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Abstract

Objective: Drug-drug interaction (DDI) is of serious concern, causing over 30% of all adverse 

drug reactions and resulting in significant morbidity and mortality. Early discovery of adverse DDI 

is critical to prevent patient harm. Spontaneous reporting systems have been a major resource for 

drug safety surveillance that routinely collects adverse event reports from patients and healthcare 

professionals. In this study, we present a novel approach to discover DDIs from the Food and Drug 

Administration’s adverse event reporting system.
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Methods: Data-driven discovery of DDI is an extremely challenging task because higher-order 

associations require analysis of all combinations of drugs and adverse events and accurate estimate 

of the relationships between drug combinations and adverse event require cause-and-effect 

inference. To efficiently identify causal relationships, we introduce the causal concept into 

association rule mining by developing a method called Causal Association Rule Discovery 

(CARD). The properties of V-structures in Bayesian Networks are utilized in the search for causal 

associations. To demonstrate feasibility, CARD is compared to the traditional association rule 

mining (AR) method in DDI identification.

Results: Based on physician evaluation of 100 randomly selected higher-order associations 

generated by CARD and AR, CARD is demonstrated to be more accurate in identifying known 

drug interactions compared to AR, 20% vs. 10% respectively. Moreover, CARD yielded a lower 

number of drug combinations that are unknown to interact, i.e., 50% for CARD and 79% for AR.

Conclusion: Evaluation analysis demonstrated that CARD is more likely to identify true causal 

drug variables and associations to adverse event.
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Introduction

Each time a person uses a prescription medication, there is a potential for an adverse drug 

reaction (ADR). That potential increases with an increase in the number of concurrent 

medications being used. Between 2009–2012, about 47% of the United States population 

reported they had used at least one prescription medication in the past 30 days and almost 

11% reported using at least five prescription medications in the same period. This equated to 

approximately $270 billion spent on prescription medications in 2013 [1]. ADRs have been 

attributed to cause over 770,000 injuries and 100,000 deaths each year in US [2], resulting in 

an annual cost of more than $136 billion [3]. Studies have estimated that drug-drug 

interactions (DDIs) may account for up to 30% of all unexpected adverse drug reactions 

(ADRs) [4].

Adverse DDIs can be preventable if discovered early. Unfortunately, it is extremely difficult 

to study DDIs before market approval. During premarketing surveillance, new drugs can 

only be tested for interactions with existing drugs using in vivo and in vitro methods [5]. 

However, drugs can interact in many different ways [6], it is infeasible to examine every 

possible type of interaction for all drug combinations [7]. Additionally, many DDIs require 

certain amount of exposure to manifest and rare DDIs may take several exposures to occur 

[8]. Therefore, postmarketing surveillance becomes necessary for the early detection of 

unexpected adverse DDIs in the general population.

To facilitate postmarketing drug safety surveillance, the United States Food and Drug 

Administration (FDA) established the FDA Adverse Event Reporting System (FAERS) to 

collect ADR reports from healthcare professionals, patients, and pharmaceutical 

manufacturers [9]. Similarly at international level, the World Health Organization (WHO) is 
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maintaining a large database of ADR reports, VigiBase [10]. These data provide a significant 

opportunity to study ADRs computationally. Numerous signal detection algorithms were 

designed for identifying relationships between drugs and adverse events (AEs) in 

spontaneous reports. Despite the number of existing algorithms, all have drawbacks that 

limit their effectiveness, such as noisy results with diminishing accuracy and low robustness 

due to low signal-to-noise ratio, high dimensionality of the data, and limited sample sizes. 

The algorithms are largely based on the statistical disproportionality theory such as relative 

reporting ratio (RR) to quantify the degree of unexpectedness of a relationship [9, 11, 12]. 

Both the FDA and WHO utilize adjusted versions of for flagging potential ADRs [13, 14]. 

These algorithms primarily focus on binary relationships consisting of one drug and one AE, 

e.g., cerivastatin → muscle injury [15, 16, 17, 18].

To find higher-order relationships raised by DDIs, e.g., aspirin + warfarin → bleeding, 

methods have been developed and evaluated on subsets of drugs and specific AEs in the 

spontaneous reporting systems [19, 20, 21]. For instance, van Puijenbroek et al. used logistic 

regression analysis to examine the influence of combined use of itraconazole and oral 

contraceptives on delayed withdrawal bleeding [19] and diuretics and non-steroidal anti-

inflammatory drugs on symptoms indicating decreased efficacy of diuretics [21]. Thakrar et 

al. [20] investigated two statistical models in detecting four known DDIs and Tatonetti et al. 

[22, 23] built profiles for eight clinically important AEs based on side effects of drugs 

known to produce them and predicted potential interactions by searching for drug pairs that 

match the profiles. Furthermore, Harpaz et al. [24, 25] employed association rule mining and 

bi-clustering algorithms to infer associations between drug combinations and adverse event.

Among the existing pharmacovigilance studies, associations are the most studied 

relationships. However, an association does not necessarily imply causality [26]. Causal 

relationships do not only indicate two variables are related, but also how they are related and 

interacted. One step further, the causal mechanism ensures changes in causal variable 

directly caused changes in the effect variable. For example, we do not only want to know a 

particular drug is associated with renal failure, but also we want to know definitively 

whether the association is due to an adverse reaction or a disease. Without knowing the true 

relationship, plain associations can lead to false conclusions, e.g., the drug causes renal 

failure.

Causality is at the center stage of biomedical research and work on how to identify it has 

primarily taken a pragmatic approach with randomized controlled trials (RCTs) being 

treated as the gold standard for causal inference; however RCT methods have many well-

known limitations [27, 28, 29]. Experiments are also frequently infeasible due to legal, 

ethical and practical constraints – no one would randomly assign individuals to smoke to 

assess its health risks. Instead, large-scale observational datasets on a population can be an 

indispensable resource for causal inference. Despite significant advances in causal discovery 

theory that have enabled the computational modeling and learning of causal structures from 

data [30, 31, 32, 33], application of causal discovery algorithms is seriously hindered by its 

high computational cost [34] and its strict causal mechanism assumption [31, 32]. In 

addressing the challenge, researchers have proposed constraint-based causal discovery 

methods, instead of searching for a complete Bayesian network they aim to learn local 
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casual structures such as the Markov blanket [35, 36, 37], V-structures [38], causal cut [39]. 

As association rule mining (AR) has been demonstrated to be versatile in exploring 

relationships in large datasets, researchers have attempted to take advantage of AR for causal 

discovery by manipulating observational data as in retrospective cohort studies [40, 41].

In this study, we aim to investigate whether it is feasible to augment AR to discover causal 

rules for DDI identification. Our study differs from prior related studies in the following 

aspects: (1) we propose a Causal Association Rule Discovery (CARD) method by exploiting 

the properties of V-structures in CBN to guide the causal association rule search; (2) to our 

knowledge, this is the first CBN-based causal discovery framework for identifying DDIs and 

their causal relationships to adverse events.

Materials and Methods

Preparation of datasets.

We collected a large sample of spontaneous reports published between the years of 2004 to 

2012 from FAERS that are categorized as having a “serious” patient outcome. In other 

words, only reports with outcome codes listed in Table 1 are included in the study. 

Additionally, we restricted our mining process to reports with mentions of at least two drugs; 

focusing our study on detecting adverse effects corresponding to drug combinations. 

Furthermore, we excluded duplicated reports and limited the analysis to drugs and AEs that 

occurred in at least five “serious” reports. The overall process is depicted in Figure 1 and 

following sections describe each key step in detail.

Entity standardization.—Drug names in FAERS are entered as free-text in a variety of 

forms. For example, the antidiabetic drug metformin can be entered as Fortamet, Diaben/
metformin, Diabex metformin hydrochloride, and etc. The terms can also contain dose or 

route information, e.g., “500mg metformin”, and active ingredient information, e.g., 

“Competact (pioglitaxone / metformin hydrochloride)”. To codify the medications, we used 

MedEx [42] to extract drug names out of the free-text terms and mapped each to a generic 

drug concept in RxNorm. When textual terms contain multiple active ingredients, the 

mapping was done separately for individual ingredient. Drug names that could not be 

mapped were still included in the analysis in their original form. Drug names can also be 

entered as a specific drug or a drug class, for example, aspirin vs. analgesics. Although 

aspirin falls under the analgesic class, we did not attempt to make the translation, so they are 

included as separate entities. Since adverse outcome reported in FAERS are already coded 

using the MedDRA terminology [43] (a terminology developed for adverse drug event 

applications), we treated each coded AE as a unique entity.

Duplicate report removal.—Studies [44, 45] have suggested that FAERS may contain 

5% to 20% duplicated reports, introducing sample bias that may result in spurious signals. 

FDA utilizes a proprietary algorithm to remove duplicates for analysis. As an alternative, 

other studies have instead searched for reports with at least eight drugs or AEs and 

determined reports as duplicate if they match on all the reported drugs, AEs, and patient 

demographic information [24, 25]. Setting the threshold at eight is to minimize the 
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probability of a match by chance. Our study adopted this approach in removing duplicated 

reports.

Dataset statistics.—Statistics on FAERS reports published between 2004 and 2012 are 

shown in Table 2. The full set contains 4,509,229 reports. After excluding reports with non-

serious outcome and duplicates, only 41.88% of the original set remained. Additionally, we 

removed reports that have no AE information and those only contain drugs and AEs 

appearing in less than 5 reports, reducing the sample size to 1,886,749 reports; covering 

7,701 unique generic drug names (reduced from 351,980 unique textual entries) and 11,569 

MedDRA coded AEs.

Association rule mining (AR).

Association rule mining is a well-established data mining method for discovering 

relationships in data and its algorithmic variations have been developed for ADR detection 

[24, 40, 46]. An association rule is an implication expression of the form A → B, where A 
and B are two event sets that do not share any common events. In the case of ADR detection, 

A denotes a set of drugs and B denotes a set of AEs, e.g., A = (cerivastatin) → B = (muscle 
injury). An event set can contain one or more items, multi-item associations. For example, A 
= (aspirin + warfarin) → B = (Bleeding) indicates taking aspirin and warfarin together is 

associated with the bleeding.

To assess the strength of an association rule, the best-known measures are support and 

confidence. Support of an association rule S(A→ B) is the proportion of records in which A 
and B both appear. Confidence of an association rule C(A→ B) is the probability P(B|A) of 

finding the consequent B given the antecedent A. Therefore, support measures the 

unexpectedness of the rule and confidence measures the reliability of the rule. These two 

measures allow the screening of interesting rules from a set of all possible rules. An 

interesting association rule is required to satisfy user-specified minimum thresholds on 

support and confidence at the same time. The AR method described in Harpaz et al. [24] is 

implemented in this study as the baseline algorithm for comparison and the relative 

reporting ratio (RR) is used accordingly as the proxy for measuring rule strength rather than 

the traditional confidence.

Causal association rule discovery (CARD).

As associations may not indicate causal relationships, our study aims to detect true causal 

relationships between drug combinations (drug-drug interactions) and adverse events by 

proposing a new method called causal association rule discovery (CARD). Given a set of 

spontaneous reports in the FAERS database, S = [s1,s2, ⋯,sm], let D = [d1,d2, ⋯ ,dn] be the 

binary indicators of the drugs taken, where di represents whether a patient has taken the ith 

drug or not. Let be a binary indicator of the occurrence of an AE and s j = [d1
j , d2

j , ⋯, dn
j , y j]

represents an ADR report j. Let Ii denote the event that ith drug is taken (di = 1) and A 
denote the event that an AE has occurred (y = 1), then an AE triggered by a drug-drug 

interaction (DDI) can be formulated as an association rule, Ii1 Ii2 ⋯ Iik → A. As the study 

focuses on DDIs, only rules with k ≥ 2 are considered. To formalize the concept of causal 
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association rules, we derive important properties from Causal Bayesian Network (CBN) and 

develop an efficient search method.

In the simplest DDI case, a CBN of three variables {d1, d2, y} with {d1, d2} being the 

possible causes and y being the effect has four primitive local structures as shown in Figure 

2. Figure 2a, 2b, and 2c are independent-equivalent BNs because they entail the same set of 

conditional independence relationships. In other words, variable d1 is conditionally 

independent of variable d2 given variable (i.e. d1 ⊥ d2|y). However, Figure 2d implies a 

different assertion that d1 is conditionally dependent of d2 given y, referred to as the V-

Structure in BN, which is well known and studied in inductive causation methods [26].

In contrast to other CBN local structures, V-structure is more robust and discriminating in 

causality identification problems because it is not statistically equivalent to any other 

structures involving the same variables. It is the only local structure that can be used to 

confirm the direction of causal relationships. If a true V-structure forms as in Figure 2d, the 

two drugs involved must be interacting to cause AE. From the statistical aspect, the 

following statistical independence relation holds for all the V-structures, 1) d1 ⊥ d2|D′ holds 

and 2d1 ⊥ d2|D′ ∪ {y} does not hold, where D′ ⊂ D − {di1, di2}. Based on the above 

essential properties of V-structure, we derived the following causal association interesting 

measure (CAIM) for Ii1 Ii2 → A.

CAIM Ii1Ii2 A = N(di1, y) + N(di2, y) − N(di1, di2) + N(di1, di2 y) (1)

Here, N( di1, y) denotes the normalized mutual information [47]. A high CAIM score 

indicates that both d1, d2 are highly associated with y, i.e. the role of N( di1, y ) + N( di2, y), 

and previously non-associated d1, d2 became highly associated given y, i.e. the role of 

−N( di1, di2) + N( di1, di2| y).

For the rule I → A with more than three antecedents, any sub-rules containing two 

antecedents must also form a V-structure with the adverse event, di1 → y ← di2. Because 

the interestingness of rule I → A is dependent on the weakness of its sub-rules, the 

generalized interestingness measure is defined as follows.

CAIM(I A) = min
Ii1, Ii2 ⊂ I

CAIM(Ii1Ii2 A) (2)

To efficiently search through the large space of all possible rules and estimate 

interestingness of the rules, we derived a pruning strategy based on properties of V-

structures and an incremental updating strategy for CAIM. Algorithm details are available in 

the Appendix.
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Results

Performance evaluation.

Following common practice in pharmacovigilance studies in evaluating clinical validity of 

DDIs [15, 16, 24], we randomly selected 100 rules identified by CARD and presented them 

to a pharmacist for manual review. The pharmacist used both Micromedex and Epocrates 

[48, 49] as the clinical reference and settled any disagreements by checking with UpToDate 

[50]. The pharmacist and a physician also helped us in characterizing the identified rules 

with a taxonomy developed based on observations. For algorithm performance comparison, 

we implemented the AR method as presented in Harpaz et al. [24] that was shown to be 

effective in identifying higher-order associations, and performed the same analysis on its 

100 randomly selected findings.

Higher-order drug-event relationship identification.

For the baseline AR algorithm, we aligned this study with the study in [24] by setting AR 

thresholds at minimum support of 100 and RR of 2. The minimum support and RR 

thresholds were observed to be a balancing point between the number of rules generated and 

variation in content (e.g., drugs and AEs in the rules). Low thresholds will result in large set 

of rules with many false positives. High thresholds, on the other hand, will result in less 

variation in content. Using the proposed thresholds, AR in total produced 424 higher-order 

association rules with combinations containing at least 2 drugs and among them 57 

contained 3 or more drugs. Analogously, CARD also used minimum support of 100 and the 

CAIM score threshold was set at ≥0.04 to produce similar number of rules (i.e., 457) and 

among which 10 contained 3 or more drugs (e.g., an identified combination included 

doxorubicin hydrochloride, prednisone, and rituximab).

From the identified drug-event relationships, we randomly selected 100 for validation and 

developed a taxonomy from the analysis. The taxonomy characterizing drugs and 

associations along with the proportions of each category in the 100 randomly sampled 

findings is presented in Table 3. It contains observed proportions for both AR and CARD. 

Table 4 provides the taxonomy that characterizes the rules along with its proportion in each 

category and representative examples.

Known drug interactions.—Among the 100 randomly sampled findings, CARD 

identified more drug combinations known to interact compared to AR, 20% vs. 10%. Further 

analysis suggested that 6 of the 20 CARD identified known interacting drug combinations 

cause the indicated AE (i.e., true positive DDI→AE associations). For example, CARD 

identified (amiodarone + warfarin) increases the international normalized ratio (INR) which 

is supported by evidence. This interaction is highly clinically significant and the risk of 

interaction often outweighs the benefit. As another example, (nitroglycerin + rosiglitazone) 

→ myocardial infarction was identified by CARD and literature evidence also indicates that 

the combination should be avoided as it may increase the risk of myocardial ischemia.

The remaining 14 of the 20 interacting combinations identified by CARD are not currently 

known to cause the indicated AE as an interaction effect but one or both drugs in the 
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combination can still relate to the AE as known side-effects (i.e., Table 4 – taxonomy 1a). 

For example, the combination (prednisone + rosiglitazone) was identified to be associated 

with cardiac failure congestive. Existing evidence indicates that the combination have 

antagonistic effects where efficacy of the hypoglycemic agent, rosiglitazone, is decreased 

because prednisone can cause hyperglycemia. Thus cardiac failure congestive is not known 

to be a direct effect of the interaction; however it is a cardiovascular side-effect of 

prednisone due to long-term fluid retention and other direct vascular effects.

Another category of association for known interacting combinations is illustrated by the 

taxonomy 1b where the identified AEs were unknown. CARD did not retrieve any of these 

pairs, but AR found 3. For example, prior clinical knowledge suggests that using cilostazol 
together with analgesics like aspirin may increase risk of bleeding, but not dyspnea as shown 

in Table 4.

Unknown drug interactions.—CARD yielded a lower number of drug combinations 

unknown to interact, i.e., 50% for CARD vs. 79% for AR. Among the 50 false positives by 

CARD, 37 (74%) are related to the identified AE through one or both drugs (Table 4 – 

taxonomy 4-a). For instance, no evidence supports interaction between celecoxib and 

metformin, but the identified AE myocardial infarction is related to celecoxib. In contrast, 

48 out of 79 (61%) of the AR false positives are related to its identified AE. There are also 

unknown drug combinations with no connection to its identified AE. For example, there is 

no known interaction evidence between acetaminophen and isotretinoin and no information 

on either of the drugs causing intestinal hemorrhage.

Overlapping findings.—There were only 4 drug combinations identified in common 

between CARD (Support = 100, CAIM > 0) and AR (Support = 100, RR ≥ 2), which is an 

unexpected but interesting finding. The four common drug combinations identified are 

(Table S5): (docetaxel, carboplatin), (pemetrexed, dexamethasone), (alendronate, docetaxel), 
and (dexamethasone, potassium). However, none of the pairs is indicated as interacting by 

Epocrates. Moreover, only 1 rule in common was found: (pemetrexed, dexamethasone) → 
pneumonia, but neither drug is known to be associated with pneumonia. The small number 

of overlapping is because AR and CARD have different preferences of the rules and 

different mining thresholds. In detail, CARD employs the CAIM to select the rule with 

threshold CAIM>0, while AR uses the RR to select the rule with RR ≥ 2.

Confounded drug pairs.—As shown in Tables 3 and 4, 30% of CARD identified drug 

combinations are due to confounding factors such as concomitant (frequently co-

administered medications) or indication (symptom of underlying disease, not effect of 

treatment) biases. As an illustration of taxonomy 2-a, alendronate was found to interact with 

esomeprazole to cause femur fracture. Alendronate is a bisphosphonate drug used for 

osteoporosis and other bone diseases. Esomeprazole is a proton pump inhibitor that reduces 

stomach acid secretion, used to treat dyspepsia, peptic ulcer disease, and gastroesophageal 

reflux disease. Some common adverse effects associated with alendronate include acid 

regurgitation and dyspepsia, which can be treated with esomeprazole, but the combination is 

not known to interact. This implies that our method may be finding BN structures as 

depicted in Figure 2a or 2b rather than 2d, but conditional independence between the two 
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medications can be wrongly estimated with missing y node (indications of alendronate). 

Atypical femur fracture, identified as an AE for (alendronate + esomeprazole), is among the 

list of serious adverse reactions for alendronate and fracture is also one serious reaction of 

esomeprazole. Similarly for taxonomy 3-a, ramipril and simvastatin also seem to be a 

combination found due to confounding variables and not known to interact. The identified 

AE, rhabdomyolysis is simply a serious side-effect of simvastatin.

Furthermore for taxonomy 2-b, ranitidine is used to treat acid regurgitation and dyspepsia 

associated with alendronate, but not known to interact. In addition, neither drug is related to 

fall as indicated by CARD. Finally for taxonomy 3-b, aspirin and rosiglitazone also seems to 

be found due to confounding issues; aspirin should be a drug for treating coronary artery 

disease, not causing.

Discussion

Accurate identification of causal relationships between drug combinations and adverse 

events require not only analysis of all drug-event combinations but also cause-and-effect 

estimation of the relationships. Through the adoption of the essential properties of CBN V-

structures in association rule mining, our proposed CARD method can efficiently identify 

causal associations between drug combinations and adverse events. A comparison to the 

traditional association rule mining method, CARD is demonstrated to identify more known 

drug interactions and yield a lower number of unknown drug combinations. Nonetheless, our 

study has limitations:

1. CARD is not designed to identify causal relationships that cannot be represented 

with V-structures. Theoretically in an ideal world, DDIs should form V-structures 

with its adverse effect. Thus, CARD is suitable for DDI discovery. In future 

work, we will explore other CBN structures and bootstrapping to identify 

persistently supported rules to increase confidence.

2. Those identified rules unsupported by prior clinical knowledge could be spurious 

or warrant further pharmacologic analysis regarding mechanism of action. From 

an algorithm perspective, one not only needs to ensure precision on finding 

known associations is sufficiently high but also the method is able to discover 

new associations with high confidence. A potential approach to investigate the 

unknown associations in the future is to conduct retrospective studies using 

patient medical records.

3. The overlapping finding between CARD and AR is low. One explanation is that 

the two algorithms theoretically favor different rule sets. AR prefers highly 

relevant rules measured by confidence and interestingness measures based on co-

occurrence of item-sets and label. CARD conversely prefers item-sets with larger 

difference but higher predictability when combined, using mutual information as 

the penalty for discarding false rules generated from random combination of 

frequent item-sets. Another possible explanation for the little overlap may be the 

super large search space. For instance, our final dataset contained 7,701 drugs 

and only considering combination of 2 drugs would yield 29,648,850 pairs; 
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hence CARD and AR may be identifying combinations from different parts of 

the actual DDI space.

This interesting observation made us more aware of the data granularity problem. 

Although free text drug names were codified to generic names with a NLP tool, 

it is not perfect; many written forms of drugs are not recognized and must be 

used in analysis as a unique concept. Furthermore, AE granularity is a challenge 

as well (11,569 MedDRA coded AEs). Our future work needs to explore 

analyses with meta-categorization of drugs and AEs by leveraging their 

hierarchical and ontological structures.

4. Many of the CARD identified drug combinations are still due to confounding 

factors such as concomitant usage or indication biases. By design, CARD may 

identify more interrelated patterns than existing methods but can also 

inadvertently find more undesired confounded patterns. Since confounding 

variables correlate with both the dependent and independent variables, incorrect 

estimate of the relationship between variables may occur when confounding 

factors are unaccounted for. However, limited by the nature of the spontaneous 

reporting data, this study only considered drug events; missing essential 

phenotypic information such as indications and comorbidities. As our future 

work, a promising approach is to explore larger set of clinical variables from 

patient medical records standardized through our participation in PCORnet [51] 

and FDA’s Sentinel initiative [52].
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APPENDIX

Association rule mining is a well-researched method for discovering interesting relationships 

between variables in large databases. The relations discovered are typically in the form of 

rules A → B, where A and B in this case denote a set of drugs and a set of adverse events, 

respectively (e.g., (aspirin, warfarin) → bleeding). A major limitation of the traditional 

association rule mining method is that the strength of rules is measured based on 

correlations, which does not imply causality. To address the limitation in this study, we 

introduce the concept of causality into association rule mining by proposing a Causal 

Bayesian network based method called Causal Association Rule Discovery (CARD). The 

CARD algorithm is described in detail as follows.
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CARD – Causal Association Rule Discovery

Problem Definition

Let D = [d1,d2, ⋯, dn] denote the indicators of the drugs taken, where di is a binary indicator 

of the action whether a patient has taken the ith drug or not. Let y be a binary indicator of the 

occurrence of an adverse drug reaction (ADR) and s j = [d1
j , d2

j , ⋯, dn
j , y j] represents an ADR 

report j. Let Ij denote the event that ith drug is taken (di = 1) and A denote the event that an 

ADR has occurred (y = 1), then an adverse reaction triggered by drug-drug interaction 

(DDIs) can be formulated as an association rule, Ii1 Ii2 ⋯ Iik → A. As DDI involves more 

than one drug, we only focus on the rules with k ≥ 2. Given a set of ADR reports, S = [s1, 

s2,⋯, sm], we aim to discover drug combinations that cause adverse reactions through causal 

association rule discovery.

In the following sections, we first formalize the concept of causal association rules, then 

derive important properties of casual association rules, and finally propose an efficient 

causal association rule discovery method.

Concept of Causal Association

Causal faithfulness condition is a commonly used assumption in causal discovery problems. 

According to the causal faithfulness condition, there exists a causal Bayesian network N 
faithful to the joint probability distribution P defined on [d1,d2, ⋯,dn, y]. For example, 

Figure 1 illustrates a causal Bayesian network with the drug and reaction variables as nodes. 

In the Bayesian network, each directed edge indicates the direct causal influence between 

the parent node and child node. Thus, d2, d3 in Figure 3 denote the direct causes of ADR y.

Based on the direct causes, we can define the causal association rule as in Definition 1. The 

causal association rules in the form of I2 I3 → A are the focus of this study, where the 

corresponding variables I2 and I3, d2 and d3 are all the direct causes of the ADR event A 

(i.e., y = 1).

Definition 1. Causal Association Rule: an association rule, Ii1 Ii2 ⋯ → A, defined on D ∪ y, 

is a causal association rule if di1 di2 ⋯ dik are the direct causes of y.

Properties of Causal Association

Although a lot of work has been conducted on the concept of causality, such as Dr. Judea 

Pearl’s inductive causality method [1], Dr. Peter Spirtes’ causal Bayesian network based 

methods [2], additive noise model [3], and a hybrid approach [4], causal discovery on high 

dimensional and sparse adverse drug-drug interaction data is still an open problem. Instead 

of reconstructing a causal Bayesian network, we propose to use the properties of causal 

Bayesian network to derive important properties of causal association rules, and apply such 

properties to guild the search of causal association rules.

In the simplest case, a causal Bayesian network with three variables {d1, d2, y} can have 

four primitive structures as shown in Figure 2. The structures in Figure 2a, 2b, and 2c are 

independent-equivalent because they entail the same set of conditional independence 
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relationships. In other words, variable d1 is conditionally independent of variable d2 given 

variable (i.e. d1 ⊥ d2|y). However, Figure 2d forms a V-structure and implies a different 

assertion that there exists a variable set D′ ⊂ D − {d1, d2} and variable d1 is conditionally 

independent of variable d2 given D’ (i.e. d1 ⊥ d2|D′ holds), but dependent given D’ ∪ {y} 

(i.e. d1 ⊥ d2| D′ ∪ {y} does not hold).

As defined by Pearl [1],”two causal models are equivalent if and only if their direct acyclic 

graphs have the same links and the same set of uncoupled head-to-head nodes”, in which the 

uncoupled head-to-head nodes indicate a V-structure. This suggests that causal associations 

can be inferred from V-structures.

Approach to Causal Association Rule Discovery

Accordingly, we propose a causality interesting measure for the rule Ii1 Ii2 ⋯ Iik → A based 

on the properties of V-structure. Consider the simplest case, Ii1 Ii2 ⋯ → A, if both Ii1 and Ii2 

are causes of A, then the corresponding three variables di1, di2 and y of Ii1, Ii2 and A forms a 

V-structure, di1 → y ← di2. Thus, the following conditions must hold:

1. There does not exist D′ ⊂ D − {di1, di2} satisfying di1 ⊥ y | D′ or di2 ⊥ y | D′

2. There exists D′ ⊂ D − {di1, di2} satisfying di1 ⊥ di2 | D′ and di1 ⊥ di2|{ D′, A }. 

where D′ can be an empty set.

To measure the strength of association and independence relation, we use the normalized 

mutual information [5]. The above properties can be transferred to the following three 

heuristic rules of the causal association interestingness measure:

• di1 and di2 should be highly associated with A, thus the rule with higher N( di1, 

y) + N( di2, y) is preferred. Here N(di1, y) is the normalized mutual information;

• di1 and di2 should be independent of each other given some variable set D′, thus 

the

rule with lower N(di1,di1 | y) is preferred;

• di2 and di2 should be dependent of each other given some variable set { D′, y}, 

thus the rule with higher N( di1, di1| y) is preferred

Combining the above three heuristic rules, we obtain the following causal association 

interestingness measure (CAIM):

CAIM Ii1Ii2 A = N(di1, y) + N(di2, y) − N(di1, di2) + N(di1, di2 y) (1)

For the rule I → A with more than three antecedents, any sub-rules containing two 

antecedents must also form a V-structure with the adverse drug reaction, di1 → y ← di2. 

Because the interestingness of rule I → A is dependent on the weakness of its sub-rules, the 

generalized interestingness measure is defined as follows.
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CAIM(I A) = min
Ii1, Ii2 ⊂ I

CAIM(Ii1Ii2 A) (2)

The interestingness defined in Formula (2) has a good monotonic property with the 

increasing number of antecedents (Theorem 1), which can be used in the mining procedure 

to accelerate interesting rule mining process. The proof of the theorem is straightforward 

and skipped here.

Theorem 1. Monotonic property: given any two association rules I1 → A and I2 → A, if 

I1 ⊂ I2, then CAIM( I1 → A) ≥ CAIM( I2 → A) holds.

Based on the definition of CAIM( I → A) given in Formula (2), we can derive the following 

incremental updating strategy for CAIM. The incremental updating strategy provides an 

efficient way to estimate the interestingness when combined with incremental association 

rule mining approach.

Theorem 2. Incremental updating strategy for CAIM: given two association rules I → A 
and an item I ∉ I,CAIM(I ∪ {I} A) = min{CAIM(I A), min

I′ ∈ I
CAIM(II′ A)}.

In addition to the interestingness measure, we can also derive the following pruning strategy 

of rules based on the properties of V-structures.

Theorem 3. Pruning strategy: given a causal association rule I → A, there do not exist 

two variables Ii1, Ii2 ∈ I satisfying di1 ⊥ di2| y, where di1, di2 and y are the corresponding 

variables of Ii1, Ii2 and A respectively.

Proof: Because I → A is a causal association rule and Ii1, Ii2 ∈,I corresponding variables on 

di1, di2 and y form a V-structure di1 → y ← di2. Based on the properties of V-structure, we 

know that di1 ⊥ di2|y does not hold.

Based on the CAIM, the proposed CARD algorithm is as follows.
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Input:   adverse drug reaction sample set S,  minimal support threshold t, minimal CAIM threshold c ;
Output:association rule set R;
Initial R as an empty set;
For each item I with sup(I A) > t

Set R′ = R ∪ I A ;
For i =  2 to the max length of the rules in R

For each rule I A ∈ R with i items
Generate a new rule r as   I ∪ I   A;
If sup r   > t

Set CAIM(r) based on Theorem 2;
If CAIM r   ≥ c and r passed the pruning in Theorem 3

R′ = R ∪ r ;
Endif

EndFor
EndFor

EndFor
Set R = R′;

EndFor

The algorithm shown above is adopted from the incremental rule mining algorithm proposed 

in [6]. It takes three input variables including the ADR sample set S and two user specified 

parameters, minimal support threshold t and minimal CAIM threshold c, and returns a set of 

potential causal association rules by conducting a mixture of breadth-first and depth-first 

search in the association rule lattice space. More specifically, the items are sequentially 

added to the lattice maintained as rule set R in a breadth-first manner. To process item I, 
existing lattice is partitioned and processed in the depth manner, i.e. the item is added to the 

rules with 1 item, then the rules with 2 items, and so on and so forth. For each newly 

generated rule, the support and CAIM are calculated, only the ones that passed the support 

threshold, CAIM threshold, and the pruning process can be added to the rule set R. More 

details about the incremental mining method can be found in [5].
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Highlights

• A causal association rule discovery algorithm is proposed for drug-drug 

interaction problem.

• The properties of V-structures in causality are effectively utilized in the search 

for causal associations.

• The proposed algorithm identifies more drug interactions in FDA adverse 

event reporting system compared to AR
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Figure 1. 
Overview of the mining process
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Figure 2. 
Basic BN structures: (a-c) conditional independence equivalent; (d) V-structure
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Figure 3. 
Example causal Bayesian network (d = drugs, y = reaction)
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Table 1.

Serious outcome code of FAERS reports utilized in this study

Outcome Code Description

DE Death

LT Life-threatening

HO Hospitalization – initial or prolonged

DS Disability

CA Congenital Anomaly

RI Required intervention to prevent permanent impairment/damage
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Table 2.

FAERS data statistics by year

Year Reports Reports with serious outcome Reports after duplicate removal

2004 272,295 141,989 135,463

2005 325,674 164,509 157,439

2006 323,791 168,401 160,793

2007 378,176 169,171 157,759

2008 441,009 198,114 180,244

2009 491,305 234,268 209,854

2010 673,170 285,939 253,287

2011 782,795 357,499 313,684

2012 821,014 352,888 319,816

Total 4,509,229 2,072,778 1,888,339
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Table 3.

Taxonomy of drugs and associations in higher-order association rules

Drugs AR CARD

1 Drug combinations known to interact 10% 20%

2 Drug combinations known to be given together or treat the same disease 4% 13%

3 Drug combinations that seem to be due to other confounding issues 7% 17%

4 Drug combinations that are unknown to interact 79% 50%

Associations

a One/more drugs in antecedent can cause the adverse event in consequent 61% 77%

b No drug in antecedent can cause the adverse event in consequent 39% 23%

Artif Intell Med. Author manuscript; available in PMC 2019 March 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cai et al. Page 25

Table 4.

Taxonomy of higher-order association rules

Taxonomy AR CARD Examples from CARD Findings

1 – a 7% 20% (amiodarone + warfarin) → INR increased

2 – a 1% 10% (alendronate + esomeprazole) → femur fracture

3 – a 5% 10% (simvastatin + ramipril) → rhabdomyolysis

4 – a 48% 37% (celecoxib + metformin) → myocardial infarction

    

1 – b 3% 0% (analgesics + cilostazol) → dyspnea (example from AR)

2 – b 3% 3% (ranitidine + alendronate) → fall

3 – b 2% 7% (aspirin + rosiglitazone) → coronary artery disease

4 – b 31% 13% (acetaminophen + isotretinoin) → intestinal hemorrhage
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