, 0.5 and 0.75 
were tested. Training MMPs with only dissimilar cores 
were also tested. In this case, the number of MMPs were 
set to the same as for the ratio of 0.25. 

The MCC values were calculated by leave-one-out 
cross validation. For each test MMP, the same 
compounds in the training data set were eliminated before 
model construction. Each prediction was performed three 
times considering the effect of random sampling of 
training MMPs with dissimilar core except for a ratio of 1.0 
(within MMS). The MCC values for the three targets are 
reported in Figure 6. AC prediction for the shared core 
showed the least MCC values for the three targets. 
Performances improved as the number of MMPs with 
dissimilar cores in training set increased. When there are 
no shared compounds between training and test, 
increasing the size of the training data set is important by 
adding MMPs with dissimilar cores. The procedure of 
eliminating overlapped compound from training set could 
explain this result. 
 

Figure 6.  Performance of the AC Prediction Models and Ratios 
of Shared MMPs in the Training Set. The graphs show the 
Matthew’s correlation coefficient (MCC) values for the test 
activity cliff (AC) pairs in the selected three biological targets. 
The ratios of training matched molecular pairs (MMPs) sharing 
the core with test MMPs are indicated on the x-axis. The ratio 
decreased when the training set included more MMPs with cores 
dissimilar to test cores. The data set abbreviations (thr, ca1, ca2) 
are defined in Table 1. 

3.3 Effect of Controlling Applicability Domain on Model 
Performance 

The most straightforward application of R-path fingerprints is 
to use them to represent MMP fingerprints. For the nine 
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targets, we compared the performances of the AC prediction 
models using R-path fingerprints to represent MMP 
fingerprints with their performances using ECFP4. We found 
that their performances using ECFP4 were slightly better than 
their performances using R-path fingerprints. The prediction 
results are shown in Supporting information 1. Therefore, in 
the following analysis, R-path fingerprints were used only for 
applicability domain definition and ECFP4 was used to 
generate MMP fingerprints.  

The proposed AC prediction scheme considering 
applicability domain of models is shown in Figure 3. From the 
discussion in section 3.1, including MMPs with cores both 
similar and dissimilar to the test MMP was important to 
accurately predict the AC for the test MMP. Therefore, after 
deciding whether a test MMP was eligible or not, an AC 
prediction model was constructed using all the MMPs, except 
for those in the test MMS. The results are reported in Figure 
7. 

 

 

Figure 7. Performance of the AC Prediction Model and Number 
of Applicable Test Compounds. The graphs show the Matthew’s 
correlation coefficient (MCC) values for the test activity cliff (AC) 
pairs in the nine biological targets. The ratios of predictable 
matched molecular pairs (MMPs) for all test MMPs are indicated 
on the x-axis. The ratio decreased when the thresholds of R-path 
similarity for selecting training cores became tighter. The data 
set abbreviations (fxa, mc4, kor, thr, dd2, aa1, aa2, ca1, ca2) 
are defined in Table 1. 

Overall, by restricting eligibility for test MMS, the MCC 
values increased monotonically, except for thrombin. This 
shows that core distance using R-path fingerprints was a 
good indicator for understanding the applicability domain 
of the models. A previous study reported that limiting 

MMPs inside the applicability domain of an AC prediction 
model that was based on MMP-cliffs did not improve the 
performance of the model.[11] In that study, R-path-based 
distance to the training data set was used to define the 
applicability domain, whereas bounding box approaches 
were used to delineate the chemical space zone of the 
training MMPs. 

For thrombin, restriction of test MMPs did not improve 
the model performance, and only using substructure 
information was sufficient to accurately predict ACs (MCC 
= 0.71). This indicated that the core information for 
thrombin was not important, and the applied restriction 
was not effective. 

Our analysis indicated that to accurately predict the 
AC for a test MMP, incorporating MMPs (or MMS) with 
cores similar to that of the test MMP was necessary. 
Furthermore, the proposed prediction scheme worked 
better than the conventional AC prediction modelling 
methods by introducing training MMPs with cores 
dissimilar to those in the test MMPs. 

4 Conclusions 

Predicting whether an analogous compound forms an MMP-
cliff is of importance in the lead optimization phase of drug 
discovery. Previous ligand-based AC prediction methods 
using MMP-cliffs were inefficient at evaluating the 
extrapolation ability of AC models with MMPs in training and 
test data sets that shared the same core. 

In this study, we improved the AC prediction method 
by incorporating applicability domain using R-path 
fingerprints that correctly represented topological 
information around attachment points of MMP cores.  

The proposed method achieved higher prediction 
performance for the MMPs inside the applicability domain 
of models by discarding MMPs outside of the applicability 
domain. Incorporating MMPs with cores that were distinct 
from the core of a test MMP into a training data set further 
improved the predictability of the models in terms of the 
MCC. 
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