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Résumé

Cette thèse, structurée en trois (03) essais, développe de nouveaux modèles économétriques
pour l’analyse des interactions sociales et des séries temporelles.

Le premier chapitre (coécrit avec le Professeur Vincent Boucher) étudie une méthode d’esti-
mation des effets de pairs à travers les réseaux sociaux lorsque la structure du réseau n’est
pas observée. Nous supposons que nous connaissons (avons une estimation convergente de) la
distribution du réseau. Nous montrons que cette hypothèse est suffisante pour l’estimation des
effets de pairs en utilisant un modèle linéaire en moyennes. Nous proposons un estimateur de
variables instrumentales et un estimateur bayésien. Nous présentons et discutons des exemples
importants où notre méthodologie peut être appliquée. Nous présentons également une appli-
cation avec la base de données Add Health largement utilisée et qui comporte de nombreux
liens non observés. Nous estimons un modèle des effets de pairs sur la réussite scolaire des
élèves. Nous montrons que notre estimateur bayésien reconstruit les liens manquants et permet
d’obtenir une estimation valide des effets de pairs. En particulier, nous montrons qu’ignorer
les liens manquants sous-estime l’effet endogène des pairs sur la réussite scolaire.

Dans le deuxième chapitre, je présente un modèle structurel des effets de pairs dans lequel
la variable dépendante est de type comptage (nombre de cigarettes fumées, fréquence des
visites au restaurant, fréquence de participation aux activités). Le modèle est basé sur un
jeu statique à information incomplète dans lequel, les individus interagissent à travers un
réseau dirigé et sont influencés par leur croyance sur la décision de leurs pairs. Je présente des
conditions suffisantes sous lesquelles l’équilibre du jeu est unique. Je montre que l’utilisation
du modèle spatial autorégressif (SAR) linéaire-en-moyennes ou du modèle Tobit SAR pour
estimer les effets de pairs sur des variables de comptage générées à partir du jeu sous-estime
asymptotiquement les effets de pairs. Le biais d’estimation diminue lorsque la dispersion de
la variable de comptage augmente. Je propose également une application empirique. J’estime
les effets de pairs sur le nombre d’activités parascolaires auxquelles les étudiants sont inscrits.
En contrôlant l’endogénéité du réseau, je trouve que l’augmentation du nombre d’activités
dans lesquelles les amis d’un étudiant sont inscrits d’une unité implique une augmentation du
nombre d’activités dans lesquelles l’étudiant est inscrit de 0,295. Je montre également que les
effets de pairs sont sous-estimés à 0,150 lorsqu’on ignore la nature de comptage de la variable
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dépendante.

Le troisième chapitre (coécrit avec le Professeur Arnaud Dufays et le Professeur Alain Coen)
présente une approche de modélisation de séries temporelles. Les processus avec changements
structurels sont une approche flexible pour modéliser des longues séries chronologiques. En
considérant un modèle linéaire en moyennes, nous proposons une méthode qui relâche l’hypo-
thèse selon laquelle une cassure structurelle dans une série temporelle implique un changement
de tous les paramètres du modèle. Pour ce faire, nous estimons d’abord les dates de cassures
potentielles présentées par la série, puis nous utilisons une régression pénalisée pour détecter
les paramètres du modèle qui changent à chaque date de cassure. Étant donné que certains
segments de la régression peuvent être courts, nous optons pour une fonction de pénalité
(presque) non biaisée, appelée fonction de pénalité seamless-L0 (SELO). Nous montrons que
l’estimateur SELO détecte de manière convergente les paramètres qui varient à chaque cassure
et nous proposons d’utiliser un algorithme de maximisation d’espérance de recuit déterministe
(DAEM) pour traiter la multimodalité de la fonction objectif. Étant donné que la fonction de
pénalité SELO dépend de deux paramètres, nous utilisons un critère pour choisir les meilleurs
paramètres et par conséquent le meilleur modèle. Ce nouveau critère présente une interpré-
tation bayésienne qui permet d’évaluer l’incertitude des paramètres ainsi que l’incertitude du
modèle. Les simulations de Monte Carlo montrent que la méthode fonctionne bien pour de
nombreux modèles de séries temporelles, y compris des processus hétéroscédastiques. Pour
un échantillon de 14 stratégies de hedge funds (HF), utilisant un modèle de tarification basé
sur l’actif, nous mettons en exergue la capacité prometteuse de notre méthode à détecter la
dynamique temporelle des expositions au risque ainsi qu’à prévoir les rendements HF.
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Abstract

This dissertation, composed of three (03) separate chapters, develops new econometric models
for peer effects analysis and time series modelling.

The first chapter (a joint work with Professor Vicent Boucher) studies a method for estimating
peer effects through social networks when researchers do not observe the network structure.
We assume that researchers know (a consistent estimate of) the distribution of the network.
We show that this assumption is sufficient for the estimation of peer effects using a linear-
in-means model. We propose an instrumental variables estimator and a Bayesian estimator.
We present and discuss important examples where our methodology can be applied. We also
present an application with the widely used Add Health database which presents many missing
links. We estimate a model of peer effects on students’ academic achievement. We show that
our Bayesian estimator reconstructs these missing links and leads to a valid estimate of peer
effects. In particular, we show that disregarding missing links underestimates the endogenous
peer effect on academic achievement.

In the second chapter, I present a structural model of peer effects in which the dependent
variable is counting (Number of cigarettes smoked, frequency of restaurant visits, frequency of
participation in activities). The model is based on a static game with incomplete information
in which individuals interact through a directed network and are influenced by their belief
over the choice of their peers. I provide sufficient conditions under which the equilibrium of
the game is unique. I show that using the standard linear-in-means spatial autoregressive
(SAR) model or the SAR Tobit model to estimate peer effects on counting variables generated
from the game asymptotically underestimates the peer effects. The estimation bias decreases
when the range of the dependent counting variable increases. I estimate peer effects on the
number of extracurricular activities in which students are enrolled. I find that increasing the
number of activities in which a student’s friends are enrolled by one implies an increase in the
number of activities in which the student is enrolled by 0.295, controlling for the endogeneity
of the network. I also show that the peer effects are underestimated at 0.150 when ignoring
the counting nature of the dependent variable.

The third chapter (a joint work with Professor Arnaud Dufays and Professor Alain Coen)
presents an approach for time series modelling. Change-point (CP) processes are one flexible
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approach to model long time series. Considering a linear-in-means models, we propose a
method to relax the assumption that a break triggers a change in all the model parameters.
To do so, we first estimate the potential break dates exhibited by the series and then we use
a penalized likelihood approach to detect which parameters change. Because some segments
in the CP regression can be small, we opt for a (nearly) unbiased penalty function, called
the seamless-L0 (SELO) penalty function. We prove the consistency of the SELO estimator
in detecting which parameters indeed vary over time and we suggest using a deterministic
annealing expectation-maximisation (DAEM) algorithm to deal with the multimodality of the
objective function. Since the SELO penalty function depends on two tuning parameters, we
use a criterion to choose the best tuning parameters and as a result the best model. This new
criterion exhibits a Bayesian interpretation which makes possible to assess the parameters’
uncertainty as well as the model’s uncertainty. Monte Carlo simulations highlight that the
method works well for many time series models including heteroskedastic processes. For a
sample of 14 Hedge funds (HF) strategies, using an asset based style pricing model, we shed
light on the promising ability of our method to detect the time-varying dynamics of risk
exposures as well as to forecast HF returns.
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Foreword

The three chapters of this dissertation are separate articles published or in preparation for
submission to peer-reviewed scientific journals. The first chapter was written jointly with my
thesis director, Vincent Boucher, an associate professor within the Department of Economics
at Laval University. The second chapter is my job market paper. The third chapter is a joint
work with Arnaud Dufay, a former assistant professor within the Department of Economics
at Laval University, and Alain Coen, a full Professor of Finance at the Graduate School of
Business of the University of Quebec in Montreal. The two first chapters, on social networks,
are in preparation for submission to peer-reviewed scientific journals whereas the third chapter
has recently been accepted for publication in the Journal of Financial Econometrics.

I have also developed two easy-to-use R packages that implement the methods developed in
the two first chapters. The package PartialNetwork, joint with Professor Vincent Boucher,
offers a routine to replicate all the results in the first chapter. The package CDatanet can be
used to replicate all the results in the second chapter. These packages are available on GitHub
and on the CRAN website.
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Introduction

The design and implementation of economic policies are often based on econometric and
statistical models. To be convenient, these models are expected to replicate fairly faithfully
the real world. In most cases, the models must depart from simplified and strong assumptions
to suit the real world, and this can be very challenging. Many econometric models become
inefficient when they are built on strong theoretical assumptions which are violated in practice.
To illustrate this inefficiency, let us consider the following important examples.

1. In economics of social interactions, most models assume that the econometricians observe
the entire network data; that is, they observe the friends of every individual in the studied
population (see Bramoullé et al., 2009). However, network data are very expensive
to collect because they require to survey the entire population instead of a sample.
Therefore such an assumption is not realistic when dealing with a large population. In
addition, most developed and studied models are for continuous dependent variables (e.g,
Lee, 2004; Lee et al., 2010), whereas survey data contain most often discrete variables.
Even if the estimator of the model parameters could still be consistent in some cases
when the distribution of the interest variable is misspecified, the estimation bias is not
always negligible in finite samples, as well as for policy implications.

2. In time series modelling, many methods are based on the assumption that the series are
generated from a non-invariant data generation process (DGP) over time. However, long
time series are likely to be affected by structural breaks due to changes in the government
policies, occurrence of unusual events, and economic agents’ expectations (see Fryzlewicz
et al., 2014). Depending on the time series, the structural breaks can change the nature
of the DGP or only affect a small set of its parameters. The assumption of non-invariant
DGP does not suit long times series.

This dissertation, composed of three (03) separate chapters, develops new econometrics models
for estimating peer effects and analysing times series by relaxing strong assumptions often
made in the literature. In doing so, it offers tools to eliminate bias that often plague estimates
presented in the empirical literature. Especially, it develops a method for estimating peer
effects with partial network data. It also develops a structural model of social interactions
which deals with counting dependent variables. This dissertation also presents a time series
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modelling approach through the linear-in-means specification by relaxing the assumption that
a break triggers a change in all the model parameters.

The first chapter, Estimating Peer Effects Using Partial Network Data, develops a new method
to estimate peer effects when the network data is not (or partially) observed. This chapter
is coauthored work with Professor Vincent Boucher. Peer effects estimation is based on the
assumption that the entire network data is available. However, eliciting network data is ex-
pensive (Breza et al., 2020), and since networks must be sampled completely (Chandrasekhar
and Lewis, 2011), there are few existing data sets that contain detailed network information.
We explore the estimation of the widely used linear-in-means model (e.g. Manski (1993),
Bramoullé et al. (2009)) when the researcher observes the entire network structure. Specifi-
cally, we assume that the researcher knows the distribution of the network but not necessarily
the network itself. An important example is when a researcher is able to estimate a network
formation model using some partial information about the network structure (e.g. Breza et al.
(2020)). We present an instrumental variable estimator and show that we can adapt the strat-
egy proposed by Bramoullé et al. (2009).1 We also present a Bayesian estimator. The assumed
distribution of the network acts as a prior distribution, and the inferred network structure is
updated through the Markov chain Monte Carlo (MCMC) algorithm. We also present an
empirical application. We explore the impact of errors in the observed networks using data
on adolescents’ friendship networks.

In the second chapter, Count Data Models with Social Interactions under Rational Expecta-
tions, I develop a structural model for peer effects analysis in which the dependent variable is
counting.2 Recent contributions to the literature of peer effects estimation include many mod-
els for limited dependent variables. However, there are no existing structural models dealing
with count variables, despite these variables being prevalent in survey data (e.g., Liu et al.,
2014; Fortin and Yazbeck, 2015; Lee et al., 2020a). I present a static game with incomplete
information (see Harsanyi, 1967; Osborne and Rubinstein, 1994) to rationalize the model. In-
dividuals in the game interact through a directed network and are influenced by their belief
over the choice of their peers. I provide sufficient conditions under which the model game
has a unique Bayesian Nash Equilibrium (BNE). I show that using the linear-in-means spatial
autoregressive (SAR) model (Lee, 2004) or the SAR Tobit (SART) model (Xu and Lee, 2015b)
to estimate peer effects on counting variables generated from the model asymptotically under-
estimates the peer effects. The estimation bias asymptotically decreases when the dependent
variable takes its values from a large range. I also provide an empirical application. I estimate
peer effects on the number of extracurricular activities in which students are enrolled. I find
that increasing the number of activities in which a student’s friends are enrolled by one implies
an increase in the number of activities in which the student is enrolled by 0.295, controlling for

1This strategy constructs instruments using the powers of the interaction matrix.
2E.g, number of cigarettes smoked, frequency of restaurant visits, frequency of participation in activities.
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the endogeneity of the network. I also find that the SART and the SAR models underestimate
peer effects at 0.141 and 0.166, respectively.

The third chapter, Selective linear segmentation for detecting relevant parameter changes, is
a joint work with Professor Arnaud Dufays and Professor Alain Coen. Long time series are
standard in this period of large publicly available data sets. Care is required when modeling
such time series, as many of them span over critical events that may change the series dynamic.
Considering a linear-in-means models, we propose a method to relax the assumption that a
break triggers a change in all the model parameters. To do so, we first estimate the potential
break dates exhibited by the series and then we use a penalized likelihood approach to detect
which parameters change. Since some segments in the CP regression can be small, we opt
for a (nearly) unbiased penalty function, called the seamless-L0 (SELO) penalty function,
recently proposed by Dicker et al. (2013). We prove the consistency of the SELO estimator
in detecting which parameters indeed vary over time and we suggest using a deterministic
annealing expectation-maximisation (DAEM) algorithm to deal with the multimodality of the
objective function (see Ueda and Nakano, 1998). Since the SELO penalty function depends
on two tuning parameters, we use a criterion (new in this literature) to choose the best
tuning parameters and as a result the best model. This new criterion exhibits a Bayesian
interpretation which makes possible to assess the parameters’ uncertainty as well as the model’s
uncertainty. This last feature is determinant when predicting a time series since the Bayesian
model averaging technique, that typically improves forecast accuracy, is readily applicable
(see, e.g., Raftery et al., 2010; Koop and Korobilis, 2012). Monte Carlo simulations highlight
that the method works well for many time series models including heteroskedastic processes.
For a sample of 14 Hedge funds (HF) strategies, using an asset based style pricing model, we
shed light on the promising ability of our method to detect the time-varying dynamics of risk
exposures as well as to forecast HF returns.

Aside, I also develop two easy-to-use R packages which implement the methods developed in
social interactions. For instance, the package PartialNetwork, joint with Professor Vincent
Boucher, offers a routine to replicate all the results of the first chapter. Moreover, the package
CDatanet can be used to replicate all the results of the second chapter. These packages are
available on my GitHub page or website.
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Chapter 1

Estimating Peer Effects Using Partial
Network Data

Résumé

Dans ce chapitre, nous étudions l’estimation des effets de pairs à travers les réseaux sociaux
lorsque la structure du réseau n’est pas observée. Nous supposons que nous connaissons (avons
une estimation convergente de) la distribution du réseau. Nous montrons que cette hypothèse
est suffisante pour l’estimation des effets de pairs en utilisant un modèle linéaire en moyennes.
Nous proposons une stratégie d’estimation qui adapte la procédure de variables instrumentales
utilisée pour estimer ce modèle dans le cas où la structure du réseau est observée. Nous
présentons également un estimateur bayésien en supposant que la distribution du réseau est
une distribution a priori. Nous inférons ensuite la structure du réseau en utilisant un algorithme
de Monte Carlo par Chaîne de Markov (MCMC). Nous présentons et discutons également des
exemples importants où notre méthodologie peut être appliquée. Nous montrons que la base
de données « Add Health » largement utilisée en économie des interactions sociales comporte
de nombreux liens non observés : seulement 70% du nombre total de liens sont observés. Nous
estimons un modèle des effets de pairs sur la réussite scolaire des élèves. Nous montrons que
notre estimateur bayésien reconstruit les liens manquants et permet d’obtenir une estimation
valide des effets de pairs. En particulier, nous montrons qu’ignorer les liens manquants sous-
estime l’effet endogène des pairs sur la réussite scolaire.

Abstract

We study the estimation of peer effects through social networks when researchers do not
observe the network structure. Instead, we assume that researchers know (have a consistent
estimate of) the distribution of the network. We show that this assumption is sufficient for the
estimation of peer effects using a linear-in-means model. We present an estimation strategy
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that adapts the instrumental variables procedure used to estimate this model when the network
structure is observed. We also present a Bayesian estimator. The assumed distribution for the
network acts as a prior distribution, and the inferred network structure is updated through
the Markov chain Monte Carlo (MCMC) algorithm. We also present and discuss important
examples where our methodology can be applied. We show that the widely used Add Health
database features many missing links: only 70% of the total number of links are observed.
We estimate a model of peer effects on students’ academic achievement. We show that our
Bayesian estimator reconstructs these missing links and obtains a valid estimate of peer effects.
In particular, we show that disregarding missing links underestimates the endogenous peer
effect on academic achievement.

Keywords: Social networks, Peer effects, Missing variables, Measurement errors.

JEL Classification: C31, C36, C51.
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1.1 Introduction

There is a large and growing literature on the impact of peer effects in social networks.1

However eliciting network data is expensive (Breza et al., 2020), and since networks must be
sampled completely (Chandrasekhar and Lewis, 2011), there are few existing data sets that
contain detailed network information.

In this paper, we explore the estimation of the widely used linear-in-means model (e.g. Manski
(1993), Bramoullé et al. (2009)) when the researcher does not observe the entire network
structure. Specifically, we assume that the researcher knows the distribution of the network
but not necessarily the network itself. An important example is when a researcher is able
to estimate a network formation model using some partial information about the network
structure (e.g. Breza et al. (2020)). Other examples are when the researcher observes the
network with noise (e.g. Hardy et al. (2019)) or only observes a subsample of the network
(e.g. Chandrasekhar and Lewis (2011)).

We present an instrumental variable estimator and show that we can adapt the strategy
proposed by Bramoullé et al. (2009), which uses instruments constructed using the powers of
the interaction matrix. Specifically, we use two different draws from the distribution of the
network. One draw is used to approximate the endogenous explanatory variable, while the
other is used to construct the instruments.

We show that since the true networks and the two approximations are drawn from the same
distribution, the instruments are uncorrelated with the approximation error and are therefore
valid. We explore the properties of the estimator using Monte Carlo simulations. We show
that the method performs well, even when the distribution of the network is diffuse and when
we allow for group-level fixed effects.

We also present a Bayesian estimator. The estimator imposes more structure but allows
to cover cases for which the instrumental variable strategy fails.2 Our estimator is general
enough that it can be applied to many peer-effect models having misspecified networks (e.g.
Chandrasekhar and Lewis (2011), Hardy et al. (2019), or Griffith (2019)). The approach relies
on data augmentation (Tanner and Wong, 1987). The assumed distribution for the network
acts as a prior distribution, and the inferred network structure is updated through the Markov
chain Monte Carlo (MCMC) algorithm.

We present numerous examples of settings in which our estimators are implementable. In
particular, we present an implementation of our instrumental variable estimator using the
network formation model developed by Breza et al. (2020). We show that the method performs

1For recent reviews, see Boucher and Fortin (2016), Bramoullé et al. (2020), Breza (2016), and De Paula
(2017).

2We also provide a classical version of the estimator (using an expectation maximization algorithm) in
Appendix A.10, which is similar to the strategies used by Griffith (2018) and Hardy et al. (2019).
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very well. We also show that the recent estimator proposed by Alidaee et al. (2020) works
well but is less precise.

We also present an empirical application. We explore the impact of errors in the observed
networks using data on adolescents’ friendship networks. We show that the widely used Add
Health database features many missing links: only 70% of the total number of links are
observed. We estimate a model of peer effects on students’ academic achievement. We show
that our Bayesian estimator reconstructs these missing links and obtains a valid estimate
of peer effects. In particular, we show that disregarding missing links underestimates the
endogenous peer effect on academic achievement.

This paper contributes to the recent literature on the estimation of peer effects when the net-
work is either not entirely observed or observed with noise. Chandrasekhar and Lewis (2011)
show that models estimated using sampled networks are generally biased. They propose an
analytical correction as well as a two-step general method of moment (GMM) estimator. Liu
(2013) shows that when the interaction matrix is not row-normalized, instrumental variable
estimators based on an out-degree distribution are valid, even with sampled networks. Relat-
edly, Hsieh et al. (2018) focus on a regression model that depends on global network statistics.
They propose analytical corrections to account for non-random sampling of the network (see
also Chen et al. (2013)).

Hardy et al. (2019) look at the estimation of (discrete) treatment effects when the network is
observed noisily. Specifically, they assume that observed links are affected by iid errors and
present an expectation maximization (EM) algorithm that allows for a consistent estimate
of the treatment effect. Griffith (2018) also presents an EM algorithm to impute missing
network data. Griffith (2019) explores the impact of imposing an upper bound to the number
of links when eliciting network data. He shows, analytically and through simulations, that
these bounds may bias the estimates significantly.

Relatedly, some papers derive conditions under which peer effects can be identified even with-
out any network data. De Paula et al. (2018a) and Manresa (2016) use panel data and present
models of peer effect having an unknown network structure. Both approaches require ob-
serving a large number of periods and some degree of sparsity for the interaction network.
De Paula et al. (2018a) prove a global identification result and estimate their model using an
adaptive elastic net estimator, while Manresa (2016) uses a lasso estimator, while assuming
no endogenous effect and deriving its explicit asymptotic properties.

Souza (2014) studies the estimation of a linear-in-means model when the network is not known.
He presents a pseudo-likelihood model in which the true (unobserved) network is replaced by its
expected value, given a parametric network formation model. He formally derives the identified
set and applies his methodology to study the spillover effects of a randomized intervention.
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Thirkettle (2019) focuses on the estimation of a given network statistic (e.g. some centrality
measure), assuming that the researcher only observes a random sample of links. Using a
structural network formation model, he derives bounds on the identified set for both the
network formation model and the network statistic of interest. Lewbel et al. (2019) use a
similar strategy but focus on the estimation of a linear-in-means model and assume a network
formation model having conditionally independent linking probabilities. They show that their
estimator is point-identified given some exclusion restrictions.

We contribute to the literature by proposing two estimators for the linear-in-means model, in
a cross-sectional setting, when the econometrician does not know the true social network but
rather knows the distribution of true network. Our estimators are both simple to implement
and flexible. In particular, they can be used when network formation models can be estimated
given only limited network information (e.g. Breza et al. (2020) or Graham (2017)) or when
networks are observed imperfectly (e.g. Chandrasekhar and Lewis (2011), Griffith (2019),
or Hardy et al. (2019)). We show that having partial information about network structure
(as opposed to no information) allows the development of flexible and easily implementable
estimators. Finally, we also present an easy-to-use R package—named PartialNetwork—
for implementing our estimators and examples, including the estimator proposed by Breza
et al. (2020). The package is available online at: https://github.com/ahoundetoungan/

PartialNetwork.

The remainder of the paper is organized as follows. In Section 2, we present the econometric
model as well as the main assumptions. In Section 3, we present an instrumental variable
estimator. In Section 4, we present our Bayesian estimation strategy. In Section 5, we present
important economic contexts in which our method is implementable. In Section 6, we present
an empirical application in which the network is only partly observed. Section 7 concludes
with a discussion of the main results, limits, and challenges for future research.

1.2 The Linear-in-Means Model

Let A represent the N ×N adjacency matrix of the network. We assume a directed network:
aij ∈ {0, 1}, where aij = 1 if i is linked to j. We normalize aii = 0 for all i and let ni =

∑
j

aij

denote the number of links of i. Let G = f(A), the N×N interaction matrix for some function
f . Unless otherwise stated, we assume that G is a row-normalization of the adjacency matrix
A.3 Our results extend to alternative specifications of f .

We focus on the following model:

y = c1 + Xβ + αGy + GXγ + ε, (1.1)
3In such a case, gij = aij/ni whenever ni > 0, while gij = 0 otherwise.

8



where y is a vector of an outcome of interest (e.g. academic achievement), c is a constant,
X is a matrix of observable characteristics (e.g. age, gender...), and ε is a vector of errors.
The parameter α therefore captures the impact of the average outcome of one’s peers on their
behaviour (the endogenous effect). The parameter β captures the impact of one’s character-
istics on their behaviour (the individual effects). The parameter γ captures the impact of the
average characteristics of one’s peers on their behaviour (the contextual effects).

This linear-in-means model (Manski, 1993) is perhaps the most widely used model for studying
peer effects in networks (see Bramoullé et al. (2020) for a recent review). In this paper, we
contrast with the literature by assuming that the researcher does not know the interaction
matrix G. Specifically, we assume instead that the researcher knows the distribution of the
interaction matrix.

The next assumption summarizes our set-up.

Assumption A. We maintain the following assumptions:

A.1. |α| < 1/‖G‖ for some submultiplicative norm ‖ · ‖.
A.2. The distribution P (A) of the true network A (which potentially depends on X) is known.
A.3. The population is partitioned in M > 1 groups, where the size Nr of each group r =

1, ...,M is bounded. The probability of a link between individuals of different groups is
equal to 0.

A.4. For each group, the outcome and individual characteristics are observed, i.e. (yr,Xr),
r = 1, ...,M , are observed.

A.5. The network is exogenous in the sense that E[ε|X,G] = 0.

Assumption A.1. ensures that the model is coherent and that there exists a unique vector y

compatible with (1.1). When G is row-normalized, |α| < 1 is sufficient.

Assumption A.2. states that the researcher knows the distribution of the true network A. Of
course, knowledge of P (A) is sufficient for P (G), since G = f(A) for some known function
f . Assumption A.2. is weaker than assuming that the econometrician observes the entire
network structure. In Section 1.5, we discuss some important examples where Assumption
A.2. is reasonable for important economic contexts. In particular, we present examples from
the literature on network formation models that allow for a consistent estimation of P (A)

using only partial network information.

As will be made clear, our estimation strategy requires that the econometrician be able to
draw iid samples from P (A). As such, and for the sake of simplicity, all of our examples
will be based on network distributions that are conditionally independent across links (i.e.
P (aij |A−ij) = P (aij)), although this is not formally required.4

4A prime example of a network distribution that is not conditionally independent is the distribution for
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Assumption A.3. is by no means necessary; however, it simplifies the exposition and ensures
a law of large numbers (LLN) in our context. We refer the reader to Lee (2004) and Lee et al.
(2010) for more general, alternative sufficient conditions.

Assumption A.4. implies that the data is composed of a subset of fully sampled groups.5 A
similar assumption is made by Breza et al. (2020). Note that we assume that the network is
exogenous (Assumption A.5.) mostly to clarify the presentation of the estimators. In Section
1.7, we discuss how recent advances for the estimation of peer effects in endogenous networks
can be adapted to our context.

Finally, note that Assumption A does not imply that one can simply proxy G in (1.1) using
a draw Ĝ from P (G). The reason is that for any vector w, Ĝw generally does not converge
to Gw as N goes to infinity. In other words, knowledge of P (G) and w is not sufficient to
obtain a consistent estimate of Gw. We discuss some exceptions in Section 1.7.

1.3 Estimation Using Instrumental Variables

As discussed in the introduction, we show that it is possible to estimate (1.1) given only partial
information on network structure. To understand the intuition, note that it is not necessary
to observe the complete network structure to observe y, X, GX, and Gy. For example, one
could simply obtain Gy from survey data: “What is the average value of your friends’ y?”

However, the observation of y, X, GX, and Gy is not sufficient for the estimation of (1.1).
The reason is that Gy is endogenous; thus, a simple linear regression would produce biased
estimates. (e.g. Manski (1993), Bramoullé et al. (2009)).

The typical instrumental approach to deal with this endogeneity is to use instruments based
on the structural model, i.e. instruments constructed using second-degree peers (e.g. G2X,
see Bramoullé et al. (2009)). These are less likely to be found in survey data. Indeed, we could
doubt the informativeness of questions such as: “What is the average value of your friends’
average value of their friends’ x?”

Under the assumption that the network is observed, the literature has focused mostly on
efficiency: that is, how to construct the optimal set of instruments (e.g. Kelejian and Prucha
(1998) or Lee et al. (2010)). Here, we are interested in a different question. We would like to
understand how much information on the network structure is needed to construct relatively
“good” instruments for Gy? As we will discuss, it turns out that even very imprecise estimates
of G allow for constructing valid instruments.

We present valid instruments in Proposition 1.1 and Proposition 1.2 below. We also study the

an exponential random graph model (ERGM), e.g. Mele (2017). See also our discussion in Section 1.7.
5Contrary to Liu et al. (2017) or Wang and Lee (2013), for example.
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properties of the implied estimators using Monte Carlo simulations. Unless otherwise stated,
these simulations are performed as follows: we simulate 100 groups of 50 individuals each.
Within each group, each link (i, j) is drawn from a Bernoulli distribution with probability:

pij =
exp{cij/λ}

1 + exp{cij/λ}
, (1.2)

where cij ∼ N(0, 1), and λ > 0.

This approach is convenient since it allows for some heterogeneity among linking probabilities.
Moreover, λ can easily control the spread of the distribution, and hence the quality of the
approximation of the true network.6 Indeed, when λ → 0, pij → 1 whenever cij > 0, while
pij → 0 whenever cij < 0. Similarly, as λ→∞, pij → 1/2. Then, simulations are very precise
for λ→ 0 and very imprecise (and homogeneous) for λ→∞.

We also let X = [x1,x2], where x1
i ∼ N(0, 52) and x2

i ∼ Poisson(6). We set the true value
of the parameters to: α = 0.4, c = 2, β1 = 1, β2 = 1.5, γ1 = 5, and γ2 = −3. Finally, we let
εi ∼ N(0, 1).

We now present our formal results. To clearly expose the argument, we first start by discussing
the special case where there are no contextual effects: γ = 0. The model in (1.1) can therefore
be rewritten as:

y = c1 + Xβ + αGy + ε.

The following proposition holds.

Proposition 1.1. Assume that γ = 0. There are two cases:

1. Suppose that Gy is observed and let H be an interaction matrix, correlated with G, and
such that E[ε|X,H] = 0. Then, HX, H2X,... are valid instruments.

2. Suppose that Gy is not observed and let G̃ and Ĝ be two draws from the distribution
P (G). Then, ĜX, Ĝ2X,... are valid instruments when G̃y is used as a proxy for Gy.

First, suppose that Gy is observed directly from the data; then, any instrument correlated with
the usual instruments GX,G2X,... while being exogenous are valid. Note that a special case
of the first part of Proposition 1.1 is when H is drawn from P (G). However, the instrument
remains valid if the researcher uses the wrong distribution P (G).7 A similar strategy is used by
Kelejian and Piras (2014) and Lee et al. (2020b) in a different context. An example, presented
in Section 1.5.2, is when P (G) is estimated imprecisely in small samples.

Of course, the specification error on P (G) must be independent of ε. Note also that if the
specification error is too large, the correlation between Gy and HX will likely be weak. It is

6The true network and the approximations are drawn from the same distribution.
7We would like to thank Chih-Sheng Hsieh and Arthur Lewbel for discussions on this important point.
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also worth noting that the first part of Proposition 1.1 does not depend on the assumption
that groups are entirely sampled (i.e. Assumption A.4.).

When Gy is not observed directly, however, specification errors typically produce invalid
instruments. Note also that the estimation requires two draws from P (G) instead of just one.
To see why, let us rewrite the model as:

y = c1 + Xβ + αG̃y + [η + ε],

where η = α[Gy− G̃y] is the approximation error for Gy. Suppose also that ĜX is used as
an instrument for Gy.

The validity of the instrument therefore requires E[η + ε|X, ĜX] = 0, and in particular:

E[Gy|X, ĜX] = E[G̃y|X, ĜX],

which is true since G and G̃ are drawn from the same distribution.

Table 1.1 presents the results of the Monte Carlo simulations, which are in line with the above
discussion. Figure 1.1 shows that the estimator is still centred and precise, even when the
constructed networks are really imprecise estimates of the true network. Finally, note that
this also implies a non-intuitive property: if γ = 0, and if GX is observed, but not Gy, then
GX is not a valid instrument since it is correlated with the approximation error η.
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Figure 1.1 – Peer effect without contextual effects
The graph shows estimates of α for 1,000 replications of the model without contextual effects for various values
of λ. The upper x-axis reports the average correlation between two independent network draws using the
distribution given by equation (1.2).

Of course, Proposition 1.1 assumes that there are no contextual effects. We show that a similar
result holds when γ 6= 0. However, to estimate (1.1) using an instrumental variable approach,
we must assume that GX is observed. The reason is that there are no natural instruments for
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Table 1.1 – Simulation results without contextual effects

Statistic Mean Std. Dev. Pctl(25) Median Pctl(75)

N = 50, M = 100 - Gy is Observed

Estimation results

Intercept = 2 2.000 0.242 1.830 1.992 2.162
α = 0.4 0.400 0.013 0.391 0.401 0.409
β1 = 1 1.000 0.003 0.998 1.000 1.002
β2 = 1.5 1.500 0.006 1.496 1.500 1.504

Tests

F -test 1, 816.759 281.478 1, 623.922 1, 800.054 1, 995.179
Hausman 1.198 1.607 0.120 0.566 1.669
Sargan 0.905 1.315 0.088 0.402 1.168

N = 50, M = 100 - Gy is not observed - same draw

Estimation results

Intercept = 2 4.348 0.287 4.156 4.332 4.535
α = 0.4 0.271 0.015 0.261 0.272 0.282
β1 = 1 1.002 0.003 0.999 1.001 1.004
β2 = 1.5 1.503 0.006 1.498 1.503 1.507

Tests

F -test 26, 656.064 2, 108.805 25, 237.919 26, 492.586 27, 972.810
Hausman 245.060 36.134 220.376 242.230 267.029
Sargan 1.939 2.768 0.208 0.910 2.452

Validity

cor(ηi, x̂i,1) −0.367 0.018 −0.380 −0.367 −0.355
cor(ηi, x̂i,2) −0.269 0.017 −0.280 −0.269 −0.257

N = 50, M = 100 - Gy is not observed - different draws

Estimation results

Intercept = 2 2.001 0.264 1.809 1.994 2.175
α = 0.4 0.400 0.014 0.390 0.400 0.410
β1 = 1 1.000 0.003 0.998 1.000 1.002
β2 = 1.5 1.500 0.006 1.496 1.500 1.504

Tests

F -test 1, 824.774 280.901 1, 623.689 1812.479 2, 014.936
Hausman 69.842 17.204 57.169 69.691 81.438
Sargan 0.891 1.245 0.082 0.431 1.143

Validity

cor(ηi, x̂i,1) 0.000 0.014 −0.010 0.000 0.010
cor(ηi, x̂i,2) 0.000 0.014 −0.010 0.000 0.010

Number of simulations: 1,000, λ = 1. Instruments: GX if Gy is observed, GcX if Gy is not observed
and approximated by Gcy. Additional results for alternative instruments and λ = +∞ are available
in Table A.1, Table A.2, and Table A.3 of Appendix A.3.
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GX. In Section 1.4, we present an alternative estimation strategy that does not require the
observation of GX.

We have the following:

Proposition 1.2. Assume that GX is observed. There are two cases:

1. Suppose that Gy is observed and let H be an interaction matrix, correlated with G, and
such that E[ε|X,H] = 0. Then, H2X, H3X,... are valid instruments.

2. Suppose that Gy is not observed and let G̃ and Ĝ be two draws from the distribution
P (G). Then, Ĝ2X, Ĝ3X,... are valid instruments when G̃y is used as a proxy for Gy,
if G̃X is added as additional explanatory variables.

The first part of Proposition 1.2 is a simple extension of the first part of Proposition 1.1. The
second part of Proposition 1.2 requires more discussion. Essentially, it states that Ĝ2X, Ĝ3X,
... are valid instruments when the following expanded model is estimated:

y = c1 + Xβ + αG̃y + GXγ + G̃Xγ̌ + η + ε, (1.3)

where the true value of γ̌ is 0.

To understand why the introduction of G̃Xγ̌ is needed, recall that the constructed instrument
must be uncorrelated with the approximation error η. This correlation is conditional on the
explanatory variables, that contain G. In particular, it implies that generically,

E[Gy|X,GX, Ĝ2X] 6= E[G̃y|X,GX, Ĝ2X].

It turns out that adding the auxiliary variable G̃X as a covariate is sufficient to restore the
result, i.e.

E[Gy|X,GX, Ĝ2X, G̃X] = E[G̃y|X,GX, Ĝ2X, G̃X].

Table 1.2 presents the simulations’ results. We see that most of the estimated parameters are
not biased. However, we also see that estimating the expanded model, instead of the true one,
comes at a cost. Due to multicollinearity, the estimation of γ is contaminated by G̃X, and
the parameters are biased. Figure 1.2 also shows that the estimation of α remains precise,
even as the value of λ increases.

Proposition 1.1 and Proposition 1.2 therefore show that the estimation of (1.1) is possible,
even with very limited information about the network structure. We conclude this section by
discussing how one can adapt this estimation strategy while allowing for group-level unob-
servables.
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Table 1.2 – Simulation results with contextual effects

Statistic Mean Std. Dev. Pctl(25) Median Pctl(75)

N = 50, M = 100 - Instrument: (G̃)2X - Gy is observed

Estimation results

Intercept = 2 1.996 0.177 1.879 1.997 2.115
α = 0.4 0.400 0.003 0.398 0.400 0.402
β1 = 1 1.000 0.003 0.998 1.000 1.002
β2 = 1.5 1.500 0.006 1.496 1.500 1.504
γ1 = 5 5.000 0.021 4.985 5.000 5.015
γ2 = −3 −2.999 0.029 −3.018 −2.999 −2.980

Tests

F -test 18295.381 2049.380 16864.174 18258.774 19581.640
Hausman 1.202 1.624 0.127 0.568 1.593
Sargan 1.046 1.559 0.103 0.448 1.321

N = 50, M = 100 - Instrument: (Ĝ)2X - Gy is not observed

Estimation results

Intercept = 2 1.987 0.207 1.844 1.983 2.128
α = 0.4 0.400 0.004 0.397 0.400 0.402
β1 = 1 1.000 0.003 0.998 1.000 1.002
β2 = 1.5 1.500 0.006 1.496 1.500 1.504
γ1 = 5 5.357 0.021 5.342 5.356 5.370
γ2 = −3 −2.381 0.038 −2.408 −2.378 −2.355
γ̂1 = 0 −0.356 0.024 −0.372 −0.356 −0.339
γ̂2 = 0 −0.617 0.038 −0.643 −0.618 −0.592

Tests

F -test 13562.892 1402.029 12583.175 13547.357 14445.031
Hausman 17.051 8.277 11.093 15.779 22.061
Sargan 1.003 1.425 0.125 0.470 1.267

Number of simulations: 1,000, λ = 1. Additional results for λ = +∞ are available in Table A.4
of Appendix A.3.

1.3.1 Group-Level Unobservables

A common assumption is that each group in the population is affected by a common shock,
unobserved by the econometrician (e.g. Bramoullé et al. (2009)). As such, for each group
r = 1, ...,M , we have:

yr = cr1r + Xrβ + αGryr + GrXrγ + εr,

where cr is not observed, 1r is a Nr-dimensional vector of ones, Nr is the size of the group
r, Gr is the sub-interaction matrix in the group r, and εr is the vector of error terms in the
group r

Under Assumption A.3., it is not possible to obtain a consistent estimate of {cr}mr=1 since the
number of observations used to estimate each cr is bounded. This is known as the incidental
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Figure 1.2 – Peer effect with contextual effects
The graph shows estimates of α for 1,000 replications of the model with contextual effects for various values
of λ. The upper x-axis reports the average correlation between two independent network draws using the
distribution given by equation (1.2).

parameter problem.8 A common strategy is to use deviations from the group average and to
estimate the model in deviations (e.g. Bramoullé et al. (2009)).

Let J = diag{INr −
1

Nr
1r1

′
r} be the group-differentiating matrix, where INr is the identified

matrix of dimension Nr. The operator diag generates a blog-diagonal matrix in which each
group is a block.9 We can rewrite:

Jy = JXβ + αJGy + JGXγ + Jε.

Note that the results of Propositions 1.1 and 1.2 extend directly. Figure 1.3 shows that the
estimation performs well; however, the loss of information can be large. Indeed, as λ increases,
not only does the correlation between the true network and the constructed network decrease,
but the linking probabilities become homogeneous. Then, it becomes hard to distinguish
between the (almost uniform) network effects and the group effects. In practice, we there-
fore expect our approach to perform well when the distribution of the true network exhibits
heterogeneous linking probabilities.

For example, Table 1.3 presents the estimation results when we assume that the network
formation process is a function of the observed characteristics. Specifically:

p(aij = 1|xi,xj) = Φ(−4.5 + |xi,1 − xj,1| − 2|xi,2 − xj,2|),

where Φ is the cumulative distribution for the standardized normal distribution. As such,
the network features heterophily with respect to the first variable and homophily with respect

8See Lancaster (2000) for a review.
9Then, Jw gives w minus the group average of w.
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Figure 1.3 – Peer effect with fixed effects
The graph shows α estimates for 1,000 replications of the model with fixed effects for various values of λ. The
above x-axis reports the average correlation between two independent draws of graphs from the distribution
given by equation (1.2). Complete estimates for λ ∈ {1,+∞} are presented in Tables A.5 and A.6 of the
Appendix A.3.

to the second variable.10 As anticipated, the estimation performs well. We now present our
likelihood-based estimator.

1.4 Likelihood-Based Estimators

The approach developed in the previous section assumes that GX is observed. When it is not,
the instrumental variable estimators fail. We therefore present a likelihood-based estimator.
Accordingly, more structure must be imposed on the errors ε.11

To clarify the exposition, we will focus on the network adjacency matrix A instead of the
interaction matrix G. Of course, this is without any loss of generality. Given parametric
assumptions for ε, one can write the log-likelihood of the outcome as:12

lnP(y|A,θ), (1.4)

where θ = [α,β′,γ ′,σ′]′, σ are unknown parameters from the distribution of ε. Note that
y = (IN − αG)−1(c1 + Xβ + GXγ + ε) and (IN − αG)−1 exist under our Assumption A.1..

If the adjacency matrix A was observed, then (1.4) could be estimated using a simple maximum
likelihood estimator (as in Lee et al. (2010)) or using Bayesian inference (as in Goldsmith-
Pinkham and Imbens (2013)).

10That is, individuals with different values of x1 and similar values of x2 are more likely to be linked.
11Lee (2004) presents a quasi maximum-likelihood estimator that does not require such a specific assumption

for the distribution of the error term. His estimator could be used alternatively. As well, as will be made clear,
our approach can be used for a large class of extremum estimators, following Chernozhukov and Hong (2003),
and in particular for GMM estimators, as in Chandrasekhar and Lewis (2011).

12Note that under Assumption A.3., the likelihood can be factorized across groups.
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Table 1.3 – Simulation results with subpopulation unobserved fixed effects
(3)

Statistic Mean Std. Dev. Pctl(25) Median Pctl(75)

N = 50, M = 100 - Instrument: J(G̃)2X - Gy is observed

Estimation results

α = 0.4 0.400 0.006 0.396 0.400 0.404
β1 = 1 1.000 0.007 0.995 1.000 1.005
β2 = 1.5 1.500 0.020 1.486 1.499 1.514
γ1 = 5 5.000 0.008 4.995 5.000 5.005
γ2 = −3 −2.999 0.030 −3.021 −2.998 −2.979

Tests

F -test 1123.431 178.101 999.270 1116.900 1242.319
Hausman 1.039 1.503 0.114 0.472 1.289
Sargan 1.037 1.370 0.111 0.509 1.458

N = 50, M = 100 - Instrument: J(Ĝ)2X - Gy is not observed

Estimation results

α = 0.4 0.399 0.015 0.389 0.398 0.408
β1 = 1 1.002 0.013 0.994 1.002 1.011
β2 = 1.5 1.418 0.054 1.380 1.419 1.453
γ1 = 5 4.743 0.046 4.713 4.743 4.775
γ2 = −3 −3.655 0.252 −3.843 −3.669 −3.490
γ̂1 = 0 0.256 0.046 0.224 0.255 0.286
γ̂2 = 0 0.788 0.280 0.609 0.794 0.987

Tests

F -test 1153.330 200.889 1003.857 1147.411 1277.991
Hausman 161.862 60.319 117.502 154.631 197.888
Sargan 9.257 13.256 0.825 4.052 12.405

Number of simulations: 1,000. In each group, the fixed effect is generated as
0.3x1,1 +0.3x3,2−1.8x50,2. The network’s true distribution follows the network forma-
tion model, such that pij = Φ (−4.5 + |xi,1 − xj,1| − 2|xi,2 − xj,2|), where Φ represents
the cumulative distribution function of N (0, 1).

Since A is not observed, an alternative would be to focus on the unconditional likelihood, i.e.

lnP(y|θ) = ln
∑
A

P(y|A,θ)P (A).

A similar strategy is proposed by Chandrasekhar and Lewis (2011) using a GMM estimator.

One particular issue with estimating lnP(y|θ) is that the summation is not tractable. In-
deed, the sum is over the set of possible adjacency matrices, which contain 2N(N−1) elements.
Then, simply simulating networks from P (A) and taking the average is likely to lead to poor
approximations.13 A classical way to address this issue is to use an EM algorithm (Dempster

13That is: lnP(y|,θ) ≈ ln
1

S

S∑
s=1

P(y|As,θ), where As is drawn from P (A). This is the approximation
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et al., 1977). The interested reader can consult Appendix A.10 for a presentation of such an
estimator. Although valid, we found that the Bayesian estimator proposed in this section is
less restrictive and numerically outperforms its classical counterpart.

For concreteness, we will assume that ε ∼ N (0, σ2IN ); however, it should be noted that our
approach is valid for a number of alternative assumptions. We have for G = f(A),

lnP(y|A,θ) = −N ln(σ) + ln |IN − αG| − N

2
ln(π)

− [(IN − αG)y − c1N −Xβ −GXγ]′[(IN − αG)y − c1N −Xβ −GXγ]

2σ2
.

Since A is not observed, we follow Tanner and Wong (1987) and Albert and Chib (1993),
and we use data augmentation to evaluate the posterior distribution of θ. That is, instead of
focusing on the posterior p(θ|y,A,X), we focus on the posterior p(θ,A|y,X), treating A as
another set of unknown parameters.

Indeed, it is possible to obtain draws from p(θ,A|y,X) using Algorithm 1.1..

Algorithm 1.1. MCMC to draw from p(θ,A|y,X)

Step 0: Initialize A,θ to A0,θ0, respectively;
for t = 1, ..., T , where T is the number of simulations do

Step 1.1: Propose A∗ from the proposal distribution qA(A∗|At−1) and accept A∗ with

probability min

{
1,
P(y|θt−1,A

∗)qA(At−1|A∗)P (A∗)

P(y|θt−1,At−1)qA(A∗|At−1)P (At−1)

}
;

Step 1.2: Draw α∗ from the proposal qα(·|αt−1) and accept α∗ with probability

min

{
1,
P(y|At;βt−1,γt−1, α

∗)qα(αt−1|α∗)P (α∗)

P(y|At;θt−1)qα(α∗|αt−1)P (αt−1)

}
;

Step 1.3: Draw [β, γ, σ] from their conditional distributions.

Detailed distributions for Steps 2 and 3 can be found Appendix A.8. Step 1, however, involves
some additional complexities. Indeed, the idea is the following: starting from a given network
formation model (i.e. P (A)), one has to be able to draw samples from the posterior distribution
of A, given y. This is not a trivial task. The strategy used here is to rely on a Metropolis–
Hastings algorithm, a strategy that has also been used in the related literature on ERGMs
(e.g. Snijders (2002), Mele (2017)).

The acceptance probability in Step 1 of Algorithm 1.1. clearly exposes the role of the assumed
distribution for the true network P (A), i.e. the prior distribution of A. This highlights the
importance of P (A) for the identification of the model. Since θ and A are unobserved, we
have N(N − 1) + k parameters to estimate, where k is the number of dimensions of θ. In
particular, if P (aij = 1) = 1/2 for all i, j, then the probability of acceptance in Step 1 of

suggested by Chandrasekhar and Lewis (2011) (see their Section 4.3). In their case, they only need to integrate
over the m < N(N − 1) pairs that are not sampled. Still, the number of compatible adjacency matrices is 2m.
As such, the approach is likely to produce bad approximations.
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Algorithm 1.1. reduces to:

min

{
1,
P(y|θt−1,A

∗)qA(At−1|A∗)
P(y|θt−1,At−1)qA(A∗|At−1)

}
,

which only depends on the likelihood of the model and qA(·|·).14 We explore the impact of the
information encoded in P (A) on the identification of θ using Monte Carlo simulations later
in this section.

One issue, however, is that there is no general rule for selecting the network proposal distri-
bution qA(·|·). A natural candidate is a Gibbs sampling algorithm for each link, i.e. change
only one link ij at every step t and propose aij according to its marginal distribution:

aij ∼ P (·|A−ij ,y) =
P(y|aij ,A−ij)P (aij |A−ij)

P(y|1,A−ij)P (aij = 1|A−ij) + P(y|0,A−ij)P (aij = 0|A−ij)
,

where A−ij = {akl; k 6= i, l 6= j}. In this case, the proposal is always accepted.

However, it has been argued that Gibbs sampling could lead to slow convergence (e.g. Snijders
(2002), Chatterjee et al. (2013)), especially when the network is sparse or exhibits a high level
of clustering. For example, Mele (2017) and Bhamidi et al. (2008) propose different blocking
techniques that are meant to improve convergence.

Here, however, the realization of Step 1 involves an additional computational issue since
evaluating the likelihood ratio in Step 1 requires comparing the determinants |I − αf(A∗)|
for each proposed A∗, which is computationally intensive. In particular, taking G∗ = f(A∗)

to be a row-normalization of A∗, changing a single element of A∗ results in a change in the
entire corresponding row of G∗. Still, comparing the determinant of two matrices that differ
only in a single row is relatively fast. Moreover, when G = A, Hsieh et al. (2019) propose a
blocking technique that facilitates the computation of the determinant.

Since the appropriate blocking technique depends strongly on P (A) and the assumed dis-
tribution for ε, we use the Gibbs sampling algorithm for each link of the simulations and
estimations presented in this paper, adapting the strategy proposed by Hsieh et al. (2019)
to our setting (see Proposition A.1 in Appendix A.7). This can be viewed as a worse-case
scenario. We encourage researchers to try other updating schemes if Gibbs sampling performs
poorly in their specific contexts. In particular, we present a blocking technique in Appendix
A.7 that is also implemented in our R package PartialNetwork.15

Table 1.4 presents the Monte Carlo simulations using Algorithm 1.1.. The simulated popula-
tion is the same as in Section 1.3; however, for computational reasons, we limit ourselves to
M = 50 groups of N = 30 individuals each. As expected, the average of the means of the

14In this case, the model would not be identified since there would be more parameters to estimate than
there are observations.

15Available at: https://github.com/ahoundetoungan/PartialNetwork.
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posterior distributions are centred relatively on the parameters’ true values. Note, however,
that due to the smaller number of groups and the fact that we performed only 200 simulations,
the results in Table 1.4 may exhibit small sample as well as simulation biases.

Table 1.4 – Simulation results with a Bayesian method

Statistic Mean Std. Dev. Pctl(25) Median Pctl(75)

N = 30, M = 50

Estimation results

Intercept = 2 1.873 0.893 1.312 1.815 2.486
α = 0.4 0.398 0.025 0.383 0.398 0.414
β1 = 1 1.003 0.027 0.982 1.002 1.019
β2 = 1.5 1.500 0.019 1.489 1.501 1.512
γ1 = 5 5.011 0.167 4.909 5.009 5.117
γ2 = −3 −2.987 0.135 −3.084 −2.983 −2.887

σ2 = 1 1.018 0.113 0.946 1.016 1.089

Simulation results for 200 replications of the model with unobserved exogenous
effects estimated by a Bayesian method where the graph precision parameter λ is
set to 1.

1.5 Network Formation Models

Our main assumption (Assumption A.2.) is that the researcher has access to the true distri-
bution of the observed network. An important special case is when the researcher has access
to a consistent estimate of this distribution. For concreteness, in this section we assume that
links are generated as follows:

P(aij = 1) ∝ exp{Q(θ,wij)}, (1.5)

where Q is some known function, wij is a vector of (not necessarily observed) characteristics
for the pair ij, and θ is a vector of parameters to be estimated.

An important feature of such models is that their estimation may not necessarily require the
observation of the entire network structure. To understand the intuition, assume a simple
logistic regression framework:

P(aij = 1) =
exp{xijθ}

1 + exp{xijθ}
,

where xij is a vector of observed characteristics of the pair ij. Here, note that s =
∑
ij

aijxij

is a vector of sufficient statistics. In practice, this therefore means that the estimation of θ
only requires the observation of such sufficient statistics.

To clarify this point, consider a simple example where individuals are only characterized by
their gender and age. Specifically, assume that xij = [1,1{genderi = genderj}, |agei− agej |].
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Then, the set of sufficient statistics is resumed by (1) the number of links, (2) the number of
same-gender links, and (3) average age difference between linked individuals.

Note that these statistics are much easier (and cheaper) to obtain than the entire network
structure; however, they nonetheless allow for estimating the distribution of the true network.

Of course, in general, the simple logistic regression above might be unrealistically simple as
the probability of linking might depend on unobserved variables.

In this section, we discuss some examples of network formation models that can be estimated
using only partial information about the network. We subdivide such models into two cate-
gories: models that can be estimated using sampled network data and latent surface models.

1.5.1 Sampled Network

As discussed in Chandrasekhar and Lewis (2011), sampled data can be used to estimate a
network formation model under the assumptions that (1) the sampling is exogenous and (2)
links are conditionally independent, i.e. P (aij |A−ij) = P (aij), as in (1.5).

Indeed, if the sampling was done, for example, as a function of the network structure, the esti-
mation of the network formation model would likely be biased. Also, if the network formation
model is such that links are not conditionally independent, then consistent estimation usually
requires the observation of the entire network structure.16

An excellent illustration of a compatible sampling scheme is presented in Conley and Udry
(2010). Rather than collecting the entire network structure, the authors asked the respondents
about their relationship with a random sample of the other respondents: “Have you ever gone
to ____ for advice about your farm?” If the answer is “Yes,” then a link is assumed between
the respondents.

Since the pairs of respondents for which the “Yes/No” question is asked are random, the
estimation of a network formation model with conditionally independent links gives consistent
estimates. If, in addition, the individual characteristics of the sampled pair of respondents
cover the set of observable characteristics for the entire set of respondents, one can compute
the predicted probability that any two respondents are linked.

For concreteness, consider the simple model presented above, such that:

P(aij = 1) =
exp{xijθ}

1 + exp{xijθ}
,

where xij = [1,1{genderi = genderj}, |agei − agej |].
16Or at least requires additional network summary statistics, such as individual degree or clustering coeffi-

cients; see Boucher and Mourifié (2017) or Mele (2017).
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Then, as long as the random sample of pairs for which the “Yes/No” question is asked includes
both men and women and includes individuals of different ages, then these sampled pairs allow
for a consistent estimation of θ. As such, for any two respondents the (predicted) probability
of a link is given by p̂ij = exp{xij θ̂}/(1 + exp{xij θ̂}), where θ̂ is a consistent estimator of θ.

The argument can be extended to models featuring an unobserved degree of heterogeneity.
Specifically, Graham (2017) studies the following undirected network formation model:

P(aij = 1) =
exp{xijθ + νi + νj}

1 + exp{xijθ + νi + νj}
,

where νi and νj are unobserved. He presents a tetrad logit estimator based on the assumption
that only a random sample of links are observed (his Assumption 2), as in Conley and Udry
(2010).

Graham (2017) shows that θ can be recovered consistently given some regularity conditions on
the asymptotic behaviour of the model (his Assumption 4, which is implied by our Assumption
A.3.). Once the consistent estimator θ̂ is recovered, the predicted probabilities are given by:

P̂ (A|n) =
exp{

∑
ij:j<i aijxij θ̂}∑

B∈A exp{
∑

ij:j<i bijxij θ̂}
, (1.6)

where n = [n1, ..., nn] is the degree sequence, and A is the set of adjacency matrices that have
the same degree sequence as A, i.e. ni =

∑
j 6=i

aij =
∑
j 6=i

bij for all i and all B ∈ A (see Graham

(2017), equation (3)).

Note that computing P̂ (A) therefore requires knowledge of the degree sequence, but this
information can easily be incorporated as a survey question: “How many people have you
gone to for advice about your farm?” Also, as noted by Graham (2017), the computation of
the normalizing term in (1.6) is not tractable for networks of moderate size. As such, the
predicted probabilities cannot be computed directly and must be simulated, for example using
the sequential importance sampling algorithm proposed by Blitzstein and Diaconis (2011).

1.5.2 Latent Surface Models

Recently, McCormick and Zheng (2015) and Breza et al. (2020) have proposed a novel approach
for the estimation of network formation models represented by:

P(aij = 1) ∝ exp{νi + νj + ζz′izj}, (1.7)

where νi, νj , ζ, zi, and zj are not observed by the econometrician but follow parametric
distributions. As in Graham (2017), νi and νj can be interpreted as i and j’s propensity to
create links, irrespective of the identity of the other individual involved. The other component,
ζz′izj , is meant to capture homophily on an abstract latent space (e.g. Hoff et al. (2002)).
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Breza et al. (2020) show that it is possible to use aggregate relational data (ARD) to recover
the values of the variables in (1.7) and therefore obtain an estimate of P(aij = 1). ARD are
obtained from survey questions such as: “How many friends with trait ‘X’ do you have?” We
refer the interested reader to McCormick and Zheng (2015) and Breza et al. (2020) for a formal
discussion of the model. Here, we discuss the intuition using a simple analogy.

Suppose that individuals are located according to their geographical position on Earth. Sup-
pose also that there are a fixed number of cities on Earth in which individuals can live. The
econometrician does not know the individuals’ location on Earth nor do they know the location
of the cities. In model (1.7), zi represent i’s position on Earth.

Suppose that the researcher has data on ARD for a subset of the population. In the context
of our example, ARD data are count variables of the type: “How many of your friends live in
city A?”17 Given (1.7) and parametric assumptions for the distribution of ν’ and z’s, the goal
is to use ARD responses to infer the positions and sizes of the cities on Earth, as well as the
values for νi and zi.18

To understand the intuition behind the identification of the model, consider the following
example: suppose that individual i has many friends living in city A. Then, city A is likely
located close to i’s location. Similarly, if many individuals have many friends living in city A,
then city A is likely a large city. Finally, if i has many friends from many cities, i likely has a
large νi.

As mentioned above, we refer the interested reader to McCormick and Zheng (2015) and
Breza et al. (2020) for a formal description of the method as well as formal identification
conditions. Here, we provide Monte Carlo simulations for the estimators developed in Section
1.3, assuming that the true network follows (1.7). The details of the Monte Carlo simulations
can be found in Appendix A.4.

We simulate 20 groups of 250 individuals each. Within each subpopulation, we simulate the
ARD responses as well as a series of observable characteristics (e.g. cities). We then estimate
the model in (1.7) and compute the implied probabilities, P(aij = 1), which we used as the
distribution of our true network.19 We estimate peer effects using the instrumental variable
strategy presented in Section 1.3. Results are presented in Tables 1.5 and 1.6.

Results show that the method performs relatively well when Gy is observed but slightly less
well when Gy is not observed and when the model allows for group-level unobservables. Note,
however, that one potential issue with this specific network formation model is that it is based

17The general approach works for any discrete characteristic.
18One also needs the ARD traits of the entire population, which is similar to our Assumption A.4.. See

Section C.I, Step II in Breza et al. (2020) for details.
19We fix ζ = 1.5 (i.e. ζ is not estimated) to mitigate part of the small sample bias. See our discussion

below.
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on a single population setting (i.e. there is only one Earth). The researcher should keep in
mind that the method should only be used on medium- to large-sized groups.

If the method proposed by Breza et al. (2020) performs well, note that our instrumental
variable estimator does not require the identification of the structural parameters in (1.7).
Indeed, the procedure only requires a consistent estimate of the linking probabilities.

As such, we could alternatively use the approach recently proposed by Alidaee et al. (2020).
They present an alternative estimation procedure for models with ARD that does not rely on
the parametric assumption in equation (1.7). They propose a penalized regression based on
a low-rank assumption. One main advantage of their estimator is that it allows for a wider
class of model and ensures that the estimation is fast and easily implementable.20

As for most penalized regressions, the estimation requires the user to select a tuning parameter,
which effectively controls the weight of the penalty. We found that the value recommended by
the authors is too large in the context of (1.7), using our simulated values. Since the choice
of this tuning parameter is obviously context dependent, we recommend choosing it using a
cross-validation procedure.

To explore the properties of their estimator in our context, we do the following. First, we
simulate data using (1.7), using the same specification as for Tables 1.5 and 1.6. Second,
we estimate the linking probabilities using their penalized regression under different tuning
parameters, including the optimal (obtained through cross-validation) and the recommended
parameter (taken from Alidaee et al. (2020)). Third, we estimate the peer-effect model using
our instrumental variable estimator.

Table A.8 of Appendix A.3 presents the results under alternative tuning parameters when Gy

is observed and γ = 0. We see that the procedure performs well but is less precise than when
using the parametric estimation procedure. This is intuitive since the estimation procedure
in Breza et al. (2020) imposes more structure (and is specified correctly in our context). The
procedure proposed by Alidaee et al. (2020) is valid for a large class of models but is less
precise.

Tables A.9 and A.10 also exemplify the results of Propositions 1.1 and 1.2. When Gy is
observed, the estimation is precise, even if the network formation model is not estimated pre-
cisely. However, when Gy is not observed, small sample bias strongly affects the performance
of the estimator.

Results from this section imply that, when Gy is observed, the estimator proposed by Alidaee
et al. (2020) is the most attractive since it is less likely to be misspecified (and correlated
with ε). However, when Gy is not observed, the estimator from Breza et al. (2020) should be
privileged. Of course, in the latter case, the validity of the results are based on the assumption

20The authors developed user-friendly packages in R and Python. See their paper for links and details.
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that (1.7) is correctly specified.

Table 1.5 – Simulation results using ARD with contextual effects (1,000 replica-
tions)

Statistic Mean Std. Dev. Pctl(25) Median Pctl(75)

N = 250, M = 20 - Instrument: (G̃)2X - Gy is observed

Estimation results

Intercept = 2 1.991 0.222 1.845 1.992 2.141
α = 0.4 0.400 0.006 0.396 0.400 0.404
β1 = 1 1.000 0.003 0.998 1.000 1.002
β2 = 1.5 1.500 0.005 1.496 1.500 1.504
γ1 = 5 5.000 0.020 4.986 4.999 5.013
γ2 = −3 −2.999 0.032 −3.020 −2.998 −2.977

Tests

F -test 5473.171 1735.035 4232.103 5325.774 6528.537
Hausman 0.986 1.346 0.106 0.475 1.291
Sargan 1.045 1.461 0.108 0.465 1.353

N = 250, M = 20 - Instrument: (Ĝ)2X - Gy is not observed

Intercept = 2 2.065 0.327 1.852 2.051 2.275
α = 0.4 0.399 0.008 0.394 0.400 0.405
β1 = 1 1.002 0.003 1.000 1.002 1.004
β2 = 1.5 1.499 0.006 1.495 1.499 1.503
γ1 = 5 5.411 0.020 5.397 5.411 5.425
γ2 = −3 −2.403 0.040 −2.429 −2.402 −2.375
γ̂1 = 0 −0.383 0.023 −0.399 −0.384 −0.367
γ̂2 = 0 −0.608 0.038 −0.635 −0.609 −0.583

Tests

F -test 4790.020 1407.596 3760.700 4682.825 5686.841
Hausman 70.940 19.503 57.143 70.430 82.175
Sargan 1.167 1.615 0.103 0.523 1.534
F -test 3, 867.077 1, 093.165 3, 037.776 3, 855.692 4, 588.458
Hausman 228.290 49.002 194.110 227.981 261.617
Sargan 26.953 13.515 17.184 25.380 34.583

Results without contextual effects are presented in Table A.7 of Appendix A.3.

1.6 Imperfectly Measured Networks

In this section, we assume that the econometrician has access to network data but that the
data may contain errors. For example, Hardy et al. (2019) assume that some links are missing
with some probability, while others are included falsely with some other probability.

To show how our method can be used to address these issues, we consider a simple example
where we are interested in estimating peer effects on adolescents’ academic achievements. We
assume that we observe the network but that some links are missing.
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Table 1.6 – Simulation results with ARD and subpopulation unobserved fixed effects (1,000
replications)

Statistic Mean Std. Dev. Pctl(25) Median Pctl(75)

N = 250, M = 20 - Instrument: J(G̃)2X - Gy is observed

Estimation results

α = 0.4 0.401 0.054 0.366 0.400 0.436
β1 = 1 1.000 0.003 0.998 1.000 1.002
β2 = 1.5 1.500 0.006 1.496 1.500 1.504
γ1 = 5 4.999 0.067 4.956 4.999 5.043
γ2 = −3 −3.001 0.082 −3.051 −2.999 −2.949

Tests

F -test 169.973 55.243 130.603 165.188 205.152
Hausman 0.978 1.306 0.096 0.438 1.360
Sargan 0.919 1.393 0.084 0.402 1.228

N = 250, M = 20 - Instrument: J(Ĝ)2X - Gy is not observed

Estimation results

α = 0.4 0.477 0.077 0.426 0.474 0.528
β1 = 1 1.001 0.003 0.999 1.001 1.003
β2 = 1.5 1.499 0.007 1.495 1.499 1.504
γ1 = 5 5.401 0.024 5.386 5.400 5.416
γ2 = −3 −2.399 0.040 −2.425 −2.401 −2.374
γ̂1 = 0 −0.467 0.087 −0.524 −0.465 −0.408
γ̂2 = 0 −0.721 0.119 −0.795 −0.721 −0.641

Tests

F -test 125.898 43.107 94.650 122.580 150.436
Hausman 23.096 11.431 15.100 21.238 29.881
Sargan 1.096 1.611 0.131 0.479 1.369

To estimate this model, we use the AddHealth database. Specifically, we focus on a subset of
schools from the “In School” sample that each have less than 200 students. Table 1.7 displays
the summary statistics.

Most of the papers estimating peer effects that use this particular database have taken the
network structure as given. One notable exception is Griffith (2019), looking at the issue of
top coding.21 In practice, even if the schools are meant to be entirely sampled, we are still
potentially missing many links. To understand why, we discuss the organization of the data.

Each adolescent is assigned to a unique identifier. The data includes ten variables for the ten
potential friendships (maximum of 5 male and 5 female friends). These variables can contain
missing values (no friendship was reported), an error code (the named friend could not be
found in the database), or an identifier for the reported friends. This data is then used to

21Although we are not exploring this issue here, our method can also be applied to analyse the impact of
top coding.
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Table 1.7 – Summary statistics

Statistic Mean Std. Dev. Pctl(25) Pctl(75)

Female 0.540 0.498 0 1
Hispanic 0.157 0.364 0 0
Race

White 0.612 0.487 0 1
Black 0.246 0.431 0 0
Asian 0.022 0.147 0 0
Other 0.088 0.283 0 0

Mother education
High 0.310 0.462 0 1
< High 0.193 0.395 0 0
> High 0.358 0.480 0 1
Missing 0.139 0.346 0 0

Mother job
Stay-at-home 0.225 0.417 0 0
Professional 0.175 0.380 0 0
Other 0.401 0.490 0 1
Missing 0.199 0.399 0 0

Age 13.620 1.526 13 14
GPA 2.088 0.794 1.5 2.667

generate the network’s adjacency matrix A.

Of course, error codes cannot be matched to any particular adolescent; as well, even in the
case where the friendship variable refers to a valid identifier, however, the referred adolescent
may still be absent from the database. A prime example is when the referred adolescent has
been removed from the database by the researcher, perhaps due to other missing variables for
these particular individuals. These missing links are quantitatively important as they account
for roughly 30% of the total number of links (7,830 missing for 17,993 observed links). Figure
1.4 displays the distribution of the number of “unmatched named friends”.22

Given that we observe the number of missing links for each individual, we can use the general
estimator proposed in Section 1.4 to estimate the model. For this, however, we need one
additional assumption.

Let Ns be the size of school s, ni be the number of observed (matched) friends of i, and ňi be
the number of missing (unmatched) friends of i. We make the following assumption for the
network formation process:

P(aij = 1) = 1 if the link is observed in the data,

P(aij = 1) =
ňi

Ns − 1− ni
otherwise.

In large schools, this is equivalent to assuming that missing friendships are drawn at random
22We focus on within-school friendships; thus, nominations outside of school are discarded.
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Figure 1.4 – Frequencies of the number of missing links per adolescent

among the remaining adolescents. In small schools, however, this approach disregards the
dependence between links.

To understand why we cannot directly assume that the ňi missing links are assigned randomly
to the adolescents with whom i is not a friend, consider the following simple example. Suppose
that there are only three adolescents, i, j, and k, and that i has no matched (observed) friends,
but we know that they have one friend (i.e. ňi = 1). This friend can either be j or k. Selecting
friendship relations at random therefore implies that aij and aik are perfectly (negatively)
correlated. This will lead many Metropolis–Hastings algorithms to fail. In particular, this is
the case of the Gibbs sampling procedure.23

Assuming P(aij = 1) = P(aik = 1) =
ňi

Ns − 1− ni
= 1/2 for unobserved links circumvents

this issue. Moreover, since this assumption only affects the prior distribution of our Bayesian
inference procedure, it need not have important consequences on the posterior distribution.
Table 1.8 presents the estimation results.24 Importantly, we see that the estimated value for
α is significantly larger when the network is reconstructed. Also notable is the fact that the
reconstructed network captures an additional contextual peer effect: having a larger fraction of
Hispanic friends significantly reduces academic achievement.25 The remainder of the estimated
parameters are roughly the same for both specifications.

23This issue could be solved by updating an entire line of A for each step of the algorithm. However, this
proves to be computationally intensive for networks of moderate size.

24Trace plots and posterior distributions are presented in Figures A.1, A.2, and A.3 of Appendix A.9.
25Note that one has to be careful in discussing the structural interpretation of the contextual effects. See

Boucher and Fortin (2016) for a discussion.
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Table 1.8 – Posterior distribution

Observed network Reconstructed network
Statistic Mean Std. Dev. t-stat Mean Std. Dev. t-stat

Peer effect 0.350∗∗∗ 0.022 15.519 0.526∗∗∗ 0.036 14.468
Intercept 1.196∗∗∗ 0.132 9.086 1.153∗∗∗ 0.139 8.293

Own effects

Female −0.144∗∗∗ 0.029 −5.013 −0.131∗∗∗ 0.028 −4.690
Hispanic 0.084∗∗ 0.042 1.999 0.122∗∗∗ 0.044 2.745
Race

Black 0.231∗∗∗ 0.045 5.084 0.233∗∗∗ 0.047 4.913
Asian 0.090 0.090 1.008 0.106 0.087 1.212
Other −0.056 0.051 −1.085 −0.044 0.052 −0.862

Mother education
< High 0.122∗∗∗ 0.039 3.125 0.120∗∗∗ 0.038 3.136
> High −0.139∗∗∗ 0.033 −4.165 −0.111∗∗∗ 0.034 −3.317
Missing 0.060 0.051 1.179 0.058 0.052 1.131

Mother job
Professional −0.081∗ 0.044 −1.833 −0.068 0.044 −1.551
Other −0.003 0.035 −0.078 0.009 0.034 0.253
Missing 0.066 0.047 1.411 0.067 0.047 1.426

Age 0.073∗∗∗ 0.009 7.749 0.076∗∗∗ 0.010 7.824

Contextual effects

Female −0.012 0.049 −0.234 −0.048 0.071 −0.679
Hispanic −0.061 0.069 −0.876 −0.275∗∗∗ 0.091 −3.042
Race

Black −0.051 0.058 −0.868 −0.097 0.065 −1.478
Asian −0.212 0.184 −1.150 −0.131 0.324 −0.404
Other 0.138 0.090 1.539 0.154 0.140 1.099

Mother education
< High 0.269∗∗∗ 0.072 3.733 0.337∗∗∗ 0.109 3.093
> High −0.071 0.060 −1.196 −0.118 0.086 −1.377
Missing 0.078 0.094 0.828 0.013 0.146 0.089

Mother job
Professional 0.109 0.081 1.352 0.060 0.115 0.519
Other 0.101∗ 0.060 1.684 0.057 0.088 0.647
Missing 0.093 0.087 1.080 0.055 0.136 0.400

Age −0.066∗∗∗ 0.006 −11.583 −0.087∗∗∗ 0.008 −11.178

SE2 0.523 0.493

N = 3,126. Observed links = 17,993. Missing links = 7,830. Significance levels: ∗∗∗ = 1%, ∗∗ = 5%,
∗ = 10%.
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1.7 Discussions

In this paper, we proposed two types of estimators that can estimate peer effects given that the
researcher only has access to the distribution of the true network. In doing so, we abstracted
from many important considerations. In this section, we discuss some limits, some areas for
future research, and some general implications of our results.

1.7.1 Endogenous Networks

In this paper, we assumed away any endogeneity of the network structure (Assumption A.5.).
As discussed in Section 1.2, this is done for the purposes of presentation. Indeed, there
are multiple ways to introduce, and correct for, endogenous networks, which lead to many
possible models. In this section, we discuss how existing endogenous network corrections can
be adapted to our setting. Specifically, we assume that there exists some unobserved variable
correlated with both the network A and the outcome y. This violates Assumption A.5..

A first remark is that our ability to accommodate such an unobserved variable depends on the
flexibility of the used network formation model. Indeed, some models can obtain estimates of
the unobserved heterogeneity (e.g. Breza et al. (2020) or Graham (2017)). In such cases, one
could simply include the estimated unobserved variables as additional explanatory variables.
Johnsson and Moon (2015) discuss this approach as well as other control-function approaches
in detail. Since their instrumental variable estimator is based on the higher-order link relations
(i.e. G2X,G3X, ...), it is also valid for the instrumental variable estimator proposed in Section
1.3.26

However, this is not entirely satisfying since it assumes that the network formation is estimated
consistently, independent of the peer-effect model.27 The Bayesian estimator presented in
Section 1.4 allows for more flexibility. Indeed, one could expand Algorithm 1.1. and perform
the estimation of the network formation model jointly with the peer-effect model, as has been
done, for instance, by Goldsmith-Pinkham and Imbens (2013), Hsieh and Van Kippersluis
(2018), and Hsieh et al. (2020)) in contexts where the network is observed. Essentially, instead
of relying on the known distribution P (A), one would need to rely on P (A|S,κ, z), where
S is a matrix (possibly a vector) of observed statistics about A (e.g. a sample, a vector of
summary statistics, or ARD), z is an unobserved latent variable (correlated with ε), and κ is
a vector of parameters to be estimated.

This contrasts, for example, with the network formation model presented in Section 1.5.2
where S (i.e. ARD) is sufficient for the estimation of all of the models’ parameters. Here, the
estimation of z and κ also requires knowledge about the likelihood of y. The exploration of

26Note that estimated unobserved variables can also be added as explanatory variables in the context of
the estimator presented in Section 1.4.

27See, for example, Assumption 1 and Assumptions 6–11 in Johnsson and Moon (2015).
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such models (especially their identification) goes far beyond the scope of the current paper
and is left for future (exciting) research.

1.7.2 Large Populations and Partial Sampling

In this section, we discuss the estimation of (1.1) when the population cannot be partitioned
into groups of bounded sizes (i.e. when Assumption A.3. does not hold). Note that doing
so will also most likely violate Assumption A.4.. Indeed, in large populations (e.g. cities,
countries...), assuming that the individuals’ characteristics (y,X) are observed for the entire
population is unrealistic (that is, except for census data). This implies that strategies such as
the one presented in Section 1.4 would also be unfeasible, irrespective of the network formation
model.28

One would therefore have to rely on an instrumental strategy, such as the one presented in
Section 1.3. In this section, we discuss the properties of the estimator in Section 1.3 in the
context of a single, large sample.

To fix the discussion, assume for now that xi = xi has only one dimension and only takes on
a finite number of distinct values. Assume also that for any two i, j, P (aij = 1) = φ(xi, xj)

for some known function φ. We have:

(Gx)i =
N∑
j=1

gijxj ,

which we can rewrite as:
N∑
j=1

gijxj =

∑
x x(nx/N) 1

nx

∑
j:xj=x

aij∑
x(nx/N) 1

nx

∑
j:xj=x

aij
,

where nx is the number of individuals having the trait x. Note that since we assumed that
the support of x only takes a finite number of values, nx goes to infinity with N . We therefore
have (by a strong law of large numbers):

1

nx

∑
j:xj=x

aij → φ(xi, x), (1.8)

and nx/N → p(x), where p(x) is the fraction of individuals with trait x in the population. We
therefore have:

(Gx)i →
∑

x xp(x)φ(xi, x)∑
x p(x)φ(xi, x)

≡ x̂(xi).

For example, for an Erdös–Rényi network (i.e. φ(x, x′) = φ̄ for all x, x′), we have x̂(xi) = Ex.

This means that the knowledge of φ(·, ·) is sufficient to construct a consistent estimate of Gx.
Note also that a similar argument allows constructing a consistent estimate for Gy or G2X.

28Also, in terms of computational cost, the estimator presented in Section 1.4 is likely to be very costly for
very large populations.
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As such, the instrumental variable strategy proposed in Section 1.3 can be applied even if GX

is not observed.

Unfortunately, this approach relies on the (perhaps unrealistic) assumption that P (aij = 1) =

φ(xi, xj), which here implies that individuals form an (asymptotically) infinite number of
links.29 When the number of links is bounded (e.g. De Paula et al. (2018b)), the average in
(1.8) does not converge for each i. Note, however, that the first part of Proposition 1.2 still
applies: if Gy and GX are observed, then the constructed (biased) instrument H2X drawn
from a network formation model with bounded degrees is valid.

Finally, note that the argument presented here can be generalized. In particular, Parise and
Ozdaglar (2019) recently proposed a means of approximating games on large networks using
graphon games, i.e. games played directly on the network formation model. If the approach
is promising, its implications for the estimation of peer effects go far beyond the scope of this
paper and are left for future research.

1.7.3 Survey Design

As discussed in Section 1.3, instrumental variable estimators are only valid if the researcher
observes GX. Also, Breza et al. (2020) and Alidaee et al. (2020) propose using ARD to esti-
mate network formation models. Importantly, although ARD responses and GX are similar,
they are not equivalent. For example, consider a binary variable (e.g. gender). One can obtain
GX by asking questions such as “What fraction of your friends are female?” For ARD, the
question would be “How many of your friends are female?” This suggests asking two questions.
One related to the number of female friends and one related to the number of friends.30

For continuous variables (e.g. age), this creates additional issues. One can obtain GX by
asking about the average age of one’s friends, but ARD questions must be discrete: “How
many of your friends are in the same age group as you?” Then, in practice, an approach could
be to ask individuals about the number of friends they have, as well as the number of friends
they have from multiple age groups: “How many of your friends are between X and Y years
old?” Using this strategy allows construction of both the ARD and GX.

Finally, an implication of Propositions 1.1 and 1.2 is that asking directly for Gy in the survey
leads to a more robust estimation strategy. Indeed, the constructed instruments are valid even
if the network formation model is misspecified.

29A special case, when the network is complete, is presented in Brock and Durlauf (2001).
30Breza et al. (2020) do not require information on the number of friends, although this significantly helps

the estimation.
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1.7.4 Next Steps

In this paper, we proposed two estimators where peer effects can be estimated without having
knowledge of the entire network structure. We found that, perhaps surprisingly, even very
partial information on network structure is sufficient. However, there remains many important
challenges, in particular with respect to the study of compatible models of network formation.
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Chapter 2

Count Data Models with Social
Interactions under Rational
Expectations

Résumé

Dans ce chapitre, je présente un modèle structurel des effets de pairs pour analyser une va-
riable de comptage (nombre de cigarettes fumées, fréquence des visites au restaurant, fréquence
de participation aux activités). Le modèle est basé sur un jeu statique à information incom-
plète dans lequel les joueurs interagissent à travers un réseau dirigé et sont influencés par
leur croyance sur le choix de leurs amis. Je présente des conditions suffisantes sous lesquelles
l’équilibre du jeu est unique. J’estime les paramètres du modèle en utilisant une approche
the vraisemblance partielle imbriquée. Je montre que l’utilisation du modèle spatial autoré-
gressif (SAR) linéaire-en-moyennes ou du modèle Tobit SAR pour estimer les effets de pairs
sur des variables de comptage générées à partir du jeu sous-estime asymptotiquement les
effets de pairs. Le biais d’estimation diminue lorsque la dispersion de la variable de comp-
tage augmente. Je propose également une application empirique. J’estime les effets de pairs
sur le nombre d’activités parascolaires auxquelles les étudiants sont inscrits. Je trouve que
l’augmentation d’une unité du nombre d’activités dans lesquelles les amis d’un étudiant sont
inscrits implique une augmentation du nombre d’activités dans lesquelles l’étudiant est inscrit
de 0,295, en contrôlant l’endogénéité du réseau. Je montre également que les effets de pairs
sont sous-estimés à 0,150 lorsqu’on ignore la nature de comptage de la variable dépendante.

Abstract

I present a structural model of peer effects to analyze count data (Number of cigarettes smoked,
frequency of restaurant visits, frequency of participation in activities). The model is based
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on a static game with incomplete information in which individuals’ outcome is counting. In
addition, individuals interact through a directed network and are influenced by their belief
over the choice of their peers. I provide sufficient conditions under which the equilibrium of
the game is unique. I estimate the model’s parameters using the Nested Partial Likelihood
method. I show that using the standard linear-in-means spatial autoregressive (SAR) model or
the SAR Tobit model to estimate peer effects on counting variables generated from the game
asymptotically underestimates the peer effects. The estimation bias decreases when the range
of the dependent variable increases. I estimate peer effects on the number of extracurricular
activities in which students are enrolled. I find that increasing the number of activities in
which student’s friends are enrolled by one implies an increase in the number of activities in
which the student is enrolled by 0.295, controlling for the endogeneity of the network. I also
show that the peer effects are underestimated at 0.150 when ignoring the counting nature of
the dependent variable.

Keywords: Discrete model, Social networks, Bayesian game, Rational expectations, Network
formation.

JEL Classification: C25, C31, C73, D84, D85.
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2.1 Introduction

There is a large and growing literature on peer effects in economics.1 Recent contributions
include, among others, models for limited dependent variables, including binary (e.g., Brock
and Durlauf, 2001; Lee et al., 2014; Liu, 2019), ordered (e.g., Boucher et al., 2018), multinomial
(e.g., Guerra and Mohnen, 2020), and censored (e.g., Xu and Lee, 2015b) variables. To my
knowledge, however, there are no existing models for count variables with microeconomic
foundations, despite these variables being prevalent in survey data (e.g., Liu et al., 2012;
Patacchini and Zenou, 2012; Fujimoto and Valente, 2013; Liu et al., 2014; Fortin and Yazbeck,
2015; Boucher, 2016; Lee et al., 2020a).

In this paper, I propose a network model in which the dependent variable is the number of
occurrences of an event in a constant period.2 The model generalizes the rational expectations
model of Lee et al. (2014), which is used to study peer effects on binary data. I show that
the model’s parameters can be estimated using the Nested Partial Likelihood (NPL) method
(Aguirregabiria and Mira, 2007). I show that using the linear-in-means spatial autoregressive
(SAR) model (Lee, 2004) or the SAR Tobit (SART) model (Xu and Lee, 2015b) to estimate
peer effects on counting variables generated from the model asymptotically underestimates
the peer effects. The estimation bias decreases when the range of the dependent variable
increases. I estimate peer effects on the number of extracurricular activities in which students
are enrolled using the data set provided by the National Longitudinal Study of Adolescent
Health (Add Health). I control for network endogeneity. I find that ignoring the endogeneity
of the network overestimates the peer effects. Finally, I provide an easy-to-use R package—
named CDatanet—for implementing the model.3

I present a static game with incomplete information (see Harsanyi, 1967; Osborne and Ru-
binstein, 1994) to rationalize the model. Individuals in the game interact through a directed
network, simultaneously choose their strategy, and are influenced by their belief over the choice
of their peers. As in many discrete games (e.g., Xu and Lee, 2015a; Liu, 2019), I assume that
individuals do not directly choose the observed integer outcome. Instead, they choose a latent
variable that can be interpreted as an intention. This latent variable determines the observed
integer outcome (see also Maddala, 1986; Cameron and Trivedi, 2013).
I provide sufficient conditions under which the model game has a unique Bayesian Nash Equi-
librium (BNE). To estimate the model parameters, I rely on the NPL algorithm proposed by
Aguirregabiria and Mira (2007). The estimation process is straightforward and can be readily
implemented. Moreover, it does not require computing the game equilibrium. I show that the
estimator is consistent, and I study its limiting distribution.

1For recent reviews, see Boucher and Fortin (2016), De Paula (2017), and Bramoullé et al. (2020).
2Examples are number of cigarettes smoked, frequency of restaurant visits, frequency of participation in

activities.
3The package is available at CRAN.R-project.org/package=CDatanet.

37



I show that modeling the counting dependent variable generated from the game through
use of a misspecified continuous model, such as the SART model or the SAR, asymptotically
underestimates the peer effects. The estimation bias decreases when the range of the dependent
variable increases. In practice, the bias could almost disappear if the range of the dependent
variable is sufficiently large. This result is also confirmed through Monte Carlo simulations.

I provide an empirical application. I use the Add Health data to estimate peer effects on the
number of extracurricular activities in which students are enrolled. I find that increasing the
number of activities in which a student’s friends are enrolled by one implies an increase in the
number of activities in which the student is enrolled by 0.295. As in the Monte Carlo study,
I find that the SART and the SAR models underestimate peer effects at 0.141 and 0.166,
respectively.

I control for the endogeneity of the network in the empirical application. Endogeneity is due
to unobservable individual characteristics, such as the gregariousness or degree of sociabil-
ity, which influence both link formation in the network and participation in extracurricular
activities (see Johnsson and Moon, 2015; Graham, 2017). To deal with the endogeneity, I
use a two-stage estimation strategy. In the first stage, I consider a dyadic linking model in
which the probability of link formation between two students depends, among others, on their
gregariousness (see Graham, 2017; Breza et al., 2020). Using a Markov Chain Monte Carlo
(MCMC) approach, I simulate the posterior distribution of this gregariousness. In the second
stage, the estimator of gregariousness is included in the count data model as a supplementary
explanatory variable.4 I find that the network is endogenous and that ignoring the endogeneity
overestimates peer effects.

This paper contributes to the literature on social interaction models for limited dependent
variables. The existing models deal with binary (e.g., Brock and Durlauf, 2001; Soetevent
and Kooreman, 2007; Lee et al., 2014; Xu and Lee, 2015a; Liu, 2019), censored (e.g., Xu
and Lee, 2015b), ordered (e.g., Boucher et al., 2018), and multinomial outcomes (e.g., Guerra
and Mohnen, 2020). My model fits between the rational expectations model for binary data
developed by Lee et al. (2014) and the SAR model used to study continuous outcomes. When
the distribution of the outcome is almost degenerated, such that the outcome takes only two
values, I show that the structure of my model game and the BNE are similar to those of Lee
et al. (2014). In addition, when the outcome is not left-censored and its range is sufficiently
large, I show that the model is similar to the SAR model.

The paper contributes to the extensive empirical literature on social interactions by being the
first to deal with the counting nature of count data. Existing papers studying peer effects using
count data rely on linear-in-means models estimated by the maximum likelihood approach

4I use the posterior distribution of the estimator of gregariousness to account for the uncertainty related
to first-stage estimation in the second stage.
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of Lee (2004) or the two-stage least squares method of Kelejian and Prucha (1998), which
ignores the counting nature of the outcome (e.g., Liu et al., 2012; Patacchini and Zenou, 2012;
Fujimoto and Valente, 2013; Liu et al., 2014; Fortin and Yazbeck, 2015; Boucher, 2016; Lee
et al., 2020a). I show that peer effects estimated in this way are potentially biased downward.
In my empirical application on students’ participation in extracurricular activities, I account
for the counting nature of the outcome.

Importantly, in the literature on spatial autoregressive models for limited dependent variables,
cases of count data have been studied (e.g, Karlis, 2003; Liesenfeld et al., 2016; Inouye et al.,
2017; Glaser, 2017). These papers consider reduced form equations in which the dependent
count variable is spatially autocorrelated. However, the models are not based on any process
(game) that explains how the individuals choose their strategy, and thus how they are influ-
enced by their peers. Therefore, the reduced form cannot be interpreted as a best-response
function, and the spatial dependence parameter cannot be interpreted as peer effects.

The paper also contributes to the literature on peer effects models with endogenous networks.
Goldsmith-Pinkham and Imbens (2013) as well as Hsieh and Lee (2016) consider a Bayesian
hierarchical model to control for endogeneity. They use a MCMC approach to jointly simulate
from the posterior distribution of the network formation model parameters and the outcome
model parameters. While this method is efficient as the estimation is done in a single step,
it can be cumbersome to implement with a discrete data model. Johnsson and Moon (2015)
also develop a strategy to estimate the linear-in-means peer effects model by controlling for
the endogeneity of the network. Their estimation method is semiparametric and relies on a
control function approach. My method to control for endogeneity is similar in spirit to that
of Johnsson and Moon (2015) and can be readily implemented with discrete outcome models.
The network formation model is estimated, in a first stage, separately from the outcome model
estimation. Moreover, I provide a way to estimate the variance of the estimator of the outcome
model, which takes into account the uncertainty of the estimation in the first stage.

The remainder of the paper is organized as follows. Section 2.2 presents the microeconomic
foundation of the model based on an incomplete information network game. Section 2.3
addresses the identification and the estimation of the model parameters. It also presents the
link between the model and the linear-in-means model. Section 2.4 documents the Monte Carlo
experiments. Section 2.5 presents the empirical results and the method used to control for the
endogeneity of the network. Section 2.6 discusses some limits and some general implications
of the results. Section 2.7 concludes this paper.

2.2 Incomplete Information Network Game

I present a game of incomplete information with social interactions. Let V = {1, . . . , n} be
a set of n players indexed by i and yi, the observed integer outcome of player i (e.g., the
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number of cigarettes smoked per day or per week). The integer variable yi is considered as
a generalization of a binary variable (see Lee et al., 2014; Liu, 2019).5 As in Xu and Lee
(2015a) and Liu (2019), I assume that the players do not directly choose yi. Instead, they
choose y∗i , a latent variable that determines the observed outcome yi. This latent variable can
be interpreted as an intention that leads to the observed choice yi (see Maddala, 1986).
I assume that y∗i and yi are linked as follows:

Assumption B. Let (aq)q∈N be a sequence given by a0 = −∞, a1 ∈ R, and aq = a1 +γ(q−1)

for q ∈ N∗ and γ ∈ R∗+. If y∗i ∈ (aq, aq+1], then yi = q.

The outcome yi is called the count variable or count data. As in a binary game (e.g., Liu,
2019), Assumption B sets yi = 0 if y∗i is not greater than some real value a1. When y∗i > a1,
Assumption B implies that there are increasing boundaries a1, a2, . . . , such that yi = q if
y∗i ∈ (aq, aq+1]. A similar assumption is also set to link a polytomous ordered variable to a
latent variable (e.g., Amemiya, 1981; Baetschmann et al., 2015; Boucher et al., 2018).
Assumption B restricts the boundaries to be equally spaced from a1; that is, a1, a1+γ, a1+2γ,
and so on. This is stronger than the usual assumption for an ordered model, which allows the
boundary increment to vary (see Amemiya, 1981). However, two important points motivate
such simplification. First, it is intuitively natural to set that the boundaries increase uniformly
by γ as the count variable yi increases uniformly by 1. This allows to interpret y∗i as a ratio
variable and the model a as linear model.6 Second, if the increment varies, then the number of
unknown parameters increases with the number of values taken by yi. In practice, estimating
the model can be cumbersome when the outcome takes many values. As the count variable yi
is unbounded, Assumption B fixes in particular the incidental parameter issues, which could
appear in the econometric model.
However, I also show that the proof of the Bayesian Nash Equilibrium (BNE) of the game
could be readily generalized when one assumes a sequence with varying increments over i and
q.7

Interestingly, Assumption B also generalizes the binary outcome game of Lee et al. (2014).
Indeed, if γ = ∞, then ar = ∞ for r ≥ 2. In that case, yi can only take 2 values: yi = 0 if
y∗i ≤ a1, and yi = 1 otherwise.

Individuals interact through a directed network. Let G = [gij ] be an n× n adjacency matrix,
where the (i, j)-th element is non-negative and captures the proximity of the individuals i and

5For example, when the binary variable is coded 0, yi also takes 0, and when the binary variable is coded
1, yi could take any strictly positive value.

6Unlike the case of an ordered variable, the latent variable increases at the same rate as the exposure time.
For instance, y∗i = α in a week is supposed to be equivalent to y∗i =

α

7
in a day. Using a constant increment

allows dealing with time-varying exposure (see Section 2.6.2).
7In that case,

(
aiq

)
q∈N

would be any strictly increasing sequence, such that if y∗i ∈ (aiq, a
i
q+1], then yi = q.

To generalize the equilibrium results of the game, I assume that lim
q→∞

aiq+1 − aiq > 0, ∀ i ∈ V (see Appendix

B.1.3).
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j in the network. I define the peers of individual i as the set of individuals Vi = {j, gij > 0}.
By convention, nobody interacts with himself/herself, that is gii = 0 ∀ i ∈ V.
I assume that the individuals’ preferences can be characterized by the following linear-quadratic
utility function:8

Ui = (ψi + εi) y
∗
i −

y∗2i
2︸ ︷︷ ︸

private sub-utility

+ λy∗i
∑
j 6=i

gijyj︸ ︷︷ ︸
social sub-utility

, (2.1)

where ψi, λ ∈ R, and εi is an idiosyncratic shock that can be interpreted as the player’s type.
The term ψi captures observed characteristics of i.9 I assume that the idiosyncratic shock εi
is identically and independently distributed over i. The player i observed their own type εi
but not that of the others. All players know the common distribution of εi.

The first two terms of the utility function (2.1) are the private subutility, in which −1

2
y∗2i is the

intention cost, and ψi+εi is the own marginal benefit. The third term is a social sub-utility. It
depends on the intention y∗i , the average of the peers’ outcomes

∑
j 6=i

gijyj , and the peer effects

parameter λ. Importantly, each individual i chooses the intention y∗i , but each is affected by
their peers’ outcomes yj , j ∈ V. As argued by Fortin and Boucher (2015), the utility function
(2.1) describes complementarity in social interactions if λ > 0 and substitutability in social
interactions if λ < 0. A similar utility function is used by Liu (2019) to model bivariate binary
outcomes with social interactions.
Individuals observe neither the private information εj of their peers, nor do they then observe
the outcome yj of their peers. The utility function (2.1) characterizes a game of incomplete
information (Bayesian game) in which the players form beliefs regarding their peers’ outcomes.
Moreover, as the players know the common distribution of their type εi, they form rational
beliefs (see Lee et al., 2014; Liu, 2019). This implies that for any player j ∈ V, any player
i 6= j puts the same probability on the event {yj = q}, q ∈ N. In addition, this probability is
consistent with the common distribution of εj . Let pjq be this probability; that is, ∀ j ∈ V,
q ∈ N, pjq = Prob (yj = q|ψ,G), where ψ = (ψ1, . . . , ψn).
Individuals simultaneously choose their strategy y∗i as to maximize their expected utilities.

E (Ui|y∗i , εi, λ,ψ,G) = (ψi + εi) y
∗
i −

y∗2i
2

+ λy∗i
∑
j 6=i

gij ȳj , (2.2)

where ȳj =
∞∑
r=0

rpjr is the expectation of yj with respect to the rational beliefs. For ȳi to exist

and be finite, I assume that the distribution of εi belongs to a specific class of distributions.

8The linear-quadratic specification of the utility function is common for network games (e.g., Ballester
et al., 2006; Calvó-Armengol et al., 2009).

9For example, ψi = x′iβ, where xi is a vector of observed characteristics and β is a vector of parameters.
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Assumption C. εi follows a continuous symmetric distribution having a cumulative distri-
bution function (cdf) Fε and a probability density function (pdf) fε = o(1/xα) at ∞ for some
α > 3.

The assumption of continuity is necessary so that εi has a continuous density function. The
symmetry of this density function simplifies many equations. The condition fε = o(1/xα) at
∞ for some α > 3 implies that the probability of yi = q should decrease at some rate when

q grows to infinity.10 This condition plays an important role. It implies that ȳi =
∞∑
r=1

rqir

exists and is finite. Many usual distributions suit Assumption C, such as normal, logistic, and
student with a degree of freedom greater than 2, . . .
The first-order conditions (f.o.cs) of the expected utility maximization imply that

y∗i = λgiȳ + ψi + εi, (2.3)

where ∀ i ∈ V, gi = (gi1 . . . gin), ȳ = (ȳ1 . . . ȳn)′. Equation (2.3) shows that an individual’s
intention is explained linearly by the average of their peers’ expected outcomes.
Let y∗ = (y∗1 . . . y∗n)′ and ε = (ε1 . . . εn)′. The f.o.cs (2.3) is also equivalent to

y∗ = λGȳ +ψ + ε. (2.4)

For any q ∈ N, I denote by pq = (p1q, . . . , pnq)
′, an n-dimensional vector of the probabilities

that y1 = q, . . . , yn = q. Let also p =
(
p′0,p

′
1,p
′
2,p
′
3, . . .

)′, an infinite-dimensional vector of
beliefs. The f.o.cs (2.3) imply that any vector of beliefs p characterizes a BNE (see Osborne
and Rubinstein, 1994) of the game with the utility (2.1) if

∀ i ∈ V, q ∈ N, piq = Fε (λgiȳ + ψi − aq)− Fε (λgiȳ + ψi − aq+1) . (2.5)

Equation (2.5) can also be expressed as p = H (p), where H is some mapping that depends
on λ, ψ, G, and Fε. Finding belief systems that verify this equation amounts to computing
the fixed points of H. However, since H is defined from an infinite space to itself, establishing
the conditions for the existence of a unique fixed point is challenging. In addition, computing
the fixed points would be cumbersome in practice.
Equation (2.5) also implies that the knowledge of the expected outcome ȳ at the equilibrium
is sufficient to compute the equilibrium beliefs p and vice versa. This result has a very useful
implication: to prove the uniqueness of the equilibrium beliefs, it is sufficient to prove that
the expected equilibrium outcome is unique.11 Moreover, as the expected outcome ȳ is an
n-dimensional vector, this simplifies the establishment of uniqueness conditions.
Importantly, the expected outcome ȳ at equilibrium also verifies a fixed-point equation as
stated by the following proposition.

10Note that this condition does not imply that the probability of yi = q is null for some q ∈ N.
11I show that the vector of equilibrium beliefs p exists (which implies the existence of an expected outcome

ȳ at equilibrium) and that there is at most one expected equilibrium outcome ȳ.
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Proposition 2.1. Let L (ȳ) = (`1 (ȳ) . . . `n (ȳ))′, where `i (ȳ) =
∞∑
r=1

Fε (λgiȳ + ψi − ar) for

all i ∈ V. Under Assumptions B and C, the expected outcome ȳ at the equilibrium verifies
ȳ = L (ȳ).

Proof. See Appendix B.1.1.

Proposition 2.1 states that any n-dimensional vector ȳe, which is an expected outcome at
equilibrium, is also a fixed point of the mapping L. To find sufficient conditions for L to have
a unique fixed point, I show that L is a contracting mapping under the following assumption.

Assumption D. |λ| < Cγ
||G||∞

, where Cγ =

(
max
u∈R

∞∑
k=−∞

fε (u+ γk)

)−1

.

Assumption D sets a maximal value that the peer effects parameter cannot exceed. This
assumption also generalizes the restriction imposed on |λ| in other models. For instance, in

the case of the binary model (γ = ∞), Assumption D implies that |λ| < 1

||G||∞fε(0)
, which

is the restriction set on |λ| in the rational expectation models for binary data developed by
Lee et al. (2014) and Liu (2019).
In the case of the binary model, if fε(0) < 1 and G is row-normalized (||G||∞ = 1), Assumption
D is not too restrictive in practice because it is weaker than |λ| < 1.12 In the general case,
the upper bound of |λ| depends on the assumed distribution of εi. In Section 2.3.1, I discuss
the implication of Assumption D when εi ∼ N

(
0, σ2

ε

)
.

The following theorem establishes the existence and uniqueness of the pure strategy BNE of
the incomplete information network game.

Theorem 2.1. Under Assumptions B, C, and D, the incomplete information network game
with the utility (2.1) has a unique pure strategy BNE with the equilibrium strategy profile ye∗,
given by ye∗ = λGȳe +ψ + ε, where ȳe = (ȳe1 . . . ȳ

e
n) is the unique solution of ȳ = L (ȳ).

Proof. See Appendix B.1.2.

There are two important remarks concerning Theorem 2.1. First, the model generalizes the
rational expectations model proposed by Lee et al. (2014) for discrete binary outcomes. In-

deed, if γ = ∞, then pir = 0 for r ≥ 2 and i ∈ V. As a result, ȳi =
∞∑
r=0

rpir = pi1 ∀ i ∈ V,

and ȳ = p1, where p1 = (p11 . . . pn1). Under these considerations, Assumptions C and
D still ensure that the game has a unique BNE with the equilibrium strategy ye∗, given by

12In practice, it is generally assumed that |λ| < 1, as individuals will not experience an increase in their
intention/outcome greater than the increase in their peers’ outcomes.
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ye∗ = λGpe1 +ψ + ε, where pei1 = fε (λgip
e
1 + ψi − a1) for all i ∈ V. This characterization of

the equilibrium is the same as that of Lee et al. (2014).
Second, the equilibrium belief is not necessary to compute the equilibrium strategy. The
knowledge of ȳe, the expected outcome at equilibrium, is sufficient to compute ye∗, the equi-
librium strategy , and pe, the equilibrium belief. This result is important in practice as it
simplifies the model estimation.
I also generalize the uniqueness of the BNE when the increment of the sequence (aq)q∈N varies
(see Appendix B.1.3). However, this raises an important issue in practice, as it implies an
infinite number of parameters to estimate. Additional assumptions must be considered for a
consistent estimate of the model.
Theorem 2.1 guarantees that the mapping L has a unique fixed point, which is sufficient to
compute the BNE. This also suggests using the Nested Pseudo Likelihood (NPL) algorithm
proposed by Aguirregabiria and Mira (2007) to estimate the model. In the next section, I
study the parameter identification and present the model estimation strategy.

2.3 Econometric Model

This section presents the identification and estimation strategy of the model. It also studies
the link between the model and the SAR and SART models.
My strategy to estimate the model parameters relies on the likelihood approach. This requires
being specific about the distribution of εi, as in Lee et al. (2014), Xu and Lee (2015b), Liu
(2019), . . . Given that the expected outcome at equilibrium depends on the cdf Fε, it is very
challenging to obtain a consistent estimator of the model parameters without specifying this
cdf. Later, in Section 2.3.3, I discuss a particular case where a General Method of Moment
(GMM) could be used as alternative estimation strategy that does not require specifying a
distribution.

Assumption E. εi
iid∼ N

(
0, σ2

ε

)
.

The choice of the normal distribution is natural since this facilitates the comparison of this
model with the SART and SAR models, which also consider a normal distribution. In addition,
the normal distribution allows dealing with the endogeneity of the network (see also Hsieh and
Lee, 2016).

2.3.1 Identification

In this section, I describe restrictions on the model parameters that are necessary to ensure
identifiability. Let ψ = Xβ, where X = (x1 . . . xn)′ is an n × K-dimensional matrix of
explanatory variables, and β is a K-dimensional vector of unknown parameters. The matrix
X may also include the average of the explanatory variables among peers; that is, ψ = X̃β,
where X̃ = [X, GX]. The coefficients of GX represent the contextual effects (Manski, 1993).
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To identify the model parameters, I assume that the matrix of the explanatory variables is a
full rank matrix.

Assumption F. Let Z = [Gȳ, X]. Z is a full rank matrix.

The BNE characterization (2.5) becomes

piq = Φ

(
λgiȳ + x′iβ − aq

σε

)
− Φ

(
λgiȳ + x′iβ − aq+1

σε

)
, (2.6)

where Φ is the cdf of N (0, 1).
As a0 = −∞, and aq = a1 + γ(q − 1) for q ∈ N∗,

piq =


1− Φ

(
λgiȳ + x′iβ − a1

σε

)
if q = 0,

Φ

(
λgiȳ + x′iβ − a1 − γ(q − 1)

σε

)
− Φ

(
λgiȳ + x′iβ − a1 − γq

σε

)
if q ∈ N∗.

(2.7)

Estimating the model requires additional restrictions on the parameters. Equation (2.7) poses
two identification issues. First, Equation (2.7) does not change when λ, β, a1, γ, and σε are
multiplied by any positive number. To fix this identification issue, I set γ to one.13 Second,
if the explanatory variables include a constant, such that x′iβ = β1 + x2iβ2 + . . . xKiβK , the
parameters β1 and a1 cannot be identified because they enter the equation only through their
difference. Therefore, I also set a1 = 0. Following these restrictions, Assumption B can be
simplified.

Assumption B’. Let (aq)q∈N be a sequence given by a0 = −∞, aq = q − 1 for q ∈ N∗. If
y∗i ∈ (aq, aq+1], then yi = q.

Under Assumptions B’, D, E, and F, the parameters θ =
(
λ,β′, σε

)′ are identified. Indeed,
given the adjacency matrix G and the exogenous variable X, the parameters θ =

(
λ,β′, σε

)′
and the alternative parameters θ̃ =

(
λ̃, β̃

′
, σ̃ε

)′
are equivalent if they lead to the same BNE

equilibrium; that is ȳ = ˜̄y, where ȳ and ˜̄y are the expected outcomes associated with θ and
θ̃, respectively. In addition, Theorem 2.1 ensures that ȳ and ˜̄y are uniquely determined by
the fixed point mappings. Then,

ȳ =

∞∑
r=1

Φ

(
λgiȳ + x′iβ − ar

σε

)
=

∞∑
r=1

Φ

(
λ̃gi ˜̄y + x′iβ̃ − ar

σ̃ε

)
, ∀ i ∈ V,(

λ

σε
− λ̃

σ̃ε

)
giȳ + x′i

(
β

σε
− β̃

σ̃ε

)
+ q

(
1

σε
− 1

σ̃ε

)
= 0, ∀ i ∈ V, q ∈ N. (2.8)

As Z is a full rank matrix, it follows from Equation (2.8) that σε = σ̃ε, λ = λ̃, and β = β̃.
Therefore, θ = θ̃.

13Alternatively, I could also set σε to one. However, this complicates the comparison of the model with the
SAR and SART models. Moreover, the restriction γ = 1 excludes the binary cases for which γ =∞.
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With the assumed distribution of εi, one can quantify the upper bound of |λ|. Assume that
G is row-normalized (||G||∞ = 1). Under Assumptions B’ and E, the upper bound of |λ| set
in Assumption D is

C1,σε =
σε

φ (0) + 2
∑∞

k=1 φ
(
k
σε

) , (2.9)

where φ is the pdf of N (0, 1).14

Figure 2.1 plots C1,σε as a function of σε. One can notice that C1,σε ≈ 1 if σε > 0.5. In that
case, Assumption D is not much stronger than |λ| < 1. In contrast, when σε < 0.5, Assumption
D implies a stronger restriction. However, the condition σε < 0.5 is likely violated in practice
when γ = 1. Indeed, σε is the standard deviation of y∗i conditional on Z. As y∗i takes values
in disjoint intervals of range γ, the standard deviation must be sufficiently large for y∗i to span
several intervals. If σε is too low, yi will be likely constant given Z.
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Figure 2.1 – C1,σε , upper bound of λ when γ = 1 as a function of σε

In the next section, I present the strategy used to estimate θ, and I study the limiting distri-
bution of the estimator.

2.3.2 Estimation

The estimation strategy is based on the NPL algorithm proposed by Aguirregabiria and Mira
(2007) and recently used by Lin and Xu (2017) and Liu (2019). If ȳ were observed, estimating
the model would result in a simple probit estimation by the maximum likelihood (ML) method.
As ȳ is not observed, the ML estimation requires computing ȳ; that is, solve a fixed point
problem in Rn for each proposal of θ. This may be computationally cumbersome for large
samples. The NPL algorithm uses an iterative process and does not require solving a fixed
point problem.

14I also show that C1,σε can be evaluated using the third Theta function (see Section 2 in Bellman, 2013)
available in most software (see Appendix B.1.4).
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Let L be the pseudo likelihood15 function in (θ, ȳ), defined as

L(θ, ȳ) =
n∑
i=1

∞∑
r=0

dir log(pir), (2.10)

where piq = Φ

(
λgiȳ + x′iβ − aq

σε

)
− Φ

(
λgiȳ + x′iβ − aq+1

σε

)
∀ i ∈ V, q ∈ N, and dir = 1 if

yi = r, and dir = 0 otherwise. As I set above that ψ = Xβ, the mapping L can be redefined
as L(ȳ,θ) = (`1 (ȳ,θ) . . . `n (ȳ,θ))′, where

`i (ȳ,θ) =
∞∑
r=1

Φ

(
λgiȳ + x′iβ − ar

σε

)
for all i ∈ V. (2.11)

The NPL algorithm consists of starting with a proposal ȳ0 for ȳ and constructing a sequence of
estimators (Qm)m≥1, defined as Qm = {θm, ȳm} for m ≥ 1, where θm = arg max

θ
L(θ, ȳm−1)

is the estimator of θ at the m-th stage, and ym = L (ȳm−1,θm) is the estimator of ȳ at the
m-th stage. In other words, given the guess ȳ0, θ1 = arg max

θ
L(θ, ȳ0) and y1 = L (ȳ0,θ1);

then θ2 = arg max
θ
L(θ, ȳ1), y2 = L (ȳ1,θ2), . . .

The sequence Qm is well defined for any m > 1. Notice that each value of Qm requires
evaluating the mapping L only once. If (Qm)m≥1 converges, regardless of the initial guess
ȳ0, its limit {θ̂, ˆ̄y} satisfies the following two properties: θ̂ maximizes the pseudo likelihood
L(θ, ˆ̄y) and ˆ̄y = L(θ̂, ˆ̄y).
As shown by Kasahara and Shimotsu (2012), a key determinant of the convergence of the NPL
algorithm is the contraction property of the fixed point mapping L guaranteed by Theorem
2.1. In practice, when ||θ̂M − θ̂M−1||1 and ||ˆ̄yM − ˆ̄yM−1||1 are less than some tolerance values
(for example 10−6), I set θ̂ = θ̂M and ˆ̄y = ˆ̄yM . Aguirregabiria and Mira (2007) prove that
the NPL estimator is root-n consistent and asymptotically normal. I adapt their proof to
my framework. The convergence and the limiting distribution of θ̂ are given by the following
proposition.

Proposition 2.2. Under regularity conditions (see Proposition 2 of Aguirregabiria and Mira,
2007), the NPL estimator θ̂ is consistent, and

√
n(θ̂− θ0)

d→ N
(

0, (Σ0 + Ω0)−1 Σ0

(
Σ′0 + Ω′0

)−1
)
, (2.12)

where θ0 is the true value of θ; Σ0 and Ω0 are given in Appendix B.2.1.

Proof. See Appendix B.2.1.

Some numerical aspects about the NPL estimator must be pointed out. First, the pseudo
likelihood (2.10) involves an infinite sum. However, as diq = 0 for any q 6= yi, this pseudo

15This is a pseudo likelihood because it is defined for any θ and ȳ, where ȳ is not necessary, the equilibrium
expected outcome associated with θ (see Aguirregabiria and Mira, 2007).
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likelihood can also be expressed as L(θ, ȳ) =
n∑
i=1

log(piyi). Second, the mapping L, which

is used to compute the sequence (Qm) and the asymptotic variance of θ̂, also involves an
infinite sum. However, note that the summed elements decrease exponentially. A very good
approximation of these sums can be readily reached by only summing a few elements.

2.3.3 Comparison with other models

In this section, I compare the reduced form of the expected outcome to that of the Poisson
model. I also make the link between the count variable model and the SAR and SART models,
which are often used in empirical studies to estimate peer effects with count data.

Reduced form of the expected outcome

One of the most commonly used models to study count data is the Poisson model, in which
the expected outcome has an exponential form with respect to the explanatory variables (see
Cameron and Trivedi, 2013). Note that the exponential form of the Poisson model essentially
prevents negative expected outcomes and is not based on microeconomic foundations.
From Proposition 2.1, the expected outcome of the new count variable model is given by

ȳi =

∞∑
r=1

Φ

(
λgiȳ + x′iβ − ar

σε

)
. (2.13)

The reduced form (2.13) also prevents negative values in the expected outcome ȳ. However,
this specification is different from that of the Poisson model. I show in Section 2.6.1 that the
new count variable model is flexible in terms of dispersion fitting, as it allows equidispersion,
overdispersion, and underdispersion.

My specification is different from that of the Poisson model because motivating a network
game with an outcome that follows a Poisson distribution is challenging. For example, this
would require specifying a utility function with an exponential form in the game. Such a
utility function is not common in network games. Moreover, another specification of the
sequence (aq)q∈N having increments that decrease exponentially leads to an expected outcome
with an exponential form. However, as discussed in Section 2.2, a uniform increment is more
appropriate when the model is compared with a linear model. Indeed, if σε > 0.5, the reduced
form (2.13) is nearly linear and similar to the expected outcome of the Tobit model (see Figure
2.2).

Links with the SAR and SART models

Assume that the researcher estimates a SAR or SART model, whereas the counting variable
is generated from the game described by the utility function (2.1). Unlike the SAR model,
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Figure 2.2 – Expected outcome at λ = 0 and σε = 1

the SART model controls for the left-censoring nature of the dependent variable (see Xu and
Lee, 2015a). I assume that yi takes values as large as possible so that one can consider that yi
is non-censored. In this case, the SAR and the SART are almost equivalent, and the results
of the comparison of the counting variable model to the SAR model could also be generalized
to the SART model.
Let us recall the f.o.cs (2.3).

y∗i = λgiȳ + x′iβ + εi. (2.14)

The reduced form of the linear SAR model is given by

yi = λ̃giy + x′iβ̃ + νi. (2.15)

When yi in Equation (2.15) is generated from the game described by the utility function (2.1),
I show that the standard MLE of λ̃ is generally asymptotically biased.

Proposition 2.3. The MLE of the parameter λ̃, based on the assumption that νi
iid∼ N

(
0, σ2

ν

)
,

where σ2
ν is an unknown parameter, is inconsistent.

Proof. See Appendix B.2.2.

The inconsistency of the MLE is due to a heteroskedasticity in (2.15) that is not taken into
account. Indeed,

νi = εi + λgiη − ζi, (2.16)

where η = ȳ − y and ζi = y∗i − yi. The heteroskedasticity is caused by the term giη, which
comes from the approximation of the expected outcome ȳ on the right side of Equation (2.14)
by the actual outcome y in Equation (2.15). Because the individuals have private information
in the counting variable model, they are influenced by the expected choice and not by the
actual choice of their friends.
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As the covariance structure of ν = (ν1, . . . , νn)′ is not known, the maximum likelihood (ML)
method cannot be used. However, λ̃ can be estimated consistently using the General Method
of Moment (GMM) with unknown heteroskedasticity as developed by Lin and Lee (2010).
This approach takes into account the unobserved covariance structure of ν in the case of the
SAR model. Nevertheless, the GMM estimator does not account for the left-censoring nature
of yi. This estimator may be significantly biased in finite sample when data contain many
zeros.
The two-stage least square (2SLS) estimator (see Kelejian and Prucha, 1998) of the model
(2.15) also leads to biased estimations. Importantly, I show that the bias is downward and
decreases when the range of the dependent variable increases.
Assume for simplicity that X is a column vector of ones.16 In this case, the 2SLS estimator
of λ̃ is

ˆ̃
λ2SLS =

1

n

∑n
i=1 ỹi( ˜giy)− ˆ̃y( ˆ̃gy)

1

n

∑n
i=1( ˜giy)2 − ( ˆ̃gy)2

,

where ỹi = PZiy, ˜giy = PZiGy, PZi is the i-th row of PZ, ˆ̃y =
1

n

n∑
i=1

ỹi, ˆ̃gy =
1

n

n∑
i=1

˜giy, and

PZ = Z (ZZ)−1 Z′.

Proposition 2.4. The probability limit of ˆ̃
λ2SLS is

plim
ˆ̃
λ2SLS = λ− λ plim

1
n

∑n
i=1 Var ( ˜giy|X,G,Z)
1
n

∑n
i=1 Var ( ˜giy)

. (2.17)

Proof. See Appendix B.2.3.

The estimator ˆ̃
λ2SLS is biased downward. Proposition 2.4 also implies that the bias of the 2SLS

estimator decreases when Var ( ˜giy) increases and Var ( ˜giy|X,G,Z) is fixed. Note that the
conditional variance Var ( ˜giy|X,G,Z) does not increase with the range of yi if σ2

ε is constant.
Indeed, Var ( ˜giy|X,G,Z) = PZiG Var (y|X,G) G′P′Zi, where Var (y|X,G) is only function
of σ2

ε and the sequence (aq)q∈N. However, the term Var ( ˜giy) at the denominator of the bias
increases with the range of yi. This result has an important implication in practice. The bias
of the 2SLS estimator decreases if the dependent variable takes its values from a large range
and σ2

ε is constant. An example is when the counting variable is observed over a long period
compared with the case where the same variable is observed over a short period. The bias of
the SAR model is expected to be smaller when the variable is observed over a long period.17

This result is confirmed by Monte Carlo simulations (see Section 2.4).
16The 2SLS approach requires instruments that can be computed from X and G (see Kelejian and Prucha,

1998). If X is a column vector of ones, then this implies that I have other valid instruments to compute the
estimator.

17This result can also be generalized to the MLE because under some moment conditions, the 2SLS, as a
GMM estimator, and the MLE have the same limiting distribution (see Kelejian and Prucha, 1998).
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2.4 Monte Carlo Experiments

In this section, I conduct a Monte Carlo study to assess the performance of the NPL estimator
in a finite sample. I also compare the model to the spatial autoregressive Tobit (SART) and
the standard linear-in-mean spatial autoregressive (SAR) models.
I consider two types of data generating processes (DGP). The DGP of type A simulates many
zeros,18 whereas the DGP of type B simulates few zeros. In both cases, the latent variables
y∗i are defined as follows:

y∗i = λgiȳ + β0 + β1x1i + β2x2i + γ1gix1 + γ2gix2 + εi,

where ȳ = L(ȳ,θ). The explanatory variables gix1 and gix2 are the averages x1 and x2,
respectively, among friends. Once y∗ is generated, I compute the count outcome y following
Assumption B’.
As pointed out in Section 2.3.3, the estimator of θ from the count data model may be close
to that of the SAR and SART models if the dependent variable has a large dispersion. To
illustrate this through the Monte Carlo study, I set two values for the parameter β̃ =

(
β′, γ ′

)′
by type of DGP. This allows simulating a count dependent variable with either low or high
dispersion, depending on β̃. The values used for β̃ are presented in Table 2.1.

Table 2.1 – Slope of the observed explanatory variables

Low dispersion High dispersion

Type A (-2, -2.5, 2.1, 1.5, -1.2) (-1, -6.8, 2.3, -2.5, 2.5)
Type B (1, 0.4, 0.5, 0.5, 0.6) (3, -1.8, 2.3, 2.5, 2.5)

This table presents the values of β̃ =
(
β′, γ′

)′ by type of DGP to simulate count data having either low or high
dispersion. For instance, to simulate data from the DGP of type B with a low dispersion, I set β = (1, 0.4, 0.5)
and γ = (0.5, 0.6).

The exogenous variables x1 and x2 are simulated from N (0, 4) and Poisson(3), respectively.
I also consider several sample sizes, N ∈ {250, 750, 1500}. The adjacency matrix G is such

that gij =
1

ni
if i is connected to j, and gij = 0 otherwise, where ni is the degree of i randomly

chosen between 0 and 20 for N = 250, 0 and 35 for N = 750, and 0 and 50 for N = 1500.
Figure 2.3 presents the histogram of the simulated data for N = 1500. Data from a DGP of
type A exhibit excess zeros (e.g., number of cigarettes smoked daily for low dispersion data or
weekly for high dispersion data), whereas data from a DGP of type B concern frequent events
(e.g., number of recreational activities in which students participated in the last school year for
low dispersion data or the last two school years for large dispersion data).

18When the proportion of zeros is very high, one may need zero-inflated or hurdle specifications (see Jones,
1989; Lambert, 1992). I discuss this point in Section 2.6.3.
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Figure 2.3 – Simulated data using the count data model with social interactions

I simulate each DG 1,000 times. The results can be replicated using my R package CDatanet

and the replication code.19

The Monte Carlo results show that the NPL estimator of the count data model performs well
in finite samples regardless of the type of DGP (see Tables 2.2 and 2.3). The estimator seems
consistent. Moreover, the model performs better when the dependent variable has a higher
dispersion.
When comparing the count data model to the SART and SAR models, it stands out that the
SART and SAR models bias the peer effects downward. The bias remains substantial in a
large sample for both types of DGP when the dependent variable has a lower dispersion. In
contrast, when the dependent variable has a large dispersion, the SART model estimator is
close to that of the count data model (see Propositions 2.3 and 2.4). However, the bias of the
SAR model is still large for the DGP of type A. Indeed, the SAR model does not control for
the left-censoring nature of the dependent variable.

2.5 Effect of Social Interactions on Participation in
Extracurricular Activities

In this section, I present an empirical illustration of the model using a unique and now widely
used data set provided by the National Longitudinal Study of Adolescent Health (Add Health).

19The package and the replication code are located at CRAN.R-project.org/package=CDatanet.
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Table 2.2 – Monte Carlo simulations with low dispersion

CDSI(1) SART SAR
Statistic Mean Sd. Mean Sd. Mean Sd.

N = 250

Type A
λ = 0.4 0.399 0.171 0.270 0.141 0.193 0.139
β0 = −2 −2.009 0.441 −1.698 0.455 0.946 0.488
β1 = −2.5 −2.500 0.075 −2.543 0.076 −1.689 0.078
β2 = 2.1 2.100 0.072 2.133 0.073 1.534 0.084
γ1 = 1.5 1.499 0.313 1.300 0.281 0.887 0.286
γ2 = −1.2 −1.196 0.280 −1.016 0.247 −0.707 0.252
σε = 1.5 1.469 0.085 1.546 0.087 2.013 0.106

Type B
λ = 0.4 0.407 0.088 0.303 0.076 0.283 0.104
β0 = 1 0.984 0.454 1.806 0.451 1.911 0.492
β1 = 0.4 0.400 0.049 0.400 0.049 0.399 0.049
β2 = 0.5 0.500 0.057 0.501 0.058 0.500 0.058
γ1 = 0.5 0.496 0.127 0.537 0.126 0.545 0.130
γ2 = 0.6 0.588 0.164 0.738 0.148 0.754 0.178
σε = 1.5 1.480 0.071 1.528 0.072 1.523 0.071

N = 750

Type A
λ = 0.4 0.394 0.112 0.263 0.096 0.171 0.118
β0 = −2 −1.991 0.284 −1.685 0.298 0.945 0.334
β1 = −2.5 −2.500 0.042 −2.543 0.043 −1.684 0.047
β2 = 2.1 2.099 0.041 2.132 0.042 1.534 0.048
γ1 = 1.5 1.489 0.206 1.288 0.190 0.854 0.235
γ2 = −1.2 −1.193 0.181 −1.012 0.164 −0.679 0.201
σε = 1.5 1.490 0.049 1.564 0.050 2.028 0.062

Type B
λ = 0.4 0.399 0.064 0.292 0.057 0.275 0.085
β0 = 1 1.002 0.323 1.874 0.317 1.971 0.389
β1 = 0.4 0.401 0.028 0.401 0.028 0.400 0.028
β2 = 0.5 0.501 0.032 0.502 0.032 0.501 0.032
γ1 = 0.5 0.500 0.088 0.543 0.088 0.550 0.091
γ2 = 0.6 0.601 0.118 0.749 0.109 0.762 0.139
σε = 1.5 1.494 0.040 1.533 0.040 1.531 0.040

N = 1500

Type A
λ = 0.4 0.402 0.088 0.268 0.078 0.143 0.132
β0 = −2 −2.009 0.225 −1.705 0.234 0.930 0.271
β1 = −2.5 −2.500 0.029 −2.543 0.029 −1.682 0.030
β2 = 2.1 2.101 0.028 2.135 0.028 1.532 0.031
γ1 = 1.5 1.502 0.162 1.296 0.149 0.804 0.238
γ2 = −1.2 −1.200 0.141 −1.015 0.132 −0.632 0.217
σε = 1.5 1.496 0.035 1.569 0.036 2.030 0.042

Type B
λ = 0.4 0.401 0.056 0.288 0.050 0.272 0.074
β0 = 1 0.995 0.280 1.915 0.278 2.006 0.343
β1 = 0.4 0.401 0.020 0.401 0.020 0.400 0.020
β2 = 0.5 0.499 0.023 0.500 0.023 0.499 0.023
γ1 = 0.5 0.503 0.072 0.549 0.072 0.555 0.076
γ2 = 0.6 0.599 0.101 0.753 0.093 0.764 0.118
σε = 1.5 1.497 0.028 1.533 0.028 1.531 0.028

(1): CDSI stands for count data model with social interactions. The count data model is
estimated using the NPL method as described in Section 2.3.2, whereas the SART and the
SAR models are estimated using the ML method. The "Mean" column reports the average
of the 1,000 estimations, and the "Sd." column reports the standard deviation.

53



Table 2.3 – Monte Carlo simulations with high dispersion

CDSI(1) SART SAR
Statistic Mean Sd. Mean Sd. Mean Sd.

N = 250

Type A
λ = 0.4 0.401 0.032 0.387 0.033 0.306 0.092
β0 = −1 −1.007 0.492 −0.406 0.498 2.812 1.558
β1 = −6.8 −6.801 0.058 −6.807 0.058 −6.289 0.178
β2 = 2.3 2.298 0.061 2.300 0.061 2.146 0.100
γ1 = −2.5 −2.499 0.251 −2.591 0.256 −2.725 0.665
γ2 = 2.5 2.497 0.185 2.559 0.188 2.395 0.376
σε = 1.5 1.481 0.071 1.533 0.073 2.585 0.395

Type B
λ = 0.4 0.401 0.025 0.389 0.025 0.388 0.025
β0 = 3 2.986 0.439 3.610 0.443 3.663 0.436
β1 = −1.8 −1.800 0.048 −1.801 0.048 −1.798 0.049
β2 = 2.3 2.300 0.056 2.301 0.056 2.299 0.056
γ1 = 2.5 2.505 0.132 2.485 0.135 2.481 0.135
γ2 = 2.5 2.497 0.178 2.560 0.180 2.562 0.180
σε = 1.5 1.477 0.069 1.528 0.071 1.528 0.070

N = 750

Type A
λ = 0.4 0.400 0.024 0.384 0.023 0.299 0.078
β0 = 1 −0.999 0.356 −0.359 0.358 2.751 1.219
β1 = −6.8 −6.801 0.031 −6.807 0.031 −6.354 0.102
β2 = 2.3 2.300 0.034 2.302 0.034 2.169 0.056
γ1 = −2.5 −2.500 0.180 −2.607 0.179 −2.793 0.545
γ2 = 2.5 2.502 0.133 2.571 0.133 2.447 0.297
σε = 1.5 1.494 0.041 1.538 0.041 2.454 0.229

Type B
λ = 0.4 0.400 0.019 0.389 0.019 0.387 0.019
β0 = 3 2.991 0.314 3.632 0.316 3.681 0.316
β1 = −1.8 −1.801 0.028 −1.801 0.028 −1.800 0.028
β2 = 2.3 2.301 0.034 2.301 0.034 2.300 0.034
γ1 = 2.5 2.508 0.091 2.487 0.094 2.484 0.094
γ2 = 2.5 2.499 0.133 2.560 0.134 2.563 0.134
σε = 1.5 1.494 0.042 1.535 0.042 1.535 0.042

N = 1500

Type A
λ = 0.4 0.400 0.020 0.383 0.020 0.296 0.063
β0 = −1 −1.006 0.298 −0.339 0.299 2.717 1.006
β1 = −6.8 −6.801 0.023 −6.806 0.023 −6.381 0.072
β2 = 2.3 2.301 0.023 2.302 0.023 2.180 0.038
γ1 = −2.5 −2.501 0.148 −2.615 0.149 −2.828 0.441
γ2 = 2.5 2.504 0.106 2.576 0.107 2.475 0.231
σε = 1.5 1.496 0.029 1.536 0.029 2.391 0.158

Type B
λ = 0.4 0.400 0.016 0.387 0.016 0.385 0.016
β0 = 3 3.012 0.269 3.672 0.272 3.721 0.272
β1 = −1.8 −1.800 0.020 −1.800 0.020 −1.799 0.020
β2 = 2.3 2.300 0.023 2.301 0.023 2.300 0.023
γ1 = 2.5 2.500 0.074 2.477 0.075 2.474 0.076
γ2 = 2.5 2.498 0.106 2.563 0.107 2.566 0.107
σε = 1.5 1.224 0.012 1.239 0.011 1.239 0.011
σε = 1.5 1.498 0.029 1.536 0.028 1.536 0.028

(1): CDSI stands for count data model with social interactions. The count data model
is estimated using the NPL method as described in the Section 2.3.2, whereas the SART
and the SAR models are estimated using the ML method. The "Mean" column reports the
average of the 1,000 estimations, and the "Sd." column reports the standard deviation.
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2.5.1 Data

The Add Health data provides national representative information on 7th–12th graders in the
United States (US). I use the Wave I in-school data, which were collected between September
1994 and April 1995. The surveyed sample is made up of 80 high schools and 52 middle
schools. In particular, the data provides information on the social and demographic charac-
teristics of students as well as their friendship links (i.e., best friends, up to 5 females and up
to 5 males), education level, occupation of parents, etc.
I remove self-friendships and friendships between two students from different schools. More-
over, an important number of listed friend identifiers are missing or associated with "error
codes."20 I therefore remove from the study sample schools having many missing links and
those having less than 100 students. I end up with 72,291 students from 120 schools. The
largest school has 2,156 students, and about 50% of the schools have more than 500 students.
The average number of friends per student is 3.8 (1.8 male friends and 2.0 female friends).
The studied counting dependent variable is the number of extracurricular activities in which
students are enrolled. Students were presented with a list of clubs, organizations, and teams
found in many schools. The students were asked to identify any of these activities in which
they participated during the current school year or in which they planned to participate later
in the school year. The students do not observe the activities in which their peers plan to
participate. Therefore, the studied dependent variable is a good example for illustrating the
model because the outcome is suited to a Bayesian game used to address the model. Through-
out the paper, I write "the number of extracurricular activities in which students are enrolled"
to mean the number of extracurricular activities in which the students participate during the
year or in which they plan to participate.
Table B.1 provides the data summary. Figure B.1 in Appendix B.3 presents the distribution
of the number of extracurricular activities in which the students are enrolled. It varies from
0 to 33 with an average of 2.4. Most students are enrolled in fewer than 10 activities. As
observable characteristics, I consider age, sex, being Hispanic, race, number of years spent at
their current school, living with both parents, mother’s education, and mother’s profession.

2.5.2 Empirical estimation

I estimate the count data model as well as the SART and the SAR models by controlling for
contextual effects and school heterogeneity as fixed effects. It is well known that controlling
for fixed effects in a non-linear model leads to an inconsistent estimation because of the acci-
dental parameter issue (see Neyman and Scott, 1948; Lancaster, 2000). However, as argued
by Lee et al. (2014) and Liu (2019), school fixed effects can be included as dummy variables
because the number of schools in the Add Health data is low relative to sample size. Moreover,

20In the recent literature, numerous papers have developed methods for estimating peer effects using partial
network data (e.g., Boucher and Houndetoungan, 2020). To focus on the main purpose of this paper, I do not
address that issue here.
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I remove schools having fewer than 100 students from the data.
The estimation results without school heterogeneity are reported in Table 2.4, whereas those
with school heterogeneity are reported in Table 2.5. The comparison of log-likelihoods of both
estimations confirms that there is a school heterogeneity effect.21 As stated by Propositions
2.3 and 2.4 and highlighted through the Monte Carlo simulations, the SART and SAR models
significantly underestimate the peer effects. Moreover, the estimation results of the SART and
the SAR models are quite similar. This is because the DGP of the number of extracurricular
activities in which students are enrolled is similar to the DGP of type B (see Section 2.4). As
a result, the left-censoring nature of the dependent variable is not too important.
The coefficients of the count data model cannot be interpreted directly. Policy makers may be
interested in the marginal effect of the explanatory variables on the expected number of ex-
tracurricular activities in which students are enrolled.22 I present how to derive the marginal
effects and the corresponding standard errors for the count data model in Appendix B.2.4.
The results confirm that an increase by one in the number of activities in which friends are
enrolled implies an increased number of activities in which the students are enrolled of 0.363
(when controlling for school fixed effects). However, the SART and the SAR models underes-
timate this effect at 0.157 and 0.185, respectively.
Moreover, the own control variables are also significant. For instance, older students partic-
ipate less in extracurricular activities, whereas Black and Asian students as well as students
who have spent a greater number of years at their current school participate more. It is also
found that many contextual effects are significant; for example, being a friend with male stu-
dents increases one’s participation, whereas being a friend with a student who has spent a
greater number of years at their current school decreases ones’s participation.

2.5.3 Endogeneity of the network

The estimation results above are based on the exogeneity of the network; that is, link formation
does not depend on the error term εi in Equation (2.3). This assumption is strong and may
imply inconsistent estimations (see Hsieh and Lee, 2016). To release this assumption, I consider
a dyadic linking model in which the probability of link formation between two students i and
j is specified with degree heterogeneity (e.g., Graham, 2017).
Let be A = [aij ], the network data, such that aij = 1 if i knows j, and aij = 0 otherwise. Let
also the latent variable a∗ij , given by a∗ij = ∆x′ijβ̄ + µi + µj + ε∗ij , where ∆xij is a vector of
observed dyad-specific variables, β̄ contains the parameters associated with the dyad-specific
variables, µi is an unobserved individual-level attribute (gregariousness) that captures the
degree heterogeneity, and ε∗ij

iid∼ logistic. The latent variable a∗ij can be interpreted as a link
formation utility. I assume that aij = 1 if a∗ij > 0. Therefore, the probability of link formation

21This result is found using the likelihood ratio test. The test statistic is compared with the value of the
Chi-squared distribution table for 119 degrees of freedom.

22This is also the case for the SART model. Only the estimators of the SAR model’s parameters can be
interpreted as marginal effects.
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Table 2.4 – Application results without fixed effects

Parameters CDSI(1) SART SARCoef. Marginal effects Coef. Marginal effects

λ 0.668 0.549 (0.025)*** 0.249 0.203 (0.004)*** 0.237 (0.006)***

Own effects
Intercept 1.061 0.870 (0.096)*** 2.415 1.963 (0.07)*** 2.597 (0.094)***
Age −0.019 −0.016 (0.006)** −0.077 −0.063 (0.004)*** −0.075 (0.006)***
Male −0.237 −0.195 (0.017)*** −0.243 −0.198 (0.017)*** −0.208 (0.019)***
Hispanic 0.036 0.029 (0.027) 0.012 0.010 (0.02) 0.052 (0.029)*
Race

Black 0.250 0.205 (0.031)*** 0.210 0.170 (0.023)*** 0.235 (0.034)***
Asian 0.670 0.550 (0.035)*** 0.651 0.529 (0.023)*** 0.639 (0.039)***
Other 0.211 0.173 (0.029)*** 0.197 0.160 (0.023)*** 0.192 (0.033)***

Years at school 0.122 0.100 (0.008)*** 0.132 0.107 (0.005)*** 0.127 (0.008)***
With both par. 0.160 0.131 (0.020)*** 0.158 0.129 (0.019)*** 0.150 (0.022)***
Mother Educ.

<High −0.065 −0.054 (0.024)** −0.068 −0.055 (0.024)** −0.054 (0.027)**
>High 0.376 0.309 (0.02)*** 0.381 0.310 (0.021)*** 0.359 (0.022)***
Missing 0.222 0.182 (0.033)*** 0.206 0.167 (0.028)*** 0.240 (0.037)***

Mother job
Professional 0.211 0.174 (0.025)*** 0.219 0.178 (0.026)*** 0.197 (0.029)***
Other 0.058 0.047 (0.021)** 0.055 0.045 (0.021)** 0.041 (0.024)*
Missing −0.081 −0.066 (0.03)** −0.080 −0.065 (0.027)** −0.061 (0.033)*

Contextual effects
Age −0.078 −0.064 (0.004)*** −0.035 −0.028 (0.004)*** −0.042 (0.004)***
Male 0.108 0.088 (0.029)*** 0.013 0.010 (0.031) 0.051 (0.034)
Hispanic −0.153 −0.126 (0.039)*** −0.241 −0.196 (0.042)*** −0.217 (0.046)***
Race

Black −0.169 −0.139 (0.037)*** −0.095 −0.077 (0.035)** −0.102 (0.043)**
Asian −0.589 −0.484 (0.046)*** −0.447 −0.363 (0.047)*** −0.440 (0.058)***
Other −0.279 −0.229 (0.05)*** −0.229 −0.186 (0.061)*** −0.220 (0.061)***

Years at school −0.028 −0.023 (0.010)** 0.021 0.017 (0.01)* 0.021 (0.011)*
With both par. 0.069 0.057 (0.037) 0.244 0.198 (0.039)*** 0.226 (0.041)***
Mother Educ.

<High −0.222 −0.182 (0.042)*** −0.204 −0.166 (0.049)*** −0.175 (0.05)***
>High 0.019 0.016 (0.036) 0.250 0.203 (0.038)*** 0.239 (0.040)***
Missing −0.247 −0.203 (0.060)*** −0.152 −0.123 (0.064)* −0.099 (0.071)

Mother job
Professional 0.094 0.078 (0.045)* 0.272 0.221 (0.051)*** 0.252 (0.054)***
Other −0.006 −0.005 (0.036) 0.107 0.087 (0.041)** 0.093 (0.044)**
Missing −0.030 −0.024 (0.053) 0.067 0.055 (0.056) 0.054 (0.064)

σε 2.426 2.447 2.315

N 72,291 72,291 72,291
log-likelihood −159, 923.7 −160, 606.6 −163, 430.3
Fixed effects No No No

(1): CDSI stands for count data model with social interactions. The count data model is estimated using the NPL
method as described in Section 2.3.2, whereas the SART and the SAR models are estimated using the ML method.
Under the CSDI and the SART models, the column Coef. refers to the parameter values, while both columns
of marginal effects refer to the marginal effects with their corresponding standard errors reported in parentheses.
The columns under SAR report the parameter values (equal to the marginal effects) of the SAR model, with their
standard error reported in parentheses. The codes ***, **, * mean that the corresponding parameter is significant
at 1%, 5%, and 10%, respectively.
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Table 2.5 – Application results with fixed effects

Parameters CDSI(1) SART SARCoef. Marginal effects Coef. Marginal effects

λ 0.443 0.363 (0.028)*** 0.194 0.157 (0.005)*** 0.185 (0.006)***

Own effects
Age −0.049 −0.040 (0.008)*** −0.073 −0.059 (0.006)*** −0.061 (0.009)***
Male −0.253 −0.207 (0.017)*** −0.261 −0.212 (0.018)*** −0.225 (0.019)***
Hispanic 0.123 0.101 (0.026)*** 0.128 0.104 (0.021)*** 0.158 (0.03)***
Race

Black 0.309 0.253 (0.031)*** 0.308 0.250 (0.025)*** 0.312 (0.035)***
Asian 0.701 0.576 (0.035)*** 0.704 0.572 (0.025)*** 0.689 (0.04)***
Other 0.220 0.181 (0.028)*** 0.217 0.176 (0.024)*** 0.209 (0.033)***

Years at school 0.120 0.099 (0.007)*** 0.120 0.097 (0.006)*** 0.112 (0.009)***
With both par. 0.158 0.129 (0.019)*** 0.153 0.124 (0.019)*** 0.149 (0.022)***
Mother Educ.

<High −0.044 −0.036 (0.024) −0.045 −0.036 (0.025) −0.033 (0.027)
>High 0.392 0.321 (0.019)*** 0.389 0.316 (0.021)*** 0.369 (0.022)***
Missing 0.231 0.190 (0.032)*** 0.214 0.174 (0.029)*** 0.246 (0.037)***

Mother job
Professional 0.236 0.193 (0.025)*** 0.238 0.193 (0.026)*** 0.217 (0.029)***
Other 0.069 0.057 (0.02)*** 0.069 0.056 (0.022)*** 0.057 (0.024)**
Missing −0.064 −0.052 (0.029)* −0.063 −0.051 (0.028)* −0.042 (0.033)

Contextual effects
Age −0.064 −0.052 (0.005)*** −0.032 −0.026 (0.004)*** −0.039 (0.005)***
Male 0.032 0.026 (0.030) −0.034 −0.027 (0.032) 0.011 (0.034)
Hispanic −0.048 −0.039 (0.042) −0.071 −0.057 (0.046) −0.059 (0.049)
Race

Black −0.085 −0.070 (0.039)* −0.028 −0.023 (0.038) −0.045 (0.045)
Asian −0.331 −0.272 (0.052)*** −0.219 −0.178 (0.054)*** −0.229 (0.062)***
Other −0.245 −0.201 (0.052)*** −0.208 −0.169 (0.063)*** −0.203 (0.061)***

Years at school −0.015 −0.012 (0.011) −0.002 −0.001 (0.011) −0.004 (0.013)
With both par. 0.165 0.135 (0.037)*** 0.239 0.194 (0.040)*** 0.228 (0.041)***
Mother Educ.

<High −0.180 −0.148 (0.043)*** −0.173 −0.141 (0.050)*** −0.147 (0.051)***
>High 0.190 0.156 (0.038)*** 0.299 0.243 (0.040)*** 0.286 (0.041)***
Missing −0.178 −0.146 (0.061)** −0.145 −0.118 (0.066)* −0.095 (0.072)

Mother job
Professional 0.257 0.211 (0.047)*** 0.341 0.277 (0.053)*** 0.321 (0.055)***
Other 0.076 0.062 (0.038)* 0.133 0.108 (0.043)** 0.124 (0.045)***
Missing 0.055 0.045 (0.054) 0.105 0.085 (0.059) 0.091 (0.064)

σε 2.394 2.425 2.295

N 72,291 72,291 72,291
log-likelihood −158, 963.9 −159, 881.0 −162, 744.4
Fixed effects Yes Yes Yes

(1): CDSI stands for count data model with social interactions. The count data model is estimated using the NPL
method as described in Section 2.3.2, whereas the SART and the SAR models are estimated using the ML method.
Under the CSDI and the SART models, the column Coef. refers to the parameter values, while both columns
of marginal effects refer to the marginal effects with their corresponding standard errors reported in parentheses.
The columns under SAR report the parameter values (equal to the marginal effects) of the SAR model, with their
standard error reported in parentheses. The codes ***, **, * mean that the corresponding parameter is significant
at 1%, 5%, and 10%, respectively.
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between i and j, denoted Pij , is defined as

Pij =
exp

(
∆x′ijβ̄ + µi + µj

)
1 + exp

(
∆x′ijβ̄ + µi + µj

) . (2.18)

By convention, I set Pii = 0 and Pij = 0 if i and j come from different schools. A similar
network formation model can be found in McCormick and Zheng (2015) and Breza et al.
(2020), where the term ∆x′ijβ̄ is replaced by the distance between the individuals on a latent
space.
As dyad-specific variables, I choose the absolute value of age difference, the absolute value of
the difference in the number of years spent at the current school, whether both students are of
the same sex, Hispanic, White, Black, Asian, and whether the mother’s job for both students
is professional. Importantly, the probability of link formation (2.18) is symmetric (Pij = Pji

for any i, j ∈ V), but it allows the network to be directed because ε∗ij 6= ε∗ji. This specification
is different from that of Graham (2017) in which ε∗ij = ε∗ji and aij = aji for all i, j ∈ V.
Let s(i) be the school of the individual i. I assume that the unobserved attribute µi is random
and distributed according to N

(
uµs(i), σ

2
µs(i)

)
. It is important to notice that the mean and

the variance of µi vary across schools. Such a specification enables the capturing of school
heterogeneity (as fixed effects) in the probability of link formation.
As pointed out in Hsieh and Lee (2016), the unobserved attributes µi may be correlated to
the error term εi. This violates the exogeneity condition on G.
For any i, let vi = (εi, µi)

′. The variable vi is distributed according to a bivariate normal
distribution. Let Σi

µε be the covariance matrix of vi.

Σµε =

(
σ2
ε ρσεσµs(i)

ρσεσµs(i) σ2
µs(i)

)
, (2.19)

where ρ is the partial correlation between µi and εi. The error term εi can be rewritten as εi =

ρσε
µi − uµs(i)
σµs(i)

+ νi, where νi ∼ N
(
0, (1− ρ2)σ2

ε

)
and Cov(µi, νi) = 0. Let µ̃i =

µi − uµs(i)
σµs(i)

.

By looking for more evidence of endogeneity, one can also control for the contextual effect of
µ̃i. In that case, εi = ρσεµ̃i + ρ̄σε ¯̃µi + ν̃i, where ¯̃µi is the average of µ̃i among i’s friends, ρ̄
is the partial correlation between ¯̃µi and εi and ν̃i ∼ N

(
0, σ̄2

ε

)
. If µi or µj is correlated to

εi, that is ρ 6= 0 or ρ̄ 6= 0, then the network is endogenous. To control for endogeneity, µ̃i
and ¯̃µi may simply be included in the count data model as additional explanatory variables
(see Johnsson and Moon, 2015; Boucher and Houndetoungan, 2020). In that case, the BNE
characterization (2.6) becomes

piq = Φ

(
λgiȳ + x′iβ + ρσεµ̃i + ρ̄σε ¯̃µi − aq

σ̄ε

)
− Φ

(
λgiȳ + x′iβ + ρσεµ̃i + ρ̄σε ¯̃µi − aq+1

σ̄ε

)
.

My estimation strategy is in two stages. The first stage is based on a Bayesian approach.
Using MCMC, I simulate β̄, µi, uµs(i), and σ2

µs(i) from their posterior distributions (see details
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in Appendix B.4.1). The simulations from the posterior distribution are then used to draw
µ̃i and ¯̃µi. At the second stage, the draws of µ̃i and ¯̃µi are used as additional explanatory
variables to estimate the count data model.
I take into account the uncertainty of estimation of the first stage. By replicating drawings
of µi, uµs(i), and σ2

µs(i) from the posterior distribution, I correct the asymptotic variance of
the estimator at the second stage. The approach I use is similar in spirit to that of Krinsky
and Robb (1986). The new variance accounts for the variability of µ̃i (see details in Appendix
B.4.2).

The estimation results (controlling for schools’ heterogeneity and network endogeneity) are
presented in Table 2.6. The results are significantly different to those of Table 2.5. The pa-
rameters of the additional explanatory variables are significantly different to zero at 1%. This
confirms that the network is endogenous.
Although friends incite participation in extracurricular activities, the sociability degree (gre-
gariousness) of the students also plays an important role. Students with high µi are more
extroverted (more likely to form links) and also participate in more extracurricular activi-
ties.23 In contrast, introverted students participate less in extracurricular activities. Similar
evidence has been found in sociology studies, which highlight that an individual’s gregarious-
ness determines their participation in activities.24 As well, being friends of a highly gregarious
student also increases one’s participation in extracurricular activities.25

Peer effects are reduced when controlling for network endogeneity but remain significant. An
increase by one in the number of activities in which friends are enrolled implies an increase
in the number of activities in which students are enrolled of 0.295. The endogeneity of the
network is also confirmed with the models SART and SAR. However, they still underestimate
peer effects at 0.141 and 0.166, respectively.
To understand the decrease in peer effects, notice that λ could capture other effects if students’
gregariousness is not included in the count data model. For example, λ can capture the effect
of an exogenous shock that increases students’ and peers’ gregariousness because students and
their friends will experiment and increase in their participation in extracurricular activities.
This is similar to the correlated effects (see Manski, 1993).

2.6 Discussions

In this section, I discuss some general implications of the model, some limits, and some areas
for future research.

23Because ρσε, the sign of µ̃i is positive in the count data model.
24For example, specific personality traits are associated with activity participation (e.g., Newton et al.,

2018); extroverted people work more often in jobs having more social interactions (e.g., Pfeiffer and Schulz,
2012), and highly gregarious individuals are more likely to be a member of a group (e.g., Erbe, 1962).

25Because ρ̄σε, the sign of giµ̃i is positive in the count data model.
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Table 2.6 – Application results controlling for fixed effects and network endogeneity

Parameters CDSI(1) SART SARCoef. Marginal effects Coef. Marginal effects

λ 0.359 0.294 (0.028)*** 0.173 0.141 (0.005)*** 0.166 (0.006)***
ρσε 0.246 0.202 (0.011)*** 0.253 0.205 (0.010)*** 0.240 (0.013)***
ρ̄σε 0.202 0.166 (0.019)*** 0.240 0.195 (0.018)*** 0.218 (0.020)***

Own effects
Age −0.049 −0.040 (0.008)*** −0.066 −0.053 (0.006)*** −0.061 (0.009)***
Male −0.241 −0.198 (0.017)*** −0.249 −0.202 (0.018)*** −0.213 (0.019)***
Hispanic 0.179 0.147 (0.027)*** 0.184 0.150 (0.022)*** 0.211 (0.031)***
Race

Black 0.557 0.457 (0.033)*** 0.564 0.458 (0.027)*** 0.552 (0.038)***
Asian 0.848 0.696 (0.035)*** 0.847 0.687 (0.026)*** 0.827 (0.041)***
Other 0.281 0.231 (0.028)*** 0.281 0.228 (0.024)*** 0.269 (0.033)***

Years at school 0.099 0.081 (0.007)*** 0.097 0.079 (0.006)*** 0.092 (0.009)***
With both par. 0.145 0.119 (0.019)*** 0.142 0.115 (0.019)*** 0.135 (0.022)***
Mother Educ.

<High −0.021 −0.017 (0.024) −0.021 −0.017 (0.025) −0.012 (0.027)
>High 0.377 0.309 (0.019)*** 0.376 0.305 (0.021)*** 0.354 (0.022)***
Missing 0.226 0.185 (0.032)*** 0.210 0.170 (0.029)*** 0.242 (0.036)***

Mother job
Professional 0.209 0.171 (0.024)*** 0.209 0.170 (0.026)*** 0.191 (0.029)***
Other 0.054 0.044 (0.020)** 0.056 0.045 (0.022)** 0.043 (0.023)*
Missing −0.060 −0.050 (0.029)* −0.058 −0.047 (0.028)* −0.041 (0.033)

Contextual effects
Age −0.075 −0.061 (0.005)*** −0.051 −0.041 (0.004)*** −0.056 (0.005)***
Male −0.002 −0.002 (0.029) −0.042 −0.034 (0.032) 0.002 (0.034)
Hispanic 0.002 0.001 (0.042) −0.009 −0.007 (0.047) −0.001 (0.049)
Race

Black 0.171 0.140 (0.043)*** 0.241 0.196 (0.042)*** 0.205 (0.048)***
Asian −0.114 −0.094 (0.055)* −0.013 −0.011 (0.055) −0.039 (0.064)
Other −0.157 −0.129 (0.053)** −0.122 −0.099 (0.063) −0.127 (0.061)**

Years at school −0.016 −0.013 (0.011) −0.010 −0.008 (0.011) −0.009 (0.013)
With both par. 0.153 0.126 (0.037)*** 0.207 0.168 (0.04)*** 0.193 (0.041)***
Mother Educ.

<High −0.152 −0.125 (0.043)*** −0.143 −0.116 (0.050)** −0.122 (0.051)**
>High 0.169 0.139 (0.038)*** 0.246 0.200 (0.040)*** 0.236 (0.041)***
Missing −0.147 −0.120 (0.062)* −0.124 −0.101 (0.065) −0.081 (0.071)

Mother job
Professional 0.205 0.168 (0.047)*** 0.269 0.218 (0.053)*** 0.246 (0.055)***
Other 0.034 0.028 (0.038) 0.083 0.067 (0.043) 0.072 (0.045)
Missing 0.037 0.030 (0.055) 0.083 0.067 (0.059) 0.065 (0.064)

σ̄ε 2.377 2.412 2.283

N 72,291 72,291 72,291
log-likelihood −158, 467.7 −159, 462.2 −162, 328.3
Fixed effects Yes Yes Yes

(1): CDSI stands for count data model with social interactions. The count data model is estimated using the NPL
method as described in Section 2.3.2, whereas the SART and the SAR models are estimated using the ML method.
Under the CSDI and the SART models, the column Coef. refers to the parameter values, while both columns
of marginal effects refer to the marginal effects with their corresponding standard errors reported in parentheses.
The columns under SAR report the parameter values (equal to the marginal effects) of the SAR model, with their
standard error reported in parentheses. The codes ***, **, * mean that the corresponding parameter is significant
at 1%, 5%, and 10%, respectively.
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2.6.1 Flexibly dispersed count variable model

The most commonly used models to study count data (without social interactions) are the
Poisson model and related models, such as the generalized Poisson (Consul and Jain, 1973)
and Negative Binomial (Hilbe, 2011). The main difference between these models is in the way
they fit the dispersion of the dependent variable.
The fundamental feature of Poisson models is the mean-variance equality conditional on the
explanatory variables (equidispersion), whereas Negative Binomial models allow the variance
to be greater than the mean (overdispersion). In addition to the overdispersion, the generalized
Poisson allows the variance to be smaller than the mean (underdispersion)
The count data model of this paper is flexible in terms of dispersion fitting. The conditional
variance of yi can be expressed as

Var (yi|X,G) = ȳi + 2
∞∑
r=1

rΦ
(
ψ̂ir

)
− ȳ2

i︸ ︷︷ ︸
∆(σε)

, (2.20)

where ∀ i ∈ V, q ∈ N∗, and ψ̂iq =
λgiȳ + x′iβ − aq

σε
. The equation ∆(σε) = 0 does not have

a closed form, but ∆(σε) is increasing in σε. Depending on σε, the term ∆(σε) may be null,
negative, or positive. The new count variable model is flexible in terms of dispersion fitting. It
allows equidispersion, overdispersion, and underdispersion as the Generalized Poisson model.

2.6.2 Time-varying exposure

Data from "How many times do you smoke a day?" are not the same as those of "How many
times do you smoke a week?" When individuals are not followed for the same amount of time,
it is more relevant to model rates instead of counts.
Let ei be the exposure time of i. In the traditional count data models (Poisson and Negative
Binomial), the time-varying exposure issue can be fixed using an offset (see Hakim et al., 1991;
Winkelmann and Zimmermann, 1995). This consists of adding log(ei) as a supplementary
explanatory variable and constraining its coefficient to one. In doing so,

ȳi
ei

does not depend

on ei because ȳi is a log-linear function of explanatory variables. The rate
ȳi
ei

can be compared

between individuals having different exposure times. Since the reduced form of the expected
outcome ȳi in the new count variable model has a more complex form, this offset approach
cannot be used.
To control for time-varying exposure, the sequence (aq)q∈N of Assumption B’ may be redefined

as a0 = −∞ and aq = ei(q− 1) ∀ q ∈ N∗. Under this specification, the distribution of
y∗i
ei

does

not depend on the exposure time. Note that this result holds because the increment of the
sequence (aq)q∈N is constant.
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2.6.3 Zero-inflated and Hurdle specifications

In applications with excess zeros, zero-inflated (see Lambert, 1992) or Hurdle (see Jones, 1989)
specifications are suggested for modeling count data. These specifications assume that "zeros"
could be generated by processes other than those of the positive values. For instance, for the
question "How many times did you smoke during the last week?" smokers may report zero
because they did not smoke during that specific week. However, other individuals may report
zero because they are non-smokers. The first type of zeros are sampling, whereas the second
type of zeros are structural. It may be important to distinguish both processes because they
do not have the same policy implications (see Tüzen and Erbaş, 2018).
The zero-inflated model assumes that there is a mix of sampling of structural zeros in the data,
whereas the Hurdle specification allows only structural zeros. I refer the reader to Jones (1989)
and (Lambert, 1992) for more details. However, these specifications are not compatible with
the microeconomic foundation of my model. This could be investigated in future research.

2.7 Conclusion

In this paper, I study a social network model for count data using a static Bayesian game. I
provide sufficient conditions under which the game has a unique Nash Bayesian equilibrium.
I show that the model parameter can be estimated using the Nested Partial Likelihood (NPL)
method. I also show that the counting nature of the dependent variable is important, especially
when the variable has a small range. Indeed, modeling data that are generated from the game
using the standard linear-in-means peer effects model, which incorrectly assumes that the
dependent variable is normally distributed, lead to asymptotically inconsistent estimations.
The estimation bias decreases when the range of the dependent variable increases. This result
is also confirmed through Monte Carlo simulations.
I also provide an empirical application. I estimate peer effects on the number of extracurricular
activities in which a student is enrolled. By controlling for the endogeneity of the network, I
find that an increase by one in the number of activities in which friends are enrolled implies
an increase in the number of activities in which students are enrolled by 0.295. However, the
SART and SAR models underestimate this effect at 0.141 and 0.166, respectively. I also find
that ignoring the endogeneity overestimates the peer effects.
The model implementation is simple and not computational. I provide an easy to use R
package that implements all the methods used in this paper.26 Nevertheless, the model also
has limits. In particular, it does not consider zero-inflated specifications for data having excess
zeros.

26The package is available at CRAN.R-project.org/package=CDatanet.
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Chapter 3

Selective linear segmentation for
detecting relevant parameter changes

Résumé

Les processus avec changements structurels sont une approche flexible pour modéliser des
longues séries chronologiques. En considérant un modèle linéaire en moyennes, nous propo-
sons une méthode qui relâche l’hypothèse selon laquelle une cassure structurelle dans une série
temporelle implique un changement de tous les paramètres du modèle. Pour ce faire, nous esti-
mons d’abord les dates de cassures potentielles présentées par la série, puis nous utilisons une
régression pénalisée pour détecter les paramètres du modèle qui changent à chaque date de
cassure. Étant donné que certains segments de la régression peuvent être courts, nous optons
pour une fonction de pénalité (presque) non biaisée, appelée fonction de pénalité seamless-L0
(SELO). Nous montrons que l’estimateur SELO détecte de manière convergente les para-
mètres qui varient à chaque cassure et nous proposons d’utiliser un algorithme de maximisa-
tion d’espérance de recuit déterministe (DAEM) pour traiter la multimodalité de la fonction
objectif. Étant donné que la fonction de pénalité SELO dépend de deux paramètres, nous
utilisons un critère pour choisir les meilleurs paramètres et par conséquent le meilleur modèle.
Ce nouveau critère présente une interprétation bayésienne qui permet d’évaluer l’incertitude
des paramètres ainsi que l’incertitude du modèle. Les simulations de Monte Carlo montrent
que la méthode fonctionne bien pour de nombreux modèles de séries temporelles, y compris
les processus hétéroscédastiques. Pour un échantillon de 14 stratégies de hedge funds (HF),
utilisant un modèle de tarification basé sur l’actif, nous mettons en exergue la capacité pro-
metteuse de notre méthode à détecter la dynamique temporelle des expositions au risque ainsi
qu’à prévoir les rendements de HF.
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Abstract

Change-point (CP) processes are one flexible approach to model long time series. Considering
a linear-in-means model, we propose a method to relax the assumption that a break triggers
a change in all the model parameters. To do so, we first estimate the potential break dates
exhibited by the series and we use a penalized likelihood approach to detect which parameters
change. Since some segments in the CP regression can be small, we opt for a (nearly) unbiased
penalty function, called the seamless-L0 (SELO) penalty function. We prove the consistency
of the SELO estimator in detecting which parameters indeed vary over time and we suggest
using a deterministic annealing expectation-maximisation (DAEM) algorithm to deal with the
multimodality of the objective function. Since the SELO penalty function depends on two
tuning parameters, we use a criterion to choose the best tuning parameters and as a result
the best model. This new criterion exhibits a Bayesian interpretation that makes possible to
assess the parameters’ uncertainty as well as the model’s uncertainty. Monte Carlo simulations
highlight that the method works well for many time series models including heteroskedastic
processes. For a sample of 14 Hedge funds (HF) strategies, using an asset based style pric-
ing model, we shed light on the promising ability of our method to detect the time-varying
dynamics of risk exposures as well as to forecast HF returns.

Keywords: Change-point, Structural change, Time-varying parameter, Model selection,
Hedge funds.

JEL Classification: C11, C12, C22, C32, C52, C53.
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3.1 Introduction

Long time series are standard in this period of large publicly available datasets. Care is
required when modeling such a time series since many of them span over critical events that
may change the series dynamic. At least two statistical solutions exist to take into account
these changes. On the one hand, a process with fixed parameters can be used but it needs
to exhibit a rich and complex dynamic. This complexity often makes the model difficult
to estimate and to interpret (see, for instance, long memory processes such as Geweke and
Porter-Hudak (1983)). On the other hand, one can rely on time-varying parameter (TVP)
models and in particular Markov-switching and change-point (CP) processes since they allow
for abrupt changes in the model parameters when a critical event affects the series dynamic
(see Hamilton, 1989; Bauwens et al., 2015). This paper deals with CP linear regression models
where we allow the mean parameters to change over time.
The CP literature dates back to Chernoff and Zacks (1964) and is nowadays vast. Just focusing
on linear regressions, Andrews (1993), Bai and Perron (1998), Killick et al. (2012), Fryzlewicz
et al. (2014) and Yau and Zhao (2016) develop prominent procedures to detect breakpoints.
On the Bayesian side, there also exist many ways to estimate structural breaks and important
contributions can be found in Stephens (1994), Chib (1998), Fearnhead and Liu (2007), Rigaill
et al. (2012) and Maheu and Song (2013). While all these methods differ in the criterion or
in the algorithm used to detect the changes, most of them rely on the assumption that, when
a break is detected (that may be triggered by the change in only one model parameter), a
new segment is created and a new set of parameters needs to be estimated. Although the
assumption seems harmless, it creates two important drawbacks:

1. From an interpretation perspective, if all the parameters have to change when a break
is detected, it is difficult to assess which parameters have indeed abruptly varied and so
it complicates the economic interpretation of the structural break.

2. Forecasting wise, when a parameter does not vary from one regime to another, its esti-
mation is more accurate than if two parameters were considered over these two regimes.
This feature could improve the predictions of the model.

In this paper, we propose a method to relax the assumption that a break triggers a change
in all the model parameters. To do so, we first estimate the potential break dates exhibited
by the series and then we use a penalized likelihood approach to detect which parameters
change. Because some segments in the CP regression can be small, we opt for a (nearly)
unbiased penalty function, called the seamless-L0 (SELO) penalty function, recently proposed
by Dicker et al. (2013). We prove the consistency of the SELO estimator in detecting which
parameters indeed vary over time and we suggest using a deterministic annealing expectation-
maximisation (DAEM) algorithm to deal with the multimodality of the objective function (see
Ueda and Nakano, 1998). Since the SELO penalty function depends on two tuning parameters,
we use a criterion (new in this literature) to choose the best tuning parameters and as a result
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the best model. This new criterion exhibits a Bayesian interpretation which makes possible
to assess the parameters’ uncertainty as well as the model’s uncertainty. This last feature is
determinant when predicting a time series since the Bayesian model averaging technique, that
typically improves forecast accuracy, is readily applicable (see, e.g., Raftery et al., 2010; Koop
and Korobilis, 2012).

We are aware of five other papers that also relax the assumption on the number of parameters
that changes when a break is detected. In the frequentist literature, the influential paper of Bai
and Perron (1998) proposes a method that also operates when only a subset of parameters can
break. However, the number of possibilities grows exponentially with the number of breaks as
well as with the number of parameters that can break. From a Bayesian perspective, Giordani
and Kohn (2008), Eo (2016), Huber et al. (2019) and Dufays and Rombouts (2020) propose
flexible state-space models to capture which parameters vary over time. However, all these
estimation procedures break down when the number of parameters is large (see Supplementary
Appendix C.5 for more details).

We believe that our method exhibits several advantages over the existing alternatives. Firstly,
it operates for small and large dimensions. Secondly, the estimation is fast compared to the
Bayesian alternatives. As a final advantage, we relax the assumption on breakpoints once the
structural breaks have been detected which makes our approach operating in combination with
any existing CP methods. In this paper, we illustrate our approach with the CP procedure of
Yau and Zhao (2016) but any other CP method could have been used.

A final reference close to our framework is Chan et al. (2014) who propose a penalized re-
gression for segmenting time series in piecewise linear models. The paper uses a group Lasso
penalty function (see Yuan and Lin, 2006) to get an overestimated number of segments and in
a second phase, an information criterion is used to improve the estimation. Nevertheless, we
differ from their methods in many aspects. First, we use an almost unbiased penalty function
and from a theoretical perspective, as we use the penalized regression on a potential break
date set, our assumptions for a consistent estimator are different and in line with the standard
penalized regression literature. We also use a Bayesian criterion to select among the promising
models uncovered by the penalty function which allows for model uncertainty and for Bayesian
model averaging. Also, our estimation procedure is fast compared to Chan et al. (2014) since
we iterate on closed-form expressions and because our model exhibits fewer parameters. As a
final difference, we provide break uncertainty.

Eventually, we apply our method on Hedge funds (HF) returns. As highlighted by Fung et al.
(2008), by Meligkotsidou and Vrontos (2008), by Bollen and Whaley (2009), and more recently
by Patton et al. (2015), the dynamics of HF risk exposures and the nonlinear generating
process of HF returns should be associated with market events and structural breaks. For a
sample of 14 monthly Credit Suisse HF indices spanning from March 1994 to March 2016, and
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using the asset based style pricing model introduced by Fung and Hsieh (2001), we show that
our modeling is particularly appealing to detect time-varying exposures in HF tradings. In
particular, our results report the relative role played by static and dynamic parameters and
factors in the decomposition of HF returns. We also investigate the prediction performance of
our approach and it turns out that the selective segmentation approach compares favorably in
terms of root mean squared forecast errors and cumulative log-predictive densities with respect
to other CP processes. In particular, it almost systematically dominates the CP model which
assumes that all the parameters vary when a break is detected.

The paper is organized as follows. Section 3.2 documents the model specification and the
SELO penalty function. Section 3.3 explains how the DAEM algorithm is applied to our
framework. In Section 3.4, we detail the criterion used to select the SELO tuning parameters
and we relate it to the Bayesian paradigm. Section 3.5 documents the CP method of Yau and
Zhao (2016) and discusses how it can be slightly improved. An extensive Monte Carlo study is
proposed in Section 3.6. We end the paper by applying the method on HF returns in Section
3.7.

3.2 Model specification

We consider a standard linear regression specified as

yt = β1 + β2xt,2 + . . .+ βKxt,K + εt,

= x′tβ1 + εt ,
(3.1)

where εt ∼MDS(0, σ2) (in which MDS stands for the martingale difference sequence), xt =

(1, xt,2, . . . , xt,K)′ and β1 = (β1, β2, . . . , βK)′. Typically, if a linear model is estimated over a
long period, the parameters are subject to abrupt changes over time. To take this time-varying
dynamic into account, we allow for m−1 structural breaks in the model parameters as follows,

yt = x′tβ
∗
i + εt , for τi−1 < t ≤ τi, (3.2)

in which β∗i , is the true parameter of the explanatory variables over the regime i, τ 0 =

{τ0, . . . , τm} ∈ Nm+1 where τ0 = 0, τm = T and τi < τi+1 ∀i ∈ [0,m−1]. In this paper, we are
interested in capturing which parameters are subject to breaks and which do not vary over
time. To do so, we reframe the model (3.2) as follows,

yt = x′tβ
∗
1 + x′t(

m∑
j=2

∆β∗j1{t>τj−1}) + εt ,

y = Xτβ
∗ + ε,

(3.3)

where 1{x>a} = 1 if x > a and zero otherwise, ∆β∗j = β∗j − β∗j−1, for j ∈ [2,m], stands
for the model parameters in first-difference, y = (y1, . . . , yT )′, Xτ = (X̃τ0 , X̃τ1 , . . . , X̃τm−1)
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with X̃τi = (0,0, . . . ,0,xτi+1, . . . ,xT )′, ε = (ε1, ε2, . . . , εT )′ and β∗ = (β∗′1 ,∆β
∗′
2 , . . . ,∆β

∗′
m)′ ∈

<Km×1. Note that the matrix X̃τ0 stands for the standard regressors since τ0 = 0. Regard-
ing the notations, the first-difference parameter in regime j is a K-dimensional vector ∆β∗j

such that ∆β∗j = (∆β∗j1, . . . ,∆β
∗
jK)′. Let us also denote A = {(j, k); ∆β∗jk 6= 0, for j ∈

[2,m] and for k ∈ [1,K]}, the set of indices defining the true model.

Our strategy to uncover which parameters truly vary over time consists in first finding where
are the potential break dates τ , then, in a second phase, in detecting which parameters evolve.
Note that even when we know the true break dates τ , the problem of finding which parameters
vary when a break occurs is not straightforward as the number of models to consider amounts
to 2(m−1)K . Consequently, it is infeasible to carry out an exhaustive model selection when K
or m is large. We propose a penalized likelihood approach to explore this large model space
and to select which parameters experience breaks. To focus on our selective segmentation
approach, we shall first assume that we have obtained a set of potential break dates τ . We
discuss how we estimate this set in Section 3.5.

Remark 3.1. In the situation where all the models can be considered (i.e., (m−1)K ≤ 10), we
do not need to rely on the penalized likelihood approach explained in Section 3.2.1. In particular,
we could directly estimate all the model combinations and select the best one according to the
marginal likelihood criterion given in Section 3.4.

3.2.1 Penalized likelihood and choice of the penalty function

As emphasized by Equation (3.3), given a set of break dates τ , the problem of finding which
parameters abruptly change when a break occurs boils down to a penalized linear regression
problem. Specifically, one can solve the following optimization problem

β̂ = arg min
β

||y −Xτβ||22 + T
m∑
j=2

K∑
k=1

pen(∆βjk), (3.4)

where || . ||p denotes the Lp norm and pen(∆βjk) stands for a penalty function. Popular choices
of pen(∆βjk) are the Lasso penalty function (i.e., pen(∆βjk) = λ||∆βjk||1, see Tibshirani
(1994)) or the rigde function (i.e., pen(∆βjk) = λ∆||βjk||22, see, for instance, Ishwaran and
Rao (2005)).

Following Fan and Li (2001), standard desirable properties induced by a penalty function
are i) unbiasdness, ii) sparsity and iii) continuity. For instance, the ridge function is only
continuous while the Lasso penalty function achieves sparsity and continuity (beside at zero).
However one standard issue with these popular penalty functions is that they provide biased
(but typically consistent) estimators. In our framework, this drawback is problematic since a
segment can sometimes contain a small amount of observations that makes consistency results
not sufficient. Recently, Dicker et al. (2013) propose a penalty function, called seamless-L0
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(SELO), that exhibits all the desirable properties. For a model parameter denoted ω, the
penalty function reads as

PSELO(ω|ζ, λ) =
λ

ln 2
ln(

2|ω|+ ζ

|ω|+ ζ
),

where the parameter ζ controls for the concavity of the function and λ stands for the penalty
imposed when ω 6= 0. We slightly modify their function to end up with parameters that are
directly interpretable. In fact, we use the following penalty function,

PSELO(ω|a, λ) =
λ

ln 2
ln(

2( |ω|a ) + ζ

( |ω|a ) + ζ
), (3.5)

where ζ =
2y − 2

1− 2y
with y ∈ (0, 1) and we set y = 0.99. In most cases, the parameter a

can be interpreted as an interval ω ∈ [−a, a] in which ω will be biased with respect to the
OLS estimate since PSELO(a) = λy. Intuitively, when |ω| > a, we have PSELO(ω) ≈ λ and
dPSELO(ω)

dω
||ω|≥a ≈ 0 for large values of a. Figure 3.1 shows the SELO penalty function with

{a, λ} = {1, 0.9} and illustrates that the function is almost flat for absolute values greater than

a. To be more precise about how large a must be, when |β̄| ≥ a with a ≥ ζ

ln 2[ζ2 + 3ζ + 2]
=

0.0099, we have that
dPSELO(ω)

dω
||ω|≥a ≤ λ which implies that the bias imposed by the SELO

penalty function is smaller than the one of the Lasso function (i.e. λ|ω|).
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Figure 3.1 – SELO penalty function
Penalty function is shown in solid black lines while vertical dotted lines highlight the interval [-a,a]. The SELO
parameters are set to λ = 0.9 and a = 1.
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3.2.2 Consistency of the SELO estimator

The interval [−a, a] in which a parameter is biased is likely to change with the variable to
which it refers. Furthermore, if we assume that this interval is fixed over time, we should
set a new parameter a for each variable on the m segments. Unlike Dicker et al. (2013) who
define a single parameter for all the variables, we use K parameters a1, . . . , aK , that is, one
per explanatory variable. Thus, the objective function to minimize is given by

f(β) = ||y −Xτβ||22 + T
λ

ln(2)

m∑
j=2

K∑
k=1

ln

2(
|∆βjk|
ak

) + ζ

(
|∆βjk|
ak

) + ζ

 . (3.6)

Before discussing how to maximize the objective function, we present the main results about
the modified SELO estimator. As highlighted in Dicker et al. (2013), the SELO estimator
is consistent under reasonable conditions. Proposition 3.1 shows that this consistency result
also applies in our framework. To do so, we consider the following assumptions (in which a
sequence ωT → ω is understood as limT→∞ωT = ω).

Assumption G.

G.1 τ = τ 0 and ∀j ∈ [1,m], we have τj − τj−1 = Tδτj →∞, with
m∑
j=1

δτj = 1.

G.2 ρ
√
T →∞, where ρ = min

r,k∈A

(
|∆β∗r,k|

)
.

G.3 There exist r0, R0 > 0 such that r0 ≤ λT,min < λT,max ≤ R0, where λT,min and λT,max

are the smallest and largest eigenvalues of
(
T−1X′τXτ

)
,]. respectively.

G.4 The process {εt,xt}t∈(τj−1,τj ] is ergodic and stationary for any j = 1, . . . ,m. Moreover,

∀ t ∈ [1, T ], E(εt|xt) = 0, E(ε2t ) = σ2 and the process {gt} = {xtεt} is a martingale

difference sequence with finite second moments.

G.5 λ = Op(1) and ak = Op
(
T−

3
2

)
, ∀k ∈ [1,K].

We first discuss the assumptions before detailing our consistency result. Assumptions G.1
to G.5 are similar to those found in the variable selection literature (see Fan et al., 2004;
Dicker et al., 2013) and in the CP literature (see Bai and Perron, 1998; Yau and Zhao, 2016).
Condition G.1 assumes that the estimated CPs are the true locations. However, the SELO
estimator maintains the same asymptotic properties with a set of potential breakpoints as
long as it contains the true break dates (see the adapted assumption H below). In such
case, Proposition 3.1 also ensures that the number of breakpoints is consistently estimated.
Note that condition G.1 implies that the length of each segment increases linearly with T .
Although unattractive, this condition is generally made in the CP literature (see, e.g., Perron
et al., 2006; Yau and Zhao, 2016). For interested readers, Perron et al. (2006) motivate this
assumption in details. Assumption G.2 allows the minimum break size to decrease with the
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sample size but at a slower rate than T−
1
2 . Conditions G.3 are related to the eigenvalues

and are standard in the variable selection literature (see, e.g., Zhang et al., 2010). However,
we show in Appendix C.1.4 that this condition is not innocuous and that it implies a fixed
number of regimes as well as min

j
{δτj} > 0; that is δτj does not drift to 0 as T →∞. Avoiding

this assumption would imply stronger conditions on the process {yt,xt} (see, e.g., Chan et al.,
2014). The assumption G.4 refers to ergodicity and stationarity of each segment and imposes
the standard exogeneity hypothesis. This assumption ensures that sampled counterparts of
the first two moments of {xtεt} are converging to finite values. Importantly, it does not rule
out conditional heteroskedasticity. Eventually, condition G.5 defines restrictions on the tuning
parameters rate. The same condition applies in Dicker et al. (2013). The consistency of SELO
estimator is given by the following Proposition.

Proposition 3.1. Assume that G.1-G.5 hold and let,

fT (β) =
1

T
||y −Xτβ||22 +

m∑
j=2

K∑
k=1

PSELO(∆βjk|ak, λ). (3.7)

There exists a sequence of
√
T -consistent local minima β̂ of fT (β) as defined by Equation (3.7)

such that:

1. lim
T→∞

P
({

(j, k); β̂jk 6= 0
}

= A
)

= 1

2. ∀ δ > 0, lim
T→∞

P
(
||β̂A − β∗A|| > δ

)
= 0

Proof. The proof is given in Appendix C.1

Remark 3.2. Proposition 3.1 also applies when the set of breakpoints contains additional

spurious break dates. In particular, Proposition 3.1 holds if we relax assumption G.1 by the

less restrictive assumption:

Assumption H. τ = {τ1, . . . , τm̂} with m̂ ≥ m, τ 0 ⊆ τ and ∀j ∈ [1, m̂], we have τj − τj−1 =

Tδτj →∞, with
m̂∑
j=1

δτj = 1.

3.3 Estimation

The objective function to minimize is given by

f(β) = ||y −Xτβ||22 + T
λ

ln(2)

m∑
j=2

K∑
k=1

ln

2(
|∆βjk|
ak

) + ζ

(
|∆βjk|
ak

) + ζ

 ,

= ||y −Xτβ||22 +
m∑
j=2

K∑
k=1

ln qk(∆βjk),

(3.8)
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in which qk(∆βjk) =

2(
|∆βjk|
ak

) + ζ

(
|∆βjk|
ak

) + ζ


(
Tλ

ln(2)

)
. Due to the penalty function, we cannot find any

analytical expression of the minimizer. In addition to that, the function likely exhibits many
local modes which complicates the optimization. We address the problem of finding the global
mode by using a deterministic annealing expectation-minimization (DAEM) algorithm (see
Ueda and Nakano, 1998). To do so, we first approximate the penalty function by a mixture
of two Normal components (to take into account the large tail of the SELO penalty function),
the details of it are given in Appendix C.1.5. Secondly, since minimizing the sum of squared
residuals is identical to maximizing a likelihood function when the error term is normally
distributed, we work with the following model, y = Xτβ + η, where η ∼ N (0, σ2IT ). The
modified model implied the following objective function to maximize with respect to (β, σ2):

f(y|β, σ2) = −T
2

lnσ2 − 1

2σ2
||y −Xτβ||22 −

m∑
j=2

K∑
k=1

ln gk(∆βjk), (3.9)

where gk(∆βjk) =
2∑
i=1

ω
(k)
i fN (∆βjk|µ

(k)
i , s

(k)
i ), fN (x|µ, s) stands for the normal density func-

tion evaluated at x with expectation and variance given by µ and s respectively and ω(k)
i ∈

(0, 1) with
2∑
i=1

ω
(k)
i = 1. Note that the function f(y|β, σ2) in Equation (3.9) is proportional

to the posterior log-density of the parameter distribution β, σ2|y from a Bayesian perspective
with prior distributions given by f(σ2,β1) ∝ 1 and f(∆βjk) = gk(∆βjk) for j ∈ [2,m] and
k ∈ [1,K]. In particular, the distribution f(∆βjk) can be understood as a spike and slab prior
(e.g. George and McCulloch, 1993) and our optimization procedure fits into the framework
of Ročková and George (2014) which proposes tackling the linear variable selection problem
with the EM algorithm and its DAEM variant. The optimization is therefore equivalent to
finding the mode of β, σ2|y. Using a data augmentation approach, we add latent variables
z = (z21, z22, . . . , zmK)′ such that f(zjk = i) = ω

(k)
i , ∀j ∈ [2,m], ∀k ∈ [1,K] and ∀i ∈ [1, 2].

With these latent variables, we can write the prior distribution of ∆βjk in a convenient hier-
archical way as follows,

f(∆βjk|zjk = i) = fN (∆βjk|µ
(k)
i , s

(k)
i ), and f(zjk = i) = ω

(k)
i .

By fixing θ = {β, σ2}, the EM algorithm (and its DAEM variant) solves the following opti-
mization at iteration n,

argmaxθnQ(θn|θn−1) = argmaxθnEz|y,θn−1
(ln f(θn, z|y)|y,θn−1).

One can easily show that maximizing Q(θn|θn−1) implies that f(θn|y) ≥ f(θn−1|y).
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3.3.1 Derivation of the DAEM algorithm

To apply the DAEM algorithm, we need to find an expression of Q(θ|θn−1). Given a set of
parameter θn−1, we have that

Q(θ|θn−1) = Ez|y,θn−1
(ln f(θ|y, z)f(z|y)|y,θn−1)

∝ ln f(y|β, σ2) + ln f(β1, σ
2)−

m∑
j=2

K∑
k=1

2∑
i=1

(∆βkj − µ
(k)
i )2

2s
(k)
i

f(zkj = i|y,θn−1),

∝ ln f(y|β, σ2)− 1

2

2∑
i=1

(β − µi)′Σi(β − µi),

where

µi = ( 0, 0, . . . , 0︸ ︷︷ ︸
K-dimensional

, µ
(1)
i , µ

(2)
i , . . . , µ

(K)
i , µ

(1)
i , . . .)′ ∈ <mK×1,

Σi = diag( 0, 0, . . . , 0︸ ︷︷ ︸
K-dimensional

,
p

(i)
21

s
(1)
i

,
p

(i)
22

s
(2)
i

, . . . ,
p

(i)
2K

s
(K)
i

,
p

(i)
31

s
(1)
i

, . . . ,
p

(i)
mK

s
(K)
i

),

with p
(i)
jk = f(zjk = i|y,θn−1) ∀i ∈ [1, 2],∀j ∈ [2,m] and ∀k ∈ [1,K] . Importantly, the

difference between the EM algorithm and its DA version only appears in the quantities p(i)
jk .

In fact, the DAEM algorithm introduces an increasing function φ(r) : [1, N ] → (0, 1] such
that 0 < φ(1) ≤ 1 and φ(N) = 1. For each value r = 1, . . . , N , it applies recursively the
EM algorithm (that starts with the final estimate of the previous EM algorithm) where the
posterior probabilities p(i)

jk are denoted p(i,φ(r))
jk and are modified as follows,

p
(i,φ(r))
jk ∝ (fN (∆βjk|µ

(k)
i , s

(k)
i )ω

(k)
i )φ(r). (3.10)

When r = N , the increasing function φ(r) = 1 and the standard EM algorithm is run (but with
a promising starting point). To find the maximum of Q(θ|θn−1), we sequentially maximize
β given σ2 and then σ2 with respect to β. This approach, called coordinate iterative ascent,
operates in two steps:

1. Compute βn = arg max
β

Q(β, σ2
n−1|θn−1).

2. Compute σ2
n = arg max

σ2

Q(βn, σ
2|θn−1).

At the end of the two steps, we necessarily have Q(βn−1, σ
2
n−1|θn−1) ≤ Q(βn, σ

2
n−1|θn−1) ≤

Q(βn, σ
2
n|θn−1). The maximisation of β given σ2

n−1 leads to

βn = [σ−2
n−1X

′
τXτ +

2∑
i=1

Σi]
−1[σ−2

n−1X
′
τy +

2∑
i=1

Σiµi].

The update of σ2 conditional to βn is given by

σ2
n =

[(y −Xτβn)′(y −Xτβn)

T
.
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We summarize the DAEM procedure in Algorithm 3.1.. In practice, the minimum distance e
indicating a convergence of the algorithm is set to 10−5 and the number of DAEM iteration
N is fixed to 10.

Algorithm 3.1. DAEM algorithm
Initialize β0 using Algorithm;

Set σ2
0 =

[(y −Xτβ0)′(y −Xτβ0)

T
, φ(1) = (

1

N
)2, r = 1 and dist =∞;

while r <= N do
Set n = 0 and θn = (β′0, σ

2
0)′;

while dist > e do
Increment n = n+ 1;
for i = 1, 2 do

Compute the posterior probabilities p(i,φ(r))
jk given in Equation (3.10);

Compute the mean parameters βn = [σ−2
n−1X

′
τXτ +

2∑
i=1

Σi]
−1[σ−2

n−1X
′
τy +

2∑
i=1

Σiµi];

Compute the variance parameter σ2
n =

[(y −Xτβn)′(y −Xτβn)

T
;

Set θn = (β′n, σ
2
n)′ and compute the distance value dist = ||θn − θn−1||2;

Increment r = r + 1 and set φ(r) = (
r

N
)2;

Set β0 = βn and σ2
0 = σ2

n;

The EM and the DAEM algorithms are sensitive to starting values. Inspired by Zhao et al.
(2012), we mitigate this issue by randomly exploring the model space using a swapping ap-
proach before applying the DAEM algorithm. To be specific, we generate Ninit values as
explained in Algorithm 3.2. and we initialize the DAEM algorithm with the parameter es-
timates that minimize the penalized function given in Equation (3.8). In practice, we set
Ninit = min(2(m−1)K−1, 3000).

Algorithm 3.2. Initialization of the DAEM algorithm
for n = 1 to Ninit do

Set Â = ∅ and sample p ∼ U [0, 1];
for j = 2, ...,m and for k = 1, ...,K do

Â = Â ∪ (j, k) with probability p ;

(fn,βn) = Swap(Â) (see Algorithm 3.3.)
return the OLS estimates βn̂ such that n̂ = arg min

n∈[1,Ninit]

fn;
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Algorithm 3.3. Swap the set of indices - Swap(Â)
for j = 2, ...,m and for k = 1, ...,K, and Given a set of indices Â defining the parameters
∆β 6= 0 do

Build the sets Ãjk = Â ∪ (j, k) if Â ∩ (j, k) = ∅ or the set Ãjk = Â\(j, k) otherwise;

for each set Ãjk, compute the OLS estimates (β̂jk) and the penalized function fjk = f(β̂jk) (see
(3.8));

for the set Â, compute the OLS estimates (β̂Â) and the penalized function fÂ = f(β̂Â) (see
(3.8));

find (ĵ, k̂) = arg min
j,k

fjk;

if fĵk̂ < fÂ then
return β̂ĵk̂ and fĵk̂;

else
return β̂Â and fÂ;

3.4 Selection of the penalty parameters and parameter

uncertainties

The SELO penalty function exhibits two tuning parameters a and λ. The standard approach
to fix them consists in considering a grid of values of these parameters and in selecting the
parameters that maximize a (generally consistent) information criterion (e.g., Zhang et al.,
2010). Instead of relying on a standard information criterion and select the tuning parameters
a and λ that maximize it, we consider each pair (a, λ) as a model to take into account the
model uncertainty. For a given value of (a, λ), the DAEM algorithm exposed in Section 3.3.1
provides an estimate ∆̂β of ∆β which delivers an estimate of Â, i.e., the set of indices with

ˆ∆βjk 6= 0 for j ∈ [2,m] and for k ∈ [1,K]. This set tells us which covariates should be included
in the linear regression and which should not. Let us denote by X̃Â

τ the covariates related to
the first-difference estimates that are different from zero. We use the following criterion for
selecting a and λ:

f(y|a, λ, τ ) =

(
gÂ

1 + gÂ

)kÂ/2 [ gÂ
1 + gÂ

sX̃τ0
+

1

(1 + gÂ)
s
X̃τ0 ,X̃

Â
τ

]−T−K
2

, (3.11)

where sX̃τ0
stands for the residual sum of squares (RSS) from the ordinary least squares

(OLS) with X = X̃τ0 (i.e., a regression without break), s
X̃τ0 ,X̃

Â
τ

is the RSS from the OLS

with X = (X̃τ0 , X̃
Â
τ ), the value kÂ = |Â| denotes the number of first-difference parameters

different from zero in the model and gÂ is a user parameter. We properly derive the criterion
in Appendix C.2. Fernandez et al. (2001) show that the criterion (3.11) is consistent in the
sense that it selects asymptotically the true subset of regressors when gÂ = w(T )−1 as stated
in proposition 3.2.
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Proposition 3.2. (Adaption of Fernandez et al., 2001). Conditional on the true break dates,

the criterion (3.11) is asymptotically maximized for the true subset of covariate A if the fol-

lowing conditions on the parameter gÂ = w(T )−1 holds:

1. lim
T→∞

w(T ) =∞,

2. lim
T→∞

w′(T )

w(T )
= 0,

3. lim
T→∞

T

w(T )
∈ [0,∞).

Proof. See Appendix C.3.

Remark 3.3. Proposition 3.2 can be readily adapted when the conditioning set is a potential

break date set complying with Assumption H.

In Fernandez et al. (2001), they advocate for setting gÂ = min(T−1, (kÂ +K)−2) as this prior
empirically delivers good results for selecting the true covariates in standard linear regressions.

However, we deviate from this benchmark prior by fixing gÂ =
1

Tα − 1
with α = 1 when kÂ = 0

and α =
kÂ + m̂Â − 1

kÂ
> 1 when kÂ > 0 in which m̂Â denotes the number of active segments.

When α > 1, we show in Appendix C.3.1 that the criterion in Equation (3.11) asymptotically
converges in probability to

ln f(y|a, λ, τ )−
(
−T

2
ln s

X̃τ0 ,X̃
Â
τ
−
αkÂ

2
lnT

)
p→ 0. (3.12)

The asymptotic value is equivalent to the Bayesian information criterion (BIC) of a linear
regression model exhibiting a number of parameters of αkÂ.

1 Consequently, the model penalty

takes additionally into account the number of active breakpoints when α =
kÂ + m̂Â − 1

kÂ
. This

stronger penalty works empirically well and is motivated by several CP papers advocating for
stronger penalties than the BIC as it tends to overfit the number of regimes in finite sample
(see, e.g., Liu et al., 1997; Zhang and Siegmund, 2007; Kim and Kim, 2016).

Interestingly, criterion (3.11) stands for a marginal likelihood in the Bayesian paradigm under
ε ∼ N (0, σ2IT ) and the following prior,

f(β1, σ
2) ∝ σ−2,

f(∆βÂ|σ
2, τ ) ∼ N (0, σ2(gÂ(X̃Â

τ )′MX̃τ0
X̃Â
τ )−1), and f(∆βÂc) ∼ Dirac(0),

(3.13)

1The BIC of a linear regression model with K parameters is given by −T
2

ln(
s
X̃τ0 ,X̃

Â
τ

T
) − K

2
lnT . So

the marginal likelihood criterion of Equation (3.11) converges to the BIC up to an additive constant (that is
T

2
lnT ).
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where MX̃τ0
= IT − X̃τ0((X̃τ0)′X̃τ0)−1(X̃τ0)′. The prior distributions given by Equations

(3.13) lead to simple posterior inference. The posterior distribution of the model parameters
are given by, see Appendix C.2.1 for derivations,

σ2|y, τ ∼ IG

T −K
2

,

gÂ
1+gÂ

sX̃τ0
+ 1

(1+gÂ)sX̃τ0 ,X̃
Â
τ

2

 ,

β1|y, σ2,∆β, τ ∼ N
(

(X̃′τ0X̃τ0)−1X̃′τ0(y − X̃Â
τ∆β), σ2(X̃′τ0X̃τ0)−1

)
,

∆βÂ|y, σ
2, τ ∼ N

 [(X̃Â
τ )′MX̃τ0

X̃Â
τ ]−1(X̃Â

τ )′MX̃τ0
y

1 + gÂ
,
σ2[(X̃Â

τ )′MX̃τ0
X̃Â
τ ]−1

(1 + gÂ)

 ,

∆βÂc |y, τ = 0,

in which IG(−,−) denotes the Inverse-Gamma distribution. Consequently, we can go beyond
selecting the best pair (ap, λp) (i.e., the pair that maximizes the criterion (3.11)) and can
take the uncertainty of this selection into account. Given a set of models Mz = (az, λz), with
z = 1, ..., Z, we can directly assess the posterior probability of a specific model as follows

f(Mp|y, τ ) =
f(y|ap, λp, τ )f(Mp|τ )∑Z
z=1 f(y|az, λz, τ )f(Mz|τ )

,∀p ∈ [1, Z], (3.14)

where f(Mz|τ ) denotes the prior probability of model Mz. In this paper, we assume unin-
formative prior, so f(Mz|τ ) = Z−1. The posterior probability can be used to account for
uncertainty on the selected regressors. In fact, we have

f(β1,∆β, σ
2,M |y, τ ) = f(β1|y, τ , σ2,∆β,M)f(∆β|y, τ , σ2,M)

f(σ2|y, τ ,M)f(M |y, τ )
(3.15)

It is worth emphasizing that the consistent property of the criterion (3.11) does not depend on
the normality assumption. Only, the posterior distribution of the model parameters does. We
do not see this as a limitation since one can easily extend the model with another distributional
assumption and compute the posterior distribution by numerical integrations.

3.4.1 Prediction using Bayesian model averaging

Equation (3.14) shows how to take into account the uncertainty of the model parameters
with respect to the selection of the SELO parameters. The Bayesian paradigm also provides
a simple tool to forecast the series taking this uncertainty into account. In particular, the
predictive density f(yT+1:T+h|y), for h ≥ 1, is related to the posterior density as follows

f(yT+1:T+h|y, τ ) =

Z∑
z=1

∫
f(yT+1:T+h,β1,∆β, σ

2,Mz|y, τ )dβ1d∆βdσ2,

≈ 1

N

N∑
i=1

f(yT+1:T+h|y, τ ,β
(i)
1 ,∆β(i), (σ2)(i),M (i)), (3.16)
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where {β(i)
1 ,∆β(i), (σ2)(i),M (i)}Ni=1 are independent draws from the posterior distribution (i.e.,

β1,∆β, σ
2,M |y, τ ). From (3.16), it is apparent that the predictive density takes the model

uncertainty into account.2 This feature should be contrasted with the standard penalized
regression literature in which forecasting is performed using one unique set of parameter
estimates; i.e., the estimates given by one penalty parameter selected, for instance, by cross-
validation or by an information criterion.

In practice, simulations from the posterior distribution are not required for evaluating the
predictive density. Assuming that the future covariates xT+1:T+h are observed at time T ,
the predictive distribution of yT+1:T+h given a model Mz turns out to be a multivariate
student distribution. Supplementary Appendix C.2.2 documents the analytical expression of
f(yT+1:T+h|y,Mz). Therefore, we can efficiently take into account model uncertainty in the
predictive density since Equation (3.16) simplifies into

f(yT+1:T+h|y, τ ) =
Z∑
z=1

f(yT+1:T+h|y, τ ,Mz)f(Mz|y, τ ). (3.17)

3.4.2 How to choose the values of λ and a

When the number of models to consider is too large to directly explore the model space
using the criterion (3.11) (i.e., when (m − 1)K > 10, see remark 3.1), we rely on the SELO
penalty function to uncover the promising explanatory variables. While the asymptotic result
of Proposition 3.1 is reassuring, it only applies if the parameters λ and a are adequately
chosen. Similar to what is generally done in the penalized regression literature, we propose to
explore many values of λ and a and consider each couple as a model that would be ultimately
discriminated via criterion (3.11). For the parameter a, we use a value of ai = κ × std(β̂j1)

for each j of the K parameters per regime where std(β̂j1) stands for the standard deviation of
the OLS estimate β̂j1 when we assume no break in the linear regression (i.e., X = Xτ0). We
test several values for the parameter κ, namely κ ∈ {0.1, 1}. Regarding the penalty parameter
λ, we test 50 different values uniformly spaced in the interval (0, λ̄] in which λ̄ = 2 lnT . The
penalty imposes by the upper bound λ̄ is conservative enough as it is stronger than standard

information criteria such as the BIC (that corresponds to a penalty of
1

2
lnT ) and the modified

BIC.
2Using the full marginal likelihood for weighting the models’ predictions could raise concerns as only the

last segment matters in CP processes. However, as marginal likelihood is frequently used for selecting the
number of regimes in the literature and because it is also informative about the fit of the last regime, this
average should give large weights to the models exhibiting a good fit at the end of the sample. Nevertheless, we
could also weight the models’ predictions using the predictive marginal likelihood f(yt1+1:T |y1:t1 , τ ) in which
t1 is a user-defined value.
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3.5 Break date detection

In this Section, we present one approach to obtain a set of potential break dates. Before going
into details, it is worth emphasizing that our method for detecting which parameters vary
when a break occurs is independent of the segmentation detection procedure used in the first
phase. To build the break date set, we could, for instance, adapt the dynamic programming
method of Bai and Perron (2003) for the marginal likelihood given by Equation (3.11) and
therefore propose our own CP detection method. We could also detect the locations of the
segments using one of the standard segmentation approaches such as Bai and Perron (1998),
Killick et al. (2012) or Korkas and Fryzlewiczv (2017). Even better, we could apply several
CP detection algorithms and discriminate between the sets of breakpoints by comparing their
marginal likelihoods once the SELO optimization has been carried out on each set. However,
as the emphasis of the paper is not on the break detection, we prefer relying on one break
detection procedure, the one documented in Yau and Zhao (2016), because i) it delivers a set
of potential break dates with a computational complexity of O(T (log(T ))2) (which is faster
than O(T 2), i.e., the complexity of the dynamic programming method of Bai and Perron
(2003)) and because ii) we slightly improve their CP detection procedure. In particular, their
estimated breakpoints depend on one tuning parameter, the radius h. Instead of fixing it,
we use multiple values of h and we also adapt their approach to end up with a potential
breakpoint set.
It is worth noting that, as the paper combines model selection and CP detection methods, our
approach only requires a set of potential break dates that includes the correct break dates.
By penalizing the parameter variation between two consecutive regimes, the spurious break
dates are consistently deleted (see remarks 3.2 and 3.3).

3.5.1 Segmentation procedure

Yau and Zhao (2016) propose a likelihood ratio scan method in three steps for estimating
multiple break dates in piecewise stationnary processes. They also establish the consistency of
the estimated number and location fractions of the CPs. We apply their three steps to detect
the break dates but we modify them to reduce the computational burden and to keep at the
end of the procedure a potential break date set (that could overestimate the true number of
regimes). We now detail the three steps that we use to segment the data.
First step. Fix a window radius h ∈ [K + 1, T − K]. For t = h to T − h, compute the
likelihood ratio scan statistic given by,

Sh(t) =
1

h
Lt−h+1:t(β̂, σ̂) +

1

h
Lt+1:t+h(β̂, σ̂)− 1

h
Lt−h+1:t+h(β̂, σ̂), (3.18)

where L̂t1:t2(β̂, σ̂) denotes the maximum value of the log-likelihood of model (3.1) over the
segment t ∈ [t1, t2], assuming that εt ∼ N (0, σ2). Then, the set Γ(h) of potential break dates
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is given by,

Γ(h) =

{
j ∈ {h+ h+ 1, . . . , T − h};Sh(j) = max

t∈[j−h,j+h]
Sh(t)

}
, (3.19)

where Sh(t) = 0 for t < h and t > T − h. As the window radius h is crucial, we differ from

Yau and Zhao (2016) by using a grid of M values uniformly-spaced in the interval [
hYZ

2
, 2hYZ]

in which hYZ denotes their advocated value that is hYZ = max
{

25, (log(T ))2
}
when T < 800

and hYZ = max
{

50, 2 (log(T ))2
}

otherwise. So, at the end of the first step, we end up with
M potential break date sets, i.e., Γ(h1), . . . ,Γ(hM ).
Second step. For every z ∈ [1,M ] and i ∈ [1,mhz−1] wheremhz = |Γ(hz)|+1, we re-estimate
each break date location τ (z)

i ∈ Γ(hz) as follows

τ̂
(z)
i = argmax

t∈[τ
(z)
i −hz ,τ

(z)
i +hz ]

L
τ

(z)
i −b1.5hze:t

(β̂, σ̂) + L
t+1:τ

(z)
i +b1.5hze

(β̂, σ̂),

in which bxe stands for the nearest integer to x. Gathering all the new locations in the set
Γ̂(hz) = {τ̂ (z)

1 , . . . , τ̂ (z)
mhz
}, it is clear from Theorems 1 to 3 in Yau and Zhao (2016) that for any

j ∈ {1, . . . ,m− 1}, there exist τ̂ (z)
i ∈ Γ̂(hz) with i ∈ [1,mhz − 1] such that τ̂ (z)

i − τj = Op(1).

Third step. We select the best breakpoints among the M potential break date sets by
minimizing the Minimum Description Length (MDL) defined by, for z ∈ [1,M ],

MDL(hz) = ln+ (mhz − 1) +mhz ln (T )

+

mhz∑
j=1

(
K + 1

2
log(τ̂

(z)
j − τ̂

(z)
j−1)− L

τ̂
(z)
j−1+1:τ̂

(z)
j

(β̂, σ̂)

)
,

(3.20)

where τ̂0 = 0, τ̂mhz = T and {τ̂j}j=2,...,mhz−1 = Γ̂(hz). In practice, we fix M = 30.

3.5.2 Break uncertainty

Given a set of break dates obtained either from the procedure described in Section 3.5.1 or
from any other existing break detection method such as the one of Bai and Perron (1998), our
method to uncover the partial structural changes can be undertaken. Let us denote by M∗ =

(a∗, λ∗) the SELO parameters maximizing the marginal likelihood criterion (3.11) and their
corresponding break dates J = {τ̄0 = 0, τ̄1, . . . , τ̄m̂−1, τ̄m̂ = T}. To provide break uncertainty,
we shall infer the posterior distribution of the structural breaks; i.e., τ ≡ τ1, . . . , τm̂−1|y,M∗.
To do so, we first assume uninformative priors for the break dates using the set J . For
i = 1, ..., m̂− 1, the break parameter τi is driven by a Uniform distribution as follows

τi ∼ U [

⌊
τ̄i−1 + τ̄i

2

⌋
+ γ,

⌊
τ̄i−1 + τ̄i

2

⌋
− γ],

in which bxc stands for the nearest integer less than or equal to x and γ = (K + 1) is a
minimum duration parameter ensuring that the marginal likelihood criterion (3.11) can be
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computed for any break parameters complying with the prior distributions given by Equation
(3.13). The posterior density is proportional to

f(τ |y,M∗) ∝ f(y|M∗, τ )f(y|M∗, τ )

(
m̂−1∏
i=1

1{τ i∈[
⌊
τ̄i−1+τ̄i

2

⌋
−γ,

⌊
τ̄i−1+τ̄i

2

⌋
+γ]}

)
. (3.21)

As shown in Appendix C.2, the marginal likelihood f(y|M∗, τ ) = f(y|a∗, λ∗, τ ) exhibits a
closed form expression. Several solutions exist to sample the break parameters (see, e.g.,
Stephens, 1994; Liao, 2008). In this paper, we use the D-DREAM algorithm developed in
Bauwens et al. (2011). It builds a symmetric proposal distribution inspired by the Differential
Evolution optimization literature and draws from this proposal distribution are accepted or
rejected through a Metropolis step in a Markov-chain Monte Carlo (MCMC) algorithm. As
shown in Bauwens et al. (2011), the D-DREAM algorithm complexity is O(T ) and leads to
a rapidly mixing MCMC algorithm since the break parameters are jointly sampled from the
proposal distribution. To infer the break parameters, we apply the following steps:

• Sample R = 2m initial structural break vectors {τ i}Ri=1 from the prior distribution.
• At each MCMC iteration, for each j = 1, ..., R, apply the D-DREAM Metropolis move:

1. Propose a new draw of the break parameter as follows

τ̂ j = τ j +

γ(δ,m)(

δ∑
g=1

τ r1(g) −
δ∑

h=1

τ r2(h)) + ξ

 , (3.22)

with ξ ∼ N (0, (0.0001)I) and ∀g, h = 1, 2, ..., δ, j 6= r1(g), r2(h); r1(.) and r2(.)

stand for random integers uniformly distributed on the support [1, R]. We set

γ(δ,m) =
2.38√
2δm

and δ ∼ U [1, 3].3

2. Accept the proposal τ̂ j according to the probability

α(τ j , τ̂ j) = min

{
f(y|M∗, τ̂ j)
f(y|M∗, τ j)

, 1

}
.

In practice, we set the number of MCMC iterations to 4000 and start collecting the draws after

round[
M

2
] MCMC iterations. In addition, we assess the convergence of the MCMC algorithm

using the multivariate Potential Scale Reduction Factor test proposed in Brooks and Gelman
(1998). For the two in-sample applications below in which credible intervals of the breakpoints
are computed, the convergence statistics amount to 1.014 and 1.052, respectively. These values
meet the threshold of 1.1 commonly used to validate the convergence of MCMCs.

3When the posterior distribution is a multivariate normal one, Ter Braak (2006) proves that choosing

γ =
2.38√
δm

leads to the optimal acceptance rate of the Metropolis ratio. As shown in Ter Braak (2006), the

proposal distribution works when the number of chains, i.e. δ, is equal to one. However, the mixing of the
MCMC algorithm can be improved by increasing δ as illustrated with simulation exercises in Vrugt et al.
(2009).

82



3.6 Monte Carlo study

In this Section, we document a Monte Carlo study to assess the accuracy of the SELO ap-
proach. We first rely on nine different data generating processes (DGPs) that are documented
in Table 3.1. For each DGP, we simulate 1000 series with a sample size equal to T = 1024 and
we investigate i) the performance of detecting the break dates using the approach in Section
3.5.1 and ii) the performance of the SELO method for detecting which parameter truly varies
when a break occurs. The nine DGPs differ in their mean parameter specifications. For each
of them, we study the SELO performance when the innovation is either homoskedastic or
driven by a GARCH process.
Regarding the DGPs, the first six DGPs are piecewise stationary AR models directly taken
from Yau and Zhao (2016) while the others cover situations with exogenous explanatory vari-
ables. DGP A and E do not exhibit any breakpoint. They aim at showing the performance of
the SELO approach when only spurious break dates are detected. DGPs B and C are weakly
persistent piecewise stationary AR models exhibiting three regimes. Simulated series from
DGP D experience a break after 50 observations. This DGP should highlight the performance
in a short regime context. DGPs E and F are highly persistent piecewise stationary AR models
but DGP F differs by exhibiting breaks in the mean parameters. Eventually, DGPs G, H and
I include exogenous variables. While DGPs G only exhibits exogeneous regressors, DGPs H
and I stand for ARX processes by mixing the parameters of the DGPs B and G.

Table 3.2 documents the percentage of detecting a number of regimes per model parameter
over the 1000 simulated series per DGP for the SELO method. Overall, the detection rates
of identifying the true number of regimes per parameter are excellent and besides DGP F,
they are at least equal to 86.4%. Interestingly, this detection rate does not deteriorate when
the innovation is driven by a GARCH process. The worst detection rates arise for the DGP
F. Even though this DGP is highly persistent with an autocorrelation structure that barely
varies over time, the SELO method correctly identifies that the intercept does not experience
abrupt switches 69.7% of the times. Note that the potential breakpoint sets for this DGP
poorly identify the true breakpoints since only 25.5% of the sets exhibit at least one potential
CP close to every true breakpoints. Therefore, the SELO detection rate could hardly exceed
this bound. As exemplified by DGPs G, H and I, the detection rates of the SELO method
remain excellent when exogenous variables kick in even in the presence of heteroscedasticity.
The Table also documents the rate of detecting the true model (i.e. jointly the correct number
of regimes) with a posterior probability of at least 10%.4 For all the DGPs but DGP F, the
correct detection amounts to at least 83.1% and 85.1% for the constant and the GARCH

4For this simulation study, the number of explanatory variables ranges from 2 to 5 and the maximum
number of potential regimes observed for each DGP is as follows: DGP A (5), DGP B (5), DGP C (6), DGP
D (6), DGP E (6), DGP F (6), DGP G (5), DGP H (9), DGP I (9). It can thus lead to a number of models
amounting to 240. In such a case, the set of the models exhibiting a probability equal or greater than 10% has

a prior probability of containing the true model that is approximately equal to
1000

240
%.
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Table 3.1 – Data Generating Processes of sample size amounting to T = 1024

DGP A DGP B DGP C
Breaks - [512, 768] [400, 612]

Intercept [0] [0, 0, 0] [0, 0, 0]
AR1 [- 0.7] [0.9, 1.69, 1.32] [0.4, - 0.6, 0.5]
AR2 - [0, - 0.81, - 0.81] -

DGP D DGP E DGP F
Breaks [50] - [400, 750]

Intercept [0, 0] [0] [0, 0, 0]
AR1 [0.75, - 0.5] [0.999] [1.399, 0.999, 0.699]
AR2 - - [- 0.4, 0, 0.3]

DGP G DGP H DGP I
Breaks [400, 750] [400,750] [512, 768]

Intercept [1, 0, 0] [0, 0, 0] [0,0,0]
AR1 - [0.9, 1.69, 1.32] [0.9, 1.69, 1.32]
AR2 - [0, -0.81, -0.81] [0, -0.81, -0.81]
V [1.5, 0.9, 2.2] [1.5, 0.9, 2.2] [1.5, 0.9, 2.2]
W [- 0.6, - 0.6, - 1] [- 0.6, - 0.6, - 1] [- 0.6, - 0.6, - 1]

Dynamic of the variance of εt ∼ N (0, σ2
t )

Constant σ2
t = 1, ∀t ∈ [1, T ]

GARCH σ2
t = 0.05 + 0.05ε2t−1 + 0.9σ2

t−1, ∀t ∈ [1, T ] and σ2
0 =

0.05

1− 0.95
= 1

This Table summarizes the DGPs from which 1000 series are simulated for the Monte
Carlo study. The variables V and W stand for exogenous variables such that, Vt ∼
N (0, 32) and Wt ∼ N (0, 42). For instance, DGP B is an AR(2) model that exhibits two
breakpoints at t = 512 and t = 768. The true values of the first AR term for the first
two regimes are equal to 0.9 and 1.69, respectively. The dynamic of the variance is either
homoskedastic (’Constant’) or heteroskedastic (’GARCH’).

innovation dynamics, respectively. These excellent results highlight that model uncertainty
should be taken into account since several models often exhibit high posterior probabilities.

DGPs from Table 3.1 are frequently used in the CP literature to assess the performance of
a new segmentation method (see, e.g., Cho and Fryzlewicz (2015), Yau and Zhao (2016) and
Korkas and Fryzlewiczv (2017)). Nevertheless, our empirical exercise implies more explanatory
variables and a smaller sample size. To assess the SELO performance in such environment,
we also consider fourteen variants of an ’empirical DGP’ given by

yt =

x′tβ1 + σtεt, if 1 ≤ t ≤ 132,

x′tβ2 + σtεt, if 133 ≤ T,
(3.23)

where T = 256 as in the application, εt ∼ N (0, 1) and xt = (1, xt,1, . . . , xt,12)′. The explana-
tory variables are close to the risk factors used in our empirical exercise. In particular, they
are generated from AR models whose coefficients and AR orders are estimated using the risk
factors of the application. The parameter values of β1 are equal to the OLS estimates of
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Table 3.2 – Break estimates : SELO approach.

Constant Variance GARCH Variance

Number of regimes Break Exact Number of regimes Break Exact

DGP 1 2 3 4 5 6 1 2 3 4 5 6

A Intercept 99.4 0.6 0 0 0 0 — 99.9 99.2 0.8 0 0 0 0 — 99.2AR1 99.5 0.5 0 0 0 0 99.4 0.6 0 0 0 0

B Intercept 98.6 1.4 0 0 0 0
100 99.7

97.3 2.7 0 0 0 0
99.3 99.5AR1 0 0 100 0 0 0 0 0.2 99.4 0.4 0 0

AR2 0 98.8 1.2 0 0 0 0 98.3 1.7 0 0 0

C Intercept 97.9 2 0.1 0 0 0 99.8 99.7 97.6 2.4 0 0 0 0 99.8 99.1AR1 0 0 100 0 0 0 0 0 99.7 0.3 0 0

D Intercept 97.4 2.6 0 0 0 0 99.8 99.5 97.6 2.2 0.2 0 0 0 99.7 99.1AR1 0.1 99.4 0.5 0 0 0 0.2 99.3 0.4 0.1 0 0

E Intercept 86.4 12.4 1.2 0 0 0 — 94.6 84.8 12.5 2.5 0.2 0 0 — 91.5AR1 93.6 6.1 0.3 0 0 0 91 8.2 0.5 0.3 0 0

F Intercept 69.7 23.9 6.2 0.1 0.1 0
25.5 23.2

65.3 27.5 6.7 0.5 0 0
22.4 22.1AR1 0 68.7 31 0.1 0.2 0 0 69.5 29.6 0.8 0.1 0

AR2 0 71.5 28.3 0.2 0 0 0 73.2 26.4 0.4 0 0

G Intercept 0 99.3 0.7 0 0 0
100 99.8

0 99.2 0.8 0 0 0
100 99.8V 0 0 99.8 0.2 0 0 0 0 99.7 0.3 0 0

W 0 99.2 0.8 0 0 0 0 99 0.9 0.1 0 0

H Intercept 88.9 11 0.1 0 0 0

100 83.1

92.9 6.9 0.2 0 0 0

100 86.8
AR1 0 0 92.7 7.3 0 0 0 0 94.7 5.3 0 0
AR2 0 92.6 7.4 0 0 0 0 94.1 5.9 0 0 0
V 0 0 87.7 12.3 0 0 0 0 89.6 10.4 0 0
W 0 88 12 0 0 0 0 90.4 9.6 0 0 0

I Intercept 91.6 8.4 0 0 0 0

100 85.7

91 8.9 0.1 0 0 0

100 85.1
AR1 0 0 94.3 5.7 0 0 0 0 95 4.9 0.1 0
AR2 0 94.6 5.4 0 0 0 0 94.9 5 0.1 0 0
V 0 0 89.8 10.2 0 0 0 0 89.4 10.6 0 0
W 0 88.7 11.1 0.2 0 0 0 90 10 0 0 0

Based on 1000 replications, this Table presents several metrics for assessing the performance of the SELO method on DGPs
detailed in Table 3.1. Number of regimes is the rate of detecting a specific number of regimes per model parameter. Bold
values correspond to the true number of regimes. Break documents the rate of having at least one breakpoint in the potential
CP set located in the neighborhood of 50 observations of the true breakpoints. We use ’—’ when the DGP exhibits no breakpoint.
Exact denotes the rate of detecting the true number of breakpoints for all the model parameters with a posterior probability
of at least 10%.

the Hedge fund Index (HFI) regression without breakpoints (see Table 3.7 in the empirical
application). We consider 14 variants of the DGP given by Equation (3.23) that differ by
the number of parameters experiencing a breakpoint. Defining β2 = (β2,1, . . . , β2,13)′ and
considering the ith DGP, with i = 1, . . . , 14, we have β2,j = β1,j + 3ωjsign(β1,j) for j < i and
β2,j = β1,j for j ≥ i. The size of the break given by ωj is equal to the standard deviation of the
jth OLS estimate of the Hedge fund Index (HFI) regression without breakpoints (see Table
3.7). To summarize, the first DGP does not exhibit a breakpoint while the 14th one exhibits
a structural change in all its parameters. As before, we consider homoskedastic errors with
σ2
t ≡ ω̄2 = 1.7 ∀t and heteroskedastic ones with σ2

t = 0.05ω̄2 + 0.05ε2t−1 + 0.9σ2
t−1 for t > 1

in which ω̄2 stands for the OLS variance estimate of the Hedge fund Index (HFI) regression
without breakpoints (see Table 7 of the paper). Figure 3.2 displays one simulated series drawn
from some of the fourteen variants with heteroskedastic errors.

To carry out the Monte Carlo study, we have drawn 100 series from the 14 variants of the
empirical DGP. For each simulated series, we have also generated the explanatory variables
using the AR models. Table 3.3 provides the percentage of the number of regimes detected
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(a) # CPs = 0 (b) # CPs = 5

(c) # CPs = 10 (d) # CPs = 13

Figure 3.2 – One simulated series with a GARCH dynamic from the DGP based on the
empirical data
# CPs’ stands for the number of parameters that are experiencing a breakpoint at time t = 133.

by the selective segmentation and by the Lasso methods. The Lasso approach consists in
using a Lasso penalty function instead of the SELO penalty function and in choosing the
best Lasso penalty value and the corresponding model using the marginal likelihood proposed
in Section 3.4.5 First, we observe that the selective segmentation approach delivers high
detection rates whatever the dynamic of the variance. In addition, the detection rate does not
deteriorate when the parameter experiences a break. Note also that all the average detections
are above 89%. In contrast, the Lasso method does not provide good results when only a
subset of the parameters exhibits a CP. In fact, the average detection rates follow a ’U-shape’

5We replace the SELO with the Lasso penalty function. In particular, conditional on the potential break-
points τ , we minimize the following objective function:

β̂ = arg min
β

||y −Xτβ||22 + λ
m∑
j=2

K∑
k=1

|∆βjk|. (3.24)

Using the Matlab Lasso toolbox of Mcilhagga (2016). We also tested the matlab glmnet toolbox of Qian et al.
(2013) which leads to similar results. In particular, we also observe that the Lasso estimates over-estimate the
number of regimes.
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function meaning that the Lasso method is good at detecting no breakpoint or when all the
parameters are experiencing a break. When partial breaks occur, the Lasso approach typically
over-estimates the number of regimes.

To further illustrate the issue with the Lasso method, Table 3.4 shows the detailed results
based on 100 simulated series when the first five parameters exhibit a CP (equivalent to the
variant called ’# CPs = 5’ in Table 3.3). While the selective segmentation method accurately
detects the number of regimes for each parameter, the Lasso approach finds two regimes for
most of the parameters that are constant over the sample.

We end this simulation section with a "big data" example motivated by the fact that when
the number of explanatory variables is large, the current Bayesian alternatives do not work
(see Giordani and Kohn, 2008; Eo, 2016; Huber et al., 2019; Dufays and Rombouts, 2020) (see
Appendix C.5 for more details). To do so, we propose the DGP J that is specified by 100
explanatory variables and one CP as follows:

DGP J: piecewise linear model with big data

Yt =

x′tβ1 + εt if 1 ≤ t ≤ 499,

x′tβ2 + εt if 500 ≤ t ≤ T,

where T = 1024, ∀ t ∈ [1, T ] and for i = 1, ..., 100, xt,i ∼ N (0, 1) and εt ∼ N (0, 1). The
parameter values of β1 are uniformly and randomly set to −1 or 1. In the second regime, the
parameter values of β2 are equal to β1 except for 10 of them randomly chosen that are set
to the opposite value (i.e. −β1). Thus, 10 parameters of DGP J does experience a break at
observation 500.
We simulate 100 series from DGP J to assess the SELO performance in detecting which pa-
rameters experience a breakpoint. For every simulation, the selective segmentation approach
identifies 10 parameters that experience one breakpoint in the sample while the others re-
main constant. In addition, the exact model specification was always among the specification
exhibiting a posterior probability of at least 10%.

3.7 Empirical application

We illustrate the selective segmentation method with 14 monthly Credit Suisse HF indices
spanning from March 1994 to March 2016. These indices are the weighted average of HF
returns following specific trading strategies. Fung and Hsieh (2004) suggested a risk-based
approach to model HF returns and identified seven factors on which HF strategies are generally
exposed (see also Fung and Hsieh, 2001). Since this seminal work, many other risk factors have
been uncovered. So, we include five other risk factors that are also popular in the literature.
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Table 3.3 – Break detection rates - Selective segmentation and Lasso approaches

DGP Correct detection rate Avg.

Inter PMKT SMB TERM DEF SBD SFX SCOM UMD SIR STK CPI NAREIT Avg. detection
Selective segmentation - Constant variance

# CPs = 0 100 99 99 100 98 100 100 100 100 100 99 99 100 99.5
# CPs = 1 47 100 98 99 100 99 98 98 98 98 97 99 95 94.3
# CPs = 2 98 100 98 100 96 100 100 96 99 98 97 97 96 98.1
# CPs = 3 98 100 88 100 96 98 100 97 98 99 94 98 98 97.2
# CPs = 4 99 100 97 98 98 98 97 99 100 98 96 97 98 98.1
# CPs = 5 98 100 93 94 98 97 100 98 98 96 98 94 95 96.8
# CPs = 6 99 100 95 90 100 91 97 100 98 97 93 99 95 96.5
# CPs = 7 97 100 89 94 99 91 97 97 100 97 97 97 99 96.5
# CPs = 8 95 100 91 96 100 88 97 66 98 98 98 95 96 93.7
# CPs = 9 99 98 95 93 99 95 97 68 100 98 99 96 100 95.2
# CPs = 10 97 99 94 96 100 91 97 71 100 76 96 98 93 92.9
# CPs = 11 96 100 90 97 100 98 98 81 100 79 95 99 98 94.7
# CPs = 12 93 99 90 98 98 92 96 68 100 78 95 96 98 92.4
# CPs = 13 94 99 93 93 98 93 96 70 99 85 96 98 92 92.8

Lasso - Constant variance
# CPs = 0 100 100 100 100 100 100 100 100 100 100 99 100 100 99.9
# CPs = 1 10 99 99 100 100 93 91 91 95 91 89 100 95 88.7
# CPs = 2 28 99 96 99 100 77 70 77 90 59 61 100 83 79.9
# CPs = 3 51 100 71 100 100 52 51 55 76 47 37 100 75 70.4
# CPs = 4 71 100 84 52 99 37 33 35 56 30 27 97 47 59.1
# CPs = 5 85 92 84 78 87 20 17 20 28 20 19 89 27 51.2
# CPs = 6 88 91 81 75 85 86 19 18 25 15 14 92 30 55.3
# CPs = 7 89 83 84 80 93 78 78 14 19 14 16 90 19 58.2
# CPs = 8 87 86 82 81 87 81 83 77 28 18 21 92 23 65.1
# CPs = 9 87 89 84 84 90 84 84 83 86 19 15 92 25 70.9
# CPs = 10 93 88 90 82 92 86 86 82 92 81 25 92 22 77.8
# CPs = 11 95 87 85 84 93 83 81 85 90 85 84 97 27 82.8
# CPs = 12 95 86 88 93 99 86 83 84 87 83 83 94 17 82.9
# CPs = 13 93 85 81 90 97 74 79 77 81 77 77 94 79 83.4

Selective segmentation - GARCH variance
# CPs = 0 100 99 99 98 98 98 98 100 99 99 98 100 98 98.8
# CPs = 1 54 95 96 98 98 96 96 97 94 95 96 96 98 93.0
# CPs = 2 99 100 95 100 97 99 98 99 99 99 97 98 99 98.4
# CPs = 3 99 100 93 99 99 98 99 96 97 98 92 96 100 97.4
# CPs = 4 98 99 93 98 99 99 96 95 98 98 97 95 95 96.9
# CPs = 5 96 100 92 97 100 97 96 97 97 97 94 98 98 96.8
# CPs = 6 95 100 87 93 99 96 96 99 99 96 99 96 96 96.2
# CPs = 7 97 100 92 98 100 91 92 97 99 97 98 98 100 96.8
# CPs = 8 98 99 90 87 99 91 92 76 98 98 98 97 93 93.5
# CPs = 9 98 100 89 94 100 91 95 67 100 99 98 99 99 94.5
# CPs = 10 96 99 96 97 98 90 97 77 100 84 96 95 99 94.2
# CPs = 11 94 99 93 97 100 89 93 69 99 78 94 97 97 92.2
# CPs = 12 91 96 89 93 99 92 97 72 99 84 94 97 100 92.5
# CPs = 13 85 96 91 92 100 90 96 77 99 82 86 95 77 89.7

Lasso - GARCH variance
# CPs = 0 100 100 100 100 100 99 99 100 100 99 98 100 100 99.6
# CPs = 1 20 93 98 100 99 87 84 81 88 85 79 99 94 85.2
# CPs = 2 26 99 97 100 100 80 82 80 89 66 63 100 90 82.5
# CPs = 3 49 99 64 100 100 56 52 46 76 51 48 100 77 70.6
# CPs = 4 68 96 75 50 99 37 38 41 51 26 28 100 51 58.5
# CPs = 5 85 90 82 75 84 19 19 24 25 17 15 93 29 50.5
# CPs = 6 86 93 87 77 86 87 19 21 21 16 17 94 23 55.9
# CPs = 7 89 92 85 81 88 91 89 19 30 10 21 95 25 62.7
# CPs = 8 87 87 83 70 87 83 86 77 23 16 21 97 26 64.8
# CPs = 9 88 85 86 81 90 83 85 80 87 16 15 95 29 70.8
# CPs = 10 97 88 88 91 96 85 85 86 91 84 9 90 28 78.3
# CPs = 11 92 89 91 88 93 79 81 75 88 77 78 97 18 80.5
# CPs = 12 93 88 84 85 91 80 83 82 86 78 80 90 26 80.5
# CPs = 13 92 82 85 86 92 80 82 75 85 77 80 88 81 83.5

Based on 100 replications, this Table assesses the break detection performance of the selective segmentation and
the Lasso methods on the 14 variants of the empirical DGP detailed in Equation (3.23). Correct detection
rate is the rate of detecting the true number of regimes per model parameter. Underlined values correspond
to the detection rates when the parameter experiences a breakpoint at t = 133. Avg. documents the average
rate of detecting the true number of regimes for each variant.
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Table 3.4 – Empirical DGP with 5 CPs - Break detection rates of the Selective segmentation
and the Lasso approaches

Constant variance GARCH variance
Sel. segmentation Lasso Sel. segmentation Lasso

# of regimes 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Inter. 2 98 0 0 0 0 12 85 3 0 0 0 3 96 1 0 0 0 15 85 0 0 0 0
PMKT 0 100 0 0 0 0 0 92 8 0 0 0 0 100 0 0 0 0 0 90 10 0 0 0
SMB 5 93 2 0 0 0 10 84 6 0 0 0 6 92 2 0 0 0 9 82 9 0 0 0
TERM 6 94 0 0 0 0 22 78 0 0 0 0 2 97 1 0 0 0 25 75 0 0 0 0
DEF 0 98 1 1 0 0 12 87 1 0 0 0 0 100 0 0 0 0 16 84 0 0 0 0
SBD 97 3 0 0 0 0 20 70 10 0 0 0 97 2 1 0 0 0 19 76 4 1 0 0
SFX 100 0 0 0 0 0 17 73 10 0 0 0 96 4 0 0 0 0 19 70 10 1 0 0
SCOM 98 2 0 0 0 0 20 71 9 0 0 0 97 3 0 0 0 0 24 69 7 0 0 0
UMD 98 2 0 0 0 0 28 66 6 0 0 0 97 2 1 0 0 0 25 68 6 1 0 0
SIR 96 3 1 0 0 0 20 69 11 0 0 0 97 2 1 0 0 0 17 71 11 1 0 0
STK 98 2 0 0 0 0 19 71 10 0 0 0 94 6 0 0 0 0 15 77 7 1 0 0
CPI 94 6 0 0 0 0 89 11 0 0 0 0 98 2 0 0 0 0 93 7 0 0 0 0
NAREIT 95 4 1 0 0 0 27 67 6 0 0 0 98 1 1 0 0 0 29 68 3 0 0 0

Based on 100 replications, this Table assesses the break detection performance of the selective segmentation
and the Lasso methods on the fifth variant of the empirical DGP detailed in Equation (3.23). Number of
regimes is the rate of detecting a specific number of regimes per model parameter. Bold values correspond to
the true number of regimes.

We add two Fung and Hsieh trend following risk factors, PTFSIR, returns on PTFS short
term interest rate lookback straddle, and PTFSSTK, returns on PTFS stock index lookback
straddle. Following Agarwal and Naik (2004), among many others, we also use the Up-minus-
Down (UMD) factor (see Carhart, 1997). As suggested by Chen et al. (1986), we include the
expected inflation, the log relative of US Consumer Price Index (CPI). Finally, we also take
into account a factor for real estate risk relevant to explain HF and stocks returns (see, e.g.,
Ambrose and D’Lima, 2016; Carmichael and Coen, 2018). Table 3.5 documents the fourteen
strategies on which we focus as well as the twelve factors.

Table 3.5 – Description of the HF returns and the risk factors

Credit Suisse Hedge fund indices Risk factors

Name Description Name Description Paper

HFI Hedge Fund Index PMKT Market factor (S&P 500) FH
CNV Convertible Arbitrage SMB Small firm minus big firm FH
DSB Dedicated Short Bias TERM Change in 10-year treasury yields FH
EME Emerging Markets DEF Change in the yield spread of FH
EMN Equity Market Neutral 10-year treasury and Moody’s Baa bonds
EDR Event Driven PTFSBD Lookback options on Bonds FH
EDD Event Driven Distressed PTFSFX Lookback options on currencies FH
EDM Event Driven Multi-Strategy PTFSCOM Lookback options on commodities FH
EDRA Event Driven Risk Arbitrage UMD Momentum (Up-minus-Down) C
FIA Fixed Income Arbitrage PTFSIR Lookback options on short term interest rate FH
GMA Global Macro PTFSSTK Lookback options on Stock Index FH
LES Long/Short Equity CPI Consumer price index CRR
MFU Managed Futures NAREIT Real estate investment trust index AD
MUS Multi-Strategy

The column ’Paper’ highlights a paper in which the factor has already been used. FH, C, CRR and AD refer
to Fung and Hsieh (2004), Carhart (1997), Chen et al. (1986) and Ambrose and D’Lima (2016), respectively.

It is well acknowledged in the financial literature that HF strategies (or trading techniques)
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are time-varying. Their changing risk exposures are directly related to market events and
economic fluctuations (see, e.g., Agarwal and Naik (2004), Fung et al. (2008) or Patton et al.
(2015) among others). Hedge fund time-varying risk dynamics has important implications for
performance appraisal. As pointed out by Mitchell and Pulvino (2001), the changes can be
in response to arbitrage opportunities. The cycles of mergers and acquisitions in the 1990s
and the 2000s and the corresponding level of risk arbitrage led by HF are illustrations of these
changing dynamics. In standard linear asset pricing models, the intercept and risk factor
loadings are not constant but time-varying. Moreover, HF returns exhibit significant non-
linearities. Therefore, there is a need of dynamic models able to capture non-linearities and
changes in risk exposures.
Following Meligkotsidou and Vrontos (2008), we suggest the use of CP risk factor models. This
class of models is suited for studying the changes in risk exposures and their time-varying
parameters. However, instead of directly focusing on the twelve factors, we take a slightly
different approach since we additionally take into account autocorrelations of the returns.6

To do so, we first look at the best autoregressive model that fits the returns. In particular,
for each HF returns, we estimate ARX(q) models with q ranging from 0 to 4 and in which
the explanatory variables are the twelve factors (and an intercept) and we select the best AR
order using the Bayesian information criterion (BIC). Table 3.6 documents the best order for
each strategy.

Table 3.6 – Order of the optimal ARX-model for each HF strategy

Strat. HFI CNV DSB EME EMN EDR EDD
Lag order 0 1 0 1 0 1 2
Strat. EDM EDRA FIA GMA LES MFU MUS
Lag order 1 1 1 0 1 0 0

The optimal AR order is chosen by maximizing the Bayesian information
criterion over the whole sample. When looking for the best autoregressive lag
order, the explanatory variables include the seven factors and an intercept.

As reported by Fung and Hsieh (2004), composites obtained from the individual funds may
be contaminated with severe survivorship, selection and instant history biases. Therefore, to
avoid these problems, we use the Credit Suisse indices that provide full transparency about
their constituents.

Section 3.7.1 discusses in-sample results of our selective segmentation method and we compare
them to those of standard CP models and time-varying parameter models. We then illustrate
the difference of our approach with the CP method of Meligkotsidou and Vrontos (2008) in
Section 3.7.2. Section 3.7.3 documents a forecasting exercise in which we assess the predictive
performance of the selective segmentation approach with respect to flexible alternatives. Im-

6As reported by Getmansky et al. (2004), the analysis of serial dependence of returns is a reasonable way
of assessing the liquidity of hedge fund investments.
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portantly, all the subsequent results include the optimal AR order documented in Table 3.6
as additional explanatory variables.

3.7.1 Hedge funds strategies evolve over time

Fung and Hsieh (2004) focus on linear models. However, as the period covers critical events
such as the Long Term Capital Management (LTCM) collapse, the dot-com crisis and the
global financial crisis (GFC), one could argue that CP models are more appropriate. In this
Section, we focus on two specific indices, namely the Hedge Fund Index (HFI) and the HF
returns that are applying a Fixed-Income Arbitrage (FIA) strategy. Results for all the other
returns are available upon request.
Tables 3.7 and 3.8 show how the selective segmentation method can improve the interpreta-
tion of CP models. The Tables document how the results evolve from a standard linear risk
model to a selective segmentation model passing by a standard CP process. As expected, for
the two HF returns, ignoring breakpoints can be misleading as the CP results emphasize that
they modify the risk exposition of the returns. Also, although one can study in details the
results of the standard CP model, the selective segmentation model offers a straightforward
picture of the relevant risk factors and how the risk exposition evolves. It also estimates more
accurately the parameters that do not change when a break occurs. As the CP model detects
three breakpoints for the HFI and six abrupt changes for the FIA strategy, the number of
models to consider amounts to 236 and 284 respectively. Our selective segmentation strat-
egy explores these large model spaces and find the most promising configurations in several
minutes on a standard laptop. Let us now discuss in more details the results of the two returns.

Hedge Fund Index
As documented in Table 3.7, the CP model with breakpoints determined by the approach in
Section 3.5.1 finds four regimes (hereafter CP-YZ). The relevant breakpoints occur in April
2000, in December 2001 and in August 2014. Interestingly, these dates coincide with the dot-
com crash that spanned from March 2000 to October 2002 and when stocks suffer steepest
drop in 2014 (introducing the first significant stock market scares after the GFC). It is well
acknowledged in the financial literature that the end of the dot-com bubble had important
consequences for financial markets in the early 2000s. While all the parameters change for the
CP model, the selective segmentation mainly identifies that the factors related to the breaks
are the market factor (PMKT), the default risk factor (DEF), the momentum risk factor
(UMD) and the real estate risk factor (NAREIT). Moreover, it discards two spurious breaks
occurring in December 2001 and in August 2014 making the model even more parsimonious.
We can notice that the market factor decreases from 0.34 during the first period to 0.21 during
the second period. HFI is indeed more conservative during the 2000s and less correlated with
the financial markets. We observe the same trend for the default risk factor increasing from
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-9.15 to -2.42. The momentum factor, UMD, sharply declines after the nineties known as very
volatile as reported by Shiller (2015) and documented by Campbell (2000) who both highlight
the bullish market of this decade. The momentum is still significant since 2000 but its impact
has significantly weakened. It decreases from 0.22 to 0.05. The real estate risk factor also
exhibits a breakdown in the early 2000s. It is indeed well acknowledged in the real estate
economics literature that the 1990s are considered as the new era of real estate investment
trusts (REITs) and the period beginning in the early 2000s as the maturity REITs era (Pagliari
et al. (2005), Ambrose et al. (2007) and Carmichael and Coen (2018) among others). From
the new REITs era to the maturity REITs era, the real estate risk factor declines from 0.15
to -0.01. These results are consistent with the important variations of interest rates during
these two sub-periods and the important increase of credit risk in the 2000s. As a final note,
the credible interval of the breakpoint is narrow which indicates a sharp change in the risk
exposition in March 2000 (see also Figure 3.3).

Table 3.7 – Hedge Fund Index: linear, CP and selective segmentation regression models

Period Int. PMKT SMB TERM DEF PTFSBD PTFSFX PTFSCOM UMD PTFSIR PTFSSTK CPI NAREIT

Standard linear risk model

03-1994 to 03-2016 0.33 0.27 0.07 -0.86 -3.03 -0.01 0.01 0.00 0.11 -0.00 0.02 1.07 -0.01
(0.10) (0.02) (0.03) (0.45) (0.59) (0.01) (0.00) (0.01) (0.02) (0.00) (0.01) (0.32) (0.02)

CP-YZ risk model

03-1994 to 04-2000 0.59 0.34 0.03 -1.46 -10.24 -0.02 0.02 0.02 0.22 -0.02 0.04 0.26 0.16
(0.37) (0.05) (0.05) (1.35) (2.52) (0.01) (0.01) (0.02) (0.06) (0.01) (0.02) (1.56) (0.07)

05-2000 to 12-2001 -0.12 0.17 0.10 -1.19 -0.54 0.00 0.03 -0.04 0.11 0.03 -0.03 0.32 0.00
(0.84) (0.10) (0.15) (3.17) (6.08) (0.03) (0.04) (0.10) (0.11) (0.04) (0.06) (2.48) (0.13)

01-2002 to 08-2014 0.22 0.22 -0.00 -0.71 -2.17 -0.01 0.01 0.00 0.05 -0.01 0.02 1.21 -0.01
(0.17) (0.05) (0.06) (0.76) (0.83) (0.01) (0.01) (0.01) (0.03) (0.01) (0.01) (0.45) (0.03)

09-2014 to 03-2016 -0.40 0.39 -0.06 -1.95 -3.35 0.01 0.03 -0.02 0.19 -0.01 -0.00 -0.93 -0.16
(0.68) (0.21) (0.19) (5.53) (5.64) (0.04) (0.03) (0.03) (0.18) (0.03) (0.03) (1.87) (0.20)

Selective segmentation risk model (77%)

03-1994 to 04-2000 0.24 0.34 0.04 -1.05 -9.15 -0.01 0.01 0.01 0.22 -0.01 0.02 1.20 0.15
[02-2000 05-2000] (0.09) (0.04) (0.02) (0.42) (1.35) (0.01) (0.00) (0.01) (0.04) (0.00) (0.01) (0.29) (0.05)
05-2000 to 03-2016 — 0.21 — — -2.42 — — — 0.05 — — — -0.01

— (0.03) — — (0.54) — — — (0.02) — — — (0.02)

The Table details the parameter estimates of the linear model, of the CP model and of the selective segmentation
process with HFI returns as the dependent variable. Parentheses and brackets indicate standard deviations
and 90% credible intervals, respectively. A cell filled with ’—’ indicates that the parameter does not vary over
the related period. The posterior probability of the selective segmentation model amounts to 77%.

Figure 3.3 shows the posterior medians over time and their corresponding credible intervals
of the parameters related to the MKT, DEF and UMD factors given by our method (see
Section 3.5.2 for the related Bayesian model and how the breakpoints are integrated out) and
the time-varying parameter (TVP) model (see Appendix C.4 for the model specification). As
with the CP model, one can easier interpret the time-varying dynamics of the parameters
given by the selective segmentation method than those of the TVP model. For instance, while
the exposition to the default factor seems fixed over the sample due to the smooth transition
of the parameter, it is clear that the exposition is changing when we look at the selective
segmentation results. Regarding the market factor, we also observe with the TVP model that
the exposition seems different before and after the dot-com crash but the credible intervals
are too wide to confirm the statement.
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(a) SELO - PMKT (b) TVP - PMKT

(c) SELO - DEF (d) TVP - DEF

(e) SELO - UMD (f) TVP - UMD

Figure 3.3 – HFI returns - Selective segmentation (SELO) model and Time-varying parameter
(TVP) model
Posterior medians (black) and the 90% credible intervals (dotted black lines) of the model parameters over
time. For the SELO method, we take the break uncertainty into account using the MCMC algorithm presented
in Section 3.5.2.
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Fixed Income Arbitrage (FIA) strategy
The FIA strategy is based on the exploitation of inefficiencies in the pricing of bonds and
interest rate derivatives (including futures, options, swaps and also mortgage back securities).
It was very appreciated among hedge fund managers until the collapse of the LTCM fund in
September 1998. After this incident, a change of behavior among managers has been observed
for this strategy on financial markets.
The results of the FIA returns from a standard linear regression to the selective segmentation
model are documented in Table 3.8. Focusing on the latter model, breakpoints are detected
in September 1997, in March 1999, August 2000 which are related to the Russia financial
crisis and the dot-com crash. In addition, three other breakpoints capture the financial crisis:
the beginning of the global financial crisis in late June 2007, the turmoil of September and
October 2008 after the collapse of Lehman Brothers and the sovereign debt crisis in the
euro zone. The selective segmentation specification highlights the role played by the market
factor (i.e., PMKT, before and after the global financial crisis with estimates of 0.02 and 0.08
respectively), the variation of the size effect, the default risk factor, the momentum factor,
the inflation factor and four trend following risk factors, especially during the sub-prime crisis
from late June 2007 to October 2008. The size effect changes from 0.02 before the crisis
to -0.05 afterwards. The bond trend following factor, PTFSBD, the currency trend following
factor, PTFSFX, the commodity trend following factor, PTFSCOM and the stock index trend
following factor, PTFSSTK are highly significant during the GFC. The credit spread factor,
DEF, is highly significant and constant after the dot com crisis (estimate amounting to -1.18).
Significant during the first and the second periods related to the bullish market of the 1990s,
the momentum effect, UMD, dramatically changes during the GFC, with a negative estimate
of -0.34 (as expected). Our results also report the impact of inflation risk, CPI, during the
crisis (with an estimate of 2.69) until the sovereign debt crisis (fifth and sixth periods). The
real estate risk factor, NAREIT, is significant and positive during the 1990s (first, second and
third periods) and during the GFC, with a negative estimate (as expected) of -0.16. As shown
by Figures C.2 to C.4 in Appendix C.4.1, the selective segmentation method allows easier
detection of the relevant factors as compared to the TVP model.

3.7.2 Comparison with advanced CP models

We now compare our results with those of Meligkotsidou and Vrontos (2008). Meligkotsidou
and Vrontos (2008) rely on CP models to capture the risk exposition of HF returns over time.
In particular, they consider the 4096 distinct combinations of the twelve risk factors and for
each of them, they estimate a CP model exhibiting several numbers of segments m (from
one to ten). Eventually, they use the marginal likelihood to select the best model among the
set of m × 2K estimated processes (i.e., 40960 models since m = 10 and K = 12). Their
approach consists therefore in first selecting the relevant factors and then, in investigating if
the exposition to them is time-varying.
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Table 3.8 – Fixed Income Arbitrage: linear, CP and selective segmentation risk models

Period Int. AR1 PMKT SMB TERM DEF PTFSBD PTFSFX PTFSCOM UMD PTFSIR PTFSSTK CPI NAREIT

Standard linear risk model

03-1994 to 03-2016 0.12 0.24 0.02 -0.03 -0.99 -3.60 -0.00 -0.01 0.01 -0.00 -0.01 0.01 1.04 0.03
(0.08) (0.04) (0.02) (0.02) (0.33) (0.46) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.24) (0.02)

CP-YZ risk model

03-1994 to 09-1997 0.57 0.43 0.03 -0.05 0.23 0.63 -0.01 -0.00 0.00 0.00 -0.00 0.00 -1.12 0.09
(0.22) (0.13) (0.03) (0.03) (0.68) (2.13) (0.01) (0.00) (0.01) (0.04) (0.01) (0.01) (0.79) (0.03)

10-1997 to 03-1999 -0.21 0.24 0.13 -0.18 -2.09 -14.47 0.04 -0.03 -0.04 0.18 -0.03 0.02 -0.24 0.08
(0.30) (0.07) (0.06) (0.10) (2.79) (4.18) (0.01) (0.01) (0.02) (0.06) (0.01) (0.01) (1.13) (0.07)

04-1999 to 08-2000 1.99 -1.68 0.15 0.10 1.79 -1.31 -0.00 0.03 -0.01 -0.08 0.00 -0.04 -3.13 0.04
(0.90) (0.90) (0.06) (0.05) (1.66) (1.84) (0.02) (0.02) (0.02) (0.06) (0.02) (0.03) (1.95) (0.07)

09-2000 to 05-2007 0.39 0.29 -0.01 0.02 -0.55 -2.41 -0.00 0.01 0.00 -0.02 0.00 0.01 0.25 -0.03
(0.09) (0.08) (0.02) (0.02) (0.37) (0.72) (0.00) (0.00) (0.00) (0.01) (0.00) (0.01) (0.20) (0.02)

06-2007 to 10-2008 -1.89 -0.79 0.49 0.86 -17.65 -9.84 -0.00 -0.10 0.16 -0.10 -0.01 0.00 3.14 -0.66
(0.33) (0.20) (0.10) (0.20) (3.48) (1.94) (0.02) (0.01) (0.02) (0.06) (0.00) (0.02) (0.56) (0.10)

11-2008 to 08-2010 0.99 0.28 0.13 0.16 -0.10 -0.14 0.02 -0.04 0.05 -0.01 -0.03 0.05 3.97 -0.10
(0.21) (0.06) (0.05) (0.07) (0.89) (0.70) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01) (0.73) (0.04)

09-2010 to 03-2016 0.23 0.36 0.05 -0.05 -0.24 -1.52 -0.01 -0.00 0.00 0.01 0.01 -0.00 0.22 -0.01
(0.11) (0.11) (0.03) (0.03) (0.48) (0.71) (0.01) (0.00) (0.00) (0.02) (0.00) (0.00) (0.31) (0.02)

Selective segmentation risk model (100%)

03-1994 to 09-1997 0.23 0.45 0.02 0.02 -0.24 -1.35 -0.00 -0.01 0.00 0.12 -0.00 0.01 0.17 0.07
[10-1996 09-1997] (0.03) (0.07) (0.01) (0.01) (0.25) (1.62) (0.00) (0.00) (0.00) (0.03) (0.01) (0.00) (0.22) (0.02)
10-1997 to 03-1999 — — — — — -10.56 — — — — -0.03 — — —
[01-1999 06-1999] — — — — — (0.97) — — — — (0.01) — — —
04-1999 to 08-2000 — — — — — -1.18 — 0.01 — -0.01 0.00 — — —
[07-2000 05-2003] — — — — — (0.34) — (0.00) — (0.01) (0.00) — — —
09-2000 to 05-2007 — — — — — — — — — — — — — -0.03
[04-2007 06-2007] — — — — — — — — — — — — — (0.02)
06-2007 to 10-2008 — -1.35 0.08 -0.05 — — -0.09 -0.06 0.10 -0.34 — -0.08 2.69 -0.16
[10-2008 10-2008] — (0.24) (0.02) (0.03) — — (0.02) (0.01) (0.01) (0.04) — (0.01) (0.40) (0.03)
11-2008 to 08-2010 — 0.63 — — — — -0.00 -0.01 0.00 -0.00 — 0.00 — -0.01
[06-2010 11-2010] — (0.14) — — — — (0.01) (0.00) (0.00) (0.01) — (0.00) — (0.02)
09-2010 to 03-2016 — 0.19 — — — — — — — — — — 0.21 —

— (0.09) — — — — — — — — — — (0.35) —

The Table details the parameter estimates of the linear model, of the CP model and of the selective segmentation process with
FIA returns as the dependent variable. Parentheses indicate standard deviations and brackets [-] document the 95% credible
intervals of the breakpoints that are computed from the Bayesian model given in Section 3.5.2. A cell filled with ’—’ indicates
that the parameter does not vary over the related period. The posterior probability of the selective segmentation model amounts
to 99.6%.

There is a striking difference with our approach since, for each breakpoint, our procedure can
detect what are the time-varying factors. In fact, our approach discriminates between 2m×K

models; a number of models that exponentially increases with the amount of breaks. Note
that we could also search for the best regressors to include by considering all the 4096 distinct
combinations of the twelve factors. In such a case, the number of models to consider would
reach 2(m+1)×K .
We reproduce the results of Meligkotsidou and Vrontos (2008) on our data by additionally
taking the autocorrelation structure into account. Fixing the AR order q to the value given in
Table 3.6, for each possible combination of the factors, we estimate CP-ARX(q) models with
different numbers of breaks (ranging from 1 to 10) by (globally) minimizing the MDL criterion.
Then, we report the combination of factors exhibiting the best MDL value. Hereafter, we
denote this model by CP-MV.7

7Our approach is slightly different as the one used in Meligkotsidou and Vrontos (2008) since we minimize
the MDL criterion instead of maximizing the marginal likelihood of a Bayesian CP model for finding the
best combination of the factors and the breakpoints. This is motivated by the fact that the MDL criterion
consistently selects the true number of regimes while there is no equivalent proof for the marginal likelihood
used in Meligkotsidou and Vrontos (2008). In addition, Ardia et al. (2019) show that the MDL criterion is
equal to minus the marginal log-likelihood of a CP Bayesian model with particular g-prior distributions. So,
our approach can be understood as the method of Meligkotsidou and Vrontos (2008) with different hyper-
parameters. We globally minimize the MDL criterion using the dynamic programming of Bai and Perron
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Table 3.9 documents the factors of the CP-MV model for the two HF strategies. It also
reports the factors which exhibit significant parameter estimates at least at one period for the
TVP model and the selective segmentation approach. For the HFI, the selected factors by the
selective segmentation methods seem more complete than those of the TVP model in light of
the current literature. While the TVP selects eight risk factors, the selective segmentation
reports the same factors, except the SMB factor, and adds two trend following risk factors,
PTFSBD and PTFSSTK, and the real estate risk factor, NAREIT. For the FIA, the results
are much more contrasted. All risk factors are selected by the selective segmentation methods
whereas five factors are omitted by the TVP (SMB, TERM, PTFSFX, PTFSCOM and UMD).
The CP-MV approach does not select SMB, NAREIT and four trend following risk factors
(PTFSBD, PTFSCOM, PTFSSIR and PTFSSTK) for the HFI. The analysis of the single
strategy, Fixed Income Arbitrage (FIA), also highlights important and significant differences
as far as only two factors are selected, DEF and PTFSFX, by the CP-MV process. It may be
very surprising since the market premium is (almost) always used in linear asset pricing models
as pointed out by Fung and Hsieh (2001). We may also note that the look-back straddles on
commodities, PTFSCOM, on bond, PTFSBD and on stock index and PTFSSTK designed to
capture non-linearities especially during changes in international economic policies, are not
selected whereas the phenomenon is observed just after the GFC.

Table 3.9 – HFI and FIA strategies: Selected factors given several time-varying parameter
models

HFI FIA
TVP Sel. Seg. CP-MV TVP Sel. Seg. CP-MV

PMKT
√ √ √ √ √

SMB
√ √

TERM
√ √ √ √

DEF
√ √ √ √ √ √

PTFSBD
√ √ √

PTFSFX
√ √ √ √ √

PTFSCOM
√

UMD
√ √ √ √

PTFSIR
√ √ √ √

PTFSSTK
√ √ √

CPI
√ √ √ √ √

NAREIT
√ √ √

Selected factors by the TVP, the selective segmentation process and the CP-MV
model of Meligkotsidou and Vrontos (2008). The factors of the latter process are
chosen by minimizing the MDL criterion while for the TVP and the selective
segmentation model, a factor is selected if its related parameter estimate is
significant at least at one period over the sample.

Table 3.9 does not inform on the dynamic of the selected factors by the CP-MV process.
Although the preferred specification of the CP-MV model does not include all the factors, the

(2003).
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risk exposure of the HF strategies is still abruptly changing over time. Regarding the HFI,
two breakpoints are detected and occur in April 2000 and in March 2005, respectively. Table
3.10 shows how the selective segmentation method improves the interpretation of the CP-MV
results. It also illustrates the improvement in economic modelling as far as it highlights the
relative role played by static and dynamic parameters. First, we observe that the alpha, the
currency lookback straddle, PTFSFX, and the consumer prince index, CPI, are quite static
during the full period. Interestingly, the selective segmentation also reports the CP in the
bullish market in the early 2000s. As mentioned earlier, the financial markets were indeed
very volatile during the 1990s. This break is clearly reported by the dynamic risk factors,
PMKT, UMD and DEF. PMKT declines from 0.41 to 0.21 during the 2000s and afterwards.
The trend is more striking for the momentum factor, UMD, with a decline from 0.18 to 0.05,
and for the credit default risk factor, DEF, rising from -11.71 to -2.21. The term structure
risk factor, TERM, is not statistically significant after the rise of the housing price index in
2005-2006, announcing the collapse of the financial markets in 2008 (as anticipated by Shiller
(2015) among others) and the following quantitative easing policies with very low inters rates.

The FIA strategy exhibits seven regimes which makes the CP-MV model heavily parametrized
(i.e.,K×m = 35 parameters). This large number of regimes is probably related to the fact that
more breakpoints are needed to adequately fit the FIA returns since the CP-MV specification
includes only two risk factors, DEF and PTFSFX and/or because in this specific economic
modelling the breakpoints also capture the variance dynamic. Using the selected factors and
the breakpoints of the best CP-MV specification, we estimate the selective segmentation model
to uncover what are the static and the dynamic parameters. First, we must acknowledge
that the best specification selected by the CP-MV model is doubtful with regards to the
financial literature and the practice. Nevertheless, we compare the CP-MV approach with the
selected segmentation to highlight the contribution of the latter. In particular, we observe
that the ’alpha’ is varying and statistically positive during the 1990s until LTCM collapse. As
expected, the default risk factor is negative, time-varying and high during crises (-9.49 during
the LTCM collapse and -6.17 during the GFC). After the GFC, the default factor is constant,
negative and not statistically significant. This result is consistent with the trend observed on
financial markets (especially on fixed incomes markets after the GFC). The currency trend
following factor, PTFSFX, is very low, time-varying and statistically significant during the
global financial crisis (as expected) and before the impact of the quantitative easing policies
starting in the late 2010. After this date (11/2010) the factor is not statistically significant.
This is an illustration of the impact of quantitative easing on fixed income arbitrage.

As illustrated by these empirical results, our method uncovers which parameters truly vary
when a CP is detected. This technical improvement induces financial consequences and es-
pecially cost reductions.8 Moreover, our method should imply more accurate and thus less

8We thank an anonymous referee for this relevant comment.
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frequent portfolio rebalancing strategies. Investor could indeed change his timing by using our
approach and decide to rebalance parsimoniously (and thus efficiently) his investment when a
break is detected, with a special focus on the relevant benchmark.

Table 3.10 – Hedge Fund Index: Best CP-MV model and best selective segmentation model

Preferred CP-MV model Selective segmentation (77%)

Period Int. PMKT TERM DEF PTFSFX UMD CPI Int. PMKT TERM DEF PTFSFX UMD CPI
03-1994 to 04-2000 0.42 0.41 -2.47 -12.13 0.02 0.18 0.52 0.22 0.41 -2.44 -11.71 0.01 0.18 1.17

(0.38) (0.05) (1.28) (2.62) (0.01) (0.06) (1.63) (0.09) (0.03) (0.52) (1.44) (0.00) (0.04) (0.29)
05-2000 to 03-2005 0.44 0.19 -2.20 -2.57 0.02 0.05 0.64 — 0.21 — -2.21 — 0.05 —

(0.34) (0.06) (1.21) (2.21) (0.01) (0.04) (1.11) — (0.02) — (0.54) — (0.02) —
04-2005 to 03-2016 0.11 0.23 0.28 -1.82 0.01 0.05 1.25 — — 0.29 — — — —

(0.18) (0.04) (0.85) (0.91) (0.01) (0.03) (0.51) — — (0.55) — — — —

The Table details the parameter estimates of the preferred CP-MV model and of the selective segmentation
process given the selected factors and the breakpoints found by the CP-MV model. Parentheses indicate
standard deviations. A cell filled with ’—’ indicates that the parameter does not vary over the related period.
The posterior probability of the selective segmentation model amounts to 77%.

Table 3.11 – Fixed Income Arbitrage: Best CP-MV model and best selective segmentation
model

Preferred CP-MV model Selective segmentation (52%)

Period Int. AR1 DEF PTFSFX Int. AR1 DEF PTFSFX
03-1994 to 05-1995 0.23 0.40 7.57 -0.03 0.55 0.36 -0.14 -0.01

(0.23) (0.19) (3.14) (0.01) (0.13) (0.06) (2.04) (0.01)
06-1995 to 08-1997 -0.13 1.28 -0.68 0.00 — — — —

(0.44) (0.53) (2.57) (0.01) — — — —
09-1997 to 11-1998 0.10 -0.23 -7.52 -0.07 0.20 — -9.49 -0.05

(0.08) (0.22) (1.47) (0.02) (0.04) — (1.52) (0.02)
12-1998 to 02-2008 0.29 0.38 -1.46 0.00 — — -1.52 0.00

(0.09) (0.08) (0.48) (0.00) — — (0.59) (0.00)
03-2008 to 05-2009 0.04 -0.41 -6.97 -0.03 — — -6.17 -0.04

(0.05) (0.20) (0.51) (0.01) — — (0.54) (0.01)
06-2009 to 10-2010 0.06 1.23 0.09 -0.05 — — -0.99 —

(0.21) (0.35) (0.94) (0.01) — — (0.56) —
11-2010 to 03-2016 0.28 0.24 -1.91 -0.01 — — — -0.01

(0.16) (0.10) (0.73) (0.00) — — — (0.01)

The Table details the parameter estimates of the preferred CP-MV model and of the selective
segmentation process given the selected factors and the breakpoints found by the CP-MV model.
Parentheses indicate standard deviations. A cell filled with ’—’ indicates that the parameter does not
vary over the related period. The posterior probability of the selective segmentation model amounts
to 52%.

3.7.3 Out-of-sample

Sections 3.7.1 and 3.7.2 highlight the in-sample advantages of detecting which parameter truly
varies when a break is detected. In addition to that, since the selective segmentation method
can more accurately estimate parameters that do not change when a break occurs, we could
also expect some prediction gains with respect to the standard CP model. In this Section,
we investigate this aspect using the root mean squared forecast errors (RMSFE) and the
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cumulative log predictive density (CLPD), two standard loss functions specified as,

RMSFE =

√√√√ 1

T − t

T∑
t=t+1

(yt − ŷt)2, and CLPD =

T∑
t=t+1

log f(yt|y1:t−1,xt),

in which ŷt is the conditional mean of yt given the information up to period t, f(yt|y1:t−1,xt)

denotes the predictive density of the model and t+1 denotes the beginning of the out-of-sample
forecasting period. In our prediction exercise, the training set is fixed to 20% of the sample
size and the 80% remaining observations are used to assess the forecast performance (i.e.,
t = 0.2T ). Since our data comprise 265 monthly returns, the out-of-sample set of observations
amounts to 212 months. Each time we move forward by one month, all the considered models
are re-estimated and a forecast for the next period is produced.
As competitors to our model, we consider three other processes: i) a linear regression, ii) a
standard CP model with breakpoints determined by the modified method of Yau and Zhao
(2016) documented in Section 3.5.1 (hereafter CP-YZ), iii) a CP model with the number
and the locations of the breakpoints selected by minimizing the MDL criterion (hereafter CP-
MDL).9 The minimization of the MDL criterion is carried out using the dynamic programming
of Bai and Perron (2003).10 In addition to the factors and an intercept, we also account for
the autocorrelation of the HF returns by fixing the AR order to the value given in Table 3.6.
Regarding the CLPD metric, we assume a normal distribution for the error term and we also
use the prior distributions given in Equation (3.13) for the linear and the full CP models.

Table 3.12 documents the RMSFE and the CLPD criteria for all the Credit Suisse HF returns.
For both metrics, we observe that the linear model dominates at least half of the times. Overall,
the selective segmentation method improves the RMSFE and the CLPD for 6 and 5 out of 14
HF returns, respectively. Importantly, Table 3.12 highlights that the selective segmentation
process provides the most robust predictions. In particular, our approach delivers at least
the second best predictive performance for all the HF returns. This is evidence that model
averaging stabilizes the forecast by reducing its variance as argued in Rapach et al. (2009).
Interestingly, our method compares extremely well with respect to the two CP models since it
outperforms them 13 out of 14 HF returns for both metrics. Since the CP models are based on
the same breakpoints as the selective segmentation processes, it is remarkable that the latter
models almost systematically dominate CP models where all the parameters are time-varying.
From this small sample of series, we could argue that the selective segmentation approach
should replace the CP process as it would likely improve the forecast performance.

9We do not compare with the CP model of Meligkotsidou and Vrontos (2008) since the model is compu-
tationally too involved due to the number of explanatory variables. When an AR(2) model is selected, the
number of models to consider at each iteration of the prediction exercise amounts to 10× 215 = 327680.

10See Eckley et al. (2011) for a discussion on the implementation of the algorithm for the MDL criterion.

Minimum regime duration is set to
3

2
(K+1) to avoid capturing outliers. This choice is in favor of the standard

CP model as the parameter estimates of the new regimes are based on at least
3

2
(K + 1) observations.

99



Table 3.12 – RMSFE and CLPD for the fourteen HF strategies (t = 0.2T )

RMSFE

Series HFI CNV DSB EME EMN EDR EDD

Linear 1.41 1.63 2.80 2.99 2.95 1.40 1.54*
CP-MDL 1.41 1.92 2.95 2.88 4.12 1.62 1.84
SELO-MDL 1.30* 1.84* 2.88* 2.91* 3.95* 1.52 1.53
CP-Yau 1.70 2.63 4.03 3.90 6.06 3.24 2.89
SELO-Yau 1.28 2.07 3.08 2.93 5.26 1.50* 1.55

Series EDM EDRA FIA GMA LES MFU MUS

Linear 1.56 1.06* 1.22 2.57 1.52 3.31* 1.21
CP-MDL 1.72 1.12 1.36 2.57 1.64 3.50 1.40
SELO-MDL 1.61 1.07 1.33* 2.39 1.49* 3.31 1.30*
CP-Yau 2.29 2.39 5.66 3.23 2.69 4.28 1.83
SELO-Yau 1.60* 1.06 1.57 2.45* 1.47 3.31 1.40

CLPD

Series HFI CNV DSB EME EMN EDR EDD

Linear -365.63 -401.02 -513.39 -527.76 -547.17 -356.96 -360.72
CP-MDL -359.08 -444.16 -526.48 -515.71 -713.12 -433.56 -389.30
SELO-MDL -347.80 -434.44 -519.29* -516.35* -688.23* -402.20 -353.99*
CP-Yau -366.11 -483.20 -570.98 -565.77 -916.15 -482.06 -439.75
SELO-Yau -347.83* -434.19* -529.15 -519.49 -932.26 -395.13* -346.94

Series EDM EDRA FIA GMA LES MFU MUS

Linear -375.00 -301.93* -329.73 -490.10 -382.79 -553.71 -330.48
CP-MDL -445.12 -307.96 -377.46 -484.06 -387.78 -564.47 -343.62
SELO-MDL -389.83 -303.77 -352.53* -467.38 -369.13* -555.02 -339.35
CP-Yau -460.95 -426.12 -472.99 -492.14 -464.27 -606.26 -368.72
SELO-Yau -384.86* -301.57 -380.37 -472.48* -364.02 -554.74* -337.58*

The Table details the RMSFE and the CLPD for five processes. Bold values indicate the model
that delivers the best prediction performance. A star points out the second best model.

3.8 Conclusion

Since the seminal work of Chernoff and Zacks (1964), many CP detection methods for linear
models have been proposed. Most of these CP models have in common to assume, at least
in practice, that all the model parameters have to change when a break is detected. In this
paper, we propose to go beyond this standard framework by capturing which parameters vary
when a structural break occurs. Even when conditioning to the break dates, detecting the
parameters that vary from one segment to the next is not straightforward since the number
of possibilities grows exponentially with the number of breaks and the number of explanatory
variables. To solve this dimensional problem, we propose a penalized regression method to
explore the model space and we select the best specification by maximizing a criterion that
can be interpreted as a marginal likelihood in the Bayesian paradigm.
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To carry out the model space exploration, we use an almost unbiased penalty function, a
desirable property in CP frameworks that is not exhibited by standard penalty functions (e.g.,
LASSO and Ridge estimators). Also, we prove the consistency of our estimator and we show
how to estimate it using the DAEM algorithm. To apply the DAEM algorithm in our con-
text, we transform the penalty function into a mixture of Normal distributions. This simple
transformation greatly speeds the estimation as the DAEM algorithm iterates over closed-form
expressions.
Once the promising models have been uncovered by the penalized regression approach, select-
ing the parameters of the penalty function is carried out by maximizing a marginal likelihood.
Thanks to the Bayesian interpretation of this consistent criterion, we can take model uncer-
tainty into account and can do Bayesian model averaging, a feature that generally improves
forecast performance. A simulation study highlights that our selective segmentation method
works well in practice for a range of diversified data generating processes.
We illustrate our approach with HF returns. The selective segmentation model has two main
advantages. First, as the standard CP models, it detects the breakpoints and the correspond-
ing regimes. Second, it highlights the time-varying dynamics of the changing risk factors.
When we compare our model with previous advanced CP models, we observe that it is par-
ticularly appealing to capture the time-varying dynamics of risk exposures. Then, we test the
predictive performance of the selective segmentation approach with respect to the linear regres-
sion and standard CP processes. We note that our method produces the most robust forecasts
and almost systematically dominates the CP processes based on the same breakpoints. These
encouraging results suggest promising developments and applications in financial economics.
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Conclusion

This dissertation contributes to the literature on social interactions and time series modelling.
It develops new promising models to estimate peer effects and analyse long time series. It
is structured in three (03) separate and independent chapters. The first chapter studies a
method for estimating peer effects through social networks when researchers do not observe
the network structure. The second chapter presents a structural model of peer effects in
which the dependent variable is counting. The third chapter presents a time series modelling
approach through the linear-in-means specification by relaxing the assumption that a break
triggers a change in all the model parameters.

The first chapter shows that the estimation of the linear-in-means peer effects model is possi-
ble when the researchers have (a consistent estimator of) the distribution of the network and
not the network data itself. It presents an estimation strategy that adapts the instrumental
variables procedure used to estimate this model when the network structure is observed. In-
deed, one can construct valid instruments using the distribution of the network. However, the
instrumental variable estimator is only valid if the researcher also observes peer characteris-
tics. For example, consider a binary variable (e.g. gender). One can obtain information on
peers by asking questions such as “What fraction of your friends are female?”. For continuous
variables (e.g., age), one can obtain peer characteristics by asking about the average age of
one’s friends. This chapter also presents a Bayesian estimator which does not require observ-
ing peer characteristics. In this case, the assumed distribution of the network acts as a prior
distribution, and the inferred network structure is updated through the MCMC algorithm.
There remains one important challenge about the approach developed in this chapter, in par-
ticular with respect to the study of compatible models to estimate the distribution of the
network.

The second chapter studies a social network model for count data. Counting variables are
present in most survey data (e.g., Number of cigarettes smoked, frequency of restaurant visits,
frequency of participation in activities). The analysis of peer effects using count data are
often carried out using standard approaches, such as the linear-in-means spatial autoregres-
sive (SAR) model or the SAR Tobit (SART) model. I develop a structural network model in
which the outcome is a counting variable. I show that estimating peer effects on this counting
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variable using the SAR or SART model asymptotically underestimates the peer effects. The
estimation bias decreases when the range of the dependent variable increases.
Moreover, It is shown that the model generalizes the rational expectations model of peer ef-
fects for binary data. The model estimation is straightforward and does not require computing
the equilibrium of the game. I also show that the model is flexible in terms of dispersion fit-
ting and allows equidispersion, overdispersion, and underdispersion as the generalized Poisson
model. However, the model does not consider zero inflated specifications for data that contain
structural and sampled zeros. One important example is the number of cigarettes smoked
during a period time, where the zeros might denote non-smokers (structural zeros) or smokers
who did not smoke during the period (sampled zeros).

The third chapter addresses an issue in time series modelling. Most change point (CP) models
developed in the literature have in common to assume, at least in practice, that all the model
parameters have to change when a break is detected. This chapter goes beyond this stan-
dard framework by capturing which parameters vary when a structural break occurs. Even
when conditioning on the break dates, detecting the parameters that vary from one segment
to the next is not straightforward since the number of possibilities grows exponentially with
the number of breaks and the number of explanatory variables. To solve this dimensional
problem, a penalized regression method is used to explore the model space and select the best
specification by maximizing a criterion that can be interpreted as a marginal likelihood in the
Bayesian paradigm.
A penalty function is used to carry out the model space exploration. This penalty function
is almost unbiased, a desirable property in CP frameworks that is not exhibited by standard
penalty functions (e.g., LASSO and Ridge estimators). Once the promising models have been
uncovered by the penalized regression approach, selecting the parameters of the penalty func-
tion is carried out by maximizing a marginal likelihood. Thanks to the Bayesian interpretation
of this consistent criterion, one can also take the model uncertainty into account and can do
Bayesian model averaging, a feature that generally improves forecast performance.
This approach is illustrated with Hedge Funds returns. It produces the most robust forecasts
and almost systematically dominates the CP processes based on the same breakpoints. How-
ever, although the approach works well for many time series models including heteroskedastic
processes in practice, all the theoretical results are based on the assumption of homoskedas-
ticity.
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Appendix A

Chapter 1 of appendix

A.1 Proof of Proposition 1.1

The model can be written as:

y = [I− αG]−1[Xβ + ε].

Or, using the geometric expansion:

y =

∞∑
k=0

αkGkXβ +

∞∑
k=0

αkGkε

or

Gy =

∞∑
k=0

αkGk+1Xβ +

∞∑
k=0

αkGk+1ε.

As such, any variable correlated with GX, G2X,... is also correlated with Gy, conditional on
X. It remains to show that such variables are valid. For the first part of Proposition 1.1, we
need:

E[ε|X,HX,H2X, ...] = 0,

which is true by assumption. For the second part of Proposition 1.1, we need:

E[ε+ η|X, ĜX, Ĝ2X, ...] = 0.

By Assumption A.5., this is equivalent to:

E[η|X, ĜX, Ĝ2X, ...] = 0,

which is equivalent to:

E[Gy|X, ĜX, Ĝ2X, ...] = E[G̃y|X, ĜX, Ĝ2X, ...].
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Using iterated expectations:

EyE[Gy|X, ĜX, Ĝ2X, ...,y]|X, ĜX, Ĝ2X, ... = E[G|X, ĜX, Ĝ2X, ...]E[y|X, ĜX, Ĝ2X, ...],

and so E[Gy|X, ĜX, Ĝ2X, ...] = E[G̃y|X, ĜX, Ĝ2X, ...] follows since G Ĝ and G̃ are iid,
which implies that E[G|X, ĜX, Ĝ2X, ...] = E[G̃|X, ĜX, Ĝ2X, ...].

A.2 Proof of Proposition 1.2

The model can be written as:

y = [I− αG]−1[Xβ + GXγ + ε].

Or, using the geometric expansion:

y =
∞∑
k=0

αkGkXβ +
∞∑
k=0

αkGkGXγ +
∞∑
k=0

αkGkε

or

Gy =
∞∑
k=0

αkGk+1Xβ +
∞∑
k=0

αkGk+2Xγ +
∞∑
k=0

αkGk+1ε.

As such, any variable correlated with G2X, G3X,... is also correlated with Gy, conditional on
X and GX. It remains to show that such variables are valid. For the first part of Proposition
1.2, we need:

E[ε|X,GX,H2X,H3X, ...] = 0,

which is true by assumption. For the second part of Proposition 1.2, we need:

E[ε+ η|X,GX, G̃X, Ĝ2X, Ĝ3X, ...] = 0.

By Assumption A.5., this is equivalent to:

E[η|X,GX, G̃X, Ĝ2X, Ĝ3X, ...] = 0,

which is equivalent to:

E[Gy|X,GX, G̃X, Ĝ2X, Ĝ3X, ...] = E[G̃y|X,GX, G̃X, Ĝ2X, Ĝ3X, ...].

Using iterated expectations:

EyE[Gy|X,GX, G̃X, Ĝ2X, Ĝ3X, ...,y]|X,GX, G̃X, Ĝ2X, Ĝ3X, ...

= E[G|X,GX, G̃X, Ĝ2X, Ĝ3X, ...]E[y|X,GX, G̃X, Ĝ2X, Ĝ3X, ...],

and so E[Gy|X,GX, G̃X, Ĝ2X, Ĝ3X, ...] = E[G̃y|X,GX, G̃X, Ĝ2X, Ĝ3X, ...] follows since
G Ĝ and G̃ are iid, which implies that
E[G|X,GX, G̃X, Ĝ2X, Ĝ3X, ...] = E[G̃|X,GX, G̃X, Ĝ2X, Ĝ3X, ...].

105



A.3 Additional Monte-Carlo Results

Table A.1 – Simulation results without contextual effects (2)

Statistic Mean Std. Dev. Pctl(25) Median Pctl(75)

N = 50, M = 100 - Gy is Observed

Estimation results

Intercept = 2 2.011 0.263 1.844 2.007 2.182
α = 0.4 0.399 0.014 0.390 0.400 0.409
β1 = 1 1.000 0.003 0.998 1.000 1.002
β2 = 1.5 1.500 0.006 1.496 1.500 1.504

Tests

F -test 1, 302.788 232.211 1, 145.790 1, 289.808 1, 445.453
Hausman 1.210 1.713 0.099 0.509 1.642
Sargan 0.970 1.382 0.095 0.420 1.300

N = 50, M = 100 - Gy is not observed - same draw

Estimation results

Intercept = 2 4.843 0.324 4.630 4.828 5.044
α = 0.4 0.244 0.017 0.234 0.245 0.256
β1 = 1 1.002 0.003 1.000 1.002 1.004
β2 = 1.5 1.503 0.007 1.498 1.503 1.507

Tests

F -test 26, 588.232 21, 13.817 25, 076.054 26, 534.073 27, 959.250
Hausman 339.782 44.092 310.264 338.783 368.245
Sargan 2.261 3.229 0.237 1.067 3.085

Validity

cor(ηi, x̂i,1) −0.403 0.019 −0.416 −0.403 −0.390
cor(ηi, x̂i,2) −0.296 0.017 −0.307 −0.296 −0.284

N = 50, M = 100 - Gy is not observed - different draws

Estimation results

Intercept = 2 2.018 0.302 1.828 2.020 2.213
α = 0.4 0.399 0.016 0.389 0.399 0.409
β1 = 1 1.000 0.003 0.998 1.000 1.002
β2 = 1.5 1.500 0.007 1.495 1.500 1.505

Tests

F -test 1, 311.739 231.331 1, 150.204 1, 305.262 1, 457.470
Hausman 71.466 18.214 58.611 70.960 82.160
Sargan 1.000 1.365 0.095 0.456 1.389

Validity

cor(ηi, x̂i,1) −0.001 0.015 −0.011 0.000 0.009
cor(ηi, x̂i,2) −0.001 0.014 −0.010 −0.001 0.009

This table presents additional Monte Carlo results where the model does not include contextual
effects (see Table 1.1). The number of simulations is 1,000 and λ = +∞. The instruments used are
GX if Gy is observed, ĜX if Gy is not observed and approximated by G̃y.
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Table A.2 – Simulation results without contextual effects (3)

Statistic Mean Std. Dev. Pctl(25) Median Pctl(75)

N = 50, M = 100 - Gy is Observed

Estimation results

Intercept = 2 2.001 0.188 1.867 1.990 2.125
α = 0.4 0.400 0.010 0.393 0.401 0.407
β1 = 1 1.000 0.003 0.998 1.000 1.002
β2 = 1.5 1.500 0.006 1.496 1.500 1.504

Tests

F -test 2, 776.682 416.894 2, 489.415 2, 755.846 3, 036.762
Hausman 1.673 2.285 0.157 0.756 2.307
Sargan 2.889 2.356 1.156 2.274 3.959

N = 50, M = 100 - Gy is not observed - same draw

Estimation results

Intercept = 2 3.719 0.274 3.520 3.702 3.905
α = 0.4 0.306 0.015 0.296 0.307 0.316
β1 = 1 1.001 0.003 0.999 1.001 1.003
β2 = 1.5 1.502 0.006 1.498 1.502 1.506

Tests

F -test 38, 566.204 5, 520.495 34, 806.901 38, 162.018 42, 221.999
Hausman 21.208 11.433 13.058 19.173 28.217
Sargan 247.860 32.667 225.385 246.456 268.697

Validity

cor(ηi, ˆ̂xi,1) 0.000 0.014 −0.009 0.000 0.009

cor(ηi, ˆ̂xi,2) 0.000 0.014 −0.010 0.000 0.010

N = 50, M = 100 - Gy is not observed - different draws

Estimation results

Intercept = 2 2.002 0.202 1.857 1.999 2.137
α = 0.4 0.400 0.011 0.392 0.400 0.408
β1 = 1 1.000 0.003 0.998 1.000 1.002
β2 = 1.5 1.500 0.006 1.496 1.500 1.504

Tests

F -test 2, 798.114 418.630 2, 508.203 2, 795.093 3, 071.257
Hausman 218.584 34.913 192.694 217.089 240.687
Sargan 2.828 2.232 1.112 2.293 3.888

Validity

cor(ηi, ˆ̂xi,1) 0.000 0.014 −0.009 0.000 0.009

cor(ηi, ˆ̂xi,2) 0.000 0.014 −0.010 0.000 0.010

This table presents additional Monte Carlo results where the model does not include contextual
effects (see Table 1.1). The number of simulations is 1,000 and λ = 1. The instruments used are{

(G̃)kX, k = 1, 2
}
.
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Table A.3 – Simulation results without contextual effects (4)

Statistic Mean Std. Dev. Pctl(25) Median Pctl(75)

N = 50, M = 100 - Gy is Observed

Estimation results

Intercept = 2 2.003 0.190 1.877 1.997 2.126
α = 0.4 0.400 0.010 0.393 0.400 0.407
β1 = 1 1.000 0.003 0.998 1.000 1.002
β2 = 1.5 1.500 0.006 1.496 1.500 1.504

Tests

F -test 2, 582.805 396.149 2, 310.803 2, 566.537 2, 834.415
Hausman 1.648 2.135 0.175 0.803 2.350
Sargan 2.962 2.547 1.153 2.313 4.007

N = 50, M = 100 - Gy is not observed - same draw

Estimation results

Intercept = 2 4.088 0.312 3.885 4.068 4.283
α = 0.4 0.285 0.017 0.275 0.287 0.296
β1 = 1 1.001 0.003 0.999 1.001 1.004
β2 = 1.5 1.502 0.007 1.498 1.502 1.507

Tests

F -test 37, 084.837 5, 430.758 33, 178.701 36, 580.801 40, 451.244
Hausman 24.804 12.850 15.008 23.435 32.737
Sargan 351.747 38.676 327.470 349.879 376.039

Validity

cor(ηi, ˆ̂xi,1) 0.000 0.015 −0.011 −0.001 0.010

cor(ηi, ˆ̂xi,2) 0.000 0.014 −0.010 0.000 0.010

N = 50, M = 100 - Gy is not observed - different draws

Estimation results

Intercept = 2 2.006 0.216 1.866 2.010 2.143
α = 0.4 0.400 0.012 0.392 0.400 0.407
β1 = 1 1.000 0.003 0.998 1.000 1.002
β2 = 1.5 1.500 0.007 1.495 1.500 1.505

Tests

F -test 2, 605.493 395.108 2, 339.618 2, 608.021 2, 860.739
Hausman 298.171 43.582 267.427 296.419 325.031
Sargan 3.001 2.464 1.170 2.417 4.076

Validity

cor(ηi, ˆ̂xi,1) 0.000 0.015 −0.011 −0.001 0.010

cor(ηi, ˆ̂xi,2) 0.000 0.014 −0.010 0.000 0.010

This table presents additional Monte Carlo results where the model does not include contextual
effects (see Table 1.1). The number of simulations is 1,000 and λ = +∞. The instruments used are{

(G̃)kX, k = 1, 2
}
.
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Table A.4 – Simulation results with contextual effects (2)

Statistic Mean Std. Dev. Pctl(25) Median Pctl(75)

N = 50, M = 100 - Instrument: (G̃)2X - Gy is observed

Estimation results

Intercept = 2 2.004 0.181 1.880 2.007 2.126
α = 0.4 0.400 0.003 0.398 0.400 0.402
β1 = 1 1.000 0.003 0.998 1.000 1.002
β2 = 1.5 1.500 0.006 1.496 1.500 1.504
γ1 = 5 5.001 0.021 4.987 5.001 5.015
γ2 = −3 −3.001 0.029 −3.020 −3.001 −2.981

Tests

F -test 16, 233.492 1, 898.917 14, 917.312 16, 163.443 17, 491.015
Hausman 1.239 1.768 0.102 0.504 1.627
Sargan 1.005 1.364 0.104 0.487 1.289

N = 50, M = 100 - Instrument: (Ĝ)2X - Gy is not observed

Estimation results

Intercept = 2 2.002 0.217 1.855 2.005 2.150
α = 0.4 0.400 0.004 0.397 0.400 0.403
β1 = 1 1.000 0.003 0.998 1.000 1.002
β2 = 1.5 1.500 0.006 1.496 1.500 1.504
γ1 = 5 5.357 0.021 5.343 5.357 5.371
γ2 = −3 −2.380 0.037 −2.405 −2.381 −2.357
γ̂1 = 0 −0.356 0.024 −0.372 −0.356 −0.340
γ̂2 = 0 −0.620 0.035 −0.642 −0.621 −0.597

Tests

F -test 10, 741.676 1, 124.978 9, 978.928 10, 687.760 11, 475.206
Hausman 22.119 10.011 14.423 21.247 28.586
Sargan 0.956 1.304 0.107 0.464 1.263

This table presents additional Monte Carlo results where the model includes contextual effects (see
Table 1.2). The number of simulations is 1,000 and λ = +∞.

109



Table A.5 – Simulation results with subpopulation unobserved fixed effects

Statistic Mean Std. Dev. Pctl(25) Median Pctl(75)

N = 50, M = 100 - Instrument: J(G̃)2X - ŷ is observed

Estimation results

α = 0.4 0.379 1.703 −0.122 0.398 0.938
β1 = 1 1.000 0.005 0.997 1.000 1.003
β2 = 1.5 1.500 0.009 1.496 1.500 1.505
γ1 = 5 5.018 1.318 4.584 5.001 5.415
γ2 = −3 −2.967 2.710 −3.861 −2.998 −2.156

Tests

F -test 2.860 2.270 1.132 2.364 4.045
Hausman 1.029 1.398 0.105 0.484 1.392
Sargan 0.820 1.184 0.066 0.335 1.078

N = 50, M = 100 - Instrument: J(Ĝ)2X - ŷ is not observed

Estimation results

α = 0.4 0.345 1.609 −0.246 0.265 0.869
β1 = 1 1.000 0.005 0.997 1.000 1.002
β2 = 1.5 1.500 0.008 1.495 1.500 1.505
γ1 = 5 5.351 0.170 5.284 5.343 5.408
γ2 = −3 −2.378 0.123 −2.416 −2.373 −2.331
γ̂1 = 0 −0.307 1.442 −0.769 −0.236 0.237
γ̂2 = 0 −0.534 2.490 −1.346 −0.407 0.398

Tests

F -test 2.773 2.189 1.072 2.304 3.773
Hausman 1.114 1.563 0.105 0.525 1.483
Sargan 0.889 1.329 0.083 0.381 1.206

This table presents additional Monte Carlo results where the model includes
fixed effects (see Section 1.3.1). The number of simulations is 1,000 and λ = 1.
In each group, the fixed effects are generated as 0.3x1,1 + 0.3x3,2 − 1.8x50,2.

110



Table A.6 – Simulation results with subpopulation unobserved fixed effects (2)

Statistic Mean Std. Dev. Pctl(25) Median Pctl(75)

N = 50, M = 100 - Instrument: J(G̃)2X - ŷ is observed

Estimation results

α = 0.4 0.623 4.670 −0.475 0.341 1.345
β1 = 1 1.001 0.015 0.997 1.000 1.003
β2 = 1.5 1.499 0.019 1.494 1.500 1.504
γ1 = 5 4.826 3.644 4.263 5.042 5.688
γ2 = −3 −3.357 7.485 −4.491 −2.913 −1.572

Tests

F -test 1.025 1.023 0.293 0.710 1.451
Hausman 0.979 1.527 0.090 0.396 1.264
Sargan 0.665 1.184 0.042 0.203 0.801

N = 50, M = 100 - Instrument: J(Ĝ)2X - ŷ is not observed

Estimation results

α = 0.4 −0.071 3.561 −0.949 −0.047 0.876
β1 = 1 0.999 0.010 0.996 0.999 1.002
β2 = 1.5 1.500 0.018 1.495 1.501 1.506
γ1 = 5 5.305 0.377 5.208 5.306 5.406
γ2 = −3 −2.364 0.192 −2.411 −2.355 −2.306
γ̂1 = 0 0.062 3.183 −0.777 0.051 0.846
γ̂2 = 0 0.117 5.512 −1.360 0.062 1.459

Tests

F -test 1.063 1.046 0.329 0.741 1.486
Hausman 0.993 1.499 0.095 0.409 1.255
Sargan 0.670 1.117 0.041 0.207 0.817

This table presents additional Monte Carlo results where the model includes
fixed effects (see Section 1.3.1). The number of simulations is 1,000 and λ =∞.
In each group, the fixed effects are generated as 0.3x1,1 + 0.3x3,2 − 1.8x50,2.
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Table A.7 – Simulation results with ARD: without contextual effects (1,000 replications)

Statistic Mean Std. Dev. Pctl(25) Median Pctl(75)

N = 250, M = 20 - Instrument: G̃X - Gy is observed
Estimation results

Intercept = 2 2.031 0.941 1.471 2.048 2.608
α = 0.4 0.398 0.051 0.368 0.397 0.429
β1 = 1 1.000 0.003 0.998 1.000 1.002
β2 = 1.5 1.500 0.006 1.496 1.500 1.504

Tests
F -test 152.722 63.626 104.971 145.232 189.435
Hausman 1.037 1.467 0.098 0.435 1.352
Sargan 1.003 1.407 0.096 0.422 1.335

N = 250, M = 20 - Instrument:
{(

G̃
)k

X, k = 1, 2

}
-Gy is observed

Estimation results
Intercept = 2 1.999 0.429 1.721 1.985 2.254
α = 0.4 0.400 0.023 0.386 0.400 0.415
β1 = 1 1.000 0.003 0.998 1.000 1.002
β2 = 1.5 1.500 0.006 1.496 1.500 1.504

Tests
F -test 427.225 146.605 319.567 417.901 517.949
Hausman 1.026 1.467 0.116 0.491 1.339
Sargan 3.000 2.442 1.218 2.342 4.089

N = 250, M = 20 - Instrument: ĜX - Gy is not observed
Estimation results

Intercept = 2 1.854 1.117 1.182 1.879 2.569
α = 0.4 0.408 0.061 0.368 0.407 0.445
β1 = 1 1.000 0.003 0.998 1.000 1.002
β2 = 1.5 1.500 0.007 1.496 1.500 1.505

Tests
F -test 144.813 60.270 100.244 138.238 178.694
Hausman 30.339 14.849 19.275 27.985 39.404
Sargan 1.105 1.576 0.109 0.506 1.450

N = 250, M = 20 - Instrument:
{(

Ĝ
)k

X, k = 1, 2

}
- Gy is not observed

Estimation results
Intercept = 2 1.969 0.531 1.599 1.962 2.318
α = 0.4 0.402 0.029 0.383 0.402 0.422
β1 = 1 1.000 0.003 0.998 1.000 1.002
β2 = 1.5 1.500 0.007 1.496 1.500 1.505

Tests
F -test 419.464 142.058 314.376 407.311 505.246
Hausman 171.162 53.370 133.847 169.651 205.461
Sargan 3.274 2.575 1.346 2.613 4.443
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Table A.8 – Simulation results with nuclear ARD: without contextual ef-
fects, and ŷ is observed (1,000 replications)

Weight† Mean Std. Dev. Pctl(25) Median Pctl(75)

N = 250, M = 20 - Instrument: G̃X - Gy is observed

τ = 200 α = 0.4 0.403 0.088 0.350 0.406 0.456
τ = 600 α = 0.4 0.396 0.139 0.322 0.396 0.468
τ = 1374 α = 0.4 0.399 0.242 0.279 0.396 0.516

N = 250, M = 20 - Instrument:
{(

Ĝ
)k

X, k = 1, 2

}
- Gy is observed

τ = 200 α = 0.4 0.400 0.036 0.378 0.401 0.422
τ = 600 α = 0.4 0.396 0.050 0.368 0.398 0.427
τ = 1374 α = 0.4 0.403 0.111 0.346 0.402 0.461

The parameter τ corresponds to the parameter λ in Alidaee et al. (2020) and represents
the weight associated to the nuclear norm. In our context, the recommended value of
Alidaee et al. (2020) is given by τ = 1374. The optimal value (in terms of RMSE)
found through cross-validation is τ = 600, while τ = 200 gives a RMSE similar to the
recommended value.

Table A.9 – Simulation results with nuclear ARD: ŷ is observed, τ = 600 (1,000 replications)

Statistic Mean Std. Dev. Pctl(25) Median Pctl(75)

N = 250, M = 20 - Instrument: G̃X2 - Gy is observed

Estimation results

Intercept = 2 2.001 0.267 1.825 1.999 2.181
α = 0.4 0.400 0.011 0.393 0.400 0.406
β1 = 1 1.000 0.003 0.998 1.000 1.002
β2 = 1.5 1.500 0.006 1.496 1.500 1.504
γ1 = 5 5.001 0.027 4.982 5.001 5.020
γ2 = −3 −3.000 0.033 −3.022 −2.999 −2.977

Tests

F -test 810.356 338.648 570.099 774.973 1005.605
Hausman 0.956 1.281 0.113 0.467 1.310
Sargan 1.033 1.417 0.107 0.515 1.395
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Table A.10 – Simulation results with nuclear ARD: ŷ is not observed, τ = 600 (1,000 replica-
tions)

Statistic Mean Std. Dev. Pctl(25) Median Pctl(75)

N = 250, M = 20 - Instrument: G̃X - Gy is not observed

Estimation results

Intercept = 2 5.215 2.934 4.008 5.423 6.748
α = 0.4 0.225 0.161 0.141 0.214 0.291
β1 = 1 1.001 0.004 0.998 1.001 1.003
β2 = 1.5 1.501 0.007 1.497 1.501 1.505

Tests

F -test 21.033 13.187 11.490 18.861 28.535
Hausman 7.626 6.980 2.377 5.937 10.976
Sargan 2.488 3.432 0.258 1.191 3.313
cor(ηi, x̂i,1) −0.006 0.022 −0.020 −0.006 0.008
cor(ηi, x̂i,2) −0.036 0.029 −0.055 −0.036 −0.016

N = 250, M = 20 - Instrument:
{(

Ĝ
)k

X, k = 1, 2

}
- Gy is not observed

Estimation results

Intercept = 2 4.481 1.503 3.469 4.493 5.474
α = 0.4 0.266 0.082 0.211 0.264 0.321
β1 = 1 1.001 0.004 0.998 1.001 1.003
β2 = 1.5 1.501 0.007 1.496 1.501 1.506

Tests

F -test 50.332 24.549 31.909 46.716 64.013
Hausman 57.141 40.279 27.257 48.421 79.545
Sargan 11.075 9.786 4.209 7.877 15.298

cor(ηi, ˆ̂xi,1) −0.011 0.023 −0.025 −0.011 0.005

cor(ηi, ˆ̂xi,2) −0.064 0.040 −0.092 −0.064 −0.036
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A.4 ARD Simulations Setting

This section provides details about ARD simulation and model estimation using a MCMC
method. We simulate the network for a population of 5000 individuals divided into m = 20

groups of n = 250 individuals. Within each group, the probability of a link is:

P(aij = 1) ∝ exp{νi + νj + ζz′izj}. (A.1)

Since there is no connection between the groups, the networks are simulated and estimated
independently. We first present how we simulate the data following the model (1.7).

A.5 ARD Simulation

The parameters are defined as follows: ζ = 1.5, νi ∼ N (−1.25, 0.37), and zi are distributed
uniformly according to a von Mises–Fisher distribution. We use a hypersphere of dimension
3. We set the same values for the parameter for the 20 groups. We generate the probabilities
of links in each network following Breza et al. (2020).

P(aij = 1|νi, νj , ζ, zi, zj) =
exp{νi + νj + ζz′izj}

∑N
i=1 di∑

ij exp{νi + νj + ζz′izj}
, (A.2)

where di is the degree defined by di ≈
Cp(0)

Cp(ζ)
exp (νi)

N∑
i=1

exp(νi), the function Cp(.) is the

normalization constant in the von Mises–Fisher distribution density function. After computing
the probability of a link for any pair in the population, we sample the entries of the adjacency
matrix using a Bernoulli distribution with probability (A.2).

To generate the ARD, we require the “traits” (e.g. cities) for each individual. We set K = 12

traits on the hypersphere. Their location vk is distributed uniformly according to the von
Mises–Fisher distribution. The individuals having the trait k are assumed to be generated by
a von Mises–Fisher distribution with the location parameter vk and the intensity parameter
ηk ∼ |N (4, 1)|, k = 1, . . . , 12.

We attribute traits to individuals given their spherical coordinates. We first define Nk, the
number of individuals having the trait k:

Nk =

⌊
rk

∑N
i=1 fM(zi|vk, ηk)

maxi fM(zi|vk, ηk)

⌋
,

where bxc stands for the greatest integer less than or equal to x, rk is a random number
uniformly distributed over (0.8; 0.95), and fM(zi|vk, ηk) is the von Mises–Fisher distribution
density function evaluated at zi with the location parameter vk and the intensity parameter
ηk.
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The intuition behind this definition for Nk is that when many zi are close to vk, many
individuals should have the trait k.

We can finally attribute trait k to individual i by sampling a Bernoulli distribution with the
probability fik given by:

fik = Nk
fM(zi|vk, ηk)∑N
i=1 fM(zi|vk, ηk)

.

The probability of having a trait depends on the proximity of the individuals to the trait’s
location on the hypersphere.

Once the traits for each individual and the network are generated, we can build the ARD.

A.6 Model Estimation

In practice, we only have the ARD and the traits for each individual. McCormick and Zheng
(2015) propose a MCMC approach to infer the parameters in model (A.1).

However, the spherical coordinates and the degrees in this model are not identified. The
authors solve this issue by fixing some vk and use the fixed positions to rotate the latent
surface back to a common orientation at each iteration of the MCMC using a Procrustes
transformation. In addition, the total size of a subset bk is constrained in the MCMC.

As discussed by McCormick and Zheng (2015), the numbers of vk and bk to be set as fixed
depends on the dimension of hypersphere. In our simulations, v1, v2, . . . , v5 are set as fixed
to rotate back the latent space. When simulating the data, we let v1 = (1, 0, 0), v2 = (0, 1, 0),
and v3 = (0, 0, 1). This ensures that the fixed positions on the hypersphere are spaced, as
suggested by the authors, to use as much of the space as possible, maximizing the distance
between the estimated positions. We also constrain b3 to its true value. The results do not
change when we constrain a larger set of bk

Following Breza et al. (2020), we estimate the link probabilities using the parameters’ poste-
rior distributions. The gregariousness parameters are computed from the degrees di and the
parameter ζ using the following equation:

νi = log(di)− log
( N∑
i=1

di

)
+

1

2
log
(Cp(ζ)

Cp(0)

)
.

A.7 Network Sampling

This section explains how we sample the network in Algorithm 1.1. using Gibbs sampling.
As discussed above, a natural solution is to update only one entry of the adjacency matrix at
every step t of the MCMC. The entry (i, j) is updated according to its conditional posterior
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distribution:

aij ∼ P (·|A−ij ,y) =
P(y|aij ,A−ij)P (aij |A−ij)

P(y|1,A−ij)P (aij = 1|A−ij) + P(y|0,A−ij)P (aij = 0|A−ij)
.

However, for each entry, we need to compute P(y|0,A−ij) and P(y|1,A−ij), which are the
respective likelihoods of replacing aij by 0 or by 1. The likelihood computation requires the
determinant of (I−αG), which has a complexity O(N3), where N is the dimension of G. This
implies that we must compute 2N(N − 1) times det(I− αG) to update the adjacency matrix
at each step of the MCMC. As G is row-normalized, alternating any off-diagonal entry (i, j)

in A between 0 and 1 perturbs all off-diagonal entries of the row i in (I−αG). We show that
Aij and det(I−αG) can be updated by computing a determinant of an auxiliary matrix that
requires only updating two entries.

Assume that we want to update the entry (i, j). Let h be the function defined in N such that
∀ x ∈ N∗, h(x) = x, and h(0) = 1. Let L be an N × N diagonal matrix, where Lii = h(ni),
and ni stands for the degree of i, while Lkk = 1 for all k 6= i, and W is the matrix G where
the row i of W is replaced by the row i of A. Then, since the determinant is linear in each
row, we can obtain I− αG by dividing the row i of L− αW by h(ni). We get:

det(I− αG) =
1

h(ni)
det(L− αW).

When aij changes (from 0 to 1, or 1 to 0), note that only the entries (i, i) and (i, j) change in
L− αW. Two cases can be distinguished.

• If aij = 0 before the update, then the new degree of i will be ni + 1. Thus, the entry
(i, i) in L− αW will change from h(ni) to h(ni + 1) (since the diagonal of W equals 0)
and the entry (i, j) from 0 to −α. The new determinant is therefore given by:

det(I− αG∗) =
1

h(ni + 1)
det(L∗ − αW∗),

where G∗, L∗, and αW∗ are the new matrices, once aij has been updated.
• If aij = 1 before the update, then the new degree of k will be ni − 1. Thus the entry

(i, i) in L− αW will change from h(ni) to h(ni − 1) and the entry (i, j) from −α to 0.
The new determinant is therefore given by:

det(I− αG∗) =
1

h(ni − 1)
det(L∗ − αW∗).

Then, to update det(L − αW) when only the entries (i, i) and (i, j) change, we adapt the
Lemma 1 in Hsieh et al. (2019) as follows:

Proposition A.1. Let ei be the i’th unit basis vector in RN . Let M denote an N × N matrix

and Bij(Q, ε) an N × N matrix as function of an N × N matrix Q and a real value ε, such
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that:

Bij(Q, ε) =
Qeie

′
jQ

1 + εe′jQei
. (A.3)

Adding a perturbation ε1 in the (i, i)th position and a perturbation ε2 in the (i, j)th position

to the matrix M can be written as M̃ = M + ε1eie
′
i + ε2eie

′
j.

(a) The inverse of the perturbed matrix can be written as:

M̃−1 = M−1 − ε1Bii(M
−1, ε1)− ε2Bij

(
M−1 − ε1Bii(M

−1, ε1), ε2
)
.

(b) The determinant of the perturbed matrix can be written as:

det
(
M̃
)

=
(
1 + ε2e

′
j

(
M−1 − ε1Bii(M

−1, ε1)ei
))

(1 + ε1e
′
iM
−1ei)det (M) .

Proof. (a) By the Sherman–Morrison formula (Mele, 2017), we have:(
M + εeie

′
j

)−1
= M−1 − ε

M−1eie
′
jM
−1

1 + εe′jM
−1ei

= M−1 − εBij(M, ε).

Thus,

M̃−1 =
(
(M + ε1eie

′
i) + ε2eie

′
j

)−1
,

M̃−1 = (M + ε1eie
′
i)
−1 − ε2Bij((M + ε1eie

′
i)
−1, ε2),

M̃−1 = M−1 − ε1Bii(M
−1, ε1)− ε2Bij

(
M−1 − ε1Bii(M

−1, ε1), ε2
)
.

(b) By the matrix determinant lemma (Johnson and Horn, 1985), we have:

det
(
M + εeie

′
j

)
= (1 + εe′jM

−1ei)det (M) .

It follows that:

det
(
M̃
)

= det
(
(M + ε1eie

′
i) + ε2eie

′
j

)
,

det
(
M̃
)

= (1 + ε2e
′
j(M + ε1eie

′
i)
−1ei)det

(
M + ε1eie

′
i

)
,

det
(
M̃
)

=
(
1 + ε2e

′
j

(
M−1 − ε1Bii(M

−1, ε1)ei
))

(1 + ε1e
′
iM
−1ei)det (M) .

The method proposed above becomes computationally intensive when many entries must be
updated simultaneously. We also propose an alternative method that allows updating the
block for entries in A. Let D = (I− αG); we can write:

det(D) =

N∑
j=1

(−1)i+jDijδij, (A.4)
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where i denotes any row of D and δij the minor1 associated with the entry (i, j). The minors
of row i do not depend on the values of entries in row i. To update any block in row i,
we therefore compute the N minors associated to i and use this minor within the row. We
can then update many entries simultaneously without increasing the number of times that we
compute det(D).

One possibility is to update multiple links simultaneously by randomly choosing the number
of entries to consider and their position in the row. As suggested by Chib and Ramamurthy
(2010), this method would help the Gibbs to converge more quickly. We can summarize how
we update the row i as follows:

(a) Compute the N minors δi1, . . . , δin .
(b) Let ΩG be the entries to update in the row i, and nG = |ΩG| the number of entries in

ΩG.
(b.1) Choose r, the size of the block to update, as a random integer number such that

1 ≤ r ≤ nG. In practice, we choose r ≤ min(5, nG) since the number of possibilities
of links to consider grows exponentially with r.

(b.2) Choose the r random entries from ΩG. These entries define the block to update.
(b.3) Compute the posterior probabilities of all possibilities of links inside the block and

update the block (there are 2r possibilities). Use the minors calculated at (a) and
the formula (A.4) to quickly compute det(D).

(b.4) Remove the r drawn positions from ΩG and let nG = nG − r. Replicate (b.1),
(b.2), and (b.3) until nG = 0.

A.8 Posterior Distributions for Algorithm 1.1..

To compute the posterior distributions, we set prior distributions on α̃, Λ, and σ2, where
α̃ = log(

α

1− α
) and Λ = [β,γ]. In Algorithm 1.1., we therefore sample α̃ and compute α,

such that α =
exp(α̃)

1 + exp(α̃)
. Using this functional form for computing α ensures that α ∈ (0, 1).

The prior distributions are set as follows:

α̃ ∼ N (µα̃, σ
2
α̃),

Λ|σ2 ∼ N (µΛ, σ
2ΣΛ),

σ2 ∼ IG(
a

2
,
b

2
).

For the simulations and estimations in this paper, we set: µα̃ = −1, σ−2
α̃ = 2, µΛ = 0,

ΣΛ
−1 =

1

100
IK , a = 4 and b = 4, where IK is the identity matrix of dimension K and

K = dim(Λ).
1The determinant of the submatrix of M by removing row i and column j.
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Following Algorithm 1.1., α is updated at each iteration t of the MCMC by drawing α̃∗

from the proposal N (α̃t−1, ξt), where the jumping scale ξt is also updated at each t following
Atchadé and Rosenthal (2005) for an acceptance rate of a∗ targeted at 0.44. As the proposal

is symmetrical, α∗ =
exp(α̃∗)

1 + exp(α̃∗)
is accepted with the probability:

min

{
1,
P(y|At,Λt−1, α

∗)P (α̃∗)

P(y|At,θt−1)P (α̃t)

}
.

The parameters Λt = [βt, γt] and σ
2
t are drawn from their posterior conditional distributions,

given as follows:

Λt|y,At, αt, σ
2
t−1 ∼ N (µ̂Λt

, σ2
t−1Σ̂Λt),

σ2
t |y,At,θt ∼ IG

(
ât
2
,
b̂t
2

)
,

where,

Σ̂
−1
Λt

= V′tVt + Σ−1
Λ ,

µ̂Λt
= Σ̂Λt

(
V′t(y − αtGty) + Σ−1

Λ µΛ

)
,

ât = a+N,

b̂t = b+ (Λt − µΛ)′Σ−1
Λ (Λt − µΛ) + (y − αtGty −VtΛt)

′(y − αtGty −VtΛt),

Vt = [1, X, GtX].

A.9 Empirical Application

120



0 2000 6000 10000

0.
30

0.
40

Peer Effect

0 2000 6000 10000

0.
8

1.
4

Intercept

0 2000 6000 10000

0.
48

0.
54

σ2

0 2000 6000 10000

−
0.

25
−

0.
10

Female

0 2000 6000 10000

−
0.

05
0.

15

Hispanic

0 2000 6000 10000

0.
10

0.
30

Race = Black

0 2000 6000 10000

−
0.

2
0.

1
0.

4

Race = Asian

0 2000 6000 10000

−
0.

2
0.

0

Race = Other

0 2000 6000 10000

0.
00

0.
20

Mother Edu < High

0 2000 6000 10000

−
0.

25
−

0.
10

Mother Edu > High

0 2000 6000 10000

−
0.

1
0.

1

Mother Edu = Missing

0 2000 6000 10000

−
0.

25
0.

00

Mother Job = Professional

0 2000 6000 10000

−
0.

15
0.

05

Mother Job = Other

0 2000 6000 10000

−
0.

1
0.

1

Mother Job = Missing

0 2000 6000 10000

0.
04

0.
08

Age

0 2000 6000 10000

−
0.

2
0.

0

Female

0 2000 6000 10000

−
0.

3
0.

0

Hispanic

0 2000 6000 10000

−
0.

3
0.

0
Race = Black

0 2000 6000 10000

−
0.

8
0.

0

Race = Asian

0 2000 6000 10000

−
0.

2
0.

2
0.

5

Race = Other

0 2000 6000 10000

0.
0

0.
3

Mother Edu < High

0 2000 6000 10000

−
0.

3
0.

0

Mother Edu > High

0 2000 6000 10000

−
0.

2
0.

2

Mother Edu = Missing

0 2000 6000 10000

−
0.

2
0.

1
0.

4

Mother Job = Professional

0 2000 6000 10000

−
0.

1
0.

1
0.

3

Mother Job = Other

0 2000 6000 10000

−
0.

2
0.

1
0.

4

Mother Job = Missing

0 2000 6000 10000

−
0.

08
−

0.
05

Age

Own Effects

Index

Contextual Effects

Index

Figure A.1 – Simulations using the observed network
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Figure A.2 – Simulations using the reconstructed network
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Figure A.3 – Posterior density

A.10 Expectation Maximization Algorithm

If A was observed, the objective would be to maximize the log-likelihood of the model with
respect to θ:

P(y|A,X;θ).

Since A is unobserved, we propose to treat it as a latent variable. We therefore look for the
value of θ that maximizes:

P(y|X;θ) =
∑
A

P(y|A,X;θ)P (A).

Since the number potential network structures is huge, evaluating this expectation is un-
feasible.2 We therefore propose to maximize P(y|X;θ) using an expectation maximization
algorithm:

2For a population of only 5 individuals, the number of network structures is 220.
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Algorithm A.1. Expectation maximization algorithm
Initialize θ0, and for t = 0, ..., T , do the following;
Use a Metropolis–Hastings algorithm (see Algorithm 1.1.) to obtain the draws (A1, ...,AR) from
P (A|y,θt);

Evaluate Qt(θ) ≈
R∑
r=1

P(y|Ar,X;θt);

Set θt+1 = arg maxQt(θ);
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Appendix B

Chapter 2 of appendix

B.1 Proof of the Bayesian Nash Equilibrium (BNE)

B.1.1 Proof of Proposition 2.1

For any ȳ ∈ RN+ , L (ȳ) = (`1 (ȳ) . . . `n (ȳ))′, where `i (ȳ) =
∞∑
r=1

Fε (λgiȳ + ψi − ar) for all

i ∈ V.
At the equilibrium, (piq) verifies (2.5),

piq = Fε (λgiȳ + ψi − aq)− Fε (λgiȳ + ψi − aq+1) ,

ȳi =
∞∑
r=0

rpir =
∞∑
r=0

rFε (λgiȳ + ψi − ar)︸ ︷︷ ︸
S1

−
∞∑
r=0

rFε (λgiȳ + ψi − ar+1)︸ ︷︷ ︸
S2

. (B.1)

Equation (B.1) holds because S1 < ∞ and S2 < ∞. To prove this, let x < 0 with |x| being
sufficiently large. By Assumption C, fε = o(1/xα) at∞ for some α > 3. Then Fε = O(1/xα−1)

at −∞, and Fε = o(1/xα/2) at −∞. Hence, S1 <∞. Analogously, S2 <∞.

ȳi =

∞∑
r=0

rFε (λgiȳ + ψi − ar)−
∞∑
r=0

(r + 1)Fε (λgiȳ + ψi − ar+1) +

∞∑
r=0

Fε (λgiȳ + ψi − ar+1) ,

ȳi =

∞∑
r=1

rFε (λgiȳ + ψi − ar)−
∞∑
r=1

rFε (λgiȳ + ψi − ar) +

∞∑
r=0

Fε (λgiȳ + ψi − ar+1) ,

ȳi =
∞∑
r=1

Fε (λgiȳ + ψi − ar) = `i (ȳ) .

Hence, ȳ = L (ȳ).
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B.1.2 Proof of Theorem 2.1

From the BNE (2.5), the key determinant of the proof is to establish that the vector of equi-
librium beliefs p exists (which implies the existence of an expected outcome ȳ at equilibrium)
and that there is at most one expected equilibrium outcome ȳ. This implies that there is a
unique expected equilibrium outcome and thus, a unique vector of equilibrium beliefs.
Let R∞ be the space of infinite-dimensional real vectors.1 Let us denote by pq = (p1q, . . . , pnq)

′,
an n-dimensional vector for any q ∈ N, p =

(
p′0,p

′
1,p
′
2,p
′
3, . . .

)′, h1 = (a0, a1, a2, a3, . . . )
′,

h2 = (a1, a2, a3, a4, . . . )
′ infinite-dimensional vectors, and 1d, the d-dimensional vector of ones

for any d ∈ N∗ or d =∞. Let also J = (0, 1, 2, 3, . . . ), an infinite-dimensional row-vector, and
B = 1∞ ⊗ J⊗G. Equation (2.5) in matrix form is given by

p = Fε (λBp + 1∞ ⊗Ψ− h1 ⊗ 1n)− Fε (λBp + 1∞ ⊗Ψ− h2 ⊗ 1n) , (B.2)

where Fε is defined for any ω = (ω1, ω2, . . . ) ∈ R∞ as Fε(ω) = (Fε(ω1), Fε(ω2), . . . ).
Assumption C implies that Fε = o(1/x) at −∞. Therefore, ∃ M > 0, such that ∀ i ∈ V,
q ∈ N, piq ≤

M

q + 1
. Let CM be a subset of R∞ defined by

CM :=

{
p ∈ R∞

/
∀ i ∈ V and q ∈ N, piq ≥ 0 and piq ≤

M

q + 1

}
.

For any M > 0, CM is a compact and convex nonempty subset of the infinite dimensional
space R∞.
Let also H be a mapping from CM to itself, such that ∀ p ∈ CM,

H (p) = Fε (λBp + 1∞ ⊗Ψ− h1 ⊗ 1n)− Fε (λBp + 1∞ ⊗Ψ− h2 ⊗ 1n) . (B.3)

Any p ∈ CM is an equilibrium belief of the incomplete information network game with the
utility (2.1) if p = H (p). H is a continuous mapping from CM to itself. By Schauder’s fixed-
point theorem (generalization of Brouwer’s fixed-point theorem to an infinite dimensional
space, see Smart, 1980, Chapter 2), there exists pe ∈ CM, such that pe = H (pe). By

Proposition 2.1, the expected outcome ȳe = (ȳe1 . . . ȳ
e
n), where ȳei =

∞∑
r=0

rpeir, verifies ȳe =

L (ȳe).
Let us show that u = L (u) has at least one solution. By the contraction mapping theorem,

it is sufficient to prove that ∀ u = (u1, . . . , un) ∈ Rn,
∣∣∣∣∣∣∣∣∂L (u)

∂u′

∣∣∣∣∣∣∣∣
∞
< κ̄ for some κ̄ < 1 not

depending on u.
For all i and j,

∂`i (u)

∂uj
= λgij

∞∑
r=1

fε (λgiu + ψi − ar)︸ ︷︷ ︸
f∗i

= λgijf
∗
i . (B.4)

1A natural generalization of Rk, k ∈ N∗ (see Halmos, 2012).
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From Equation (B.4),
∂L (u)

∂u′
is defined by

∂L (u)

∂u′
= λ


g11f

∗
1 . . . g1nf

∗
1

...
...

...
gn1f

∗
n . . . gnnf

∗
n

 .

It follows that∣∣∣∣∣∣∣∣∂L (u)

∂u′

∣∣∣∣∣∣∣∣
∞

= |λ|max
i

f∗i
n∑
j=1

gij

 ,

∣∣∣∣∣∣∣∣∂L (u)

∂u′

∣∣∣∣∣∣∣∣
∞
≤ |λ|

(
max
i
f∗i

)
max
i


n∑
j=1

gij

 = |λ|
(

max
i
f∗i

)
||G||∞. (B.5)

I will now focus on the term f∗i .

f∗i =
∞∑
r=1

fε (λgiu + ψi − ar) =
∞∑
r=1

fε (mi + a1 − ar) ,

where m∗i = λgiu + ψi − a1. As aq = a1 + γ(q − 1) for any q ∈ N∗,

f∗i =
∞∑
r=1

fε (mi − γ(r − 1)) <
∞∑

k=−∞
fε (mi + γk) ,

f∗i < max
u∈R

∞∑
k=−∞

fε (u+ γk) =
1

Cγ
(B.6)

From Equations (B.5) and (B.6),∣∣∣∣∣∣∣∣∂L (u)

∂u′

∣∣∣∣∣∣∣∣
∞
<
|λ|||G||∞

Cγ
< 1 by Assumption D. (B.7)

Hence, u = L (u) has a unique solution ȳe.
By Equation (2.5) and Proposition 2.1, it follows that p = H(p) also has a unique solution
pe, such that peiq = Fε

(
λgiȳ

e
j + ψi − aq

)
− Fε

(
λgiȳ

e
j + ψi − aq+1

)
.

As a result, the incomplete information network game with the utility (2.1) has a unique pure
strategy BNE with the equilibrium strategy profile ye∗ given by ye∗ = λGȳe +ψ + ε, where

the equilibrium belief system
(
peiq
)
i∈V
q∈N

is such that ȳei =

∞∑
r=0

rpeir is the unique solution of

u = L (u).

B.1.3 BNE when the increment of the sequence varies

Assume that the increment of the sequence in Assumption B varies; that is, there is a strictly
increasing sequence

(
aiq
)
q∈N such that if y∗i ∈ (aiq, a

i
q+1], then yi = q and aiq+1−aiq = γiq varies.

Note that Proposition 2.1 is still true as long as Assumption C holds. To prove the uniqueness
of the BNE, I consider the following assumption as an alternative to Assumption D.
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Assumption D’. |λ| < Cγ
||G||∞

, where Cγ =

(
max
u∈R

∞∑
r=1

fε
(
u− air

))−1

.

With the new definition of the sequence
(
aiq
)
q∈N, the mapping L is contracting under Assump-

tion C and D’. Indeed, from Equation (B.5),∣∣∣∣∣∣∣∣∂L (u)

∂u′

∣∣∣∣∣∣∣∣
∞
≤ |λ|

(
max
i
f∗i

)
||G||∞, (B.8)

where f∗i
∞∑
r=1

fε
(
λgiu + ψi − air

)
.

It follows that max
i
f∗i ≤ max

u∈R

∞∑
r=1

fε
(
u− air

)
= C−1

γ . Hence,
∣∣∣∣∣∣∣∣∂L (u)

∂u′

∣∣∣∣∣∣∣∣
∞
<
|λ|||G||∞

Cγ
< 1 by

Assumption D’.

Importantly, max
u∈R

∞∑
r=1

fε
(
u− air

)
< ∞ as long as lim

q→∞
aiq+1 − aiq > 0 because fε is con-

tinuous and o(1/xα) at ∞ for some α > 3. If lim
q→∞

aiq+1 − aiq > 0 does not hold and

max
u∈R

∞∑
r=1

fε
(
u− air

)
=∞, then Assumption D’ would imply that |λ| < 0 and the BNE would

not be unique for any λ. For instance, this is the case when a0 = −∞, aq =
√

log(q) ∀ q ∈ N∗,
and εi ∼ N

(
0, σ2

ε

)
.

B.1.4 Upper bound of the peer effects under Assumptions B’ and E

Assume that εi ∼ N
(
0, σ2

ε

)
, a1 = 0, and γ = 1. Let us compute the upper bound of |λ|,

Cγ
||G||∞

, where Cγ =
1

maxu∈R
∑∞

k=−∞ fε (u+ k)
.

By the Poisson summation formula (see Bellman, 2013, Section 6)

∞∑
k=−∞

fε (u+ k) =
∞∑

k=−∞
f̂ε (u+ k) , (B.9)

where f̂ε is the Fourier transform of fε given by

f̂ε (u+ k) =

∫ ∞
−∞

fε(x+ u)e−2πikxdx =

∫ ∞
−∞

1√
2πσε

e
− 1

2σ2
ε

(x+u)2−2πikx
dx. (B.10)

In Equation (B.10), i is the pure imaginary complex number (i2 = −1).

f̂ε (u+ k) =

∫ ∞
−∞

1√
2πσε

e
− 1

2σ2
ε
(x2+2ux+u2+4πiσ2

εkx)dx,

f̂ε (u+ k) = e
1

2σ2
ε
(u+2πiσ2

εk)
2− 1

2σ2
ε
u2
∫ ∞
−∞

1√
2πσε

e
− 1

2σ2
ε
(x+u+2πiσ2

εk)
2

dx︸ ︷︷ ︸
=1

,

f̂ε (u+ k) = e−2π2k2σ2
ε+2πiku. (B.11)
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By replacing the Fourier transform (B.11) in Equation (B.9),
∞∑

k=−∞
fε (u+ k) =

∞∑
k=−∞

e−2π2k2σ2
ε+2πiku,

∞∑
k=−∞

fε (u+ k) = 1 +
∞∑
k=1

e−2π2(−k)2(σε)
2

e−2πiku +
∞∑
k=1

e−2π2k2σ2
εe2πiku,

∞∑
k=−∞

fε (u+ k) = 1 +
∞∑
k=1

e−2π2k2σ2
ε

(
e−2πiku + e2πiku

)
. (B.12)

By Euler’s formula,

e−2πiku + e2πiku = cos (−2πku) + i sin (−2πku) + cos (2πku) + i sin (2πku) ,

e−2πiku + e2πiku = 2 cos (2πku) . (B.13)

By replacing (B.13) in (B.12),
∞∑

k=−∞
fε (u+ k) = 1 + 2

∞∑
k=1

e−2π2k2σ2
ε cos (2πku) .

Therefore,

max
u∈R

∞∑
k=−∞

fε (u+ k) = 1 + 2
∞∑
k=1

e−2π2k2σ2
ε =

∞∑
k=−∞

fε (k) , (B.14)

max
u∈R

∞∑
k=−∞

fε (u+ k) =
φ (0) + 2

∑∞
k=1 φ

(
k
σε

)
σε

. (B.15)

The quantity
∞∑

k=−∞
fε (k) can also be computed using the third Theta function (see Bellman,

2013, Section 2). From (B.14), it follows that
∞∑

k=−∞
fε (k) = θ3

(
0, e−2π2σ2

ε

)
,

where for any complex z and q ∈ R+, θ3 (z, q) is the third Theta function evaluated at (z, q).
As a result,

Cγ = C1,σε =
σε

φ (0) + 2
∑∞

k=1 φ
(
k
σε

) =
1

θ3

(
0, e−2π2σ2

ε

) . (B.16)

B.2 Supplementary note on the econometric model

B.2.1 Proof of Proposition 2.2

The pseudo likelihood is given by

L(θ, ȳ) =

n∑
i=1

∞∑
r=0

dir log

{
Φ

(
z′iΛ− ar

σε

)
− Φ

(
z′iΛ− ar+1

σε

)}
, (B.17)
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where z′i = (giȳ, x′i), Λ = (λ, β′)′, and θ = (Λ, σε)
′. Let θ0 be the true value of θ, and ȳ0 be

the expected outcome associated with θ. The first-order conditions of the pseudo likelihood
maximization give

∂L(θ, ȳ)

∂Λ
=

n∑
i=1

∞∑
r=0

dir
fir − fi(r+1)

Fir − Fi(r+1)
zi = 0,

∂L(θ, ȳ)

∂σε
= −

n∑
i=1

∞∑
r=0

dir
mirfir −mi(r+1)fi(r+1)

σε
(
Fir − Fi(r+1)

) = 0,

(B.18)

where ∀ i ∈ V, q ∈ N, miq = z′iΛ − aq, fiq =
1

σε
φ

(
miq

σε

)
, and Fiq = Φ

(
miq

σε

)
. As L is

continuous, the consistency of the NPL estimator is ensured by the fact that plim

(
1

n
L(θ, ȳ)

)
is maximized at θ = θ0 and ȳ = ȳ0, where plim stands for the probability limit.

Let us focus on the limiting distribution. The Taylor expansion of
∂L(θ, ȳ)

∂θ
around θ0 gives

∂L(θ, ȳ)

∂θ
=
∂L(θ, ȳ)

∂θ

∣∣∣∣
θ0

+

(
∂2L(θ0, ȳ)

∂θ∂θ′

∣∣∣∣
θ0

+
∂2L(θ0, ȳ)

∂θ∂ȳ′

∣∣∣∣
θ0

∂ȳ

∂θ′

∣∣∣∣
θ0

)
(θ− θ0) +Op(1).

To simplify the notations of the partial derivatives, I will use
∂L(θ0, ȳ)

∂θ
to mean

∂L(θ, ȳ)

∂θ

∣∣∣∣
θ0

(this notation is also applied to the second partial derivatives) and
∂ȳ0

∂θ′
to mean

∂ȳ

∂θ′

∣∣∣∣
θ0

. It

follows that

√
n(θ− θ0) = −

(
1

n

∂2L(θ0, ȳ)

∂θ∂θ′
+

1

n

∂2L(θ0, ȳ)

∂θ∂ȳ′
∂ȳ0

∂θ′

)−1(
1√
n

∂L(θ0, ȳ)

∂θ
+Op

(
1√
n

))
.

(B.19)

Let us first apply the central Theorem limit to the term
1√
n

∂L(θ0, ȳ)

∂θ
.

1√
n

∂L(θ0, ȳ)

∂θ
=

1√
n

n∑
i=1


∞∑
r=0

dir
f0
ir − f0

i(r+1)

F 0
ir − F 0

i(r+1)

zi

−
∞∑
r=0

dir
m0
irf

0
ir −m0

i(r+1)f
0
i(r+1)

σε

(
F 0
ir − F 0

i(r+1)

)


︸ ︷︷ ︸

v0
i

=
1√
n

n∑
i=1

v0
i ,

where ∀ i ∈ V, q ∈ N, m0
iq, f

0
iq, and F

0
iq are defined as in (B.18) but with θ = θ0.

E
(
v0
i |X,G

)
=


∞∑
r=0

(
f0
ir − f0

i(r+1)

)
zi

− 1

σε

∞∑
r=0

(
m0
irf

0
ir −m0

i(r+1)f
0
i(r+1)

)
 = 0, thus E

(
v0
i

)
= 0.

Let denote by Ai =
∞∑
r=0

(
f0
ir − f0

i(r+1)

)2

F 0
ir − F 0

i(r+1)

, Bi =
∞∑
r=0

(
m0
irf

0
ir −m0

i(r+1)f
0
i(r+1)

)2

σ2
ε

(
F 0
ir − F 0

i(r+1)

) , and
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Ci = −
∞∑
r=0

(
f0
ir − f0

i(r+1)

)(
m0
irf

0
ir −m0

i(r+1)f
0
i(r+1)

)
σε

(
F 0
ir − F 0

i(r+1)

) .

Var
(
v0
i |X,G

)
= E

(
v0
i v

0′
i |X,G

)
=

(
Aiziz

′
i Cizi

Ciz
′
i Bi

)
︸ ︷︷ ︸

Σi

= Σi. (B.20)

By the law of large numbers (LLN) applied to independent and non-identical variables (see

Chow and Teicher, 2003, p. 124), assume that plim

(
1

n

n∑
i

Σi

)
exists and is equal to Σ0. It

follows by the Lindeberg–Feller central Theorem limit (see Chow and Teicher, 2003, p. 314)
that,

1√
n

∂L(θ0, ȳ)

∂θ

d→ N (0,Σ0) . (B.21)

Let us now focus on plim

(
1

n

∂2L(θ0, ȳ)

∂θ∂θ′

)
and plim

(
1

n

∂2L(θ0, ȳ)

∂θ∂ȳ′
∂ȳ0

∂θ′

)
.

By the LLN, plim

(
1

n

∂2L(θ0, ȳ)

∂θ∂θ′

)
= plim

(
1

n
Ed

(
∂2L(θ0, ȳ)

∂θ∂θ′

))
, where Ed is the expecta-

tion with respect to dir.

Ed

(
∂2L(θ0, ȳ)

∂θ∂θ′

)
= −

n∑
i=1

Σi =⇒ plim

(
1

n

∂2L(θ0, ȳ)

∂θ∂θ′

)
= −plim

(
1

n

n∑
i

Σi

)
= −Σ0.

(B.22)

Analogously, plim

(
1

n

∂2L(θ0, ȳ)

∂θ∂ȳ′
∂ȳ0

∂θ′

)
= plim

(
1

n
Ed

(
∂2L(θ0, ȳ)

∂θ∂ȳ′

)
∂ȳ0

∂θ′

)
.

Ed

(
∂2L(θ0, ȳ)

∂θ∂ȳ′

)
= −λ

n∑
i=1

(
Aizigi

Bigi

)
and

∂ȳ0

∂θ′
= S−1M, (B.23)

where S = In − λDG, In is the identity matrix of dimension n,

D = diag

( ∞∑
r=1

f0
1r, . . . ,

∞∑
r=1

f0
nr

)
, M = (DZ,b), Z = (Gȳ,X), and

b =

(
−
∞∑
r=1

f0
1rm

0
1r

σε
, . . . , −

∞∑
r=1

f0
nrm

0
nr

σε

)′
.

The partial derivative
∂ȳ0

∂θ′
is computed using the implicit definition of ȳ; that is, ȳ = L(ȳ,θ).

Assuming that plim

(
λ

n

n∑
i=1

(
AizigiS

−1M

BigiS
−1M

))
exists and is equal to Ω0,

plim

(
1

n

∂2L(θ0, ȳ)

∂θ∂ȳ′
∂ȳ0

∂θ′

)
= −Ω0. (B.24)

From Equations (B.19), (B.21), (B.22), and (B.24), it follows that

√
n(θ̂− θ0)

d→ N
(

0, (Σ0 + Ω0)−1 Σ0

(
Σ′0 + Ω′0

)−1
)
. (B.25)
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In a finite sample, an estimator of the asymptotic variance of θ̂ can be computed by

ÂsyV ar
(
θ̂
)

=
1

n

(
Σ̂ + Ω̂

)−1
Σ̂
(
Σ̂
′
+ Ω̂

′)−1
, (B.26)

where Σ̂ =
1

n

n∑
i

Σ̂i, Ω̂ =
λ̂

n

n∑
i=1

(
ÂizigiŜ

−1M̂

B̂igiŜ
−1M̂

)
, and Σ̂i, Âi, B̂i, Ŝ, M̂ are the estimates of

Σi, Ai, Bi, S, M, respectively by replacing θ0 by θ̂.

B.2.2 Proof of Proposition 2.3

The likelihood of the linear-in-means model is

Q(λ,β, σν) =
n

2
log
(
2πσ2

ν

)
+ log |In − λG| − (y − λGy −Xβ)′ (y − λGy −Xβ)

2σ2
ν

.

Let Q0(λ,β, σν) = plim
1

n
Q(λ,β, σν). Assume that all the conditions of the MLE consistency

set in Lee (2004) hold.
Let B(λ) = In − λG. It follows that

Q0(λ,β, σν) =
log
(
2πσ2

ν

)
2

+ plim

(
log |B(λ)|

n
− (B(λ)y −Xβ)′ (B(λ)y −Xβ)

2nσ2
ν

)
.

By the LLN,

Q0(λ,β, σν) =
log
(
2πσ2

ν

)
2

+ plim

(
log |B(λ)|

n
−

E
{

(B(λ)y −Xβ)′ (B(λ)y −Xβ)
∣∣X,G}

2nσ2
ν

)
.

The first-order conditions (f.o.cs) with respect to λ of the maximization of Q0(λ,β, σν) implies
that,

∂Q0(λ,β, σν)

∂λ
= 0,

plim
E {(A(λ)Xβ)′ν|X,G}

nσ2
ν

− plim
Tr (A(λ))

n
+ plim

E {ν ′A(λ)ν|X,G}
nσ2

ν

= 0, (B.27)

where A(λ) = G(B(λ))−1 and ν = (ν1, . . . , νn)′.
In addition, E(ν ′A(λ)ν|X,G) = E(Tr (ν ′A(λ)ν|X,G) = Tr (A(λ) E(νν ′|X,G)).

One can express νi as function of εi.
From (2.14),

yi + (y∗i − yi)︸ ︷︷ ︸
ζi

= λgi(y + (ȳ − y)︸ ︷︷ ︸
η

) + x′iβ + εi,

yi = λgiy + x′iβ + εi + λgiη − ζi︸ ︷︷ ︸
νi

.

Hence,
νi = εi + λgiη − ζi,
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where η = ȳ − y and ζi = y∗i − yi.
Let us consider the case where σε > 1 and yi takes values as large as possible. In this case, ζi is
approximately distributed according to a uniform distribution over [0, 1]. In Equation (2.15),
it is necessary to have E(νi|X,G) = 0. However, this condition is not verified. Nevertheless,
without loss of generality, I can still assume that E(ζi|X,G) = 0 because the model includes
an intercept and E(ζi|X,G) is a constant. Moreover, E(η|X,G) = 0.
Let ε = (ε1, . . . , εn)′ and ζ = (ζ1, . . . , ζn)′. Then,

νν ′ = (ε+ λGη − ζ)(ε+ λGη − ζ)′,

νν ′ = εε′ + λ2Gηη′G′ + ζζ′ + ε(λGη − ζ)′ + λGη(ε− ζ)′ − ζ(ε+ λGη)′.

Therefore,

E(νν ′|X,G) =

(
σ2
ε +

1

12

)
In + λ2G E

(
ηη′|X,G

)
G′.

Given that, E(ζi|X,G) = 0, E(εi|X,G) = 0, E(η|X,G) = 0,

and plim
1

nσ2
ν

(A(λ)Xβ)′E(ν|X,G) = 0, Equation (B.27) implies that

∂Q0(λ,β, σν)

∂λ
= −plim

Tr (A(λ))

n
+ plim

1

nσ2
ν

Tr (A(λ) E(νν ′|X,G)),

∂Q0(λ,β, σν)

∂λ
=

12(σ2
ε − σ2

ν) + 1

12σ2
ν

plim
Tr (A(λ))

n
+
λ2

σ2
ν

plim
Tr (A(λ)G E (ηη′|X,G) G′)

n
.

(B.28)

Equation (B.28) shows that
∂Q0(λ,β, σν)

∂λ
6= 0 in general if η 6= 0. Therefore, the MLE

of
(
λ̃, β̃

′
, σ2

ν

)′
is generally biased. Moreover, since the estimator of β̃ and σ2

ν are given by
ˆ̃
β =

(
X′X

)−1
X′B(λ)y and σ̂2

ν =
1

n

(
B(λ)y −X

ˆ̃
β
)′ (

B(λ)y −X
ˆ̃
β
)
, respectively, this means

that the estimator of λ̃ is necessarily biased. Indeed, if ˆ̃
λ were consistent, then ˆ̃

β and σ̂2
ν would

also be consistent. This is in contradiction with
∂Q0(λ,β, σν)

∂λ
6= 0.

Note that the MLE is consistent if η = 0. Indeed, in this case, νi = εi − ζi and σ2
ν = σ2

ε +
1

12
.

Hence,
∂Q0(λ,β, σν)

∂λ
= 0.

B.2.3 Proof of Proposition 2.4

The 2SLS estimator of λ̃ is

ˆ̃
λ2SLS =

1

n

∑n
i=1 ỹi( ˜giy)− ˆ̃y( ˆ̃gy)

1

n

∑n
i=1( ˜giy)2 − ( ˆ̃gy)2

,
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where ỹi = PZiy, ˜giy = PZiGy, PZ = Z (ZZ)−1 Z′, PZi is the i-th row of PZ, ˆ̃y =
1

n

n∑
i=1

ỹi,

and ˆ̃gy =
1

n

n∑
i=1

˜giy. It follows that

ˆ̃
λ2SLS =

1

n

∑n
i=1

(
λ( ˜giy) + λ( ˜giη) + ε̃i + ζ̃i

)
( ˜giy)−

(
λ( ˆ̃gy) + λ( ˆ̃gη) + ˆ̃ε+

ˆ̃
ζ
)

( ˆ̃gy)

1

n

∑n
i=1( ˜giy)2 − ( ˆ̃gy)2

,

where ˜giη = PZigiη, ε̃i = PZiε, ζ̃i = PZiζ, ˆ̃gη =
1

n

n∑
i=1

˜giη, ˆ̃ε =
1

n

n∑
i=1

ε̃i, and
ˆ̃
ζ =

1

n

n∑
i=1

ζ̃i.

By the LLN plim ˆ̃ε = 0, plim ˆ̃gη = 0 and plim
ˆ̃
ζ = 0 (by assumption if σε > 1 and yi takes

values as large as possible). Moreover, as Z is a valid instrument, plim
1

n

n∑
i=1

ε̃i( ˜giy) = 0 and

plim
1

n

n∑
i=1

ζ̃i( ˜giy) = 0 (by assumption if σε > 1 and yi takes values as large as possible).

Then,

plim
ˆ̃
λ2SLS = λ

1

n

∑n
i=1( ˜giy)2 +

1

n

∑n
i=1( ˜giη)( ˜giy)− ( ˆ̃gy)2

1

n

∑n
i=1( ˜giy)2 − ( ˆ̃gy)2

,

plim
ˆ̃
λ2SLS = λ+ λ plim

1

n

∑n
i=1 ( ˜giη) ( ˜giy)

1

n

∑n
i=1( ˜giy)2 − ( ˆ̃gy)2

, (B.29)

plim
ˆ̃
λ2SLS = λ+ λ plim

1

n

∑n
i=1 E (( ˜giη) ( ˜giy)|X,G,Z)

1

n

∑n
i=1 Var ( ˜giy)

,

plim
ˆ̃
λ2SLS = λ− λ plim

1

n

∑n
i=1 E {(( ˜giy −E ( ˜giy|X,G,Z))) ( ˜giy)|X,G,Z}

1

n

∑n
i=1 Var ( ˜giy)

,

plim
ˆ̃
λ2SLS = λ− λ plim

1

n

∑n
i=1 Var ( ˜giy|X,G,Z)

1

n

∑n
i=1 Var ( ˜giy)

.

B.2.4 Marginal effects and corresponding standard errors

The parameters θ cannot be interpreted directly. Policy makers may be interested in the
marginal effect of the explanatory variables on the expected outcome.
Let us recall the following notations: z′i = (giȳ, x′i) and Λ = (λ, β′)′. For any k = 1, . . . ,K+1,
let λk and zik be the k-th component in Λ and zi, respectively. The marginal effect of the
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explanatory variable zik on ȳi, the expected outcome of the individual i is given by

δik(θ) =
∂ȳi
∂zik

=
λk
σε

∞∑
r=1

φ

(
z′iΛ− ar

σε

)
. (B.30)

The standard error of δik(θ) can be computed using the Delta method.
The Taylor expansion of Equation (B.30) around θ0 is

δik(θ̂) = δik(θ0) +
∂δik(θ0)

∂θ′
(θ̂− θ0) +Op(θ̂− θ0),

where
∂δik(θ0)

∂θ′
stands for the derivative of δik(θ) with respect to θ applied to θ0.

When n is sufficiently large,

δik(θ̂) ≈ δik(θ0) +
∂δik(θ0)

∂θ′
(θ̂− θ0),

δik(θ̂) ≈ δik(θ0) +

(
∂δik(θ0)

∂Λ′
,
∂δik(θ0)

∂σε

)
(θ̂− θ0). (B.31)

It follows that a consistent estimator of the standard error of δik(θ̂) is

Se
(
δik(θ̂)

)
=

√(
∂δik(θ̂)

∂Λ′
,
∂δik(θ̂)

∂σε

)
ÂsyV ar

(
θ̂
)(

∂δik(θ̂)

∂Λ′
,
∂δik(θ̂)

∂σε

)′
, (B.32)

where

∂δik(θ̂)

∂Λ′
=

ek
σε

∞∑
r=1

φ

(
z′iΛ̂− ar

σε

)
− λk
σ3
ε

z′i

∞∑
r=1

(
z′iΛ̂− ar

)
φ

(
z′iΛ̂− ar

σε

)
, (B.33)

∂δik(θ̂)

∂σε
=
λk
σ4
ε

∞∑
r=1

(
z′iΛ̂− aq

)2
φ

(
z′iΛ̂− ar

σε

)
− λk
σ2
ε

∞∑
r=1

φ

(
z′iΛ̂− ar

σε

)
, (B.34)

where ek is a row vector of dimension K + 1 with the k-th term equal to one and the other
terms equal to 0.
As in any non-linear model, the marginal effect depends on zi. I then report their average,
1

n

n∑
i=1

δik(θ̂), where

Se

(
1

n

n∑
i=1

δik(θ̂)

)
=

√
Qθ ∗ ÂsyV ar ∗Q′θ, (B.35)

and

Qθ =

(
1

n

n∑
i=1

∂δik(θ̂)

∂Λ′
,

1

n

n∑
i=1

∂δik(θ̂)

∂σε

)
. (B.36)
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Table B.1 – Data summary

Variable Mean Sd. Min 1st Qu. Median 3rd Qu. Max
Age 15.010 1.709 10 14 15 16 19
Sex

Female 0.503 0.500 0 0 1 1 1
Male 0.497 0.500 0 0 0 1 1

Hispanic 0.168 0.374 0 0 0 0 1
Race

White 0.625 0.484 0 0 1 1 1
Black 0.185 0.388 0 0 0 0 1
Asian 0.071 0.256 0 0 0 0 1
Other 0.097 0.296 0 0 0 0 1

Years at school 2.490 1.413 1 1 2 3 6
With both parents 0.727 0.445 0 0 1 1 1
Mother Educ.

High 0.175 0.380 0 0 0 0 1
<High 0.302 0.459 0 0 0 1 1
>High 0.406 0.491 0 0 0 1 1
Missing 0.117 0.322 0 0 0 0 1

Mother job
Stay at home 0.204 0.403 0 0 0 0 1
Professional 0.199 0.400 0 0 0 0 1
Other 0.425 0.494 0 0 0 1 1
Missing 0.172 0.377 0 0 0 0 1

Number of activities 2.353 2.406 0 1 2 3 33

B.3 Data summary

This section summarizes the data (see Table B.1). The categorical explanatory variables are
discretized into several binary subvariables. For identification, the subvariables in italics are
the omitted categories in the econometric models.

The dependent variable is the number of extracurricular activities in which students are en-
rolled. It varies from 0 to 33. However, most students declare that they participate in fewer
than 10 extracurricular activities (see Figure B.1).
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Figure B.1 – Distribution of the number of extracurricular activities

B.4 Supplementary note on network endogeneity

In this section, I present the posterior distribution of the dyadic linking model parameters
and show how to simulate from this posterior distribution. I also present the new asymptotic
variance of θ̂, which includes the variability of µ̃i.

B.4.1 Posterior distribution of the dyadic linking model parameters

The likelihood of the model (2.18) is given by

L(A|∆X, β̄,µ) =

S∏
s=1

∏
i 6=j

exp
(
aijs(∆x′ijsβ̄ + µis + µjs)

)
1 + exp

(
∆x′ijsβ̄ + µis + µjs

) ,
where X is the matrix of dyad-specific variables, µ is the vector of unobserved individual-level
attributes, and the subscript s is used to denote the school s. The number of schools is S.
The joint distribution of (A,µ) conditionally on Θ =

(
∆X, β̄, uµ1, σ

2
µ1, . . . , uµS , σ

2
µS

)
can be

defined by

π(A,µ|Θ) ∝
S∏
s=1

∏
i 6=j

exp
(
aijs(∆x′ijsβ̄ + µis + µjs)

)
1 + exp

(
∆x′ijsβ̄ + µis + µjs

) ns∏
i=1

1

σµs
exp

(
−(µis − uµs)2

σ2
µs

) ,

where ns is the number of students in the school s.
I set a non-informative prior distribution on β̄ and conjugate prior on

(
uµs, σ

2
µs

)
; that is,

π
(
β̄
)
∝ 1 and π

(
uµs, σ

2
µs

)
∝ 1

σµs
. Let Ξ be the vector containing β̄, µ, uµ1, σ

2
µ1, . . . , uµS , σ

2
µS .

The posterior distribution of Ξ is

π(Ξ|A,∆X) ∝
S∏
s=1

 1

σns+1
µs

∏
i 6=j

exp
(
aijs(∆x′ijsβ̄ + µis + µjs)

)
1 + exp

(
∆x′ijsβ̄ + µis + µjs

) ns∏
i=1

exp

(
−(µis − uµs)2

σ2
µs

) .
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To simulate from this posterior distribution, I use a MCMC approach (see Algorithm B.1.)
that combines a Metropolis–Hasting (Metropolis et al., 1953) and a Gibbs sampler

Algorithm B.1. MCMC to simulate the posterior distribution of the network formation
model
Initialize β̄, µ, uµ1, σ

2
µ1, . . . , uµS , σ

2
µS to β̄(0), µ(0), u(0)

µ1 , σ
2(0)
µ1 , . . . , u

(0)
µS , σ

2(0)
µS , respectively;

for t = 1, . . . , T , where T is the number of simulations do
Draw the proposal β̄∗ from N

(
β̄

(t−1)
, jumping scale

)
. Update β̄(t) by accepting β̄∗ with the

probability min
{

1, αβ̄

}
, where

αβ̄ =

S∏
s=1

∏
i 6=j

exp
(
aijs∆x′ijsβ̄

∗) (
1 + exp

(
∆x′ijsβ̄

(t−1)
+ µ

(t−1)
is + µ

(t−1)
js

))
exp

(
aijs∆x′ijsβ̄

(t−1)
)(

1 + exp
(

∆x′ijsβ̄
∗

+ µ
(t−1)
is + µ

(t−1)
js

)) ;
for s = 1, . . . , S and i = 1, . . . , ns do

Draw the proposal µ∗is from N
(
µ

(t−1)
is , jumping scale

)
. Update µ(t)

is by accepting µ∗is with
the probability min {1, αµis}, where

αµis = exp

(
1

σ
2(t−1)
µs

(
µ

(t−1)
is − u(t−1)

µs

)2

− 1

σ
2(t−1)
µs

(
µ∗is − u(t−1)

µs

)2
)
×

∏
j 6=i

exp (aijsµ
∗
is)
(

1 + exp
(

∆x′ijsβ̄
(t)

+ µ
(t−1)
is + µ∗js

))
exp

(
aijsµ

(t−1)
is

)(
1 + exp

(
∆x′ijsβ̄

(t)
+ µ∗is + µ∗js

)) , and µ∗js = µ
(t−1)
js , if i < j, and

µ∗js = µ
(t)
js , if i > j;

for s = 1, . . . , S do

Use a Gibbs to update u(t)
µs from N

(∑ns
i=1 µ

(t)
is

ns
,
σ

2(t−1)
µs

ns

)
;

for s = 1, . . . , S do

Use a Gibbs to update σ2(t)
µs from Inv − χ2

(
ns − 1,

ns∑
i=1

(
µ

(t)
is − u

(t)
µs

)2
)
;

Update the jumping scales following Atchadé and Rosenthal (2005) to reach an acceptance
rate equal to 0.27;

In practice the MCMC converges very quickly. I perform T = 20,000 simulations and keep
the last 10,000. As the number of parameters in the model is large (72,291 parameters µi, 120
parameters uµs, 120 parameters σ2

µs and, an eight-dimensional vector β̄), I randomly choose
some parameters and present their posterior distribution in Figure B.2.

B.4.2 Correction of the asymptotic variance

As the estimation in done in two steps, the uncertainty related to µ̃ should be taken into
account to correct the variance of the estimator at the second stage. The asymptotic vari-
ance, derived in Appendix B.2.1, is conditional on the explanatory variables, which include
estimations of µ̃. In other words, the covariance of the estimator of θ̂ resulting from the NPL
approach is given by Var

(
θ̂|G,X, µ̃

)
and not Var

(
θ̂|G,X

)
.

To simplify the notations, I omit conditioning on G and X in this section; that is, I write
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Figure B.2 – Posterior distribution of the network formation model parameters
This figure presents the posterior distribution of the coefficients of the observed dyad-specific variables as well
as some other parameters chosen at random. Students of similar age, Hispanic, Black, and Asian students, as
well as students who have spent a similar number of years at their current school are likely to form links. In
contrast, students of the same sex and white students are not likely to form links.
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Var
(
θ̂|µ̃

)
to mean Var

(
θ̂|G,X, µ̃

)
and Var

(
θ̂
)
to mean Var

(
θ̂|G,X

)
. Moreover, Eu

(respectively Varu) means that the expectation (respectively variance) is taken with respect
to µ̃. It follows that

Var(θ̂) = E(θ̂θ̂
′
)−E(θ̂) E(θ̂)′,

Var(θ̂) = Eu

(
E(θ̂θ̂

′∣∣µ̃)
)
−E(θ̂) E(θ̂)′,

Var(θ̂) = Eu

(
E(θ̂θ̂

′∣∣µ̃)
)

+ Eu

(
E(θ̂

∣∣µ̃) E(θ̂
∣∣µ̃)′

)
−Eu

(
E(θ̂

∣∣µ̃) E(θ̂
∣∣µ̃)′

)
−E(θ̂) E(θ̂)′,

Var(θ̂) = Eu

(
E(θ̂θ̂

′∣∣µ̃)−E(θ̂
∣∣µ̃) E(θ̂

∣∣µ̃)′︸ ︷︷ ︸
Var(θ̂

∣∣µ̃)

)
+ Eu

(
E(θ̂

∣∣µ̃) E(θ̂
∣∣µ̃)′

)
−E(θ̂) E(θ̂)′︸ ︷︷ ︸

Varu
(
E(θ̂
∣∣µ̃)
)

,

Var(θ̂) = Eu

(
Var(θ̂

∣∣µ̃)
)

+ Varu

(
E(θ̂

∣∣µ̃)
)
. (B.37)

In Equation (B.37), the first component of the variance, Eu

(
Var(θ̂

∣∣µ̃)
)

is the variance of

θ̂ due to the NPL algorithm. This component does not include the uncertainty of µ̃. The
second component of the variance Varu

(
E(θ̂

∣∣µ̃)
)
is the variance due to the estimation of µ̃

at the first stage. To compute the second component of the variance, I make the following
Assumption.

Assumption I. Let µ̃s be a draw of µ̃ from its posterior distribution and θ̂s be the estimator

of θ0 associated with µ̃s. θ̂s is a consistent estimator of E(θ̂s
∣∣µ̃s).

Assumption I means that every estimator θ̂s associated with a draw µ̃s is a good estimator of
E(θ̂s

∣∣µ̃s). This is useful because with many draws µ̃s the sample variance of θ̂s will be a good
estimator of Varu

(
E(θ̂

∣∣µ̃)
)
. I also assume that the last 10,000 simulations from the posterior

distribution at the first stage are sufficient to summarize well the posterior distribution of µ̃s.
Under these considerations, the variance of θ̂s is

ÂsyV ar
(
θ̂s

)
=

1

S

S∑
s=1

Var(θ̂s
∣∣µ̃s) +

1

S − 1

T∑
s=1

(
θ̂s − ˆ̄θ

)(
θ̂s − ˆ̄θ

)′
, (B.38)

where µ̃1, . . . , µ̃S are S draws of µ̃ with replacement from the population of the 10,000 sim-

ulations kept at the first stage, and ˆ̄θ =
1

S

S∑
s=1

θ̂s. In practice, I set S = 5, 000.

In Table 2.6, I present the average ˆ̄θ and the variance ÂsyV ar
(
θ̂s

)
to summarize the dis-

tribution of θ̂s. The same approach is used to compute the standard error of the marginal
effects.
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Appendix C

Chapter 3 of appendix

C.1 Proofs of the consistency of the Penalty function

In this appendix, we proof Proposition 3.1. To do so, we first state and prove two Lemmas.

Lemma C.1. Under the conditions G.1-G.5 and let,

fT (β) =
1

T
||y −Xτβ||22 +

m∑
j=2

K∑
k=1

PSELO(∆βjk|ak, λ) (C.1)

Then of every ν ∈ (0, 1), there exists a constant C0 > 0 such that

lim inf
T→∞

P

 arg min

||β−β∗||2≤C
√
Kmσ2

T

fT (β) ⊆

{
β ∈ <Km×1; ||β − β∗||2 < C

√
Kmσ2

T

} > 1− ν

for all C ≥ C0.

Proof. The proof is given in Appendix C.1.1.

Lemma C.2. Let C > 0 and fT as defined by Equation (3.7). Under the conditions G.1-G.5,

lim inf
T→∞

P

 arg min

||β−β∗||2≤C
√
Kmσ2

T

fT (β) ⊆
{
β ∈ <Km×1;βAc = 0

} = 1

where Ac = {(j, k), j = 1, . . . ,m and k = 0, . . . ,K − 1}\A is the complement of A in

{(j, k), j = 1, . . . ,m and k = 0, . . . ,K − 1}, βAc ∈ <|A
c|×1 is the |Ac|-dimensional sub-vector

of β containing components subscripted by Ac.

Proof. See Appendix C.1.2 for the proof.
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C.1.1 Proof of Lemma 1

Proof. We consider the objective function

fT (β) =
1

T
||y −Xτβ||22 +

m∑
j=2

K∑
k=1

PSELO(∆βjk|ak, λ)

Let αT =

√
Kmσ2

T
and ν ∈ (0, 1). To prove the lemma C.1, It suffices to show that

P

(
fT (β∗) < inf

||u||2=1
fT (β∗ + CαTu)

)
= 1− ν

for C>0 sufficiently large and for any T sufficiently large. In other words, we shall show that

HT (u) = fT (β∗ + CαTu) − fT (β∗) is positive for any T when C is large enough and for all

||u||2 = 1, where u = (u11, u12 . . . , u1K , . . . , umK) ∈ RmK×1.

We can easily show that

HT (u) =
1

T

(
C2α2

T ||Xτu||22 − 2CαTε
′Xτu

)
+

m∑
j=2

K∑
k=1

(
PSELO(∆β∗jk + CαTujk|ak, λ)− PSELO(∆β∗jk|ak, λ)

)
HT (u) ≥ 1

T

(
C2α2

T ||Xτu||22 − 2CαTε
′Xτu

)
+∑

(j,k)∈D(u)

(
PSELO(∆β∗+jk |ak, λ)− PSELO(∆β∗jk|ak, λ)

)
where ∆β∗+jk = ∆β∗jk + CαTujk and

D(u) =
{

(j, k); j ≥ 2 and PSELO(∆β∗+jk |ak, λ)− PSELO(∆β∗jk|ak, λ) < 0
}
.

For any (j, k) ∈ D(u), clearly ∆β∗jk 6= 0, otherwise PSELO(∆β∗+jk |ak, λ)−PSELO(∆β∗jk|ak, λ) ≥

0. Thus, if C > 0 is sufficiently large and fixed, as lim
T→∞

CαT = 0, we can consider that

∆β∗+jk and ∆β∗jk have the same sign for T sufficiently large; that is 0 6∈ (c−T , c
+
T ), where

c−T = min(∆β∗+jk ,∆β
∗
jk) and c+

T = max(∆β∗+jk ,∆β
∗
jk). By the fact that PSELO(x|ak, λ) is a

concave function on x ∈ (−∞, 0] and on x ∈ [0,+∞), thus also on (c−T , c
+
T ), we can establish

the following conditions using the mean value theorem.

PSELO(∆β∗+jk |ak, λ)− PSELO(∆β∗jk|ak, λ)

CαTujk
≤ max

(
P ′SELO(∆β∗+jk |ak, λ),P ′SELO(∆β∗jk|ak, λ)

)
PSELO(∆β∗+jk |ak, λ)− PSELO(∆β∗jk|ak, λ)

CαTujk
≥ min

(
P ′SELO(∆β∗+jk |ak, λ),P ′SELO(∆β∗jk|ak, λ)

)
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where P ′SELO stands for the PSELO first derivative.

Let us note that ∀ (j, k) ∈ D(u), ∆β∗jk > 0 =⇒ ujk < 0 and ∆β∗jk < 0 =⇒ ujk > 0 so

that PSELO(∆β∗+jk |ak, λ)− PSELO(∆β∗jk|ak, λ) < 0 holds. Applying the mean value theorem

in both cases, we end up with a common condition given by

PSELO(∆β∗+jk |ak, λ)− PSELO(∆β∗jk|ak, λ) ≥ −CαT |ujk||P ′SELO(∆β∗jk + CαTujk|ak, λ)|

≥ − CλαTakζ

ln(2)(ρ2 − 2ρCαT )

≥ − CλαTamaxζ

ln(2)(ρ2 − 2ρCαT )

where the last two inequalities come from the |P ′SELO(∆β∗jk + CαTujk|ak, λ)| minimization

with respect to ∆β∗jk. Then

HT (u) ≥
C2α2

T ||Xτu||22
T︸ ︷︷ ︸
Q1

− 2CαTε
′Xτu

T︸ ︷︷ ︸
Q2

− CKmλαTamaxζ

ln(2)(ρ2 − 2ρCαT )︸ ︷︷ ︸
Q3

Focusing on each term, we can show that

Q1 ≡
C2α2

T ||Xτu||22
T

= C2α2
Tu′

X′τXτ

T
u ≥ C2α2

TλT,min

where λT,min is the smallest eigenvalue of
X′τXτ

T
.

To show this condition, we can decompose
X′τXτ

T
into UΛU ′ (by G.3). Moreover, any

vector of Km dimension can be decomposed into a linear combination of the eigenvectors

(i.e., u = Uω). Note that u′u = ω′U ′Uω = ω′ω =

Km∑
i=1

ω2
i = 1.

Thus u′
X′τXτ

T
u = ω′U ′UΛU ′Uω = ω′Λω =

Km∑
i=1

ω2
i λi ≥ λT,min.

The second term is given by

Q2 ≡
2CαTε

′Xτu

T
≤ 2CαT |ε′Xτu|

T

≤ 2CαT ||ε′Xτ ||2||u||2
T

by Cauchy-Schwartz

≤
2Cα2

T√
Kmσ2

√
(ε′(XτX′τ )ε)

T

≤ Op(Cα2
T ) (By G.3 and G.4).

To show that

√
(ε′(XτX′τ )ε)

T
= Op(1), we rely on the spectral theorem to decompose XτX′τ

into two orthogonal matrices and a diagonal matrix of eigenvalues. With this decomposition,
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we can show that ε′
XτX′τ
T

ε ≤ maxiλi
ε′ε

T
which is Op(1) under Assumption G.3 and the fact

that the variance is bounded.

The last term Q3 is defined by

Q3 ≡
CKmλαTamaxζ

ln(2)(ρ2 − 2ρCαT )

= Cα2
T

λζ
amax

(Km)−1α3
T

ln(2)

((
ρ

αT

)2

− 2C

(
ρ

αT

))

By G.2,
(
ρ

αT

)2

−2C

(
ρ

αT

)
→∞ and by G.5, lim

T→∞
λζ

amax

(Km)−1α3
T

<∞. HenceQ3 = o(Cα2
T ).

Combining the conditions on Q1, Q2 and Q3 we establish that

HT (u) ≥ C2α2
TλT,min +Op(Cα2

T ) + o(Cα2
T )

. It follows that there exists C0 > 0 is large such that for all C > C0, P

(
inf
||u||2=1

HT (u) > 0

)
=

1− ν, for T sufficiently large.

C.1.2 Lemma 2

Proof. Let β ∈ <Km×1 such that ||β − β∗||2 < C

√
Kmσ2

T
. We consider β̃ ∈ <Km×1, where

β̃Ac = 0 and β̃A = βA. We can notice that

||β − β̃||2 = ||βAc − β̃Ac ||2 = ||βAc − β∗Ac ||2

||β − β̃||2 < CαT

On the other hand

||β∗ − β̃||2 = ||β∗A − β̃A||2 = ||β∗A − βA||2

||β∗ − β̃||2 < CαT

Let us define GT (β) = fT (β)− fT (β̃). Similarly to the proof of the lemma C.1, it suffices to
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show that GT (β, β̃) > 0.

GT (β) =
1

T

(
||y −Xτβ||22 − ||y −Xτ β̃||22

)
+

∑
(j,k)∈Ac
j≥2

PSELO(∆βjk|ak, λ)

=
1

T

(
||y −Xτ β̃ −Xτ (β − β̃)||22 − ||y −Xτ β̃||22

)
+

∑
(j,k)∈Ac
j≥2

PSELO(∆βjk|ak, λ)

= (β − β̃)′
X′τXτ

T
(β − β̃)− 2(β − β̃)′

X′τ (y −Xτ β̃)

T
+

∑
(j,k)∈Ac
j≥2

PSELO(∆βjk|ak, λ)

= (β − β̃)′
X′τXτ

T
(β − β̃)− 2(β − β̃)′

X′τ ε

T
− 2(β − β̃)′

X′τXτ

T
(β∗ − β̃)

+
∑

(j,k)∈Ac
j≥2

PSELO(∆βjk|ak, λ)

= (β − β̃)′
X′τXτ

T
(β − β̃)− 2αT

(β − β̃)′√
Kmσ2

X′τ ε√
T
− 2(β − β̃)′

X′τXτ

T
(β∗ − β̃)

+
∑

(j,k)∈Ac
j≥2

PSELO(∆βjk|ak, λ)

By G.1, G.3 and G.4,
X′τXτ

T
= Op(1) and

X′τ ε√
T

= Op(1) (as it is a martingale difference

sequence following assumption G.4). Moreover ||β − β̃||2 < CαT and ||β∗ − β̃||2 ≤ CαT .

Then, for any T sufficiently large

GT (β) = Op
(
||β − β̃||2αT

)
+

∑
(j,k)∈Ac
j≥2

PSELO(∆βjk|ak, λ)

As PSELO(x|ak, λ) is a concave function on x ∈] −∞, 0] and on x ∈ [0,+∞[, for any ν1 <

ν2 ≤ ν3 ≤ 0 (resp. 0 ≤ ν1 ≤ ν2 < ν3),
PSELO(ν1)− PSELO(ν3)

ν1 − ν3
≥ PSELO(ν2)− PSELO(ν3)

ν2 − ν3

(resp.
PSELO(ν3)− PSELO(ν1)

ν3 − ν1
≤ PSELO(ν2)− PSELO(ν1)

ν2 − ν1
).

∀ (j, k) ∈ Ac, ∆β∗jk = 0 and ∆βjk is strictly positive or negative.

Thus, −CαT ≤ βjk < 0 or 0 < ∆βjk < CαT , since |∆βjk| ≤ ||β − β∗||2 < CαT . In both

cases, we end up with

PSELO (CαT |ak, λ)

CαT
≤
PSELO (∆βjk|ak, λ)

|∆βjk|

PSELO(∆βjk|ak, λ) ≥ λ

ln(2)CαT
ln

(
CαT

CαT + akζ
+ 1

)
|∆βjk|

PSELO(∆βjk|ak, λ) ≥ λ

ln(2)C
ln

(
CαT

CαT + amaxζ
+ 1

)
|∆βjk|

144



for any T sufficiently large. Thus

∑
(j,k)∈Ac
j≥2

PSELO(∆βjk|ak, λ) ≥ λ

ln(2)C
ln

 C

C + amaxζ
√

T
Kmσ2

+ 1

 ||β − β̃||2.

Furthermore, by G.5 amax = Op

(√
mKσ2

T

σ2

T

)
. Thereby

amaxζ

√
T

Kmσ2

p→ 0 and lim inf
T→∞

 C

C + amaxζ
√

T
Kmσ2

+ 1

 > 0

It follows that, there exists C̃ > 0 such that

GT (β, β̃)

||β − β̃||2
≥ C̃λ+Op

(√
Kmσ2

T

)

Thereby the result follows.

C.1.3 Proof of the Proposition 3.1

Proof. The theorem is immediately given by the lemmas (C.1) and (C.2), in the sense that

there exists a sequence of local minima β̂ of fT (β) such that ||β̂ − β∗|| = Op
(
T−

1
2

)
(since

m, K and σ2 are constants) and β̂Ac = 0 ∈ R|A
c|×1. Thus, as T−

1
2 → 0, it follows that

||β̂A − β∗A||2 = oP (1).

C.1.4 Consequence of bounded eigenvalues

We show that bounded eigenvalues of the matrix
X′τXτ

T
implies a fixed number of regimes.

Note first that

X′τXτ =
T∑
t=1

(1{t} ⊗ xt)(1{t} ⊗ xt)
′, (C.2)

=

T∑
t=1

(xtx
′
t)⊗ (1{t}1

′
{t}), (C.3)

where we define 1{t} = (1{t>τ0},1{t>τ1}, . . . ,1{t>τm−1})
′. Let us define ni =

T∑
t=1

1{t>τi−1}, i.e.,

the number of observations from the beginning of regime i to the end of the sample. Working
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with xt ≡ 1, we have that

X′τXτ

T
=

1

T

T∑
t=1

(1{t}1
′
{t}), (C.4)

=
1

T


n1 n2 n3 . . . nm

n2 n2 n3 . . . nm

n3 n3 n3 . . . nm

. . .

nm nm nm . . . nm

 (C.5)

in which n1 = T . It leads to the following determinant, when m > 1,

|X
′
τXτ

T
| = T−mnm

m−1∏
i=1

(ni − ni+1), (C.6)

=
nm
T

m−1∏
i=1

(ni − ni+1)

T
. (C.7)

Note that ni = T − τi−1 = τm − τi−1, for i = 1, . . . ,m. Thus,

|X
′
τXτ

T
| =

m∏
i=1

τi − τi−1

T
(C.8)

=
m∏
i=1

δτi > 0 (C.9)

where δτi =
τi − τi−1

T
.

It shows that the number of segments cannot increase with T otherwise the determinant tends
to zero. Let us assume that m = O(T q) with q > 0. It is clear that when T tends to ∞,
there exists r ∈ N such that δτr = O(T x) where x < 0. If such a r does not exist, this would
imply that ∀i, δτi does not drift to 0 as T → ∞ and then m = O(1) because inf

i
{δτi}m ≤ 1.

But, because m = O(T q) with q > 0, there exists r ∈ N such that δτr = O(T x) where x < 0.
Therefore, we have that

|X
′
τXτ

T
| = δτr

m∏
i=1
i 6=r

δτi → 0, (C.10)

which contradicts Assumption G.3. Hence m = O(1). As a result G.3 implies that m < ∞.
In addition, G.3 also implies that min

i
{δτi} > 0; that is δτi does not drift to 0 as T →∞.

C.1.5 Approximation of the penalty function with mixture of normal

densities

To derive the DAEM algorithm, a mixture of two normal densities has been assumed for the
mean parameter. We now provide a simple mixture approximation of the SELO penalty. Note
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that in practice, one can use the output of the DAEM algorithm as a starting point to optimize
the function of Equation (3.8). Due to the mixture approximation and the continuity of the
SELO penalty function, the starting point would be in general very close to the value that
globally minimizes the function (3.8). We now use a mixture of two normal densities that can
be understood as a spike and slab prior in the Bayesian paradigm. In particular, we calibrate
a spike and slab prior (see, e.g., George and McCulloch, 1993) to the SELO penalty function.
Given a mean parameter β, the spike and slab prior is specified as,

β ∼ N (0, rz),

z ∼ Bernoulli(1− ω),
(C.11)

where r0 < r1 such that the spike distribution arises with probability P [z = 0|ω] = ω. By
marginalizing out z, we get a mixture of two normal densities given by

f(β|ω, r0, r1) = ω(
1

r0
)

1
2 fZ(

β
√
r0

) + (1− ω)(
1

r1
)

1
2 fZ(

β
√
r1

). (C.12)

in which fZ(x) denotes the Normal density function evaluated at x and with expectation and
variance equal to 0 and 1, respectively. The calibration is done as follows:

c ≡ r1

r0
= 10000,

ω =
(exp(λ)− 1)

(
√
c+ (exp(λ)− 1))

,

r0 =
a2

8

1− c−1

| ln(exp(λ)− 1)|

(C.13)

We now detail how we come up with this simple calibration. Given β, note that the probability
of being in the slab component is equal to

Pr(z = 1|β, ω, r) =
1

ω
(1−ω)

( 1
r0

)
1
2 fZ( β√

r0
)

( 1
r1

)
1
2 fZ( β√

r1
)

+ 1

.
(C.14)

To mimic the SELO penalty function, we impose the following constraints on the spike and
slab hyper-parameters.

1. As standards in the spike and slab literature, we fix c ≡ r1

r0
= 10000 (see, e.g. Malsiner-

Walli and Wagner, 2016).
2. The SELO function imposes a penalty equal to PSELO(a) − PSELO(0) = λy with y =
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0.99. To fix the same penalty value (neglecting y because y ≈ 1), we set

(−λ) = ln f(β = a|ω, rz)− ln f(β = 0|ω, rz),

= ln
f(β = a|ω, r1, z = 1)

f(β = 0|ω, r1, z = 1)
+ ln

Pr(z = 1|β = 0, ω, r)

Pr(z = 1|β = a, ω, r)
,

= − a2

2r1
+ ln

Pr(z = 1|β = 0, ω, r)

Pr(z = 1|β = a, ω, r)
,

≈ ln
Pr(z = 1|β = 0, ω, r)

Pr(z = 1|β = a, ω, r)
, because r1 >> a2,

≈ lnPr(z = 1|β = 0, ω, r), because Pr(z = 1|β = a, ω, r) ≈ 1,

= − ln(
ω

(1− ω)

√
c+ 1).

(C.15)

3. Finally, we impose that Pr(z = 1|β, ω, r) = Pr(z = 0|β, ω, r) when β =
a

2
(this is

called the intersection point in Ročková and George (2018)). This means that the slab
component starts to dominate when |β| > a

2
. It leads to the constraints:

0 = (2π)−
1
2 [

ω
√
r0

exp(− a2

8r0
)− 1− ω

√
r1

exp(− a2

8r1
)],

r0 =
a2

8

1− c−1

| ln(exp(λ)− 1)|
.

(C.16)

Figure C.1 shows the penalty imposed by the SELO function and by the calibrated spike and
slab prior for several values of λ and a. We observe that the spike and slab prior provides a
good approximation of the penalty function.

C.2 Marginal likelihood for the linear model

Let us derive the criterion (3.11). We first define X1 = X̃τ0 , X2 = XÂ
τ and MX1 = MX̃τ0

.
Given the prior distributions in Equation (3.13), the marginal likelihood is given by,

f(y|a, λ, τ ) =

∫ ∫
(2π)

−(T+k
Â

)

2 (σ2)−
(T+2+k

Â
)

2 |gÂ(X2)′MX1X2)|1/2×

exp
−1

2σ2

{
(y −X1β1 −X2∆β)′(y −X1β1 −X2∆β)

+∆β′gÂ(X2)′MX1X2)∆β

}
︸ ︷︷ ︸

B

d(β1,∆β)dσ2.

Focusing on the expression in the exponential, we have

B = (y −X1β1 −X2∆β)′(y −X1β1 −X2∆β) + ∆β′gÂ (X ′2MX1X2)︸ ︷︷ ︸
ΣX

∆β,

= (y −X2∆β)′(y −X2∆β) + ∆β′gÂ (X ′2MX1X2)︸ ︷︷ ︸
ΣX

∆β + β′1X
′
1X1β1

−2β′1X
′
1(y −X2∆β),

= (y −X2∆β)′(y −X2∆β) + ∆β′gÂΣX∆β + (β1 − β̄1)′Ω−1(β1 − β̄1)− β̄1
′
Ω−1β̄1,
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(a) λ = 1, a = 0.01 (b) λ = 1, a = 0.1

(c) λ = 5, a = 0.01 (d) λ = 5, a = 0.1

(e) λ = 10, a = 0.01 (f) λ = 10, a = 0.1

Figure C.1 – Penalty imposed by the SELO function and slab prior
Penalty imposed by the SELO function in dotted black line and slab prior in blue for several values of λ and
a. Vertical lines are the intersection points of the spike and slab densities (at |x| = a

2
).

where Ω−1 = X ′1X1, β̄1 = (X ′1X1)−1X ′1(y −X2∆β)

and β̄1
′
Ω−1β̄1 = (y −X2∆β)′X1(X ′1X1)−1X ′1(y −X2∆β) = (y −X2∆β)′PX1(y −X2∆β).
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The marginal likelihood can be simplifies as

f(y|a, λ, τ ) =|X ′1X1|−
1
2

∫ ∫
(2π)

−(T+k
Â
−K)

2 (σ2)−
(T+2+k

Â
−K)

2 |gÂΣX |1/2×

exp
−1

2σ2

{
(y −X2∆β)′(y −X2∆β) + ∆β′gÂΣX∆β

−(y −X2∆β)′PX1(y −X2∆β)

}
︸ ︷︷ ︸

C

d(∆β)dσ2.

Again, focusing on the expression of the exponential, we obtain

C = (y −X2∆β)′(y −X2∆β) + ∆β′gÂΣX∆β − (y −X2∆β)′PX1(y −X2∆β),

= y′[IT − PX1 ]y + ∆β′[gÂX
′
2MX1X2 +X ′2X2 −X ′2PX1X2]∆β − 2∆β′X ′2[IT − PX1 ]y,

= y′MX1y + ∆β′[(1 + gÂ)X ′2MX1X2]∆β − 2∆β′X ′2MX1y,

= y′MX1y + (∆β − µ̄)′Σ̄−1(∆β − µ̄)− µ̄′Σ̄−1µ̄,

where Σ̄−1 = (1 + gÂ)X ′2MX1X2 = (1 + gÂ)ΣX and µ̄ = Σ̄X ′2MX1y, µ̄
′Σ̄−1µ̄ = (1 +

gÂ)−1y′MX1X2[X ′2MX1X2]−1X ′2MX1y.

Eventually, we find the following marginal likelihood

f(y|a, λ, τ ) = (2π)
−(T−K)

2 |X ′1X1|−
1
2 |gÂΣX |1/2|(1 + gÂ)ΣX |

−1
2

∫
(σ2)−

(T+2−K)
2

exp
−1

2σ2
{y′MX1y − (1 + gÂ)−1y′MX1X2[X ′2MX1X2]−1X ′2MX1y}dσ2,

= (π)
−(T−K)

2 Γ(
T −K

2
)|X ′1X1|−

1
2

(
gÂ

1 + gÂ
)kÂ/2[y′MX1y − (1 + gÂ)−1y′MX1X2[X ′2MX1X2]−1X ′2MX1y]−

T−K
2 ,

= (π)
−(T−K)

2 Γ(
T −K

2
)|X ′1X1|−

1
2 (

gÂ
1 + gÂ

)kÂ/2

[
gÂ

1 + gÂ
y′MX1y +

1

(1 + gÂ)
[ỹ′ỹ − ỹ′X2[X ′2MX1X2]−1X2ỹ]]−

T−K
2 ,

= (π)
−(T−K)

2 Γ(
T −K

2
)|X ′1X1|−

1
2 (

gÂ
1 + gÂ

)kÂ/2

[
gÂ

1 + gÂ
sX1 +

1

(1 + gÂ)
sX1,X2 ]−

T−K
2 ,

where the penultimate equality comes from the Frisch-Waugh theorem.

C.2.1 Posterior distribution

f(β1,∆β, σ
2|y, τ ) ∝ (2π)

−(T+k
Â

)

2 (σ2)−
(T+2+k

Â
)

2 |gÂ(X2)′MX1X2)|1/2

exp
−1

2σ2

(
(y −X1β1 −X2∆β)′(y −X1β1 −X2∆β)

+ ∆β′gÂ(X2)′MX1X2∆β

)
︸ ︷︷ ︸

Exp
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Focusing on the expression of the exponential, we have

Exp = (y −X2∆β)′(y −X2∆β) + ∆β′gÂΣX∆β + (β1 − β̄1)′Ω−1(β1 − β̄1)− β̄1
′
Ω−1β̄1,

= y′MX1y − µ̄′Σ̄−1µ̄+ (∆β − µ̄)′Σ̄−1(∆β − µ̄) + (β1 − β̄1)′Ω−1(β1 − β̄1),

=
gÂ

1 + gÂ
sX1 +

1

(1 + gÂ)
sX1,X2 + (∆β − µ̄)′Σ̄−1(∆β − µ̄)

+(β1 − β̄1)′Ω−1(β1 − β̄1),

where Σ̄−1 = (1 + gÂ)X ′2MX1X2 = (1 + gÂ)ΣX and µ̄ = Σ̄X ′2MX1y, µ̄
′Σ̄−1µ̄ = (1 +

gÂ)−1y′MX1X2[X ′2MX1X2]−1X ′2MX1y and Ω−1 = X ′1X1, β̄1 = (X ′1X1)−1X ′1(y − X2∆β).
The posterior distribution can be decomposed as

f(β1,∆β, σ
2|y, τ ) = f(σ2|y, τ )f(∆β|y, τ , σ2)f(β1|y, τ , σ2,∆β)

∝ (σ2)−
(T+2−K)

2 exp
−1

σ2
{

gÂ
1+gÂ

sX1 + 1
(1+gÂ)sX1,X2

2
}

(σ2)−
(k
Â

)

2 |gÂ(X2)′MX1X2)|1/2 exp
−1

2σ2
{(∆β − µ̄)′Σ̄−1(∆β − µ̄)}

(σ2)−
(K)

2 exp
−1

2σ2
{(β1 − β̄1)′Ω−1(β1 − β̄1)}.

It gives the following posterior distribution

σ2|y, τ ∼ IG(
T −K

2
,

gÂ
1+gÂ

sX1 + 1
(1+gÂ)sX1,X2

2
),

∆β|y, τ , σ2 ∼ N ((1 + gÂ)−1[X ′2MX1X2]−1X ′2MX1y, σ
2(1 + gÂ)−1[X ′2MX1X2]−1),

β1|y, τ , σ2,∆β ∼ N ((X ′1X1)−1X ′1(y −X2∆β), σ2(X ′1X1)−1).

C.2.2 Predictive density

In Appendix C.2.1, we derive the following posterior distributions:

σ2|y, τ ∼ IG(
T −K

2︸ ︷︷ ︸
aσ2

,

gÂ
1+gÂ

sX1 + 1
(1+gÂ)sX1,X2

2︸ ︷︷ ︸
bσ2

),

∆β|y, τ , σ2 ∼ N ((1 + gÂ)−1[X ′2MX1X2]−1X ′2MX1y︸ ︷︷ ︸
µ∆β

, σ2(1 + gÂ)−1[X ′2MX1X2]−1︸ ︷︷ ︸
Σ∆β

),

β1|y, τ , σ2,∆β ∼ N ((X ′1X1)−1X ′1(y −X2∆β)︸ ︷︷ ︸
µβ

, σ2(X ′1X1)−1︸ ︷︷ ︸
Σβ

).
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Given these results, we can derive the joint posterior distribution of the variable ψ =

(
β1

∆β

)
.

In particular, a standard algebraic calculus leads to

ψ|y, τ , σ2 ∼ N

(β̂1 −Bµ∆β

µ∆β

)
,

(
Σ−1
β Σ−1

β B

B′Σ−1
β [Σ−1

∆β + B′Σ−1
β B]

)−1
 ,

∼ N
(
µψ,Σψ

) (C.17)

with β̂1 = (X ′1X1)−1X ′1y and B = (X ′1X1)−1X2. Consequently, the predictive density is given
by

yT+1|y, τ , σ2 ∼ N
(
x′T+1µψ, σ

2(x′T+1ΣψxT+1 + 1)
)
. (C.18)

Since σ2|y, τ follows an inverse gamma distribution, the predictive distribution of yT+1|y is a
student distribution. Its density is given by

f(yT+1|y, τ ) =
b
aσ2

σ2

Γ(aσ2)
(2π(x′T+1ΣψxT+1 + 1))−

1
2∫

(σ2)−(aσ2+1+0.5) exp(−
(yT+1 − x′T+1µψ)2(x′T+1ΣψxT+1 + 1)−1 + 2bσ2

2σ2
)dσ2,

=
b
aσ2

σ2

Γ(aσ2)
(2π(x′T+1ΣψxT+1 + 1))−

1
2 Γ(aσ2 + 0.5)(

(yT+1 − x′T+1µψ)2(x′T+1ΣψxT+1 + 1)−1 + 2bσ2

2

)−(aσ2+0.5)

,

(C.19)

The final expression in Equation (C.19) is equivalent to a student density with expectation

x′T+1µψ, scale parameter
bσ2

aσ2

(x′T+1ΣψxT+1 + 1) and degree of freedom equal to 2aσ2 .

C.3 Consistency of the criterion

To prove the theorem, we focus on the ratio of the criterion for two different models s = (as, λs)

and j = (aj , λj) where s is considered as the true model. To simplify the notation, we denote
by Xz the explanatory variable included by model z (i.e., Xz = XÂz

τ ) for z = s, j and

gÂ = g =
1

w(T )
and write the marginal likelihood as f(y|az, λz) instead of f(y|az, λz, τ ). We

need to show that
f(y|aj , λj)
f(y|as, λs)

→p 0 for any j 6= s. In particular, we have

f(y|aj , λj)
f(y|as, λs)

=
( g

1+g )
kÂj

/2

( g
1+g )kÂs/2︸ ︷︷ ︸

Cjs

[

g
1+gsX̃τ0

+ 1
(1+g)sX̃τ0 ,Xj

g
1+gsX̃τ0

+ 1
(1+g)sX̃τ0 ,Xs

]−
T−K

2

︸ ︷︷ ︸
Djs

.
(C.20)
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Focusing on the first term, it is easy to show that

Cjs =
(1 + g)kÂs/2

(1 + g)
kÂj

/2
g

k
Âj
−k
Âs

2

=
(1 + w(T )−1)kÂs/2

(1 + w(T )−1)
kÂj

/2
w(T )

k
Âs
−k
Âj

2

= O(w(T )

k
Âs
−k
Âj

2 ).

When T →∞, we have

Cjs = 0 when kÂs < kÂj ,

= 1 if kÂs = kÂj ,

→ +∞ when kÂs > kÂj .

We now discuss three possible cases.

1. kÂs < kÂj and the model j does not nest the model s. In such case, the term Cjs → 0.
The second term also tends to zero since we have

Djs = [

g
1+gsX̃τ0

+ 1
(1+g)sX̃τ0 ,Xs

g
1+gsX̃τ0

+ 1
(1+g)sX̃τ0 ,Xj

]
T−K

2

= [
gsX̃τ0

+ sX̃τ0 ,Xs

gsX̃τ0
+ sX̃τ0 ,Xj

]
T−K

2

Using he fact thatMj does not nestMs and the Frisch-Waugh theorem (see also Lemma

A.1 in Fernandez et al. (2001)), we have that lim
T→∞

sX̃τ0 ,Xj

T
= σ2 + bj with bj > 0.

Combining with the fact that g → 0, we end up with a limit of Djs given by

lim
T→∞

Djs = [
σ2

σ2 + bj
]
T−K

2 → 0.

2. The model j does not nest the true model but Kj < Ks. In such case, the term

Cjs → +∞. However, we can show that lim
T→∞

Cjsw(T )−
(Ks−Kj)

2
+
Ks−Kj
T−K → 1. Indeed, we

have that

lim
T→∞

Cjsw(T )−
(Ks−Kj)

2
+
Ks−Kj
T−K =

(1 + w(T )−1)kÂs/2

(1 + w(T )−1)
kÂj

/2
w(T )

Ks−Kj
T−K .

Let us define qT = w(T )
Ks−Kj
T−K . We can compute the limit as follows lim

T→∞
w(T )

Ks−Kj
T−K =

lim
T→∞

exp ln qT . The limit of ln qT is given by

lim
T→∞

qT = lim
T→∞

Ks −Kj

T −K
lnw(T ),

= lim
T→∞

w′(T )

w(T )
(= 0 by assumption).
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We conclude that lim
T→∞

w(T )
Ks−Kj
T−K = 1.

Now, we need to show that Djsw(T )
(Ks−Kj)

2
−
Ks−Kj
T−K → 0. In fact, we have

Djsw(T )

(Ks−Kj)

2 (T−K−2)

T−K = lim
T→∞

(
σ2

σ2 + bj︸ ︷︷ ︸
a<1

)
T−K

2 w(T )
(Ks−Kj)

2

= lim
T→∞

w(T )
(Ks−Kj)

2

a−
T−K

2

,

By applying
⌈

(Ks −Kj)

2

⌉
times the Hospital’s rule, we find that a

T−K
2 dominates and

so Djsw(T )

(Ks−Kj)

2 (T−K−2)

T−K → 0.
3. We now consider the last case in which the model j nests the true model s. Consequently,

we have Ks < Kj and the term Cjs → 0. Regarding the other term, we can express it
as

Djs = [
gsX̃τ0

+ sX̃τ0 ,Xs

gsX̃τ0
+ sX̃τ0 ,Xj

]
T−K

2 ,

= [
sX̃τ0 ,Xs

sX̃τ0 ,Xj

]
T−K

2︸ ︷︷ ︸
Q1

[
As + w(T )

Aj + w(T )
]
T−K

2︸ ︷︷ ︸
Q2

,

where Ai =
sX̃τ0

sX̃τ0 ,Xi

for i = j, s. It is clear that the first term Q1 has a limiting

distribution related to the likelihood ratio test. In fact, we have that

T −K
2

ln
sX̃τ0 ,Xs

sX̃τ0 ,Xj

=
T −K

2T︸ ︷︷ ︸
→ 1

2

T ln
sX̃τ0 ,Xs

sX̃τ0 ,Xj︸ ︷︷ ︸
→dχ2(∆js)

,

→d Gamma(
∆js

2
, 1),

in which ∆js = |Ks − Kj |. Since Y ∼ Gamma
(

∆js

2
, 1

)
is Op(1), we have that

Cjs expY →p 0.
Focusing on the second term Q2, using assumption (iii), we have that

T −K
2

ln[
As + w(T )

Aj + w(T )
] =

T −K
2

ln[1 +
As −Aj
Aj + w(T )

],

= Op(
T

w(T )
).

→p [0,∞).

Since Cjs → 0, we conclude that CjsQ1Q2 →p 0.
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C.3.1 Convergence to the BIC

The BIC of a linear regression model with K parameters is given by

BIC(K) = −T
2

ln(
sX
T

)− K

2
lnT,

= −T
2

ln(sX)− K

2
lnT︸ ︷︷ ︸

BIC∗(K)

+
T

2
lnT, (C.21)

in which sX denotes the sum of squared residuals given the T × K dimensional exogenous
variables X evaluated at the OLS estimates. In this appendix, we show that the logarithm of

the marginal likelihood and the BIC∗(αkÂ) converges in probability to 0 when gÂ =
1

Tα
with

α > 1. In particular, the marginal likelihood is given by

f(y|a, λ, τ ) = (
gÂ

1 + gÂ
)kÂ/2[

gÂ
1 + gÂ

sX̃τ0
+

1

(1 + gÂ)
s
X̃τ0 ,X̃

Â
τ

]−
T−K

2 . (C.22)

We have the following results:

f(y|a, λ, τ ) = T−
αk
Â

2 [
1

Tα
sX̃τ0

+
Tα − 1

Tα
s
X̃τ0 ,X̃

Â
τ

]−
T−K

2 ,

= T−
αk
Â

2 [s
X̃τ0 ,X̃

Â
τ

]−
T−K

2 [
Tα − 1

Tα
]−

T−K
2 [

1

Tα − 1

sX̃τ0

s
X̃τ0 ,X̃

Â
τ

+ 1]−
T−K

2 ,

= T−
αk
Â

2 [s
X̃τ0 ,X̃

Â
τ

]−
T−K

2 [1− 1

Tα
]−

T−K
2︸ ︷︷ ︸

C1

[
1

Tα − 1

sX̃τ0

s
X̃τ0 ,X̃

Â
τ

+ 1]−
T−K

2

︸ ︷︷ ︸
C2

,

ln f(y|a, λ, τ ) = −T −K
T

T

2
ln s

X̃τ0 ,X̃
Â
τ
−
αkÂ

2
lnT + lnC1 + lnC2

(C.23)

We now show that the two quantities, i.e. C1 and C2, tends to 1 when T → +∞:

C1 = exp

(
−T −K

2
ln[1− 1

Tα
]

)
,

→p 1 since α > 1,

C2 = exp

(
−T −K

2
ln[

1

Tα − 1

sX̃τ0

s
X̃τ0 ,X̃

Â
τ

+ 1]

)
,

→p 1 since α > 1 and
sX̃τ0

s
X̃τ0 ,X̃

Â
τ

= Op(1),

(C.24)

It follows that

ln f(y|a, λ, τ )−
(
−T −K

T

T

2
ln s

X̃τ0 ,X̃
Â
τ
−
αkÂ

2
lnT

)
p→ 0

ln f(y|a, λ, τ )−
(
−T

2
ln s

X̃τ0 ,X̃
Â
τ
−
αkÂ

2
lnT

)
p→ 0

f(y|a, λ, τ )

exp
(
−T

2 ln s
X̃τ0 ,X̃

Â
τ
− αkÂ

2 lnT
) p→ 1

(C.25)
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As a result, the models selected using the marginal likelihood are equivalent (asymptotically)
to those of the BIC with αkÂ parameters. In addition, the posterior probabilities computed
using the marginal likelihood converge to the posterior probabilities that would have been

computed using the BIC with αkÂ parameters (since the term
T

2
lnT cancels out).

C.4 Time-varying parameter model

We also consider a standard time-varying parameter process (see Primiceri (2005)). The model
specification is given by

yt = x′tβ0 + x′tdiag(ω)βt + σtεt, (C.26)

βt|βt−1 ∼ N (βt−1, IK), (C.27)

lnσ2
t = lnσ2

t−1 + ηt, for t > 0, (C.28)

lnσ2
0 ∼ N(0, 1), (C.29)

where ω = (ω1, ..., ωK)′, ηt ∼ N (0, q) with q ∼ IG(q
1

= 3, q
2

= 20), (β′0,ω
′)′ ∼ N (0, I2K) and

K stands for the number of explanatory variables. We also define lnσ1:T = (lnσ2
1, . . . , lnσ

2
T )′

and y1:T , β0:T analogously. In order to take into account the autocorrelation structure, we
use the same lag orders as exposed in Table 3.6. The other explanatory variables consist in
an intercept and the seven factors.
The model parameters can be estimated with a standard Markov-chain Monte Carlo (e.g.,
Bitto and Frühwirth-Schnatter, 2019). In particular, the model parameters are estimated
using an MCMC algorithm which consists of the following steps:

• Sampling lnσ1:T using the offset mixture approach of Kim et al. (1998). In particular,
given β0:T and ω, we compute y∗t = ln(ν2

t + c), for all t = 1, . . . , T in which νt =

yt − xt(β0 + diag(ω1, ..., ωK)βt) and c = 0.0001. The model boils down to a standard
TVP model with time-varying intercept since we have

y∗t = lnσ2
t + ln ε2t , (C.30)

lnσ2
t = lnσ2

t−1 + ηt. (C.31)

Approximating the distribution ln ε2t with a 8-component mixture of normal distribu-
tions, we sample the time-varying variance from a high-dimensional multivariate normal
distribution using the sampler ’all without a loop’ (AWOL) as suggested in McCausland
et al. (2011) (see also Kastner and Frühwirth-Schnatter, 2014, for a simple exposition of
the algorithm).

• Sampling lnσ2
0| lnσ2

1, q ∼ N((q−1 + 1)−1 lnσ2
1

q
, (q−1 + 1)−1).

• Sampling q| lnσ0:T ∼ IG(q
1

+
T

2
, q

2
+

T∑
t=1

(lnσ2
t − lnσ2

t−1)2

2
).
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• Sampling β1:T |y1:T ,β0,ω, lnσ1:T using a Kalman filter. Note that this step could also
be carried out with the AWOL approach.

• Sampling (β′0,ω
′)′|y1:T ,β1:T , lnσ1:T from a multivariate normal distribution. In fact,

conditioning to β1:T and lnσ1:T , the model boils down to a standard regression model
since we have

yt = x′tβ0 + (x′tdiag(βt))ω + σtεt, (C.32)

= x′tβ0 + z′tω + σtεt, (C.33)

in which zt = (x′tdiag(βt))
′.

C.4.1 Time-varying parameters computed with the FIA returns
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(a) SELO - PMKT (b) TVP - PMKT

(c) SELO -SMB (d) TVP - SMB

(e) SELO - TERM (f) TVP - TERM

(g) SELO - DEF (h) TVP - DEF

Figure C.2 – FIA returns - Selective segmentation (SELO) model and Time-varying parameter
(TVP) model
Posterior medians (black) and the 90% credible intervals (dotted black lines) of the model parameters over
time. For the SELO method, we take the break uncertainty into account using the MCMC algorithm presented
in Section 3.5.2.
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(a) SELO - PTFSBD (b) TVP - PTFSBD

(c) SELO - PTFSFX (d) TVP - PTFSFX

(e) SELO - PTFSCOM (f) TVP - PTFSCOM

(g) SELO - UMD (h) TVP - UMD

Figure C.3 – FIA returns - Selective segmentation (SELO) model and Time-varying parameter
(TVP) model (2)
Posterior medians (black) and the 90% credible intervals (dotted black lines) of the model parameters over
time. For the SELO method, we take the break uncertainty into account using the MCMC algorithm presented
in Section 3.5.2
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(a) SELO - PTFSIR (b) TVP - PTFSIR

(c) SELO - PTFSSTK (d) TVP - PTFSSTK

(e) SELO - CPI (f) TVP - CPI

(g) SELO - NAREIT (h) TVP - NAREIT

Figure C.4 – FIA returns - Selective segmentation (SELO) model and Time-varying parameter
(TVP) model (3)
Posterior medians (black) and the 90% credible intervals (dotted black lines) of the model parameters over
time. For the SELO method, we take the break uncertainty into account using the MCMC algorithm presented
in Section 3.5.2.
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C.5 Bayesian alternatives to the selective segmentation

method

The DGP J exhibits 100 explanatory variables and one CP in ten parameters. To capture
which model parameters are experiencing a break, we are aware of four Bayesian alternatives
that are Giordani and Kohn (2008), Eo (2016), Huber et al. (2019) and Dufays and Rombouts
(2020). We now discuss why these alternatives do not work when 100 explanatory variables
are involved.

Giordani and Kohn (2008)
The model of Giordani and Kohn (2008) stands for a particular case of the general mixture
state space model developed in Gerlach et al. (2000). They explain how to do inference for a
Gaussian state space model with a latent variable Kt that determines the state of the model
parameters. Modelling breaks in the mean parameters, their approach allows estimating the
following state space model:

yt = βt,1 + βt,2xt,2 + . . .+ βt,Nxt,N + σηt, (C.34)

βt,i = βt−1,i + γi,Kt,iνt,i, for i = 1, . . . , N, and t > 1, (C.35)

in which N is the number of explanatory variables, ηt ∼ N(0, 1), Kt = {Kt,1, . . . ,Kt,N}
and νt = (νt,1, . . . , νt,N )′ ∼ N(0, IN ) (with IN , the identity matrix of dimension N). To
capture breakpoints, Giordani and Kohn (2008) suggest to set the states of the latent variable
Kt,i to {0, 1} such that we have γi,0 = 0 (i.e., no break when Kt,i = 0) and γi,1 ∈ <+

(i.e., break in the ith parameter when Kt,i = 1). The model parameters are given by θ =

{γ1,1, . . . , γN,1, β1,1, . . . , β1,N , σ}.

To efficiently estimate the model, Giordani and Kohn (2008) relies on the algorithm of Gerlach
et al. (2000). The main contribution of Gerlach et al. (2000) is to marginalize out the mean
parameters β1:T,1:N and to provide an analytical formula for the latent variable distribution
f(Kt|y1:T ,K6=t,θ) from which Kt is sampled in the MCMC algorithm. To normalize the
posterior distribution f(Kt|y1:T ,K6=t,θ), it requires to sum over all the possible values of Kt.
Because Kt = {Kt,1, . . . ,Kt,N} and Kt,i = {0, 1} ∀i ∈ [1, N ], the number of possible values for
Kt amounts to 2N . Consequently, it increases geometrically with the number of explanatory
variables. This is why Chan et al. (2012) on page 9 argue that the number of explanatory
variables should be small (i.e., at least below fourteen) otherwise some structure on the break
dynamic should be accounted for. With 100 regressors involved in DGP J, it is infeasible to
compute the latent variable distribution f(Kt|y1:T ,K6=t,θ) because its normalization requires
to sum over 2100 values.
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Eo (2016)
Eo (2016) relies on the approach of Chib (1998) for finding which parameters are experiencing
a break. The method consists of estimating all the possible models given several number of
breakpoints. Then, the best specification is selected by maximizing the marginal likelihood
that is computed, for each model, using the method of Chib (1995). Considering DGP J

and its 100 exogenous variables, the number of models to estimate reaches
m̄∑
i=0

2100i in which

m̄ is the maximum number of breaks that can experience a parameter. In our context, the
approach is computationally infeasible even when the upper bound of the number of break is
equal to 1.

Huber et al. (2019)
Huber et al. (2019) propose a threshold approach to approximate the MCMC inference of
mixture state space models. It generalizes the method of Giordani and Kohn (2008) because it
is not limited by the number of explanatory variables. As illustrated in Appendix D of Dufays
et al. (2020), the approximation makes the MCMC inference depending on the starting value
and the estimated breakpoints are unstable from one estimation to another. Consequently,
in-sample results and forecasting exercises will also depend on starting values. Because the
question on how to choose the starting values is not addressed in the paper, the method does
not provide reproducible results. However, it could be useful for exploring the space in order
to find a promising starting value to be used in the MCMC algorithm of Giordani and Kohn
(2008).

Dufays and Rombouts (2020)
Dufays and Rombouts (2020) rely on the standard CP model (see, e.g., Chib (1998), Pesaran
et al. (2006) or Maheu and Song (2014)) to capture which parameters are time-varying when
a break is detected. They specify the model parameters in first-difference with respect to the
previous regime. By doing so, shrinkage priors can be used to infer which parameters are time-
varying. The two main contributions of the paper are i) the introduction of a shrinkage prior
that is a 2-component mixture of Uniform distributions (hereafter, 2MU) and ii) a method
that operates for models exhibiting the path dependence issue such as ARMA and GARCH
processes.
The new shrinkage prior mimics the standard information criteria such as the AIC and the
BIC because one hyper-parameter of the 2MU distribution acts like a penalty on the log-
likelihood. Consequently, the 2MU prior can be seen as a Bayesian alternative to the popular
L0 penalty functions used in classical statistics. However, the 2MU prior is not suited for
high-dimensional regressions because it is not continuous. To mitigate this problem, Dufays
and Rombouts (2020) propose a sequential Monte Carlo algorithm, which is known to explore
multi-modal distributions more efficiently than MCMC algorithms based on a single chain
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(see, e.g., Herbst and Schorfheide, 2014). Unfortunately, this algorithm is computationally
intensive. While it takes around 10 minutes on a 6-CORE i5-8400 (2.8 Ghz) for estimating
a series from DGPs A to F of our paper, it runs for 2.5 hours on the same computer for
estimating one series similar to DGP J but with only 20 explanatory variables. Consequently,
it is computationally infeasible to estimate the model of Dufays and Rombouts (2020) on 100
series from DGP J as we do with the selective segmentation approach. As a comparison, the
selective segmentation method requires 20 minutes on the same computer for detecting which
parameters are time-varying in one simulated series from DGP J.
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