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ABSTRACT 
 
 
 
Geosynthetic-reinforced column-supported (GRCS) embankments have been 

increasingly used worldwide in the past few years. Even though a number of research 

investigations have been completed on this topic, the behavior of GRCS 

embankments is not well understood. To improve the understanding of this 

technology, coupled mechanical and hydraulic numerical analyses were conducted in 

this study under both two-dimensional (2D) and three-dimensional (3D) conditions to 

investigate influence of various factors on the performance of GRCS embankments. 

The selected parameters and their ranges in this study were based on deep-mixed 

(DM) columns; however, a similar study can be conducted for other types of 

columns. 

  

2D and 3D models were developed based on elasto-plastic constitutive relationships 

with Mohr-Coulomb failure criteria for DM walls or columns, soft soil, firm soil, and 

embankment fill. Cable and geogrid elements were selected to simulate geosynthetic 

reinforcement in 2D and 3D models, respectively. Staged construction was modeled 

by building the embankment in lifts. The ground water table was assumed at the 

ground surface. The mechanical model was coupled with the hydraulic model to 

simulate the generation and dissipation of excess pore water pressure during and after 

the construction.  
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The 2D and 3D models were calibrated using a well documented case history with 

long-term field measurement data and fairly detailed material information to ensure 

their reasonableness and adequacy. Upon completion of the model calibrations, a 2D 

baseline case based on a typical configuration of GRCS embankment was analyzed. 

A 2D parametric study was conducted by changing the parameters individually from 

the baseline case to investigate the influence of that factor on the performance of the 

embankment including post-construction settlement, post-construction differential 

settlement, distortion, tension in geosynthetic, effective stress, stress concentration 

ratio, excess pore water pressure, and degree of consolidation. The investigated 

factors include soft soil modulus, soft soil friction angle, soft soil permeability, DM 

column modulus, DM column spacing, geosynthetic tensile stiffness, and average 

construction rate. 

 

After the 2D study was completed, the 2D baseline case was converted into a 3D 

baseline case based on an area-weighted average approach assuming a square pattern 

of DM columns. The 3D parametric study was preformed by changing parameters 

individually from the 3D baseline case to investigate the influence of that specific 

factor on the performance of the embankment. The factors investigated are the same 

as those in the 2D parametric study.  
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On the basis of the numerical results from the 2D and 3D studies, the influence of 

factors on the performance of the embankment system was rated to provide guidance 

for practical use.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background 
 

As the development of modern society progresses, transportation demand grows 

dramatically year by year. Numerous embankments have been built to support 

roadways and railways. Inevitably, soft clays (for example, alluvial soil and peat) and 

other highly compressible soft soils, which used to be considered technically 

unsuitable for construction, are encountered. Their adverse features, such as low shear 

strength, high compressibility and so on, challenge the geotechnical profession (Bell 

et al. 1994; Han 1999). They set constraints on design and construction of earth 

structures, such as the maximum dimension of embankments and the maximum 

construction rate. To break through these constraints, geotechnical engineers never 

stop seeking better means technically and economically. In the past several decades, 

many innovative means have been practiced to control post-construction settlements 

of embankments built over problematic soils (Hewllet and Randolph 1988; Jones et 

al. 1994; Magnan 1994). The main techniques used to control embankment 

settlements are listed and compared in Table 1-1. 
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Table 1-1. Main Advantages and Disadvantages of Embankment Settlement 
Control Techniques (Modified from Magnan 1994) 

 
Technique Advantage Disadvantage 

Preloading 

It is almost the easiest 
method among those 

techniques. It does not 
require extra materials 
except for preloading 

weight. It is very efficient, if 
enough consolidation time 

is allowed. 

Waiting time for consolidation might be very 
long and hard to estimate, so monitoring might 
be needed to determine the degree of 
consolidation. Sometimes, the transportation and 
disposal of the preloading weights could 
increase the total cost.  

Preloading with 
vertical drain 

Easy to practice and much 
faster than preloading. 

The cost increases, as either sand well or 
fabricated vertical drain is involved. Compared 
with sand well, the installation of fabricated 
vertical drain is much easier and much faster 
than the construction of sand well. Since the 
discharge capacity of fabricated vertical drain is 
hard to estimate precisely, monitoring may be 
needed to determine the degree of consolidation. 

Vacuum preloading 

Compared with the two 
preceding preloading 

techniques, it saves time and 
cost on transporting 
preloading weights. 

Theoretically speaking, the maximum load that 
could be applied is atmospheric pressure. And 
efficient pumping equipment and impervious 
membrane are vital. Limited experiences are 
available. 

Overexcavation/ 
Replacement 

A fast and easy to use 
method. 

The disposal of extracted soil and transportation 
of the new fill material increase the cost. It is an 
expensive method for a large area and/or deep 
excavation. Therefore, it is hardly used on 
embankments covering large area. In addition, 
some other issues have to taken into 
consideration, such as stability of the cut edge, 
dewatering if ground water is to be encountered. 

Pile Fast and effective Expensive 

Piled raft Fast, effective, and reliable 
It is almost the most expensive technique among 
those discussed. It is typically used for bridge 
approach embankment. 

Stone column, sand 
column, and 

rammed aggregate 
pier 

Fast 

They are expensive. And hazardous vibration 
could be generated during the construction. 
Besides, they could not be used in very soft soil 
situation, since stones and sand need some 
confinement to sustain their strength. The advent 
of encased stone columns and sand columns 
seems to help break through this limitation. But 
the construction method of encased stone 
columns and sand columns has not well 
developed. 

Lightweight 
material 

Fast and easy to handle. It 
has the least disturbance on 

in-situ soils. 

The lightweight material with reasonable 
strength is expensive. Typically, protective 
cover is needed.  
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Table 1-1. Main Advantages and Disadvantages of Embankment Settlement 
Control Techniques (continued, Modified from Magnan 1994) 

 
Technique Advantage Disadvantage 

Jet-grouting 
Fast and reliable method. It is a very popular 

ground improvement technique. A lot of 
experience could be referred to. 

Expensive. 

Electro-osmosis  
Very expensive but not 
reliable. Destruction of 
electrodes, electricity needed.  

Geosynthetic 
reinforcement 

Installation is very easy. Besides as 
reinforcement, it could also serve as 

separation between embankment fill and 
foundation soil to avoid the penetration of 

granular materials into soft soil. 

It is not an effective method if 
does not combine with other 
stiffer inclusions such as piles, 
stone columns. 

Geosynthetic-
reinforced column-
supported system 

Compared with using geosynthetic 
reinforcement alone, it is more effective. And 

compared with using piles alone, it is more 
economical. 

Both experiences are limited 
and theories have not been 
well-established.  

 

Among the techniques listed in Table 1-1, the geosynthetic-reinforced column-

supported (GRCS) embankment is the focus of this study.  Since GRCS originated 

from column supported (CS) embankments, both CS embankments and GRCS 

embankments will be briefly reviewed in this chapter. 

 

 

1.2 Column Supported (CS) and Geosynthetic-Reinforced Column-Supported 

(GRCS) Embankments 

 

In this dissertation, the word, ‘column’, has a very broad meaning, which refers to an 

inclusion of higher strength and higher stiffness in soft soil. Columns can be 

conventional piles, columns installed by grouting, compaction, deep-mixing, stone 
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columns, aggregate piers, sand columns, and so on. The possible types of columns 

used in GRCS embankments, together with their typical parameters, are listed in 

Table 1-2. 

 

Table 1-2. Possible Column Types (Collin 2004) 
 

Pile type Range of allowable
capacity (kN) 

Typical length (m) Typical column
diameter (m) 

Timber pile 100-500 5-20 30-55 
Steel H pile 400-2000 5-30 15-30 

Steel pipe pile 800-2500 10-40 20-120 
Pre-cast concrete pile 400-1000 10-15 25-60 
Cast-in-place concrete 
Shell (mandrel driven) 400-1400 3-40 20-45 

Shell driven without 
mandrel 500-1350 5-25 30-45 

CFA 350-700 5-25 30-60 
Micropile 300-1000 20-30 15-25 

DMM 400-1200 10-30 60-300 
Stone column 100-500 3-10 45-120 

GEC 300-600 3-10 80-150 
Geopier 225-650 3-10 60-90 

VCC 200-600 3-10 45-60 
CSV 30-60 3-10 12-18 

AU-Geo 75-150 2-15 15 
Note:   CFA— continuous flight augered; DMM— deep mixing method; GEC—geotextile encased 
columns; VCC—vibro concrete columns; CSV—combined soil stabilization; AU-Geo – AU-Geo 
piling. 

 

Moreover, the embankments, referred here, include roadway embankments, railway 

embankments, and bridge approach embankments.  
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1.2.1 History of CS and GRCS Embankments 

 

Columns have been used to improve overall bearing capacity and mitigate post-

construction settlements of various embankments since early 1960s (Magnan 1994). 

So far, columns have been accepted widely to support road and railway 

embankments, i.e., column-supported (CS) embankments. After the advent of reliable 

and durable reinforcement materials – geosynthetics, they were introduced in CS 

embankments as basal reinforcement to facilitate the load transfer. This category of 

embankments is called geosynthetic-reinforced column-supported (GRCS) 

embankments. A typical cross-section of CS and GRCS embankments are presented 

in Fig. 1-1.  

 

The early documented GRCS embankment was built in Scotland in 1983 as a bridge 

approach embankment (Reid and Buchanan 1984). A single layer of geomembrane 

was used in this project.  Since then, more GRCS embankments were built in Europe, 

such as Belgium, Germany, Sweden, Poland, and Netherlands (van Eekelen et al. 

2003). The early documented GRCS embankment with multiple layers of 

geosynthetic reinforcement was built in 1988 to 1989 to support a roadway 

embankment in London, England (Card and Carter 1995).  In 1994, a geosynthetic 

reinforced column supported platform was built in Philadelphia, PA to support a large 

diameter storage tank (Collin 2003). After that, a number of GRCS embankments 
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were constructed in the U.S., such as the one built in New Jersey to support a light 

rail (Young et al. 2003).  

 

Embankment 

Ground surface 

Batter piles

Large size pile caps Piles Close spacing  
 

(a) CS embankment cross-section 
 

Embankment 

Ground 

Geosynthetic 

Small size pile Piles Large  
 

(b) GRCS embankment cross-section 
 

Fig. 1-1. Cross-sections of CS and GRCS Embankments 
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In the past few years, GRCS embankments have been increasingly used all over the 

world, such as southern Asia, England, Sweden, and North America. An inventory of 

the published case histories is listed in Table 1-3. 

 

 

1.2.2 Brief Discussion on CS and GRCS Embankments 

 

With the inclusion of columns, a large part of load is transferred from soft soil to 

columns through soil arching induced by differential settlements between columns 

and soft soil.  Soil arching will be discussed in detail with regard to load transfer 

mechanisms of Chapter Two. The secondary benefit of installation of columns is that 

they may densify and stiffen surrounding soil, thus reducing differential settlements 

of the foundation (Hewllet and Randolph 1988).  

 

Generally speaking, it is relatively easier to ensure enough bearing capacity margin as 

compared with limiting post-construction settlements. To limit the post-construction 

settlements of CS embankments, columns have to be installed closely or with 

enlarged heads/caps to increase the percent coverage of caps (Jones et al. 1990) as 

shown in Fig. 1-1 (a). Table 1-4 presents recommended design guidelines by 

Rathmayer (1975) who made a recommendation based on data from a research 

program conducted by Geotechnical Laboratory of the Technical Research Centre of 

Finland in 1971. 
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Table 1-3.  Constructed GRCS Embankments (Modified from Han 1999) 
 

Application Soil 
condition 

Pile  
type 

Geosyn.-
type 

Design parameters Performance Reference 

Railway Peat VCC Fabric 
H=7.6m, s=1.6-2.2m, 
d=0.51-0.56m, Pc=6 - 

8%, N=1 
S<6 mm. Barksd and 

Dobson 1983 

Near bridge 
abutment Soft clay Concrete 

pile 
Membrane 
(paraweb) 

H=9m, s=3.5-4.5m, 
d=1.1-1.5m, Pc=5-14%, 

N=1 

No apparent 
differential 
deformation 

adjacent to bridges. 

Reid and 
Buchanan 

1984. 

Bridge 
Approach 

Alluvial 
silty and 

clayey soils 

Timber 
piles 
with 

concrete 
caps 

Fabric 
H=3.5m, s=1.5m, 

d=0.8m, Pc=28.4%, 
N=1 

N/A Broms  and 
Wong 1985 

Bridge 
Approach 

Loose sand 
and marine 

clay 

Timber 
piles 
with 

concrete 
caps 

Geotextile H=1.5, s=1.5m, 
d=0.83m, Pc=30.6% N/A Broms  and 

Wong 1985 

Railway 
Very soft 
alluvium 
and peat 

Concrete 
pile Geotextile H=3-5m, s=2.75m, 

d=1.4m, Pc=20%, N=1 

No discernible 
differential 

settlements between 
existing and new 

railways 

Jones et al. 
1990 

Roadway 
Soft silty 

organic clay 
and peat 

Concrete 
pile Geogrid 

H=2.5~3.0m, s=3.0m, 
d′=1.0m, 

Pc=11%, N=3 

After four year of 
service, no sign of 

excessive 
settlements or 

distress of surface 

Card and Carter  
1995 

Highway 
and 

tramway 

Loose fill, 
peat  and 

organic clay 
VCC Geogrid 

H<1.5m, s=1.8-2.5m, 
d=0.55m, Pc=9-17%, 

N=2-3 
N/A Topolnicki 

1996 

Railway Peat and 
soft organic 

Driven 
pile Geogrid 

H>2.0m, s=1.90m 
a=1.1m, Pc=35% 

N=3 

Sc=10mm, Ss=30-
50mm, t=3yrs. 

Brandl et al.  
1997 

Bridge 
embankme

nt 

Organic 
clay 

Deep-
mixing 

columns 
Geotextile H=1.8m, Pc=37.5% 

N=1 
Sc=100mm, 

Ss=120mm, t>5yrs. 
Forsman et al. 

1999 

Railway Peat and 
clay 

Concrete  
Pile Geogrid H=7.0m, s=2.15m, 

d=1.1m, Pc=26%, N=2 S=60mm, t=3.0yr. Rehnman et al.  
1999 

Roadway 
widening 

Soft clay 
and organic 
silt marsh 

deposit 

VCC Geogrid 
 

H=1.5~3.1m, s=2.4m, 
d=0.6m, Pc=4~16% 

No excessive 
settlement 

Han and Akins 
2002 

Roadway 

Mainly 
peaty and 

clayey 
material 

Driven-
cast-in-
situ pile 

Uniaxial 
geogrid 

H=9.5m, s=2.7~3.2m, 
d=0.37~0.425, 

d′=0.9m, Pc=6~9%, 
N=2 

N/A Wood et al. 
2004 

Roadway 

Landfill 
material 

including 
house hold 
waste and 
rubbish 

VCC Geogrid 

H=2m, s=2.1m, 
d=0.6m, d′=0.8m, 

Pc=18% (triangular 
pattern) 

N=2 

N/A Blumel et  al. 
2004 

Roadway Peat 
Deep  

mixing 
columns 

Geogrid H=10m, s=0.9m, 
d=0.35m, N=1 N/A Yan et  al.  

2005 

Note: H - embankment fill height; s - pile spacing at centers; a - cap width; d – pile diameter; d′-pile cap diameter, Pc - percent 
coverage of pile caps; N - number of geosynthetics; S - overall settlement; Sc - settlement on the caps; Ss - settlement between 
caps; t - time; VCC - vibro-concrete column. 
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Table 1-4. Guideline for the Design of Necessary Coverage by Pile Caps 
(Rathmayer 1975) 

 
Coverage by pile caps, % Height of embankment, H 

(m) Crushed-rock fill Gravel fill 
1.5~2.0 50~70 >70 
2.0~2.5 40~50 55~70 
2.5~3.0 30~40 45~55 
3.0~3.5 30~40 40~45 
3.5~4.0 >30 >40 

 

Table 1-4 shows that even when very high quality fill material is used, coverage has 

to be higher than 30% to ensure adequate performance. In addition, inclined columns 

are always needed to counteract the horizontal thrust of the embankment fill as shown 

in Fig. 1-1 (Jones et al. 1990) because in-situ soil is usually too soft to help vertical 

columns take any bending load (Broms and Wong 1985). To avoid differential 

settlements at the base of the embankment and tilt of pile caps being reflected to the 

surface of the embankment, a minimum thickness of embankment fill is required for a 

column supported embankment.  

 

To create a more economical embankment system, basal reinforcement has been 

introduced into CS embankments. The reinforcement can be rigid or flexible (Han 

1999). Rigid reinforcement, such as metal strips, bars, or even concrete beams or 

slabs, are effective in transferring load by their flexural resistance; however, they are 

expensive and prone to corrode (Magan 1994; Han 1999). Flexible reinforcement, 

i.e., geosynthetics, can provide a better solution in terms of economy and durability.  
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Geosynthetics transfer load by their tensile resistance, which will be addressed later 

in this section.  

 

In addition, geosynthetic reinforcement is able to effectively counteract the thrust 

from the embankment as shown in Fig. 1-2.  This benefit has been demonstrated by 

numerical analyses and tests (Chen et al. 2005). As a consequence, inclined columns 

are often excluded under GRCS embankments.  

 

Embankment 

Ground 

Geosynthetic 

P

 
 

Fig. 1-2. Geosynthetic Preventing Slope Lateral Spreading 

 

In summary, GRCS embankments have demonstrated a number of advantages over 

CS embankments as follows: 
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(1). Columns with larger spacing and smaller heads could be used, which reduces the 

cost of piling (Jones et al. 1990); 

(2). The use of geosynthetic layer can reduce primary settlements and long-term 

secondary settlements (Bell et al. 1994). As a result, it is not necessary to build GRCS 

embankments as thick as CS embankments to prevent the differential settlements at 

the base being reflected to the crest (Broms and Wong 1985); 

(3). The construction disturbance of GRCS embankments is less than that of CS 

embankments, which could reduce settlements induced by disturbance (Miura and 

Madhav 1994); 

(4). Geosynthetic reinforcement is able to counteract thrust from the embankment, 

which eliminates the need for inclined columns; 

(5). Geosynthetics play a very important role in increasing the factor of safety against 

deep-seated failure of embankment slopes (Han 2003). 

 

 

1.3 Purpose and Scope of This Study 

 

As a relatively new technology, the load transfer mechanisms in the GRCS 

embankments have not been well understood and the post-construction behavior of 

the GRCS embankments has not been well investigated. The primary purpose of this 

study is to investigate the load transfer mechanisms and the post-construction 

behavior of the GRCS embankments considering a number of key influence factors, 
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including soft soil modulus, soft soil friction angle, soft soil permeability, column 

modulus, column spacing, geosynthetic tensile stiffness and construction rate. The 

investigated post-construction behavior includes post-construction settlement, tension 

in geosynthetic, stress transfer, and consolidation. To meet the objective of this study, 

a mechanical model was coupled with a hydraulic model in 2D and 3D numerical 

analyses to consider the consolidation of the GRCS embankment. The behavior of the 

GRCS embankments was framed in a time domain. The factors were rated based on 

their degree of influence on the performance of the GRCS embankments to provide 

guidance for practical use.  

 

The secondary purpose of this study is to evaluate the validity of an approach 

analyzing a 3D problem by a converted 2D model. In practice, columns are often 

installed in a square pattern, which is a three-dimensional problem. Since 3D 

dimensional modeling is much more complicated and time-consuming than 2D 

dimensional modeling, researchers often simplify a 3D problem into a 2D problem 

according to an area-weighted area conversion. This simplification should be justified 

by comparing the results of the 3D case with those of the converted 2D case.    

 

 

1.4 Organization of This Dissertation 

 

Including this chapter, the whole dissertation is divided into seven chapters.   
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Chapter Two: Literature Review. In this chapter, load transfer mechanisms were 

reviewed, typical design methodologies were compared, and past research activities 

and findings were summarized, and their limitations were identified.   

 

Chapter Three: Model Calibrations. In this chapter, a selected case was used to 

calibrate 2D and 3D numerical models to ensure the reasonableness and adequacy of 

these models. The numerical results were compared with field settlement and 

geosynthetic strain measurements.     

 

Chapter Four: Two-dimensional Parametric Study. The selected baseline was 

presented and discussed in details. The 2D parametric study results were presented in 

terms of the influence of factors on total settlement, differential settlement, distortion, 

tension in geosynthetic, effective vertical stress, stress concentration ratio, excess 

pore water pressure, and degree of consolidation. The investigated influence factors 

include soft soil modulus, soft soil friction angle, soft soil permeability, DM column 

modulus, column spacing, geosynthetic tensile stiffness, and construction rate. 

 

Chapter Five: Three-dimensional Parametric Study. The strategy of converting a 2D 

case into a corresponding 3D case was stated.  The 3D parametric study was 

conducted. The parametric study results are presented in terms of the influence 

factors on total settlement, differential settlement, distortion, tension in geosynthetic, 
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effective vertical stress, stress concentration ratio, excess pore water pressure, and 

degree of consolidation.  

 

Chapter Six: Comparison of Two-dimensional and Three-dimensional Studies. The 

results from the 2D cases were compared with those of the corresponding 3D cases to 

evaluate the validity of simplifying a 3D case to a 2D case by the area weighted 

average conversion. The influence of the investigated factors on maximum 

settlement, maximum distortion, maximum tension in geosynthetic, maximum stress 

concentration ratio, and degree of consolidation was rated. 

 

Chapter Seven: Conclusions and Recommendations. The results of this study were 

summarized and recommendations for future research were presented. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Introduction 

 

The objective of this study requires an overview of existing knowledge on GRCS 

embankments. The literature review is presented in this chapter in three sections: load 

transfer mechanisms of GRCS embankments, current design methodologies for 

GRCS embankments, and current research status. In the section concerning load 

transfer mechanisms, soil arching and tensioned membrane theories are presented and 

compared. In the section concerning current design methodologies for GRCS 

embankments, British, Swedish, and German design methodologies are presented and 

compared and the deviations among them are identified.  In the section concerning 

current research status, past research activities and findings on GRCS embankments 

are tabulated.  

 

 

2.2 Load Transfer Mechanisms of GRCS Embankments 

 

The principle of the load transfer platform in GRCS embankments is to transfer the 

load from soft soil to relatively stiffer columns through soil arching and tensioned 
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membrane effects. These two effects are presented in a plane strain condition in Fig. 

2.1. Provided the foundation soil is homogenous and no columns exist, the fill above 

the foundation soil should settle evenly.  Under this condition, the vertical stress at 

the base of the fill is the product of the unit weight of the fill and the depth (i.e., 

σz=γ×z). However, when the columns are included, the fill above the foundation soil 

tends to settle relative to the stationary surrounding fill above the columns. The 

surrounding fill has a tendency to resist the downward movement of the fill while the 

downward movement of the fill attempts to drag the surrounding fill. Consequently, 

this relative movement induces friction between the moving and stationary fill 

materials. The induced friction transfers some load from the potentially moving fill to 

the stationary fill. Because the weight of the fill is unchanged all the time, the vertical 

stress under the moving fill is less than the overburden stress.  On the other hand, the 

vertical stress under the stationary fill is higher than the overburden stress. A system 

of shear stresses, induced by relative displacement within soil mass, is the mechanism 

through which load is transferred from one location to another. This phenomenon is 

called soil arching. At the same time, as the soil mass moves downward, the 

geosynthetic sheet bridging over the span of two columns is stretched. As a result, a 

tension, T, develops within the geosynthetic sheet tangentially. The vertical 

component of the tension has the effect of holding the downward moving soil mass. 

However, the vertical component of the tension also has the effect of applying 

additional load on the columns. Through the tension developed in a deformed sheet, 

the applied load is transferred from the foundation soil to the columns. This is called 
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the tensioned membrane effect. The combined effect of soil arching and tensioned 

membrane is the mechanism of the load transfer platform in GRCS embankments. 

 

 

W

τ τ 

P

σ

Pa Pa 

T T 

 
 
 

Fig. 2-1. Soil Arching and Tensioned Membrane Effects in GRCS Embankments 
(Han 1999) 

 

 

2.2.1 Soil Arching Theories 

 

Soil arching is one of the most common phenomena existing in the field (Terzaghi 

1943), which was defined by McNulty (1965) as “the ability of a material to transfer 

loads from one location to another in response to a relative displacement between the 

locations”.  Soil arching is commonly evaluated by an index, the soil arching ratio, ρ, 
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which reflects the degree of load transferred. It is the ratio of the average vertical 

stress above the foundation soil between supports to the overburden stress plus the 

surcharge if the load is in a large area: 

 

qH
s

+
=

γ
σ

ρ              (2-1) 

 

where σs — the average vertical stress over the foundation soil; 

 γ — the unit weight of the embankment fill; 

 H — the height of the embankment fill; 

 q — the surcharge on the crest of the embankment. 

 

When σs is equal to zero, i.e., all the loads are taken by the stiffer supports (columns), 

the soil arching ratio is equal to zero.  This situation is ideal and only happens when a 

void exist under the fill. When σs is equal to (γH+q), i.e., all the loads are taken by the 

foundation fill, the soil arching ratio is unity.  This situation occurs for a uniform 

foundation. As long as stiffness difference exists between the foundation soil and the 

supports, some load must be transferred from the soil to the supports. In this case, the 

soil arching ratio is between zero and unity, i.e., 10 << ρ . 

 

Since the late 19th century, soil arching phenomena were investigated and different 

theories were proposed (Janssen 1895; Terzaghi 1936; Finn 1963; Hewllet and 
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Randolph 1988; Low et al. 1994). The methods used to describe the soil arching 

effect can be divided into two categories: limit equilibrium (Agaiby and Jones 1995) 

and continuum mechanics based theories (Finn 1963). The representative methods of 

these theories are briefly discussed herein. 

 

Limit equilibrium methods are always appealing to engineers due to their simplicity.  

Limit equilibrium methods assume a failure state with certain shapes and ranges of 

slip surfaces and make problems easily solved (Agaiby and Jones 1995). The main 

difference among all the limit equilibrium methods for soil arching is the assumed 

shape of soil arching, such as a flat arch acting like a lintel and a curved shape like an 

arch, a ring or a dome (Getzler et al. 1968; Handy 1985; Hewllet and Randolph 

1988).  

 

Terzaghi’s Soil Arching Theory 

 

After performing a series of trapdoor tests, Terzaghi (1943) proposed a theoretical 

model to describe the soil arching phenomenon and provided an equation to calculate 

vertical stress above a yield trapdoor.  Terzaghi’s model is similar to that adopted by 

Janssen (1895) to investigate the pressure in silos. As shown in Fig. 2-2 (a), Terzaghi 

(1943) assumed that soil arching developed when the movement of the soil was 

restrained by two vertical planes passing through the outer edges of the span and a 

horizontal plane, above which no relative vertical movement existed. This plane was 
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called the equal settlement plane, the location of which was to be determined. The 

soil mass above the equal settlement plane was treated as surcharge. After examining 

the vertical force equilibrium of any soil mass within the soil arching range (shown in 

Fig. 2-2 (b)), Terzaghi (1943) derived the following two equations to calculate the 

vertical stress, σv, and the soil arching ratio, ρ:       
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where σv — vertical stress at depth z; 

K — coefficient of lateral earth pressure; 

 2B — width of the span; 

 c — cohesion of soil; 

 γ — unit weight of soil; 

 φ — friction angle of soil; 

 z — depth from the equal strain plane. 
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(a) Terzaghi’s soil arching model 
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Fig. 2-2. Terzaghi’s Soil Arching Model 
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To adopt the above two equations, the location of the equal settlement plane and the 

coefficient of lateral earth pressure, K, should be determined first. Terzaghi (1943) 

suggested that the equal settlement plane was located at a distance of 5B above the 

trapdoor, which was 2.5 times the span. This suggested location of the equal 

settlement plane was consistent with the experimental results by Spangler and Handy 

(1982) and the analytical results by Finn (1963) and Mckelvey III (1994). However, 

different researchers have selected different coefficients of lateral earth pressure, K.  

Due to the existence of shear stresses, the coefficient of lateral earth pressure, K, 

would be different from Ko. Terzaghi (1943) suggested that K should be between 1 

and 1.5, however, he did not provide any equation for K.  Krynine (1945) and Handy 

(1985) both proposed equations to calculate K. Giroud (1990) compared the lateral 

earth pressure coefficient calculated from the equation proposed by Handy with the 

lateral earth pressure coefficient at rest ( φ−= sin1K  (Jacky 1944)) and concluded K 

as calculated by either Handy or Jacky’s equation did not vary significantly with 

respect to friction angle, φ.   

 

Terzaghi’s soil arching theory was derived based on a plane strain assumption. Kezdi 

(1975) and Chen et al. (2006) obtained the equations applicable to axisymmetric 

problems, which have similar forms to Terzaghi’s.     

 

Getzler et al. (1986) pointed out that inaccuracy would arise if the shape of the shear 

plane/sliding plane was not properly assumed. Terzaghi’s theory is considered over-
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simplified as to the shape for soil arching. Hewllet and Randolph (1988) observed 

that curved soil arching developed between columns. This phenomenon was also 

observed by Othman and Pyrah (1996) to trace the particle movement to form soil 

arching.  

 

Hewllet and Randolph’s Soil Arching Theory 

 

To understand load transfer mechanisms in column supported fill, Hewllet and 

Randolph (1988) conducted small scale model tests using dry sand. Based on the 

observed deformations in the fill, they proposed models (shapes and ranges) of soil 

arching under 2D (two-dimensional) and 3D (three-dimensional) conditions. 

 

Plane Strain Condition 

A plane strain condition may exist when the supports are continuous walls, for 

example, or when columns are installed tangent or secant to each other (Forsman et 

al. 1999). For Hewllet and Randolph’s 2D model, soil arching was assumed to form 

above two walls with a semi-cylindrical shape, which was a horizontal vault band 

similar to masonry arches in cathedrals (Fig. 2-3). 
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Fig. 2-3. Soil Arching above Continuous Supports (Hewllet and Randolph 1988) 

 

By ignoring soil self weight within the soil arching and assuming that the zone 

located at the crown first reached limit equilibrium, the differential equation in terms 

of equilibrium in the radial direction was obtained. The derivations yielded the 

following solution to the soil arching ratio: 

 

)1())(
2

(1 −−
−== pKi

s
bssH

HHγ
σ

ρ             (2-4) 

 

where σi — the vertical stress in the interior of soil arching, which equals to the radial 

stress at r=(s-b)/2; 

 b — the width of the support; 
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 s — the center to center spacing of the neighbored supports; 

 Kp — the passive earth pressure coefficient; 

 H — the height of the embankment fill. 

 

Low et al. (1994) verified that under a plane strain condition, the critical zone was 

always located at the crown in theory. They also refined the derivations by including 

soil weight into the formulae and verified their refined solution by model tests.  

 

Other forms of soil arching under a plane strain condition have also been proposed, 

such as semi-cylinder (Villard 2000) and catenary (Handy 1985; Harrop-Williams 

1989).  Details on these soil arching models are referred to these papers.  

 

Square Pattern Condition 

It is more common that columns below embankments are installed in isolated 

patterns, such as a triangular pattern and a square pattern. Based on the observation of 

model tests, Hewllet and Randolph (1988) concluded that soil arches forming above 

columns in a square pattern had the shape of vault as shown in Fig. 2-4. 
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Fig. 2-4. Soil Arches above Column Grid of Square Pattern (Hewllet and 
Randolph 1988) 

 

Different from the 2D condition, failure could occur either at the crown or at the 

contact of the embankment fill and the column heads for a 3D condition. When the 

height of the embankment fill, H, is relatively low as compared with the center-to-

center span of the columns, s, the failure at the crown governs. However, as the 

embankment height is increased, the failure at the contact of the embankment fill and 

the column heads controls.  The above statement is consistent with the observation of 

the penetration of columns into the embankment fill (Broms and Wong 1985).   

 

Therefore, the soil arching ratio, ρ, can be expressed in two forms  (the failure at the 

crown and the failure at the contact): 
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(a) Failure at the crown 
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(b) Failure at the contact of the embankment fill and the column heads 
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The case with the higher soil arching ratio dominates the actual situation. Chen et al. 

(2004) suggested that the lateral earth pressure was less than Kp before the limit 

equilibrium state was reached and a reduction coefficient, α, should be applied.  

 

Hewllet and Randolph’s models are included in the German design methodology for 

CS and GRCS embankments.   

    

Finn’s Theory 

 

Finn (1963) used continuum mechanics to solve an earth pressure distribution due to 

soil arching under a 2D condition in terms of displacements (translation and rotation).  

In his model, the soil does not reach the limit equilibrium state (i.e., soil is in an 

elastic state) and the movement of the yielding base is either pure translation (Fig. 2.5 

(a)) or pure rotation (Fig. 2.5 (b)). Any other forms of movement could be 

approximated by a combination of pure translation and pure rotation.  Finn (1960 and 

1963) published analytical solutions for stresses induced by translation and rotation, 

which are called Finn’s boundary value solutions.  Finn’s solutions were well verified 

against the existing data.  To use Finn’s boundary value solutions, it is important to 

ensure that soil is in an elastic state. However, Finn’s solutions contain singularity 

points (x=y=0; x=b/x=-b, y=0) so that the integration of the stress values on the 

displaced support becomes impossible. Consequently, Finn’s method cannot be used 

to calculate the soil arching ratio.   
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Fig. 2-5. Finn’s Pure Translation and Pure Rotation Models (Finn 1963) 

 

A hypothesis was proposed to limit the maximum stresses at the singularity points to 

obtain the integration of the induced stresses (Chelapati 1964).  However, due to the 

complexity of the problem, no analytical closed-form solution was obtained. 

Numerical integration could be an alternative. However, it would likely be too time-

consuming even for a minor case (Getzler et al. 1968), therefore, it is not practical. 

Another concern of Finn’s method is that the soil is treated as a linearly elastic 

material. In reality, most soils have nonlinear stress-strain relationships.  

 

 

 

 



 30

Further Discussion on Soil Arching 

 

Even though the soil arching phenomenon was identified more than a century ago, 

due to its complexity, no comprehensive soil arching theory has been developed. 

Ideally, a soil arching theory should be capable of considering the following four 

factors, which primarily influence the development of soil arching (Terzaghi 1943; 

Finn 1960; Gelzler et al. 1986): (1) the properties of the support (columns in this 

study), especially its stiffness; (2) the properties of the soil medium, such as stiffness, 

friction angle, density, etc.; (3) the geometry of the whole system, for instance, the 

thickness of the soil medium, the dimension of the span, and the dimension of the 

support; and (4) the boundary condition including a 2D or 3D problem,  the 

surcharge, and the allowable differential settlement.  

 

Terzaghi (1943) assumed absolute rigid supports in his model. This assumption is 

reasonable when the supports are much stiffer than the soil medium.  In real 

applications, however, some supports, such as stone columns, may not be that much 

stiffer than the surrounding soil.  The assumption of the rigid support may not be 

valid for this kind of situation.  

 

As demonstrated by all the theories except Finn’s, the friction angle of the soil affects 

the efficiency of the load transfer.  As Hewllet and Randolph (1988) pointed out, the 

soil above the supports may yield first.  Therefore, the better the soil, the more the 
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load transfer. However, Mckelvey III (1994) pointed out that the available theories 

neglected classical geotechnical property, such as the change of volume under shear. 

 

The geometry of the whole system has influence on the range and shape of soil 

arching. For instance, Terzaghi (1943) concluded that the influence of soil arching 

could extend vertically as high as 5 times of the clear span, while Hewllet and 

Randolph (1988) found that the influence of soil arching would go to as high as the 

clear span above the column heads. BS 8006 (BSI 1995) specified that the full soil 

arching occurred at a height of 1.4 times the clear span.  

 

As discussed earlier, differential settlement induces shear stresses in soil, which is the 

intrinsic reason for soil arching. There is general agreement that the extent of soil 

arching depends on the magnitude of differential settlement. The limit equilibrium 

methods assume that yielding of the soil happens at or above the supports under 

excessive differential settlement. Therefore, these soil arching theories typically 

underestimate the soil arching ratio if the differential settlement is not high enough to 

reach the limit equilibrium state.  
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2.2.2 Tensioned Membrane Theories 

 

In general, a flexible sheet or membrane used to support a vertical load over a span is 

referred as the “membrane effect”.  In geotechnical engineering, geosynthetics are 

often used as reinforcement to support a vertical load over a span, such as 

geosynthetics over voids and geosynthetics over columns.  Gourc and Villard (2000) 

defined the “membrane effect” as “the ability of a geosynthetic sheet to be deformed, 

thereby absorbing forces initially perpendicular to its surface tension.”   

 

To quantify the membrane effect, a number of tensioned membrane models have been 

proposed.  Most of them were originally developed for the design of soil-geosynthetic 

systems over voids (including tension cracks, sinkholes, dissolution cavities, and 

localized depression). They have also been used in the design of GRCS embankments 

recently. Among all the methods, Delmas’ (Delmas 1979), Giroud et al’s (Giroud et 

al. 1990) and British Standard Method (BSI 1994) are the three most commonly used 

tensioned membrane theories in geotechnical engineering. 

 

Delmas’ Method 

 

Delmas (1979) published an analytical method to calculate the tension deformation 

developed in a horizontal sheet above a trench subjected to a uniformly distributed 

vertical load as shown in Fig. 2-6 (a).  
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(a) Parabolic deformed layer (Delmas 1979) 
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(b) Circular deflected membrane layer (Giroud et al. 1990) 
 

Fig. 2-6. Delmas’ and Giroud’s Membrane Models 

 

Delmas (1979) assumed that the load remained vertical and the deformed sheet had a 

parabolic shape, which can be expressed as:   
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The maximum tension, Tmax, and the maximum deformation, ymax, can be calculated 

as: 
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where T0—the horizontal component of Tmax, which can be calculated using Eqs. (2-

10) and (2-11). 

β20
qbT =              (2-10) 

2

2

3
]2)(1[3

β
ββββ

+
−++

=
ArgSh

J
qL           (2-11) 

 

Giroud et al’s Method 

 

Giroud et al. (1990) proposed another analytical solution to account for the membrane 

effect. They assumed that the deformed membrane sheet had a circular shape and the 

load acted normally to the deformed sheet as shown in Fig. 2-6 (b). They ignored the 

friction between the soil and the membrane sheet to obtain a uniform strain 

distribution.  

  

The tension developed in a geosynthetic sheet over a 2D void (i.e., trench) can be 

expressed in terms of a dimension factor, Ω: 

 



 35

Ω= pbT             (2-12) 

 

where T — the tension in the membrane; 

p — the pressure normal to the membrane.  

 

The dimension factor, Ω, is a piecewise function, which can be determined using Eqs. 

(2-13) and (2-14) at a certain strain: 
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where ε — the strain in the membrane; 

 y — the maximum deflection; 

 b — the width of the void. 

  

Giroud et al’s method has been included in several design methodologies of GRCS 

embankments.  

 

As to the membrane above a circular void, Giroud et al. (1990) suggested that even 

though the deflected shape was not a sphere, the diameter, 2r, should be used to 
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substitute the width, b, to obtain an approximate solution of the tension, T.  Based on 

Giroud et al’s method, the tension developed in the geosynthetic sheet is uniform. 

However, experimental tests (Fluent et al. 1986; Rogbeck et al. 1998) and numerical 

analysis (Han and Gabr 2002) have showed that the maximum strain occurred at the 

edge of the columns.  

 

British Standard Method 

 

Different from Delmas’ (1979) and Giroud et al’s (1990) methods, the membrane 

method included in BS 8006 (BSI 1995) was especially developed to design the 

GRCS system. It was assumed that the weight of the presumed load is taken by the 

reinforcement strips between the pile caps (i.e., the hatched area in Fig. 2-7) and the 

load was distributed horizontally along the bridged span instead of the deformed 

length, which led to a parabolic deformed shape but not a catenary shape (BSI 1995; 

Agaiby and Jones 1995). 

 
 

Fig. 2-7. Load Carrying Area of Geosynthetics 
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Then the tension developed in the geosynthetic reinforcement could be expressed as: 
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where s and b — the center to center spacing and the column size, respectively, as 

shown in Fig. 2-7; 

 WT — the load to be taken by the geosynthetic; 

 ε  — the strain in the geosynthetic. 

 

Further Discussion on Tensioned Membrane Theories 

 

A common drawback of these membrane theories discussed above is that the 

compatibility of the tension and the strain developed in the geosynthetic 

reinforcement is not necessarily satisfied.  In addition, these methods neglected the 

friction and confinement between the soil and the geosynthetic sheet, which is 

important to the distribution of the tension.  

 

Cautions should be paid when these membrane theories are used to estimate the 

tension in geosynthetic reinforcement in GRCS embankments. Since these membrane 

theories were developed based on the assumption that the geosynthetic reinforcement 

is used to only support  the vertical load over a trench or void, they did not account 
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for the portion of tension induced by the horizontal movement (such as the lateral 

movement of the embankment fill) above the geosynthetic sheet.  Jones et al. (1994) 

and Horgan and Sarsby (2002) pointed out that the total tension generated in 

geosynthetic sheet should be the sum of tension induced by vertical and horizontal 

movements. 

 
 
As mentioned earlier, basal reinforcement could have a single layer of geosynthetic or 

multiple layers of geosynthetics. It has been debated that single-layer base 

reinforcement may have different load transfer mechanisms from multiple-layer base 

reinforcement (Collin 2003; Collin 2004; Huang et al. 2005). In the single layer 

system, the single geosynthetic layer acts as a tensioned membrane.  In the multiple-

layer system, however, the multiple geosynthetic layers and the fill material form a 

load transfer platform, which acts similarly as a continuous beam/slab (Collin 2003; 

Collin 2004; Huang et al. 2005). Obviously, a multiple layer system is more 

complicated than a single layer system because it has more influence factors, such as 

the number and spacing of geosynthetic layers.  However, this study is only limited to 

a single layer system, therefore, the discussion on the multiple layer system is beyond 

the scope of this study.  
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2.3 Current Design Methodologies for GRCS Embankments 

 

As a result of increased applications of GRCS embankments, a number of design 

methodologies have been proposed in the past few years. All the design 

methodologies were developed based on soil arching and tensioned membrane 

theories. So far, they have considered soil arching and tensioned membrane effects 

independently. During the design, a soil arching theory is first used to calculate the 

load or pressure applied on the geosynthetic layer. Based on the assumed or estimated 

strain level in the geosynthetic layer, the tension in the geosynthetic layer can be 

calculated using a membrane theory. The commonly cited design methods include the 

BS8006 Method (BSI 1995), the Swedish Standard Method (Carlson 1987; Rogbeck 

et al. 1998), and the German Method (Kempfert et al. 2004). These design 

methodologies are to be briefly reviewed below.  

 

British Design Methodology (BSI 1995) 

 

In this design methodology, the pressure to be taken by columns is calculated by Eq. 

(2-16), which is a transform of Martson’s theory for positive projecting subsurface: 
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where Cc — the soil arching coefficient. 18.0/95.1 −= bHCc , for end-bearing piles; 

07.0/5.1 −= aHCc , for friction and other piles; 

 pc — the pressure on columns; 

 H — the embankment height. 

 

The above formula postulated that the least embankment height would be 1.4 times of 

the clear spacing in order to fully mobilize the soil arching.  In practice, the minimum 

embankment height would be 0.7 times the clear spacing to mitigate local differential 

settlements (SvanØ et al. 2000).  

 

The weight, WT, taken by the reinforcement per unit length, would be expressed as: 
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where WT—the distributed vertical load acting on the reinforcement between adjacent 

pile caps; 

 ffs — the partial load factor for the soil unit weight; 

 fq — the partial load factor for the externally applied load; 

q — the uniformly distributed surcharge. 
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On the basis of the calculated load to be taken by the geosynthetic, the tension 

developed in the reinforcement is calculated using the membrane theory presented in 

Eq. (2-15). Obviously, there exists a discontinuity if Eq. (2-17) is used to calculate the 

load taken by the reinforcement (Rogbeck, and Gustavsson, et al. 1998). 

Consequently, there must be a discontinuity in the calculated tension. 

 

Swedish Design Methodology (Collin 2003) 

 

For a two-dimensional case, Carlsson’s formula was used to calculate the load carried 

by the geosynthetic as presented in Eq. (2-18). 
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The membrane theory presented in Eq. (2-15) is used to calculate the tension in the 

geosynthetic layer. 

 

Both British and Swedish design methodologies neglect the subsoil support under the 

geosynthetic reinforcement. However, numerical results from Jones et al. (1994) 

showed that subsoil support is significant and could be as high as 80% of the 

embankment load for a low embankment supported by widely spaced columns. 

Rogbeck et al. (1998) also found that the subsoil resistance had noticeable influence 
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on the tension developed in the geosynthetic. Fluet et al. (1986) proposed a model 

called a “fully flexible model”, which could consider subsoil resistance. However, 

they did not provide any guidance on how to estimate the subsoil resistance. 

 

German Design Methodology (Collin 2003) 

 

The soil arching theory incorporated in the German design methodology is what 

proposed by Hewlett and Randolph (1988). The vertical stress on the top of the 

reinforcement is calculated for both two-dimensional and three-dimensional 

situations. Unlike the British and Swedish design methodologies, the subsoil 

resistance underneath the reinforcement is taken into consideration in this method. 

The load taken by the geosynthetic is the difference between the load on the 

reinforcement and the soil resistance beneath the reinforcement.  

 

By assuming a factor of safety of 2, the subsoil resistance could be calculated as: 
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Where σ0—the stress on the lower surface of the reinforcement; 

 cu—the undrained shear strength of the subsoil. 
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Then the load taken by geosynthetic reinforcement is: 
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The membrane theory presented in Eq. (2-15) is used to calculate the tension 

developed in the geosynthetic layer.  This design method is very similar to the 

procedures described by Alzamore et al. (2000). 

 

One of the basic differences from British and Swedish design methodologies is that 

the German methodology accounts for subsoil resistance. Undoubtedly, the ignorance 

of the subsoil resistance produces conservative results, which has been verified by 

Rogbeck et al. (1998). However, whether the partial support of subsoil should be 

considered is still under debate (Horgan and Sarsby 2002), since the support of 

subsoil may decrease with the consolidation of soft soil. 

 

Further Discussion on Design Methodologies 

 

Besides the design methodologies presented above, there are several other design 

methodologies. The design methodologies are distinguished from each other by the 

soil arching theory and the membrane theory adopted. Since there are inherent 

differences among soil arching theories and membrane theories, the consistency of 
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these design methodologies became the concern of practitioners. Several comparisons 

have been done to evaluate the consistency of the design methodologies. However, 

the investigations are inconclusive because remarkable differences have been found 

among these design methodologies (Horgan and Sarsby 2002; Naughton and 

Kempton 2005). Naughton and Kempton (2005) presented an extensive comparison 

of soil arching ratios and tension in geosynthetic reinforcement obtained from a few 

available analytical methods and they found large variations. Russell and Pierpoint 

(1997) also presented a comparison based on two GRCS embankments. The basic 

information on these two embankments (Embankments A and B) is provided in Table 

2-1. The calculated soil arching ratios and tension in the reinforcement using different 

methods are presented in Figs. 2-8 and 2-9, which show the soil arching ratio could 

differ by more than three times while the tension could differ by more than two times.  

 

Table 2-1. Information of Embankment A and B Used in Comparison (Russell 
and Pierpoint 1997) 

 
Property Embankment A Embankment B

Height (m) 5.8 4.3 
Pile cap width (m) 1.0 0.5 
Pile spacing (m) 2.5 2.5 
Longitude reinforcement stiffness (kN/m) 5500 294 
Transverse reinforcement stiffness (kN/m) 9500 738 
Fill Poisson’s ratio 0.2 0.2 
Fill stiffness (MPa) 20 40 
Average fill density (kN/m) 18.2 19.0 
Fill angle of friction (o) 30 40 
Fill dilation (o) 0 0 
Fill cohesion (kPa) 0 10 
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Fig. 2-8. Soil Arching Ratio (Modified from Naughton and Kempton 2005) 
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Fig. 2-9. Tension in Geosynthetic Reinforcement (Modified from Naughton and 
Kempton 2005) 

 

Researchers and designers have felt uncomfortable with these large variations among 

different design methods, which have brought the uncertainty to the application of 
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GRCS embankments. To some extent, this uncertainty obstructs the wide acceptance 

of GRCS embankments. For example, Collin (2004) suggested GRCS embankments 

should not be built higher than 10m.  

 

 

2.4 Current Research Status 

 

In the past few years, a number of studies have been conducted to better understand 

the mechanisms and behavior of GRCS embankments.  These studies include 

theoretical analyses, numerical modeling, field monitoring, full scale tests, and 

laboratory tests.  A few representative studies are summarized in Table 2-2.  

 

Table 2-2. A Summary of Past Studies on GRCS Embankments 
 

Type Brief description Reference 

Numerical 
modeling 

A numerical analysis was done to evaluate the 
reinforcing effect by varying column spacing, 
column modulus, and number of geogrid layers.  

Ohkubo et 
al. 1996 

Experimental 
and numerical 

study 

A physical model with columns in a square pattern 
was built in the lab. Influence of various factors 
(including properties of columns, properties of 
geosynthetic reinforcement, and height of 
embankment) on soil arching and surface settlements 
was addressed. 2D numerical modeling was also 
performed and the results were compared with test 
results. 

Demerdash 
1996 
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Table 2-2. A Summary of Past Studies on GRCS Embankments (continued) 
 

Type Brief description Reference 

Long-term 
monitoring of 

railway widening 
project 

An old railway was widened to support high speed 
trains in Germany in early 1990s. To prevent the 
intolerable settlements between old and new 
embankments, three layers of geogrid above piles 
were used to support the embankments. 
Extensometers and strain gauges were installed to 
monitor the settlements, tilt of the pile caps, and 
strains in geogrid layers. More than 5-year 
measurements were recorded and analyzed.   

Brandl et 
al. 1997 

Full scale 
roadway testing 

During the construction, two sections were 
instrumented. One section was built as designed 
with soil between pile caps while the other section 
was built with foam mattresses between pile caps to 
simulate a soft subsoil condition. Field 
measurements included deformation of geosynthetic 
reinforcement, strain in the reinforcement, and 
settlement of the embankment. The measurements 
were compared with numerical results and British 
and Swedish design methods. 

Rogbeck et 
al. 1998 

Long-term 
monitoring of a 
bridge approach 

embankment 

A bridge approach embankment reinforced by one 
layer of geotextile was built over deep mixed 
columns in Finland. Instrumentations (including 
inclinometers, settlement plates, horizontal 
hydrostatic profile gauges, piezometers, and strain 
gauges) were installed to track the performance of 
the GRCS embankment. More than five year 
measurements were recorded.  Numerical analysis 
was conducted to compare with field 
measurements. 

Forsman et 
al. 1999 

Test railway 
embankment 

To verify the design of a GRCS embankment with 
multiple layers of geosynthetic, instrumentations 
were mounted in two sections to monitor the 
deflection and strain of reinforcement sheets 
between pile caps. More than three-year field data 
were recorded and analyzed. 

Rehnman 
et al. 1999 

Numerical 
modeling 

Two-dimensional numerical modeling was fulfilled 
to investigate the influence of various factors 
(including height of fill, tensile stiffness of 
geosynthetic, and elastic modulus of pile) on 
settlement, tension in reinforcement, and soil 
arching ratio in a unit cell model.  

Han and 
Gabr 2002 
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Table 2-2. A Summary of Past Studies on GRCS Embankments (continued) 
 

Type Brief description Reference 

Trial section 
of roadway 
widening 

To confirm the design based on the numerical software-
PLAXIS, a 200m long field trial section was built and 
instrumented. During the two months’ monitoring, 
traffic passed the trial section. Stresses on the piles and 
on the soil between piles were measured and analyzed.   

Habib et al. 
2002 

Numerical 
modeling 

Two-dimensional modeling was conducted to 
investigate the influence of various factors (including 
properties of subsoil, properties of embankment fill, 
properties of piles, and properties of geosynthetic) on 
settlement, tension in reinforcement, and soil arching 
ratio. In addition, slope stability analysis was conducted 
using a numerical approach and the results were 
compared with the limit equilibrium method.   

Han and 
Shelth 
2003 

Full scale 
test 

A 3m (width)×5m (length) test pit was built in Malaysia 
to investigate the load transfer mechanism of GRPS 
embankments. Steel piles were installed in a triangular 
pattern. Two layers of geotextile were placed. Load 
cells and Linear Variable Differential Transducers were 
mounted to monitor the deflection and the load transfer. 
Numerical modeling was conducted for comparison. 

Chew et al. 
2004 

Analytical 
and 

numerical 
study 

Hewllet and Randolph’s arching theory was modified to 
calculate the tension in geosynthetic. Jia 2004 

Numerical 
modeling 

Extensive 2D and 3D axisymmetric numerical modeling 
was conducted to investigate the influence of various 
factors (including height of embankment, properties of 
embankment, tensile stiffness of geosynthetic, 
properties of pile, properties of subsoil, and even 
dilation of embankment fill) on the vertical load 
distribution among piles, geosynthetic reinforcement, 
and subgrade soil. Based on the findings from 
numerical modeling and compatibility analysis, an 
iteration approach to calculate the settlements, stresses 
on piles and tension in geosynthetic reinforcement was 
proposed.    

Filz and 
Smith 
2005 
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Even though the above studies have greatly improved our knowledge on GRCS 

embankments, a number of limitations still exist as listed below: 

 

♦ GRCS embankments are often a three dimensional problem since columns are 

installed in an isolated pattern, such as a square or triangular pattern. Neither 

axisymmetric analyses nor plane strain analyses can accurately represent the real 

situation (Naughton and Kempton 2005).  

 

♦ Unit-cell modeling cannot include the tension in the geosynthetic reinforcement 

induced by lateral spreading (Han 2003).  

 

♦ In most numerical modeling, two extreme states were analyzed: undrained and 

drained. However, the settlement and tension development after construction are 

more critical to the performance of the GRCS embankments, which have not been 

well investigated. 

 

♦ Laboratory tests have scale effects. 

 

♦ Full-scale testing and long-term monitoring are ideal for research of GRCS 

embankments. However, they are very time-consuming and costly. More importantly, 

they are limited to specific test sites.  Parametric studies are difficult to conduct.  
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♦ Little attention has been paid to the post-construction settlements, which are critical 

to the serviceability of embankments. 

 

To overcome the above limitations, this study was conducted in order to improve the 

understanding of GRCS embankments. The full-scale embankments were numerically 

modeled to eliminate the scale effect of unit cell modeling and small scale laboratory 

tests. The mechanical and hydraulic models were coupled to frame the behavior of 

GRCS embankments in a time domain to well evaluate the serviceability of the 

GRCS embankments. The parametric study in 2D and 3D analyses investigated the 

behavior of GRCS embankments under typical conditions in practice.  
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CHAPTER THREE 

MODEL CALIBRATIONS 

 

3.1 Introduction 

 

To ensure the correctness of numerical models, they have to be calibrated against 

available field data before they can be used for parametric studies.  The calibrations 

discussed below were conducted based on coupled mechanical and hydraulic 

modeling of GRCS embankments using FLAC 2D and 3D software. 

 

FLAC and FLAC3D are commercial two-dimensional and three-dimensional 

software, respectively, which were developed by Itasca Consulting Group, Inc. The 

finite difference software, FLAC (Fast Lagrangian Analysis of Continua) Version 4.0 

developed by Itasca Consulting Group, Inc., was adopted in the two-dimensional 

numerical study.  The finite difference software, FLAC3D (Fast Lagrangian Analysis 

of Continua) Version 3.1, also developed by Itasca Consulting Group, Inc., was 

adopted in the three-dimensional numerical study.  

    

Since GRCS embankments are usually built over soft soil with a high ground water 

table, the generation and dissipation of pore water pressure (consolidation) during and 

after construction are important for the behavior of GRCS embankments. This 

behavior can be considered as an interaction of mechanical and hydraulic processes in 
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a time domain. FLAC and FLAC3D, capable of coupling mechanical and hydraulic 

processes, were chosen to fulfill this goal. As hydraulic and mechanical modeling is 

coupled, the mechanical and hydraulic loops are implemented alternately. In the 

hydraulic loops, saturated transient fluid flow through porous media (soils) is 

modeled to simulate the generation and dissipation of excess pore water pressures 

(i.e., consolidation) during and after the construction. On the other hand, in the 

mechanical loops, the stress and displacement development processes are modeled. 

The two loops are coupled through the quasi-static Biot theory (Biot 1956). Starting 

with a hydraulic loop, two variables (i.e., pore water pressure and specific discharge) 

are evaluated by the transport law (Darcy’s law), the fluid mass balance law, and the 

compatibility law. Then the change of pore water pressure is passed to the mechanical 

loop to update the effective stress, which is used to check against failure and calculate 

the volumetric strain based on the selected constitutive model. The calculated 

volumetric strain is passed back to the hydraulic loop to account for the pore water 

pressure and the specific discharge in the new hydraulic loop on the basis of the linear 

quasi-static Biot theory (Itasca 2002), which is formulated in an incremental format. 

As the two loops are implemented alternately, pore water pressures and volumetric 

strains are kept exchanging and updating. The modeling of this process may require 

thousands of cycles, which is terminated as a specified criterion (such as the 

maximum unbalanced force, the flow time, the stress ratio and so on) is reached.  
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There are ten available constitutive models in FLAC and eleven constitutive models 

in FLAC3D. Any of them can be used in the coupled mechanical and hydraulic 

modeling to simulate the saturated soil behavior under stresses. In this study, soils 

and deep mixed columns were modeled as linearly elastic perfectly plastic materials 

with Mohr-Coulomb failure criteria in the mechanical modeling. The geosynthetic 

layer was modeled using cable elements in FLAC 2D and geogrid elements in 

FLAC3D, respectively. The numerical results based on the coupled mechanical and 

hydraulic modeling are compared with the field measurements and those without the 

hydraulic modeling.   

 

 

3.2 Selected Case Study 

 

A case history with fairly detailed material properties, necessary construction 

information, and long-term settlement and tension monitoring data was selected from 

the published literature (Forsman et al. 1999 and Forsman 2001) for the calibration 

purposes.  

 

The selected case study is a geosynthetic-reinforced DM column-supported 

embankment built to support a new bridge approach over Sipoo River, Hertsby, 

which is located about 30km northeast of Helsinki, Finland (Forsman et al. 1999). 

The foundation soil from the ground surface downward consisted of 1 to 1.5m thick 
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crust, 10 to 14 m thick soft clay, 0 to 6m thick silt, and 1 to 5m thick glacial till. The 

profile is presented in Fig. 3-1.  

 

 
 

Fig. 3-1. Profile of Sipoo River Bridge Embankment (Forsman et al. 1999) 

 

The index properties of the in-situ soils listed in Table 3-1 were reported by Forsman 

et al. (1999). Oedometer and CPT tests indicated that the clay layer was normally 

consolidated. The drained modulus Ed, the undrained modulus Eu, the drained 

Poisson’s ratio νd, the effective friction angle φ′, and the effective cohesion c′ were 

determined by triaxial tests, which are listed in Table 3-2. The ground water table was 

close to the existing ground surface.  
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Table 3-1. Soil Index Properties 
 

Depth (m) 4.8-5.6 10.5-11.3 15.9-16.3 
Soil type soft clay soft clay silt 
Organic content (%) 0.8 0 0.7 
Unit weight (kN/m3) 14.6-15.0 14.9-16.6 18.1-18.3 
Water content (%) 80-91 58-85 31-41 
Liquidity index (%) 91 84 31 
Shear strength (CPT) (kPa) 6.5-16.1 8.7-15.2 13.9 

 

Table 3-2. Properties of Soft Clay 
 

Depth (m) Ed (kPa) νd Eu (kPa) cu (kPa) φ' (o) c′ (kPa) 
4.9-5.7 300 0.1 3000-6000 12-17 13 8 
10.6-11.2 600 0.2 4000-8000 0-15 13 8 

 

The soft clay was considered to be the problematic layer. To minimize the 

settlements, especially the crest (surface) settlements (also called post-construction 

settlements), deep mixed (DM) columns were installed to improve the in-situ soils.  

In addition, a layer of woven geotextile was placed over the DM columns as 

geosynthetic basal reinforcement with a 0.3m thick cushion sand layer below. Each 

DM column had a diameter of 0.8m and undrained shear strength of 150kPa. They 

were alternately installed into two patterns (walls and isolated columns) parallel to the 

centerline of the embankment as shown in Fig. 3-2. The isolated columns between 

DM walls are referred as the mid-columns in this dissertation. The ultimate strength 

of this geosynthetic reinforcement was 200kN/m in both longitudinal and transverse 

directions.  The secant tensile stiffness of this geosynthetic layer was 1790kN/m and 

2120kN/m at strains of 2% and 6%, respectively. The adjacent geosynthetic sheets 
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were jointed together by seams. The soil stabilization was carried out by mixing soil 

with cement and by-product binder at an amount of 130kg/m3 to form DM columns at 

the beginning of 1996. After the ground improvement, the embankment with 2:1 

(H:V) slopes on both sides was built successively in stages with a 0.50m thick sand 

working platform, a 1.05m thick gravel sub-base, a 0.20m thick crushed stone base 

course, and a 0.05m thick asphalt layer from 1996 to 1997.  The geosynthetic layer 

was installed within the working platform and 0.3m above the DM column heads. 

The construction sequence is presented in Table 3-3. The embankment was 

instrumented with piezometers, inclinometers, settlement plates, horizontal 

hydrostatic profile gauges, and strain gauges on the geotextile sheet for construction 

QC/QA and long-tern performance monitoring. However, only some of the settlement 

and tension data were reported in the publications. The locations of the reported 

hydrostatic profile gauges, settlement plates, and strain gauges are showed in Fig 3-3. 

At Station 327.5 and Station 328.2, hydrostatic profile gauges were installed to 

monitor settlements for transverse settlement profiles. Station 327.5 passes the mid-

span of the isolated columns, while station 328.2 passes the center of the isolated 

columns. Settlement plates were mounted at locations of S1, S2, S3, and S4 to 

monitor the settlements at the DM columns and at the soft soil. Strain gauges were 

installed to monitor the strains in the geosynthetic sheet in two perpendicular 

directions (the traffic and transverse directions). Representative points close to 

Station 330.0 were presented here for comparison. The monitoring started at the same 

time as the construction began and the data were kept updated up to five years after 
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the construction. The measured maximum settlement was approximately 120mm 

(Forsman 2001). Differential settlement between the DM columns and soft soil was 

observed.  The settlements had become relatively stable after two years since the 

construction. The measured strains in the geotextile in longitudinal and transverse 

directions of the embankment were 0 to 0.2% and 0 to 1%, respectively.  The tensions 

in geotextile corresponding to 0.2% and 1% strain are 3.6kN/m and 18kN/m, 

respectively. 
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Fig. 3-2. Embankment Cross-section and Column Layout (unit: mm) (Forsman 
et al. 1999) 
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Table 3-3. Construction Information 
 

Stage 
No. 

Material Thickness 
(m) 

Duration (mm/yyyy—
mm/yyyy) 

1 Platform fill, sand 0.6 11/1996—01/1997 
2 Embankment fill, gravel 0.9 01/1997—09/1997 
3* Embankment fill +asphalt 

layer 
0.3 09/1997—03/1999 

* Since no information available, it is assumed that traffic starts at this stage. 
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(a) Locations of hydrostatic profile gauges 
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(b) Arrangement of strain gauges 
 

Fig. 3-3. Arrangement of Instrumentations (Forsman 2001) 
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3.3 Numerical Modeling 

 

To conduct the numerical model calibration, the selected case has to be converted into 

numerical models. Due to the mid-columns, the selected case is a three-dimensional 

problem. This case was modeled closely in the 3D calibration, while it was simplified 

into two plane strain cases in the 2D calibration.  

 

Soil is a stress-path dependant elastic-plastic material. To better simulate the actual 

performance of the GRCS embankments, the construction procedure should be 

closely modeled in the numerical analysis. In the actual stage construction, the 

embankment was built to a pre-determined height for each stage at a certain 

construction rate, which is typically represented by a linear slope as shown in Fig. 3-

4. After the pre-determined height was reached, the construction was temporarily 

suspended to allow partial dissipation of excess pore water pressure and soft soil to 

gain its strength.  This time period is represented by a horizontal line in Fig. 3-4.  Due 

to the lack of the detailed construction procedure and the difficulty to simulate the 

linear increase of the embankment height as shown in Fig. 3-4, the actual construction 

process was approximated in the numerical model by a simplified construction 

process as indicated by dash lines. In the simplified construction process, the 

construction of each stage was completed instantly and then followed by a certain 

period of waiting time for partial consolidation. The construction of the embankment 

was modeled in three stages.  The duration and the lift thickness of each stage were 
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determined based on the reported construction information and are schematically 

presented in Fig. 3-5. The traffic was simulated by applying a distributed load of 

12kPa on the crest of the embankment, which was assumed starting right after the 

placement of the asphalt layer in Stage 3, i.e., the traffic loading was included in 

Stage 3. After the completion of Stage 3 (i.e., 1.5 years after the service), the 

modeling was extended to the end of the designed service life (30 years assumed in 

this study) to predict the final crest settlements.  
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Fig. 3-4. Construction Process 
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Fig. 3-5. Modeling Procedure 
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3.4 Two-dimensional (2D) Model Calibration 

 

In the numerical analysis, DM columns, soft soil, firm soil, and embankment fill were 

modeled as linearly elastic perfectly plastic materials with Mohr-Coulomb failure 

criteria, i.e., Mohr-Coulomb materials. The geosynthetic reinforcement was modeled 

as a system of built-in cable elements, which could take axial tensile load only.   

 

 

3.4.1 Numerical Modeling 
 

The two-dimensional (2D) numerical model for this calibration study is presented in 

Fig. 3-6. Due to the symmetry of the problem, only half of the section was modeled in 

the calibration to save the computing time. The DM columns with a wall pattern were 

represented by two-dimensional DM walls with an effective thickness of 0.7m. The 

effective thickness was estimated based on the equivalency of the actual area of a 

series of DM columns to the area of the wall modeled in the analysis.  The wall at the 

centerline had only half-width, i.e., 0.35m. The elastic modulus of the DM columns 

was estimated based on the typical relationship of E = 100qu (Porbaha 2000 and 

Bruce 2001), where qu = the unconfined compression strength (i.e., 300kPa in this 

study).  
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The existence of mid-columns made it a three-dimensional problem. To convert the 

three dimensional problem to a two-dimensional one, two simplified cases were 

investigated: (1) without the mid-columns (referred as SC1 in this dissertation), i.e., 

ignore the existence of the mid-columns, which may be the worst situation for design 

and (2) with the mid-columns (referred as SC2 in this dissertation), but each row of 

mid-columns and soft soil between were converted to an equivalent DM wall. In the 

CS2 case, the wall thickness for the mid-columns was taken to be the same as the 

column walls but the equivalent elastic modulus and the equivalent cohesion of the 

mid-column walls were determined based on the weighted area average of these 

properties from the DM columns and the soft soil between as indicated by the dash 

lines in Fig. 3-6. For instance, the equivalent elastic modulus and cohesion of the 

middle DM walls are )a1(EaEE sssceq −+=  and )a1(cacc sssceq −+= , where Ec 

and Es are the moduli of the mid-DM columns and the soft clay, respectively; cc, and 

cs are the cohesion of the column and the soft soil, respectively; as is the area 

replacement ratio, defined as the ratio of the column area to the total area.   
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Fig. 3-6. 2D Numerical Model 

 

The DM walls, the converted mid-DM walls, the soft clay, the silt, and the 

embankment fill were modeled as linearly elastic-perfectly plastic materials with 

Mohr-Coulomb failure criteria. DM columns extended to the depth of the firm glacial 

soil.  No deformation below the silt layer was assumed. Cable elements incorporated 

in the software, which can only sustain axial tension, were used to simulate the 

geotextile layer. The geosynthetic layer was located 0.3m above the top of the DM 

columns. The properties of the DM walls, the converted mid-DM walls, the soft clay, 
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the silt, the embankment fill, and the geosynthetic layer are provided in Table 3-4, 

most of them from Forsman et al. (1999).  The properties of the crust at the ground 

surface were not available and treated as part of the soft clay in the numerical analysis 

to account for the disturbance of the surface layer during construction. 

 

Table 3-4. Material Properties 
 

Material E 
 (MPa) 

ν γ  
(kN/m3) 

c′  
(kPa)

φ' 
(o) 

w  
(%) 

k  
(m/s) 

Soft soil 0.3 0.2 10.0* 8 13 70% 6.342×10-11 
Silt 1.6 0.33 15.4* 5 20 70% 6.342×10-11 

Embankment fill 
 (base course) 40 0.33 20 5 38 N/A N/A 

Platform fill  
(sub-base layer) 20 0.33 20 5 32 N/A N/A 

DM walls 30 0.3 20 150 0 30% 6.342×10-11 
Converted  

mid-DM walls 15 0.3 20 79 0 30% 6.342×10-11 

Geotextile J=1700kN/m, ci=0.8, ks=85,000kN/m/m 
Note: E = elastic modulus, ν = Poisson’s ratio, γ = unit weight, c’ = effective cohesion, φ′ = effective 
friction angle, w = water content, k = permeability, J = tensile stiffness of geotextile, ci = interaction 
coefficient between geotextile and sand, and ks = interface shear stiffness between geotextile and sand. 
The unit weight with a symbol ‘*’ is the dry unit weight, which was calculated based on the actual 
water content and the assumed specific gravity of 2.7. In the modeling of water flow in FLAC, the dry 
unit weight needs to be assigned to any material below the ground water table. 

 

The FLAC models of these two cases are presented in Fig. 3-7 (a) and (b), 

respectively.  
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(a) SC1 
 

 
 

(b) SC2 
 

Fig. 3-7. FLAC Models 
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3.4.2 Results and Comparison 

 

In the numerical modeling, pore water pressure, effective stress, settlement, and 

tension in the geosynthetic layer were recorded. Due to the limited availability of the 

field measured data, only settlements and strains in the geosynthetic layer at certain 

locations are compared with the field data.   

  

Settlement  

 

The settlements at the base of the embankment were monitored by horizontal 

hydrostatic profile gauges at Station 327.5 and Station 328.2, as shown in Fig. 3-3 (a) 

(Forsman 2001).  Settlements at selected locations (S1, S2, S3, and S4) as shown in 

Fig. 3-3 (a) were measured by settlement plates and reported from the beginning of 

the construction. As mentioned in the case description, the measured settlement 

profiles at Station 327.5 were at the cross-section without isolated columns, while the 

measured settlement profiles at Station 328.2 were at the cross-section with isolated 

columns. Therefore, the measured settlement profiles at Station 327.5 and the 

measured time-settlement curves at S1 and S2 were compared with the numerical 

results from the SC1 case, while the measured settlement profiles at Station 328.2 and 

the measured time-settlement curves at S3 and S4 were compared with the numerical 

results from the SC2 case.  
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(a) Measured settlement profiles at Station 327.5 and profiles from SC1 
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(b) Measured settlement profiles at Station 328.2 and profiles from SC2 
 

Fig. 3-8. Settlement Profiles at Different Stages (2D) 
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Fig. 3-8 shows that the settlement profiles from the SC1 case match the 

measurements at Station 327.5 reasonably well but the settlement profiles from the 

SC2 case underestimated the measurements at Station 328.2. Similarly, the SC1 case 

can fairly well capture the trend of the measured settlements at S1 and S2, however, 

the SC2 case underestimated the measured settlements at S3 and S4, as shown in Fig. 

3-9.   
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(a) Settlements at S1 and S2 
 

Fig. 3-9. Settlement versus Time (2D) 
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(b) Settlements at S3 and S4 
 

Fig. 3-9. Settlement versus Time (2D) (continued) 

 

Han et al. (2005) conducted a numerical study on the SC1 and SC2 cases under a 

drained condition (i.e., mechanical modeling with drained moduli).  The maximum 

settlements from the drained analysis, which occurred at the base of the embankment, 

are presented in Table 3-5 for the comparison with those from the coupled analyses at 

30-year service life. It is shown that the maximum settlement values from the drained 

analysis are always greater than those from the coupled analysis.   
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Table 3-5. Maximum Settlements at the Base of the Embankment 
 

Numerical analysis 
SC1 SC2  

Coupled Drained Coupled Drained
Maximum settlement  between DM walls 

(mm) 131 196 94 110 

Maximum settlement on DM walls 
 (mm) 109 127 87 100 

 

Even though the settlements on the crest were not measured in the field, it is very 

important to investigate them since they are more critical to the performance of the 

embankment.  Fig. 3-10 presents the calculated settlement profiles at the base, as well 

as those at the crest of the embankment, at the end of Stage 3 and at the 30-year 

service life using the coupled numerical modeling.  It is shown that the maximum 

settlement at the crest is about 1/3 to 1/4 that at the base of the embankment.  Obvious 

differential settlement occurs at the base of the embankment between DM walls, 

whereas this local differential settlement does not exist on the crest.  Even though the 

maximum settlement occurs at the base of the embankment, the post-construction 

settlement at the crest of the embankment is crucial for the serviceability of 

pavements on embankments or the connection between approach embankments and 

bridge abutments. The settlement at the crest of the embankment starts to accumulate 

right after the placement of the asphalt layer; therefore, it is actually the post-

construction settlement.   
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(a) Settlement profiles of SC1 
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(b) Settlement profiles of SC2 
 

Fig. 3-10. Settlement Profiles at the Base and on the Crest of the Embankment 
(2D) 
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Fig. 3-10 also shows that the SC2 case has less settlement than the SC1 case because 

the SC2 case has additional mid-DM walls between the regular DM walls.  The post-

construction settlement further increases from the end of Stage 3 to the 30-year 

service life.   

 

Strain and Tension in Geosynthetic Layer 

 

Strain gauges were installed near Station 330.0 to monitor the development of strains 

at different locations as shown in Fig. 3-3 (b) (Forsman 2001). Since B7 and B8 were 

located along the cross-section without isolated columns, their measurements were 

compared with results from the SC1 case as shown Fig. 3-11 (a). Since B4 and B5 

were located along the cross-section with isolated columns, their measurements were 

compared with results from the SC2 case as shown in Fig. 3-11 (b). Good agreement 

was found between field measurements and results from the SC1 case at B7 and B8. 

But results from the SC2 case underestimated the measurements at B4 and B5. This 

finding is consistent with what has been found in the settlement comparison.     
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(a) Strains at B7 and B8 
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(b) Strains at B4 and B5 
 

Fig. 3-11. Strain versus Time (2D) 
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The profiles of tension developed in the geosynthetic layer from the coupled 

numerical analysis for the SC1 and SC2 cases are presented in Fig. 3-12.  It is shown 

that the higher tension is located above the DM columns, which is consistent with the 

findings from the field measurements and the earlier study on a unit cell model by 

Han and Gabr (2002).  The tension in the reinforcement above the mid-DM walls is 

lower than that above other DM walls.  This phenomenon is attributed to the fact that 

the equivalent modulus of the mid-DM walls is lower than that of other DM walls.  

Overall, the tension in the reinforcement for the SC1 case is higher than that for the 

SC2 case.  This result is intuitively correct since the mid-DM columns in the SC2 

case minimize the tension in the reinforcement.   
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Fig. 3-12. Tension Developed in the Geosynthetic Layer with or without Mid-DM 
Walls 
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Table 3-6 presents the measured tension range of the calculated results using coupled 

and drained numerical models.  Both numerical models for the SC1 case yield the 

close result for the tension in the geosynthetic layer, whereas those for the SC2 case 

underestimate the tension in the reinforcement.  This comparison can be explained 

that the maximum span of the geosynthetic sheet in the field is that between two DM 

walls not between the mid-DM columns and the DM wall since mid-DM columns 

have gaps in the centerline direction.  The case for the geosynthetic sheet across two 

DM walls is the case of SC1.   

 

Table 3-6. Maximum Tension in the Geosynthetic Layer 
 

Numerical analysis 
SC1 SC2 

 

Measured Coupled Drained Coupled Drained 
Tension (kN/m) 3.6 -18.0 1.5 - 17.8 1.9 - 18.3  1.5 - 7.8 1.8 - 7.3 

 

On the completion of the 2D model calibration, 3D model calibration was conducted 

on the same case history with the same modeling procedure as 2D.       

  

 

3.5 Three-dimensional (3D) Model Calibration 

 
 
Similar to the 2D model calibration, DM columns, soft soil, firm soil, and 

embankment fill were modeled as Mohr-Coulomb materials in the 3D model 
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calibration. The geosynthetic reinforcement was modeled as built-in geogrid 

elements, which are plane triangular elements and can take axial load only.   

 

 

3.5.1 Numerical Modeling 
 
 
The three-dimensional (3D) numerical model for this case study is presented in Fig. 

3-13. And the elevation view and plan view of the FLAC3D model are presented in 

Fig. 3-14 (a) and (b), respectively.  

 

To save computing time, only half span in the traffic direction was modeled. For 

simplicity, the DM column walls and isolated DM columns were simplified to 

rectangular and square shape, which have effective thickness and effective size of 

0.7m and 0.7m, respectively. The material properties used are the same as those used 

in 2D (refer to Table 3-4). 

 

The modeling procedure in the 3D analysis is the same as that in the 2D analyses.  
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Fig. 3-13. 3D Numerical Model 
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(a) Elevation view 
 

 
 

(b) Plan view 
 

Fig. 3-14. FLAC3D Model 
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3.5.2 Results and Comparison 

 

In the numerical modeling, pore water pressure, effective stress, settlement, and 

tension in both traffic and transverse directions were recorded. Settlements and strains 

in geosynthetic at certain locations are compared with field data below.  

 

Settlement 

 

The settlement profiles at Station 327.5 and Station 328.2 based on the measurements 

by hydrostatic profile gauges are compared with 3D numerical results in Fig. 3-15.  
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(a) Measured and calculated settlement profiles at Station 327.5 
 

Fig. 3-15. Settlement Profiles at Different Stages (3D) 
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(b) Measured and calculated settlement profiles at Station 328.2 
 

Fig. 3-15. Settlement Profiles at Different Stages (3D) (continued) 

 

It can be found that numerical analysis provided reasonably good prediction, 

especially at Stage 3 at Station 327.5. Even though deviations exist between 

measurements and numerical results at Stage 1 and Stage 2, the numerical analysis 

can capture the trend of the development of the settlement across the sections. 

 

In addition, the settlements monitored by the settlement plates at S1, S2, S3 and S4 

(refer to Fig. 3-3 (a)) were also compared with the 3D numerical results in Fig. 3-16. 

Similarly, the 3D numerical results slightly overestimate the field measurements at 
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Stage 1 and Stage 2 at S1, S2, S3, and S4. Nevertheless, it yields fairly good 

agreement on the final settlements at those four locations.  
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(a) Settlements at S1 and S2 
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(b) Settlements at S3 and S4 
 

Fig. 3-16. Settlement versus Time (3D) 
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The settlement profiles from the numerical analysis at the crest and at the base are 

presented in Fig. 3-17. Due to the computing time, the 3D numerical analysis was 

only implemented up to ten years after service. Based on the settlement increment 

from at the end of Stage 3 to ten years after service, it can be anticipated that the 

settlement increment from 10 years to 30 years after service will be small. 

Apparently, the post-construction settlements at the crest are much less than those at 

the base. More importantly, the local differential settlements between columns and 

soft soil at the base are not directly reflected to the crest.  
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Fig. 3-17. Settlement Profiles on the Crest and at the Base (3D) 
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Strain and Tension in Geosynthetic Layer 

 

As mentioned previously, strain gauges were installed near Station 330.0 to monitor 

the development of strains at different locations (refer to Fig. 3-3). The computed 

strains at two locations in each direction, i.e., B4 and B5 in the transverse direction 

and A1 and A6 in the traffic direction, were compared with measured results as 

shown in Fig. 3-18. It was found that at B4 and B5 the numerical results were less 

than the measurements.  The computed strains along the traffic direction at two 

locations (A1 and A6) are also less than measurements. The deviation between 

calculation and measurements may be attributed to the properties used in the 

modeling. The properties used in the modeling were based on short-term laboratory 

tests, while the field performance was a long-term behavior.  

 

It is a common knowledge that the settlement measurements in the field are more 

accurate and reliable than strain measurements (Dunnicliff 1988). 

 

Overall, it can be concluded that the 2D and 3D models can reasonably predict the 

performance of GRCS embankments in the field as demonstrated for this selected 

case history. The 2D and 3D model calibrations ensure the basis for the following 

parametric studies.  
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(a) Strain at B4 and B5 
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(b) Strain at A1 and A6 
 

Fig. 3-18. Strain versus Time Relationship (3D) (continued) 
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CHAPTER FOUR 

TWO-DIMENSIONAL PARAMETRIC STUDY 

 

On the basis of the model calibration, a two-dimensional (2D) parametric study was 

conducted to investigate the influence of key factors on total settlements, differential 

settlements, tension developed in geosynthetic reinforcement, stress concentration 

ratio, and excess pore water pressure generation and dissipation.  

 

 

4.1 2D Baseline Case 
 

A baseline case was first selected as a typical case in the field and analyzed to 

develop a basis for comparisons when parameters were deviated from the baseline 

base.  The deviations of the parameters were considered to cover their typical ranges 

in most actual projects. 

 

 

4.1.1 2D Dimensions and Properties 

 

To make the results comparable, a baseline case was determined based on a typical 

configuration. The dimensions and properties are presented in Fig. 4-1 and Table 4-1, 

respectively.  
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Fig. 4-1. Two-dimensional Model of the 2D Baseline Case 

 

Due to its symmetry, only half of the embankment was modeled to save computing 

time as shown in Fig. 4-1. The embankment slope was assumed to be 2:1 (H:V), 

which is widely adopted in practice. The height of the embankment was 5m. Half 

width of the crest, equal to 10m, was selected based on a two-lane highway in each 

direction plus a shoulder. The in-situ soils below the embankment included a layer of 

10m thick soft clay and a layer of 2m thick underlying firm soil. The DM columns 

were assumed to penetrate 1m into the firm soil. No settlement was allowed below 

the firm soil layer to simulate the underlying bedrock. A geosynthetic layer was 

placed 0.25m above the heads of the columns. The end of the geosynthetic sheet at 

the centerline was fixed laterally but free vertically and the end toward the toe was 
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free in both directions. The boundary effect was eliminated by extending the left 

boundary of the model far enough from the toe of the embankment. The traffic load 

was simulated by applying a uniformly distributed load of 12kPa on the crest of the 

embankment. The ground water level was assumed at the ground surface. 

 

Table 4-1. Properties of Materials in the 2D Baseline Case 
 

Material Properties 

DM columns γ = 18kN/m3, c = 500kPa, φ′ = 0o, E = 100MPa, ν = 0.3,  
ct = 100kPa, k = 1×10-9m/s 

Soft Soil γ = 18kN/m3, c' = 0kPa, φ′ = 25o, E = 2MPa, ν = 0.3,  
ct = 0kPa, k = 1×10-9m/s 

Firm Soil γ = 18kN/m3, c′ = 0kPa, φ′ = 30o, E = 100MPa, ν = 0.3,  
ct = 0kPa, k = 1×10-9m/s 

Embankment Fill γ = 18kN/m3, c′ = 5kPa, φ' = 32o, E = 30MPa, ν = 0.3,  
ct = 0kPa 

Geosynthetics t = 0.002m, Er = 500MPa, Ta = 100kN/m, ks = 20MN/m/m,  
ca = 0kPa, δ = 24.8o 

Ground water K = 200MPa 
Note: γ = unit weight of soil; c = shear strength of soil-cement; c′ = effective cohesion of soil; φ′ = 
effective friction angle of soil; k = permeability; E = elastic modulus of soil; ν = Poisson’s ratio; ct = 
tensile strength of soil-cement/soil; t = thickness of geosynthetic reinforcement; Er = elastic modulus of 
geosynthetic reinforcement; Ta = allowable tensile strength of geosynthetic reinforcement; ks =  bond 
stiffness between geosynthetic and embankment fill; ca = bond strength between geosynthetic and 
embankment fill; δ = bond friction angle between geosynthetic and embankment fill;  K = water bulk 
modulus. 
 

The properties of DM columns, soft soil and embankment fill of the baseline case 

were in the middle of their typical ranges to leave enough margins for property 

variations in the parametric study (EPRI 1990; Budhu 2000). The shear strength of 

DM columns was determined from the common correlation of cE ⋅= 200  (Bruce 

2001), where c is the undrained shear strength of DM columns and equal to half of 

the unconfined compressive strength. In addition, the DM columns were assumed to 
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have a tensile strength, ct, equal to 20% of the undrained shear strength, c. The pure 

water bulk modulus is 2GPa. However, since the natural ground water includes 

dissolved air and some trapped air bubbles, which greatly increase the compressibility 

of the ground water, a reduction factor of 0.1 was applied to the pure water bulk 

modulus to obtain the ground water bulk modulus, K, as suggested by Itasca (2002). 

A typical reduction factor 0.8 was applied to the soil-geosynthetic interface strength 

as compared with the soil strength. Unsaturated flow was not modeled in this study. 

Therefore, the pore water pressure at and above the ground water surface was always 

fixed at zero. The right boundary in Fig. 4-1 was assumed to be impervious, i.e., no 

water enters or leaves the plane of symmetry. The left boundary was also assumed to 

be impervious since it was far enough away from the embankment and would not 

make any influence on the numerical results.   

 

 

4.1.2 2D Modeling Procedure 

 

The modeling can be divided into three phases according to the execution sequence: 

the generation of the initial ground stress field and the hydrostatic pore water 

distribution, the simulation of the embankment construction, and the application of 

the traffic load. Among all the phases, the simulation of the embankment construction 

is the key to the modeling. The basic modeling procedure is listed in Table 4-2.  
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Table 4-2. Modeling Procedure 
 

Phase Procedure Description 

1 Initial condition 
Generate the initial stress field in the ground and the 
hydrostatic pore water pressure below the ground water 
table 

Stage 1 
Install DM columns and geosynthetic 
reinforcement, build the embankment to 1m 
high and allow the consolidation for 1 month 

Stage 2 Build the embankment to 2m high and allow 
the consolidation for 1 month 

Stage 3 Build the embankment to 3m high and allow 
the consolidation for 1 month 

Stage 4 Build the embankment to 4m high and allow 
the consolidation for 1 month 

2 Construction of 
embankment 

Stage 5 Build the embankment to 5m high and allow 
the consolidation for 1 month 

3 Traffic load Apply a traffic load of 12kPa and allow the consolidation 
up to 30 years 

 

The construction of the embankment over soft soil was in stages (i.e., staged 

construction) to ensure its stability and minimize its post-construction settlement. The 

basic concept of staged construction has already been discussed in Chapter Three and 

is schematically presented in Fig. 4-2. The required waiting time depends on several 

factors, such as the permeability, the depth of the ground water table, the shear 

strength of soft soil, the embankment height, the drainage conditions and so on. 

Similarly as the model calibration, a simplified procedure was followed in this study 

as shown in Fig. 4 (b), which is often used in design. In this study, the 5m high 

embankment was constructed in five stages of equal thickness, i.e., the thickness of 

each lift was 1m. To keep consistent with common practice, the duration of each 

stage was 1 month (30 days). The traffic load was applied 1 month after the 



 91

completion of the embankment. The coupled modeling was lasted up to 30 years after 

the service to simulate the typical service life of highways before major maintenance. 

 

 

Embankment 
 height 

Time 
 

(a) Actual process 
 

Embankment 
 height 

Time  
 

            (b) Simplified process 
 

Fig. 4-2. Modeling of Staged Construction 
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4.1.3 Results of 2D Baseline Case 

 

Settlement 

 

The settlement contour of the baseline case at 1 month after service is presented in 

Fig. 4-3. The unit of the settlement is meter. It can be seen that the maximum 

settlement developed at the base of the embankment.  Apparent differential settlement 

also developed at this elevation because of the stiffness and strength difference 

between DM columns and soft soil.  

 

 
 

Fig. 4-3. Settlement Contour of the 2D Baseline Case 
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The development of settlements at two locations, A and B (refer to Fig. 4-1), is 

presented in Fig 4-4. In each stage, the settlement was accumulated with a sudden 

increase, which indicated the immediate settlement at the completion of each stage. 

After each sudden increase, the settlement increased gradually due to the process of 

consolidation. As shown in Fig. 4-4 (b), the settlement became stable after 

approximately 20 months after service, which is much shorter than that predicted 

using Terzaghi’s one-dimensional consolidation theory. The consolidation process of 

the column-supported embankment will be discussed in the excess pore water 

pressure section. 
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(a) 1 month after service 
 

Fig. 4-4. Settlement versus Time of the 2D Baseline Case 
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(b) 30 years after service 
 

Fig. 4-4. Settlement versus Time of the 2D Baseline Case (continued) 

 

However, since in the numerical analysis, the embankment was built to a pre-

determined elevation rather than a total thickness, the settlement occurring in the 

previous stage was leveled off in the following stage.  As a result, the settlement on 

the crest of the embankment occurred after the completion of construction, which is 

often called the post-construction settlement. The post-construction settlement of the 

GRCS embankment system is more crucial to the performance of the pavement on the 

embankment or the connection between the approach embankment and the bridge 

abutment than the total settlement at the base of the embankment. The settlement on 

the crest, Sp, can be expressed as follows: 

 

         ssctitccp SSSSS +++=              (4-1) 
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where Sp = the settlement at the crest up to the designed service life, Scc = the 

settlement due to the dissipation of the excess pore water pressure accumulated 

during the construction, Sit = the immediate settlement due to traffic load, Sct = the 

settlement due to the dissipation of the excess pore water pressure induced by the 

traffic load within the designed service life, and Sss = the secondary settlement due to 

the creep of soft soils, which is not included in this study.   

 

Another fact worthy of being pointed out is that in this study the pavement was 

modeled as part of the last stage of the embankment construction, therefore, the 

settlement on the crest started to accumulate as long as the last stage of the 

embankment (the 5th stage) was constructed.  Sit was the immediate settlement 

induced by the last stage of the embankment load and the traffic load in this study. 

The settlements on the crest and at the base of the embankment at different time 

periods are presented in Fig. 4-5. It can be seen that the maximum settlements at the 

base were much larger than those on the crest at the same time. In addition, at the 

base of the embankment, the soft soil between the DM columns settled much more 

than the DM columns, therefore, the differential settlements at this elevation were 

much more obvious than those on the crest. 
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Fig. 4-5. Settlement Profiles of the 2D Baseline Case at Different Time  

 

Differential settlements, especially those on the crest, are even more critical, because 

they can induce cracks on the pavement, which affect the serviceability of the 

pavement.  

 

In this study, the differential settlement is defined as the absolute settlement 

difference between the peak and the adjacent valley as illustrated in Fig. 4-6. Another 

important parameter reflecting the degree of differential settlement is called the 

distortion, which is defined as:  

 

i

i
i L

ss
I

Δ
=         (4-2) 
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where Δssi – the differential settlement, i.e., the absolute settlement difference 

between the peak and the adjacent valley; 

Li – the distance between the peak and the valley as shown in Fig. 4-6. 

 

The maximum differential settlement and the maximum distortion are two important 

indices in evaluating the smoothness of the embankment surface, which will be 

discussed in the settlement section in details.  
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Fig. 4-6. Differential Settlement 

 

The maximum differential settlement and the maximum distortion of the 2D baseline 

case are presented in Table 4-3. It can be seen that the maximum differential 

settlement and the maximum distortion at the base is much larger than those on the 

crest. Even though the maximum differential settlement and the maximum distortion 

at the base were much larger, they are not that critical for design. As a result, the 

differential settlements and the related distortions on the crest are discussed in more 

details in this chapter.  
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Table 4-3. Maximum Differential Settlement and Maximum Distortion of the 2D 
Baseline case 

 
 Maximum differential settlement (mm) (Maximum distortion, %)

 1 month after service 30 years after service 
On the crest 12.28 (0.246%) 13.01 (0.260%) 
At the base 20.67 (2.067%) 20.90 (2.090%) 

 

Tension in Geosynthetic Reinforcement 

 

The tension developed in geosynthetic reinforcement is presented in Fig. 4-7. The 

unit of tension in the figure is N/m. It indicates that the tensile force developed within 

the geosynthetic reinforcement in unit length along the traffic direction, which is the 

direction perpendicular to the cross-section of the embankment.  

 

 
 

Fig. 4-7. Tension Distribution of the 2D Baseline Case 
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The tension distributions at different time periods are presented in Fig. 4-8. Since the 

geosynthetic reinforcement was placed close to the heads of the DM columns, the 

tension accumulated from the first stage. The post-construction tension was obtained 

by subtracting the tension accumulated up to Stage 4. The post-construction tension is 

shown in Fig. 4-9. It can be seen that the tension increment due to consolidation from 

1 month after service to 30 years after service is very small. Since the total tension in 

the reinforcement is more of a concern than the post-construction tension, only the 

total tension will be studied in the section of this parametric study.   
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Fig. 4-8. Tension Profiles of the 2D Baseline Case  
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Fig. 4-9. Post-construction Tension Profiles of the 2D Baseline Case 
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Fig. 4-10. Tension Profiles of the 2D Baseline Case at 30 Years after Service 

 

The tension in geosynthetic reinforcement after 30-year service is presented in Fig. 4-

10. It can be seen that higher tension developed above the DM columns rather than 
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the soil between DM columns. This finding is consistent with what was found in 

previous study by Han and Gabr (2002). 
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(b) 30 years after service 
 

Fig. 4-11. Tension versus Time of the 2D Baseline Case 



 102

The development of tension with time is presented in Fig. 4-11. The locations of 

Points A′ and B' can be found in Fig. 4-1 and they are at the same elevation. Point A′ 

is above the column, while Point B′ is at the middle of the span. It can be seen that the 

tension developed at Point A′ was always higher than that developed at Point B′ at 

various stages. 

 

Vertical Effective Stress 

 

The vertical effective stress contour at 1 month after service is shown in Fig. 4-12. 

The unit of the stress in the figure is Pa (Pascal). Higher vertical stress developed 

within the columns than that within the soft soil, which indicates that the embankment 

load was transferred to the columns by soil arching and membrane effect.  

 

 
 

Fig. 4-12. Vertical Effective Stress Contour of the 2D Baseline Case 
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To investigate the membrane effect in transferring the load, the vertical stresses above 

and below the geosynthetic are presented in Fig. 4-13. The vertical stress over the 

columns but below the geosynthetic was higher than that above the geosynthetic. On 

the other hand, the vertical stress above the soft soil but below the geosynthetic was 

slightly less than that above the geosynthetic but the difference cannot be well 

presented in Fig. 4-13, since compared with the vertical stress range in the figure the 

difference is too small to be distinguished. This phenomenon implies that some load 

was transferred from that above the soft soil to above columns by the tensioned 

geosynthetic sheet. 
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Fig. 4-13. Vertical Stress Distribution of the 2D Baseline Case 

 

The development of additional vertical effective stresses, defined as the effective 

stresses induced by the embankment and traffic load, at Point C and Point D are 
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presented in Fig. 4-14. Point C is at the tip of the DM column and Point D is at the 

same elevation of soft soil (refer to Fig. 4-1 for the locations of C and D). Fig. 4-14(a) 

shows that the effective stresses in DM columns increased instantaneously after each 

loading and then further increased gradually as time elapsed. However, the effective 

stresses in the soft soil decreased after the loading and then increased gradually as 

time elapsed. The gradual increase of the effective stresses in the DM columns and 

the soft soil was attributed to the dissipation of excess pore water pressure. The 

difference in the effective stress change in the columns and the soft soil immediately 

after each loading can be explained as follows. At the moment of each loading, since 

the bulk modulus of the columns was at the same order of magnitude as that of the 

ground water, the load was shared by pore water and the solids in DM columns. As a 

result, there was an instantaneous increase on the effective vertical stress in the DM 

columns and then followed by a gradual increase due to consolidation. However, 

since the bulk modulus of the soft soil was much lower than that of the ground water, 

according to Terzaghi’s effective stress theory (1943), the load was taken by pore 

water but not by soil skeleton. As a result, the pore water pressure within in the soft 

soil increased instantaneously, which lead to a decrease in the effective stress in the 

soft soil. Then the effective stress in the soft soil increased with time due to 

consolidation.  Eventually, the excess pore water pressure would dissipate and the 

effective stresses within the DM columns and the soft soil became stable as shown in 

Fig. 4-14 (b). 
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(a) 1 month after service 
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(b) 30 years after service 
 

Fig. 4-14. Additional Vertical Effective Stress versus Time of the 2D Baseline 
Case 
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Stress Concentration Ratio 

 

Stress concentration ratio, n, is an important index to evaluate the efficiency of load 

transfer between columns and soft soil. Stress concentration ratio is defined as the 

ratio of the average vertical stress over columns to the average vertical stress over soft 

soil and can be calculated as follows:  

 

s

crcl
n

σ

σσ )(
2
1

+
=           (4-3) 

 

The notation is schematically shown in Fig. 4-15. 
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Fig. 4-15. Stress Concentration Ratio Calculation Illustration  
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Since the embankment and traffic loads are shared by the soft soil and the columns, 

the additional vertical effective stresses were used in calculating the stress 

concentration ratio. The stress concentration ratio profiles for the baseline case are 

presented in Fig. 4-16, which shows that the stress concentration ratio decreased as 

being away from the centerline. The maximum stress concentration ratio was 16.3 at 

the span closest to the centerline of the embankment. The stress concentration ratio 

increased slightly from 1 month to 30 years after service.  
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Fig. 4-16. Stress Concentration Ratio Profiles of the 2D Baseline Case  
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Pore Water Pressure 

 

The pore water pressure contours after partial dissipation are presented in Fig. 4-17. 

The unit of the pore water pressure in the figure is Pascal (Pa). The excess pore water 

pressures at four different locations with time up to 1 month after service and up to 30 

years after service are presented in Fig. 4-18 and 4-19, respectively. The locations of 

these points can be found in Fig. 4-1. Since Point D and C are located at the same 

elevation, the excess pore water pressure are almost the same at those two points as 

shown in Fig. 4-18. The excess pore water pressure at point D is higher than that at 

Point E at 1 month after service, since Point D is further from the ground surface 

(drainage surface) than Point E. However, at 30 years after service, the excess pore 

water pressure at those two points almost dissipates completely as shown in Fig. 4-19.    

 

 
 

Fig. 4-17. Pore Water Pressure Contour of the 2D Baseline Case 
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(a) 1 month after service 
 

0

10

20

30

40

50

60

0 100 200 300 400

Time (mon)

Ex
ce

ss
 p

or
e 

w
at

er
 

pr
es

su
re

 (k
Pa

)

Point C
Point D

 
 

(b) 30 years after service 
 

Fig. 4-18. Excess Pore Water Pressure at Point C and D versus Time of the 2D 
Baseline Case 
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(a) 1 month after service 
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(b) 30 years after service 
 

Fig. 4-19. Excess Pore Water Pressure at Point D and E versus Time of the 2D 
Baseline Case 

 

Fig. 4-20 presents the excess pore water pressure distribution along section I-I (refer 

to Fig. 4-1). At the moment the embankment load was applied, since the bulk 

modulus of the soft soil was much lower than that of water, the load was mainly 
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carried by water, which is attributed to the generation of excess pore water pressure. 

As the time elapsed, the excess pore water pressure within the soft soil dissipated in 

two ways: hydraulically and mechanically (Han and Ye 2001).  Hydraulically, portion 

of the excess pore water pressure dissipated by drainage and the corresponding load 

was transferred to soil skeleton, which lead to the increase of the effective stress. On 

the other hand, mechanically, as the effective stress in the soil increased, the soil 

tended to settle more than the columns. As a result, portion of the load taken by pore 

water would be transferred to the columns with the aid of shear stresses induced by 

relative movement between the soft soil and the columns. This phenomenon was 

discussed by Han and Ye (2001) when they studied the consolidation of the soft soil 

treated by stone columns. In other words, the consolidation process in the GRCS 

embankment system can not be evaluated by Terzaghi’s consolidation theory alone.  
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Fig. 4-20. Excess Pore Water Pressure versus Depth of the 2D Baseline Case 
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The excess pore water pressure and the effective stress with time at Point D (refer to 

Fig. 4-1) is shown in Fig. 4-21. Eventually, the excess pore water pressure dissipated 

and the effective stress reached a constant value. 
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(a) 1 month after service 
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(b) 30 years after service 
 

Fig. 4-21. Excess Pore Water Pressure or Additional Vertical Effective Stress 
versus Time of the 2D Baseline Case 
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4.2 2D Parametric Study 

 

 

4.2.1 Outline of 2D Parametric Study 

 

Upon completion of the baseline case, a parametric study was performed by deviating 

one property from the baseline case one at one time to investigate the influence of 

that specific factor. The investigated factors are listed in Table 4-4. The elastic 

modulus and friction angle of the embankment fill are controlled by the selection of 

material and quality of compaction. The variations of those two parameters are not 

significant in the practice. Consequently, these two parameters are not subjected to 

change in this parametric study.   

 

Table 4-4. Parameter and Variation Used in the Two-Dimensional Study 
 

Item Parameter Range of value 
Elastic modulus (MPa) 1.0, 2.0*, 4.0, 8.0 
Friction angle (o) 15, 20, 25*, 30 Soft soil 
Permeability (m/s) 10-8, 10-9*, 10-10 
Elastic modulus (MPa) 100*, 150, 200 DM column Spacing (m) 2.0, 2.5*, 3.0 

Geosynthetic Tensile stiffness (kN/m) 0, 1000*, 5000, 10000
Construction Average construction rate (meter/mon) 0.25, 1*, 4 

* parameters used in the baseline case 

 

The soft soil modulus usually ranges from 1MPa to 15MPa (Budhu 2000). However, 

the GRCS embankment system has been rarely used for soft soil with an elastic 



 114

modulus equal to 8MPa or higher. Therefore, the selected elastic moduli of the soft 

soil were 1MPa, 2MPa, 4 MP, and 8MPa. Since the friction angle of the soft soil 

typically ranges from 15o to 30o (Budhu 2000), the following friction angles were 

selected in this study: 15o, 20o, 25o, and 30o. The permeability of a homogeneous clay 

is usually less than 10-8m/s (Das 2001), therefore. The selected permeability values of 

the soft soil were 10-8m/s, 10-9m/s, and 10-10m/s.  

 

Three elastic moduli of DM columns were included in this parametric study: 

100MPa, 150MPa, and 200MPa, which fall into the typical range of soil-cement 

moduli (EPRI 1990).  Based on constructed GRCS embankments, Han (1999) found 

that the area replacement ratio of columns, defined as the ratio of column area to the 

area of the embankment footprint, ranged from about 10% to about 22%. Therefore, 

three DM column spacing were adopted in this study: 3m, 2.5m, and 2m, which are 

equivalent to the area replacement ratio of 11%, 16%, and 25%, respectively.   

 

The tensile stiffness of geosynthetics used in this study ranges from 0 to 10,000kN/m. 

The 0kN/m tensile stiffness represents an unreinforced condition, while 10,000kN/m 

is almost the highest tensile stiffness of geosynthetics in the current market. A tensile 

stiffness of 1,000kN/m has been commonly used for geosynthetic reinforcement.   

 

The construction rate of the baseline case was at 1meter/mon, which is commonly 

used in the practice. In this parametric study, the construction rate was reduced to 
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one-forth and increased by four times to yield 0.25meter/mon and 4meter/mon, 

respectively. The rates of 4meter/mon and 0.25meter/mon represent the fast 

construction and the prolonged construction, respectively.     

 

Many data can be extracted from all the numerical runs.  It is impossible to present all 

the numerical results in this dissertation; therefore, selected numerical results will be 

presented and discussed, which are mainly focused on settlement, tension in 

geosynthetic reinforcement, vertical stress, and excess pore water pressure. 

 

 

4.2.2 Settlement 

 

As usual, settlement is one of the focuses when the GRCS embankment is designed to 

support roadways, railways, etc. In the past, however, most investigations have paid 

attention to the settlement at the base of the embankment since the maximum long-

term settlement typically develops at this elevation.  As illustrated in the analysis of 

the baseline case, the post-construction settlement on the crest is actually more 

critical to the serviceability of the structures on the embankment.  Therefore, in this 

study, more attention is paid to the settlement on the crest changing with time. 
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Influence of Soft Soil Elastic Modulus 

 

Soft soil is characterized as high compressibility and low modulus. The influence of 

the soft soil modulus was investigated by varying its value used in baseline case. The 

settlement profiles on the crest and at the base of the embankment are presented at 

different elastic moduli of soft soil in Fig. 4-22 and 4-23. It can be seen that the 

increase of the soft soil modulus reduced the total and differential settlements both on 

the crest and at the base. This phenomenon is more clearly presented in Fig. 4-24 and 

4-25 for the maximum total and differential settlements on the crest and at the base of 

the embankment.  The degree of settlement reduction gradually decreased as the soft 

soil modulus increased as indicated by the decrease of the curves’ slopes in Fig. 4-24 

and 4-25. From 1 month to 30 years after service, both the maximum total settlement 

and the maximum differential settlement increased due to the consolidation of soft 

soil. However, the increase of the maximum settlement was much greater than that of 

the maximum differential settlement.  
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(b) At the base 
 

Fig. 4-22. Settlement Profiles for Various Soil Moduli at 1 Month after Service 
(2D) 
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(b) At the base 
 

Fig. 4-23. Settlement Profiles for Various Soil Moduli at 30 Years after Service 
(2D) 
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Fig. 4-24. Maximum Settlement versus Soil Modulus (2D) 
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Fig. 4-25. Maximum Differential Settlement versus Soil Modulus (2D) 
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Since the differential settlements at the crest are crucial to the serviceability, they are 

evaluated using the distortion concept defined in the earlier section in the baseline 

case. Fig. 4-26 presents the influence of the soft soil modulus on the maximum 

distortion. Obviously, the increase of soft soil modulus reduced the maximum 

distortion and the consolidation had limited influence on the distortion at various soft 

soil moduli.     
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Fig. 4-26. Maximum Distortion on the Crest versus Soil Modulus (2D) 

 

Influence of Soft Soil Friction Angle 

 

Effective friction angle (φ′) is a strength parameter and should not influence the 

settlement as long as the soil remains elastic. However, local yielding or failure is 
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almost inevitable in this system; therefore, the friction angle is expected to have some 

influence on the settlement of the GRCS embankment system. The influence of the 

friction angle is investigated by changing the soft soil effective friction angle from the 

baseline case. The settlement profiles at 1 month and 30 years after service are 

presented in Fig. 4-27 and 4-28, respectively. Generally speaking, the increase of the 

friction angle led to a decrease in the settlement. This phenomenon is also 

demonstrated in Fig. 4-29 and 4-30.  

 

When the soft soil friction angle ranged from 20o to 30o, their settlements were close. 

However, the settlements at the friction angle of 15o were much larger than those with 

higher friction angles. This difference resulted from the fact that a greater extent of 

yielding or failure occurred at the friction angle of 15o. In addition, the soil friction 

angle had much less effect on the settlements on the crest than those at the base. In 

Fig. 4-29, the curve of the maximum settlement on the crest is almost flat after the 

friction angle is higher than 20o. Therefore, it may be concluded that the influence of 

the friction angle on the settlement on the crest is insignificant as long as no 

considerable failure develops in the soft soil. 
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(b) At the base 
 

Fig. 4-27. Settlement Profiles for Various Friction Angles at 1 Month after 
Service (2D) 
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(b) At the base 
 

Fig. 4-28. Settlement Profiles for Various Friction Angles at 30 Years after 
Service (2D) 
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Fig. 4-29. Maximum Settlement versus Friction Angle (2D) 
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Fig. 4-30. Maximum Differential Settlement versus Friction Angle (2D) 
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Similarly, the influence of the friction angle on the maximum distortion was 

evaluated and is shown in Fig. 4-31. It can be found that the variation of the distortion 

with respect to the friction angle was limited. 
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Fig. 4-31. Maximum Distortion on the Crest versus Friction Angle (2D) 

 

Influence of Soft Soil Permeability 

 

The permeability of the soft soil is expected to greatly influence the generation and 

dissipation of the excess pore water pressure; therefore, it should have a profound 

influence on the post-construction settlements on the crest as well, which have not 

been well studied in the past.   
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(b) At the base 
 

Fig. 4-32. Settlement Profiles for Various Permeability at 1 Month after Service 
(2D) 
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(b) At the base 
 

Fig. 4-33. Settlement Profiles for Various Permeability at 30 Years after Service 
(2D) 



 128

Figures 4-32 and 4-33 present the numerical results which show the higher 

permeability of the soft soil having the lower settlements, both at the base and on the 

crest. This finding is more clearly illustrated in Fig. 4-34 and Fig. 4-35, i.e., the 

maximum settlement and the maximum differential settlement decreased with the 

increase of the soil permeability.  
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Fig. 4-34. Maximum Settlement versus Soil Permeability (2D) 

 

In addition, the difference in the maximum settlement and the maximum differential 

settlement at 1 month and 30 years after service decreased with the increase of the 

soil permeability. In other words, the post-construction settlements can be minimized 

by increasing the soil permeability. Figure 4-35 shows that the slopes of curves for 

the differential settlements at 30 years after service were very steep when the soil 

permeability was lower than 10-9m/s. This phenomenon implies that it is effective to 
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reduce the post-construction settlement by increasing the soil permeability while the 

permeability is lower than 10-9m/s.  
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Fig. 4-35. Maximum Differential Settlement versus Soil Permeability (2D) 

 

Another interesting finding from Fig. 4-32 (b) is that at 1 month after service, the soft 

soil with lower permeability had larger settlement in the soft soil but smaller 

settlement in the columns. This phenomenon is associated with fact that the lower the 

soil permeability, the higher the excess pore water pressure in the soft soil. The higher 

excess pore water pressure in the soft soil shared more load from the embankment. 

Therefore, the lower permeability soil led to smaller settlements in the columns. 

Meanwhile, the higher excess pore water pressure in the soft soil led to a greater 

reduction in the effective stress in the soft soil. Since the soil strength is effective 
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stress dependant, the soil at the lower effective stress fails more easily. As a result, 

the soil settled more when the permeability of the soft soil was lower. As the 

consolidation proceeded, the load carried by pore water was transferred back to the 

columns and/or the soft soil. The higher excess pore water pressure would have more 

load transferred. Consequently, the lower permeability of the soft soil induced the 

greater increase of the settlement from 1 month to 30 years after service.   

 

The maximum distortion is plotted against the soil permeability in Fig. 4-36.  
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Fig. 4-36. Maximum Distortion on the Crest versus Soil Permeability (2D) 

 

Apparently, the higher permeability yielded less distortion.  As mentioned earlier, 

part of the distortion on the crest was induced by the continued consolidation of the 
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soft soil after the construction. As the soil permeability was higher, the less excess 

pore water pressure accumulated during the construction, which led to less distortion. 

Figure 4-36 also shows that there was a great increase in the distortion from 1 month 

to 30 years after service when the soil permeability was low. The finding implies that 

it is necessary to consider the influence of the soil permeability on the serviceability 

of the GRCS embankment, especially when the soil permeability is low. 

 

Influence of Column Elastic Modulus 

 

In this study, DM columns are investigated and their moduli can be correlated to their 

undrained shear strengths using the generally accepted equation: Ec=200c, where c is 

the cohesion of the columns.  Therefore, the column modulus is not only an indicator 

of stiffness but also an indicator of strength. It is expected that the stiffness of the 

columns plays an important role in limiting the settlements. Stiffer columns are 

expected to carry a larger portion of the embankment and traffic loads to reduce the 

settlements because less load is taken by the soft soil. The effect of the elastic moduli 

of the columns on the settlements is presented in Fig. 4-37 and 4-38.  

 

 

 

 

 



 132

0

5

10

15

20

25

30

10 12 14 16 18 20
Distance from the toe (m)

Se
ttl

em
en

t (
m

m
) 100 150 200

Ec (MPa)

 
 

(a) On the crest 
 
 

0

10

20

30

40

50

0 5 10 15 20
Distance from the toe (m)

Se
ttl

em
en

t (
m

m
)

100 150 200
Ec (MPa)

 
 

(b) At the base 
 

Fig. 4-37. Settlement Profiles for Various Column Moduli at 1 Month after 
Service (2D) 
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Fig. 4-38. Settlement Profiles for Various Column Moduli at 30 Years after 
Service (2D) 
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Fig. 4-39. Maximum Settlement versus Column Modulus (2D) 
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Fig. 4-40. Maximum Differential Settlement versus Column Modulus (2D) 
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A comparison between Fig. 4-39 and 4-40 shows that the increase of the column 

modulus had a greater effect on the reduction of the maximum settlement than that of 

the maximum differential settlement. Figure 4-40 also shows that the curves of 

maximum differential settlement on the crest against the column modulus are so flat 

that the reduction in the maximum differential settlement was less than 2mm as the 

column modulus increased from 100MPa to 200MPa. The major reason for this 

phenomenon may be because the columns were stiff enough as compared with the 

soft soil and the stable soil arching was formed. In this study, the modulus ratios of 

column to soft soil ranged from 50 to 100. The high modulus ratio makes the column 

behave as a rigid support with respect to the soft soil. As a result, beyond a certain 

height of the embankment, the embankment settlements are almost uninfluenced by 

the column modulus. 

 

Due to its limited influence on the differential settlement, the column modulus also 

had limited influence on the maximum distortion as shown in Fig. 4-41. Figure 4-41 

shows that the maximum distortion increased slightly with consolidation. 
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Fig. 4-41. Maximum Distortion on the Crest versus Column Modulus (2D) 

 

Influence of Column Spacing 

 

Column spacing is another important design parameter. Once the column size is 

determined, the column spacing is directly related to the area replacement ratio of the 

columns, i.e., larger spacing of columns leads to a smaller area replacement. Figures 

4-42, 4-43, 4-44, and 4-45 show that larger spacing of columns resulted in larger total 

and differential settlements at the base and on the crest of the embankment. The 

increase of column spacing reduced the area replacement ratio so that the percentage 

of the soft soil area increased but the percentage of the column area decreased. Since 

the soft soil was much softer than the columns and it settled more than the columns, 

the differential settlement between the columns and the soft soil increased. Figures 4-
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42 and 4-43 also show that apparent local differential settlements developed at the 

crest when the column spacing equaled to 3.0m.  Figure 4-45 indicates that the 

maximum differential settlement was more than doubled as the column spacing 

increased from 2.0 to 3.0m. The comparison between Fig. 4-44 and 4-45 shows that 

the time from 1 month to 30 years after service had more effect on the maximum 

settlement than the maximum differential settlement.  
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(a) On the crest 
 

Fig. 4-42. Settlement Profiles for Various Column Spacing at 1 Month after 
Service (2D) 
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Fig. 4-42. Settlement Profiles for Various Column Spacing at 1 Month after 
Service (2D) (continued) 
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(a) On the crest 
 

Fig. 4-43. Settlement Profiles for Various Column Spacing at 30 Years after 
Service (2D) 
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Fig. 4-43. Settlement Profiles for Various Column Spacing at 30 Years after 
Service (2D) (continued) 
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Fig. 4-44. Maximum Settlement versus Column Spacing (2D) 
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Fig. 4-45. Maximum Differential Settlement versus Column Spacing (2D) 
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Fig. 4-46. Maximum Distortion on the Crest versus Column Spacing (2D) 
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The maximum distortion is plotted against the column spacing in Fig. 4-46 to 

investigate the influence of the column spacing on the distortion. It is shown that the 

column spacing had a noticeable influence on the distortion and the larger column 

spacing had the greater distortion.  

 

Influence of Geosynthetic Tensile Stiffness 

 

Geosynthetic tensile stiffness, J, is an important material property of geosynthetics. 

Depending on the type of geosynthetic used, the tensile stiffness can vary greatly. In 

this study, the tensile stiffness varied from zero to 10,000kN/m. Zero tensile stiffness 

represents a case without reinforcement, while 10,000kN/m is almost the highest 

tensile stiffness of geosynthetics available in the current market.    

 

Figures 4-47 and 4-48 present the settlement profiles at the base and on the crest of 

the embankment using one layer geosynthetic at different tensile stiffness. Clearly, 

the influence of the geosynthetic tensile stiffness on the settlement was limited. 

Especially for the geosynthetic at the tensile stiffness from 1,000 to 10,000kN/m, the 

reduction in the settlement on the crest was almost negligible. This finding is more 

clearly demonstrated in Figs. 4-49 and 4-50. Even though the geosynthetic tensile 

stiffness had some impact on the settlement at the base, its influence on the settlement 

at the crest was much less.  
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Fig. 4-47. Settlement Profiles for Various Tensile Stiffness at 1 Month after 
Service (2D) 
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Fig. 4-48. Settlement Profiles for Various Tensile Stiffness at 30 Years after 
Service (2D) 
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Fig. 4-49. Maximum Settlement versus Tensile Stiffness (2D) 
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Fig. 4-50. Maximum Differential Settlement versus Tensile Stiffness (2D) 
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Similar to its negligible influence on the differential settlement, the geosynthetic 

tensile stiffness also exhibited negligible influence on the distortion as shown in Fig. 

4-51.  
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Fig. 4-51. Maximum Distortion on the Crest versus Tensile Stiffness (2D) 

 

Influence of Construction Rate 

 

In addition to soil properties (elastic modulus, friction angle, and permeability) and 

column dimensions and properties (spacing and elastic modulus), the rate of 

construction can have profound influence on the performance of the GRCS 

embankments. In this study, one of the most important construction parameters, the 

average construction rate, was investigated. The average construction rate here was 



 146

defined as the thickness of the lift built in unit time. As discussed earlier in the 

baseline case, the embankment was built into five stages of equal thickness, i.e., 1m 

at each stage. The duration of each stage was one month. Therefore, the average 

construction rate for the baseline case was 1meter/mon, which is the rate commonly 

used in practice. In this study, the average construction rate of the baseline case 

decreased to one-fourth (i.e., 0.25meter/mon) and increased to 4 times (i.e., 

4meter/mon) to represent the prolonged construction and the fast construction, 

respectively. 

 

The influence of the average construction rate on the settlements is shown in Fig. 4-

52, 4-53, 4-54, and 4-55, which show that the higher construction rate induced greater 

settlement. As compared with the effect of soil permeability, the lower average 

construction rate had the effect on the accumulated less excess pore water pressure, 

which is similar to the effect of the higher permeability of the soil as discussed in the 

permeability section. Figure 4-52 also shows that the settlements of columns were 

smaller but the settlements of the soft soil were larger at a higher average construction 

rate. The same explanation can be offered as that stated in the permeability section.    
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Fig. 4-52. Settlement Profiles for Various Average Construction Rates at 1 
Month after Service (2D) 
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(b) At the base 
 

Fig. 4-53. Settlement Profiles for Various Average Construction Rates at 30 
Years after Service (2D) 
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Fig. 4-54. Maximum Settlement versus Average Construction Rate (2D) 
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Fig. 4-55. Maximum Differential Settlement versus Average Construction Rate 
(2D) 
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The influence of the average construction rate on the maximum distortion is presented 

in Fig. 4-56. The lower average construction rate yielded the smaller maximum 

distortion.  

 

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4
Average construction rate (meter/mon)

M
ax

im
um

 d
is

to
rti

on
 (%

)

1 month after service
30 years after service

 
 

Fig. 4-56. Maximum Distortion on the Crest versus Average Construction Rate 
(2D) 

 

 

4.2.3 Tension Developed in Geosynthetics 

 

In the GRCS embankment, geosynthetic reinforcement plays dual functions. 

Primarily, it works a flexible layer bridging over soft soil to transfer load from the 

soft soil to the columns. This function has been widely accepted and considered in the 
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design. Secondarily, it can counteract lateral spreading of the embankment fill. 

Hence, the tension developed in the geosynthetic reinforcement is the resultant of the 

tension induced by these two effects.  

 

Tension in geosynthetic reinforcement is one of the focuses in research and design. In 

a few GRCS embankment projects, the tension in the geosynthetic reinforcement was 

monitored by strain gauges. The level of tension developed in geosynthetic 

reinforcement may have some influence on its creep behavior, which needs to be 

accounted for in some applications. However, the creep behavior is beyond the scope 

of this study. In this study, the geosynthetic was assumed to have constant tensile 

stiffness and cross section. The influences of the soft soil modulus, the soil friction 

angle, the soil permeability, the column modulus, the column spacing, the tensile 

stiffness of geosynthetic, and the average construction rate on the tension in the 

geosynthetic reinforcement were investigated. 

 

Influence of Soft Soil Elastic Modulus 

 
In the 2D parametric study, the geosynthetic sheet was modeled as lineal cable 

elements and only the tension developed in the direction perpendicular to traffic 

direction was available. The tension profiles at different soft soil moduli are presented 

in Fig. 4-57 and the maximum tension against soft soil modulus is presented in Fig. 4-

58. Obviously, the higher soft soil modulus yielded the lower tension in the 
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geosynthetic sheet. As discussed in the settlement section, smaller differential 

settlement occurred at a higher soft soil modulus, as a consequence, the geosynthetic 

sheet was less stretched and lower tension was generated. Figure 4-57 shows that 

higher tension in the geosynthetic reinforcement developed over columns, which is 

consistent with the finding by Han and Gabr (2002). It is also shown that the 

maximum tension developed at a certain distance from the centerline of the 

embankment, which is consistent with the location of the maximum settlement at the 

base of the embankment. In addition, the tension was almost unchanged from one 

month to 30 years after service. This phenomenon implies that the post-construction 

consolidation had a limited effect on the tension in the geosynthetic reinforcement. 
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(a) 1 month after service 
 

Fig. 4-57. Tension Profiles for Various Soil Moduli at 1 Month and 30 Years 
after Service (2D) 
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(b) 30 years after service 
 

Fig. 4-57. Tension Profiles for Various Soil Moduli at 1 Month and 30 Years 
after Service (2D) (continued) 
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Fig. 4-58. Maximum Tension versus Soil Modulus (2D) 
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 Influence of Soft Soil Friction Angle 

 

The tension profiles at different soil friction angles are presented in Fig 4-59. It is 

shown that the tension developed at the soil friction angle from 20o to 30o was close. 

However, the tension developed at the soil friction angle of 15o was much higher than 

that at the other soil friction angles from 20o to 30o. This trend can be seen more 

clearly in Fig. 4-60. This finding is consistent with the development of settlement as 

discussed earlier, i.e., as long as the soil remained in an elastic state, the soil friction 

angle would not have much influence on the tension. 
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Fig. 4-59. Tension Profiles for Various Friction Angles at 1 Month and 30 Years 
after Service (2D) 

 



 155

0

2

4

6

8

10

12

0 5 10 15 20

Distance from the toe (m)

Te
ns

io
n 

(k
N

/m
)

15 20 25 30
φ (o)

 
 

(b) 30 years after service 
 

Fig. 4-59. Tension Profiles for Various Friction Angles at 1 Month and 30 Years 
after Service (2D) (continued) 
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Fig. 4-60. Maximum Tension versus Friction Angle (2D) 
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Influence of Soft Soil Permeability 

 

Related to the lower soil permeability leading to the larger differential settlement at 

the base, the lower soil permeability also induced the higher tension in the 

geosynthetic reinforcement as shown in Fig. 4-61 and 4-62. There was a noticeable 

increase in the maximum tension from one month to 30 years after service at the soil 

permeability lower or equal to 10-10m/s.  However, this difference became 

insignificant when the soil permeability was higher than 10-10m/s. This finding is 

consistent with the result of the differential settlement from one month to 30 years 

after service. 
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(a) 1 month after service 
 

Fig. 4-61. Tension Profiles for Various Soil Permeability at 1 Month and 30 
Years after Service (2D) 
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Fig. 4-61. Tension Profiles for Various Soil Permeability at 1 Month and 30 
Years after Service (2D) (continued) 
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Fig. 4-62. Maximum Tension versus Soil Permeability (2D) 
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Influence of Column Elastic Modulus 

 

Similar to the influence on the differential settlement at the base, the column modulus 

had a very limited influence on the tension in the geosynthetic reinforcement.  

Compared with the soft soil, the columns in this study were rigid enough to help the 

development of stable soil arching. As a consequence, the increase of column 

modulus did not considerably reduce the load carried by the geosynthetic 

reinforcement. Consolidation of the soft soil did not have any significant influence on 

the maximum tension either as shown in Fig. 4-64.   
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Fig. 4-63. Tension Profiles for Various Column Moduli at 1 Month and 30 Years 
after Service (2D) 
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Fig. 4-63. Tension Profiles for Various Column Moduli at 1 Month and 30 Years 
after Service (2D) (continued) 
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Fig. 4-64. Maximum Tension versus Column Modulus (2D) 
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Influence of Column Spacing 

 

As discussed earlier, the column spacing at a fixed column size is directly related to 

the area replacement ratio. Figures 4-65 and 4-66 present the tension profiles at 

different column spacing. Due to the difference in the column spacing, the maximum 

tension did not occur at the same location. However, it was located over a column and 

at a certain distance from the centerline. Figure 4-66 shows that the larger spacing 

yielded the higher maximum tension. In addition, the consolidation had a limited 

influence on the maximum tension within the range of the column spacing 

investigated. 
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Fig. 4-65. Tension Profiles for Various Column Spacing at 1 Month and 30 Years 
after Service (2D) 
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Fig. 4-65. Tension Profiles for Various Column Spacing at 1 Month and 30 Years 
after Service (2D) (continued) 

 

0

2

4

6

8

10

12

2 2.5 3

Column spacing (m)

M
ax

im
um

 te
ns

io
n 

(k
N

/m
) 1 month after service

30 years after service

 
 

Fig. 4-66. Maximum Tension versus Column Spacing (2D) 
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Influence of Geosynthetic Tensile Stiffness 

 

Unlike the influence on the settlements, the geosynthetic tensile stiffness had a 

significant influence on the tension as shown in Fig. 4-68.  The maximum tension 

almost increased linearly when the tensile stiffness increased from 1,000 to 

10,000kN/m. It is known that the tension is equal to the product of the tensile 

stiffness and the strain. Under various tensile stiffness levels, the differential 

settlement at the base was almost unchanged, which led to the unchanged strain. As a 

result, the product of the tensile stiffness and the strain increased almost linearly.   
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(a) 1 month after service 
 

Fig. 4-67. Tension Profiles for Various Tensile Stiffness at 1 Month and 30 Years 
after Service (2D) 
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(b) 30 years after service 
 

Fig. 4-67. Tension Profiles for Various Tensile Stiffness at 1 Month and 30 Years 
after Service (2D) (continued) 
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Fig. 4-68. Maximum Tension versus Tensile Stiffness (2D) 
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Influence of Construction Rate 

 

Figures 4-69 and 4-70 present the tension profiles at different construction rates.  As 

discussed in the settlement section, the higher construction rate led to the larger 

differential settlement, especially at the base of the embankment, which induced the 

higher tension.  
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(a) 1 month after service 
 

Fig. 4-69. Tension Profiles for Various Average Construction Rates at 1 Month 
and 30 Years after Service (2D) 
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Fig. 4-69. Tension Profiles for Various Average Construction Rates at 1 Month 
and 30 Years after Service (2D) (continued) 
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Fig. 4-70. Maximum Tension versus Average Construction Rate (2D) 
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4.2.4 Vertical Stress and Stress Concentration Ratio 

 

One of the key mechanisms of the GRCS embankment is to transfer the load from the 

soft soil to the columns through soil arching. As the load is transferred from the soft 

soil to the columns, higher vertical stresses develop in the columns than in the soft 

soil. As discussed in the baseline section of this chapter, the stress concentration ratio, 

n, is commonly used to evaluate the load transfer efficiency. The stress concentration 

ratio is defined as the average vertical stress on the column heads to the average 

vertical stress in the soft soil at the same elevation.   

 

Similar to the approach used in the baseline case, the additional vertical effective 

stress at the base of the embankment due to the embankment and traffic load was 

used to calculate the stress concentration ratio. The influence of various factors on the 

stress concentration ratio is presented below. 

 

Influence of Soft Soil Elastic Modulus 

 

The additional vertical effective stress profiles at the elevation of the column heads 

are presented with the different soft soil moduli in Fig. 4-71.  
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(a) 1 month after service 
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(b) 30 years after service 
 

Fig. 4-71. Additional Vertical Effective Stress Profiles for Various Soil Moduli 
(2D) 
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It was indicated in Fig. 4-71 that the increase of the soft soil modulus reduced the 

additional vertical effective stress on the column heads but increased that on the soft 

soil. This result can be explained that the increase of the soft soil modulus reduced the 

stiffness difference between the soft soil and the columns; consequently, the soft soil 

shared more load with the columns. Figure 4-71 shows that the additional effective 

stresses slightly increased both over the columns and over the soft soil from 1 month 

to 30 years after service due to the dissipation of excess pore water pressure.  

 

The stress concentration ratio profiles are presented in Fig. 4-72. It can be seen that 

the higher stress concentration ratio was close to the centerline. In addition, the higher 

soft soil modulus yielded the lower stress concentration ratio. The profiles of the 

stress concentration ratios at one month or 30 years after service show that 

consolidation had a slight influence on the stress concentration ratio.  
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(b) 30 years after service 
 

Fig. 4-72. Stress Concentration Ratio Profiles for Various Soil Moduli (2D) 
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Influence of Soft Soil Friction Angle 

 

The profiles of the additional vertical effective stresses at various soil friction angles 

are presented in Fig. 4-73, which shows that a higher soil friction angle led to slightly 

higher additional vertical effective stresses in the soft soil and slightly lower 

additional vertical effective stresses in the columns. The phenomenon was attributed 

to the reduction in the differential settlement at the base with the increase of the soil 

friction angle. In addition, the consolidation of the soft soil did not have much 

influence on the additional vertical effective stress.  
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(a) 1 month after service 
 
 

Fig. 4-73. Additional Effective Stress Profiles for Various Friction Angles (2D) 
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(b) 30 years after service 
 

Fig. 4-73. Additional Effective Stress Profiles for Various Friction Angles (2D) 
(continued) 

 

The profiles of the stress concentration ratio at different soil friction angles are 

presented in Fig. 4-74. Similarly, the stress concentration ratio increased from the toe 

to the center. The lower soil friction angle led to a higher stress concentration ratio. 

This result is consistent with the influence of the soil friction angle on the additional 

vertical effective stress. However, the stress concentration ratios at the soil friction 

angles of 25o and 30o had a minor difference. 
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(b) 30 years after service 
 

Fig. 4-74. Stress Concentration Ratio Profiles for Various Friction Angles (2D) 
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Influence of Soft Soil Permeability 

 

The profiles of the additional vertical effective stress and the stress concentration 

ratio are presented in Fig. 4-75 and 4-76, respectively. Figure 4-75 shows that the 

higher soil permeability led to the lower additional vertical effective stress on the 

columns but the higher additional vertical effective stress on the soft soil at the same 

elevation. The difference in the additional vertical effective stresses at different soil 

permeability values was small.  Figure 4-76(a) shows that at one month after service, 

the stress concentration ratios at the soil permeability of 10-9m/s and 10-10m/s were 

similar while the stress concentration ratios at the soil permeability of 10-8m/s were 

less than those at the soil permeability of 10-9m/s and 10-10m/s. At 30 years after 

service, however, the stress concentration ratios increased when the soil permeability 

decreased from 10-8m/s to 10-10m/s as shown in Fig. 4-76 (b). 
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(a) 1 month after service 
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(b) 30 years after service 
 

Fig. 4-75. Additional Effective Stress Profiles for Various Soil Permeability (2D) 
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(b) 30 years after service 
 

Fig. 4-76. Stress Concentration Ratio Profiles for Various Soil Permeability (2D) 
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Influence of Column Elastic Modulus 

 

The profiles of the additional vertical effective stress and the stress concentration 

ratio at different column moduli are presented in Fig. 4-77 and 4-78, respectively. It 

can be seen that the higher column modulus led to slightly higher additional vertical 

effective stresses on the columns and lower stresses on the soft soil. As a result, the 

higher column modulus yielded the higher stress concentration ratio.  
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(a) 1 month after service 
 

Fig. 4-77. Additional Vertical Effective Stress Profiles for Various Column 
Moduli (2D) 
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(b) 30 years after service 
 

Fig. 4-77. Additional Vertical Effective Stress Profiles for Various Column 
Moduli (2D) (continued) 
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(a) 1 month after service 
 

Fig. 4-78. Stress Concentration Ratio Profiles for Various Column Moduli (2D) 



 178

 

0

5

10

15

20

25

0 5 10 15 20
Distance from the toe (m)

St
re

ss
 c

on
ce

nt
ra

tio
n 

ra
tio

100 150 200
Ec (MPa)
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Fig. 4-78. Stress Concentration Ratio Profiles for Various Column Moduli (2D) 
(continued) 

 

Influence of Column Spacing 

 

The profiles of the additional effective stress and the stress concentration ratio are 

presented in Fig. 4-79 and 4-80, respectively. Due to the difference in the column 

spacing, the locations of the columns for each case were different. In terms of the 

maximum additional vertical effective stresses on the columns and in the soil, 

however, it still can be concluded that the larger column spacing led to the higher 

additional vertical effective stresses on both the columns and the soil.  
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(a) 1 month after service 
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(b) 30 years after service 
 

Fig. 4-79. Additional Vertical Effective Stress Profiles for Various Column 
Spacing (2D) 
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(b) 30 years after service 
 

Fig. 4-80. Stress Concentration Ratio Profiles for Various Column Spacing (2D) 



 181

Figure 4-80 shows that the overall effect of the increase in the additional vertical 

effective stresses due to the larger column spacing yielded to a reduction in the stress 

concentration ratio. 

 

Influence of Geosynthetic Tensile Stiffness 

 

The influences of the tensile stiffness on the additional vertical effective stress and 

the stress concentration ratio are presented in Fig. 4-81 and 4-82, respectively.  
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(a) 1 month after service 
 

Fig. 4-81. Additional Vertical Effective Stress Profiles for Various Tensile 
Stiffness (2D) 
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(b) 30 years after service 
 

Fig. 4-81. Additional Vertical Effective Stress Profiles for Various Tensile 
Stiffness (2D) (continued) 

 

The increase of the tensile stiffness slightly reduced the additional vertical effective 

stress on the columns but increased the stress in the soil. Hence, the increase of the 

geosynthetic tensile stiffness yielded a slight decrease on the stress concentration 

ratio. 
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(b) 30 years after service 
 

Fig. 4-82. Stress concentration Ratio Profiles for Various Tensile Stiffness (2D) 
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Influence of Construction Rate  

 

The profiles of the additional vertical effective stress and the stress concentration 

ratio are presented in Fig. 4-83 and 4-84, respectively. It can be seen that the higher 

construction rate led to a higher stress on the columns but a lower stress in the soft 

soil.  
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(a) 1 month after service 
 

Fig. 4-83. Additional Vertical Effective Stress Profiles for Various Average 
Construction Rates (2D) 
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(b) 30 years after service 
 

Fig. 4-83. Additional Vertical Effective Stress Profiles for Various Average 
Construction Rates (2D) (continued) 

 

The profiles of the stress concentration ratios at different construction rates are 

similar to those at different soil permeability values. It is shown that the higher 

construction rate led to the higher stress concentration ratio.  
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(b) 30 years after service 
 

Fig. 4-84. Stress Concentration Ratio Profiles for Various Average Construction 
Rates (2D) 
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4.2.5 Excess Pore Water Pressure 

 

During construction and traffic loading, excess pore water pressure is generated 

within soft soil. Generated excess pore water pressure dissipates simultaneously 

through two ways: (1) drainage and (2) load transfer from pore water to the columns 

(Han and Ye 2001). As a result, the excess pore water pressure in the soft soil 

generated under the GRCS embankment dissipates much faster than through the 

drainage alone. Traditional consolidation theories would underestimate the degree of 

consolidation under the GRCS embankments.  

 

In this study, the influence of various factors on the excess pore water pressure and 

the degree of consolidation was evaluated. Based on the excess pore water pressure at 

a certain time, the degree of consolidation can be calculated using the following 

equation: 

 

100
)(

)(
(%) ×

⋅+⋅

⋅
= ∑

o

ii

HqH
hu

U
γ

             (4-4) 

 

where ui — the excess pore water pressure at the center of the ith zone; 

 hi — the vertical dimension of the ith zone; 

 γ — the unit weight of the embankment fill; 

 H — the height of the embankment; 
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 Ho — thickness of the foundation soil, which is 12m in this study; 

 q — the traffic load. 

 

In this study, the embankment height, H, the unit weight of embankment fill, γ, and 

the traffic load, q were constant. Hence, the denominator of Equation 4-4 was 

kPa10212518 =+× . 

 

Since the excess pore water pressure completely dissipated at the end of 30 year 

service, i.e., 100% consolidation, only the excess pore water pressure distribution and 

the degree of consolidation at one month after service are presented below. 

  

Influence of Soft Soil Elastic Modulus 

 

The excess pore water distributions within the soft soil along the depth at various soft 

soil moduli are presented in Fig. 4-85. Generally speaking, the higher soft soil 

modulus resulted in higher excess pore water pressures at one month after service. 

This phenomenon resulted from the lower stress concentration ratio at the higher soft 

soil modulus. As demonstrated by Han and Ye (2001), the higher stress concentration 

ratio accelerated the dissipation of excess pore water pressure.  
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Fig. 4-85. Excess Pore Water Pressure Distributions for Various Soil Moduli 
(2D) 
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Fig. 4-86. Degree of Consolidation versus Soil Modulus (2D) 
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Figure 4-86 presents the degree of consolidation versus the soft soil modulus. It is 

shown that the lower soft soil modulus yielded the higher degree of consolidation. 

 

Influence of Soft Soil Friction Angle 

 

The excess pore water distributions along the depth at different soil friction angles are 

shown in Fig. 4-87. It is shown that a smaller soil friction angle yielded lower excess 

pore water pressure at one month after service as a result of a higher stress 

concentration ratio. However, the difference in the excess pore water pressures at 

different soil friction angles was relatively small. As a result, the soil friction angle 

had an insignificant effect on the degree of consolidation as shown in Fig. 4-88.   
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Fig. 4-87. Excess Pore Water Pressure Distributions for Various Friction Angles 
(2D) 



 191

60

70

80

90

100

15 20 25 30
Friction angle (o)

D
eg

re
e 

of
 c

on
so

lid
at

io
n 

(%
)

 
 

Fig. 4-88. Degree of Consolidation versus Friction Angle (2D) 

 

Influence of Soft Soil Permeability 

 

As expected, the soil permeability had a significant influence on the excess pore 

water pressure as shown in Fig. 4-89 because the increase in the soil permeability 

accelerated the drainage of the excess pore water. Figure 4-90 shows the effect of the 

soil permeability on the degree of consolidation. It is found that the degree of 

consolidation reached approximately 100% at the soil permeability of 10-8 m/s at one 

month of service.      
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Fig. 4-89. Excess Pore Water Pressure Distributions for Various Soil 
Permeability (2D) 
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Fig. 4-90. Degree of Consolidation versus Soil Permeability (2D) 
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Influence of Column Elastic Modulus 

 

The distributions of the excess pore water pressures along the depth and the degree of 

consolidation versus the column modulus are presented in Fig. 4-91 and 4-92, 

respectively. It is shown that the higher the column modulus, accelerated the 

dissipation of the excess pore water pressure was accelerated by transferring more 

load from the soil to the columns.  
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Fig. 4-91. Excess Pore Water Pressure Distributions for Various Column Moduli 
(2D) 
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Fig. 4-92. Degree of Consolidation versus Column Modulus (2D) 

 

Influence of Column Spacing 

 

The influence of column spacing on excess pore water pressure is presented in Fig. 4-

93 and on the degree of consolidation is presented in Fig. 4-94. It is shown that the 

larger column spacing yielded the higher excess pore water pressure and the lower 

degree of consolidation. This outcome resulted from a combination of less load 

transferred to the columns and larger pore water volume for dissipation.  
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Fig. 4-93. Excess Pore Water Pressure Distributions for Various Column 
Spacing (2D) 
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Fig. 4-94. Degree of Consolidation versus Column Spacing (2D) 
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Influence of Geosynthetic Tensile Stiffness 

 

The influences of the geosynthetic tensile stiffness on the excess pore water pressure 

are presented in Figs. 4-95 and 4-96. The increase of the geosynthetic tensile stiffness 

led to a slight increase in the excess pore water pressure and a slight decrease in the 

degree of consolidation. The geosynthetic with the higher tensile stiffness can reduce 

the differential settlement and make the problem closer to an equal strain condition. 

Huang (1983) indicated that the equal strain condition has a lower degree of 

consolidation than the equal stress condition. However, the overall influence is 

marginal. 
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Fig. 4-95. Excess Pore Water Pressure Distributions for Various Tensile Stiffness 
(2D) 
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Fig. 4-96. Degree of Consolidation versus Tensile Stiffness (2D) 

 

Influence of Construction Rate 

 

Figure 4-97 presents the distributions of the excess pore water pressure at different 

construction rates.  It is shown that the higher construction rate had less time for the 

dissipation of the excess pore water pressure during the construction; thus, more 

excess pore water pressure remained. As a result, the higher construction rate led to 

the lower degree of consolidation as shown in Fig. 4-98.   
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Fig. 4-97. Excess Pore Water Pressure Distributions for Various Average 
Construction Rates (2D) 
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Fig. 4-98. Degree of Consolidation versus Average Construction Rate (2D) 
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CHAPTER FIVE 

THREE-DIMENSIONAL PARAMETRIC STUDY 

 

A comprehensive parametric study presented in Chapter Four was conducted using 

FLAC to study the GRCS embankments under a plane strain condition. However, in 

many situations, DM columns are installed in a three-dimensional pattern, such as a 

square or triangular pattern, which cannot be simplified into a plane strain condition 

according to its geometric configuration. To study the performance of a GRCS 

embankment under a three-dimensional situation, a three-dimensional parametric 

study was conducted with the assistance of FLAC3D, a finite difference software 

developed by Itasca Consulting Group, Inc. 

 

Similar to the two-dimensional parametric study, a three-dimensional parametric 

study was also conducted in the coupled mechanical and hydraulic modeling scenario. 

A selected baseline case was first simulated. The selected baseline was assumed to 

have DM columns installed in a square pattern, which is commonly used in practice. 

A parametric study was performed by deviating one parameter at a time from the 

baseline to investigate the influence of the specific factor on settlement, tension, 

vertical stress, and excess pore water pressure. The investigated factors include what 

have been studied in two-dimensional parametric study plus the column installation 

pattern. The investigation of the influence of the installation pattern was conducted by 



 200

changing the square pattern in the baseline case to a triangular pattern or plane strain 

pattern with the same area replacement ratio.  

  

Due to extreme time consumption, the 3D simulation was performed up to five years 

after service but not up to 30 years after service as the 2D simulation.   

 

 

5.1 3D Baseline Case 

 

 

5.1.1 3D Dimensions and Properties 

 

To ensure the 3D results were comparable with the 2D ones presented in Chapter 4, a 

3D baseline case was determined based on the 2D baseline case. The elevation and 

plan views of the 3D baseline case are presented in Fig. 5-1. Only one span in the 

traffic direction (the y-direction in Fig. 5-1) was modeled to save the computation 

time and rollers were used in the two boundaries in the y-direction to simulate the 

symmetry of the problem in this direction. Columns were assumed to be arranged in a 

square pattern with a spacing of 2.5m. Due to the symmetry to the centerline of the 

embankment, only half of the embankment was modeled.  The mechanical boundary 

conditions in the x and z directions are shown in Fig. 5-1.  In terms of the hydraulic 

boundary conditions, the bottom of the model and the boundaries in the x-direction 
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were assumed impervious. These assumptions are consistent with those adopted in the 

2D modeling in Chapter 4. The two boundaries in the y-direction were also assumed 

impervious to account for the symmetry in the y-direction; therefore, no water left or 

entered these two boundaries.   
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(a) Elevation view 
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(b) Plane view 
 

Fig. 5-1. Three-dimensional Model of the 3D Baseline Case 
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To ensure the comparability of the 3D and 2D results, the column modulus used in 

the 3D baseline case was back-calculated by converting each 2D column wall into a 

row of individual columns and soil between those columns along the traffic direction 

based on the area-weighted modulus. The spacing of the columns in the rows is the 

same as that in the column walls. As a result, a square-pattern of columns was 

formed. This approach is just opposite to the approach used in the 2D model 

calibration by converting isolated columns into 2D column walls. This conversion is 

illustrated in Fig. 5-2. The column modulus in a square pattern was obtained by 

converting from the 2D column wall according to the following equation:  

 

5.215.115.015.01 ' ××=××+××+×× cscc EEEE             (5-1) 

 

Using the same elastic modulus of soft soil for the 2D and 3D baseline cases, the 

column modulus in the 3D baseline case was determined to be 247MPa. The same 

correlation used in the 2D study was used in the 3D study to obtain the shear strength 

and the tensile strength of the columns. The other parameters remained unchanged 

from the 2D baseline case. The parameters of the 3D baseline case are presented in 

Table 5-1.  The ground water table was also assumed at the ground surface.  

Unsaturated flow was not modeled in the 3D analysis either. 
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Fig. 5-2. Conversion of Column Modulus (Plan View) 

 
 

Table 5-1. Properties of Materials in the 3D Baseline Case 
 

Material Properties 
DM columns γ = 18kN/m3, c = 1235kPa, φ′ = 0o, Ec = 247MPa, ν = 0.3, 

ct = 247kPa, k = 1×10-9m/s 
Soft Soil γ = 18kN/m3, c' = 0kPa, φ′ = 25o, Es = 2MPa, ν = 0.3,  

ct = 0kPa, k = 1×10-9m/s 
Firm Soil γ = 18kN/m3, c′ = 0kPa, φ′ = 30o, Esf = 100MPa, ν = 0.3,  

ct = 0kPa, k = 1×10-9m/s 
Embankment Fill γ = 18kN/m3, c′ = 5kPa, φ' = 32o, Ese = 30MPa, ν = 0.3,  

ct = 0kPa 
Geosynthetics t = 0.002m, Ex = 500MPa, Ey = 500MPa, Ta = 100kN/m,  

ks = 20MN/m/m, ca = 0kPa, δ = 24.8o 
Ground water K = 200MPa 

Note: γ = unit weight of soil; c = shear strength of soil-cement; c′ = effective cohesion of soil; φ′ = 
effective friction angle of soil; k = permeability; E = elastic modulus of soil; ν = Poisson’s ratio; ct = 
tensile strength of soil-cement/soil; t = thickness of geosynthetic reinforcement; Er = elastic modulus of 
geosynthetic reinforcement; Ta = allowable tensile strength of geosynthetic reinforcement; ks =  bond 
stiffness between geosynthetic and embankment fill; ca = bond strength between geosynthetic and 
embankment fill; δ = bond friction angle between geosynthetic and embankment fill;  K = water bulk 
modulus. 
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5.1.2 3D Modeling Procedure 

 

Similar to the 2D analysis, the 3D simulation was divided into three steps: the 

generation of the initial ground stress field and the hydrostatic pore water distribution, 

the simulation of the embankment construction, and the application of the traffic load. 

Since the modeling procedure of the 3D analysis is the same as that of 2D analysis 

described in Chapter Four, it is not repeated herein.  One noteworthy difference from 

the 2D modeling is that the 3D modeling was only carried out up to 4.5 years after 

service by evaluating the computer capacity and the research necessity.   

  

 

5.1.3 3D Results of Baseline Case 

 

Settlement 

 

The settlement contour at one month after service is presented in Fig. 5-3.  The unit in 

the figure is meters. It can be seen that the settlement contour has a similar pattern as 

that shown in the 2D baseline case. The maximum settlement developed at the base of 

the embankment. In addition, the apparent differential settlement developed at the 

base of the embankment. The settlements against time at two locations (A1 and B1, 

refer to Fig. 5-1) are presented in Fig. 5-4. A1 was located at one of the column heads 

while B1 was located at the center surrounded by four columns. It is no doubt that the 
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settlement at A1 was less than that at B1 at all stages. At each stage, there was a 

sudden increase of the settlement after loading and followed by a gradual increase of 

the settlement. The gradual increase of the settlement resulted from the consolidation. 

The settlement became stable at approximately 12 months after service, which is 

equivalent to 17 months since the construction. The consolidation process in the 

baseline case was much faster than that predicted by Terzaghi’s one-dimensional 

consolidation theory. The reason for this difference has been discussed in Chapter 

Four. The excess pore water pressure and the degree of consolidation at one month 

after service will be discussed in the section of excess pore water pressure in this 

chapter.   

 

 
 

Fig. 5-3. Settlement Contour of the 3D Baseline Case 
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(a) 1 month after service 
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(b) 4.5 years after service 
 

Fig. 5-4. Settlement versus Time of the 3D Baseline Case 
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As discussed in Chapter Four, the settlements at the crest (i.e., the post construction 

settlement) are critical to the performance and presented in Fig. 5-5. As shown in Fig. 

5-1, Section I-I cuts through the centers of the columns and is perpendicular to the 

traffic direction while Section II-II cuts through the middle span of the columns and is 

parallel to Section I-I. The settlement profiles at different elevations of Sections I-I 

and II-II are presented in Fig. 5-5.  Figure 5-5 shows that the settlements at the base 

were quite different at these two sections.  Since columns at Section I-I were much 

stiffer than soil, considerable differential settlements developed.  At Section II-II, 

however, the soil in the vicinity of columns settled less than that located farther from 

the columns.  The differential settlement between these two sections was not reflected 

to the crest. The settlement profiles at the crest overlapped each other at these two 

sections. This phenomenon implies that the differential settlement along the traffic 

direction was negligible.  The comparison of Fig. 5-5 (a) with Fig. 5-5 (b) shows that 

the consolidation only led to a slight increase of the settlement.  
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(a) 1 month after service 
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(b) 4.5 years after service 
 

Fig. 5-5. Settlement Profiles of the 3D Baseline Case at Different Time  
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Table 5-2 lists the maximum differential settlement and the maximum distortion on 

the crest and at the base of the embankment. It can be seen that both the maximum 

differential settlement and the maximum distortion at the base were larger than those 

on the crest. This conclusion is consistent with that for the 2D baseline case. As 

discussed before, the differential settlement and the distortion on the crest are more 

important for serviceability than those at the base.  

 

Table 5-2. Maximum Differential Settlement and Maximum Distortion of the 3D 
Baseline Case 

 
Location Maximum differential settlement (mm) (Maximum distortion, %))

 1 month after service 4.5 Years after service 
On the crest 12.29 (0.381) 12.90 (0.364) 
At the base 16.89 (1.126) 18.48 (1.232) 

 

Tension in Geosynthetic Reinforcement 

 

In the 2D modeling, the geosynthetic reinforcement was modeled by cable elements 

incorporated in the software, which can only sustain tension. In the FLAC3D 

modeling, however, the geosynthetic reinforcement was modeled as geogrid 

elements, which are a collection of plane triangular elements. The geogrid elements 

can only sustain tangential load. The developed tension in x and y directions for the 

3D baseline case is presented in Fig. 5-6. The unit of the tensile forces is Newton per 

meter (N/m). The coordinates used in this study are shown in Fig. 5-1. It can be seen 

that the maximum tension in the x direction was higher than that in the y direction. 
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Since geogrid elements were treated as elastic materials in the current FLAC3D 

software, no compressive strength could be set to avoid the generation of 

compression stresses as what has been done in the 2D modeling. Some compression 

stresses were induced in the y direction.  In this study, the geosynthetic reinforcement 

was assumed to be isotropic, i.e., it had the identical strength and stiffness in all 

directions.    

 

 
 

(a) Tension in x direction 
 

Fig. 5-6. Tension Contours of the 3D Baseline Case 
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(b) Tension in y direction 
 

Fig. 5-6. Tension Contours of the 3D Baseline Case (continued) 

 

The tension profiles at two sections are presented in Fig. 5-7, which indicates that the 

tension in the x direction was higher than that in the y direction. The tension at 

Section I-I was higher than that at Section II-II in both x and y directions. This result 

implies that the higher tension developed over the columns and not over the soil. The 

maximum tension in the x direction developed at some distance from the center. This 

finding is consistent with that from the 2D study. This phenomenon was attributed to 

the lateral movement of the embankment. In the y direction, however, there was no 

lateral movement so that the maximum tension under the crest of the embankment 

was uniform.   
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(a) Tension at I-I Section 
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(b) Tension at II-II Section 
 

Fig. 5-7. Tension Profiles of the 3D Baseline Case 
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The tension in the reinforcement versus the time at two locations (A1' and B1') is 

presented in Fig. 5-8. The tension increased suddenly after loading and decreased 

gradually as the consolidation proceeded.  
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Fig. 5-8. Tension versus Time of the 3D Baseline Case 

 

Vertical Effective Stress 

 

The vertical total stress contour is presented in Fig. 5-9. The unit of the stress is 

Pascal (Pa). A negative sign indicates compression. Much higher stresses developed 

within the columns than within soft soil. This phenomenon is an indication of load 

transfer from the soft soil to the columns. The vertical effective stresses at Section I-I 

and Section II-II at the elevation of the column heads are presented in Fig. 5-10. In 
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Section I-I, the effective stresses above the soft soil were lower than those in Section 

II-II. The soft soil in Section I-I settled less than that in Section II-II as shown in Fig. 

5-5.  

 

 
 

Fig. 5-9. Vertical Effective Stress Contour of the 3D Baseline Case 
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Fig. 5-10. Effective Stress Distribution of the 3D Baseline Case 
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The settlements versus the time at two locations (C1 and D1 as shown in Fig. 5-1) 

were presented in Fig. 5-11.  At each stage, there was a sudden increase of the 

effective stresses followed by a gradual increase of the effective stresses. This process 

is similar to that in the 2D analysis.  
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(a) 1 month after service 
 

Fig. 5-11. Additional Vertical Effective Stress versus Time of the 3D Baseline 
Case 
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(b) 4.5 years after service 
 

Fig. 5-11. Additional Vertical Effective Stress versus Time of the 3D Baseline 
Case (continued) 

 

Stress Concentration Ratio 

 

As discussed in Chapter Four, the stress concentration ratio is defined as the ratio of 

the vertical stress over the columns to the vertical stress over the soft soil. For 

columns in a square pattern, the stress concentration ratio can not be simply 

calculated using Eq. (4-3) in Chapter Four. Instead, the stress concentration ratio in 

the 3D analysis was calculated as the ratio of the average additional vertical effective 

stress above the column to the average additional vertical effective stress of the soft 

soil within the influence area of that column.  
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The profiles of the stress concentration ratio for the baseline case are presented in Fig. 

5-12. The highest stress concentration ratio existed at certain distance from the 

centerline. The stress concentration ratio increased from one month to 4.5 years after 

service as the consolidation proceeded.  
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Fig. 5-12. Stress Concentration Ratio Profiles of the 3D Baseline Case 

 

Pore Water Pressure 

 

The pore water pressure distribution at one month after service is presented in Fig. 5-

13. The unit of the pore water pressure is Pascal (Pa). The variations of excess pore 

water pressure at four different locations are presented in Fig. 5-14 and 5-15.  
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Fig. 5-13. Pore Water Pressure Contour of the 3D Baseline Case 
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(a) 1 month after service 
 

Fig. 5-14. Excess Pore Water Pressure at Point C1 and D1 versus Time of the 3D 
Baseline Case 
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(b) 4.5 years after service 
 

Fig. 5-14. Excess Pore Water Pressure at Point C1 and D1 versus Time of the 3D 
Baseline Case (continued) 
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(a) 1 month after service 
 

Fig. 5-15. Excess Pore Water Pressure at Point D1 and E1 versus Time of the 3D 
Baseline Case 
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(b) 4.5 years after service 
 

Fig. 5-15. Excess Pore Water Pressure at Point D1 and E1 versus Time of the 3D 
Baseline Case (continued) 

 

Figure 5-16 shows that the excess pore water distributions along Section III-III 

changed with the depth and the time.  Section III-III passed through B1, E1, and D1. 

The excess pore water pressure was generated due to the increase of the vertical load 

and then dissipated through drainage and load transfer.  These two dissipation process 

were discussed in the section of the baseline case in Chapter Four. Figure 5-16 shows 

that the excess pore water pressure increased with each stage of loading but the 

magnitude of the increase decreased from stage to stage. At 4.5 years after service, 

the excess pore water pressure almost dissipated completely.  
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Fig. 5-16. Excess Pore Water Pressure versus Depth of the 3D Baseline Case 

 

Figure 5-17 presents the excess pore water pressure and the additional effective stress 

changed with time at Point D1 (refer to Fig. 5-1). It is shown that the excess pore 

water pressure and the additional effective stress suddenly increased after the 

placement of the embankment fill.  The excess pore water pressure then decreased 

gradually but the additional effective stress continued increasing. This process 

resulted from the consolidation of the foundation. Figure 5-17 (b) shows that the 

excess pore water pressure reached a negligible magnitude and the additional 

effective stress became stable at approximately 12 months after the construction (i.e., 

17 months since the construction).  
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(a) 1 month after service 
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(b) 4.5 years after service 
 

Fig. 5-17. Excess Pore water Pressure or Additional Vertical Effective Stress 
versus Time of the 3D Baseline Case 
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5.2 3D Parametric Study 

 

 

5.2.1 Outline of 3D Parametric Study 

 

Upon the completion of the baseline case, a parametric study was performed by 

deviating each property from the baseline case one at one time to investigate the 

influence of that specific factor. The column moduli were obtained by converting 

those used in the 2D cases. The conversion procedure has been described in the 

section for the baseline case in this chapter. The column moduli in the 3D parametric 

study corresponding to 100MPa, 150MPa and 200MPa in the 2D parametric study are 

247MPa, 372MPa and 497MPa, respectively. Other parameters were the same as 

those used in the 2D parametric study. The selection of each influence factor has been 

discussed in Chapter Four. The investigated factors and their values in the 3D 

parametric study are listed in Table 5-3.  

 

Table 5-3. Parameter and Variation Used in the Three-Dimensional Study 

Item Parameter Range of value 
Elastic modulus (MPa) 1.0, 2.0*, 4.0, 8.0 
Friction angle (o) 15, 20, 25*, 30 Soft soil 
Permeability (m/s) 10-8, 10-9*, 10-10 
Elastic modulus (MPa) 247*, 372, 497 DM column Spacing (m) 2.0, 2.5*, 3.0 

Geosynthetic Tensile stiffness (kN/m) 0, 1000*, 5000, 10000
Construction Average construction rate (meter/mon) 0.25, 1*, 4 

* The parameters used in the baseline case 
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Even though numerous results can be obtained from the 3D numerical analysis, only 

those related to the settlement, the tension, the vertical effective stress, and the excess 

pore water pressure will be presented herein to be consistent with the results of the 

2D parametric study presented in Chapter Four.  

 

 

5.2.2 Settlement 

 

The importance of the settlement of the embankment, especially the settlement on the 

crest, has been emphasized in both Chapters Three and Four. As the columns were 

arranged in a square pattern in the 3D analysis rather than a wall in the 2D analysis, 

the settlements are expected to be different in these two analyses. In the 3D analysis, 

the settlement profiles are presented at both the section cutting through the centers of 

columns (Section I-I as shown in Fig. 5-1) and that cutting through  the mid-span of 

the columns (Section II-II as shown in Fig. 5-1). 

 

Influence of Soft Soil Elastic Modulus 

 

Figures 5-18 and 5-19 present the settlement profiles of the embankments having 

different soft soil elastic moduli at both one month and 4.5 years after service, 

respectively.  It can be seen that the increase of the soft soil modulus reduced the 

settlements both on the crest and at the base. The comparison between Fig. 5-18 (a) 
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and (b) shows that the settlements on the crest along Sections I-I and II-II were 

almost the same. As a result, it can be concluded that the differential settlements on 

the crest of the embankment along the traffic direction are negligible. The comparison 

between Fig. 5-18 (c) with (d) shows that at the base of the embankment, the 

differential settlement at Section I-I was much greater than that at Section II-II. This 

difference was attributed to the effect of the columns. Overall, the settlements on the 

crest of the embankment were much less than those at the base. The comparison of 

Figs. 5-18 and 5-19 shows an insignificant increase of the settlement from one month 

to 4.5 years after service.  
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(a) On the crest through Section I-I 
 

Fig. 5-18. Settlement Profiles for Various Soil Moduli at 1 Month after Service 
(3D) 
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(b) On the crest through Section II-II 
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(c) At the base through Section I-I 
 

Fig. 5-18. Settlement Profiles for Various Soil Moduli at 1 Month after Service 
(3D) (continued) 
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(d) At the base through Section II-II 
 

Fig. 5-18. Settlement Profiles for Various Soil Moduli at 1 Month after Service 
(3D) (continued) 
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(a) On the crest through Section I-I 
 

Fig. 5-19. Settlement Profiles for Various Soil Moduli at 4.5 Years after Service 
(3D) 
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(b) On the crest through Section II-II 
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(c) At the base through Section I-I 
 

Fig. 5-19. Settlement Profiles for Various Soil Moduli at 4.5 Years after Service 
(3D) (continued) 
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(d) At the base through Section II-II 
 

Fig. 5-19. Settlement Profiles for Various Soil Moduli at 4.5 Years after Service 
(3D) (continued) 

 

The influence of the soft soil modulus on the maximum settlement and the maximum 

differential settlement are presented in Figs. 5-20 and 5-21, respectively.  Obviously, 

the increase of the soft soil modulus reduced both the maximum settlement and the 

maximum differential settlement. However, the effect of the soft soil modulus 

became less when the modulus continued increasing.  Figure 5-21 shows that the soft 

soil modulus had the greater effect on the maximum differential settlement at the base 

than that on the crest. In addition, the increase of the maximum settlement from one 

month to 4.5 years after service was greater than that of the maximum differential 

settlement.      
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Fig. 5-20. Maximum Settlement versus Soil Modulus (3D) 
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Fig. 5-21. Maximum Differential Settlement versus Soil Modulus (3D) 
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Similar to the 2D parametric study, the maximum distortion was also studied in the 

3D modeling to evaluate the degree of smoothness on the crest of the embankment.  

The influence of the soil modulus on the maximum distortion is shown in Fig. 5-22, 

which shows that the higher soil modulus yielded less maximum distortion.  The 

reduction of the maximum distortion was more than 75% when the soil modulus 

varied from 1MPa to 8MPa. The maximum distortion decreased slightly with the 

consolidation of the foundation. In addition, the reduction of the maximum distortion 

due to consolidation was relatively significant at the lower soil modulus as shown in 

Fig. 5-22.   
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Fig. 5-22. Maximum Distortion on the Crest versus Soil Modulus (3D) 
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Influence of Soft Soil Friction Angle 

 

The settlement profiles at different elevations and sections are presented in Fig. 5-23 

and Fig. 5-24. It can be seen that the higher friction angle led to less settlement on the 

crest. The higher friction angle also resulted less settlement in the soft soil at the base; 

however, it did not influence the settlement on the columns. There was an apparent 

difference in the settlement at the base between Sections I-I and II-II while the 

difference on the crest between these two sections was small enough to be neglected.  
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(a) On the crest through Section I-I 
 

Fig. 5-23. Settlement Profiles for Various Friction Angles at 1 Month after 
Service (3D) 
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(b) On the crest through Section II-II 
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(c) At the base through Section I-I 
 

Fig. 5-23. Settlement Profiles for Various Friction Angles at 1 Month after 
Service (3D) (continued) 
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(d) At the base through Section II-II 
 

Fig. 5-23. Settlement Profiles for Various Friction Angles at 1 Month after 
Service (3D) (continued) 
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(a) On the crest through Section I-I 
 

Fig. 5-24. Settlement Profiles for Various Friction Angles at 4.5 Years after 
Service (3D) 
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(b) On the crest through Section II-II 
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(c) At the base through Section I-I 
 

Fig. 5-24. Settlement Profiles for Various Friction Angles at 4.5 Years after 
Service (3D) (continued) 
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(d) At the base through Section II-II 
 

Fig. 5-24. Settlement Profiles for Various Friction Angles at 4.5 Years after 
Service (3D) (continued) 

 

The influences of the soil friction angle on the maximum settlement and the 

maximum differential settlement are shown in Figs. 5-25 and 5-26, respectively. 

Obviously, both the maximum settlement and the maximum differential settlement 

decreased with the increase of the soil friction angle. In addition, the relationship 

between the maximum settlement or the maximum differential settlement and the soil 

friction angle is almost linear. The influence of the soil friction angle on the 

maximum settlement was greater than that on the maximum differential settlement. 

When the soil friction angle increased from 15o to 30o, the maximum settlement was 

reduced by approximately 14mm, whereas the maximum different settlement was 

reduced by approximately 8mm. Figures 5-25 and 5-26 show that the consolidation of 
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the foundation had more effect on the maximum settlement than that on the maximum 

differential settlement.   

0

10

20

30

40

50

60

15 20 25 30
Friction angle (o)

M
ax

im
um

 s
et

tle
m

en
t (

m
m

) 1 month after service (crest)
4.5 years after service (crest)
1 month after service (base)
4.5 years after service (base)

 
 

Fig. 5-25. Maximum Settlement versus Friction Angle (3D) 
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Fig. 5-26. Maximum Differential Settlement versus Friction Angle (3D) 
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The influence of the soil friction angle on the maximum distortion is presented in Fig. 

5-27. When the soil friction angle increased from 15o to 30o, the maximum distortion 

was reduced by more than 50%. Therefore, the increase of soil friction angle is an 

effective way to reduce the maximum distortion. Figure 5-27 shows that the 

consolidation of the foundation reduced the maximum distortion slightly.  
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Fig. 5-27. Maximum Distortion on the Crest versus Friction Angle (3D) 

 

Influence of Soft Soil Permeability 

 

As discussed in Chapter Four, the permeability of soft soil had significant influence 

on the performance of the GRCS embankment due to the generation and dissipation 

of the excess pore water pressure. Therefore, the performance of the GRCS 
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embankment is time-dependant. So far, the influence of the soil permeability on the 

GRCS embankment has not been well studied. In this 3D parametric study, the effect 

of the permeability of the soft soil on the settlement was evaluated by increasing the 

soil permeability in the baseline case (i.e., 10-9m/s) by 10 times or reducing it by one-

tenth. The settlement profiles at one month and 4.5 years after service are presented in 

Figs. 5-28 and 5-29, respectively.  It can be seen that the higher soil permeability led 

to less settlement on the crest. At the base of the embankment, the higher 

permeability resulted in less settlement in the soil but more settlement on the 

columns. The reason for these results has been explained in Chapter Four. The 

comparison of Figs. 5-28 and 5-29 shows that the lower soil permeability had more 

increase in the settlement from one month to 4.5 years after service. The reason for 

this phenomenon is that the soil with lower permeability had more excess pore water 

accumulation during the construction, which resulted in more settlement as the excess 

pore water pressure dissipated. In addition, no significant differential settlement along 

the traffic direction was identified by comparing the crest settlement profiles along 

Sections I-I and II-II. 
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(a) On the crest through Section I-I 
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(b) On the crest through Section II-II 
 

Fig. 5-28. Settlement Profiles for Various Soil Permeability at 1 Month after 
Service (3D) 
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(c) At the base through Section I-I 
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(d) At the base through Section II-II 
 

Fig. 5-28. Settlement Profiles for Various Soil Permeability at 1 Month after 
Service (3D) (continued) 
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(a) On the crest through Section I-I 
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(b) On the crest through Section II-II 
 

Fig. 5-29. Settlement Profiles for Various Soil Permeability at 4.5 Years after 
Service (3D) 
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(c) At the base through Section I-I 
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(d) At the base through Section II-II 
 

Fig. 5-29. Settlement Profiles for Various Soil Permeability at 4.5 Years after 
Service (3D) (continued) 
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The influence of the soil permeability on the maximum settlement and the maximum 

differential settlement are shown in Figs. 5-30 and 5-31, respectively. The lower soil 

permeability resulted in the higher maximum settlement and the maximum 

differential settlement. As the soil permeability was higher than 10-9m/s, however, the 

influence of the soil permeability on the maximum settlement and the maximum 

differential settlement became less. In addition, the lower soil permeability resulted in 

a greater increase of the maximum settlement and the maximum differential 

settlement from one month to 4.5 years after service.  
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Fig. 5-30. Maximum Settlement versus Soil Permeability (3D) 
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Fig. 5-31. Maximum Differential Settlement versus Soil Permeability (3D) 
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Fig. 5-32. Maximum Distortion on the Crest versus Soil Permeability (3D) 
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The influence of the soil permeability on the maximum distortion is presented in Fig. 

5-32. It is shown that the maximum distortion on the crest decreased with an increase 

of the soil permeability.  The consolidation of the foundation reduced the maximum 

distortion.  

 

Influence of Column Elastic Modulus 

 

The influence of column modulus on settlement is presented in Fig. 5-33 and 5-34. 

Obviously, the increase of column modulus reduces the settlement at any locations 

according to the settlement profiles at the crest and at the base. The reason causing 

the reduction on settlement at the base both in soft soil and in column has already 

been discussed in Chapter Four. Briefly, the reduction of the soft soil settlement at the 

base is due to the load transfer to columns, while the reduction of the column 

settlement at the base is due to increase of stiffness. Similarly, no significant 

differential settlement is found accruing along the traffic direction.  
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(a) On the crest through Section I-I 
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(b) On the crest through Section II-II 
 

Fig. 5-33. Settlement Profiles for Various Column Moduli at 1 Month after 
Service (3D) 
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(c) At the base through Section I-I 
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(d) At the base through Section II-II 
 

Fig. 5-33. Settlement Profiles for Various Column Moduli at 1 Month after 
Service (3D) (continued) 
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(a) On the crest through Section I-I 
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(b) On the crest through Section II-II 
 

Fig. 5-34. Settlement Profiles for Various Column Moduli at 4.5 Years after 
Service (3D) 
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(c) At the base through Section I-I 
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(d) At the base through Section II-II 
 

Fig. 5-34. Settlement Profiles for Various Column Moduli at 4.5 Years after 
Service (3D) (continued) 
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The influence of the column modulus on the maximum settlement and the maximum 

differential settlement are presented in Fig. 5-35 and Fig. 5-36, respectively, which 

show that an increase of the column modulus reduced both the maximum settlement 

and the maximum differential settlement. The degree of the settlement reduction at 

the base of the embankment was more than that on the crest. The limited influence of 

the column modulus may be attributed to the range of the column modulus 

investigated, within which the column modulus was higher enough as compared with 

the soft soil to ensure the efficiency of load transfer from the soil to the columns.  
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Fig. 5-35. Maximum Settlement versus Column Modulus (3D) 
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Fig. 5-36. Maximum Differential Settlement versus Column Modulus (3D) 
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Fig. 5-37. Maximum Distortion on the Crest versus Column Modulus (3D) 
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The influence of the column modulus on the maximum distortion is illustrated in Fig. 

5-37, which shows that an increase of the column modulus reduced the maximum 

distortion; however, this influence is rather limited.  

 

Influence of Column Spacing 

 

The influences of the column spacing on the settlement profiles are presented in Fig. 

5-38 and 5-39. Generally, the increase of the column spacing led to larger maximum 

and differential settlements both on the columns and the soft soil. A detailed 

discussion on the reasons why the increase of column spacing led to the increase of 

the maximum and differential settlements was provided in the corresponding section 

in Chapter Four. In summary, the increase of the column spacing led to an increase of 

the vertical effective stresses on both the columns and the soft soil. The increase of 

the settlement on the soft soil was more than that on the columns. Similar to that 

found in the 2D parametric study, the larger column spacing led to a larger local 

differential settlement.  
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(a) On the crest through Section I-I 
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(b) On the crest through Section II-II 
 

Fig. 5-38. Settlement Profiles for Various Column Spacing on at 1 Month after 
Service (3D) 
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(c) At the base through Section I-I 
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(d) At the base through Section II-II 
 

Fig. 5-38. Settlement Profiles for Various Column Spacing on at 1 Month after 
Service (3D) (continued) 
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(a) On the crest through Section I-I 
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(b) On the crest through Section II-II 
 

Fig. 5-39. Settlement Profiles for Various Column Spacing on at 4.5 Years after 
Service (3D) 
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(c) At the base through Section I-I 
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(d) At the base through Section II-II 
 
Fig. 5-39. Settlement Profiles for Various Column Spacing on at 4.5 Years after 

Service (3D) (continued) 
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The influences of the column spacing on the maximum settlement and the maximum 

differential settlement are plotted in Figs. 5-40 and 5-41, respectively. Both the 

maximum settlement and the maximum differential settlement increased with the 

increase of the column spacing. It is also shown that the column spacing had more 

effect on the maximum settlement and the maximum differential settlement at the 

base than those on the crest. Figures 5-40 and 5-41 show that the effect of the 

consolidation on the maximum settlement and maximum differential settlement when 

the column spacing increased.   
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Fig. 5-40. Maximum Settlement versus Column Spacing (3D) 
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Fig. 5-41. Maximum Differential Settlement versus Column Spacing (3D) 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 2.2 2.4 2.6 2.8 3
Column spacing (m)

M
ax

im
um

 d
is

to
rti

on
 (%

)

1 month after service
4.5 years after service

 
 

Fig. 5-42. Maximum Distortion on the Crest versus Column Spacing (3D) 
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The influence of the column spacing on the maximum distortion is presented in Fig. 

5-42. Obviously, the column spacing had a significant influence on the maximum 

distortion, i.e., the maximum distortion almost increased linearly with the column 

spacing within the range investigated. However, the maximum distortion decreased 

with the consolidation, especially for larger spacing.   

 

Influence of Geosynthetic Tensile Stiffness 

 

Different from the 2D parametric study, the geosynthetic reinforcement in the 3D 

analysis was modeled as plane triangular elements, connected through nodes. In 

addition, the geosynthetic was assumed to be an isotropic material. The influences of 

the tensile stiffness on the settlement profiles are presented in Fig. 5-43 and 5-44. 

Zero tensile stiffness represents the case without any geosynthetic reinforcement. The 

settlement profiles show that the use of the reinforcement with higher tensile stiffness 

yielded less maximum and differential settlements. The maximum reduction in the 

settlement for the tensile stiffness varying from 0 to 10000kN/m tensile was 

approximately 6mm, which is equivalent to 26% reduction. The maximum settlement 

and the settlement reduction on the crest occurred in the middle of the half crest.  
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(a) On the crest through Section I-I 
 

 

0

5

10

15

20

25

10 12 14 16 18 20

Distance from the toe (m)

se
ttl

em
en

t (
m

m
)

0 1000 5000 10000
J (kN/m)

 
 

(b) On the crest through Section II-II 
 

Fig. 5-43. Settlement Profiles for Various Tensile Stiffness at 1 Month after 
Service (3D) 
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(c) At the base through Section I-I 
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(d) At the Base through Section II-II 
 

Fig. 5-43. Settlement Profiles for Various Tensile Stiffness at 1 Month after 
Service (3D) (continued) 

 



 263

 

0

5

10

15

20

25

30

10 12 14 16 18 20
Distance from the toe (m)

se
ttl

em
en

t (
m

m
)

0 1000 5000 10000
J (kN/m)

 
 

(a) On the crest through Section I-I 
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(b) On the crest through Section II-II 
 

Fig. 5-44. Settlement Profiles for Various Tensile Stiffness at 4.5 Years after 
Service (3D) 
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(c) At the base through Section I-I 
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(d) At the base through Section II-II 
 

Fig. 5-44. Settlement Profiles for Various Tensile Stiffness at 4.5 Years after 
Service (3D) (continued) 
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The maximum settlement and differential settlements are plotted against the 

reinforcement tensile stiffness in Figs. 5-45 and 5-46, respectively. It is shown that 

the geosynthetic reinforcement reduced the maximum settlement and differential 

settlements but the reduction was limited.  
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Fig. 5-45. Maximum Settlement versus Tensile Stiffness (3D) 
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Fig. 5-46. Maximum Differential Settlement versus Tensile Stiffness (3D) 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2000 4000 6000 8000 10000
Tensile stiffness (kN/m)

M
ax

im
um

 d
is

to
rti

on
 (%

)

1 month after service
4.5 years after service

 
 

Fig. 5-47. Maximum Distortion on the Crest versus Tensile Stiffness (3D) 
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The influence of the reinforcement tensile stiffness on the maximum distortion on the 

crest is shown in Fig. 5-47. The reduction of the maximum distortion by the 

reinforcement with higher stiffness was obvious.  The consolidation of the foundation 

led to a further reduction on the maximum distortion.  

 

Influence of Construction Rate 

 

The average construction rate was changed in this study to evaluate its influence on 

the settlement. The settlement profiles developed under different construction rates 

are shown in Figs. 5-48 and 5-49. As expected, the higher construction rate caused a 

greater settlement on the crest. At the base, however, the higher construction rate led 

to a larger settlement on the soil but a smaller settlement on the columns. This result 

is consistent with that found in the 2D parametric study. In addition, the higher 

average construction rate led to a greater settlement increase from one month to 4.5 

years after service due to higher accumulation of excess pore water pressure. The 

detailed discussion on the excess pore water pressure will be presented in the pore 

water pressure section.   
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(a) On the crest through Section I-I 
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(b) On the crest through Section II-II 
 

Fig. 5-48. Settlement Profiles for Various Average Construction Rates at 1 
Month after Service (3D) 
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(c) At the base through Section I-I 
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(d) At the base through Section II-II 
 

Fig. 5-48. Settlement Profiles for Various Average Construction Rates at 1 
Month after Service (3D) (continued) 
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(a) On the crest through Section I-I 
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(b) On the crest through Section II-II 
 

Fig. 5-49. Settlement Profiles for Various Average Construction Rates at 4.5 
Years after Service (3D) 
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(c) At the base through Section I-I 
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(d) At the base through Section II-II 
 

Fig. 5-49. Settlement Profiles for Various Average Construction Rates at 4.5 
Years after Service (3D) (continued) 
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The maximum settlement and differential settlements against the average construction 

rate are plotted in Figs. 5-50 and 5-51. The decrease of the average construction rate 

led to smaller maximum settlement and differential settlements. The efficiency of the 

reduction in the maximum settlement and differential settlements by decreasing the 

average construction rate was almost linearly from 4mter/mon to 1meter/mon and 

also from 1meter/mon to 0.25meter/mon.  
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Fig. 5-50. Maximum Settlement versus Average Construction Rate (3D) 
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Fig. 5-51. Maximum Differential Settlement versus Average Construction Rate 
(3D) 
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Fig. 5-52. Maximum Distortion on the Crest versus Average Construction Rate 
(3D) 
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The influence of the average construction rate on the maximum distortion is presented 

in Fig. 5-52. The higher average construction rate resulted in a greater maximum 

distortion. The consolidation after the construction did not have much influence on 

the maximum distortion.  

 

 

5.2.3 Tension Developed in Geosynthetics 

 

As discussed previously, the tension in the geosynthetic reinforcement is induced by 

the differential settlement between columns and soft soil and the lateral spreading of 

the embankment. The influence of various factors on the tension in the geosynthetic 

reinforcement was investigated in this study and some of the results are presented 

herein.  

 

Influence of Soft Soil Elastic Modulus 

 

Since the geosynthetic reinforcement was simulated as plane elements, the tension 

developed in two perpendicular x and y directions can be calculated. The influence of 

soil modulus on the maximum tension developed in these two directions is presented 

in Fig. 5-53. The x-direction was perpendicular to the traffic direction and the y-

direction was parallel to the traffic direction.  Within the range of the soil modulus 

investigated in this study, the maximum tension in the x-direction was always higher 
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than that in the y direction. It can be seen that the soil modulus had a considerable 

influence on the tension in both directions. The increase of the soil modulus reduced 

the maximum tension. Since the increase of the soil modulus reduced the maximum 

differential settlement, the geosynthetic sheet was less deformed and stretched so that 

the maximum tension was reduced. However, the consolidation of the foundation soil 

had an insignificant influence on the maximum tension in both x and y directions as 

shown in Fig. 5-53.    
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Fig. 5-53. Maximum Tension versus Soil Modulus (3D) 

 

Influence of Soft Soil Friction Angle 

 

The influence of the soft soil friction angle on the maximum tension in the 

reinforcement is shown in Fig. 5-54. The maximum tension in the x direction was 
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higher than that in the y direction. An increase of the soil friction angle reduced the 

maximum tension in both directions. The consolidation of the foundation had an 

insignificant effect on the maximum tension in both directions.     
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Fig. 5-54. Maximum Tension versus Friction Angle (3D) 

 

Influence of Soft Soil Permeability 

 

The influence of the soft soil permeability on the maximum tension in the 

geosynthetic reinforcement is shown in Fig. 5-55. The lower soil permeability yielded 

higher maximum tension because the lower soil permeability produced higher 

maximum differential settlement at the base.  
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Fig. 5-55. Maximum Tension versus Soil Permeability (3D) 

 

Influence of Column Elastic Modulus 

 

The influence of the column modulus on the maximum tension is presented in Fig. 5-

56. Apparently, the maximum tension in the x direction was higher than that in the y 

direction. The increase of the column modulus reduced the tension in the geosynthetic 

because the increase of the column modulus reduced the maximum differential 

settlement. However, the effect of the column modulus on the maximum tension was 

smaller in the y direction than that in the x direction.  The consolidation of the 

foundation had an insignificant effect on the maximum tension in the geosynthetic.     
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Fig. 5-56. Maximum Tension versus Column Modulus (3D) 

 

Influence of Column Spacing 

 

The influence of the column spacing on the maximum tension in the geosynthetic is 

presented in Fig. 5-57, which shows that the maximum tension in the y direction was 

lower than that in the x direction and larger spacing led to higher maximum tension in 

both x and y directions. The higher maximum tension at larger column spacing 

resulted from the larger maximum differential settlement.  Figure 5-57 shows that the 

time effect on the maximum tension was minimal. 
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Fig. 5-57. Maximum Tension versus Column Spacing (3D) 

 

Influence of Geosynthetic Tensile Stiffness 

 

The influence of the geosynthetic tensile stiffness on the maximum tension in both x 

and y directions is presented in Fig. 5-58. Since the geosynthetic was modeled as an 

isotropic material in this study, the tensile stiffness in both direction was equal. An 

increase of the tensile stiffness led to an increase in the maximum tension in both x 

and y directions, which is consistent with the phenomenon identified in the 2D 

parametric study. However, the increase of the maximum tension in the x direction 

was greater than that in the y direction. In addition, the time effect on the maximum 

tension was not significant.   
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Fig. 5-58. Maximum Tension versus Tensile Stiffness (3D) 

 

Influence of Construction Rate 

 

The influence of the average construction rate on thee maximum tension is presented 

in Fig. 5-59, which shows the increase of the maximum tension in both x and y 

directions with an increase of the average construction rate. In other words, the lower 

construction rate yielded the lower maximum tension.  
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Fig. 5-59. Maximum Tension versus Average Construction Rate (3D) 

 

 

5.2.4 Vertical Stress and Stress Concentration Ratio 

 

Similar to the 2D study, the stress concentration ratio, n, was used as an index to 

evaluate the efficiency of load transfer from the soft soil to the columns. In the 3D 

analysis, the average additional vertical effective stresses on the column and the soft 

soil within the influence area were used to calculate the stress concentration ratio.  
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Influence of Soft Soil Elastic Modulus 

 

The influence of the soil modulus on the additional vertical effective stress profiles 

along Sections I-I and II-II are presented in Fig. 5-60 and 5-61. The maximum 

additional vertical effective stress in Section I-I is much higher than that in Section II-

II, since the DM columns are located at Section I-I. The increase of the soft soil 

modulus reduced the additional vertical effective stress on the columns, which is 

shown in Fig. 5-60 (a), but increased the additional vertical effective stress in the soft 

soil, which is more clearly shown in Fig 5-60 (b). 
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(a) Through Section I-I 
  

Fig. 5-60. Additional Vertical Effective Stress Profiles for Various Soil Moduli at 
1 Month after Service (3D) 
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(b) Through Section II-II 
 
Fig. 5-60. Additional Vertical Effective Stress Profiles for Various Soil Moduli at 

1 Month after Service (3D) (continued) 
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(a) Through Section I-I 
 

Fig. 5-61. Additional Vertical Effective Stress Profiles for Various Soil Moduli at 
4.5 Years after Service (3D) 
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(b) Through Section II-II 
 

Fig. 5-61. Additional Vertical Effective Stress Profiles for Various Soil Moduli at 
4.5 Years after Service (3D) (continued) 

 

For a clearer demonstration, the stress concentration ratio is plotted against the 

distance from the toe of the embankment in Fig. 5-62. The higher soft soil modulus 

led to a lower stress concentration ratio. The consolidation of the foundation slightly 

increased the stress concentration ratio. 
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(a) 1 month after service 
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(b) 4.5 years after service 
 

Fig. 5-62. Stress Concentration Ratio Profiles for Various Soil Moduli (3D) 
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Influence of Soft Soil Friction Angle 

 

The influence of the soil friction angle on the additional vertical effective stress is 

presented in Fig. 5-63. An increase of the soil friction angle reduced the additional 

vertical effective stress on the columns but increased the additional vertical effective 

stress in the soil. This finding is in agreement with that in the 2D parametric study in 

Chapter Four. The comparison of the profiles at one month after service with those at 

4.5 years after service shows negligible change in the additional vertical effective 

stress.  
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(a) Through Section I-I 
 

Fig. 5-63. Additional Vertical Effective Stress Profiles of Various Friction Angles 
at 1 Month after Service (3D) 
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(b) Through Section II-II 
 

Fig. 5-63. Additional Vertical Effective Stress Profiles of Various Friction Angles 
at 1 Month after Service (3D) (continued) 
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(a) Through Section I-I 
Fig. 5-64. Additional Vertical Effective Stress Profiles for Various Friction 

Angles at 4.5 Years after Service (3D) 
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(b) Through Section II-II 
 

Fig. 5-64. Additional Vertical Effective Stress Profiles for Various Friction 
Angles at 4.5 Years after Service (3D) (continued) 

 

The influence of the soft soil friction angle on the stress concentration ratio is shown 

in Fig. 5-65. The higher stress concentration ratio was reached by a lower friction 

angle. This phenomenon is consistent with the change of the addition vertical 

effective stress with the soil friction angle. The comparison of Fig. 5-65 (a) and (b) 

shows a slight increase in the stress concentration ratio.  
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(a) 1 month after service 
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(b) 4.5 years after service 
 

Fig. 5-65. Stress Concentration Ratio Profiles for Various Soil Friction Angles 
(3D) 
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Influence of Soft Soil Permeability 

 

The profiles of additional vertical effective stresses at different soil permeability are 

presented in Fig. 5-66. The lower soil permeability leads increased the additional 

vertical effective stress in the columns.  
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(a) Through Section I-I 
 

Fig. 5-66. Additional Effective Stress Profiles for Various Soil Permeability at 1 
Month after Service (3D) 
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(b) Through Section II-II 
 

Fig. 5-66. Additional Effective Stress Profiles for Various Soil Permeability at 1 
Month after Service (3D) (continued) 
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(a) Through Section I-I 
 

Fig. 5-67. Additional Effective Stress Profiles for Various Soil Permeability at 4.5 
Years after Service (3D) 
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(b) Through Section II-II 
 

Fig. 5-67. Additional Effective Stress Profiles for Various Soil Permeability at 4.5 
Years after Service (3D) (continued) 

 

The stress concentration ratio profiles at different time are presented in Fig. 5-68. At 

the low permeability (k=10-10m/s), the stress concentration ratio profile at one month 

after service was different from others. When the soil permeability was 10-9 to 10-

8m/s, an increase of the soil permeability reduced the stress concentration ratio. As 

permeability equal to 10-10m/s, high excess pore water pressure is induced and a large 

portion of embankment load is taken by pore water in soil. Hence, additional vertical 

effective stress in columns is low, which leads to a low stress concentration ratio at 

some locations. At 4.5 years after service, however, the trend became the same as 

others, because as consolidation proceeded, the load taken by pore water was 
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transferred to columns. In addition, the stress concentration ratio at 4.5 years after 

service was higher than that at one month after service. 
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(a) At 1 month after service 
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(b) At 4.5 years after service 
 
Fig. 5-68. Stress Concentration Ratio Profiles for Various Soil Permeability (3D) 
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Influence of Column Elastic Modulus 

 

The influence of the column modulus on the additional vertical effective stress 

profiles is presented in Fig. 5-69 and 5-70, which show that, the higher column 

modulus produced higher additional vertical effective stresses on the columns and 

lower additional vertical effective stresses in the soft soil. However, since the column 

modulus was much higher than the soft soil modulus, the increase of the column 

modulus did not have any significant influence on the load transfer. Consequently, the 

additional vertical effective stress on the columns and in the soil did not change 

much.  
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(a) Through Section I-I 
 

Fig. 5-69. Additional Vertical Effective Stress Profiles for Various Column 
Moduli at 1 Month after Service (3D) 
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(b) Through Section II-II 
 

Fig. 5-69. Additional Vertical Effective Stress Profiles for Various Column 
Moduli at 1 Month after Service (3D) (continued) 
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(a) Through Section I-I 
Fig. 5-70. Additional Vertical Effective Stress Profiles for Various Column 

Moduli at 4.5 Years after Service (3D) 
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(b) Through Section II-II 
 

Fig. 5-70. Additional Vertical Effective Stress Profiles for Various Column 
Moduli at 4.5 Years after Service (3D) (continued) 

 

The influence of the column modulus on the stress concentration ratio profiles is 

presented in Fig. 5-71. The increase of the column modulus yielded a higher stress 

concentration ratio. The increase of the column modulus did not increase the stress 

concentration ratio significantly. This result is consistent with the influence of the 

column modulus on the additional vertical effective stress. In addition, the stress 

concentration ratio increased slightly from one month to 4.5 years after service.   
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(a) 1 month after service 
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(b) 4.5 years after service 
 

Fig. 5-71. Stress Concentration Ratio Profiles for Various Column Moduli (3D) 
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Influence of Column Spacing 

 

The influence of the column spacing on the additional vertical effective stress profiles 

is shown in Fig. 5-72. As discussed in the 2D parametric study, the change of the 

column spacing made it difficult to compare the additional vertical effective stresses 

in the columns and in the soil at the same location. As a result, the maximum 

additional vertical effective stresses on the columns and in the soil were used for the 

comparison. The increase of the column spacing yielded an increase of the additional 

vertical effective stresses both on the columns and in the soil.  
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(a) Through Section I-I 
 

Fig. 5-72. Additional Vertical Effective Stress Profiles of Various Column 
Spacing at 1 Month after Service (3D) 
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(b) Through Section II-II 
 

Fig. 5-72. Additional Vertical Effective Stress Profiles of Various Column 
Spacing at 1 Month after Service (3D) (continued) 
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(a) Through Section I-I 
Fig. 5-73. Additional Vertical Effective Stress Profiles of Various Column 

Spacing at 4.5 Years after Service (3D) 
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(b) Through Section II-II 
 

Fig. 5-73. Additional Vertical Effective Stress Profiles of Various Column 
Spacing at 4.5 Years after Service (3D) (continued) 

 

The stress concentration ratio profiles of different column spacing are presented in 

Fig. 5-74. It can be seen that the change of the spacing even changed the stress 

concentration ratio distribution pattern at the spacing of 2.0m. Since the tendency of 

the lateral movement at a smaller column spacing was less, the maximum stress 

concentration ratio occurred at the center of the embankment, which was also the 

distribution pattern found in the 2D parametric study.  
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(a) 1 month after service 
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(b) 4.5 years after service 
 
Fig. 5-74. Stress Concentration Ratio Profiles for Various Column Spacing (3D) 
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Influence of Geosynthetic Tensile Stiffness 

 

The influence of the geosynthetic tensile stiffness on the additional vertical effective 

stress profiles is presented in Fig. 4-75 and 4-76. Overall, the higher tensile stiffness 

led to lower additional vertical effective stresses both on the columns and in the soil.  
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(a) Through Section I-I 
 

Fig. 5-75. Additional Vertical Effective Stress Profiles for Various Tensile 
Stiffness at 1 Month after Service (3D) 
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(b) Through Section II-II 
 

Fig. 5-75. Additional Vertical Effective Stress Profiles for Various Tensile 
Stiffness at 1 Month after Service (3D) (continued) 
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(a) Through Section I-I 
 

Fig. 5-76. Additional Vertical Effective Stress Profiles for Various Tensile 
Stiffness at 4.5 Years after Service (3D) 
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(b) Through Section II-II 
 

Fig. 5-76. Additional Vertical Effective Stress Profiles for Various Tensile 
Stiffness at 4.5 Years after Service (3D) (continued) 

 

The influence of the geosynthetic tensile stiffness on the stress concentration ratio 

profiles is shown in Fig. 5-77. The tensile stiffness of the geosynthetic did not have 

any significant influence on the stress concentration ratio in Fig. 5-77. Overall, the 

stress concentration ratio decreased with an increase of the tensile stiffness.  
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(a) 1 month after service 
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(b) 4.5 years after service 
 

Fig. 5-77. Stress Concentration Ratio Profiles for Various Tensile Stiffness (3D) 
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Influence of Construction Rate 

 

The influences of the average construction rates on the additional vertical effective 

stress profiles are presented Fig. 5-78 and 5-79. The lower average construction rate 

reduced the additional vertical effective stresses on the columns but increased the 

additional vertical effective stresses in the soil. As discussed in the 2D parametric 

study in Chapter Four, a low average construction rate had a similar effect as the high 

soil permeability.  
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(a) Through Section I-I 
 

Fig. 5-78. Additional Vertical Effective Stress Profiles for Various Average 
Construction Rates at 1 Month after Service (3D) 
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(b) Through Section II-II 
 

Fig. 5-78. Additional Vertical Effective Stress Profiles for Various Average 
Construction Rates at 1 Month after Service (3D) (continued) 
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(a) Through Section I-I 
 

Fig. 5-79. Additional Vertical Effective Stress Profiles for Various Average 
Construction Rates at 4.5 Years after Service (3D) 
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(b) Through Section II-II 
 

Fig. 5-79. Additional Vertical Effective Stress Profiles for Various Average 
Construction Rates at 4.5 Years after Service (3D) (continued) 

 

The influence of the average construction rate on the stress concentration ratio 

profiles is shown in Fig. 5-80. The increase of the average construction rate led to a 

higher stress concentration ratio, which was similar to what had been discussed in 2D 

parametric study.  
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(a) 1 month after service 
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(b) 4.5 years after service 
 
Fig. 5-80. Stress Concentration Ratio Profiles for Various Average Construction 

Rates (3D) 

 



 310

5.2.5 Excess Pore Water Pressure 

 

As discussed in Chapter Four, under a GRCS embankment, the excess pore water 

pressure dissipates hydraulically and mechanically, i.e., through drainage and load 

transfer. Therefore, the consolidation process depends on a number of factors in 

addition to the soil permeability. The major influence factors were investigated. The 

excess pore water pressure distribution within the soft soil along the depth (Section 

III-III shown in Fig. 5-1) and the degree of consolidation of the section are used as 

representatives. 

   

Influence of Soft Soil Elastic Modulus 

 

The excess pore water pressure distribution along Section III-III (refer to Fig. 5-1) at 

one month after service is presented in Fig. 5-81. Since the excess pore water pressure 

at 4.5 years after service approached zero, it is not presented in this section. Figure 5-

81 shows that the excess pore water pressure at one month after service increased 

with the increase of the soft soil modulus. This phenomenon was identified and 

explained in details in the 2D parametric study.  
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Fig. 5-81. Excess Pore Water Pressure Distributions for Various Soil Moduli 
(3D) 

Following the same approach used in Chapter Four, the degree of consolidation at one 

month after service was calculated and plotted against the soil modulus as shown in 

Fig. 5-82. It can be concluded that higher soil modulus led to a lower degree of 

consolidation. Within the investigated range of the soft soil modulus, the degree of 

consolidation varied approximately 6%, which implies that the soft soil modulus had 

a limited influence on the degree of consolidation. Furthermore, the influence of the 

soil modulus on the degree of consolidation became less as the soil modulus 

increased. 
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Fig. 5-82. Degree of Consolidation versus Soil Modulus (3D) 

 

Influence of Soft Soil Friction Angle 

 

The excess pore water pressure distribution along Section III-III is presented in Fig. 

5-83. The smaller friction angle resulted in less excess pore water pressure at one 

month after service. This phenomenon is also consistent with that found in the 2D 

parametric study in Chapter Four. The difference in the excess pore water pressures at 

different friction angles was too small to make any practical significance.  
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Fig. 5-83. Excess Pore Water Pressure Distributions for Various Friction Angles 
(3D) 
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Fig. 5-84. Degree of Consolidation versus Friction Angle (3D) 
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The degree of consolidation is plotted in Fig. 5-84 for a clearer illustration of the 

influence of the soil friction angle on the excess pore water pressure. The smaller soil 

friction angle led to a slightly higher degree of consolidation.  

 

Influence of Soft Soil Permeability 

 

The influence of the soil permeability on the excess pore water pressure distribution 

along Section III-III is shown in Fig. 5-85. As expected, the higher soil permeability 

led to less pore water pressure. The excess pore water pressure at one month of 

service almost dissipated completely at the soil permeability of 10-8m/s.  
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Fig. 5-85. Excess Pore Water Pressure Distributions for Various Soil 
Permeability (3D) 
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(a) Permeability in a normal scale 
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(b) Permeability in a log scale 
 

Fig. 5-86. Degree of Consolidation versus Soil Permeability (3D) 
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The degree of consolidation is plotted with respect to the soil permeability in Fig. 5-

86. It can be seen that the soil permeability had a remarkable influence on the degree 

of consolidation. As shown in Fig. 5-86 (b), the degree of consolidation increased 

almost linearly with respect to the log scale of the soil permeability.  

 

Influence of Column Elastic Modulus 

 

The influence of the column modulus on the excess pore water pressure distribution 

along Section III-III is shown in Fig. 5-87. Apparently, the higher column modulus 

resulted in the lower the excess pore water pressure. This phenomenon can be 

explained that more excess pore water pressure dissipated by transferring the load 

from the soil to the columns when the column modulus was higher. Detailed 

discussion on this phenomenon can be found in Chapter Four.  

 

The degree of consolidation is plotted against the column modulus in Fig. 5-88. The 

higher column modulus led to a higher degree of consolidation.  
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Fig. 5-87. Excess Pore Water Pressure Distributions for Various Column Moduli 
(3D) 
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Fig. 5-88. Degree of Consolidation versus Various Column Moduli (3D) 
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Influence of Column Spacing 

 

The influence of the column spacing on the excess pore water pressure distribution 

along Section III-III is presented in Fig. 5-89. The larger column spacing led to a 

higher excess pore water pressure. This finding is consistent with that found in the 2D 

parametric study.  
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Fig. 5-89. Excess Pore Water Pressure Distributions for Various Column 
Spacing (3D) 

 

The degree of consolidation is plotted against the column spacing in Fig. 5-90. Larger 

column spacing resulted in less degree of consolidation.  
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Fig. 5-90. Degree of Consolidation versus Column Spacing (3D) 

 

Influence of Geosynthetic Tensile Stiffness 

 

The influence of the geosynthetic tensile stiffness on the excess pore water pressure 

distribution along Section III-III is presented in Fig. 5-91. The increase of the tensile 

stiffness led to a slightly higher excess pore water pressure.  The reason for the 

difference can be found in details in Chapter Four.  

 

The degree of consolidation versus the geosynthetic tensile stiffness is presented in 

Fig. 5-92. The degree of consolidation decreases slightly with the increase of the 

geosynthetic tensile stiffness.  
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Fig. 5-91. Excess Pore Water Pressure Distributions for Various Tensile Stiffness 
(3D) 
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Fig. 5-92. Degree of Consolidation versus Tensile Stiffness (3D) 
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Influence of Construction Rate 

 

The influence of the excess pore water pressure distribution along Section III-III is 

presented in Fig. 5-93, which shows that the less excess pore water pressure 

accumulated at the lower average construction rate. As mentioned earlier, some of the 

excess pore water pressure dissipated during the construction. As the average 

construction rate was lower, more time was allowed for the excess pore pressure to 

dissipate during the construction.    
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Fig. 5-93. Excess Pore Water Pressure Distributions for Various Average 
Construction Rates (3D) 

 

The degree of consolidation is plotted with respect to the average construction rate in 

Fig. 5-94. The lower average construction rate yielded the higher degree of 

consolidation.  
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Fig. 5-94. Degree of Consolidation versus Average Construction Rate (3D) 
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CHAPTER SIX 

COMPARISON OF TWO-DIMENSIONAL AND THREE 

DIMENSIONAL STUDIES 

 

Detailed 2D and 3D parametric study results have been presented in Chapters Four 

and Five, respectively. The results of the 2D and 3D parametric studies are 

summarized and compared in this chapter for two purposes. One is to evaluate the 

validity of the approach converting 3D cases into 2D cases based on their weighted 

areas. The column modulus in the 3D study was converted from the corresponding 

column modulus used in the 2D study and the other parameters were kept the same as 

those used in the 2D study. In practice, this weighted-area converting approach is 

commonly used to simplify columns installed in a square pattern to walls so that 

solutions or software for 2D problems can be used. To the author’s best knowledge, 

however, this validity has been rarely verified. The second purpose of the comparison 

is to summarize and rate the influence of the investigated factors on the settlement, 

the tension, the stress concentration ratio, and the pore water pressure.  

 

 

6.1 Verification of Simplified Modeling 

 

Three-dimensional modeling is much more complicated and time-consuming than 2D 

modeling. Therefore, it is common practice to simplify a 3D case into a 2D case. One 
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approach is to convert columns installed in a square pattern into walls based on a 

weighted area. Opposite to this procedure, walls can be converted to columns if the 

pattern of columns is known or assumed.  As discussed in Chapter Five, the column 

moduli in the 3D parametric study were converted from those used in the 2D 

parametric study. For example, the column modulus of 247MPa under the 3D 

condition was converted from the wall modulus of 100MPa under the 2D condition.   

 

The 2D modeling in this research terminated at 30 years after service, at which the 

degree of consolidation reached 100%. The status at 30 years after service is 

considered as the final status of the 2D modeling. Even though the 3D modeling 

terminated at 4.5 years after service, most of the excess pore water pressures 

dissipated and the degrees of consolidation were more than 95%. Therefore, the status 

at 4.5 years after service is approximately taken as the final status of the 3D 

modeling. The 2D and 3D results at one month after service and at the final status are 

both compared but an emphasis is on the results for the final status. The maximum 

settlements against the column moduli at one month after service and at the final 

status are presented in Fig. 6-1 (a) and (b), respectively. It is shown that the 2D 

results had the same maximum settlement trends on the crest and at the base with the 

increase of the modulus as the 3D results. However, the 2D results overestimated the 

maximum settlement both on the crest and at the base as compared with the 3D 

results. In addition, the maximum distortion is plotted against the column modulus in 

Fig. 6-2, which shows that the 2D results underestimated the maximum distortion at 
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one month after service and the final status as compared with the 3D results. These 

comparisons show the differences in the maximum settlement and distortion between 

the converted 2D cases and the corresponding 3D ones.    
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(a) 1 month after service 
 

Fig. 6-1. Comparison of Maximum Settlement 
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(b) Final status 
 

Fig. 6-1. Comparison of Maximum Settlement (continued) 
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Fig. 6-2. Comparison of Maximum Distortion 
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The maximum tension in the geosynthetic reinforcement against the column modulus 

is plotted in Fig. 6-3. The legends, “3D (X, one month)” and “3D (Y, one month)”, 

represent the tension developed in the x and y directions, respectively at one month 

after service while “3D (X, final)” and “3D (Y, final)” represent the tension 

developed in the x and y directions, respectively at the final status. Figure 6-3 shows 

that the maximum tension obtained from the 2D modeling deviated from that from 

the 3D modeling except when the column modulus was close to 100MPa. It is also 

shown that the tension in the y direction was much lower than that in the x direction.  
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Fig. 6-3. Comparison of Maximum Tension 

 

The maximum stress concentration ratio is plotted against the column modulus in Fig. 

6-4. It is expected that the 2D cases underestimated the maximum stress 
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concentration ratio as compared with the corresponding 3D cases since the column 

moduli in the 2D cases were lower than those in the corresponding 3D cases.  
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Fig. 6-4. Comparison of Maximum Stress Concentration Ratio 

 

The degree of consolidation at one month after service is plotted against the column 

modulus in Fig. 6-5 to evaluate the difference in the excess pore water pressure. The 

2D cases underestimated the degree of consolidation as compared with the 

corresponding 3D cases.  
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Fig. 6-5. Comparison of Degree of Consolidation 

 

On the basis of the above comparisons, a general conclusion can be made: the 

simplified 2D model can not well compute the maximum settlement, the maximum 

distortion, the maximum tension, the maximum stress concentration ratio, and the 

degree of consolidation if the columns are actually arranged in a 3D pattern, such as 

the square pattern in this study. 

 

 

6.2 2D and 3D Comparisons 

 

Even though the influence of each factor on the performance of GRCS embankments 

has been discussed in Chapter Four for the 2D modeling and Chapter Five for the 3D 
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modeling, they have not been summarized and well compared. Hence, the 2D and 3D 

results would be summarized, compared, and rated herein. In this section, both the 

results at one month after service and at the final status are presented, however, the 

results at the final status are used as the bases for the comparisons.  

 

 

6.2.1 Maximum Settlement and Distortion 

 

The settlement is the key issue for the performance of the GRCS embankments, 

especially the maximum and differential settlements on the crest. To evaluate the 

influence of each factor on the maximum and differential settlements, the maximum 

settlement and distortion on the crest of the embankment are used.  

 

Influence of Soft Soil Elastic Modulus 

 

The maximum settlement and distortion under 2D and 3D conditions are plotted 

against the soil modulus in Fig. 6-6 and Fig. 6-7, respectively. Figure 6-6 shows that 

although the maximum settlement under the 3D condition was smaller than that under 

the 2D condition, the degrees of influence under these two conditions were almost the 

same. The maximum settlement was reduced by about 20mm under both conditions 

when the soil modulus increased from 1 to 8MPa.  
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Fig. 6-6. Maximum Settlement versus Soil Modulus under 2D and 3D Conditions 

 

The maximum distortion at the crest is presented against the soil modulus in Fig. 6-7.  

Apparently, the increase of the soil modulus had more effect on the reduction of the 

maximum distortion under the 3D condition than that under the 2D condition. When 

the soil modulus increased from 1 to 8MPa, the maximum distortion under the 3D 

condition decreased by about 0.4%, while the maximum distortion under the 2D 

condition decreased by about 0.3%.  
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Fig. 6-7. Maximum Distortion versus Soil Modulus under 2D and 3D Conditions 

 

Influence of Soft Soil Friction Angle 

 

The maximum settlement and distortion against the soil friction angle are presented in 

Figs. 6-8 and 6-9, respectively. Apparently, the increase of the soil friction angle had 

a greater effect on the reduction in the maximum settlement and especially the 

maximum distortion under the 3D condition than those under the 2D condition. When 

the soil friction angle increased from 15o to 30o, the maximum settlement under the 

3D condition was reduced by 15mm and the maximum distortion was reduced by 

0.4%, while the maximum settlement under the 2D condition was reduced by 10mm 

and the maximum distortion was reduced by 0.1%. These differences are attributed to 

the sliding of the embankment fill. The embankment constructed above the columns 
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installed in a square pattern had a higher tendency of sliding than that above the 

walls. Unlike the 2D condition, the columns in a square pattern were isolated by the 

soft soil. The sliding surface extending into the foundation could cut through the soft 

soil without intersecting with any DM columns. Local failure was more likely to 

occur. The increase of the soil strength would minimize the local failure; therefore, it 

had a remarkable influence on both the maximum settlement and the maximum 

distortion.  
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Fig. 6-8. Maximum Settlement versus Friction Angle under 2D and 3D 
Conditions 
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Fig. 6-9. Maximum Distortion versus Friction Angle under 2D and 3D 
Conditions 

 

Influence of Soft Soil Permeability 

 

The influences of the soil permeability on the maximum settlement and the maximum 

distortion are presented in Fig. 6-10 and 6-11, respectively, which show that the 

increase of the soil permeability had a significant effect on the reduction of the 

maximum settlement and the maximum distortion under both 3D and 2D conditions. 

As the soil permeability increased from 10-10m/s to 10-8m/s, the maximum settlement 

decreased by approximately 17mm and the maximum distortion decreased by 0.4% 

under the 3D condition, while the maximum settlement and the maximum distortion 

decreased by about  22mm and 0.2% under the 2D condition, respectively.  
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Fig. 6-10. Maximum Settlement versus Soil Permeability under 2D and 3D 
Conditions 
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Fig. 6-11. Maximum Distortion versus Soil Permeability under 2D and 3D 
Conditions 
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Influence of Column Elastic Modulus 

 

The influences of the column modulus on the maximum settlement and the maximum 

distortion under both 3D and 2D conditions are shown in Fig. 6-12 and 6-13, 

respectively. The increase of the column modulus had an effect on the reduction in 

the maximum settlement and the maximum distortion. However, this effect was 

limited under both 3D and 2D conditions. An increase of the column modulus from 

100MPa to 200MPa reduced the maximum settlement and the maximum distortion by 

about 8mm and 0.03%, respectively under the 3D condition, and by 6mm and 0.01%, 

respectively under the 2D condition.  
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Fig. 6-12. Maximum Settlement versus Column Modulus under 2D and 3D 
Conditions 
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Fig. 6-13. Maximum Distortion versus Column Modulus under 2D and 3D 
Conditions 

 

Influence of Column Spacing 

 

The maximum settlement and the maximum distortion against the column spacing are 

presented in Fig. 6-14 and 6-15, respectively. As the column spacing increased from 

2m to 3m, the maximum settlement increased about 20mm and 17mm under the 3D 

and 2D conditions, respectively while the maximum distortion increased about 0.35% 

and 0.19% under the 3D and 2D conditions, respectively.  
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Fig. 6-14. Maximum Settlement versus Column Spacing under 2D and 3D 
Conditions 
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Fig. 6-15. Maximum Distortion versus Column Spacing under 2D and 3D 
Conditions 
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Influence of Geosynthetic Tensile Stiffness 

 

The maximum settlement and the maximum distortion are plotted against the 

geosynthetic tensile stiffness in Figs. 6-16 and 6-17, respectively, which show that the 

geosynthetic tensile stiffness had an limited effect on the maximum settlements under 

both 3D and 2D conditions. The maximum settlements decreased by approximately 

2mm under 3D and 2D conditions as the tensile stiffness increased from 0 to 

10,000kN/m. However, the geosynthetic tensile stiffness had a significant influence 

on the maximum distortion under the 3D condition but an insignificant influence on 

the maximum distortion under the 2D condition. When the geosynthetic tensile 

stiffness varied from 0 to 10,000kN/m, the maximum distortion decreased by 0.3% 

under the 3D condition but only by 0.02% under the 2D condition. This discrepancy 

is also attributed to the local deformation between individual columns or walls.  

Hence, the tendency of the local deformation can be mitigated by the geosynthetic 

reinforcement. The geosynthetic with the higher tensile stiffness had more effect on 

the mitigation.    
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Fig. 6-16. Maximum Settlement versus Tensile Stiffness under 2D and 3D 
Conditions 
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Fig. 6-17. Maximum Distortion versus Tensile Stiffness under 2D and 3D 
Conditions 
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Influence of Construction Rate 

 

The influences of the average construction rate on the maximum settlement and the 

maximum distortion are presented in Figs. 6-18 and 6-19, respectively. As the 

average construction rate decreased from 4 to 0.25meter/mon, the maximum 

settlement decreased by 12mm under the 3D condition and by 15mm under the 2D 

condition while the maximum distortion decreased by 0.32% under the 3D condition 

and 0.1% under the 2D condition, respectively.   
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Fig. 6-18. Maximum Settlement versus Average Construction Rate under 2D and 
3D Conditions 
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Fig. 6-19. Maximum Distortion versus Average Construction Rate under 2D and 

3D Conditions 

 

 

6.2.2 Maximum Tension Developed in Geosynthetics 

 

The tension calculated under the 2D condition was that developed along the direction 

perpendicular to the traffic direction. Under the 3D condition, the tension developed 

in the direction along the traffic (i.e., the y direction) and perpendicular to the traffic 

(i.e., the x direction) can be calculated. Since the maximum tension in x direction 

under the 3D condition is corresponding to that in the 2D condition, the maximum 

tension in the x direction under the 3D condition was used for comparison with that 

under the 2D condition.  
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Influence of Soft Soil Elastic Modulus 

 

The influence of the soil modulus on the maximum geosynthetic tension is presented 

in Fig. 6-20, which shows that for the soil modulus from 1 to 8MPa, the maximum 

tension in the x and y directions decreased by 7kN/m and 4kN/m, respectively under 

3D condition instead of 8kN/m under the 2D condition. 
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Fig. 6-20. Maximum Tension versus Soil Modulus under 2D and 3D Conditions 

 

Influence of Soft Soil Friction Angle 

 

The maximum geosynthetic tension is plotted against the soft soil friction angle in 

Fig. 6-21. For the soil friction angle from 15o to 30o, the maximum tension in the x 
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and y directions decreased by 4kN/m and 2kN/m, respectively, under the 3D 

condition instead of slightly more than 2kN/m under the 2D condition.  
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Fig. 6-21. Maximum Tension versus Friction Angle under 2D and 3D Conditions 

 

Influence of Soft Soil Permeability 

 

The influence of the soil permeability on the maximum geosynthetic tension is 

presented in Fig. 6-22. As the soil permeability increased from 10-10 to 10-8m/s, the 

maximum tension in the x and y directions both decreased by about 3kN/m under the 

3D condition instead of about 4kN/m under the 2D condition.   
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Fig. 6-22. Maximum Tension versus Soil Permeability under 2D and 3D 
Conditions 

 

Influence of Column Elastic Modulus 

 

Figure 6-23 presents the relationship between the maximum tension and the column 

modulus, which shows that the column modulus had limited influence on the 

maximum tension. However, the influence of the column modulus on the maximum 

tension in the x direction under the 3D condition was more significant than those 

under other conditions.   
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Fig. 6-23. Maximum Tension versus Column Modulus under 2D and 3D 
Conditions 

 

Influence of Column Spacing 

 

The influence of the column spacing on the maximum tension is presented in Fig. 6-

24. As the column spacing increased from 2 to 3m, the maximum tension in the x  

and y directions decreased by approximately 8kN/m and 4kN/m, respectively, under 

the 3D condition instead of approximately 5kN/m under the 2D condition.  
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Fig. 6-24. Maximum Tension versus Column Spacing under 2D and 3D 
Conditions 

 

Influence of Geosynthetic Tensile Stiffness 

 

The geosynthetic tensile stiffness on the maximum tension is presented in Fig. 6-25. 

The tensile stiffness had a significant influence on the maximum tension. As the 

tensile stiffness increased from 0 to 10,000kN/m, the maximum tension in x direction 

and y directions increased by 48kN/m and 10kN/m, respectively under the 3D 

condition instead of 40kN/m under the 2D condition. 
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Fig. 6-25. Maximum Tension versus Tensile Stiffness under 2D and 3D 
Conditions 

 

Influence of Construction Rate 

 

The maximum geosynthetic tension against the average construction rate is shown in 

Fig. 6-26. The maximum tension in the x and y directions decreased by 

approximately 3kN/m and 2kN/m, respectively under the 3D condition when the 

average construction rate was decreased from 4 to 0.25meter/mon. The maximum 

tension decreased by about 3kN/m in the same range of the average construction rate 

under the 2D condition.  
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Fig. 6-26. Maximum Tension versus Average Construction Rate under 2D and 
3D Conditions 

 

 

6.2.3 Maximum Stress Concentration ratio 

 

The stress concentration ratio was adopted in this study to evaluate the load transfer 

efficiency. The stress concentration ratios under 2D and 3D conditions have been 

discussed in Chapter Four and Chapter Five, respectively. They are presented here 

together for the purpose of comparison. 
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Influence of Soft Soil Elastic Modulus 

 

The maximum stress concentration ratio against the soil modulus is presented in Fig. 

6-27, which shows that the soil modulus had a remarkable influence on the maximum 

stress concentration under both 3D and 2D conditions. For the soil modulus varying 

from 1 to 8MPa, the maximum stress concentration ratio decreased by 20 and 25 

under 3D and 2D conditions, respectively.   
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Fig. 6-27. Maximum Stress Concentration Ratio versus Soil Modulus under 2D 

and 3D Conditions 
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Influence of Soft Soil Friction Angle 

 

The maximum stress concentration ratios developed at different soil friction angles 

under 2D and 3D conditions are presented in Fig. 6-28. For the soil friction angle 

ranging from 15o to 30o, the maximum stress concentration ratio decreased by 10 

under the 3D condition and by 6 under the 2D condition.   
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Fig. 6-28. Maximum Stress Concentration Ratio versus Friction Angle under 2D 

and 3D Conditions 

 

Influence of Soft Soil Permeability 

 

The maximum stress concentration ratio is plotted against the soft soil permeability in 

Fig. 6-29. The increase of the soil permeability from 10-10 to 10-8m/s led to a decrease 
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of the maximum stress concentration ratio by 9 under the 3D condition and by 15 

under the 2D condition.   
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Fig. 6-29. Maximum Stress Concentration Ratio versus Soil Permeability under 

2D and 3D Conditions 

 

Influence of Column Elastic Modulus 

 

The maximum stress concentration ratio versus the column modulus is presented in 

Fig. 6-30. The increase of the column modulus from 100 to 200MPa led to an in 

crease in the maximum stress concentration ratio of 4 and 5 under 3D and 2D 

conditions, respectively.  
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Fig. 6-30. Maximum Stress Concentration Ratio versus Column Modulus under 

2D and 3D Conditions 

 

Influence of Column Spacing 

 

The curves of the maximum stress concentration ratio versus the column spacing are 

shown in Fig. 6-31. When the column spacing was increased from 2m to 3m, the 

maximum stress concentration ratio decreased by approximately 20 and 17 under 3D 

and 2D conditions, respectively.  
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Fig. 6-31. Maximum Stress Concentration Ratio versus Column Spacing under 

2D and 3D Conditions 

 

Influence of Geosynthetic Tensile Stiffness 

 

The maximum stress concentration ratio is plotted against the tensile stiffness in Fig. 

6-32. Clearly, the tensile stiffness had a slight influence on the stress concentration 

ratio. For the tensile stiffness varying from 0 to 10000kN/m, the maximum stress 

concentration ratio only decreased by approximately 1 and 3 under 3D and 2D 

conditions, respectively.  
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Fig. 6-32. Maximum Stress Concentration Ratio versus Tensile Stiffness under 
2D and 3D Conditions 

 

Influence of Construction Rate 

 

The influence of the average construction rate on the maximum stress concentration 

ratio is presented in Fig. 6-33. As the average construction rate decreased from 4 to 

0.25meter/mon, the maximum stress concentration ratio decreased by approximately 

6 and 7 under 3D and 2D conditions, respectively.  
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Fig. 6-33. Maximum Stress Concentration Ratio versus Average Construction 
Rate under 2D and 3D Conditions 

 

 

6.2.4 Excess Pore Water Pressure 

 

The comparisons conduced on the maximum settlement, the maximum distortion, the 

maximum tension, and the maximum stress concentration ratio were based on the 

results at one month of service and the final status. However, the comparison of the 

excess pore water pressure is based on the results at one month after service because 

the excess pore water pressure at the final status completely dissipated under the 2D 

condition and almost completely dissipated under the 3D condition.  
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Influence of Soft Soil Elastic Modulus 

 

The influence of the soil modulus on the degree of consolidation is presented in Fig. 

6-34. The increase of the soil modulus from 1 to 8MPa resulted in the decrease in the 

degree of consolidation by approximately 6% and 5% under 3D and 2D conditions, 

respectively.  
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Fig. 6-34. Degree of Consolidation versus Soil Modulus under 2D and 3D 
Conditions 

 

Influence of Soft Soil Friction Angle 

 

The degree of consolidation is plotted against the soil friction angle in Fig. 6-35. The 

increase of the soil friction angle yielded a slight decrease in the degree of 

consolidation.  
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Fig. 6-35. Degree of Consolidation versus Friction Angle under 2D and 3D 
Conditions 

 

Influence of Soft Soil Permeability 

 

The influence of the soil permeability on the degree of consolidation is presented in 

Fig. 6-36. The increase of the soil permeability had a dramatic influence on the 

degree of consolidation. As the soil permeability increased from 10-10 to 10-8m/s, the 

degree of consolidation increased by approximately 30% and 38% under 3D and 2D 

conditions.  For the soft soil at the permeability of 10-8m/s, the degree of 

consolidation at one month of service was nearly 100% at both 2D and 3D conditions. 
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Fig. 6-36. Degree of Consolidation versus Soil Permeability under 2D and 3D 
Conditions 

 

Influence of Column Elastic Modulus 

 

The influence of the column modulus on the degree of consolidation versus is shown 

in Fig. 6-37. The increase of the column modulus from 100 to 200MPa resulted in an 

increase of the degree of consolidation by 8% and 10% under 3D and 2D conditions, 

respectively. 
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Fig. 6-37. Degree of Consolidation versus Column Modulus under 2D and 3D 
Conditions 

 

Influence of Column Spacing 

 

The influence of the column spacing on the degree of consolidation is presented in 

Fig. 6-38. The increase of the column spacing from 2 to 3m led to a decrease in the 

degree of consolidation by 6% and 5% under 3D and 2D conditions, respectively.  
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Fig. 6-38. Degree of Consolidation versus Column Spacing under 2D and 3D 
Conditions 

 

Influence of Geosynthetic Tensile Stiffness 

 

The degree of consolidation is presented against the geosynthetic tensile stiffness in 

Fig. 6-39. The increase of the tensile stiffness from 0 to 10,000kN/m only led to a 

decrease in the degree of consolidation by about 1% under the 3D condition and 

about 2% under the 2D condition.  
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Fig. 6-39. Degree of Consolidation versus Tensile Stiffness under 2D and 3D 
Conditions 

 

Influence of Construction Rate 

 

The degree of consolidation is plotted against the average construction rate in Fig. 6-

40. As the average construction rate decreased from 4 to 0.25meter/mon, the degree 

of consolidation increased by approximately 15% under the 3D condition and by 23% 

under the 2D condition. 
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Fig. 6-40. Degree of Consolidation versus Average Construction Rate under 2D 

and 3D Conditions 

 

 

6.2.5 Summary 

 

The influences of various factors on the maximum settlement, the maximum 

distortion, the maximum tension, the maximum stress concentration ratio, and the 

degree of consolidation under 3D and 2D conditions have been compared above. To 

help the design of GRCS embankments, the influences of the factors are summarized 

and rated below.  

 

The influence of a factor on the behavioral parameters related to the performance of 

the GRCS embankment (including the maximum settlement, the maximum distortion, 
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the maximum tension, the maximum stress concentration ratio, and the degree of 

consolidation) is considered positive or negative according to its influence on the 

serviceability of the GRCS embankment. If the increase of the factor leads to a 

decrease in the maximum settlement, the maximum distortion or maximum tension, 

this factor is considered having a positive effect on any of these behavioral 

parameters; otherwise, this factor is considered having a negative effect on the 

behavioral parameter. On the other hand, if the increase of the factor leads to an 

increase in the maximum stress concentration ratio or degree of consolidation, this 

factor is considered having a positive effect on any of these behavioral parameters; 

otherwise, this factor is considered having a negative effect on the behavioral 

parameters. For example, by increasing the soil modulus the maximum settlement 

decreases, and maximum stress concentration ratio decreases, then the soil modulus is 

defined to have a positive influence on maximum settlement but a negative influence 

on maximum stress concentration ratio. The degree of influence of each influence 

factor on any of the behavioral parameters is defined as ratio of the variation of the 

behavioral parameter to the mean of the behavioral parameter. For example, under 2D 

conditions, the maximum settlements at soft soil modulus equal to 1, 2, 4, and 8MPa 

are 34.69, 24.79, 20.25, and 14.87mm, respectively. The variation of the maximum 

settlement within the soft soil modulus range investigated is 82.1987.1469.34 =−   

and the mean of the maximum settlement is 78.24
2

87.1469.34
=

+ . Consequently, the 

degree of influence of soft soil modulus on the maximum settlement is calculated as 
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%80%100
78.24
82.19

=× .  The degree of influence on the behavioral parameters is listed 

in Table 6-1 and 6-2. 

 

Table 6-1. The Degree of Influence under a 3D Condition (%) 
 

Factors Smax Imax Tmax nmax Umax
Es 68 120 102 176 7 
φ 47 87 30 34 1 
k 58 81 44 31 35 
Ec 14 9 24 18 8 
s 75 86 97 60 6 
J 14 92 168 8 2 
v 51 76 32 22 19 

 

Table 6-2. The Degree of Influence under a 2D Condition (%) 
 

Factors Smax Imax Tmax nmax Umax
Es 66 100 131 299 6 
φ 25 21 39 25 3 
k 68 73 54 88 46 
Ec 24 9 3 24 12 
s 49 57 57 74 6 
J 8 13 173 29 3 
v 47 23 37 45 28 

 

The degree of the influence on any of the behavioral parameters is divided into three 

levels: high, medium, and low. Since there is no standard to distinguish those levels, 

the common concept of the significance in geotechnical engineering is adopted, i.e., 

the degree of influence less than 30% is considered low; the degree of influence 

between 30% and 60% is considered medium and the degree of influence greater than 

60% is considered high. 
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 The influence of each factor on each behavioral parameter is presented in Table 6-3 

and 6-4. The negative sign (-) indicates negative influence and the positive sign (+) 

indicates positive influence. The number of negative or positive sign indicates the 

degree of influence. One sign indicates low influence; two signs indicates medium 

influence; three signs indicates high influence. For example, one positive sign, i.e., 

“+”, indicates low positive influence; two negative signs, i.e., “- -”, indicates medium 

negative influence. 

 

Table 6-3. The Influence of Factors under the 3D Condition 
 

Factors Smax Imax Tmax nmax Umax
Es + + + + + + + + + - - - - 
φ + + + + + + +  - - - 
k + + + + + + + - - + + 
Ec +  + + + + 
s - - - - - - - - - - - - - 
J + + + + - - - - - 
v - - - - - - - + - 

Note: smax – maximum settlement, Imax – maximum distortion, Tmax – maximum 
tension, nmax – maximum stress concentration ratio, Umax – maximum degree of 
consolidation.  

 

Table 6-4. The Influence of Factors under the 2D Condition 
 

Factors Smax Imax Tmax nmax Umax 
Es + + + + + + + + + - - - - 
φ + + + + - - 
k + + + + + + + + - - - + + 
Ec + + + + + 
s - - - - - - - - - - 
J + + - - - - - 
v - - - - - + + - 
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CHAPTER SEVEN 

CONCLUSIONS AND RECOMMENDATIONS 

 

In the past twenty years, especially in the last few years, various studies have been 

completed on GRCS embankments, which have greatly improved the understanding 

of this technology. This study is expected to provide additional knowledge into this 

topic. The major findings from this study are summarized in this chapter and 

recommendations for practical applications are made.  In addition, possible future 

studies on this topic are presented at the end of this chapter.     

 

 

7.1 Conclusions 

 

This research was the first comprehensive study that coupled mechanical and 

hydraulic modeling of GRCS embankments. The behavior and performance of the 

embankments were investigated in a time domain. This study provided important and 

useful information on the post-construction settlement and the generation and 

dissipation of excess pore water pressure. The findings from this study are 

summarized below.  

 

♦ The total settlement, the differential settlement, and the distortion at the base of the 

embankment were much larger than those on the crest for both 2D and 3D cases. It is 



 368

misleading to use the base values as the reference to evaluate the serviceability of the 

GRCS embankment.  

 

♦ When columns were installed in a square pattern, the differential settlement 

developed along the direction perpendicular to the traffic direction was much larger 

than that along the traffic direction. Therefore, more attention should be paid to the 

differential settlement developed in the direction perpendicular to the traffic direction 

in practice.  

 

♦ Obvious difference existed in the maximum settlement, the maximum distortion, 

the maximum tension, and the degree of consolidation from the 3D and the converted 

2D analyses. The simplification of a 3D case into a 2D case based on the area 

weighted average approach may not result in a good representation of the 3D case.  

 

♦ The time-dependent settlement on the crest (i.e., post-construction settlement) was 

influenced by a number of factors. A coupled mechanical and hydraulic modeling is 

preferred to accurately estimate the settlement on the crest.  

 

♦ The consolidation process of the foundation under the GRCS embankment was 

much faster than that estimated using Terzaghi’s one-dimensional consolidation 

theory because the excess pore water pressure dissipated through drainage and load 

transfer.  
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♦ According to the results of 2D and 3D parametric study, all the investigated factors 

had some effect on the maximum settlement on the crest. The type of influence by 

each factor on the maximum settlement under the 3D condition was the same as that 

under the 2D condition. The soft soil modulus had a high positive influence on the 

maximum settlement under both 2D and 3D conditions. The soil permeability had a 

medium positive influence under 3D condition but a high positive influence under 2D 

condition. The soft soil friction angle had a medium positive influence under 3D 

condition and had a low positive influence under 2D condition.  The column modulus 

had a low positive influence under 3D and 2D conditions.  The column spacing had a 

high and medium negative influence under 3D and 2D conditions, respectively. The 

geosynthetic tensile stiffness had a low positive influence under both 3D and 2D 

conditions and the average construction rate had a medium negative influence under 

both 3D and 2D conditions.  

 

♦ The maximum distortion on the crest is the most important index used to describe 

the smoothness of the embankment surface. The influence type of each investigated 

factor on the maximum distortion under the 3D condition was same as that under the 

2D condition. However, the degree of influence under the 3D condition might differ 

from that under the 2D condition. The soft soil modulus and the soft soil permeability 

had a high positive effect under both 2D and 3D conditions. The soft soil friction 

angle had a high and a low positive influence under 3D and 2D conditions, 
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respectively. The column modulus had a low positive influence under both 2D and 

3D conditions. The column spacing had a high negative influence under 3D condition 

and a medium negative influence under 2D condition. The geosynthetic tensile 

stiffness had a high and low positive influence under 3D and 2D conditions, 

respectively. The average construction rate had a high and a low negative influence 

under 3D and 2D conditions, respectively.  

 

♦ The maximum tension developed in the geosynthetic reinforcement is an important 

parameter in the material selection. Under the 3D condition, the maximum tension 

was always developed along the direction that was perpendicular to the traffic 

direction. This result was attributed to the lateral movement of the embankment fill. 

The investigated factors had the same type of influence on the maximum tension 

under both 2D and 3D conditions. All of the investigated factors had the same degree 

of influence under 3D conditions as under 2D conditions.  The soft soil modulus had 

a high positive influence under both 2D and 3D conditions. The soft soil friction 

angle and the soft soil permeability had a medium positive influence under both 2D 

and 3D conditions. The column modulus had a low positive influence under 2D and 

3D conditions. The column spacing had a high and a medium negative influence 

under 3D and 2D conditions, respectively. The geosynthetic tensile stiffness had a 

high negative influence under both 2D and 3D conditions. And the average 

construction rate had a medium negative influence under both 2D and 3D conditions.  
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♦ The stress concentration ratio is used to evaluate the load transfer efficiency. All 

the factors had the same type of influence on the maximum stress concentration ratio 

under the 3D condition as that under the 2D condition. The soft soil modulus and 

column spacing had a high negative influence under both 2D and 3D conditions. The 

column modulus had a low positive influence and the geosynthetic tensile stiffness 

had a low negative influence under both 2D and 3D conditions. The soft soil friction 

angle had a medium negative influence under the 3D condition and a low negative 

influence under the 2D condition. The soft soil permeability had a medium negative 

influence under the 3D condition but a high negative influence under the 2D 

condition. The average construction rate had a low positive influence under the 3D 

condition and a medium positive influence under the 2D condition.   

 

♦ The degree of consolidation is used to reflect the magnitude of remaining excess 

pore water pressure after service. The influence type of each factor on the degree of 

consolidation under the 3D condition was the same as that under the 2D condition. 

The degree of consolidation of each influence factor under the 3D condition was the 

same as that under the 2D condition. The soft soil modulus, the soft soil friction 

angle, the column spacing, the geosynthetic tensile stiffness, and the average 

construction rate had low negative influence. The column modulus had low positive 

influence and the soft soil permeability had medium positive influence.    
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♦ Among all the factors investigated, the soft soil modulus had a high positive 

influence on the maximum settlement, the maximum distortion, and the maximum 

tension, while it had a high negative influence on the maximum stress concentration 

ratio. It indicates that an increase of soft soil modulus could reduce not only the 

maximum settlement, the maximum distortion, and the maximum tension but also the 

required strength of DM columns. 

 

♦ The geosynthetic tensile stiffness only had a high influence on the maximum 

tension but had a low influence on the other behavioral parameters under the 2D 

condition. This fact indicated that the use of a stiffer geosynthetic reinforcement was 

not an effective approach to improve the serviceability of the GRCS embankments 

under the 2D condition. 

 

♦ The soft soil permeability had a medium to high influence on the performance 

indices under both 2D and 3D conditions. The increase of the soft soil permeability 

could reduce the maximum settlement, the maximum distortion, and the maximum 

tension but increase the degree of consolidation. In addition, the increase of the soft 

soil permeability led to a decrease in the maximum stress concentration ratio. In a 

word, the increase of soil permeability could improve the performance of the GRCS 

embankments and reduce the required strength of columns. 
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♦ The column modulus had a low influence on all of the behavioral parameters 

concerned under both 2D and 3D conditions.  On the other hand, the column spacing 

had a medium to high influence on the maximum settlement, the maximum distortion, 

the maximum tension, and the maximum stress concentration ratio under 2D and 3D 

conditions. It implies that the use of a larger area replacement ratio would be more 

effective than the use of stronger columns to improve the serviceability of GRCS 

embankments. 

 

♦ The soft soil permeability and the average construction rate showed significant 

influence on the increase in the maximum settlement after construction. However, the 

maximum differential settlement and the maximum distortion did not consistently 

increase with consolidation. The variations of the maximum differential settlement 

and the maximum distortion were insignificant for the cases analyzed in this study 

except for the cases with low permeability (<10-10m/s) or a high construction rate 

(>4meter/mon).  

 

 ♦ The tension in the geosynthetic reinforcement did not vary significantly with the 

consolidation after the construction based on the cases investigated in this study 

except for the case having low soil permeability (<10-10m/s) or a high construction 

rate (> 4m/mon).  
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♦ Lower soil permeability and/or higher construction rate led to an increased 

immediate settlement due to induced local failure.  

 

♦ GRCS embankments over columns in a square pattern showed higher tendency of 

lateral movement than those over walls. 

 

 

7.2 Recommendations 

 

The following recommendations can be made from this study: 

 

1. Three-dimensional analyses are recommended when columns are installed in a 

square pattern since a converted 2D model may yield inaccurate results. 

 

2. The settlements on the crest of the embankment should be used to evaluate its 

serviceability instead of those at the base. 

 

3. It is important to minimize excess pore water pressure developed during the 

construction of the embankment since high excess pore water pressure increases not 

only the post-construction settlements but also the immediate settlements. A low 

construction rate may be adopted to reduce the accumulation of excess pore water 

pressure for foundation soils having low permeability.  
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4. Geosynthetic reinforcement should be used when columns are installed in a square 

pattern in a large spacing.  

 

 

7.3 Future Work 

 

The following issues may be considered for future work: 

 

1. Most studies including the study in this dissertation have assumed a pseudo-static 

load to simulate the traffic load.  It is more realistic to model the traffic load as cyclic 

loading, which is expected to have influences on the generation and dissipation of the 

excess pore water pressure and the settlement.  

 

2. In addition to the wall and square patterns of columns, the triangular, rectangular, 

and wall patterns along the direction perpendicular to the traffic direction are used in 

practice. It would be useful to evaluate the effectiveness of these patterns.   

 

3. GRCS embankments may be used with other ground improvement technologies, 

such as wick drains.  The use of wick drains can accelerate the consolidation process.  

This combined technology should be further investigated.   

 



 376

4. The installation of columns may lead to disturbance on foundation soil and 

generate excess pore water pressure. The generated pore water pressure is expected to 

affect the behavior of GRCS embankments. The influence of installation should be 

studied in 2D and 3D numerical modeling in the future.  

 

5. In this study, the embankment fill was modeled as a linearly elastic perfectly 

plastic material.  However, the mechanical properties of the embankment fill are 

typically stress-dependent.  This effect should be investigated in the future study. 

 

6. In this study, the soft soil was modeled as a linearly elastic perfectly plastic 

material. In a future study, Cam-Clay model may be used to investigate the influence 

of other factors, such as over consolidation ratio (OCR), ground water table depth and 

so on, on GRCS embankment performance. 
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