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SUMMARY Analyzing aging-induced delay degradations of ring oscil-
lators (ROs) is an effective way to detect recycled field-programmable gate
arrays (FPGAs). However, it requires a large number of RO measurements
for all FPGAs before shipping, which increases the measurement costs. We
propose a cost-efficient recycled FPGA detection method using a statistical
performance characterization technique called virtual probe (VP) based on
compressed sensing. The VP technique enables the accurate prediction of
the spatial process variation of RO frequencies on a die by using a very
small number of sample RO measurements. Using the predicted frequency
variation as a supervisor, the machine-learning model classifies target FP-
GAs as either recycled or fresh. Through experiments conducted using 50
commercial FPGAs, we demonstrate that the proposed method achieves
90% cost reduction for RO measurements while preserving the detection
accuracy. Furthermore, a one-class support vector machine algorithm was
used to classify target FPGAs with around 94% detection accuracy.
key words: field-programmable gate array (FPGA), recycled FPGA detec-
tion, compressed sensing, FPGA fingerprinting

1. Introduction

With the continuous expansion of the IC supply chain, coun-
terfeit electronic components are becoming a global threat
owing to the influence of the global economy. Presently,
in addition to causing financial losses to IC manufactur-
ing companies, counterfeit ICs also lead to vulnerabilities
in critical applications such as automobile, medical, and
communication systems. Counterfeit ICs can be classified
as recycled, remarks, overproduced, defective, cloned, etc.
Among them, recycled components are the most prevalent
ones and more than 80% of counterfeit components are re-
cycled; that is, they have previously been used as compo-
nents as reported in [1]. Field-programmable gate arrays
(FPGAs) are now widely used because of their promising
benefits such as low development cost and short time-to-
market, thus, even recycled FPGAs are repeatedly used ow-
ing to today’s complex electronics supply chain [2]. Be-
cause of their prior usage, recycled FPGAs increase relia-
bility risks, and their performance degrades over time. It is
a challenging and costly task to prevent this kind of infiltra-
tion in critical applications.

Several researche works aim to detect recycled FPGAs
efficiently. Ring oscillator (RO) based delay information has
been used to identify recycled FPGAs in [3]–[5]. Recycled
FPGA RO frequencies are degraded owing to usage when
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compared to a fresh FPGA [6], [7]. A one-class support
vector machine (SVM) [8] is used as a fresh/aged classi-
fier compared to known fresh FPGAs [3], [5]. In [4], [5],
the ROs are designed individually in all logic blocks. The
extracted measured frequencies from the ROs represent the
spatial process variation [9], [10] as a unique fingerprint
(FP). In [5], machine-learning model is effectively applied
to detect recycled FPGAs using the FPs through within-die
process variation modeling. Although conventional meth-
ods detect recycled FPGAs effectively, many measurements
of the ROs are required to exhaustively capture the aging
effect, and this is unrealistic in terms of measurement time
and cost.

In this paper, we propose a novel recycled FPGA detec-
tion method with a low measurement cost without losing the
detection accuracy. This method exploits recent advance-
ments in statistics [11], [12] and semiconductor characteri-
zation for the development of a low-cost silicon testing and
characterization technique, called virtual probe (VP) [13].
In the proposed method, very few sample frequency mea-
surements are conducted compared to the conventional FP
technique. The VP technique then predicts the spatial vari-
ation of frequencies on the FPGA, i.e., the FP, based on a
few sampled frequencies. The machine-learning algorithm
trains a model using the predicted frequencies to detect re-
cycled FPGAs. The VP technique utilizes the sparsity of
frequency-domain components on the spatial process varia-
tion for the prediction. As the process variation on an FPGA
gradually changes [14], [15], its high-frequency components
are almost zero. Hence, the VP technique can be incor-
porated into the fingerprinting technique with remarkable
affinity. Through experiments of the silicon measurements
using 50 commercial FPGAs, the effectiveness of the pro-
posed method is evaluated on the basis of various samples
of measured frequencies.

The main contribution of this study is summarized as
follows:

• The proposed method for detecting recycled FPGAs
utilizes the VP technique to reduce the number of the
RO characterizations in the fingerprinting.
• Silicon measurement results of 50 commercial FPGAs

confirm that the VP technique successfully estimates
the spatial variation on the FPGAs with a prediction
error of 1.4% using only 10% samples.
• Based on frequencies predicted using the VP tech-

nique, the recycled FPGAs are detected using a
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machine-learning algorithm with more than 94% detec-
tion accuracy using only 10% samplings while keeping
the degradation of the accuracy only 2% compared to
the conventional method based on the full FP measure-
ment.

The remainder of this paper is organized as follows.
In Sect. 2, preliminaries including the conventional recycled
FPGA detection methods and the VP technique are intro-
duced. Section 3 describes the VP-based recycled FPGA
detection method. The experimental procedure and results
of the silicon measurement are discussed in Sect. 4. Finally,
we conclude our paper in Sect. 5.

2. Preliminaries

2.1 Recycled FPGA Detection

Figure 1 shows the flow of the recycled FPGA detection
method proposed in [3] where the existence of golden FP-
GAs is assumed. It consists of the following three steps. (1)
Multiple ROs are constructed on all the golden FPGAs and
measured by the manufacturer. Recycled FPGA detection
is formulated as an outlier detection problem to classify the
FPGAs under testing (FUTs) into fresh or aged (recycled)
FPGAs. Subsequently, the measured frequencies are used
as feature vectors for machine learning. Here, if the feature
vector size is too large to successfully converge the training,
principle component analysis (PCA) [16] is conducted to re-
duce the feature size. (2) On the user side, before an FUT
is implemented into a system, frequencies of ROs are mea-
sured in the same manner as the RO measurement of step
(1). Then, the measured frequencies are sent to the man-
ufacturer to identify whether the FUT is fresh or not. (3)
The frequencies obtained in step (2) are fed to the trained
model to test the FUT. If the FUT is previously used, some
RO frequencies will degrade owing to the aging mechanisms
including bias temperature instability (BTI) and hot carrier
injection (HCI) [17], [18]. Finally, the machine-learning
model returns the classification result to the user.

It is noted that the size of all test data is very small
(36 KB for a modern commercial FPGA) and it is not costly
to send test data to the manufacturer for the further verifica-
tion. Furthermore, over 99% of the test data can be reduced
by applying the feature engineering method proposed in [5].
Thus, the additional cost is virtually negligible for the user.

Figure 2 shows the general architecture of an FPGA.
The discussion of the FPGA internal architecture is im-
portant to properly describe previous works. Basically, an
FPGA is composed of an array of configurable logic blocks
(CLBs) and programmable logic switches with interconnec-
tions. FPGAs can implement any logic function by appro-
priately configuring the look-up tables (LUTs). Figure 2
also simply shows the implementation of the i-stage RO
structure as an example. By connecting multiple LUTs,
multiple stage ROs can be designed in a CLB.

To enhance detection accuracy, a fingerprinting method

Fig. 1 Flow of the conventional recycled FPGA detection [3].

Fig. 2 Basic architecture of FPGA and LUT-based i-stage RO.

Fig. 3 Example of the FP using a commercial FPGA. The frequencies of
all the CLBs are shown using the grid information in the FPGA.

has been applied in [4], [5]. The method is also based on
the concept of [3] where RO-based measurements are con-
ducted for the golden FPGAs. In [3], only a few numbers
of CLBs in the FPGAs are covered in the recycled FPGA
detection. As modern FPGAs consist of huge numbers of
CLBs, it could fail to detect recycled FPGAs if the mea-
sured CLBs are not appropriately selected. In [4], all the
CLBs were used to create the FP of each FPGA to represent
a unique pattern of spatial frequency variation as shown in
Fig. 3. As the FPs differ each FPGA, it can be a feature vec-
tor in the recycled FPGA classification.

Note that, in the RO characterization, each RO should
be measured individually to avoid power or signal inter-
ference from other ROs. It is obvious that detection ac-
curacy highly depends on the number and location of the
ROs. Thus, either the volume of the measurement data must
be sufficient or the locations of the measured ROs should
be widely distributed on the FPGA for effective fresh/aged
classification; however, it imposes a huge measurement cost
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on the manufacturers. In this work, a statistical performance
characterization framework called VP technique is used to
reduce the measurement time in the RO characterization.

2.2 Virtual Probe

VP is a technique based on compressed sensing and was
originally developed for a low-cost wafer-level silicon char-
acterization [13]. In the VP technique, a subset of chips is
randomly selected on a wafer and tested; then, the perfor-
mances of the other chips are predicted through a statistical
algorithm using the information from the tested chips.

We denote g(x, y) as the two-dimensional function of
the performance metric g, such as frequency, resistance,
and leakage current, where x and y are the position coor-
dinate on a wafer and are labeled as x ∈ {1, 2, · · · , P} and
y ∈ {1, 2, · · · ,Q}. The relationship between a performance
metric and its frequency-domain component can be written
by a discrete cosine transform (DCT) as follows:

G(u, v) =
∑P

x=1
∑Q
y=1 αu · βv · g(x, y)

· cos π(2x−1)(u−1)
2P · cos π(2y−1)(v−1)

2Q , (1)

where

αu =


√

1
P (u = 1)√
2
P (2 ≤ u ≤ P)

(2)

βv =


√

1
Q (v = 1)√
2
Q (2 ≤ v ≤ Q).

(3)

Here, G(u, v) represents a set of the DCT coefficients, where
u ∈ {1, 2, · · · , P} and v ∈ {1, 2, · · · ,Q}. Equivalently, using
an inverse discrete cosine transform (IDCT), g(x, y) can be
represented as a linear combination as:

g(x, y) =
∑P

u=1
∑Q
v=1 αu · βv ·G(u, v)

· cos π(2x−1)(u−1)
2P · cos π(2y−1)(v−1)

2Q . (4)

Generally, it is trivial to uniquely determine g(x, y),
once the DCT coefficients G(u, v) are known and vice versa.
This problem can be mathematically constructed by a linear
equation as follows:

A · s = b, (5)

where

A =


A1,1,1 A1,1,2 A1,1,3 . . . A1,P,Q
A2,1,1 A2,1,2 A2,1,3 . . . A2,P,Q
...

...
...

. . .
...

AM,1,1 AM,1,2 AM,1,3 . . . AM,P,Q

 , (6)

Am,u,v = αu · βv · cos
π(2xm − 1)(u − 1)

2P

· cos
π(2ym − 1)(v − 1)

2Q
, (7)

s = [G(1, 1) G(1, 2) · · · G(P,Q)]T , (8)

and

b =
[
g(x1, y1) g(x2, y2) · · · g(xM , yM)

]T . (9)

To derive g(x, y), the DCT coefficients s need to be deter-
mined using Eqs. (5) to (9). However, we are now consider-
ing the situation where the number of samples M, taken at
some locations {(xm, ym); m = 1, 2, · · · ,M}, is much smaller
than PQ, i.e., M � PQ. Hence, the determination of s is
not easy, as Eq. (5) is an under-determined linear equation.

The VP technique determines s by assuming that it is
sparse. As the systematic component of the process vari-
ation gradually changes over a wafer, the high-frequency
components of the DCT coefficients approach zero [19].
Thus, the sparse representation assumption is reasonably
supported in the wafer-level characterization. To find the
sparse solution of s, the optimization problem is formulated
as:

minimize
s

‖s‖1

subject to A · s = b,
(10)

where ‖s‖1 is the L1-norm of the vector s. Using convex op-
timization and linear programming, the feasible sparse solu-
tion can be obtained from Eq. (10). Although, the L0-norm
provides a more accurate solution than the L1-norm, the op-
timization problem for the L0-norm is NP-hard; hence, the
L1-norm is used to solve it practically using the VP tech-
nique. Finally, once the DCT coefficients s are obtained,
the ĝ(x, y), the prediction of g at (x, y), can be calculated by
the IDCT as in Eq. (4).

Perfect recovery of the unknown coefficients s depends
on the orthonormality of A and the sparsity of s. A suf-
ficient condition to find the exact solution s is known as a
RIP condition (the condition based on restricted isometric
properties) [13]. Since the RIP condition has some compu-
tational difficulty to be directly applied, as a practical solu-
tion, it is also known that if s contains at most K (K � PQ)
non-zeros and M measurements are randomly chosen where
M is in the order of O(K · log(PQ)), the RIP condition is
almost guaranteed. See [20] for more details.

3. Recycled FPGA Detection Using the Virtual Probe
Technique

The proposed recycled FPGA detection method is still based
on the conventional method shown in Fig. 1, and its flow is
summarized in Fig. 4. Our aim is to reduce measurement
costs for golden FPGAs while preventing the degradation of
detection accuracy. For this purpose, we incorporate the VP
technique into the recycled FPGA detection flow. As the
performances of neighboring CLBs in FPGA are very sim-
ilar [14], [15], the sparse assumption is strongly supported,
and our expectations are high that the VP technique will
work very well in our recycled FPGA detection process.

With this method, the fingerprinting measurement is
assumed as with [4] to represent g(x, y) using the grid infor-
mation in the FPGA die, where the target performance g is
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Fig. 4 Flow of the proposed recycled FPGA detection.

Fig. 5 Flow of the fingerprint generation through the VP technique.

the RO frequency. A single RO is designed in each CLB and
placed in an array (x, y) using hardware macro modeling to
keep the same internal routing and logic resources [21]. Un-
like the conventional fingerprinting technique, small sam-
pled, that is, compressed, RO measurements are conducted
for M ROs, and the compressed measurement corresponds
to b in Eq. (5). Before training the machine-learning al-
gorithm, the FP is fully reconstructed, i.e., ĝ(x, y) for all
(x, y), and then the recycled FPGA classification is deter-
mined based on the fully reconstructed FPs.

The detailed flow of a portion of the VP technique in
our recycled FPGA detection is illustrated in Fig. 5. Note
that RO measurement and prediction are conducted inde-
pendently in each golden FPGA. First, the VP technique
starts to randomly select the M sampling locations for the
small measurement. To accurately predict full FPs, matrix
A needs to satisfy the RIP condition [13]. This means all the
columns of A should be orthonormal. As matrix A is deter-
mined by the sampling locations shown in Eq. (6), if a set of
bad samples is selected, A does not meet the RIP condition,
and hence, a large prediction error occurs. For better random
selection, we adopt Latin hypercube sampling [22] in this
method, as was the case in [13]. In addition, since the most

suitable A is different for each golden FPGA, the sampling
locations should be adaptively determined for each one as
shown in Fig. 5. Based on the discussion above, Eq. (5) can
be rewritten as follows:

An · sn = bn, (11)

where the subscript of each matrix and vector stands for n-
th FPGA in the golden FPGA set. Next, the selected ROs
are measured and the compressed FPs are constructed and
stored in the database for further recycled FPGA detection.
The full FP is predicted through the VP technique based on
Eq. (11) as with Eq. (5). The reconstructed FPs ĝ(x, y) are
then fed to a machine-learning algorithm as training data.

Note that the VP technique is not applied to the FUTs
on the user side. Though the golden FPGAs are thoroughly
assumed to be fresh, the FUTs may contain recycled FP-
GAs. In recycled devices, all the CLBs are not always fully
utilized. In that case, only the used LUTs will degrade, and
the smooth change of the process variation on the die will
not be observed. As a result, the sparse representation as-
sumption is not satisfied, and the VP technique will fail to
reconstruct, resulting in a large prediction error. Accord-
ingly, the proposed method applies the VP technique only
for the golden FPGAs.

We would like to note that the proposed method is to be
applicable for a large number of FPGAs since the total mea-
surement time is linearly changed as increasing the number
of FPGAs. Also, the VP-based prediction can be conducted
on a personal computer. Thus, the predictions for FPGAs
can be performed parallelly by personal computers. Fur-
thermore, our work utilizes the ML algorithm where a large
number of training samples can be easily managed.

4. Experiments

To quantitatively evaluate the effectiveness of the method-
ology, we conducted experiments using 50 Xilinx Artix-7
FPGAs [23].

4.1 Measurement Setup

In the experiments using the FPGA devices, 7-stage ROs
were designed using an XNOR based logic gate. We placed
3,964 ROs with the exception of the empty space in the
layout through hardware macro modeling using the Xilinx
CAD tool, Vivado [23], as shown in Fig. 6. Thus, a mea-
sured FP contains 3,964 RO frequencies. Figure 7 shows
the frequency measurement system to make an FP that rep-
resents the spatial variation of the frequencies. Each CLB
is configured by a single RO. A host computer controls
to start the measurement through a joint test action group
(JTAG) circuit. Each RO is activated by the selector and the
counter circuit measures their frequencies individually. The
measured frequency is then transferred to the computer. A
universal asynchronous receiver-transmitter (UART) mod-
ule is implemented as an interface between the FPGA and
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Fig. 6 An array of ROs in the Xilinx Artix-7 FPGA. A single RO is de-
signed in a single CLB. For the aged FPGA, the benchmark and LFSR
circuits are placed at the right-bottom corner.

Fig. 7 Block diagram of a frequency measurement circuit for FPGA fin-
gerprinting.

Fig. 8 Experimental setup for accelerating the aging process.

the computer with the Python programming language to col-
lect measured frequencies and store them. After completing
the measurements of all ROs, a unique FP is obtained rep-
resenting the spatial correlation of the manufacturing pro-
cess variation. We implemented this same measurement
system on the 50 FPGAs, labeled as FPGA-01 to FPGA-
50. All measurements are taken by the generated on-chip
clock frequency with the help of the system clock frequency
of 100 MHz.

A MATLAB software running in the same computer
was used to apply the VP technique on the measured fre-
quencies of the various sampling rates. In the machine
learning-based recycled FPGA detection, a Python Scikit-
learn library [24] was used to implement the machine learn-
ing algorithm.

Among the 50 FPGAs, only two FPGAs, FPGA-01 and
FPGA-02, were aged and were used as recycled FPGAs. To
accelerate the aging process, a Peltier module with a ther-
mal controller was used as shown in Fig. 8 while running
the s9234 benchmark circuit from the ISCAS’89 benchmark
circuit [25]. Random workloads were fed to the circuit by

Fig. 9 DCT coefficients of frequency of the 3,964 ROs showing sparse
representation. The coefficients values are normalized by L1-norm.

a 16-bit linear feedback shift register (LFSR) at 100 MHz.
The benchmark circuit and LFSR are placed at the bottom-
right area as shown in Fig. 6. Both the FPGAs were heated
up to 135 ◦C using the Peltier module and the random work-
load was used to achieve dynamic stress. We applied the
aging stress to the two FPGAs for two days, after which
all stresses were removed, and then FP measurements were
conducted at room temperature. We applied the aging stress
only for two days, after which all stresses were removed.
Once the temperature of FPGA returns to a room tempera-
ture, measurements were conducted. It took approximately
10 minutes from removing the stresses to the FP measure-
ment.

4.2 Results

4.2.1 VP-Based Prediction

Figure 9 shows the frequency-domain components G(u, v)
obtained from g(x, y) of fresh FPGA-01 by a DCT. It can be
observed that a large number of DCT coefficients are close
to zero. Thus, we can confirm that the sparsity of G(u, v) is
also observed in the FPGAs. This sparsity is the important
condition for successfully applying the VP technique.

Figures 10 and 11 show the heat maps of the FPs of
FPGA-01 and FPGA-02, respectively, when they are fresh.
Though we show only the FPGA-01 and FPGA-02 results
owing to page limitations, a similar trend was observed in
the other FPGAs. Figures 10(a) and 11(a) show the heat
maps of the fully-measured FP, i.e., when the VP technique
is not applied. From the figures, we can see that the fre-
quency distributions have a smooth change along the coor-
dinates. The correlation coefficient (r) between the fully-
measured of two FPs is found 0.66, where r is calculated
using Pearson correlation coefficient as:

r =

∑
x,y

(g1(x, y) − g1(x, y))(g2(x, y) − g2(x, y))√∑
x,y

(g1(x, y) − g1(x, y))2 ∑
x,y

(g2(x, y) − g2(x, y))2
,

(12)

where g1(x, y) and g1(x, y) are the frequency and mean of
the frequency of FPGA-01 and g2(x, y) and g2(x, y) are the
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Fig. 10 Heat maps of measured FP of fresh FPGA-01.

Fig. 11 Heat maps of measured FP of fresh FPGA-02.

frequency and mean of the frequency of FPGA-02. From the
correlation value, we can say that they are not highly corre-
lated and can be used as FPs to identify them, as proposed
in [4].

We applied the VP technique to the two FPs shown in
Figs. 10(a) and 11(a). Figures 10(b) and 11(b) show the two
predicted heat maps of the FPs of FPGA-01 and FPGA-02,
respectively, where 30% sampling frequencies were used.
Comparing Figs. 10 and 11, the relative error is found less
than 1.2% between the fully-measured and predicted FPs.
In the experiment, the relative error E between the correct
frequencies g(x, y) and the predicted ĝ(x, y) is defined by:

E =

√∑
x,y(g(x, y) − ĝ(x, y))2∑

x,y(g(x, y))2 . (13)

Thus, it can be seen a good similarity between the fully-
measured and predicted FPs. Using the VP technique,
Fig. 12 similarly shows the same DCT sparsity with only
30% sampling of the frequencies for FPGA-01 shown in
Fig. 10(a). Comparing Figs. 9 and 12, we notice that both
the low-frequency and the high-frequency of the DCT co-
efficients are successfully captured even when the FP is re-
constructed by the VP technique using only 30% frequency
samplings.

Figure 13 shows the relative errors as a function of
the spatial sampling rate of the 50 fresh FPGAs. The sam-
pling results of the Latin hypercube sampling change at each
trial owing to its randomness [22]; thus, the relative error
E varies. In Fig. 13, the sampling results of 150 VP tri-
als for each FPGA are shown, where FPGA-01 and oth-
ers are shown separately. Here, note that the VP technique
is not applied when the spatial sampling rate is 100%. In

Fig. 12 Predicted DCT coefficients using 30% sampling frequencies of
FPGA-01 also showing sparse representation.

Fig. 13 Relative errors of the 50 fresh FPGAs for various sampling rates
estimated by 150 trials.

Fig. 14 Relative errors of different algorithm estimated by 150 trials to
compare VP method.

Fig. 13, as spatial sampling rate increases, the relative er-
rors decrease. It should also be noted that the variation in
a single device, FPGA-01, is relatively small compared to
the device-to-device variation of the relative errors. We also
found that the relative error is less than 1.4% for all the fresh
FPGAs and the entire spatial sampling rate. To compare VP
with other method for estimating the FP, we applied a curve
fitting based linear interpolation using similar sampling rate
as our proposed work. Figure 14 shows the relative error cal-
culated by Eq. (13) for both VP and curve fitting based linear
interpolation repeated 150 trials. It is noted that VP achieves
up to 16× error reduction than the curve fitting based linear
interpolation. Based on the results, it is confirmed that the
VP technique can efficiently and accurately recover the spa-
tial variations of the fully measured FP using an extremely
small data measurement sample.
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Fig. 15 Significant variations curve of PCA.

4.2.2 Recycled FPGA Detection

Next, we conducted recycled FPGA detection. The standard
deviation of the frequencies of ROs of fresh FPGA-01 and
FPGA-02 are 1.644 MHz and 1.664 MHz, respectively. The
mean and standard deviation of the degradations of oscilla-
tion frequency for FPGA-01 are 0.78 MHz and 0.098 MHz
and for FPGA-02 are 0.59 MHz and 0.078 MHz, respec-
tively. That is, the level of degradation is within the vari-
ation of fresh FPGAs, and it is difficult to detect recycled
FPGA only from such statistics. Therefore, we used one-
class SVM as ML-based classification.

Before learning, we apply PCA to reduce the size of
the feature vector as the 3,964 vectors are too numerous to
efficiently train the model. PCA has also been used effec-
tively in conventional recycled FPGA detection [3]. In this
experiment, we use two principal components (PCs), PC1
and PC2, as a 98% significance variation is achieved using
only the two PCs as shown in Fig. 15.

Then, we form the one-class decision boundary using
the SVM on the basis of the two PCs in the recycled FPGA
detection. Using a brute-force search, the hyper-parameters
of the one-class SVM were selected to obtain better accu-
racy in the machine learning algorithm. We used 50 FP-
GAs, fresh FPGA-01 to FPGA-50, for training samples and
52 FPGAs, fresh FPGA-01 to FPGA-50 and two-day aged
FPGA-01 and FPGA-02, for testing. Note that the measure-
ments of fresh FPGA-01 to FPGA-50 for training and test-
ing were separately conducted in order to consider the actual
situation. Thus, the training and testing data are slightly dif-
ferent due to measurement error.

The predicted fresh FPs obtained from 30% sampling
of frequencies were used to train the one-class SVM model
to classify the testing samples. The detection boundary is
formed to check only two recycled FPGAs as tested sam-
ples in Fig. 16, where the circle and triangle indicate training
and testing samples, respectively. Figures 16(a) and 16(b)
show the results of the conventional method and proposed
method, respectively. As shown in Fig. 16(b), the decision
boundary obtained from estimated training samples success-
fully classifies the recycled FPGAs the same as conventional
methods using full measurement shown in Fig. 16(a). This
shows the effectiveness of this method, which uses only a
few measurements to correctly differentiate the recycled FP-

Fig. 16 Recycled FPGA detection boundary using one-class SVM. The
PC1 and PC2 are used as a feature vector.

Fig. 17 Detection accuracy from different samples of the frequency es-
timated by 150 trials. Each line shows the detection results of different
training samples.

GAs from fresh ones.
Figure 17 shows the detection accuracy where the SVM

model is trained by the predicted fresh FP using various
samples of frequencies. We also change the training sample
ratio to 100%, 50%, and 25%. In the figure, the detection
accuracy score is calculated as follows:

Accuracy =
Number of correct predictions

Total number of testing samples
. (14)

As the relative error changes based on sample loca-
tions, the detection accuracy varies owing to the random-
ness of the Latin hypercube sampling. In Fig. 17, the de-
tection accuracies are shown as the functions of the spatial
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sampling rate at various training sample ratios. The shaded
regions stand for the variations when each experiment runs
150 times repeatedly to properly estimate accuracy. The up-
per and lower bounds of the shaded region represent the
maximum and minimum accuracy of each sampling rate,
respectively, and each line shows the average accuracy of
the corresponding training sample. The figure shows detec-
tion accuracy improves as the number of training samples
increases. At 100% training samples, we found a maxi-
mum of 96.15% accuracy in all of the sampling frequencies
where at least 92.30% of the accuracy was achieved in only
10% of the samples. On average of 94.15% accuracy was
obtained using only 10% samples frequencies at the 100%
training samples which are nearly equal to accuracy using
100% sampling frequency. Detection accuracy higher than
90% is obtained when using more than 50% training sam-
ples. Thus, the proposed method can well recover full FP
and detect recycled FPGAs using ML-based classification.

The most important observation from Fig. 17 is the
small difference in detection accuracies for all training sam-
ples between the spatial sampling rates of 10% and 100%.
More specifically, the detection accuracies at 10% and 100%
spatial sampling rates are 94.15% and 96.15%, respectively,
for 100% training samples, and although the RO measure-
ment time was reduced by 90%, the decrease in detection
accuracy is a negligibly small 2%. The total measurement
time for each FPGA is reduced from 75 seconds to only 7.5
seconds at the 10% sampling rate. From the practical view-
point of recycled FPGA detection using estimated FPs, both
measurement cost and detection accuracy should be consid-
ered in choosing the sampling rate. From Fig. 17, it is ob-
served that using 10% sampling rate although the measure-
ment cost is very small but accuracy is less than the sam-
pling rate 30%. As a final note, we can conclude that the
proposed recycled FPGA detection method based on the VP
technique reduces measurement time for FPGA manufactur-
ing companies while maintaining high detection accuracy.

5. Conclusion

In this paper, we proposed a cost-effective recycled FPGA
detection technique to efficiently estimate the spatial process
variation from a very small frequency measurement sample.
To achieve the small measurement, we utilized the VP tech-
nique originally proposed for low-cost wafer-level silicon
characterization. This method can drastically minimize the
cost of the measurements for golden FPGAs without losing
the recycled FPGA detection accuracy. The results of the ex-
periments, in which 50 commercially available FPGAs were
used, demonstrate that the reconstruction error was smaller
than 1.4% even though only 10% of the total sample fre-
quencies were used in the VP technique for the reconstruc-
tion. Furthermore, based on the reconstructed frequencies, it
was found that the one-class SVM successfully detects the
recycled FPGAs with more than 94% detection accuracy,
which is nearly equivalent to conventional methods, but uti-
lizing only 10% sampled frequencies.
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