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Abstract

Viral and parasitic coinfections are known to lead to both enhanced disease progression

and altered disease states. HTLV-1 and Strongyloides stercoralis are co-endemic through-

out much of their worldwide ranges resulting in a significant incidence of coinfection. Inde-

pendently, HTLV-1 induces a Th1 response and S. stercoralis infection induces a Th2

response. However, coinfection with the two pathogens has been associated with the devel-

opment of S. stercoralis hyperinfection and an alteration of the Th1/Th2 balance. In this

study, a model of HTLV-1 and S. stercoralis coinfection in CD34+ umbilical cord blood

hematopoietic stem cell engrafted humanized mice was established. An increased level of

mortality was observed in the HTLV-1 and coinfected animals when compared to the S. ster-

coralis infected group. The mortality was not correlated with proviral loads or total viral RNA.

Analysis of cytokine profiles showed a distinct shift towards Th1 responses in HTLV-1

infected animals, a shift towards Th2 cytokines in S. stercoralis infected animals and ele-

vated TNF-α responses in coinfected animals. HTLV-1 infected and coinfection groups

showed a significant, yet non-clonal expansion of the CD4+CD25+ T-cell population. Num-

bers of worms in the coinfection group did not differ from those of the S. stercoralis infected

group and no autoinfective larvae were found. However, infective larvae recovered from the

coinfection group showed an enhancement in growth, as was seen in mice with S. stercora-

lis hyperinfection caused by treatment with steroids. Humanized mice coinfected with S.

stercoralis and HTLV-1 demonstrate features associated with human infection with these

pathogens and provide a unique opportunity to study the interaction between these two

infections in vivo in the context of human immune cells.
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Author summary

Human infections with the virus HTLV-1 and the nematode Strongyloides stercoralis are

co-endemic throughout much of their worldwide ranges resulting in a significant inci-

dence of coinfection. The coincident infections result in S. stercoralis hyperinfection and

an alteration of the balance of the immune responses to the virus and to the worm. In this

study, a novel model of HTLV-1 and S. stercoralis coinfection was established in human-

ized mice. Mortality was increased in the HTLV-1 and coinfected animals as compared to

the S. stercoralis infected group. Analysis of cytokine profiles showed a distinct shift

towards Th1 responses in HTLV-1 infected animals, a shift towards Th2 cytokines in S.

stercoralis infected animals and elevated TNF-α responses in coinfected animals. Numbers

of worms in the coinfection group did not differ from those of the S. stercoralis infected

group, however, infective larvae recovered from the coinfection group showed a signifi-

cant enhancement in growth. Humanized mice coinfected with S. stercoralis and HTLV-1

demonstrate features associated with human infection with these pathogens and provide a

unique opportunity to study the interaction between these two infections.

Introduction

Strongyloides stercoralis, an intestinal nematode parasite of humans, has an estimated global

prevalence of 370 million people, mostly in tropical and subtropical regions of the world [1,2].

Humans acquire the infection via skin-penetrating third-stage infective larvae (L3i). L3i

migrate to the intestine where they mature into parthenogenic female worms and release eggs

that hatch into first stage larvae (L1), which continue their development either via free-living

or parasitic life cycles. Most cases are asymptomatic, with eosinophilia being a primary sign of

infection. Corticosteroid administration concurrent with S. stercoralis infection has been

linked to the development of hyperinfection syndrome. Hyperinfection represents an amplifi-

cation of the normal life cycle, leading to excessive worm burden within the usual migration

pattern and the presence of autoinfective third-stage larvae (L3a) [3,4]. Symptoms can include

hemoptysis, pulmonary infiltrates and frank bleeding [5] and when left untreated mortality

rates may reach 87% [6,7].

HTLV-1 is a retrovirus that infects approximately 5–10 million people and is endemic in

South America, Africa, Japan and the Caribbean [8]. Transmission of HTLV-1 occurs through

breast feeding, sexual intercourse, transfusion of contaminated blood products or sharing of

contaminated syringes and needles [9]. HTLV-1 pathogenicity is characterized by increased

proliferation of CD4+CD25+CCR4+ T-cells [10–12]. The majority of HTLV-1 infected individ-

uals remain asymptomatic carriers during their lives [13]. However, after a long latency period,

approximately 5% of HTLV-1 carriers develop adult T-cell leukemia/lymphoma (ATLL), a

CD4+ T-cell malignancy, and 1–4% develop HTLV-1 associated myelopathy/tropical spastic

paraparesis (HAM/TSP), a chronic inflammatory disease [14]. Currently, there is no effective

vaccine or therapy for HTLV-1 infection or treatment for ATLL or HAM/TSP [15].

Viral and parasite coinfections are known to lead to both enhanced disease progression

and altered disease states [16,17]. Numerous sources have reported that concurrent infec-

tion with S. stercoralis and HTLV-1 is linked to the development of hyperinfection syn-

drome [18–21]. HTLV-1 and S. stercoralis are co-endemic throughout much of their

worldwide ranges resulting in a significant incidence of coinfection. Studies show that

coinfection with these pathogens can lead to increased morbidity and mortality compared

to each independent infection [18–21]. HTLV-1 infection predominantly induces a Th1
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response, characterized by elevated production of IFN-γ and TNF-α [19], whereas S. ster-
coralis infection predominantly induces a Th2 response, characterized by higher levels of

IL-4, IL-5, IL-13 and IgE [19]. During coinfection, cross talk between the Th1 and Th2

responses can alter the immune responses within a host [22]. Some individuals coinfected

with HTLV-1 and S. stercoralis have higher levels of IFN-γ, and lower levels of IL-4, IL-13,

IL-5 and IgE than in those with only S. stercoralis infection [19]. Clinical evidence has

shown coinfection results in a decrease of IL-5 and IgE responses by skewing the Th2 to a

Th1 response [20]. Down-regulation of the Th2 response and a decrease in S. stercoralis-
specific IgE may contribute to the severity of parasitic burden observed in hyperinfection.

A decrease in IL-4 and IL-13 is associated with a reduction in numbers of L1 passed in the

feces. Retention of L1 in the gut may allow them to develop into L3a. Furthermore, the

decrease in IL-5 may impair the activation and proliferation of eosinophils involved in

parasite killing [20]. In contrast to this, other studies have shown that coinfected patients

have lower Th1 responses and increased Th2 responses. It remains unclear when one type

of CD4 helper response dominates over the other in humans coinfected with HTLV-1 and

S. stercoralis [23]. Patients coinfected with S. stercoralis and HTLV-1 have increased pro-

portions of CD4+CD25+FoxP3+ regulatory T-cells compared to patients with either infec-

tion alone, and these proportions are inversely correlated with antigen-driven IL-5

responses. The enhanced regulatory T-cell function and the resulting reduction in the IL-5

response may explain the decreased eosinophil numbers seen in coinfected individuals

[24]. S. stercoralis antigens promote clonal proliferation of HTLV-1 infected cells by acti-

vating the IL-2/IL-2R system resulting in an increased proviral load in coinfected individ-

uals compared to asymptomatic carriers [25,26]. S. stercoralis infection is associated with

increased proviral load due to both increased numbers of infected clones, as well as

increased oligoclonal proliferation independent of viral integration site [14,27]. However,

conflicting data have also shown a decrease in proviral load in coinfected individuals com-

pared to asymptomatic carriers, thus the effect of S. stercoralis on HTLV-1 proviral load

remains unclear [23].

Several animal models have been developed to study S. stercoralis and HTLV-1 in vivo. The

NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mouse model can recapitulate the full spectrum of S.

stercoralis infection that is observed in humans including the induction of hyperinfection in

the presence of corticosteroids [4]. Balb/c-Rag1-hu−/−γc−/− and Bone marrow Liver Thymus

mice engrafted with CD34+ hematopoietic stem cells are susceptible to HTLV-1 infection as

evidenced by detectable levels of proviral load in peripheral blood and spleen, and expression

of tax protein in the brain and spinal cord [28]. NOD.Cg-Prkdcscid Il2rgtm1Sug/JicTac (NOG)

mice engrafted with human peripheral blood mononuclear cells and infected with HTLV-1

producing MT-2 cells also support infection, showing an increase of proviral load with time

and oligo-proliferation of infected cells [29]. Humanized NRG mice, a phenotypically similar

mouse to the NSG, have been reliably infected with HTLV-1 with polyclonal expansion of

CD4+CD25+ T-cells, with leukemic T-cell overgrowth with lobulated nuclei, hypercytokine-

mia, and down regulation of CD3 on T-cells being observed [30]. Lastly, NSG mice, engrafted

with human fetal thymus and liver and CD34+ stem cells isolated from the same fetal tissue

one day from birth (NSG-1d), were shown to be highly susceptible to infection by HTLV-1

and demonstrated rapid polyclonal proliferation and infiltration of CD4+CD25+ T-cells to

vital organs, weight loss and death [31]. Here we report the infection of CD34+ umbilical cord

blood hematopoietic stem cell engrafted humanized NSG mice with S. stercoralis, the success-

ful infection of such humanized NSG mice with HTLV-1, and the coinfection of S. stercoralis
and HTLV-1 in these humanized NSG mice with resultant alterations in cytokine responses

and parasite development.
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Materials and methods

Ethics statement

All experimental procedures in mice were performed in compliance with the ethical and regu-

latory standards set by the NIH for animal experimentation. The animal use protocol (00136)

was approved by the Thomas Jefferson University Institutional Animal Care and Use Commit-

tee (IACUC). This protocol adhered to the “Guide for the Care and Use of Laboratory Ani-

mals” published by the National Research Council, USA. Umbilical cord blood samples used

to obtain CD34+ stem cells were deemed anonymous by the Thomas Jefferson University

Institutional Review Board (IRB) and therefore were considered IRB exempt.

Humanized mice

NOD.Cg-PrkdcscidIL2rγtm1Wjl/SzJ (NSG) and C57BL/6J mice were purchased from the Jackson Lab-

oratories (Bar Harbor, ME, USA). All mice were housed in micro-isolator boxes in a pathogen-free

room at the Laboratory Animal Science Facility at Thomas Jefferson University (Philadelphia, PA).

The mice were kept under temperature, humidity and light cycle controlled conditions. The NSG

mouse breeding colony was sustained in-house, with breeding trios given acidified water and high

fat 5K52 animal chow (LabDiet, St. Louis, MO, USA). NSG mice were humanized following previ-

ously published protocols [4,32]. Briefly, 24 to 48 hour old NSG pups were irradiated with 1.5 Gy.

Five hours post irradiation, mice were intra-hepatically injected with 105 human hematopoietic

stem cells (HSCs), isolated from cord blood collected from full term natural deliveries (Department

of Obstetrics and Gynecology, Thomas Jefferson University), in 25 μl of PBS, using a 30-gauge nee-

dle and Hamilton syringe [Fig 1]. Human CD45+ levels were assessed by flow cytometry. NSG

mice with a minimum engraftment of 35% of the lymphocytic gate were used in the experiments.

MT-2 cell line

HTLV-1 transformed cell line MT-2 [33] was grown in RPMI 1640 medium (Corning Cellgro,

Manassas, VA, USA) supplemented with 10% fetal bovine serum (Gemini Bio-Products, West

Sacramento, CA, USA), 100 U/ml penicillin, 100 μg/ml streptomycin (Corning Cellgro), and

200 nM L-glutamine (Corning Cellgro). Cells were incubated at 37˚C with 5% CO2.

HTLV-1 infections

HTLV-1 infected MT-2 cells were irradiated at 10 Gy and 2 x 106 cells were injected intraperi-

toneally into humanized NSG mice [Fig 1].

S. stercoralis L3i

UPD strain of S. stercoralis was maintained in immunosuppressed laboratory dogs at the Uni-

versity of Pennsylvania. Procedures on dogs were approved by and conducted in compliance

with the IACUC (protocol 804883) at the University of Pennsylvania. L3i were obtained from

charcoal coproculture of stools from infected laboratory dogs [34].

S. stercoralis L3i infections

S. stercoralis L3i were concentrated by centrifugation, mixed in a 1:1 ratio with 2% low melt

agarose solution (Gemini Bio, West Sacramento, CA, USA) and poured into a petri dish. Para-

site-agar mixture was allowed to harden, and the L3i that migrated out of the agarose were col-

lected and then concentrated by centrifugation in 10 ml of NI media consisting of a 1:1

mixture of NCTC-135 and Iscove’s Modified Dulbecco’s medium (Sigma Aldrich, St. Louis,

PLOS NEGLECTED TROPICAL DISEASES Strongyloides and HTLV-1 coinfection in CD34+ cord blood stem cell humanized mice

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009559 July 27, 2021 4 / 22

https://doi.org/10.1371/journal.pntd.0009559


MO, USA) with 100 U/ml penicillin, 100 μg/ml streptomycin, 0.25 mg/ml levofloxacin (Leva-

quin; Akorn, Inc., Lake Forest, IL, USA) and 0.1 mg/ml gentamicin sulfate (EMD Millipore

Corp., Billerica, MA, USA). L3i were then concentrated and washed 5 times in NI media. In

the initial experiments humanized mice were infected with a low dose of 500 L3i injected sub-

cutaneously every 7 days for 4-weeks to determine parasite survival in humanized mice. In the

coinfection and steroid treatment experiments, humanized mice received a single infection of

5,000 L3i at 11–12 weeks post HSC engraftment. Steroid treated mice receive 2 mg of methyl-

prednisolone acetate (MPA; Pfizer, New York, NY, USA) intraperitoneally once per week

starting from time of the S. stercoralis infection until the end of the experiment [Fig 1].

S. stercoralis recovery

Mice were fasted for the 12 hours prior to necroscopy, anesthetized by isoflurane and exsangui-

nated for blood collection. Stomach, large intestines and small intestines were removed from the

body cavity and were soaked in PBS to allow worms to migrate out of the tissues. The remaining

tissues were minced and placed in a sieve within PBS. All tissues were incubated at 37˚C, fluid was

collected and concentrated by centrifugation, recovered parasites were counted and stages identi-

fied [Fig 1]. Worms were fixed with warm ethanol/glycerol (95%/5%) solution and then mounted

onto slides using glycerine jelly. Parasite lengths were measured using the CellSens imaging and

analysis software package (Olympus, Center Valley, PA, USA). L3i were distinguished from L3a

by length and by tail morphology, with L3i having bifid tails and L3a having pointed tails [4].

PCR

Fifty microliters of whole blood was collected retro-orbitally every week and at necropsy and

placed into a tube containing 20 μl of heparin [2,000 U/ml] [Fig 1]. Erythrocytes were lysed

Fig 1. 24–48-hour old NSG pups were irradiated with 1.5 Gy. Five hours post irradiation, mice were intra-hepatically injected with 105 human

hematopoietic stem cells (HSC) isolated from cord blood. Humanized mice were assigned to four groups: HTLV-1 infected, HTLV-1/S. stercoralis
coinfected, S. stercoralis infected, and S. stercoralis infected with methylprednisolone acetate (MPA) treatment. At 7–8 weeks post HSC engraftment,

coinfected and HTLV-1 infected groups received an intraperitoneal injection of 2 x 106 irradiated MT-2 cells carrying HTLV-1. The coinfection, S.

stercoralis infection, and MPA treated groups were inoculated with 5,000 L3i at 11–12 weeks post HSC engraftment. Steroid treated mice received 2

mg of MPA intraperitoneally weekly from the time of S. stercoralis infection until the end of the experiment. Coinfected and HTLV-1 infected

groups were bled weekly post MT-2 injections and blood was analyzed for viral DNA and RNA analysis. Blood was collected from coinfected,

HTLV-1 infected, and S. stercoralis infected groups once at 13–14 weeks post HSC engraftment for flow cytometry analysis. Necropsies were

performed at 16–18 weeks post HSC engraftment. The figure was generated using https://biorender.com/.

https://doi.org/10.1371/journal.pntd.0009559.g001
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with BD Pharm Lyse [10x] (BD Biosciences, San Jose, CA, USA). The remaining blood cells

were pelleted via centrifugation and washed in PBS. Genomic DNA from the first two experi-

mental groups was extracted from the cell pellet using Wizard Genomic DNA Purification Kit

(Promega, Madison, WI, USA) following the manufacturer’s recommendations. Realtime PCR

was used to determine HTLV-1 proviral levels using the SensiFAST probe Hi-ROX 2X Kit

(Bioline, Taunton, MA, USA) following the manufacturer’s directions. HTLV-1 pX and

human HBB gene specific primers and probes (Integrated DNA Technologies, Skokie, IL,

USA) were used and human beta-globin (HBB) was used to normalize the proviral load data

[HTLV-1 pX F—5’- ACAAAGTTAACCATGCTTATTATCAGC -3’, R—5’- TCTCCAAACA

CGTAGACTGGGT -3’, probe—5’-FAM- TTCCCAGGGTTTGGACAGAGT CTTCT -BHQ-

3: Control Primers HBB F—5’- TGAGGAGAAGTCTGCCGTTAC -3’, R—5’- TGGTCTCC

TTAAACCTGTCTTG -3’, Probe—5’-FAM- AAGGTGAACGTGGATGAAGTTGGTGG

-BHQ-3’]. RNA from the third experimental group was extracted from pelleted blood cells

using a Qiagen RNEasy kit (Qiagen, Germantown, MD, USA). The RNA samples were ana-

lyzed using the same primers as the proviral loads, using a SensiFAST probe Hi-ROX One-

Step Kit (Bioline) following the manufacturer’s directions.

The TCR gene segments were amplified from peripheral blood leukocytes following previously

published protocols [35]. DNA isolated from first two experimental groups were used in the clon-

ality assay. Briefly, TCR genes were amplified with different primers designed specifically for each

V segment. TCRy V2: 5’CTTC CTGCAG ATG ACT CCT ACA ACT CCA AGG TTG 3’, TCRy

V3: S’CTTC CTGCAG ATG ACG TCT CCA CCG CAA GGG ATG 3’, TCRy V4: 5‘CTTC

CTGCAG ATG ACT CCT ACA CCT CCA GCG TTG 3’, TCRy V5: 5’ TTC CTGCAG ATG

ACG TCT CCA ACT CAA AGG ATG 3‘, TCRy V8: S‘CTTC CTGCAG ATG ACT CCT ACA

ACT CCA GGG TTG 3’, TCRy V9: 5’GGNA CTGCAG GAA AGG AAT CTG GCA TTC CG 3’,

TCRy V10: 5’ CT CTGCAG AAT CCG CAG CTC GAC GCA GCA 3‘, TCRy V11: 5’ CA CTGC

AG GCT CAA GAT TGC TCA GGT GGG 3’, TCRy V12 (+VC): 5’ ACT CTGCAG CCT CTT

GGG CAC TGC TCT AAA 3’. For the J segments the following primers were used: JGT12: 5’

AAG TGT TGT TCC ACT GCC AAA 3’, JGT3: 5’ AGT TAC TAT GAG CYT AGT CCC 3’,

JGT4: 5’ TGT AAT GAT AAG CTT TGT TCC 3’. The primers were used in two separate mixes:

Mix 1 (V2, 3, 4, 8, 9) and Mix 2 (V5, 10, 11, 12) all three J primers were included in each of the

two mixes. The TCR segments were amplified using DreamTaq Green PCR Master Mix (Ther-

moFisher, Waltham, MA, USA) using PCR (45 cycles of: 95˚C for 1 minute, 55˚C for 1 minute,

72˚C for 1 minute) and run on a 2% agarose gel with SYBR Safe DNA gel stain (1:10000) (Invitro-

gen, Carlsbad, CA, USA) for visualization with a UV transilluminator. The gels were analyzed for

evidence of any concise bands which may indicate the presence of clonal proliferation.

Flow cytometry

Blood was collected once, at week 13–14 (2 weeks post S. stercoralis infection) for flow cytome-

try analysis [Fig 1]. Whole blood was placed into tubes containing 20 μl heparin (2,000 U/ml)

to prevent clotting. Erythrocytes were lysed using BD Pharm Lyse (BD Biosciences). Remain-

ing blood cells were washed in FACS buffer [DPBS (Cellgro), 3% BSA (Gemini Bio Products),

5 mM EDTA (Sigma Aldrich) and stained in a 100-μL volume for 30 min at 4˚C with the fol-

lowing antibodies: mouse anti-human CD45 (clone HI-30), CD4 (clone RPA-T4), CD8 (clone

SK1), and CD25 (clone M-A251) (BD Biosciences). The cells were washed, fixed in 4% para-

formaldehyde for 30 min, washed and then resuspended in 250 μL of FACS buffer. Cells were

analyzed on a BD FacsDIVA and the data analyzed using the FlowJo X software (FlowJo, LLC,

Ashland, OR). Lymphocytes were identified using forward and side scatter and human lym-

phocytes were identified using a human specific anti-CD45+ antibody.
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Luminex

Luminex cytokine assays was performed following the manufacturer’s directions on serum

samples isolated prior to infection and at the terminal bleed [Fig 1]. Briefly, undiluted serum

samples isolated from humanized mice infected with HTLV-1, S. stercoralis, or both HTLV-1

and S. stercoralis were analyzed using Milliplex Map Kit magnetic bead panels as per the man-

ufacturer’s protocol (EMDMillipore). Plates were analyzed on a MAGPIX Luminex machine

(Austin, TX, USA). All analyte concentrations were calculated using Milliplex Analyst software

(EMDMillipore). The following 8 human cytokines were measured in the serum of the control

and infected animals: IL-4, IL-5, IL-10, IL-12p40, IL-13, IL-17A, IFN-γ and TNF-α.

Statistics

All experiments consisted of 3–9 mice per group and experiments were performed three inde-

pendent times. Data presented are collected from all experiments except for proviral load

results. Kaplan-Meier curves of the four groups as well as the group-wise log-rank test were

analyzed in Prism 7.0 (Systat Inc., Evanstown, IL, USA) and R [36]. Parasite recovery, T-cell

populations, and worm length data were analyzed by multifactorial analysis of variance

ANOVA with post-hoc Fisher’s Least Significant Difference (LSD) testing in Systat v.11 (Systat

Inc.) and R (Vienna, Austria). P< 0.05 was considered statistically significant. For each cyto-

kine measurement, a non-detectable result, resulting in a ‘0’ signal strength was replaced by ‘1’

in the analysis so that the log-transformation on signal strength could be performed. The effect

of infection on cytokine responses was assessed by comparing week-7 levels to Day 0 baseline,

which was regarded as offset. Evaluation was performed using generalized linear regression

models on the log-transformed cytokine signals allowing for within-group heteroscedasticity

structure if adequate. The generalized linear regression models, as well as the group-wise com-

parisons (without multiple test adjustment), were fitted using R packages nlme and multcomp

[37,38].

Results

Humanized-mouse response to Strongyloides stercoralis infection

Humanized NSG mice were infected with 500 L3i weekly for 4-weeks to determine if the mice

were susceptible to infection with S. stercoralis and if their human immune system mounted a

response to the infection following repeated exposure. At 6-weeks post final infection, the

humanized mice were dissected to recover parasites from the tissues. There were significantly

fewer adults [Fig 2A] and L3i [Fig 2B] recovered from the tissues of infected humanized mice

than NSG mice. No significant differences were seen in the numbers of L1 [Fig 2C] recovered

from the infected NSG mice and humanized NSG mice. CD34+ humanized mice were found

to support all stages of the S. stercoralis lifecycle, although with lower numbers of parasites

than seen in NSG mice.

Mortality rates of humanized mice infected with S. stercoralis and/or

HTLV-1

Previous studies using NSG mice demonstrated that injection of 5,000 L3i into the mice

resulted in consistent and well tolerated infections [4]. Humanized mice infected with 5,000

L3i of S. stercoralis tolerated the infection well with 91% of infected mice surviving for at least

7- weeks. Humanized mice infected with S. stercoralis and treated with MPA to induce hyper-

infection had 70% survival at 7-weeks. This is in contrast to humanized mice infected with

HTLV-1, which had only 21% survival, while coinfected humanized mice had survival of 34%
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at 7-weeks. The 13 percent decrease in the survival observed when comparing HTLV-1 and

coinfected animals [p = 0.07] suggests an interplay between the two pathogens affecting the

viability of the infected host [Fig 3].

HTLV-1 proviral and total viral RNA levels

HTLV-1 proviral loads and total viral RNA levels were measured to assess the relationship

between HTLV-1 infection and the enhanced mortality observed in humanized mice. Proviral

loads were determined in human PBMC isolated from retro-orbital blood of humanized mice

using primers specific to the pX region in real time PCR assays. The total proviral load in

human PBMC increased during the first 4-weeks of infection in two independent replicate

experiments. From week-5 through 7 two separate patterns were observed. In one cohort of

animals the proviral loads continued to increase in week-5, sustaining these levels through

weeks 6 and 7 [p<0.001] [Fig 4A], while in the other, the proviral loads significantly decreased

in weeks 5–7 from their 4-week high [p< 0.01] [Fig 4B]. Total viral RNA levels, measured

from weeks 3 to 7, increased from week 3 to 4 following a similar trend to that found for

Fig 2. C57BL/6J, NSG and humanized NSG mice were infected with 500 infective third-stage larvae (L3i) of Strongyloides stercoralis weekly for

4-weeks to determine susceptibility of the mice to the infection. Adults (A), L3i (B) and first stage larvae (L1) (C) were collected and counted. Data

presented are means ± standard deviations and asterisk represents p< 0.05.

https://doi.org/10.1371/journal.pntd.0009559.g002
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proviral loads. Unlike proviral DNA levels in the previous two experiments, a third pattern

emerged with viral RNA levels decreasing after week-4 and then rebounding at week-7 [Fig

4C]. No significant correlations were observed between mortality of infected mice and HTLV-

1 proviral load or total RNA levels, suggesting that these levels did not play a direct role in the

elevated mouse mortality rates.

Human cytokines measured in the serum of infected humanized mice

HTLV-1 infections in humans are associated with Th1 CD4+ cell cytokine responses [39, 40]

while S. stercoralis infections often present with Th2 cytokine responses [41]. Serum was

recovered from infected humanized mice and the human cytokines IFN-γ, TNF-α and IL-

12p40 were measured to monitor Th1 responses, and IL-4, IL-5, IL-10 and IL-13 measured to

monitor Th2 responses, and IL-17A measured to monitor Th17 responses. At 7-weeks post-

infection the human cytokines IFN-γ, TNF-α, IL-12p40, IL-10 and IL-13 were elevated in

Fig 3. Mortality rates of humanized NSG mice during infection with HTLV-1 and Strongyloides stercoralis (Ss). Mice were infected with either 5,000

S. stercoralis infective third-stage larvae, HTLV-1 or a combination of the two pathogens. As a positive control group, mice infected with S. stercoralis
were treated with the steroid methylprednisolone acetate (MPA). Mortality rates were tracked throughout the 7-week course of the infection. The dotted

vertical line indicates the date the mice were infected with S. stercoralis, 21 days post infection with HTLV-1. Mortality rates are a combination of three

independent replicates and the total n value for each experimental group is included in the figure. Asterisk represents p< 0.05.

https://doi.org/10.1371/journal.pntd.0009559.g003
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humanized mice infected with HTLV-1, S. stercoralis or with the dual infection, as compared

to background controls. IL-5 was significantly elevated only in humanized mice infected with

S. stercoralis. IL-4 and IL-17A levels were not significantly elevated, as compared to back-

ground, in any of the infected humanized mice. The levels of the cytokine responses differed

greatly, with IFN-γ responses in HTLV-1 infected mice 178 times higher than baseline whereas

IL-5 levels in S. stercoralis infected mice were elevated 3 times over baseline [Fig 5].

Group-wise comparison of the 7-week infection-induced cytokine responses, regarding the

day 0 baseline responses as an offset, were performed. Significant differences were only noted

in IFN-γ and TNF-α responses between infection groups at week-7. The IFN-γ levels in the S.

stercoralis group was only 2% of the dual infection group [95% CI 0.00~0.22, p< 0.001], and

only 8% of that of the HTLV group [95% CI 0.01~0.79, p = 0.031]. There was no significant

difference in the IFN-γ levels between the dual infection group and the HTLV-1 group. On the

Fig 4. Proviral and viral load levels in humanized NSG mice during infection with HTLV-1 and Strongyloides stercoralis (Ss). Proviral loads in

white blood cells were determined using real-time PCR with primers and probes specific for the HTLV-1 pX region. The HTLV-1 total RNA levels in

the white blood cells were determined using real-time PCR. Results for proviral load measurements from two independent experiments are presented

(A & B) and viral RNA levels from one experiment (C). No significant difference was observed between HTLV-1 infected and coinfected animals. The

vertical dotted line represents time of S. stercoralis infection with 5,000 third stage larvae.

https://doi.org/10.1371/journal.pntd.0009559.g004

PLOS NEGLECTED TROPICAL DISEASES Strongyloides and HTLV-1 coinfection in CD34+ cord blood stem cell humanized mice

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009559 July 27, 2021 10 / 22

https://doi.org/10.1371/journal.pntd.0009559.g004
https://doi.org/10.1371/journal.pntd.0009559


other hand, for TNF-α the levels in the HTLV group was 8% of that of the dual infection group

[95% CI 0.02~0.29, p< 0.001] and the levels of the S. stercoralis group was 8% of that of the

dual infection group [95% CI 0.01~0.49, p = 0.006]. Thus, differences in the cytokine levels

between the groups of infected mice at 7-weeks post-infection showed humanized mice

infected with HTLV-1 or coinfected with HTLV-1 and S. stercoralis had significantly higher

IFN-γ levels than that seen in mice only infected with S. stercoralis. TNF-α levels were signifi-

cantly enhanced in coinfected animals when compared to levels in mice infected with only S.

stercoralis or only HTLV-1.

Analysis of the human CD4+CD25+ T-cells population in HTLV-1 and

HTLV-1/S. stercoralis infected humanized mice

Flow cytometry was performed on human PBMC isolated from blood recovered from infected

humanized mice to determine the changes in T-cell subsets associated with infection with

HTLV-1 and/or S. stercoralis. This analysis was performed at only one time point because of

restrictions in blood volumes that could be obtained from individual mice. The cohorts of

mice used in this analysis were comprised of humanized mice generated from multiple stem

cell donors in an effort to diminish any donor bias and thus ensure that representative

immune responses would be observed. At 2-weeks post infection with S. stercoralis, the CD45+

lymphocyte population in humanized mice was 14% ± 1.4 of the lymphocyte gate and granulo-

cyte gate based on forward and side scatter, which was statistically lower than the 71% ± 35 in

HTLV-1 infected and 87% ± 15 in HTLV-1/S. stercoralis coinfected animals. While no signifi-

cant differences were observed in the total number of CD3+ cells at this time point, the number

of CD4+ cells was significantly higher in HTLV-1/S. stercoralis coinfected mice as compared to

mice infected with only HTLV-1. CD4+CD25+ T-cell populations were significantly elevated

in HTLV-1/S. stercoralis coinfected mice [68% ± 6] as compared to HTLV-1 infected mice

[37% ± 30] [Fig 6].

Clonality of TCR

Population clonality was examined by PCR to determine if the enhanced population of

CD4+CD25+ cells represented a clonal proliferation possibly due to ATLL. The amplified

Fig 5. Comparison of human Th1 and Th2 cytokine levels measured in serum from mice infected with HTLV-1,

Strongyloides stercoralis (Ss) or coinfected with both HTLV-1 and S. stercoralis. Measurements were taken of

preinfection sera (T0) and at 7-weeks post infection (T7). Geometric mean and standard deviations of cytokine levels

are presented. The estimated mean ratios as well as 95% confidence intervals are presented with P values. For clarity of

presentation all numbers are rounded without decimal points.

https://doi.org/10.1371/journal.pntd.0009559.g005
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variable regions of the T-cells isolated from the mouse peripheral blood were analyzed by gel

electrophoresis for evidence of concise bands which may indicate the presence of clonal prolif-

eration. In the absence of any concise bands, it was concluded that there was general T-cell

proliferation and not clonal proliferation of these T-cells.

S. stercoralis stages recovered from humanized NSG mice

Parasites were recovered 4-weeks post-infection from humanized mice to determine if coinfec-

tion with HTLV-1 altered the developmental profile of S. stercoralis. Parasites were categorized

as L3i, adult or L1 [Fig 7A–7C]. No significant differences were seen in L3i, adult or L1 num-

bers in the S. stercoralis/HTLV-1 coinfected mice as compared to the S. stercoralis infected

mice. Significantly increased numbers of L3i, adult worms and L1 were seen in MPA treated

humanized-mice infected with S. stercoralis as compared to untreated S. stercoralis infected

mice and in mice with coinfections [Fig 7A–7C].

One of the hallmarks of S. stercoralis hyperinfection is the presence of L3a in the tissues of

infected animals [4]. Only MPA treated humanized mice infected with S. stercoralis had L3a

isolated from their body tissues, based on both tail morphology and length [Fig 8A]. Measure-

ment of the recovered L3i, however, revealed that the L3i isolated from the coinfected mice

were significantly longer [446 μm ± 54] than those isolated from animals only infected with S.

stercoralis [415 μm ± 50]. L3i isolated from humanized-mice with hyperinfection caused by

MPA were significantly longer [513 μm ± 42] than L3i recovered from untreated mice infected

with S. stercoralis and mice coinfected with both S. stercoralis and HTLV-1 [Fig 8B]. This

observation was confirmed in three replicate experiments. There appeared to be two distinct

populations of L3i recovered from mice coinfected with S. stercoralis and HTLV-1, with 30%

of L3i larger than 470 μm and 70% smaller. Using the same criteria, 87% of the L3i recovered

from mice infected with only S. stercoralis were in the smaller group and 84% of the L3i recov-

ered from mice coinfected with S. stercoralis and HTLV-1 were in the larger group. The larger

L3i recovered from mice coinfected with S. stercoralis and HTLV-1 had a mean length of

509 μm ± 35 that was statistically equal to the L3i recovered from mice treated with MPA and

different from L3i recovered from untreated humanized mice [p< 0.001]. The smaller L3i

Fig 6. Composition of the human immune cells from peripheral blood in humanized NSG mice during HTLV-1 and Strongyloides
stercoralis (Ss) coinfection taken at 2-weeks post-infection with S. stercoralis. Human lymphocytes were stained with mouse anti-human

CD45, CD3, CD4, CD8, and CD25 and analyzed by flow cytometry. Asterisk represents p< 0.05.

https://doi.org/10.1371/journal.pntd.0009559.g006
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recovered from mice coinfected with S. stercoralis and HTLV-1 had a mean length of

419 μm ± 34 that was statistically equal to the L3i recovered from untreated humanized mice

and different from L3i recovered from mice treated with MPA [p < 0.001]. It was therefore

concluded that both MPA and coinfection with HTLV-1 enhance the growth of S. stercoralis
L3i in humanized mice.

Discussion

HTLV-1 and S. stercoralis coinfection has been associated with the development of S. stercora-
lis hyperinfection [18–20,42,43], a disease with high mortality rates when left untreated

[42,44]. Small animal models utilizing NSG mice have been described for both HTLV-1 and

for S. stercoralis hyperinfection [4,30,31]. In the present study, the first dual infection model

for HTLV-1 and S. stercoralis is described, utilizing NSG mice that have been humanized with

human hematopoietic stem cells [32,45]. Infection of humanized mice with HTLV-1 and/or S.

stercoralis resulted in multiple facets of the clinical etiology that match with human disease

Fig 7. Effects of HTLV-1 infection and methylprednisolone acetate (MPA) on Strongyloides stercoralis infection in humanized NSG mice 7-weeks

post-infection. Mice were infected with 5,000 S. stercoralis infective third-stage larvae (L3i) and either treated with MPA or infected with HTLV-1. Data

presented are means ± standard deviations and asterisk represents p< 0.05 for numbers of (A) L3i, (B) adults and (C) first stage larvae (L1) recovered

from the mice.

https://doi.org/10.1371/journal.pntd.0009559.g007
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progression, including variability within the proviral and total viral RNA loads of HTLV-1

depending upon host, strong Th1 cytokine responses to HTLV-1 infection, limited Th2 cyto-

kine responses to S. stercoralis infection, mortality of humanized mice with S. stercoralis hyper-

infection and enhanced development of the parasite in the coinfection model when compared

to a solitary S. stercoralis infection [42,43,46,47]. This novel model will allow researchers, for

the first time, to experimentally observe the interplay between these two pathogens.

The human immune system present in the CD34+ humanized mice has functional elements

as well as multiple deficiencies in immune components. The stem cells are capable of differen-

tiation into an immature, partially functional human immune system consisting of human B-

cells, T-cells, monocytes and dendritic cells. Although, the functionality of each of these cell

types is often compromised, they do recapitulate many of the functions of the human immune

system [32, 45]. Humanized mice were infected with 4 low doses of S. stercoralis to determine

if these mice were susceptible to infection and if the human immune system was capable of

recognizing and controlling the infection. All stages of the S. stercoralis life cycle developed in

humanized mice. There was, however, a significant decline in the number of L3i and adult

worms that were recovered from the humanized mice as compared to NSG mice. These find-

ings demonstrate that humanized mice are susceptible to infection with S. stercoralis and

based on the decrease in numbers of L3i and adult worms recovered from humanized mice, it

appears that the transplanted human immune system may play a role in controlling the

repeated infection with L3i of S. stercoralis.
Humanized mice tolerated infection with S. stercoralis with minimal mortality, closely

approximating rates seen in humans during uncomplicated S. stercoralis infections. When

humanized mice were infected with HTLV-1 alone, a 90% mortality rate was observed by

week-7. Premature death was also found to be a limitation in the NSG-d1 model, in which

Fig 8. Effects of infection with HTLV-1 or treatment with methylprednisolone acetate (MPA) on the development of Strongyloides stercoralis autoinfective third

stage larvae (L3a) and lengths of third-stage larvae (L3i) recovered from humanized NSG mice. Mice were infected with 5,000 S. stercoralis L3i and either treated with

MPA or infected with HTLV-1. (A) Percentage of L3i and L3a recovered from the body tissues of S. stercoralis infected animals. (B) Lengths of L3i recovered from the

body tissues of S. stercoralis infected humanized NSG mice. Data are a combination of three independent replicate experiments. Asterisk represents p< 0.05. Red dashed

line marks 470 μm.

https://doi.org/10.1371/journal.pntd.0009559.g008
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premature death was related to the incomplete reconstitution of a normal immune system,

and the rapid polyclonal proliferation of CD4+CD25+ T-cells that infiltrate organs causing

weight loss and death [31]. Interestingly, HTLV and S. stercoralis coinfected mice exhibited

longer survival as compared with HTLV-1-infected mice alone in two of three separate experi-

ments using different donor CD34+ stem cells, with an overall tendency for slower progression

and increased survival by 49 weeks [Fig 3]. These data are reminiscent of a surprising clinical

observation that coinfection with S. stercoralis in patients with HTLV-1 associated ATLL was

associated with prolonged survival as compared with ATLL patients not infected with S. ster-
coralis [48]. Thus, this novel coinfection model may provide an avenue to begin to address this

surprising clinical feature of ATLL. In the present study clonal proliferation of the

CD4+CD25+ T-cells was not detected however, a general proliferation was observed. While the

typical rate of mortality in humans due to early and uncomplicated HTLV-1 infection is low, a

much higher rate was observed in the humanized mice. Mortality due to HTLV-1 infection is

typically caused by the progression of infection particularly to ATLL, although increased mor-

tality is observed associated with HAM-TSP, and even in asymptomatic infection [49]. While

ATLL and HAM/TSP only happen in a small percentage of HTLV-1 infected patients, they

carry a significant mortality rate [9,10,50]. The failure to observe a clonal ATLL-like phenotype

in the mice was likely due to rapid progressive disease caused by large-scale CD4+ T-cell popu-

lation with increased levels of cytokine production, eliminating the time needed for progres-

sive clonal expansion associated with additional genomic mutations, as seen in ATLL [51].

The mortality rates for the MPA-treated S. stercoralis-infected humanized mice reached

30% at 4-weeks post-parasite infection, similar to the mortality rates seen in infected MPA

treated NSG mice [4]. Previous studies have shown that the mortality rates increase over time

in NSG mice with MPA induced hyperinfection and correlated with dissemination of the para-

sites throughout the host, septicemia and significantly enhanced worm burden [4]. Due to the

high mortality rates of the HTLV-1 infected cohorts, experiments in this study were limited to

4-weeks post-parasite infection in order to ensure a statistically significant population of viable

HTLV-1 infected mice.

The overall levels of proviral DNA and total viral RNA in circulating human PBMC in

humanized mice were measured to investigate a possible cause for mortality in mice infected

with HTLV-1. Similar to the CD133+ humanized mice [30], the proviral load increased for the

first 4-weeks of infection, a trend that was also mirrored by the total viral RNA levels. After the

initial 4-weeks of infection, infected mice from the three replicate experiments displayed three

different patterns of proviral loads and total viral RNA. In one case the proviral load continued

to increase consistent with the previously reported finding [30], in another, the proviral load

dropped and then stabilized and in the third experiment the total viral RNA dropped at week-

5 only to rebound the following week. Various studies have examined HTLV-1 proviral loads

to determine if they can be used as indicators of future disease development and progression

in asymptomatic carriers of HTLV-1. Proviral loads vary within HTLV-1 asymptomatic carri-

ers and patients with HTLV-1 related diseases [14,27,52]. Individuals who developed HAM/

TSP or ATLL presented with a persistently higher viral load than those who remained asymp-

tomatic [47,53–55]. In addition, within a single host, proviral load often remains stable, but

can vary by more than 1,000-fold among hosts [14]. Multiple donors of CD34+ HSCs were

used to engraft the groups of humanized mice used in the present study. This may explain the

variability seen in levels of proviral DNA and total viral RNA seen between the three experi-

ments. Regardless, proviral load does not appear to be associated with mortality in this model,

as HTLV-1 proviral loads continued to increase in the surviving animals.

Coinfection of people with HTLV-1 and S. stercoralis results in increased HTLV-1 proviral

load, clonal abundance and oligoclonal expansion of T-cells [14,27,52]. S. stercoralis soluble
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antigen stimulates the oligoclonal proliferation of HTLV-1 infected CD4+ T-cells in HTLV-1

asymptomatic carriers, with proviral load being up to five times higher in HTLV-1 carriers

coinfected with S. stercoralis than in those infected with HTLV-1 alone [26]. Contrary to this

finding, no difference in proviral loads was seen between HTLV-1 infected mice and the S.

stercoralis/HTLV-1 coinfected mice. It is possible that an interaction between HTLV-1 and S.

stercoralis resulting in increased viral load would have been observed in humanized mice if the

infections were allowed to persist in them for extended time periods, instead of being limited

by the early lethality of the HTLV-1 infection.

HTLV-1 infection causes an enhancement in patient’s Th1 responses that includes

increases in a number of cytokines [10,39,56] and studies have shown that infection with S.

stercoralis skews the immune response towards Th2 responses [20]. Human cytokine levels

were measured in the serum of humanized-mice infected with S. stercoralis, HTLV-1 or coin-

fected with HTLV-1 and S. stercoralis. The Th1 cytokines IFN-γ, TNF-α and IL-12p40 and the

Th2 cytokines IL-10 and IL-13 were elevated in mice infected with HTLV-1, S. stercoralis and

coinfected mice. The Th2 cytokine IL-5 was only modestly, yet significantly, elevated in mice

infected with S. stercoralis alone and IL-4 was not measurable in any of the infected humanized

mice. In the presence of HTLV-1 and S. stercoralis the increased IL-5 levels were abated which

is consistent with that seen in human coinfections [57].

Humanized mice have been shown to develop a limited human cytokine profile in response

to specific stimuli [58,59]. To eliminate any variability between the human cytokine responses

that occur between different stem cell donors, all the cohorts of humanized mice were inter-

mixed. Several of the human cytokine levels measured in the serum of the humanized mice are

low when compared to human levels of cytokines [60], but they are within the spectrum that

has been demonstrated by other humanized mouse experiments [58,59]. These experimental

systems are not a complete representation of the human immune response cytokine profiles or

cellular responses, but they do provide a starting point to start dissecting the human immune

response to pathogens that have no other viable animal model. Comparing human cytokine

responses between groups of mice at 7-weeks post infection revealed that humanized mice

infected with HTLV-1 or a coinfection of HTLV-1 and S. stercoralis had significantly higher

IFN-γ levels than that seen in mice only infected with S. stercoralis. Interestingly, TNF-α levels

were significantly enhanced in coinfected animals when compared to levels in mice infected

with either S. stercoralis or HTLV-1. TNF-α may play a role in the control of S. strongyloides
infection based on the observation that TNF-α blockers have been reported to induce hyperin-

fection in patients infected with S. stercoralis [61]. TNF-α blockers have variable effects on the

course of HTLV-1 infection and the development of ATLL [62–65].

Patients coinfected with S. stercoralis and HTLV-1 exhibit lower levels of TNF-α, IFN-γ,

and an overall increase in the frequency of IFN-γ expressing CD8+ and CD4+ T-cells com-

pared to patients infected solely with HTLV-1 [23,57]. These findings show that the helminth

infection can downregulate the exaggerated pro-inflammatory response observed in HTLV-1

infection [20]. In the current study, using humanized mice, we observed increased levels of

TNF-α in mice with HTLV-1/S. stercoralis coinfection. This increase may have been the result

of the limited Th2 response induced by S. stercoralis. It is important to recognize that most of

the reported human cases of coinfection with HTLV-1 and S. stercoralis appear to be the result

of chronic infections whereas the infections analyzed in this study were acute infections. It is

therefore unlikely that there will be harmony between the presentation of the chronic infec-

tions in humans and the acute infections in the humanized mice. Furthermore, study of the

coinfections in humanized mice has allowed for the first time the observation of the initial

interaction between these two pathogens in a human immune milieu.
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Patients with HTLV-1 and S. stercoralis coinfection have higher parasite burdens and

increased proportions of regulatory T-cells [24]. Circulating PBMC were analyzed by flow

cytometry to determine the composition of the T-cell compartment. Infection of humanized

mice with HTLV-1 significantly increased the number of human hematopoietic cells in circu-

lation. No significant changes in the overall percentages of circulating CD3+ and CD4+ T-cells

were observed, suggesting that they increased proportionately with other hematopoietic cells.

CD4+CD25+ positive T-cells were significantly increased in frequency in both the HTLV-1

infection and HTLV-1/S. stercoralis coinfection when compared to S. stercoralis infection

alone. The increase in CD4+CD25+ positive T-cells, which are presumably regulatory T-cells,

aligns with observations in humans coinfected with HTLV-1 and S. stercoralis [24].

The enhanced levels of CD4+CD25+ positive T-cells may be the result of clonal prolifera-

tion, or the development of ATLL or a regulation of the Th1 response [66]. To explore the

clonality of the T-cell population, the peripheral blood of the humanized mice was analyzed by

TCR-PCR. This PCR based assay cannot differentiate between clonal expansion of T-cells and

the development of ATLL but can rule out a generic expansion of regulatory T-cells in

response to varying cytokine environments. Analysis of the T-cell recombinations did not find

any evidence of clonal proliferation. The increased levels of CD4+CD25+ T-cells may simply

be a response to alterations in the cytokine environment in mice caused by the coinfections.

This finding does not preclude the future development of an ATLL-like progression, as was

seen in the CD133+ humanized NRG mice at later stages of infection [30]. It is likely that early

death seen in our model decreases the chance that expansion of certain T-cell clones had ade-

quate time to progress [31].

NSG mice infected with S. stercoralis and treated with MPA develop a lethal hyperinfection,

characterized by a significant increase in numbers of all stages of the parasite and the develop-

ment of L3a [4]. Similar results were seen in the current study using humanized NSG mice.

Coinfection of humanized NSG mice with HTLV-1 and S. stercoralis did not result in an

increase in the number of parasites or the development of L3a. Interestingly, L3i recovered

from MPA treated animals were significantly longer than L3i recovered from untreated single

infections in humanized mice. L3i recovered from coinfected animals were in two populations,

one with the same length as L3i recovered from humanized NSG mice infected with only S.

stercoralis and the other group of L3i the same length as seen in mice treated with MPA.

Enhanced nematode growth is associated with the immune status of the host [67–70] and

MPA and HTLV-1 may enhance the growth of S. stercoralis L3i through a shared immune-

based mechanism. It has been hypothesized that MPA is effective at enhancing L3i growth

through an alteration in the host immune response, which results in the develpment of hyper-

infection. Infection with HTLV-1 induces equivalent enhanced growth in some L3i, yet not in

others. MPA may induce a systemic response that enhances the growth of most of the L3i,

whereas infection with HTLV-1 may induce a localized response that enhances the growth of

L3i located in specific microenvironments of the host. The relative ability between MPA and

HTLV-1 to enhance L3i growth may help explain why L3a are seen in mice treated with MPA

but not in mice infected with HTLV-1. It is possible that hyperinfection would develop in

mice coinfected with HTLV-1 and S. stercoralis if the infections were allowed to persist for

extended time periods.

In conclusion, humanized NSG mice are susceptible to coinfection with the human patho-

gens HTLV-1 and S. stercoralis. There was an increased level of mortality in the HTLV-1 and

coinfected animals when compared to the S. stercoralis infected individuals. The enhanced

mortality was not correlated with either the proviral loads or total viral RNA in the infected

animals. Changes in the cytokine profiles in the HTLV-1 infected animals showed a distinct

shift towards Th1 similar to the progression of human disease etiology, and Th2 cytokines
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were elevated in the S. stercoralis infected mice. Coinfection of humanized mice resulted in ele-

vated TNF-α levels. The CD4+CD25+ T-cell population was significantly expanded in the

HTLV-1 and coinfected groups, although this expansion was not clonal in nature. Worm

counts in the coinfection group were not different from the S. stercoralis infected animals and

they did not have any L3a in the L3 populations. There was, however, an enhancement in the

lengths of the L3i recovered from the coinfection group, which suggest that there are interac-

tions occurring between the two pathogens affecting worm development as seen in the MPA

treated animals. Thus, humanized NSG mice provide a robust model to study the interactions

that occur between HTLV-1, S. stercoralis and the immune system in vivo. Further develop-

ment of this model with humanized mice that have been engineered to produce strong Th2

responses may further enhance the translational aspects of this model.
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