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Abstract 

In this paper, the solidification of water near its density extremum is simulated while 

taking into account the expansion of the phase change material resulting from the 

different density of the solid and liquid phases. A thermo-mechanical coupling is 

achieved through one of the boundaries of the cavity behaving as an elastic wall. A 

methodology is introduced in which the problem is adapted in order to be solved with 

commercial CFD software (ANSYS Fluent 17.0). It is shown that when both the density 

variations and interaction of the phase change material with its boundaries are taken into 

account, significant differences may be observed in the flow pattern and the thermal 

behavior of the system, as opposed to an approach where a free ceiling or a constant 

density would be used. The pressure buildup inside the cavity resulting from the 

expansion of the phase change material as it pushes against the elastic wall causes the 

melting temperature to drop, which hinders solidification. It is shown that this effect 

becomes more pronounced as the spring constant of the elastic wall increases. It is also 

demonstrated that, with the assumptions made in the present model, the pressure rise may 

significantly influence the buoyancy forces within the cavity and change the relative size 

of the two counter rotating convective cells in the liquid phase. In some cases, when the 

pressure rises very quickly, the density extremum in the cavity disappears which strongly 

changes the flow pattern, i.e., only a single counter-clockwise convective cell is present 
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in the cavity. This, in turn, changes the shape and position of the solidification front 

considerably. 
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Nomenclature 

ia  pressure dependent coefficient [-] 

mushA  mushy zone constant [N s m-4] 

pc  specific heat at constant pressure [J kg-1 K-1] 

f  liquid fraction [-] 

F  external body force vector [N m-3] 

g  gravitational acceleration vector [m s-2] 

h  sensible enthalpy [J kg-1] 

slh  latent heat of fusion [J kg-1] 

H  height of the cavity [m] 

k  thermal conductivity [W m-1 K-1] 

L  length of the cavity [m] 

p  pressure [N m-2] 

q  water density correlation parameter [-] 

t  time [s] 

T  temperature [K] 

CT  cold-side temperature [K] 

HT  hot-side temperature [K] 

mT  melting temperature [K] 

maxT  temperature at which density of water is maximum [K] 

u  velocity vector [m s-1] 
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xu  x-component of the velocity vector [m s-1] 

w  water density correlation parameter [K-q] 

x , y  Cartesian coordinates [m] 

Greek Symbols 

  thermal expansion coefficient [K-1] 

mT  melting temperature interval [K] 

  small number [-] 

  effective spring constant [Pa m-1] 

  dynamic viscosity [N s m-2] 

  density [kg m-3] 

max  maximum density of water [kg m-3] 

τ  viscous stress tensor [N m-2] 

 

Subscripts 

i  initial value 

l  liquid phase property 

mush  mushy region property 

s  solid phase property 

w  elastic wall property 

 

1. Introduction 

Solidification and melting in cavities has been used extensively as a benchmark problem, 

both numerically and experimentally to develop a better understanding of the heat 

transfer and fluid flow mechanisms during solid-liquid phase change [1–5]. In particular, 

the melting of gallium in a cavity [6] has been cited numerous times and served as a 

validation test case for many numerical models. Even in the last few years, phase change 

in rectangular cavities heated by the lateral walls has been the topic of many studies 

motivated by applications such as thermally-activated actuators [7–10], where the 

actuator is filled with a phase change material (PCM) and its ceiling wall can be 
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thermally activated to move as a result of the volumetric changes occurring during 

solidification or melting. 

Modeling density variations during solid-liquid phase change, however, still 

presents a challenge. In the past years, mathematical and numerical models were 

developed by different authors in an attempt to take into account the expansion/shrinking 

of a phase change material during phase change. Amongst the different approaches to 

accommodate density and volume variations during phase change, the two simpler are the 

presence of an open surface through which mass may enter or leave the domain or a 

moving free surface [11]. A number of studies regarding the solidification and melting in 

an enclosure with natural convection and density variations have been published. For 

instance, Ho et al. [5] performed an experimental and numerical study of melting of n-

octadecane in an enclosure with a moving ceiling. By varying the subcooling, as well as 

the Stefan and Rayleigh numbers over prescribed intervals in their experiments and 

numerical models, the authors developed a correlation to predict the height of the moving 

ceiling as a function of time. The authors mention, however, that by neglecting the 

weight and friction of the moving ceiling (i.e., thermo-mechanical coupling), the 

correlation always over predicted the correct position of the ceiling. Assis et al. [12] and 

Hosseinizadeh et al. [13] investigated melting of a PCM with natural convection in 

spheres, which is of interest, for example, in micro-encapsulated PCM applications. The 

authors opted for a free surface approach, where an air gap was left at the top of the 

spherical enclosure in order to allow the PCM to expand upon melting. Schmueli et al. 

[14] used a similar approach in their experimental and numerical study on melting with 

natural convection in a vertical cylinder. Hassab et al. [15] present two different models 

for the melting of wax: one that does not simulate volumetric expansion during melting 

and one that does take it into account. A comparison of the results of the two models 

showed significant differences between the two different approaches at low Biot number. 

A few attempts have been made to study the thermo-mechanical coupling during 

solid-liquid phase change. Namely, Conti [17] introduced mathematical and numerical 

models in a study on the pressure dependence of the melting temperature for the one 

dimensional solidification problem of a PCM of finite length. In their work, Conti et al. 

[18] assessed the effect of the choice of the boundary condition (convective cooling or 
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prescribed heat flux) for a similar setup. In both works, the Clapeyron equation was used 

to derive an expression for the melting temperature as a function of pressure. The 

numerical results show that the transient behavior of the classical Stefan problem is 

replaced by an asymptotic behavior, which is caused by the pressure dependant melting 

temperature. Kowalczyk et al. [19] studied the phenomenon of high pressure induced 

freezing and thawing of water, which is of interest in the treatment of food and 

biotechnological substances with high hydrostatic pressures (HHP). In their model, the 

conservation equations for the enthalpy-porosity method are reformulated for a 

compressible PCM and the pressurization/decompression is achieved by adding or 

removing liquid water through a hole located at the top of the enclosure. The results show 

that the convective motion is strongly influenced by the compression of the PCM since 

liquid water at very high pressure does not exhibit any density extremum. Their results 

also show that natural convection has a significant impact on the solidification rate. In 

previous work [11], two thermo-mechanical coupling models were developed (elastic 

wall and air gap) and applied to the one dimensional problem of expansion during 

solidification of an incompressible PCM. Analytical expressions were derived for 

predicting important physical quantities at equilibrium, such as the position of the 

solidification front, the pressure rise, or the melting temperature. 

In this work, the solidification of a PCM in a closed cavity is simulated while 

taking into account the density change during phase change. As a result of the expansion, 

the wall of the cavity is deformed and the pressure builds up, reducing the melting 

temperature and hindering phase change. The modeling and simulation of the PCM 

density variations and of the thermo-mechanical coupling are the main contributions of 

this paper. The goal of this paper is to provide a benchmark case study of solidification in 

a closed cavity in the presence of density change and buoyancy forces. It is worth noting 

that even though solidification of water (which expands upon solidification) is the focus 

of this study, the general methodology presented here could also be applied to the melting 

of other PCMs (i.e., a PCM that expands upon melting). Section 2 introduces the problem 

with its mathematical formulation. The numerical model and validation are detailed in 

Sections 3 and 4, respectively. Finally, the numerical results for two reference cases (free 
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ceiling and constant density) as well as three different stiffness (spring constant) of the 

elastic wall are presented in Section 5. 

 

 

 

2. Mathematical formulation 

The domain under study is shown in Fig. 1. It consists of a 2D rectangular cavity of 

initial height iH  and length L , filled with a PCM. In this study, it was assumed that the 

PCM was water, but other PCMs could eventually be simulated. The properties of water 

and ice [20] that were used are presented in Table 1. Note that all properties were 

assumed to have different values according to the phase of the PCM. 
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Figure 1 

 

Table 1: Physical properties of water and ice 

Property Water Units 

s  918 kg m-3 

l  999.972 kg m-3 

psc  2025 J kg-1 K-1 

plc  4180 J kg-1 K-1 

sk  2.19 W m-1 K-1 

lk  0.58 W m-1 K-1 
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mT  273.15 K 

mT  0.5 K 

slh  333.4 kJ kg-1 

  Eq. (4) kg m-1 s-1 

 

The PCM is initially liquid at a temperature iT . Starting at time t = 0, the left-hand 

side wall is maintained at a temperature CT  which is below the melting point of the PCM, 

whereas the right-hand side is maintained at HT , above the melting point. The horizontal 

walls are both adiabatic. Because of these boundary conditions, solidification takes place 

on the left-hand side wall and the frozen layer grows in time. Eventually, if solidification 

was allowed to go on for a sufficiently long period, the system would reach steady-state. 

The governing equations that were solved in the PCM domain are the 

conservation of mass, momentum and energy implemented in ANSYS Fluent 17.0 [21]: 

 ( ) 0
t





+ =


u  (1) 

 ( ) ( ) p
t
  


+  = − + + +


u u u τ g F  (2) 

 ( ) ( ) ( )h h k T
t
 


+ =  


u  (3) 

Note that the same equations were solved for both phases in the domain. 

Compared to the majority of studies on solidification and melting, the fact that the 

density changes during phase change (in this study, the PCM expands upon 

solidification) means that the first term on the l.h.s. in Eq. (1) is non-zero in the region of 

the domain where the phase change occurs (i.e., phase front) even though s  and l  are 

constants. Therefore, there is a net velocity in the liquid phase at the interface due to the 

change of density. This insures mass conservation locally (at the solid-liquid interface or 

mushy region) as well as globally (in the domain). 

In the conservation of momentum equation, a temperature dependant viscosity 

was used: 

 
( ) 8 3 5 2

3 1

3.020694 10 2.603383 10

7.516218 10 7.280133 10

T T T

T

 − −

− −

= −  + 

−  + 
 (4) 
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This equation was obtained by fitting the data of table A.6 in [22] between 273.15K and 

285K.  

Equation (2) also includes two additional source terms. First, the term g  

accounts for the buoyancy forces in the melt (natural convection). To determine the 

buoyancy forces, the correlation developed in [23] for the density of pure water as a 

function of temperature and pressure was used  

 ( ) ( ) ( ) ( )
( )

max max, 1
q p

T p p w p T T p   = − −
  

 (5) 

This correlation allows the representation of the density extremum of water near 4 ºC, 

which results in different flow patterns than what would be observed if an alternative 

approach was used to describe the buoyancy forces, such as the Boussinesq 

approximation (see Chapter 4 in [24]). In Eq. (5), the pressure dependent quantities are 

given by: 

 ( ) ( ) ( )max max 11 1p a p = +    (6) 

 ( ) ( ) ( )21 1w p w a p= +    (7) 

 ( ) ( ) ( )max max 31 1T p T a p= +    (8) 

 ( ) ( ) ( )41 1q p q a p= +    (9) 

 ( ) ( )
3

1

1
j

i ij

j

a p a p
=

= −  (10) 

where the pressure is expressed in bar. The following parameters at 1 bar were used: 

( ) 3

max 1 999.972kg/m = , ( ) -6 -1 9.297173×10 K qw = , ( )max 1 277.179325KT = , and 

( )1 1.894816q = . The ija  coefficients used in the present work yield a root mean square 

deviation ~
33.5 10−  kg/m3 (check value 1040.2547 kg/m3), see Table 1 in [23]. Since 

density variations of the melt with temperature are usually small (e.g., ~0.03% variation 

when comparing ( )10ºCT =  to max  at a pressure of 1 bar) and assuming the PCM to 

be incompressible, the density of the liquid phase was assumed constant and equal to 

( )max 1  everywhere in the conservation equations, except in the buoyancy forces. 
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The second source term F  is an external body force and inhibits fluid motion in 

the solid portion of the domain following the Carman-Koseny equation [25]: 

 
( )

2

3

1
mush

f
A

f 

−
= −

+
F u  (11) 

where the liquid fraction 0f =  in the solid phase, 1 in the liquid phase, and varies 

linearly between 0  and 1 over a small interval of temperature mT  around the melting 

temperature mT . In Eq. (11), a value of 0.001 =  was used for all simulations (small 

number to avoid division by 0) and 
mushA  is the mushy zone constant. A wide range of 

values for the mushy zone constant 
mushA  were used in the past by various researchers. A 

recent study [26] showed that the effect of 
mushA  is critical in most simulations as the 

melting rate can either be overestimated or underestimated, which strongly influences the 

accuracy of the simulations. Their results also showed that 
mushA  and 

mT  are not 

independent of one another when it comes to finding the correct values for the simulation 

results to match experimental results. For all numerical models used in the present study 

(including validation cases presented in Section 4), different combinations of both 

parameters were investigated in order to find optimal values. The final choice of these 

parameters is given for each model in the relevant sections of this paper. 

Finally, the energy balance in Eq. (3) accounts for all relevant heat transfer 

mechanisms, including phase change. Due to the limitations of the software used to solve 

Eqs. (1)-(3) (see Section 3 below), it was decided to represent phase change via a 

modification of the specific heat so as to include latent heat rather than by solving 

explicitly for the liquid fraction. Different formulations are readily available for the 

apparent heat capacity method; see for example Ref. [27] for a discussion on the most 

widely used formulations and their limitations. It is worth mentioning that other 

formulations exist for this method. For instance, Ref. [26] introduced a method using a 

Gaussian function centered about 
mT  that ensures energy balance through the phase 

transition. Figure 2 shows the modified specific heat as a function of temperature that 

was used in the present paper. Over a small interval of temperature mT  around the 

melting temperature, the value of pc  is increased in such a way that the integral under the 
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curve (shaded area in Fig. 2) is equal to the latent heat of fusion, i.e., 
pmush sl mc h T=  . 

Since the equation for the conservation of energy is solved for the unknown enthalpy as 

opposed to the temperature, see Eq. (3), the modified specific heat depicted in Figure 2 is 

integrated with respect to temperature in order to calculate the energy variation within a 

given control volume at a given time step. This ensures that latent energy is properly 

accounted for during solidification. Note that in the mushy region, the other physical 

properties ( k ,  , and  ) are average properties. For example, the thermal conductivity 

in the mushy region is ( )1 s lk f k fk= − + . 

mT

psc

plc

pmushc
pc

T

mT

 

Figure 2 

 

As the solidification takes place, the PCM expands. As mentioned in [11], there 

are different ways to accommodate volume change when modeling this type of problem, 

such as allowing excess mass to exit the domain via a permeable boundary or including a 

moving free surface in the domain. In this work, a closed container was modeled (see Fig. 

1). The top surface was considered elastic, whereas the three other surfaces were 

infinitely rigid. During solidification, the elastic wall deforms and the height of the cavity 

evolves in time. Based on Hooke’s law, the pressure buildup in the cavity can be 

calculated from the change in H  over time [11]: 
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 ( ) ( ) ( )i w wi w w ip t p L L t H t H  − = − = −        (12) 

where w  is the effective spring constant of the elastic wall and can be linked to the 

geometry and mechanical properties of the elastic wall, see Appendix 1 in [11]. 

Assuming the PCM to be incompressible, the height of the cavity ( )H t  is calculated by 

enforcing the conservation of the initial mass of the PCM. 

In general, the increase in pressure affects the phase change temperature and to a 

lesser extent, the latent heat. In the present work, only the impact of pressure on the 

melting temperature was accounted for, i.e., the variation of latent heat was ignored. The 

Clapeyron relation allows expressing the melting temperature as a function of the 

pressure level in the domain as [11]: 

 ( ) ( )
1

exp s l
m i mi i

s sl

T p p T p p
h

 



 −
− = − − 

 
 (13) 

In the end, the governing equations (1)-(11) with the thermo-mechanical coupling 

of Eqs. (12)-(13) along with the initial and boundary conditions described at the 

beginning of this section constitute the present mathematical model. 

 

3. Numerical implementation 

The model described in Section 2 was implemented in ANSYS Fluent 17.0 which is 

based on the finite volume approach [28]. A mesh cut up the domain into small control 

volumes over which the governing equations are integrated, yielding a set of algebraic 

equations solved iteratively, time step by time step. 

A series of adjustments and developments was needed in order to properly model 

the current problem within ANSYS Fluent 17.0: 

(i) Properties in the mushy zone: One of the issues in phase change problems 

with density variation is the proper evaluation of physical properties within 

the mushy zone. In [29], it was showed that some of the properties appearing 

in Eqs. (1)-(3) are not the same in every term of the equations (within the 

mushy region), especially the density. However, in the software that was used, 

it is not possible to consider different property values in different terms of the 

governing equations. Therefore, it was decided to perform numerical 
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simulations for a pure PCM (water) with a narrow mushy zone in order to 

minimize the possible error induced when using the same properties in every 

term of the conservation equations. 

(ii) Increase of volume: As mentioned above, as solidification takes place, the 

volume of the domain has to increase since s l  . At the beginning of each 

time step, the density field was integrated over the domain to determine the 

total PCM mass in the cavity. A new cavity height was calculated by adding 

liquid water at the top of the cavity until the total PCM mass was equal to the 

initial PCM mass. The position of the top boundary was then moved 

accordingly. This was accomplished by using the dynamic mesh tool provided 

by ANSYS Fluent 17.0 in conjunction with a “User Defined Function” (UDF) 

to perform the volume integral and calculate the required displacement of the 

top boundary. A layering technique was used to split the deforming layer of 

cells adjacent to the top boundary in order to preserve mesh quality. 

(iii) Melting temperature: The phase change model available in the software did 

not allow the solidus and liquidus temperatures to change over the course of 

the simulation. However, in the present case, melting temperature is 

influenced by pressure which evolves in time, see Eq. (13). Therefore, it was 

necessary to deactivate the available phase change model and to implement a 

new one to be able to change the melting temperature. As mentioned in 

Section 2, an equivalent specific heat approach was thus used to account for 

the latent heat and was implemented with a UDF. In the momentum equations, 

the source terms blocking the velocity in the solid phase was also re-

implemented with a UDF. 

(iv) Thermo-mechanical coupling: At each time step, the mesh is deformed and 

the height of the domain is adapted to keep the total PCM mass constant. With 

the spring model introduced in Eq. (12), this results in an increase of pressure 

in the domain and as a consequence, in a change of the melting temperature. 

Therefore, the melting temperature is updated with Eqs. (12)-(13) inside each 

UDF. Accordingly, the specific heat versus temperature curve depicted in Fig. 

2, as well as other temperature dependant properties calculated with UDFs, 
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were adapted so that the phase change temperature corresponded to its newly 

calculated value. Note that the actual pressure buildup was not used in the 

momentum equations directly as it constitutes a gauge that does not affect the 

pressure gradient. 

The complete model was used to study a cavity with initial height 0.15miH =  

and length 0.15mL = . The initial and boundary conditions are 283.35KiT = , 

263.15KCT = , and 283.35KHT = . Three values of the effective spring constant w  were 

investigated: 0.3 GPa/m, 3 GPa/m, and 30 GPa/m. In the dynamic mesh options, a split 

factor (ratio based) equal to 0.4 was used for the layering technique and the ideal cell 

height was set to 0.00075 m. For the numerical solution, the “SIMPLE” algorithm was 

chosen for the pressure-velocity coupling. Spatial discretization was performed with the 

“PRESTO!” algorithm for pressure, while the “QUICK” algorithm was used for 

momentum and energy. The transient formulation was set to first order implicit in all 

simulations. The following under-relaxation factors were used: 0.6 for pressure, 0.9 for 

density and body forces, 0.5 for momentum, and 0.1 for energy. Absolute convergence 

criteria varied between 
-4 -51×10 -10  for continuity and momentum, and between 

-7 -81×10 -10  for energy, depending on the effective spring constant. Both mesh and time 

step independences were thoroughly tested, which resulted in a final mesh of 150200 

control volumes and a time step of 1 s. 

 

4. Validations 

The model described in Sections 2 and 3 was validated step-by-step with four different 

cases documented in literature. Each test case aimed at validating a specific part of the 

model, each time adding new physics and new UDFs until the complete model was 

validated. First, the modified heat capacity approach was validated by comparing the 

results of the present model to the analytical solution presented in Example 11-3 in [30]. 

The problem considered is the solidification of a pure PCM (water) in a half-space with 

variable properties (except density). The PCM is initially liquid at 273.2KiT = . At 0t = , 

the temperature at 0x =  is lowered to 272.35KCT =  while the temperature at x L=  is 
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maintained at 273.2KHT = . The top and bottom boundaries were defined as symmetry 

axes to make the problem one dimensional. The properties of water are given in Table 1 

and the density used in the simulation was l . The temperature interval over which 

solidification takes place was 0.1KmT = . The mesh consisted of 100 control volumes in 

the x direction and the time step was 100 s. Figure 3 shows the comparison between the 

analytical solution and the present model of the phase front position over time. The 

agreement is found to be excellent. 

 

Figure 3 

 

The second test case is the classic problem described in [6], i.e., phase change in a 

cavity filled with gallium with buoyancy forces. This test case aimed at validating the 

UDF that inhibits fluid motion in the solid phase, i.e., Eq. (11). The physical properties 

used in the simulation were 
36095kg m = , 381.5J kg Kpc =  , 32 W m Kk =  , 

0.00181kg m s =  , 302.93KmT = , 0.6KmT = , and 80160J kgslh = . In addition, the 

Boussinesq approximation was used instead of Eq. (5) to calculate the buoyancy forces in 

the melt with a thermal expansion coefficient 
-10.00012K = . The mushy zone constant 

was 6 41×10 N s mmushA =  . The cavity dimensions as well as the boundary and initial 

conditions were chosen in order to match as closely as possible the experimental setup for 
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the cavity with an aspect ratio 0.714A =  described in [6]. The position of the solid-liquid 

interface is shown in Fig. 4 at different times and the numerical results are in good 

agreement with the experimental results from [6], given the uncertainties of the model 

and experiment results. 

 

Figure 4 

 

The third test case served to validate the UDFs for calculating the different 

physical properties of the PCM, as well as the buoyancy forces from Eq. (5). The 

problem is that of solidifying water in a cavity near its density extremum. Since water 

density is maximal near 4 ºC at atmospheric pressure, the flow pattern inside the cavity 

will consist in two counter-rotating natural convection cells. A small clockwise 

circulation cell will develop at the bottom of the cavity as cold water near the 

solidification front rises, while a large counter-clockwise circulation cell will develop in 

the remaining part of the cavity. This phenomenon and the experimental setup used for 

the validation of the numerical model (experiment A) are described in [31]. The 

properties of water used in the simulation are found in Table 1 and the value of the 

mushy zone constant that yielded the best results was 7 41×10 N s mmushA =  . The mesh 
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consisted in 300 control volumes in the x direction and 200 control volumes in the y 

direction and the time step was 1 s. Further mesh or time step refinements did not result 

in significant changes of the solution. Even though the top surface did not move during 

this simulation, the boundary condition at the top surface for the momentum conservation 

equation was adapted to represent a free surface similarly to the experimental setup. 

Instead of a no slip boundary condition ( 0xu = ), a no shear boundary condition was 

imposed ( 0xu y  = ). The position of the solid-liquid interface at different times is 

depicted in Fig. 5. The numerical results at 15 and 60 minutes obtained by Scanlon and 

Stickland [32] were also shown for the sake of comparison. As can be seen in Fig. 5, the 

numerical results of the present work are in good agreement with both the experiment 

described in [31] and the numerical results presented in [32]. The small discrepancies can 

be explained by the differences between the numerical and experimental setups. Namely, 

there was a small adaptation period ~1-4 minutes before the temperature on the left-hand 

side of the cavity reached its prescribed value during the experimental measurements, but 

it is unclear whether the experimental time t =0 was before or after this adaptation 

period, which could explain why the numerical solution is slightly behind the 

experimental solution (especially at early times). In addition, the exposure time to 

produce the photos of the experimental phase change front was ~100 s, which makes it 

hard to define the position of the phase front with precision. Note that the top and bottom 

boundaries are assumed to be perfectly adiabatic in the numerical simulation, which is 

impossible to obtain in reality. As explained in [33], conduction in the x direction through 

the bottom boundary of the container in the experiment can cause the maxT T=  isotherm 

to move to the right which results in a larger circulation cell in the bottom-left corner of 

the cavity. This, in turn, influences the shape and position of the solid-liquid interface. It 

is noteworthy to mention that according to the collection of experimental data presented 

in [20], some of the properties of fresh-water ice reported in literature show a wide range 

of different values at a given temperature, especially the specific heat and the thermal 

conductivity. The sensitivity of the numerical results to both psc  and sk  was investigated, 

and it was found that they have a significant impact on the position of the solid-liquid 

interface at a given time. For instance, the choice of a slightly lower value for psc  and 
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higher value for sk  (while remaining within the reported interval for each property) 

resulted in a better prediction of the interface position when compared to the 

experimental data. 

 

Figure 5 

 

Finally, the present model was compared with the 1D solution presented in [11] 

for phase change with density change and thermo-mechanical coupling (labeled 

"Reference case" in Fig. 6). The features that were validated with this test case were the 

new UDF that calculates ( )H t  (dynamic mesh), as well as the new portions of code 

added to existing UDFs for all calculations related to the thermo-mechanical coupling. 

The code developed in previous work was reused for this test case for the same system 

described in Section 4 of [11], with the exception that 0.5KmT = . The reason for this 

modification is that the temperature interval used in previous work was too small for the 

present model with the modified specific heat approach. Since both the initial condition 

iT  and boundary condition HT  were defined as 2mi mT T+  , both models needed to be 

compared with the same value of mT . Note that there is no mushy zone constant for this 

validation case, since the velocity in the mushy zone and in the melt is calculated directly 

from the continuity equation. The mesh used with the present model was made out of 300 

control volumes and the time step was 90 s. The evolution of the position of the solid-
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liquid interface and of the melting temperature are reported in Fig. 6 for 0.3GPa mw = , 

in which it can be seen that both models yield similar results. 

 

 

 

Figure 6 
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5. Results and discussion 

In this section, the numerical results obtained with the complete model described in 

Sections 2 and 3 are presented. Three different values of the effective spring constant 

were investigated, namely w=0.3 GPa/m, 3 GPa/m, and 30 GPa/m. Two additional 

cases were also simulated for the sake of comparison. In the first case, it was assumed 

that the PCM was not confined by an elastic wall, i.e., the top surface was considered as a 

free ceiling with w=0 GPa/m, whereas in the second case, it was assumed that s l =  

(equal to the average density of the solid and liquid phases). The properties of water used 

for all cases are found in Table 1, with a mushy zone constant 7 41×10 N s mmushA =  . In 

order to help understand the overall behavior of the problem studied in this work, a 

qualitative description of the solidification process is first presented in Section 5.1, where 

the effect of the confinement of the PCM on the flow pattern inside the cavity is 

discussed. Then, some critical parameters related to the thermo-mechanical coupling 

were selected and are presented in Section 5.2. Finally, the thermal behavior of the 

system is analyzed in Section 5.3. 

 

5.1 Effect of the PCM confinement on the flow inside the cavity 

Due to the resemblance of the problem studied in the present paper with the third 

validation case, it is expected that the overall behavior of the system will be similar as 

long as the pressure rise inside the cavity remains small, which will occur either at early 

times or when the effective spring constant is very small. At the beginning of the cooling 

process, the dominant mode of heat transfer is conduction. The initial motion of the liquid 

phase is driven by the cold water flowing downward adjacent to the cold wall on the left-

hand side and then extends to the remainder of the cavity to form a large counter-

clockwise convective cell. As the PCM solidifies, a small clockwise convective cell may 

develop at the bottom of the cavity near the solid-liquid interface as lighter cold water at 

maxT T  rises near the solidification front. The remaining portion of the cavity is 

occupied by a larger counter-clockwise convective cell driven by lighter hot water at 

maxT T  rising up next to the right-hand side of the cavity maintained at HT  (see for 
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example Fig. 7). The same behavior was obtained both in experiments [31] and numerical 

simulations [32], [34] of unconstrained PCM. 

To demonstrate the effect of the confinement of the PCM (and the pressure rise in 

the cavity) on the general behavior of the system, three different values of w  were used 

in the simulations. Figure 7a shows contours of the stream function with w=0.3 GPa/m 

after allowing the solidification process to go on for 300 min. On the left-hand side of the 

cavity, a layer of ice has formed. Note that in Figs. 7 to 9, the position of the solid-liquid 

interface is indicated by a solid black line. It can be observed that the layer of ice in Fig. 

7 is thicker in the region adjacent to the cold convective cell near the bottom of the 

cavity, as can be seen in Fig. 7b, which shows contours of temperature in the cavity. In 

the liquid portion of the cavity, the two distinct counter-rotating convective cells are 

clearly visible. For such a small value of w  the pressure rise within the cavity is very 

small. In this case, the variation of the height of the cavity at the end of the simulation is 

~2 mm. Using the thermo-mechanical coupling equation for pressure, i.e., Eq. (12), it is 

possible to estimate that the pressure rise is ~600 kPa. Therefore, the overall behavior of 

the system (flow pattern, solid-liquid interface position, melting temperature, etc.) is 

close to that of an unconstrained PCM (free ceiling). 
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Figure 7 

 

Figures 8a and 8b depict contours of the stream function and temperature for the 

second value of the effective spring constant ( w=3 GPa/m) at t =300 min, respectively. 

In this case, the pressure build up is much higher (see Section 5.2). Although the overall 

behavior is similar, some differences appear in the flow pattern, as well as in the shape 

and position of the solidification front. For instance, the cold clockwise convective cell at 
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the bottom of the cavity is much smaller in this case, which makes the ice layer thicker on 

a smaller portion of the cavity in the y  direction. This is a direct consequence of the 

pressure dependent density in the buoyancy forces, see Eq. (5). As the pressure inside the 

cavity increases, the density extremum in the liquid phase occurs at a temperature closer 

to the melting temperature, which causes the clockwise convective cell to slowly vanish. 

It addition, since the melting temperature of the PCM is smaller in this case, the 

solidification was not allowed to progress as much, which results in an overall slightly 

thinner layer of ice next to the cold wall of the cavity (this will be shown in Section 5.3). 
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Figure 8 

 

The highest value of the effective spring constant ( w=30 GPa/m) yields quite a 

different behavior compared to the smaller values due to the very high pressure inside the 

cavity, as seen in Figs. 9a and 9b which show contours of the stream function and 

temperature at t =300 min. At the beginning of the simulation, the pressure level rises 

very quickly as the PCM pushes against the very stiff elastic wall and the melting 
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temperature drops accordingly. In fact, the pressure rise in this particular case occurs so 

rapidly that the density extremum quickly vanishes from the cavity during the simulation 

(i.e., maxT  does not lie between mT  and HT  at these pressure levels, as will be shown in 

Section 5.2) and there is only one large counter-clockwise convective cell. Therefore, the 

shape of the solid-liquid interface is much different than in the previous cases: the layer 

of ice is thinner near the top of the cavity and grows thicker as the water cools down near 

the interface, until the ice layer reaches its maximum thickness at the bottom of the 

cavity. Another consequence of the pressure rise is that the solidification is slowed down 

considerably and the overall layer of ice is much thinner. 
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Figure 9 

 

5.2 Pressure build-up and melting temperature 

One of the main challenges when modeling density variations during solid-liquid phase 

change is that the volume of the PCM changes with time. In the case considered in the 

present work, water expands during solidification and, as it pushes against the elastic 

wall, the pressure inside the cavity rises. This pressure variation, in turn, changes the 
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melting temperature of the PCM, which results in the thermo-mechanical coupling 

between the PCM and the elastic wall. Depending on the value of the elastic wall spring 

constant, the pressure buildup will reach different levels, as shown in Fig. 10. At early 

times, the solidification rate is generally much higher and as a consequence, so is the 

expansion of the PCM. This is reflected in Fig. 10 by faster pressure rise at lower times. 

In can also be observed that, for the specific values of w  investigated in this paper, 

increasing the effective spring constant by one order of magnitude yields a pressure rise 

that is also of one order of magnitude. 

 

Figure 10 

 

Figure 11 depicts the melting temperature of the PCM as a function of time for the 

different values of w . For the case of the lowest value of w , the pressure rise within the 

cavity was relatively small and as a consequence, the melting temperature of the PCM 

remained relatively close to the initial melting temperature ( miT =0 ºC). However, as the 

value of w  is increased, the melting temperature decreases rapidly, especially for the 

highest value of w . Note that in the simulation with a top free ceiling and that with a 

constant density, the melting temperature simply stays equal 0 ºC at all time, which is 

why the melting temperature for these two reference cases was not shown explicitly in 
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Fig. 11. The temperature at which the density of liquid water is maximal ( maxT ) is also 

shown for each value of w  in Fig. 11. It can be noted that for a given value of w , there 

will be a density extremum in the liquid phase inside the cavity if maxm HT T T  . By 

looking at Fig. 11, on can conclude that since maxT  is larger than mT  during the entire 

simulation for w=0.3 and 3 GPa/m, there is always a density extremum inside the 

cavity. This was shown in Figs. 7 and 8 by the presence of two counter-rotating 

convective cells. On the opposite, Fig. 11 shows that maxT  quickly drops below mT  for w

=30 GPa/m (i.e., there is no density extremum in the liquid phase after ~1 h). This 

explains why there was only one large convective cell inside the cavity in Fig. 9. 

 

 

Figure 11 

 

5.3 Thermal behavior of the system 

Figure 12 depicts the solid-liquid interface position (defined as the position in the 

x  direction at which mT T= ) at different times and for all aforementioned cases. As 

mentioned previously, conduction is the dominant mode of heat transfer at the beginning 

of the solidification process ( t =15 min). As a result, the solid-liquid interface is mostly 

planar in all cases, as can be seen in Fig. 12a. When the effective spring constant 0w  , 
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the pressure within the cavity builds up to different levels depending on the specific value 

of w . One of the consequences of this is the drop of the melting temperature as was 

shown in Fig. 11. When looking at Fig. 12 b-d, the solid-liquid interface positions for 

each case begin to differentiate as time progresses. It can be observed that the drop in 

melting temperature directly caused by the pressure rise inside the cavity hinders the 

solidification process and the position of the solid-liquid interface is slightly behind for 

higher values of the spring constant. This effect is more pronounced for the highest value 

of w  at t =300 min as seen in Fig. 12d. The differences in shape of the interfaces for 

each case are mainly caused by the different flow patterns as well as the relative shape, 

position, and size of the counter rotating convective cells in the liquid phase, as discussed 

previously. 

 

Figure 12 

 

Even though the position of the interface is very similar at early times, see Fig. 

12a, the temperature profiles are not. This is illustrated in Fig. 13 where the temperature 

profiles at t =15 min and at 10iy H=  are shown for the three values of w , as well as 

for the free ceiling and constant density cases. Here, a solid gray line was added to the 

figure to show the range of the solid-liquid interface positions for the different cases. It 
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can first be observed that the temperature profiles in the solid phase are linear and very 

similar for all cases. On the other hand, significant differences can be observed in the 

liquid phase. The general shape of each curve is strongly influenced by the flow pattern 

inside the cavity (i.e., the number, shape, and size of convective cells), and by the 

temperature differential across the liquid phase (i.e., between the solidification front and 

the hot wall). Since both of these factors depend on the pressure rise in the cavity which 

varies depending on the case considered (e.g., ip p− =0.18, 1.80, and 16.68 MPa and 

H mT T− =10.21, 10.33, and 11.42 ºC at t =15 min for w=0.3, 3, and 30 GPa/m, 

respectively), it is thus expected that the flow pattern and, consequently, the temperature 

profiles be different in the liquid phase depending on the effective spring constant. It can 

also be seen that there are slight differences in the temperature profiles for the two 

reference cases (i.e., free ceiling and constant density). For the case where a free ceiling 

was modeled at the top of the cavity, the results are very close to the lowest value of w  

since the free ceiling can essentially be seen as the limit case where the elastic wall’s 

spring constant w  tends towards 0. The spring with a constant w=0.3 GPa/m is not stiff 

enough to produce significantly different results compared to the free ceiling situation. 

Note, however, that there are larger differences in the temperature profile in the case of a 

constant density because using an average density between s  and l  instead of Eq. (5) 

changes the magnitude of the buoyancy forces driving natural convection in the melt and 

thus modifies the flow pattern. 
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Figure 13 

 

The average heat flux on each side of the cavity as a function of time is depicted 

in Fig. 14. It can first be noted that, in addition to heat being transferred from the hot side 

to the cold side by conduction and convection, latent heat extracted from the PCM during 

its solidification exits the cavity through the cold wall, which explains why the average 

heat flux is always higher at that wall. Soon after the beginning of the simulations, the 

large temperature difference between the PCM initially at iT =10.2 ºC and the cold wall at 

CT =-10 ºC results in high solidification rates and in rapidly increasing average heat fluxes 

through the lateral walls of the cavity, especially at the cold wall. However, as time 

passes, the growing layer of ice acts as a thermal insulation and it becomes more difficult 

to extract energy from the PCM. As a consequence, the solidification rate and the average 

heat fluxes across the lateral walls of the cavity decrease. If the PCM was allowed to 

solidify for a sufficiently long period of time, the system would eventually reach an 

equilibrium state where the average heat fluxes crossing the cold and hot walls would be 

equal. It can be observed in Fig. 14 that the pressure rise (and the corresponding drop of 

the melting temperature) hinders the solidification process. Indeed, the average heat 

fluxes are almost equal after 5h for w=30 GPa/m (system almost at equilibrium), 
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whereas the difference between the heat fluxes is larger for lower values of w . It can 

also be deduced from Fig. 14 that the average heat flux across the cavity at equilibrium 

would be higher for larger values of w . 

 

Figure 14 

In order to illustrate the effect of the thermo-mechanical coupling on the overall 

solidification process, the solidified mass fraction (defined as the total mass of the solid 

phase normalized by the initial mass of the PCM) was plotted in Fig. 15. Note that the 

initial mass is the same in all cases except the case where the density is constant and 

equal to the average density of both phases. The case that yielded the highest solidified 

mass fraction after 300 min is the case with a constant density (17.24%). Indeed, less 

energy needs to be removed to solidify a given volume of liquid PCM in that case, as it 

contains less mass (the average density is lower than l ). It was thus expected that the 

solidification rate would be higher in that specific case. When looking at the solidified 

mass fraction for the other reference case, i.e., free ceiling, it can be observed that it 

follows closely the lowest value of w  throughout the entire simulation. However, the 

solidified mass fraction is slightly higher for that reference case (16.21% for free ceiling 

at the end of the simulation as opposed to 16.07% for w=0.3 GPa/m) as there is no 

pressure rise inside the cavity that hinders solidification. For the other cases, Fig. 15 

shows that the melting temperature drop associated with the pressure rise inside the 
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cavity directly results in a lower solidified mass fraction (14.56% and 9.62% for w=3 

and 30 GPa/m, respectively). 

 

Figure 15 

6. Conclusions 

In the present paper, solidification of water near its density extremum while 

considering density variations during phase change was simulated. It was assumed that 

water resided inside a closed cavity with the top surface behaving as an elastic wall. A 

methodology was presented with the different adjustments required in order to implement 

the mathematical model in ANSYS Fluent 17.0. It was shown that the pressure rise inside 

the cavity as the PCM expands towards the elastic boundary influenced both the flow 

pattern and the solidification process at different levels. First, the melting temperature 

decreasing with pressure caused the solidification of water to slow down. This effect 

appeared to be more important for very large values of the spring constant (9.62% 

solidified mass fraction at the end of the simulation for w=30GPa/m as opposed to 

16.21% for a free ceiling). In addition to affecting the solidified mass fraction at a given 

time, the thermo-mechanical coupling also influenced the dynamic process itself. Indeed, 

it was shown in Fig. 14 that although 5 h simulations were not long enough for the 

systems to reach equilibrium (regardless of the value of w  that was selected), the system 

with the highest effective spring constant was much closer to equilibrium than the system 
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with the lowest spring constant. It was also shown that even at early times when heat 

conduction is the main mode of heat transfer, some differences could be observed in the 

temperature profiles across the cavity, even though the position of the solid-liquid 

interface was very similar in all cases. 

Significant differences were observed in the flow pattern, especially regarding the 

size of the two counter-rotating convective cells in the liquid phase. With the equation for 

the pressure-temperature dependent density used in the present work to express the 

buoyancy forces in the melt, the cold clockwise convective cell was found to shrink when 

the pressure inside the cavity increased due to larger values of w . When the spring 

constant was very large (which yielded the highest pressure rise inside the cavity), the 

cold convective cell would not form inside the cavity, which yielded a very different 

shape of the solidification front. 

Although some validations were made against experiments, the full model could 

not be validated in such a way since, to the authors’ knowledge, experimental results for 

a similar setup with thermo-mechanical coupling are not yet present in literature. Future 

work could focus on developing a test bench to measure heat transfer and flow patterns in 

closed cavities as the one studied in this paper. It would also be interesting to use and 

improve the thermo-mechanical model presented in this paper to perform simulations for 

a wider range of parameters, e.g., different initial and boundary conditions, cavity aspect 

ratios, geometries, use a pressure dependent latent heat of fusion, etc. 
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Figure captions 

Figure 1 Schematic representation of the domain under study 

Figure 2 Equivalent specific heat as a function of temperature to account for latent 

heat 

Figure 3 Comparison of the solid-liquid interface position as a function of time with 

the present model and the analytical solution to the Stefan problem [30] 

Figure 4 Comparison of the phase change interface over time in a cavity with 

gallium in the presence of buoyancy forces from the present model and 

that of [6] 

Figure 5 Comparison of the phase change interface over time in a cavity filled with 

water near its density extremum from the present model and that of [31] 

Figure 6 Validation of the thermo-mechanical coupling in the present model with 

the model in [11], a) Position of the solid-liquid interface and b) Melting 

temperature 

Figure 7 Contours of a) the stream function and b) temperature at t =300 min for 

w=0.3 GPa/m 

Figure 8 Contours of a) the stream function and b) temperature at t =300 min for 

w=3 GPa/m 

Figure 9 Contours of a) the stream function and b) temperature at t =300 min for 

w=30 GPa/m 

Figure 10 Pressure rise as a function of time for different values of w  

Figure 11 Melting temperature ( mT ) and temperature at which the density of water is 

maximal ( maxT ) as a function of time for different values of w  

Figure 12 Position of the solid-liquid interface at different times; a) t =15 min, b) t

=60 min, c) t =120 min, and d) t =300 min 

Figure 13 Temperature profile at t =15 min and 10iy H=  for different values of 

w  

Figure 14 Average heat flux on each side of the cavity as a function of time 

Figure 15 Solidified mass fraction as a function of time 
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Table captions 

Table 1 Physical properties of water and ice 


