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Abstract 

In this paper, a classification of different methods for accommodating volume 

variations during solid-liquid phase change is presented. The impact of each method is 

analyzed with the help of a scale analysis. Neglecting fluid velocity at the interface or 

allowing fluid to enter/exit the domain may result in either local (at the solid-liquid 

interface) or global (within the system) mass imbalance. This can lead to significant 

differences in the transient phase change process itself (e.g., 19% more time and 9% 

more energy to completely solidify a given mass of water with models for which the total 

mass of the system is conserved). This paper aims at addressing this issue by deriving 

two new models of thermo-mechanical coupling between the PCM and its container. The 

first model is that of a PCM bounded by an elastic wall, whereas the second model 

assumes that a compressible air gap is adjacent to the PCM, which allows the PCM to 

expand more easily. Analytical expressions are developed for both models and can be 

used to predict important quantities at equilibrium, such as the position of the solid-liquid 

interface and the pressure rise within the system. Finally, the two thermo-mechanical 

coupling models are implemented numerically with a finite volume moving mesh 

method. Numerical simulations are performed to show the limits of the two models. It is 

observed that volume variations during phase change can have significant impacts on the 

evolution of the process. 
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Nomenclature 

pc  heat capacity [J kg-1 K-1] 

E  Young’s modulus [N m-2] 

f  liquid fraction [-] 

g  gravitational acceleration vector [m2 s-1] 

slh  latent heat of fusion [J kg-1] 

H  height of the one-dimensional slab [m] 

k  thermal conductivity [W m-1 K-1] 

L  length [m] 

m  total mass of the system per unit area [kg m-2] 

&m  liquid mass flux at the solid-liquid interface [kg m-2 s-1] 

p  pressure [N m-2] 

Q  latent heat flux [W m-2] 

q  heat flux [W m-2] 

Ste  Stefan number [-] 

t  time [s] 

T  temperature [K] 

CT  cold-side temperature [K] 

HT  hot-side temperature [K] 

mT  solidification (or melting) temperature [K] 

v  vertical component of the velocity in the liquid phase [m s-1] 

lv  liquid velocity normal to the solid-liquid interface [m s-1] 

, ,x y z  Cartesian coordinates [m] 

 

Greek Symbols 

  thermal diffusivity [m2 s-1] 

  position of the solid-liquid interface [m] 
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  effective compressibility of the PCM [m2 N-1] 

  effective spring constant [Pa m-1] 

  Poisson coefficient [-] 

  density [kg m-3] 

diff  diffusion time scale [s] 

m  solidification/melting time scale [s] 

 

Subscripts 

f  final value 

g  gas property 

i  initial value 

l  liquid phase property 

s  solid phase property 

w  elastic wall property 

 

1. Introduction 

Solidification and melting are complex processes in which the state of a substance 

changes, and as a result, so do its heat transfer properties. Significant differences in terms 

of thermal conductivity and specific heat are typically observed between the solid and 

liquid phases of a substance. Similarly, because molecules organize differently in solids 

or liquids, the density of a substance also changes with its phase. Phase change materials 

(PCM) either shrink or expand during phase change which can cause a significant impact 

in terms of deformations and mechanical constraints in the system, as well as on the heat 

transfer mechanisms themselves. 

When developing an analytical or a numerical model, it can be quite a challenge to 

fully take into account the change of density in solid-liquid phase change processes. The 

presence of a net mass flux at the solid-liquid interface changes the overall volume of the 

PCM domain. Solutions to classical problems, such as the Stefan problem, have been 

developed by assuming a constant density (see, for example, Chapter 11 in [1]), i.e. 

without considering density change. In fact, in order to simplify the problem, the majority 
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of analytical or numerical studies on the modeling of melting or solidification assume 

that the PCM density is the same for both phases, while some studies neglect the net mass 

flux at the interface (which results in the destruction or generation of mass within the 

domain over time), see for example [2]. 

In experimental setups studying phase change, volume change of the PCM during 

solidification or melting needs to be accounted for even when it is not the main focus of a 

given study. For example, in their study on the effect of solid subcooling on natural 

convection melting of pure gallium in a rectangular enclosure [3], Beckermann and 

Viskanta accommodated volume change during phase change (gallium contracts by about 

3% when melting) by allowing liquid gallium to enter the test cell through a small hole in 

the top wall of the enclosure. This strategy allowed the enclosure to remain completely 

filled with gallium throughout the experiments, thus minimizing the impact of volume 

change on the natural convection flow pattern in the enclosure. Braga and Viskanta later 

performed experiments on the effect of the density extremum on the solidification of 

water on a vertical wall of a rectangular cavity [4], where the expansion of water upon 

solidification was accommodated by leaving a small (~3mm) gap at the top of the cavity 

to allow water to expand without pushing against the inner walls of the cavity. This 

strategy was also used in Refs. [5] and [6] in the design of experimental apparatus in 

order to accommodate the expansion of the PCM during phase change. 

Volume changes during phase change are also of significant importance in thermal 

energy storage applications that use PCMs (e.g. encapsulated PCMs). For example, 

Lopez et al. [7] developed one-dimensional models (assuming spherical symmetry) to 

understand salt melting within graphite matrices. The thermo-mechanical models 

developed by the authors are based on mass and energy conservation equations (enthalpy 

formulation with variable melting temperature and latent heat of fusion), pressure-

dependent liquid-crystal equilibriums, isotropic and linear elasticity laws and Poiseuille-

like flows. The model explains some of the main observations for the melting of salts 

within spherical shells made of graphite (e.g. melting within a wide range of 

temperatures, incomplete melting and loss of heat storage capacity). The models 

developed in [7] were then extended by Pitié et al. [8] to represent the confined melting 

of PCMs coated by silicon carbide. Models from [7] and [8] were specifically developed 
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to study the thermo-mechanical behavior of encapsulated PCMs in thermal energy 

storage systems. 

In their study on the planar solidification of a finite slab, Conti [9] and Conti et al. 

[10] developed a thermo-mechanical model which was used to determine the effects of 

pressure on the solidification process as the PCM expanded while constrained by an 

elastic wall. However, as will be explained in more details below, some assumptions 

made while developing their model made it valid only under a restrictive set of 

conditions. In addition, the authors assumed the PCM to be compressible, but used a 

constant density for each phase, which resulted in a non-conservation of the total mass of 

the system. 

More recently, an experimental and numerical study on melting in a spherical shell al 

has been performed by Assis et al. [11]. A constant density was used for each phase, and 

it was assumed that the density varied linearly between the solid and liquid density within 

the mushy region. A large air cavity was modeled at the top of the PCM to allow the 

latter to expand during melting. Since both the PCM and the air are assumed to be 

incompressible, an additional small opening was modeled at the top of the air cavity to 

allow it to leave the computational domain as the PCM expands. In order to represent the 

moving interface between the PCM and the air cavity, a volume-of-fluid model was used. 

The same approach has been adopted by Shmueli et al. [12] for an experimental and 

numerical study on melting in a vertical cylinder tube. Even though the numerical results 

from both works are in good agreement with the experiments performed by the authors, 

they do not address the thermo-mechanical coupling between the PCM and its 

boundaries, i.e. there is no pressure rise within the system caused by the expansion of the 

PCM, which could influence the melting properties. 

Similarly, an experimental and numerical study on the melting process of PCMs in a 

rectangular enclosure was recently performed by Ho et al. [13]. In their work, the 

expansion of the PCM during melting is addressed by allowing the top boundary to move 

freely while maintaining the two vertical walls and the bottom wall stationary. The 

authors present experimental and numerical results for a wide range of subcooling, 

Stefan, and Rayleigh numbers. The numerical predictions are in good agreement with the 

experimental results. However, the experiments and numerical simulations performed in 
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their work do not include thermo-mechanical coupling between the PCM and the cavity 

boundaries. 

Kowalczyk et al. [14] studied solid-liquid phase change at high pressure. 

Recognizing that melting point and latent heat can be influenced by pressure, they 

proposed a model with pressure-dependant properties. Nevertheless, density was assumed 

constant in their model and their experimental set-up had a volume adaptation approach 

in order to control the pressure level due to expansion of water during phase change.  

Bilir and Ilken [15] studied numerically the solidification time of PCM in enclosures. 

Despite the fact that the PCM is physically bounded by the walls of the container, the 

density was assumed to be the same for both phases in such a way that no pressure build 

up due to the PCM expansion was accounted for in the heat transfer process. Similarly, 

the solid-liquid phase change numerical model developed in Wang et al. [16] also 

assumes that both phases have the same density. 

In their review, Sharma et al. [17] describe the typical numerical model used in 

literature. Their presentation is based on the assumption of a constant density. 

Nevertheless, they mention in Section 5.7 that “generally phase change materials […] 

expand on melting and therefore, the design of a suitable heat exchanger is an important 

component of a latent heat storage system”. 

In addition to energy storage units, several other applications and situations involve 

solid-liquid phase change with density change, which can represent modeling challenges. 

For example, Aschwanden et al. [18] proposed an enthalpy formulation applicable to 

glaciology, a domain in which water experiences phase change at different levels of 

pressure and in which thermomechanical coupling could be important. Nevertheless, their 

comprehensive model relies on a mixture density that is assumed constant. Pham [19] 

explains in his review on modeling heat and mass transfer in frozen foods that the 

freezing point and latent heat both decrease with pressure, which should be taken into 

account in models. Furthermore, according to Pham, thermomechanical coupling and 

stress calculation are of great importance in freezing processes, and simulation results can 

be quite different depending on the assumptions that are made with that respect. 

Even though considering the PCM density as constant in a model can be deemed a 

reasonable assumption in some cases, it also makes it impossible to simulate some 
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important physical behaviors that may result from the expansion or contraction of the 

PCM during phase change, such as the thermo-mechanical coupling between the PCM 

and its container. Whenever different densities for the solid and liquid phases are 

considered, the choice of a proper mass accommodation method is crucial. In the first 

part of this paper, a classification of different methods for accommodating volume 

changes in numerical models is presented, namely: (i) neglecting the mass flux at the 

solid-liquid interface, (ii) an open boundary, (iii) a free boundary, and (iv) thermo-

mechanical coupling. These methods will be described and formulated mathematically in 

the following sections. A scale analysis is proposed to predict how the phase change 

process will be affected by each approach. In the last part of this paper, the mass 

accommodation methods are pushed one step further by introducing two new thermo-

mechanical coupling models. In addition, numerical simulations are performed for a one 

dimensional problem to show the impact of the new thermo-mechanical coupling models, 

and simple analytical tools are developed to predict important physical quantities when 

the system reaches equilibrium. It is important to mention that the goal of this paper is 

not to present a specific system, but rather to introduce the fundamentals of phase change 

problems with density change including thermo-mechanical coupling. The paper could be 

seen as a generalization of the Stefan problem to situations involving density change 

during phase change. 
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Figure 1 

 

2. Description of the problem 

In order to illustrate the classification and models developed in this paper, the 

following classical problem was addressed: consider a PCM slab of finite thickness H  

initially liquid and at a temperature +=i mT T  slightly higher than the solidification 

temperature 
mT , as depicted in Fig. 1. At time 0=t , the temperature of the bottom 

boundary is suddenly lowered to 
C mT T  while the temperature of the top boundary is 

maintained at H mT T += . Both left and right boundaries are insulated and thus, the resulting 

heat transfer problem is one-dimensional. With the current configuration, a thermal 

stratification occurs in the liquid phase, where cold liquid remains at the bottom, near the 

solid-liquid interface, and hot liquid remains at the top. Consequently, there will be no 

natural convection within the liquid phase.  

Since all phase change materials have a different density for their solid and liquid 

phases, they will either expand ( s l  ) or shrink ( s l  ) as the solidification process 

goes on, which could cause deformation of the boundaries, leaks, or infiltrations. In order 

to satisfy mass conservation at the phase change interface during the solidification 

process with s l  , models should take into account the net mass flux from the solid 

phase to the liquid phase when s l  , or inversely, from the liquid phase to the solid 

phase when s l  . The expansion or shrinkage of the PCM can also result in a 

variation of pressure within the domain which will interfere with the phase change 

process, since both the melting temperature 
mT  and the latent heat of fusion slh  depend 

on pressure. In the remainder of this section, the governing equations for the present 

problem will be briefly stated. In Section 3, commonly used mass accommodation 

methods will be classified and their respective shortcomings regarding local mass 

conservation (i.e. at the solid-liquid interface) and global mass conservation (total mass 

of the system) will be discussed. More advanced mass accommodation methods will be 

presented at the end of Section 3, where two new thermo-mechanical coupling models 

will be developed. In addition, simple analytical tools are developed to predict relevant 
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physical quantities at equilibrium. In Sections 4 and 5, numerical simulations for a one-

dimensional problem are performed with those two models, and the numerical results are 

compared with the analytical predictions from Section 3. Note that even though the 

analysis performed in this paper is for one dimensional expansion during solidification of 

PCMs such as water for which s l  , the reasoning and results can easily be extended 

to two or three dimensional problems and for other phase change materials with 
s l  . 

 

2.1 Governing equations 

The energy conservation equations in the solid and liquid phases are given by the 

two following equations (see Eqs. (11-1a) and (11-1b) in [1]): 

 
  

=  
   

s s
s ps s

T T
c k

t y y
  (1) 

 l l l
l pl l

T T T
c v k

t y y y


     
+ =   

      
 (2) 

At the solid-liquid interface, the mass and energy conservation equations when the solid 

phase density is different from the liquid phase density are expressed as (see Eqs. (11-7a) 

and (11-8a) in [1]): 

 ( )= −l l l s

d
v

dt


    (3) 

 
 

− =
 

s l
s l s sl

T T d
k k h

y y dt


  (4) 

where  is the position of the solid-liquid interface. In Eq. (3), 
lv  represents the liquid 

velocity normal to the solid-liquid interface. Due to the one-dimensional nature of the 

present problem and to the incompressibility of the PCM, the velocity in the liquid phase 

will be everywhere the same and equal to lv  for a pure PCM. Note that the solidification 

or melting rate (right-hand side of Eq. (4)) also takes into account the advection of energy 

in the liquid phase near the solid-liquid interface even in the absence of forced or natural 

convection in the melt, since there is a net mass flux at the interface when s l   (see 

Section 11-1 in [1]). Finally, the boundary and initial conditions are: 

 ( )0s C mT y ,t T T= =   (5) 
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 ( ) ( )= = = =s l mT y ,t T y ,t T   (6) 

 ( )l H mT y H ,t T T= =   (7) 

 ( ) ( )0 0 0s l iT y ,t T y H ,t T   = =   = =  (8) 

 

2.2 Stefan problem 

The Stefan problem is well known and described by the set of equations Eqs. (1)-(2) 

and (4), provided that   is considered equal and constant for both phases. Since there is 

no density variation during phase change in that case, there is no need to include mass 

conservation at the solid-liquid interface, i.e. Eq. (3). Exact solutions for the classical 

Stefan problem can be found in Section 11-2 of [1]. When the time scale for diffusion 

2=diff H   is much smaller than the time scale of the phase change process 

( )2

m sl m Ch H k T T = −  (i.e. the temperature profile adapts faster than the time required 

for the slab to solidify or melt), it is known that the position of the solid-liquid interface 

can be approximated by: 

 ( )
1 2

2 Ste t   (9) 

where = pk c   is the thermal diffusivity of the PCM and Ste  is the Stefan number 

defined as: 

 
( )p m C

sl

c T T
Ste

h

−
  (10) 

The latent heat flux Q  (the heat flux released during solidification or absorbed during 

melting) defined as   s slQ h d dt   can be expressed using the approximate solution, 

Eq. (9), which yields: 

 ( )
1 2

2slQ h Ste t    (11) 

The results obtained from the Stefan problem for the position of the solid-liquid interface 

and the latent heat flux, i.e. Eqs. (9) and (11), will be compared to the results obtained for 

other cases in the next sections. 
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3. Mass accommodation methods 

This section presents a classification of the commonly used methods to 

“accommodate” the mass balance when modeling a phase change process with density 

variations. The first method addresses the effect of neglecting the induced velocity at the 

phase change interface (Section 3.1). The second and third methods consider an open 

boundary through which mass is allowed to leave or enter the domain, and a free 

boundary that can move during phase change, respectively in Sections 3.2 and 3.3. Those 

three models, however, disregard any mechanical interaction between the PCM and the 

boundary. Consequently, both the pressure within the PCM and its melting temperature 

remain constant during the phase change process. New models that consider the thermo-

mechanical coupling between the PCM and its container are thus developed in Sections 

3.4 and 3.5. In the former model, the wall of the container is assumed to behave 

elastically. In the latter, an air gap that can be compressed is present between the PCM 

and the top wall in order to give more space to the PCM for expansion. 

 

3.1 No induced liquid velocity at the phase change interface 

For the first approach considered to accommodate the different phase densities, the 

induced velocity in the liquid at the phase change interface, represented by Eq. (3), is 

neglected (this modeling approach is different than the Stefan problem since it considers 

distinct values of the density in each phase). The result of this simplification is the net 

creation or destruction of mass at the solid-liquid interface as the phase change process 

goes on, which means that neither the mass balance at the interface nor the total mass of 

the system is conserved. Since the induced velocity at the solid-liquid interface is 

neglected, the resulting velocity in the liquid phase will also be zero everywhere in the 

system of Fig. 1. This method has been used regularly in the past (e.g., [2]), but the mass 

conservation issue has not always been addressed explicitly. 

For the scale analysis with this approach, the same assumption as in Section 2.2 is 

used, i.e. the time scale of diffusion 
2=diff sH   is much smaller than the time scale of 

the phase change process 2 ( )m s sl s m Ch H k T T = − . In other words, the following 
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analysis is only valid for small Stefan numbers, where 
diff mSte  = . Using Eq. (4), it is 

possible to estimate that the heat flux in the solid phase scales as ~ ( )s s m Cq k T T  − . 

Assuming that the system is initially at a temperature i mT T +=  slightly higher than the 

solidification temperature and that H mT T + , then the heat flux in the liquid phase is 

0lq  and Eq. (4) becomes: 

 
( )

~
s m C

s sl

k T T
h

t






−
 (12) 

Isolating   in Eq. (12) gives: 

 
( )

1 2

~
s m C

s sl

k T T t

h




− 
 
 

 (13) 

Using a definition for the Stefan number based on the solid phase properties, i.e. 

( )s ps m C slSte c T T h − , the last equation can be rewritten as: 

 ( )
1 2

~ s sSte t   (14) 

Similarly to the classical Stefan problem, Eq. (9), the solid-liquid interface position 

evolves as 
1 2 t . The difference with the classical Stefan problem in this case is that 

the propagation of the phase change interface depends on the solid phase properties only, 

which comes naturally from the fact that the temperature gradient is only significant in 

the solid phase throughout the solidification process. Using the definition of the latent 

heat flux with Eq. (14) for the order of magnitude of  , one can find that the latent heat 

flux scales as: 

 ( )
1 2

~ s sl s sQ h Ste t   (15) 

As for the position of the solid-liquid interface, the main difference with the classical 

Stefan problem comes from the dependence of the latent heat flux on the solid phase 

properties only. The same behavior, i.e. 1 2− Q t , is observed in the present case. 

The initial assumption, however, has the unrealistic consequence that the total mass 

of the system decreases or increases with time: mass is destroyed or created at the solid-

liquid interface due to the different phase densities. It is possible to estimate the rate at 
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which mass is removed or added to the system per unit area (normal to the solid-liquid 

interface): 

 
l lm v =&  (16) 

where 
lv  in Eq. (16) is the liquid velocity normal to the solid-liquid interface that would 

actually be present but that is not taken into account in this approach, which gives: 

 ( ) ( )
1 2

~ −&
l s s sm Ste t    (17) 

where 0 &m  means that the excess mass that would normally be added to the liquid is 

now destroyed at the solid-liquid interface, and vice-versa. Thus, the rate of mass 

destruction or creation at the solid-liquid interface evolves similarly to the latent heat 

flux, i.e. 
1 2m t− & . Recognizing that the total mass created or destroyed (per unit area 

perpendicular to the solid-liquid interface) can be obtained by integrating &m  over time, 

it follows that the total mass of the system will either increase or decrease proportionally 

to 
1 2t . 

 

3.2 Open boundary (top surface) 

Another approach to accommodate the different phase densities in terms of modeling 

is to consider the top boundary of the domain as an open surface through which the liquid 

is allowed to flow in or out, as in Refs. [3]–[6]. This method is rather simple to 

implement numerically, and as opposed to the previous method, mass is conserved at the 

solid-liquid interface. However, since mass comes in or out of the system, the total mass 

of the domain changes. Because of the one-dimensional nature of the problem considered 

here (Fig. 1), the velocity in the liquid phase will be everywhere equal to the velocity lv  

normal to the solid-liquid interface and can be calculated from Eq. (3): 

 1
 

= − 
 

s
l

l

d
v

dt

 


 (18) 

For example, in the case of water with 918s =  kg/m3 and 1000=l  kg/m3, the velocity 

in the liquid is approximately 8% of the velocity of the phase change interface. For the 

open boundary method, the predictions of the position of the solid-liquid interface   and 

the latent heat flux Q  remain as in the previous case. Moreover, the mass flux leaving or 
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entering the system is equivalent to the rate at which mass was created or destroyed in the 

previous approach, Eq. (17), which yields the following order of magnitude for the 

velocity in the liquid phase when combined with Eq. (16): 

 ( )
1 2

~ 1
 
− 

 

s
l s s

l

v Ste t





 (19) 

It can be noted at this point that for this method, as well as for the previous method, the 

total time and energy required to completely solidify or melt the PCM will be different 

from a case where the total mass of the system is conserved. These differences will be 

addressed below in Section 3.3. 

 

3.3 Free boundary (top surface) 

In the previous approach, mass is conserved at the solid-liquid interface, but the total 

mass in the domain changes with time, which could be undesired when performing 

numerical simulations of closed systems. A simple way to fix this issue is to consider the 

top as a free surface rather than as an open surface, as in Refs. [11]–[13]. This method is 

more complex to implement numerically since it requires an adaptive mesh or other 

interface tracking approaches. 

Assuming that the system of Fig. 1 is initially liquid and that the initial height of the 

system is 
iH , the total mass of the system per unit area (perpendicular to the solid-liquid 

interface) is initially equal to 
i l im H= . At a later time t  during the phase change 

process, the total mass of the system per unit area is still the same but is expressed as: 

 ( ) ( ) ( ) ( )s l im t t H t t m    = + − =    (20) 

giving the following result for the height of the system as a function of time: 

 ( ) ( )1
 

− = − 
 

s
i

l

H t H t





 (21) 

If the solidification process was allowed to continue for a sufficiently long period of 

time, the solid-liquid interface would eventually reach an equilibrium position 

somewhere between 0=y  and ( )= fy H t , where ft  is the final time of the transient 

solidification process. At equilibrium, the latent heat flux is 0 =Q  and the conduction 
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heat flux in the solid phase ~ ( )s s m C eqq k T T  −  is equal to the conduction heat flux in 

the liquid phase ~ ( ) [ ( ) ]l l H m f eqq k T T H t  − − . Using those orders of magnitude in 

combination with Eq. (4) , it can then be demonstrated that the position of the solid-liquid 

interface at equilibrium with a free top surface can be expressed as: 

 
( )

( )

1

~

−

 −
+ 

− 

eq l H ms

i l s m C

k T T

H k T T

 


 (22) 

For the case discussed above where 
H mT T→ , the equilibrium position of the solid-liquid 

interface as given by Eq. (22) tends to ( )→eq l s iH   , which is equal to the height of 

the PCM when it has entirely solidified, i.e. ( ) ( )=f l s iH t H  . This result can be 

obtained from Eq. (21) by posing ( ) ( )=f ft H t . This means that in the present case, the 

solidification process will reach equilibrium when the PCM has entirely solidified. Note 

that this is also true for the two previous methods (i.e., no induced velocity at the 

interface and open boundary), in which cases one would find 1eq iH =  since the height 

of the PCM domain remains constant throughout solidification. 

Although the same scaling is obtained for  , Q , and 
lv  with the free top surface 

method as compared to the previous methods, the time and energy required to reach 

equilibrium is not the same, since the mass that was destroyed at the interface or 

evacuated through the open top boundary in the previous methods now needs to be 

solidified. The time required to entirely solidify the PCM ( ft ) with the first two methods 

can be obtained by posing ( ) =f it H  in Eq. (12) and then by isolating ft . For the free 

top surface method, it can be obtained in the same manner, but this time by recognizing 

that ( )( ) =f l s it H   . The resulting times are given by Eq. (23) with no induced 

velocity at the interface and open boundary methods, and by Eq. (24) for the free top 

boundary method: 

 
( )

2

~ s sl i
f m

s m C

h H
t

k T T




−
 (no induced velocity at interface or open boundary) (23) 

 

2

~
 
 
 

l
f m

s

t





 (free top boundary) (24) 
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The amount of latent energy required for a complete solidification of the PCM, fQ , is 

found by multiplying the total mass solidified by the latent heat of fusion. Note that since 

it is assumed that 1sSte = , the sensible heat contribution is much smaller than the latent 

heat contribution. Therefore, the total energy required for a complete solidification 

should be close to the total amount of latent energy removed from the PCM during its 

solidification. For the first two methods, the total mass solidified is 
s iH , whereas for the 

free top surface, the total mass solidified is 
l iH . The total energy required for complete 

solidification is given by: 

 ~f s sl iQ h H  (no induced velocity at interface or open boundary) (25) 

 ~f l sl iQ h H  (free top boundary) (26) 

These orders of magnitude show the interest of using a method that conserves mass 

properly when performing transient simulations of closed systems, as it could lead to 

significant differences for the solidification or melting times, as well as for the energy 

required for the PCM to completely solidify or melt. Using water as an example (with the 

densities given in Section 3.2), taking the ratio of Eq. (24) to Eq. (23) indicates that the 

solidification time would be ~19% longer, whereas taking the ratio of Eq. (26) to Eq. (25) 

leads to a total energy required ~9% higher when using the free top boundary method, as 

opposed to other methods for which the total mass of the system changes with time. 

 

3.4 Elastic wall model 

Another way to take into account density change during phase change is to consider 

that the top surface behaves as an elastic wall. Assuming an infinite rigidity for the lateral 

walls (both in x and z directions), the opposing force applied by the top wall on the PCM 

during its expansion will result in a rise of pressure within the PCM. In general, pressure 

can affect both the latent heat and the melting temperature. Taking water as an example, 

the latent heat of fusion is 333.4 kJ/kg for hexagonal ice (0℃, 101.325kPa [20]) and 

352.7 kJ/kg for ice VI (81.6℃, 2150 MPa [21]), which represents a relatively small 

variation of slh  (~5.8%) over a large range of pressure. In this work, it was thus assumed 

as a first approximation that the enthalpy of fusion was independent of pressure. 

However, the effect of pressure on the melting temperature was considered. The thermo-
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mechanical coupling between the PCM and its boundary is thus accomplished through 

the variations of the melting temperature with pressure. The relation between the melting 

temperature, saturation pressure, and latent heat of fusion is given by the Clapeyron 

equation (see Section 12-3 in [22]): 

 
( )1 1

sl

m m l s

hdP

dT T  
=

−
 (27) 

Under the assumption of constant 
s , 

l , and 
slh , an expression for the temperature 

of fusion as a function of pressure can be obtained by integrating Eq. (27), which yields 

the following expression [9]: 

 ( ) ( )
1

exp s l
m i mi i

s sl

T p p T p p
h

 



 −
− = − − 

 
 (28) 

Note that correlations could also be used instead of Eq. (28) to express the melting 

temperature as a function of pressure, such as the Simon equation given in [23] which is 

derived from experimental data.  

Assuming the top wall to behave elastically (small deformation regime, see Section 

3.2 in [24]) and using a spring model to represent the action of the wall on the PCM, the 

pressure rise in this case is given by the modified Hooke’s law: 

 ( ) ( )i w ip t p H t H− = −    (29) 

where 
w  is the effective spring constant of the elastic wall in [Pa/m]. It is noteworthy to 

mention that the spring constant w  can be linked to the geometry and the mechanical 

properties of the top wall. For example, the effective spring constant w  for a 1D elastic 

top wall as illustrated in Fig. 2a under the plane strain assumption is given by (See 

Appendix 1): 

 

 
( )

( )( )

1

1 1 2

w w

w

w w wi

E

L




 

−
 =

+ −
 (30) 

where 
wE  and 

w  are the wall Young’s modulus and Poisson coefficient, respectively. 
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Figure 2a 

A similar thermo-mechanical coupling has been attempted by Conti [9] and by Conti 

et al. [10]. Their model was found to be valid only if the initial length of the wall is the 

same as the initial length of the PCM and if the Poisson coefficient of the wall is zero, 

which limits the applicability of their model. The authors further assumed the PCM to be 

compressible with an effective compressibility for both phases. However, they neglected 

density variations during compression, resulting in an imbalance of the total mass of the 

PCM. This can be demonstrated by using the following expression for the total mass of 

the PCM: 

 ( ) ( ) ( ) ( )s lm t t H t t    = + −    (31) 

Using the expression for ( )H t  obtained by combining Eqs. (1) and (4) in [9], Eq. (31) 

becomes: 

 ( ) ( )
1

w
i s l

w

E
m m t

E


  


 = + −

+
 (32) 

The second term in Eq. (32) is the mass that will be created if s l   or destroyed if 

s l   during solidification. This term will never be zero when s l   unless ( ) 0t = , 

in which case there would be no phase change at all.  

For these reasons, we found that a novel and more practical model of phase change 

with thermo-mechanical coupling needed to be developed. In the present model, 

however, it is assumed that the PCM is incompressible. The first reason for this 

y

iy H=

( )y H t=

0y =

wL
wiL

CT

mT
( )t

Solid phase

Liquid phase

x

Elastic 

wall w
HT
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assumption is that most PCMs used in practical applications have very small 

compressibility (e.g. the isothermal compressibility of water is 10 -14.6 10 Pawater ~ −  and 

that of common ice is 10 -11.1 10 Paice ~ −  [25] as opposed to the compressibility of air at 

atmospheric pressure 6 -19.9 10 Paair ~ − , see Section 1.7 in [26]). The other reason is 

that the thermo-mechanical coupling models developed in this paper aim at studying the 

effect of the density variations during phase change, not density variations due to the 

compression of the PCMs. As a consequence, the expression given by Eq. (21) can be 

used to determine the height of the PCM as a function of time, which is required in Eq. 

(29). The complete mathematical model for the elastic wall consists of the conservation 

equations (1)-(4), the boundary and initial conditions (5)-(8), and the thermo-mechanical 

coupling equations, Eqs. (21) and (28)-(30). 

In order to assess the importance of an elastic wall at the top boundary and the 

pressure dependence of the melting temperature, a scale analysis of the equilibrium 

position of the phase change interface will now be performed. Recognizing that 

equilibrium is reached when the latent heat flux is zero, i.e. when the heat flux in the 

solid phase is balanced by the heat flux in the liquid phase, the following expression is 

obtained: 

 
( ) ( )

( )

s m C l H m

eq f eq

k T T k T T

H t 

− −
=

−
 (33) 

Then, using a Maclaurin series expansion for the exponential function in Eq. (28), i.e. 

exp( ) 1x x +  when 1x = , yields: 

 ( ) ( )
1

1 s l
m i mi i

s sl

T p p T p p
h

 



 −
−  − − 

 
 (34) 

Combining Eqs. (21), (29) and (34), one finds: 

 ( )
( )

2
1

1
s l w

m i mi eq

s sl

T p p T
h

  




 −
−  − 

  

 (35) 

which is valid when the following condition is respected: 

 
( )

2
1

1
s l w

eq

s slh

  




−
=  (36) 
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Therefore, the approximate solution is valid when the melting temperature of the PCM at 

equilibrium is not too far from the initial melting temperature. Substituting Eq. (35) into 

Eq. (33) and using the appropriate expression for ( )fH t  based on Eq. (21), the following 

quadratic equation is obtained: 

 

2

0
eq eq

w w w

i i

A B C
H H

    
+ + =   

   
 (37) 

with: 

 s l
w w

l s

k
A c

k





 
= − 
 

 (38) 

 s w w
w w

l i i

a b
B c

H H





 
= − + + 

 
 (39) 

 w
w

i

a
C

H
=  (40) 

and where: 

 ( )w s mi Ca k T T= −  (41) 

 ( )w l H mib k T T= −  (42) 

 
( )

2
1s mi s l w

w

s sl

k T
c

h

  



−
=  (43) 

It is then possible to solve Eq. (37) to find the equilibrium position of the phase change 

interface for the elastic wall model. Although solving Eq. (37) is quite easy, the analytical 

expressions are t. Therefore, these scale analysis results will be presented below, in 

Section 5, in a graphical form for different values of 
w , and compared to a more 

complete numerical model. 

 

3.5 Air gap model 

It is often convenient to leave an air gap (or any other gas) between a PCM and the 

top wall of its container to accommodate any volume variation induced by a density 

variation during phase change (see Fig. 2b for the relevant geometrical characteristics of 

the model). The gas compressibility being much larger than that of the wall or of the 
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PCM, both boundary deformation and PCM compressibility will be neglected in this 

model. Therefore, only the compression of air (or any other gas) within the gap is 

considered. It is also assumed that the pressure is uniform within the system (gas and 

PCM). The pressure rise within the gas can be obtained from the ideal gas law (Section 3-

6 in [22]): 

 
( ) ( )

( )
g i gi

g gi

p t L t p L

T t T
=  (44) 

where ( )gT t  and 
giT  are the current and initial average temperature in the gas, whereas 

( )gL t  and 
giL  are the current and initial thickness of the air gap, as shown in Fig. 2b. 

Typically, solidification and melting being slow processes, it is expected that the average 

temperature of the gas will remain approximately constant during its compression. It is 

thus assumed in this model that the gas compression by the PCM mainly affects the 

pressure within the gas, i.e. that Eq. (44) becomes: 

 ( ) ( )g i gip t L t p L=  (45) 

Since the gas will always occupy all the available space between the wall and the PCM, 

the expression for the thickness of the gas is obtained from: 

 ( ) ( )gi g iL L t H t H− = −  (46) 

The pressure rise in the gas (and in the PCM) can be obtained by combining Eqs. (45) 

and (46), and, after some manipulations, one gets: 

 ( ) ( )i g ip t p H t H− = −    (47) 
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Figure 2b 

which is similar to the modified Hooke’s law given by Eq. (29) for the elastic wall model, 

where the gas effective spring constant 
g  is given by: 

 
( ) ( ) ( )1

i i
g

g gi s l

p p

L t L t


  
 = =

− −
 (48) 

The air gap can thus be seen as a spring with a non-linear effective spring constant that 

varies as the phase change process goes on. In other words, as the gas within the gap is 

compressed, it becomes increasingly more difficult to compress it any further. The 

complete mathematical model for the air gap model consists of the conservation 

equations (1)-(4), the boundary and initial conditions (5)-(8), and the thermo-gas 

coupling equations (21), (28), and (47)-(48). 

An estimation of the equilibrium position of the solid-liquid interface can be 

performed for the air gap model by following a similar procedure as for the elastic wall 

model. However, since the effective spring constant is non-linear (i.e. it is a function of 

( )t ), the linearization of Eq. (28) yields: 

 ( )
( )

( )

2
1

1
1

s l i eq

m i mi

s sl gi s l eq

p
T p p T

h L

  

   

 −
−  − 

 − −   

 (49) 

which is valid when the following condition is respected: 

 
( )

( )

2
1

1
1

s l i eq

s sl gi s l eq

p

h L

  

   

−

 − − 

=  (50) 

y

iy H=

( )y H t=

0y =

Gas
gL

giL g

Rigid wall (no deformation)

HT

CT

mT
( )t

Solid phase

Liquid phase

x
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Once again, the approximate solution for the equilibrium position of the solid-liquid 

interface is valid when the melting temperature at equilibrium is close to the initial 

melting temperature. Under these assumptions, the position of the interface at equilibrium 

is obtained from solving the following quadratic equation: 

 

2

0
eq eq

g g g

i i

A B C
H H

    
+ + =   

   
 (51) 

where the coefficients are given by: 

 s
g s g l g

l

A k b k d



= +  (52) 

 s s l
g i g g g

i l i

k k
B H b a c

H H





  
= − + +  

  
 (53) 

 s
g g

i

k
C a

H
=  (54) 

where: 

 ( )g mi C gia T T L= −  (55) 

 ( ) ( )
( )1

1
mi s l i

g s l mi C

s sl

T p
b T T

h

 
 



− 
= − − + 

 
 (56) 

 ( )g H mi gic T T L= −  (57) 

 ( ) ( )
( )1

1
mi s l i

g s l H mi

s sl

T p
d T T

h

 
 



− 
= − − − 

 
 (58) 

Note that the estimation of the equilibrium position of the solid-liquid interface 

obtained after solving Eq. (51) for the air gap model (or Eq. (37) for the elastic wall 

model) can be used to estimate other equilibrium quantities. For example, by substituting 

the estimated value of 
eq  in Eq. (21), one can obtain an estimation for the final height of 

the PCM, i.e. 
fH( t ) , which can then be substituted into Eqs. (29) (elastic wall model) or 

(47) (air gap model) to get an estimation of the pressure rise within the system at 

equilibrium. Finally, the estimated pressure rise can be used in Eq. (28) to get an 

approximation of the melting temperature at equilibrium. 
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4. Numerical model 

In order to illustrate how the mass accommodation techniques and the thermo-

mechanical coupling models influence the physical behavior of the system (i.e. pressure 

rise, variation of the melting temperature, expansion of the PCM, etc.), a series of 

numerical simulations was performed to complete the scale analysis presented in the 

previous section. The enthalpy model developed in [27] for solid-liquid phase change 

with variable density was extended by including the thermo-mechanical coupling 

methods described in the previous section (i.e., elastic wall and air gap models). In the 

present numerical model, it was assumed that the phase change process occurred over a 

narrow temperature range to represent that of a pure PCM. Therefore, there is a small 

mushy region in which there is mass generation per unit volume. Consequently, even if 

the problem is one dimensional, there is a velocity gradient within the mushy region and 

a constant velocity in the pure liquid region. For the sake of concision, the conservation 

equations for the numerical model will not be repeated here. However, interested readers 

can find a complete derivation of the equations, as well as explanations on the different 

assumptions inherent to the numerical model in [27]. Note that even though the equations 

used for the numerical simulations are expressed in a different form than those used for 

the analytical predictions in the previous sections, they yield virtually identical results 

provided that the solidus and liquidus temperatures in the numerical model are both very 

close to the melting temperature 
mT , as demonstrated in Section 7 of [27]. 

In order to take into account the expansion of the PCM during solidification, a 

moving mesh method is added to the existing numerical model by moving all the grid 

points at each time step while keeping the total number of grid points constant. Similar 

strategies have successfully been used in the past, for example in [28], where a moving 

mesh method is developed for a two-dimensional heat conduction problem with phase 

change. Since an enthalpy-porosity method is used, the exact position ( t )  of the solid-

liquid interface is not explicitly calculated. Therefore, instead of using Eq. (21), the 

height H( t )  of the PCM at a given time t  is calculated by forcing the conservation of 

the initial mass of the system and is solved iteratively with the other unknown variables 
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T , f , v , and 
mT . Due to the non-linearity of the problem, under-relaxation is used for 

both the temperature and the liquid fraction. 

The conservation equations are discretized using the finite volume method as 

described in [29]. Note that the size of each control volume is adapted at each time step to 

take into account the impact of the moving mesh. On the other hand, a constant time step 

is used for all simulations. For the advection terms, a central differencing scheme is used 

since the velocities are expected to be very small, i.e. only a fraction of the solid-liquid 

interface velocity (which is already small). At each time step, the maximum cell Peclet 

number is verified and found to be much smaller than 2 for all simulations, which ensures 

the validity of the chosen differencing scheme. Mesh size and time step were thoroughly 

tested for all simulations by refining both the mesh size and time step until the impact of 

any further refinement had a negligible impact on the simulation results. The number of 

control volumes was set to 300 for all simulations, whereas the time step varied between 

~500 s (larger effective spring constants) and ~2000 s (smaller spring constants), 

depending on the case considered. 

Numerical simulations were performed using water as the PCM. The initial height of 

the PCM slab is 0.05miH =  and the following properties are used: 3918kg ms = , 

31000 kg ml = , 2217 J kg Kpsc =  , 4180J kg Kplc =  , 1 92 W m Ksk .=  , 

0 58W m Klk .=  , 333 4kJ kgslh .= . The initial melting temperature of water is 

273 15KmiT .=  at an initial pressure 101.325kPaip = . The solidus and liquidus 

temperatures in the numerical model are taken as 0.005KmT  . The system is initially 

liquid at 273.155KiT = , i.e. at the initial liquidus temperature. At time 0t = , the 

boundary at 0x =  is lowered to 
CT  and is maintained at that temperature for times 0t  . 

The cold-side temperature 
CT  is calculated with the definition of the Stefan number based 

on the solid phase properties, i.e. ( )s ps mi C slSte c T T h − , where the Stefan number for all 

simulations is 0 01sSte .= . The hot-side temperature is maintained at 273.155KH iT T= =  

throughout the simulations. 
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5. Results of numerical simulations 

The first case considered is the elastic wall model described in Section 3.4. In order 

to study the impact of the effective spring constant 
w  on the numerical results, the 

Poisson coefficient 
w  was fixed to 0.35 and the initial length 

wiL  of the 1D elastic wall 

was fixed to 0.05m for all simulations, while the Young’s modulus varied for each 

simulation. Fig. 3a depicts the position of the solid-liquid interface   as a function of 

time for three 
w  values, 0.3GPa/m, 3GPa/m, and 30GPa/m. For low values of the 

effective spring constant 
w , the solidification process resembles that of an unconstrained 

PCM throughout most of the simulation, following the well-known time dependency 

proportional to 
1 2t . In that case, eq  tends to eq , free , i.e. the equilibrium position of the 

solid-liquid interface for a free PCM as discussed in Section 3.3 (see Eq. (22)). Note that 

for very low values of 
w , the elastic wall model derived in this papers allows the PCM 

to solidify beyond its initial height as can be seen in Fig. 3a, which would not be possible 

if the density of the solid and liquid phases had been the same, or if a model that did not 

conserve the total mass of the system had been used. When 
w  is increased, an 

asymptotic behavior is found and the equilibrium position of the solid-liquid interface 

becomes increasingly smaller as the rigidity of the elastic wall augments. For example, a 

value of 30GPa/mw =  results in eq  being smaller than 20% of the initial height of the 

PCM slab, as shown in Fig 3a. This inhibition of the solidification process comes directly 

from the fact that as the PCM solidifies and expands, the pressure rise within the system 

lowers the melting temperature of the PCM until it is too small for the phase change 

process to continue. 
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Figure 3a 

Figure 3b shows the melting temperature of the PCM as a function of time for the 

three cases discussed previously. It can be seen that as the effective spring constant 

increases, the melting temperature of the PCM decreases and gets closer to its physical 

limit, i.e. the cold-side temperature. In the simulations performed, the changes of the 

melting temperature were relatively small since the Stefan number of the simulation was 

small and thus, the cold-side temperature 
CT  was close to the initial melting temperature. 

Even though these variations were small, they were enough to hinder the solidification 

process which resulted in an equilibrium state far from that of an unconstrained PCM. 

The pressure rise within the system is shown in Fig. 3c for the same values of w . It can 

be seen that for moderate to high values of the effective spring constant (3GPa/m and 

30GPa/m), the pressure rise can be significant, i.e. 10MPa to 20MPa, which could in 

certain cases (depending on the material, the geometry, etc.) result in structural 

breakdown of the container. Note that the pressure rise at equilibrium represents the 

worst-case scenario, i.e. it is the maximum pressure rise that can occur within the system 

due to the constrained expansion of the PCM, provided that the integrity of the walls is 

preserved until the equilibrium state is reached. Therefore, these values could be used as 



28 
 

an estimation of the maximum pressure rise that the system needs to withstand due to the 

expansion of the PCM during the design process of a container. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3b 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3c 
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The second case that was solved with the numerical model is the air gap model 

derived in Section 3.5. The initial pressure within the gas is the same as that of the PCM, 

i.e. 101.325kPaip = . Since the non-linear effective spring constant of the gas given by 

Eq. (48) is inversely proportional to the initial length of the gap, giL , the impact of 
g  on 

the numerical results will be studied by considering different values for giL . With the 

physical properties of water used in this paper, the maximum height variation of the PCM 

at equilibrium (i.e. f iH( t ) H− ) is ~4.5 mm and would happen if the PCM was 

completely free to expand. Therefore, the simulated values of the initial air gap thickness 

giL  were chosen as 3 mm, 4 mm, and 5 mm, which covered the cases of the gap being 

too small to allow the PCM to fully expand and cases where the gap was large enough to 

allow the PCM to expand during solidification. 

Figure 4a shows the position of the solid-liquid interface as a function of time for the 

air gap model and for different values of giL . As expected, when the air gap is too small 

to allow the PCM to fully expand ( giL  values of 3 mm and 4 mm), the solidification 

process stops prematurely and eq  is smaller than the initial height of the PCM. On the 

other hand, for larger values of giL  and thus, smaller values of 
g , the PCM is allowed to 

solidify almost completely and eq eq , free → , as was the case for small values of w  for 

the elastic wall model. However, for the air gap model, the solidification process for all 

cases follows a very similar path at the beginning of the simulation. As shown in Fig. 4b, 

the melting temperature of the PCM is relatively similar for all cases considered when the 

solidification begins. After some time, however, the non-linear behavior of the effective 

spring used to represent the air gap causes the melting temperature to suddenly drop until 

the solidification process reaches equilibrium. Similar non-linear behavior is observed for 

the pressure rise within the PCM, as depicted in Fig. 4c. The pressure rises monotonically 

at the beginning of the solidification process during which 
g  is nearly constant since 

gi( t ) L =  in Eq. (48). However, as ( t )  increases and becomes closer to giL , then 
g  

starts increasing rapidly which causes the abrupt pressure rise seen in Fig. 4c. Similarly to 

the elastic wall model, a significant pressure rise can be observed within the system when 
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small values of giL  are chosen. However, by selecting an appropriate value of giL  during 

the design process for a given application, the pressure rise within the system can be 

controlled. Consequently, it can be large enough to avoid large mechanical constraints 

that could compromise the structural integrity of the system while being small enough to 

lower both the size and cost of the system. 
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As was mentioned previously, both the elastic wall and air gap models can be used to 

predict the important variables related to solidification or melting of a PCM, such as its 

expansion and the pressure rise within the system. This information is crucial during the 

design of any given system in order to avoid oversizing and prevent unnecessary costs. 

The analytical expressions developed in Section 3.4 for the elastic wall model (Eqs. (37)-

(43)) and in Section 3.5 for the air gap model (Eqs. (51)-(58)) can be solved easily and 

can be used to rapidly get such relevant information. The analytical expressions have 

been compared against numerical simulations for each model. Fig. 5a shows the predicted 

and simulated equilibrium position of the solid-liquid interface for different values of 
w  

for the elastic wall model. It can be seen that the scale analysis predictions are in very 

good agreement with the numerical simulations over a wide range of elastic wall 

rigidities. Similarly, Fig. 5b shows the predicted and simulated values of eq  for different 

initial thickness of the air gap giL . Once again, the analytical predictions of the 

equilibrium position of the phase change interface are very close to those obtained 

through simulation. As mentioned previously, the analytical predictions can also be used 

to predict other important quantities at equilibrium. For example, predicted values of eq  

have been used in conjunction with Eq. (29) for the elastic wall model and Eq. (47) for 

the air gap model to predict the pressure rise within the system at equilibrium. Results are 

shown in Fig. 6a for the elastic wall model and in Fig. 6b for the air gap model. The 

predicted pressure rises at equilibrium for both models are found to be in very good 

agreement with the pressure rise obtained from numerical simulations. It is noteworthy to 

mention that even though they are not presented in this paper, other relevant quantities 

could be predicted with the analytical expressions developed in Sections 3.4 and 3.5, such 

as the final height of the PCM slab or the melting temperature at equilibrium. 
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6. Conclusions 

In this paper, various ways of accommodating density variations during solid-liquid 

phase change were classified and addressed both analytically and numerically for a one 

dimensional case. It was shown that some assumptions usually found in literature when 

simulating solid-liquid phase change could lead to imbalance of mass at the solid-liquid 

interface or within the system. A scale analysis was performed for simple models (no 

induced velocity at the solid-liquid interface, open top boundary and free top boundary) 

to predict the behavior of the system in each case. It was also shown that neglecting 

density variations during phase change could lead to significant differences in the 

numerical results (e.g. solidification time could be ~19% longer and energy required ~9% 

higher for the complete solidification of water when density variations were considered). 

New models that considered the thermo-mechanical coupling between the PCM and 

its container were derived. For the first model, it was assumed that the PCM was 

constrained by a wall that behaved elastically, whereas in the second model, a 

compressible air gap was introduced to accommodate volume variations during phase 

change. These two models were implemented numerically with a finite volume moving 

mesh method and the impact of the models on the transient phase change process were 

explored by varying the effective spring constant in each case. For both models, the 

“normal” phase change behavior, i.e. 1 2( t ) t  , was replaced by an asymptotic behavior 

that strongly depended on the value of the effective spring constant of each model. Very 

low values of 
w  and 

g  resulted in the PCM behaving similarly to an unconstrained 

PCM with the equilibrium values similar to the free top boundary model discussed in 

Section 3.3. On the opposite, large values of these parameters resulted in the 

solidification process being abruptly interrupted as the pressure rise within the system 

causes the melting temperature to drop to a point where the system reached equilibrium 

before the solidification of the entire PCM was completed. Finally, analytical expressions 

were developed for both models to predict the equilibrium position of the solid-liquid 

interface and other relevant quantities at equilibrium, such as the melting temperature, the 

pressure rise or the final height of the PCM. 
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Figure captions 

Figure 1 Schematic representation of the solidification process in a slab of finite 

thickness 

Figure 2 Schematic representations of the advanced methods for accommodating 

density variations during solid-liquid phase change; a) Elastic wall model 

and b) Air gap model 

Figure 3 Simulation results for the elastic wall model with 0 01sSte .=  and for 

different values of 
w ; a) Position of the solid-liquid interface, b) Melting 

temperature, and c) Pressure rise within the system 

Figure 4 Simulation results for the air gap model with 0 01sSte .=  and for different 

values of 
giL ; a) Position of the solid-liquid interface, b) Melting 

temperature, and c) Pressure rise within the system 

Figure 5 Comparison between predicted and simulated equilibrium positions of the 

solid-liquid interface; a) Elastic wall model and b) Air gap model 

Figure 6 Comparison between predicted and simulated equilibrium pressure rise 

within the system; a) Elastic wall model and b) Air gap model 
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Appendix 1: Spring constant 
w

 for a 1D elastic wall boundary condition 

Hooke’s law for a wall made of an isotropic material with Young’s modulus 
wE  and 

Poisson coefficient 
w  is given by (see Section 1.3 in [30]): 
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 (59) 

If infinite rigidity is assumed in the x and z directions (plane strain approximation), then 

0xx zz = =  and the expression for the stress in the y direction is given by: 
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When the elastic wall is modeled as a spring with effective spring constant 
w , Hooke’s 

law is written as follow: 

 ( ) ( )i w wi wp p L L− = −  (62) 

By comparing Eqs. (61) and (62), the spring constant for a 1D elastic wall as depicted in 

Fig. 2 a) is expressed as: 
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