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Hybrid diffusion imaging reveals altered white matter tract integrity and 
associations with symptoms and cognitive dysfunction in chronic traumatic 
brain injury 
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A B S T R A C T   

The detection and association of in vivo biomarkers in white matter (WM) pathology after acute and chronic mild 
traumatic brain injury (mTBI) are needed to improve care and develop therapies. In this study, we used the 
diffusion MRI method of hybrid diffusion imaging (HYDI) to detect white matter alterations in patients with 
chronic TBI (cTBI). 40 patients with cTBI presenting symptoms at least three months post injury, and 17 healthy 
controls underwent magnetic resonance HYDI. cTBI patients were assessed with a battery of neuropsychological 
tests. A voxel-wise statistical analysis within the white matter skeleton was performed to study between group 
differences in the diffusion models. In addition, a partial correlation analysis controlling for age, sex, and time 
after injury was performed within the cTBI cohort, to test for associations between diffusion metrics and clinical 
outcomes. The advanced diffusion modeling technique of neurite orientation dispersion and density imaging 
(NODDI) showed large clusters of between-group differences resulting in lower values in the cTBI across the 
brain, where the single compartment diffusion tensor model failed to show any significant results. However, the 
diffusion tensor model appeared to be just as sensitive in detecting self-reported symptoms in the cTBI population 
using a within-group correlation. To the best of our knowledge this study provides the first application of HYDI in 
evaluation of cTBI using combined DTI and NODDI, significantly enhancing our understanding of the effects of 
concussion on white matter microstructure and emphasizing the utility of full characterization of complex 
diffusion to diagnose, monitor, and treat brain injury.   

1. Introduction 

Traumatic brain injury (TBI) is a significant public health problem 
which occurs as a result of multiple incidents, including vehicle acci-
dents, falls, athletic collisions, blast-related trauma, and abuse or as-
sault. (Asken et al., 2018) Symptoms of TBI include a range of short- and 
long-term adverse clinical outcomes, including cognitive impairments 
or emotional dysregulation, resulting from traumatic axonal injury. 
(Kraus et al., 2007) Despite the increasing evidence that mTBI causes 
axonal shearing of white matter (WM) microstructure, the lack of 

reliable and objective tools to measure this pathology is a barrier to 
clinical translation. (Levin and Diaz-Arrastia, 2015; Radhakrishnan 
et al., 2016) As a result, it is commonly assumed that subjects with mTBI 
will return to premorbid levels of functioning shortly after the traumatic 
event, which often results in insufficient follow-up care. (Yamagata 
et al., 2020). 

Diffusion tensor imaging (DTI) is a non-invasive magnetic resonance 
imaging (MRI) technique for assessing WM microstructure in vivo, and 
has revealed diffuse axonal injury in TBI subjects in the absence of injury 
signs on conventional MRI. (Maruta et al., 2016) DTI studies of mTBI 
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have shown microstructural disruption to be associated with neuro-
cognitive and behavioral deficits after mild and chronic TBI. (Yamagata 
et al., 2020; Wu et al., 2018; Wallace et al., 2018) However, traditional 
DTI metrics represent basic statistical descriptions of diffusion that may 
not directly correspond to biophysically meaningful parameters of the 
underlying tissue. (Palacios et al., 2018) Moreover, DTI assumes 
Gaussian diffusion within a single microstructural compartment, and 
may be insensitive to the complexity of WM structure which requires a 
non-Gaussian model with multiple compartments. (Jones and Cer-
cignani, 2010) Although WM differences in mTBI have been delineated 
using DTI, the magnitude, direction, locations, and time span of these 
changes have been inconsistent among studies. (Wu et al., 2018; Inglese 
et al., 2005) For example, several papers report reduced WM fractional 
anisotropy (FA) in mTBI, while others reporting elevations or no 
changes in FA. (Eierud et al., 2014) This can be attributed to a number of 
reasons, including the inherent dynamic nature of microstructural WM 
alterations after mTBI, heterogenous population phenotypes, and small 
sample sizes. 

Due to the complexity of chronic and acute TBI, the combination of 
higher-order biophysical measurements based on diffusion MRI has the 
potential for better characterizing the underlying microarchitectural 
changes in brain tissue. (Palacios et al., 2020a, 2020b) A more advanced 
multicompartment diffusion model known as neurite orientation 
dispersion and density imaging (NODDI) utilizes high-performance 
magnetic field gradients to probe more complex non-Gaussian WM 
diffusion, and measures the properties of three microstructural envi-
ronments: intracellular, extracellular, and free water. (Zhang et al., 
2012) An increasing number of recent studies have applied NODDI to 
examine white matter changes following mTBI. (Wu et al., 2018; Pala-
cios et al., 2018; Mayer et al., 2010; Churchill et al., 2017) Findings in 
these papers reveal that NODDI metrics may be more sensitive and likely 
influenced by different factors than DTI metrics, providing more sensi-
tive and useful diagnostic information. (Gazdzinski et al., 2020) To 
translate research findings into clinical practice, replication and gener-
alization of these diffusion sequences are essential, (Lerma-Usabiaga 
et al., December 2018) with neuroimaging findings reproducible in an 
independent dataset acquired under real-world conditions. 

Hybrid diffusion imaging (HYDI) is a comprehensive diffusion 
sequence (Alexander et al., 2006) comprising multiple diffusion- 
weighting shells which offers diffusion compartments sensitive to 
different diffusivities and multiple diffusion-weighting directions in 
each shell to capture the directionalities of each compartment. In HYDI, 
multiple sampling spheres in q-space offer data needed for a range of 
diffusion reconstruction methods- such as DTI, NODDI, q-ball imaging 
(QBI), and diffusion spectrum imaging (DSI). (Wu et al., 2018) 
Furthermore, HYDI utilizes lower b-value shells with high angular 
contrast-to-noise ratios, offering a better characterization of complex 
tissue organization. (Daianu et al., 2015) Moreover, unlike other studies 
of both DTI and NODDI, the HYDI sequence is advantageous as multiple 
models can be fit using a single acquisition, decreasing total imaging 
time especially when combined with simultaneous multi slice acquisi-
tion, making it feasible in a clinical setting. Additionally, comparisons 
between the modeling techniques may be more accurate, as all models 
are being created from a single acquisition reducing confounds of signal 
noise and motion. Therefore, the application of this technique represents 
a novel contribution over other available work on cTBI utilizing multi- 
shell diffusion imaging. In this study, we used a five-shell HYDI to 
sample full q-space diffusion signals. The HYDI data was used to extract 
six diffusion metrics computed from the DTI and NODDI model, in a 
large well-phenotyped cohort of cTBI subjects. We aim to compare and 
evaluate the extent at which in both NODDI and DTI measurements 
correlate to self-reported symptoms in mTBI within a chronic popula-
tion, to further validate diffusion biomarkers and explore the prognostic 
significance of advanced imaging techniques. 

2. Methods 

2.1. Participants 

A total of 40 subjects including 12 males (age: 46 ± 19.5 years) and 
28 females (age: 49 ± 15.8 years) experiencing chronic symptoms 
caused by a mild traumatic brain injury were included in this study. 
mTBI was defined by the Mayo Classification System for Traumatic 
Brain Injury Severity, in which an injury was classified as mild if loss of 
consciousness of momentary was <30 min, amnesia for <24 h, with no 
positive MRI findings. (Malec et al., 2007) 14 of the 40 cTBI subjects had 
sustained a single concussion, with 26 of subjects having experienced 
multiple concussions. We compared the cTBI subjects to 17 healthy 
control subjects including 10 males (age: 32 ± 8.8 years) and 7 females 
(31 ± 10.5 years). Written informed consent, approved by the Institu-
tional Review Board, was obtained from all subjects and the study was 
registered on clinicaltrials.gov with the following identifier: 
NCT03241732. Subjects were recruited from the local community by 
self-referral and from local neurology offices and were excluded if they 
had a history of other neurological disorders, significant medical illness, 
a current substance-use disorder, or current Diagnostic and Statistical 
Manual of Mental Disorders, 4th Edition (DSM-IV) Axis I psychiatric 
illness. Subjects had to report a history of one or more prior TBIs with 
symptoms that lasted at least 3 months apart from the last concussion. 
All subjects had to meet criteria for mild traumatic brain injury 
including: loss of consciousness < 30 min, no significant amnesia, and 
no structural injury to the brain such as hematoma, contusion, dura 
penetration, or brain stem injury. Symptoms had to result after the TBI 
and could include headache, hypersensitivity to auditory or visual 
stimuli, balance problems, cognitive problems, or emotional problems 
(i.e. depression or anxiety). 

For the control group, individuals were excluded if they had a history 
of previous TBI, a history of other neurological disorders, significant 
systemic medical illness, a current substance-use disorder, and current 
Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV) 
Axis I psychiatric illness. 

2.2. Neuropsychological assessment 

Clinical assessment of TBI subjects experiencing chronic symptoms 
included a battery of self-reported measures including the State-Trait 
Anxiety Inventory, Beck Depression Inventory, Profile of Mood Scale, 
Rivermead Post Concussion Symptoms Questionnaire (RPQ-3 and RPQ- 
13), the Epworth Sleepiness Scale, and two cognitive tests – the forward 
and backward digit span, and the Trails A and B test. Clinical assess-
ments were performed on the same day of the imaging study. Details of 
the neuropsychological measures and patient demographics are listed in 
Table 1. The clinical and neuropsychological measures were correlated 
with the diffusion metrics across the whole-brain white matter skeleton. 

2.3. Imaging protocol 

In vivo brain data with HYDI was obtained on 17 healthy volunteers 
and 40 chronic traumatic brain injury subjects using a 3T Siemens 
Biograph MR PET-MR scanner with a 32-channel head coil. For seg-
mentation and registration of white matter atlas structures, and to check 
whether or not any conventional positive radiological findings of brain 
injury could be detected, an anatomical T1-image was obtained for all 
cTBI and healthy control subjects. MRI parameters for the anatomical 
T1-weighted sequence were as follows: repetition time = 1.6 s, echo 
time = 2.46 ms, field of view = 250 × 250 mm, matrix = 512 × 512, 
voxel size = 0.49 × 0.49 mm (Kraus et al., 2007), 176 slices with slice 
thickness = 1 mm. The simultaneous multi-slice (SMS) HYDI pulse 
sequence was a single-shot, spin-echo, echo-planar imaging (SS-SE-EPI) 
pulse sequence with diffusion gradient pulses. The minimum b-value 
was 0 sec/mm (Kraus et al., 2007) with five concentric diffusion- 
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weighting shells (b-values = 250, 1000, 2000, 3250, 4000 sec/mm2). A 
total of 144 diffusion-weighting gradient directions (6, 21, 24, 30, and 
61 in each shell) were encoded. MRI parameters for the HYDI sequence 
were as follows: repetition time = 3.17 sec, echo time = 120 ms, field of 

view = 240 × 240 mm, matrix = 96 × 96, voxel size = 2.5 × 2.5 mm2, 63 
slices with slice thickness = 2.5 mm, simultaneous multi-slice factor = 2, 
and total scan time of 8 min. Diffusion parameters included a maximum 
b-value of 4000 sec/mm2. 

2.4. Imaging processing 

Image processing included an initial pre-processing of the raw 
DICOM data, and a computation of diffusion metrics. First, the suscep-
tibility induced distortion was estimated and corrected for using the 
topup tool provided in the eddy current correction method of the FMRIB 
Software Library (FSL). (Jenkinson et al., 2012) The topup output was 
fed into the eddy tool by aligning all volumes to the b0 image. DTI 
parameter maps were calculated using the FSL Diffusion Toolbox DTI-
FIT. Additionally a MATLAB based toolbox (https://www.nitrc.org/pro 
jects/noddi_toolbox) was used to compute higher order diffusion metrics 
from the NODDI component of the analysis were analyzed including 
neurite density, also known as intra-cellular volume fraction (Vic) and 
the orientation dispersion index (ODI). The resulting FA, axial diffusivity 
(AD), radial diffusivity (RD), mean diffusivity (MD), Vic, and ODI maps 
in a single representative patient are shown in Fig. 1A. 

3. Statistics 

3.1. Tract-based spatial statistics WM voxelwise analysis 

After calculation of the six diffusion maps, a voxelwise statistical 
analysis of the data was performed using tract-based spatial statistics 
(TBSS). Diffusion maps were aligned to a common template in MNI152 
(Montreal Neurological Institute) standard space, using a nonlinear 
registration algorithm FNIRT. Next, a mean image was created from all 
the images for all subjects serial scans in standard space and thinned to 
generate a mean WM skeleton representative of all tracts common to the 
entire group of scans. The aligned volumes were then projected onto the 
skeleton by filling the skeleton with values from the nearest relevant 
tract center. Output images and the 0.2 thresholded skeleton maps were 

Table 1 
Subject demographic and neuropsychological measures, averages and standard 
deviations reported across control and mTBI subjects.   

Control Mild TBI 

Demographics n = 17 n = 40 
Age (year)(std) 33.2 (10.9) 48.0 (16.8) 
Sex (M:F) 10:7 12:28 
Injury-to-imaging interval (months)(std) – 73.0 (117.8) 
Single concussion vs. multiple (single:multiple) – 14:26 
Neuropsychological Measures  (mean ± std) 
State Trait Anxiety Inventory   
State Anxiety  44.3 ± 14.1 
Trait Anxiety  44.7 ± 12.5 
Back Depression Inventory  17.1 ± 11.0 
Profile of Moods Scale   
Tension  12.3 ± 8.0 
Depression  12.3 ± 13.6 
Anger  7.9 ± 6.6 
Vigor  11.0 ± 6.1 
Fatigue  12.4 ± 7.2 
Confusion  11.3 ± 5.6 
Mayo-Portland Adaptability Inventory-4   
Ability Index  15.6 ± 7.8 
Adjustment Index  17.5 ± 9.0 
Participation Index  8.4 ± 5.5 
Total  35.4 ± 16.3 
Rivermead   
RPQ-3  5.1 ± 2.5 
RPQ-13  26.9 ± 10.5 
Digit Span   
Forward  10.5 ± 2.1 
Backward  7.2 ± 2.3 
Epworth Sleepiness Scale  7.7 ± 5.0 
Trail Making (seconds to complete)   
A  28.0 ± 10.8 
B  65.5 ± 21.5  

Fig. 1. Maps of diffusion metrics in a single representative subject (A). Diffusion tensor imaging (DTI) metrics include fractional anisotropy (FA), axial diffusivity 
(AD), radial diffusivity (RD), and mean diffusivity (MD). Neurite orientation dispersion (ODI) and axonal density (Vic). White matter masks registered to subject space 
from the JHU atlas (B). 
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visually inspected for accuracy. 
We compared between subjects using a voxelwise general linear 

model (GLM) analysis with permutation testing to correct for multiple 
comparisons using familywise error corrected at p < 0.05, and 
threshold-free cluster enhancement. A paired t-test was used to compare 
differences among DTI and NODDI measures between TBI and control 
subjects. Age, sex, and time interval between injury and imaging date 
were included as nuisance covariates. The significance maps were then 
broken into twenty regions using masks obtained from the Johns Hop-
kins University white-matter tractography atlas mapped onto the stan-
dard MNI152 space. 

3.2. Partial correlation analysis 

To examine the correlation of diffusion parameters indicating white 
matter microstructure abnormalities with cognitive function in TBI 
subjects, Spearman rank partial correlation coefficients between all 
diffusion metrics and each of the twenty neuropsychological tests was 
generated for all subjects within the TBI cohort (n = 40). Partial cor-
relations were generated between regional white matter diffusion met-
rics, with performance in neuropsychological testing, controlling for 
age, sex, and the time interval between injury and imaging date. A 
significance value was determined using a Student’s t distribution, with 
the linear correlation being considered significant if p < 0.05. 

4. Results 

4.1. Between-group differences in the diffusion metrics 

Averaged maps of FA, AD, RD, MD, ODI, and Vic across all subjects 
were tested by TBSS. Among the six different diffusion metrics tested by 
TBSS, only NODDI metrics (ODI And Vic) differed significantly between 
groups (Fig. 2), with individuals with cTBI having both lower ODI and 
Vic than the normal control group. No clusters were found to be 

significantly higher in the TBI population than the control group for ODI 
and Vic. Approximately 11.20% of total skeletonized voxels for ODI and 
approximately 15.73% of Vic voxels were found to be significantly lower 
across the whole brain in the TBI population when compared to the 
normal control group. These significant results (corrected p < 0.05) were 
detected in 15 of the 20 white matter tracts of the JHU atlas, and the 
affected tracts were located predominately in the forceps minor as well 
as the superior and inferior longitudinal fasciculus (Fig. 2). 

Significantly different voxels were broken into clusters via the white 
matter atlas with p values ranging from 0.049 to 0.017. Affected white 
matter tracts were located predominantly in the superior and inferior 
longitudinal fasciculus, as well as the forceps major and minor and along 
the corticospinal tracts. The detection of statistically significant 
between-group differences, and corresponding cluster size is shown in 
Fig. 3. 

4.2. Relationship of diffusion metrics to cognitive function: Within-group 
correlations 

Within the cTBI cohort, diffusion metrics FA, MD, AD, RD, ODI, and 
Vic had a wide spread of white matter regions (14 out of the 20 regions 
defined by the JHU atlas) that were either positively or negatively 
correlated with neuropsychological outcomes (p < 0.05). The results of 
the correlation analysis for within-group correlations between FA and 
time to complete Trail Making (A and B) is shown in Fig. 4. The Trail 
Making Test a neuropsychological test of visual attention and task 
switching, sensitive to detecting cognitive impairment, and is a measure 
of executive function. (Arnett and Labovitz, 1995) An increased time to 
complete Trail Making (A or B) indicates a decrease in performance. 

FA, MD, AD, and RD, correlated either positively or negatively with 
measures in mood, memory, and executive function depending on re-
gion. In general, as FA increased, performance on tasks increased 
(decreased time to complete trails, as seen in the negative correlation in 
Fig. 4). MD, AD, and RD had the opposite correlation with trail-making, 
with decreased performance correlated with increased measures. ODI 
had no significant correlation with trail-making, whereas Vic had a 
similar relationship as FA, having a positive correlation with increased 
axonal density and task performance. 

For all of the 76 significant diffusion-neuropsychological pairs, the 
extent of the correlation expressed as the correlation coefficient is 
summarized as a color-coded matrix in Fig. 5. Vic correlated positively 
primarily with measures of executive function (trail making). ODI did 
not have correlations with task performance, however significant cor-
relations were found with 7 different neuropsychological tests of mood 
and memory. For all measures, the atlas white matter region in which 
the measure was taken resulted in either a positive or negative corre-
lation. The most sensitive measures for correlation with neuropsycho-
logical outcomes were FA and AD. FA had a positive correlation with 
performance in trail making (negative correlation with time to com-
plete), similar to Vic. All other diffusion metrics including MD, AD, RD, 
and ODI were negatively correlated with performances in trail making. 

5. Discussion 

Here we demonstrate the advantages of modeling higher-order 
diffusion sequences using an advanced multi-shell HYDI sequence for 
detecting white matter injury in cTBI. The main findings of this study are 
(i) HYDI can be used to delineate WM alterations in cTBI using both 
NODDI and DTI using a single image acquisition (ii) NODDI is sensitive 
to white matter pathology in the posterior periventricular regions 
following cTBI, and can detect differences in voxels not detected by 
conventional DTI and (iii) both DTI and NODDI metrics are significant in 
partial correlations with neuropsychological outcomes, after controlling 
for age, sex, and time after injury. 

Traumatic brain injury involves multiple different time-varying 
pathophysiological effects, including diffuse axonal injury, diffuse 

Fig. 2. TBSS maps of significant differences of ODI (A) and Vic (B) between TBI 
and healthy controls. Red voxels indicate regions with significantly lower 
values in TBI versus controls (p < 0.05), green voxels indicate no significant 
differences. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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Fig. 3. Results of the TBSS analysis using permutation testing for group comparisons. Listed are the brain locations of significant voxels, the names of the major fiber 
tract, the color representing cluster size. Significance was determined at p < 0.05. 

Fig. 4. Results of post-hoc regression analysis for the six FA-neuropsychological pairs that showed significant correlations. Regional residual FA values are displayed 
on the x-axis, displaying the effects of controlling for age, sex, and time after injury. Neuropsychological correlations are displayed on the y-axis. Complete results for 
correlations between diffusion metrics and neuropsychological outcomes are displayed in Fig. 5. 
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microvascular injury, and neuroinflammation, which can lead to 
neurologic dysfunction. (Bigler, 2015) Due to this complexity, the 
relationship between neurobiological response and the course of clinical 
recovery remains incompletely understood. (Churchill et al., 2019) 
Combining different biophysical measurements has potential for better 
characterization of the underlying microstructural changes in WM. 
(Cercignani and Bouyagoub, May 2017) 

Using TBSS, we found that mild TBI subjects in the chronic phase 
showed significantly lower NODDI values in cTBI versus controls, 
mainly in the posterior and periventricular regions (Fig. 2). Tracts with 
low ODI values largely overlapped with tracts that exhibited low Vic 
values, in cTBI subjects. In contrast, there were no group differences in 
DTI values including FA, AD, RD and MD (Fig. 3). This suggests that 
NODDI is a more sensitive biomarker for detecting longer-term alter-
ations marked by declining neurite density in predominantly posterior 
WM in cTBI, than DTI. Our findings agree well with previous literature 
finding that NODDI parameters are more sensitive imaging biomarkers 
than traditional DTI for detecting the subtle yet complex underlying WM 
microstructural pathology after mTBI. (Wu et al., 2018; Churchill et al., 
2019; Palacios et al., 2020a, 2020b) The observed effects may be driven 
by multiple physiological responses to concussion, including glial- 
mediated edema which may be intracellular or vasogenic, and can 
lead to an increase in extra-neurite water volume. (Churchill et al., 
2017) Our results showed lower ODI and Vic specifically within the 
posterior periventricular regions, lesioning of which has been described 
to be disruptive to the overall integrative of the whole-brain WM 
network, and may be responsible for the long-term symptomatic 
cognitive, and behavioral outcomes seen after mTBI. (Xiao et al., 
2016;10(OCT):1–12) This may be due to the disproportionately high 
number of structural connectome links between gray matter areas, 
forming a chain of network connectivity in the brain, as well as the 
presence of ventricles leading to strain concentration in the periven-
tricular region, (Zhou et al., 2020) and may explain why subjects with 
lower ODI and axonal density may be experiencing cognitive deficits 
months to years prior to sustaining mTBI. 

The inability of FA, MD, AD and RD to detect WM abnormalities 
highlights the discrepancies of DTI in the literature as a reliable 
biomarker for TBI. This pathological interpretation has been supported 
by mouse models, which have the advantage of using histological 
methods to investigate cellular processes that contribute to MRI mea-
sures. A study by Gadzinksi et al., found that ODI was more sensitive 
than FA in detecting damage from closed-skull impact in mice, and 
correlated with cellular changes identified by histological staining. They 
concluded that differences in ODI were associated with histological 

measures of astrogliosis, neuroinflammation and axonal degeneration, 
and persisted beyond behavioral impairment. Researchers concluded 
that in the context of a closed-skull impact animal model, NODDI is more 
sensitive to white matter pathology following mTBI and provides in-
formation not obtained from conventional DTI. (Gazdzinski et al., 2020) 
Our study translates these findings into a real-world clinical setting, and 
further validates the utility of acquiring a diffusion scan which can 
quantify both lower order and higher order diffusion models. 

Additionally, DTI has shown deficiencies as a biomarker in other 
previous more acute studies, reporting similar negative TBSS or ROI 
results in 19 autopedestrian subjects injured within 31 (±20) days, (Wu 
et al., 2018) 15 college athletes concussed within 30 (±2) days, (Zheng 
et al., 2014) 23 emergency room subjects within 17 (±7.2) days, (Messé 
et al., 2011) and 61 level 1 trauma center subjects within 47 (±6.5) days. 
(Lange et al., 2012) These studies, including ours, may have not have 
been powered enough to detect a small effect size of FA in mTBI, indi-
cating NODDI to be favorable in detecting differences in studies of 
smaller sample sizes retaining more controlled patient homogeneity. 

Given that previous longitudinal studies have consistently reported 
progressive WM damage in chronic TBI, (Newcombe et al., 2011; Li 
et al., 2016) timing after injury is an important consideration when 
assessing WM alterations. (Yamagata et al., 2020) Therefore the time 
interval between injury and imaging date (acute versus chronic) may 
also effect results. Our study was done in a chronic population of sub-
jects at least 3 months after injury, still experiencing post-concussive 
symptoms. Prior reports of DTI and NODDI measurements in acute TBI 
have shown both increases in FA (Churchill et al., 2017) and MD (Pal-
acios et al., 2020a, 2020b) in mTBI less than six months before imaging, 
in addition to changes in Vic and ODI. These results may differ from 
those found in our study due to both the mechanism of injury (ex. re-
petitive sub-concussive hits over long periods of time16), and the acute 
time point of analysis (in some cases, two weeks13). Interestingly, 
although detecting changes in FA and MD in the acute phase of injury 
(two weeks after injury), longitudinal decreases were observed NODDI 
values but not in DTI over a 6 month time span, (Palacios et al., 2020a, 
2020b) hence sensitivity of DTI to detect injury may diminish over a 
longer timespan, where NODDI metrics are still sensitive to pathological 
alterations. While findings of DTI in TBI have large disparities, the 
limited number of NODDI studies tend to agree upon the robustness of 
this technique as a TBI biomarker, despite varying patient cohorts, 
diffusion pulse sequences, and acquisition protocols. (Wu et al., 2018; 
Palacios et al., 2018; Gazdzinski et al., 2020; Churchill et al., 2019) 

Interestingly, a within-group partial correlation analysis demon-
strated that lower Vic and FA values in widespread regions were 

Fig. 5. Scatter plot of significant correlations be-
tween DTI and NODDI metrics and neuropsycho-
logical tests (State Anxiety, Trait Anxiety, 
Depression, Confusion, Ability, Adjustment, Partic-
ipation, Adaptability, RPQ.13, Backwards, Sleepi-
ness, A Trails, B Trails) for all TBI subjects. For trail 
making (A and B) the time taken to complete the 
task is indicated on the y-axis, therefore a negative 
correlation would indicate increasing DTI or 
NODDI metrics correlated with an increase in per-
formance. The horizontal axis of the matrix denotes 
the JHU white matter label, with the vertical axis 
representing the corresponding relationship with 
neuropsychological measures. The color and in-
tensity denotes the strength of the correlation co-
efficient with corresponding p-values as described 
in Table 2. Red color indicating significantly posi-
tive correlations, blue indicating significant nega-
tive correlations. (For interpretation of the 
references to color in this figure legend, the reader 
is referred to the web version of this article.)   
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associated with lower scores in tasks of executive functioning, but not 
with mood or memory. FA, MD, AD, and RD had a mixture of significant 
correlations with measures of mood and executive functioning, inde-
pendent of brain region. In general, while unable to detect significant 
between-group differences between cTBI and controls, DTI was able to 
predict neurocognitive outcomes just as well as NODDI metrics, while 
controlling for age, sex, and time-after-injury. In particular, NODDI 
shows potential for delineating between group differences, where DTI 
shows more potential for detecting alterations in mood, self-reported 
symptoms, and task performance (Table 2, Fig. 5). This mixed associa-
tion finding is supported by previous studies of neurocognitive perfor-
mances in the chronic stage and DTI metrics, finding varying 
correlations between diffusion parameters and cognition. (Veeramuthu 
et al., 2015) This may be attributed to the prolonged functional and 
neurospychological alterations in subjects with lasting symptoms of TBI, 
including neuronal network reorganization, (Voets et al., 2006) spurting 
of axons with smaller calibres, (Jafari et al., 1997) glial scarring, (Stichel 
and Müller, 1998) and disruptive neurofibrillary tangles. (Stein et al., 
2014) 

The results in both the between-group and within-group correlation 
analysis provide evidence that WM axonal density declines within the 
chronic stages of TBI. Our results showed lower fiber orientation 
dispersion correlated with worse performances in cognition, consistent 
with prior studies showing more organized WM in subjects with better 
intellectual functioning. (Fjell et al., 2011) Due to the exploratory nature 
of the hypothesis of this study, in addition to the lack of repeated ob-
servations on a single subject, multiple comparisons were not performed 
for the within-group partial correlation analysis. All correlations be-
tween diffusion metric and neuropsychological outcome were per-
formed independently and without repeated observations. (Curran- 
Everett, 2000) These new hypotheses from exploratory findings warrant 
future studies in larger cohorts using multiple follow-up times to identify 
the link of white matter changes and time since injury and elucidate the 
possible recovery of white matter tracts over time. Another limitation of 
this study is the smaller sample size of controls, as well as the discrep-
ancies in age and sex. The effects of age and sex may confound the 
interpretation of the between-group differences slightly. In order to 
mitigate differences in patient population, we have included age and sex 
as covariates in both the between-group and within-group analysis. 
However, even when controlling for population source, injury-to- 
imaging interval, age of injury, sample size, publication date, acquisi-
tion parameters, and analysis methods, bidirectional changes in DTI and 
NODDI parameters have been reported in TBI literature. (Eierud et al., 
2014; Dodd et al., 2014) Therefore a more thorough exploration of these 
variables as they relate to imaging biomarkers and TBI is an area for 
future research. In addition, the NODDI model uses rigid-stick geometry 
which may impose constraints with fixed intra-axonal diffusivities and a 
tortuosity model for extra-axonal diffusion. Future studies modeling 
axons using diffusion kurtosis imaging, (Fieremans et al., 2011) or q- 
space measurements (Hosseinbor et al., 2013) utilizing the same HYDI 
acquisition may add additional information in estimating pathological 
changes which occur after cTBI, without linking intra- and extra-axonal 
diffusivities. (Wu et al., 2011) 

In summary, these results found that NODDI parameters are more 
sensitive in detecting between-group differences in the subtle yet com-
plex underlying WM microstructural pathology after cTBI, highlighted 
by the use of a HYDI scan. Moreover, NODDI may be a more robust 
clinical biomarker than DTI due to its sensitivity and versatility in 
detecting pathological WM changes after cTBI in addition to detecting 
correlations with cognition. NODDI measurements revealed declining 
neurite density in predominantly posterior WM in a chronic population, 
which are known to be topologically integral to multiple sensory and 
cognitive domains including attention and executive functioning. While 
unable to detect between-group differences, DTI values were significant 
in predicting neuropsychological outcomes, indicating DTI metrics may 
be more accurate in the prediction neuropsychological deficits rather 

Table 2 
Significant results of the within-group partial correlation of neuropsychological 
outcomes with DTI and NODDI measures.  

Region Neuropsychological 
Measure 

Partial 
Correlation 

P-Value 
(uncorrected) 

DTI     

FA     
Corticospinal tract 
L 

A Trails − 0.409  0.013  

Corticospinal tract 
R 

Ability 0.369  0.041  

Cingulum 
(cingulate gyrus) L 

A Trails − 0.369  0.027  

Cingulum 
(hippocampus) L 

A Trails − 0.362  0.027  

Cingulum 
(hippocampus) R 

State Anxiety 0.386  0.029  

Cingulum 
(hippocampus) R 

Sleepiness 0.336  0.045  

Forceps major A Trails − 0.497  0.002  
Forceps major B Trails − 0.341  0.042  
Forceps minor Participation − 0.380  0.035  
Inferior fronto- 
occipital fasciculus 
L 

A Trails − 0.354  0.034  

Superior 
longitudinal 
fasciculus L 

A Trails − 0.361  0.030  

Superior 
longitudinal 
fasciculus L 

B Trails − 0.371  0.026  

Superior 
longitudinal 
fasciculus R 

B Trails − 0.336  0.045  

Uncinate fasciculus 
L 

Confusion − 0.357  0.048  

Uncinate fasciculus 
L 

Adjustment − 0.402  0.025  

Uncinate fasciculus 
L 

Adaptability − 0.369  0.041  

Uncinate fasciculus 
L 

Sleepiness − 0.347  0.038  

MD     
Corticospinal tract 
R 

Adjustment − 0.426  0.017  

Corticospinal tract 
R 

Adaptability − 0.376  0.037  

Corticospinal tract 
R 

RPQ-13 − 0.353  0.032  

Uncinate fasciculus 
L 

Sleepiness 0.336  0.045  

Superior 
longitudinal 
fasciculus 
(temporal part) L 

A Trails 0.427  0.009  

Superior 
longitudinal 
fasciculus 
(temporal part) L 

B Trails 0.459  0.004  

AD     
Cingulum 
(hippocampus) L 

Confusion − 0.472  0.007  

Cingulum 
(hippocampus) L 

Adjustment − 0.548  0.001  

Cingulum 
(hippocampus) L 

Adaptability − 0.418  0.019  

Inferior fronto- 
occipital fasciculus 
L 

Participation 0.449  0.011  

Superior 
longitudinal 
fasciculus L 

Participation 0.406  0.002  

Uncinate fasciculus 
L 

Depression 0.464  0.009  

Superior 
longitudinal 

Participation 0.449  0.011 

(continued on next page) 

J. Muller et al.                                                                                                                                                                                                                                   



NeuroImage: Clinical 30 (2021) 102681

9

than delineation of injured WM pathology. Our results highlight the 
utility of multi-shell imaging to acquire more sensitive imaging bio-
markers for acute and longitudinal diagnosis, and indication of the need 
for multi-compartment diffusion modeling in addition to the informa-
tion provided by classical DTI. HYDI is useful imaging tool for clinical 
translation of DTI biomarkers for the prediction of self-reported symp-
toms, cognitive performance, and for treatment monitoring, in a broader 
range of TBI applications. 
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