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Abstract

Genes are segments of DNA that provide a blueprint for cells and organisms to effectively
control processes and regulations within individuals. There have been many attempts to
quantify these processes, as a greater understanding of how genes operate could have large
impacts on both personalized and precision medicine. Current biological methods cannot
easily reveal the details of gene interactions. Therefore, we use gene expression data to
infer networks of interactions, which are called gene regulatory networks or GRNs. These
methods are designed to bypass the need for large amounts of data and extensive knowledge
about a network. In this work, we extend previous work by investigating additional ways to
incorporate stochasticity into gene regulatory networks.

Keywords: beta distribution, gene regulatory networks, spectral density, state transition,
stochasticity

1 Introduction

1.1 Biological background

Gene expression is regulated through interaction networks
and a series of positive and negative feedback loops [3,
17, 20]. Similar to interaction networks on the macro-
level, where organisms interact with each other in order
to create an ecosystem, interaction networks also exist on
the microscopic level [3, 17, 20]. On the microscopic level,
cells, proteins, and molecules interact with one another.

The combination of these interactions form a network
of gene, protein, and regulator reactions that we call a
gene regulatory network. Current technology and exper-
imental methods do not exist to directly reveal the intri-
cacies of these networks. Therefore, the gene regulatory
networks that we know today are networks that have been
inferred from gene expression data, which are called gene
regulator networks or GRNs [8]. Gene expression data
provides information about the types and numbers of mR-
NAs, but not necessarily about binding information such
as how well molecules bind to one another. Thus, GRNs
are used in order to infer the interactions between genes,
proteins, and other regulators [8]. This information helps
us to determine when a gene is active or repressed within
a system.

Although these interactions are dictated by a network,
there is still some stochasticity involved among interac-
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tions [3, 4, 20, 27, 35]. This stochasticity may be due to
concentration levels, binding abilities, or even distances of
molecules within cells. In cells, competition between ribo-
somes and RNase E binding can lead to some stochasticity
[27]. Mathematical models have been created in attempts
to capture the details of these processes with varying de-
grees of success. In general, stochasticity is not captured
by all inference methods, but likely plays an important
role in the formation of GRNs since a large portion of
cellular signals are from noise [3].

1.2 Mathematical background

For a cell to properly function, it depends on the coor-
dination of thousands of proteins in different variations
interacting at the correct time, place, and in the cor-
rect quantity [3, 20, 33]. In order to orchestrate these
interactions, regulatory systems exist to help determine
when mRNA is produced, how long mRNA should last,
how much protein from mRNA should be created, how
proteins are arranged and modified, and when they are
degraded [3, 20, 33]. However, large amounts of data are
needed for gene network inference [3], and limitations in
experimental techniques create noisy data sets, so only
a small number of interactions have been extracted [32].
Moreover, human interests have introduced a bias for net-
works that are related to human diseases [32]. These bio-
logical limitations have led to the need for mathematical
models to help estimate biologically reasonable parame-
ters such as inputs, time delays, and genes expressed from
feedback loops [3, 17, 19, 23, 32, 33].
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Figure 1: An example of a Boolean network represented
as a directed graph.

Networks are a natural way to model biological systems
with interactions [14, 23, 32]. A network is a set of objects
that are connected through a set of rules. In the past, net-
works have been used to model a variety of interactions
including protein structure networks, protein-protein in-
teractions, transcriptional regulation, metabolism, and
neuronal synaptic connections [32]. In gene regulatory
networks the objects, or nodes, in a network graph rep-
resent a collection of genes and the edges represent the
interactions between sets of genes. Models for GRNs
can be dynamical or static, discrete or continuous, and
deterministic or stochastic [3, 17]. Some models that
have been studied are Bayesian networks, rule-based algo-
rithms, ordinary differential equations, and Boolean net-
works [17, 23]. Table 1 describes some of the possible
methods used to study GRNs. The methods discussed
here are not exhaustive.

In order to use these methods large amounts of data
are required. For example, differential equations can re-
quire as many experiments as there are genes in a network
[35]. This likely limits the use and comparison of models
to small networks. In yeast (Saccharomyces cerevisiae)
2355 genes have been identified contributing to regulatory
networks [22], this could imply that upwards of 2355 ex-
periments are needed in order to identify the structure
and rates of these networks. In addition, transition rates
are not easily obtained through experimentation because
estimations often rely on linear changes, which would im-
ply that there is no natural capacity for transition rates
[35]. Combined with the fact that data size is often lim-
ited by the cost of experiments [3], it is clear that there
is a need to develop more accurate GRNs that consider
the effects of variation and noise.

The authors in [2] attempt to address this concern in

2018 by investigating the variation between state tran-
sitions in GRNs and noise within a network . The au-
thors use beta distributions to estimate the propensity
that state transitions occur in a GRN under noisy con-
ditions. Through their investigation, [2] find that state
transitions with high variation lead to a network with
high amounts of variation [2]. This is consistent with
the literature, which finds that short-term fluctuations in
protein production can have larger impacts on gene ex-
pression [27]. These impacts are likely due to the cascad-
ing behavior of GRNs as well as different feedback loops
within cells [4, 27]. The authors also use the assumption
that propensities among state transitions are not constant
and demonstrate how statistical distributions can be used
to provide important insight about GRNs.

However, the process described in [2] also requires large
amounts of data and becomes less stable for large net-
works. They also assume that an ideal network will have
minimum variance among state transition propensities
which may be ignoring some key ideas such as:

• Data obtained from a single cell can have large
amounts of noise and variation [3]

• Noise from gene expression data can be as large as
30% [3]

• Different feedback loops can amplify or dampen vari-
ation in networks [4]

• Genetically identical cells may show cell-cell differ-
ences of more than 10% [4]

Despite some shortcomings, [2] have begun to pave the
way for introducing more variability into models that will
likely require stochastic properties in the near future. In
this work we attempt to extend the authors’ work and
address concerns about noise by investigating additional
ways to incorporate variation and noise into future mod-
els.

2 Methods

In this study, we look at intrinsic noise in GRNs and
discuss ways to incorporate this noise into future mod-
els. During gene and protein interactions transcription
factors and chemical signals come into contact with one
another and bind in order to cause a reaction such as
mRNA synthesis or protein assembly. Traditionally, these
reactions and collisions of chemicals in a system were con-
sidered deterministic, but due to quantum indeterminacy
and lack of mechanical isolation it is now argued that the
processes in these systems are more likely stochastic in
nature [12]. Here, we assume that we have a well-mixed
system with a limited number of molecules per popula-
tion of molecule so that our systems will incorporate dis-
creteness and stochasticity. In the past, this reaction rate
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was modeled by a set of ordinary differential equations,
but when a system involves discreteness and stochasticity,
these equations are no longer appropriate [12].

Since our system is both discrete and stochastic, it is
most natural to represent our system as a Boolean net-
work on two states with added stochasticity; this repre-
sentation is similar to the ones described in [2, 28]. In Fig-
ure 1 we see an example of a Boolean network. Here, each
node of the directed graph represents a state of the sys-
tem. In Figure 2 we see a Boolean network with weighted
edges, where each weight represents the propensity for
changing to a state. Therefore, when we have a two gene
system, each node will have two entries. The first entry
will represent the state of the first gene, and the second
will represent the state of the second gene.

These states are either on (1) or off (0). Biologically,
genes may be operating at different rates and have more
than two states, but mathematically it is possible to ab-
stract information by only considering genes as active or
non-active.

Let G1, G2, . . . , Gn represent n genes in a regulatory
network. Let xi(t) be the state of Gi at time t where
i = 1, 2, . . . , n and t ∈ [0, T ]. The possible states of our
system are 0 or 1, denoted Xi = 0, 1 for i = 1, 2, . . . , n.
If G1 is on at time q, 0 ≤ q ≤ T , then x1(q) = 1. If G1

is off at time q, 0 ≤ q ≤ T , then x1(q) = 0. In this study
we focus on a predetermined two gene system. Therefore,
the state space of this network S is the Cartesian product
of each gene’s state space, S = X1 ×X2.
Each edge of the directed graph represents a probability

for transition to a different state. These propensities are
determined by an update function involving activation
and degradation propensities, p↑i ∈ [0, 1] and, p↓i ∈ [0, 1]
respectively. Failure to activate and failure to degrade
are represented by 1 − p↑i and 1 − p↓i respectively. Note

that 1 − p↑i ∈ [0, 1] and 1 − p↓i ∈ [0, 1]. These values can
be seen in Table 2. Although genes are interacting with
each other in a network, the propensities for activation
and deactivation of genes are each independent. This
occurs because we are assuming that the genes activate
and deactivate independently of one another.

Thus, the probability of transitioning from one state
to another can be represented as the product of two
propensities. Given the independence between gene state
propensities, we obtain the value of each edge propensity
by finding the product of the appropriate gene propen-
sities for activation, degradation, failure to activate, and
failure to degrade. For example:

Pr(00 → 01) = (1− p↑1)× p↑2,

P r(11 → 10) = (1− p↓1)× p↓2,

P r(01 → 11) = p↑1 × (1− p↓2),

P r(10 → 00) = p↓1 × (1− p↑2).

These transitions can also be represented in a tran-
sition matrix. A general transition matrix is shown in
Table 3. A more concrete example of a Boolean network
with activation and degradation propensities is shown in
Figure 2

In order to determine when a gene will transition, a
transition function that has been derived and described
in [28] and previously used in [2] is also used in this work:

f(t) = a0e
−kt, t ≥ 0. (1)

The function represents the concentration of molecules
in the cell as a function of time. In tandem with Equa-
tion (1), we also use a threshold m which occurs at time
t = τ . This threshold indicates at what concentration we
would expect to see a change. A model of this process can
be seen in Figure 3. For example, if gene 2 is on, x2 = 1,
then as soon as the concentration of molecules activating
that gene decreases below m we would expect the gene to
turn off, x2 = 0. Likewise, if gene 2 is off, x2 = 0, then
as soon as the concentration of molecules repressing that
gene decrease below m we would expect the gene to turn
on, x2 = 1.

Here, we use an exponential decay function which im-
plies that transitions occur after a decrease in the propor-
tion of molecules. However, biologically it is possible for
transitions to occur after an increase in the proportion
of molecules. Although we only use a decaying function
for the transition function, we believe that any process
which involves an increase in molecules could also be mod-
eled with this exponential decay by changing the way you
number the y-axis such that the lim

t→∞
f(t) = κ, where κ

is the natural carrying capacity of appropriate molecules
in a network’s transition. In general, we would expect
genes that fall below the threshold m to change states,
but this is not always the case due to the stochastic na-
ture of these processes. Equation (1) and the transition
matrix together create a system that incorporates both a
time delay and stochasticity.

[28] and [2] both utilize a model similar to the one de-
scribed here. In [28] the edge propensities are kept con-
stant and they work under the assumption that even if
a reaction is supposed to occur, there is no guarantee
that a transition will take place or even that the correct
transition will take place [28]. [2] argued that the propen-
sities discussed in [28] are not likely to remain constant
and applied a beta distribution to obtain propensities for
state transitions along the edges of a network [2]. These
models generally focused on obtaining the propensities of
state transitions and overall network variance, but paid
little attention to capturing variability in individual gene
to gene interactions. Here, we use the same model, but
focus on gene to gene variability and propensities. First,
we look at the transition function and examine how rates
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Table 1: Methods for Gene Regulatory Networks [3, 17, 24].

Type Qualities Pros Cons

Directed Graphs Static and Intuitive Crude
deterministic

Boolean Networks Discrete, dynamic, Simple for large data sets Crude

Generalized Logical Networks Discrete, dynamic, Accommodates asynchronous Inference is difficult
and deterministic state changes and time delays

Differential Equations Continuous, dynamic, Flexible Computationally
and deterministic expensive

Bayesian Networks Static, stochastic, and Stochastic Need large
discrete or continuous amounts of data

Stochastic Master Equation Discrete, dynamic, Realistic Difficult to use
and stochastic

Figure 2: An example of a Boolean network with probabilities and a transition matrix.

Table 2: State Update Propensities.

Update x1 x2

Activation p↑1 p↑2

Degradation p↓1 p↓2

Failure to Activate 1− p↑1 1− p↑2

Failure to Degrade 1− p↓1 1− p↓2
Figure 3: The transition function is shown with a thresh-
old at m. Once the concentration of molecules dips below
the threshold m we expect the gene to transition from one
state to another at time τ .
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of decay and thresholds impact the variation among gene
transitions. Second, we revisit the beta distribution de-
scribed in [2], but instead of finding transition propen-
sities using the statistical distribution, we use the beta
distribution to determine the activation and degradation
propensities. Third, we explore the use of spectral density
to evaluate variation and propensities in a GRN. Finally,
we compare these results and discuss areas that need im-
provement and future directions we hope to explore.

2.1 Method 1: Transition function

Previous studies using the transition function and a
Boolean network have focused on adding stochasticity
into propensities and time delays between interactions
[2, 28]. Variation in [2] was found based on the beta
distribution of each transition variability. Here, we in-
vestigate the variation inherent to the transition function
itself. Recall that the transition function represents the
proportion of molecules needed in order to transition be-
tween the on and off state of a gene. Once the number
of molecules reaches a threshold m at time t = τ , i.e.
X(τ) = m, a state to state transition occurs. Arbitrar-
ily, when X(t) ≥ m the gene is considered on and when
X(t) < m the gene is considered off. This change in state
could easily be reversed without loss of generality.

In the transition function, Equation (1), we let a0 = 1
so that the initial concentration of molecules, f(0), can
be considered as 100% and the threshold m can represent
a percentage of molecules needed in order to activate or
degrade a gene. Since the threshold m is determined by
the strength of chemical bonds between the molecules and
their binding sites, as well as the locations and number
of binding sites, the threshold does not vary significantly
from cell to cell [4].

In this study, we allow the rate of decay within the con-
centration of molecules to vary so that we can measure
the effects on variance in a state to state transition. This
variance is biologically relevant because some stochastic-
ity in GRNs is likely a direct result of competition be-
tween ribosomes and RNase. Ribosomes are responsible
for translating mRNA into protein synthesis. RNase E
signals the degradation of mRNA after transcription and
before translation, however, mRNA that binds to a ri-
bosome will undergo translation and lead to protein pro-
duction [27]. Whether mRNA degrades or leads to the
production of protein is thought to be determined by its
proximity to either RNase E or a ribosome [27].

To model the behavior of the transition function we
use the programming language R. Let k ∼ U(0.1, 10),
m = 0.4, a0 = 1, and τ = −1

k ∗ log
(
m
a0

)
. The equation

for τ is derived from Equation (1), where f(t) = m and
t = τ such that m = a0e

−kτ . Using this information we
find when the transition function will cross the threshold

for a given value of k. Then, we replicate this process
1000 times to examine how changes in k affect τ .

After examining the behavior of the transition func-
tion, we also investigate how stochasticity plays a role in
state to state transitions. In a deterministic model, once
the concentration of molecules drops below the thresh-
old m we would expect there to be a transition between
states. However, in a stochastic model we only expect a
proportion of these changes to happen each time. In this
study we assume that only 75% of the genes that were
supposed to change states actually have changed states.
The choice of 75% was predetermined and compared to
other propensities without any significant changes to re-
sults. We then record every time 5% of the genes pass the
threshold. This process was also simulated in R. Out of
the 1000 replicates, each transition function that passed
the threshold at a given time τ had a 75% probability of
either changing states or remaining the same. This pro-
cess was repeated for m = {0.1, 0.4, 0.9}. For each time
5% of the genes pass the threshold, we record how much
variation is present in the interval and plot this variation
over time. Our results are discussed in Section 4.1.

2.2 Method 2:
Beta distributed propensities

The second method we applied in this work was the im-
plementation of the beta distribution for the activation
and degradation propensities. The beta distribution was
utilized by [2] to find the transition propensities between
the states of genes. Here, we use the beta distribution
to determine the activation and degradation propensities
for each gene. Therefore, we will have a transition matrix
similar to Table 3 where,

p↑i ∼ Beta(αiA, βiA) and p↓i ∼ Beta(αiD, βiD)

and where i = 1, 2, . . . , n in general, and i = 1, 2 for this
work with only two genes.

The use of the beta distribution is appropriate for a
variety of reasons. First, the beta distribution has a co-
domain between 0 and 1 inclusive. Second, the beta dis-
tribution is commonly used when the set of random vari-
ables are probabilities, thus the extension to propensities
is not unreasonable. Last, the beta distribution has been
used by Wright to model other biological phenomena such
as gene frequencies in population dynamics in 1937 [40].
The beta distribution uses two parameters, a shape (α)
and a rate parameter (β), but can also be understood in-
tuitively as a number of successes α and failures β. Thus,
in a series of N trials where we would expect α successes,
we would also expect N − α = β failures.

Our calculations for the transition matrix make use of
the gamma function, the beta function, and the Gauss
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hypergeometric function which can be found in the Ap-
pendix.

The transition matrix in Table 3 then has the following
properties:

1. This matrix is stochastic and thus a transition ma-
trix.

2. (1− p↑i ) and (1− p↓i ) each have a beta distribution.

3. The probability density function of the product of
two beta distributions with shape parameters (a1, b1)
and (a2, b2) for genes 1 and 2 respectively is shown
in the Appendix.

4. The expected value of the matrix is the expected
value of each entry.

5. The expected value of each entry is the product of the
expected values of each beta distributed activation or
deactivation propensity, denoted Ei for Gi.

6. The variation of each transition between the states of
two beta distributions with shape parameters (a1, b1)
and (a2, b2) for genes 1 and 2 respectively is

E1
2(1 + a1)E2

2(1 + a2)

(E1 + a1)(E2 + a2)
− (E1E2)

2.

The justification for each of these claims is discussed in
the Appendix.

2.3 Method 3: Spectral density

The third and final method which we used to investigate
ways to incorporate variance into gene state transitions
involved using spectral density. The general idea behind
spectral density is to take a finite set of static data and
estimate how the total power is distributed across fre-
quencies. Spectral analysis in particular has been used in
a variety of fields such as psychology for heart rates [18],
medical fields for fetal heart rates [38], geology for geolog-
ical formation [5], and bioinformatics for gene prediction
[25].

Let y(t) for t = 0, 1, . . . , T be a discrete-time data se-
quence from time t = 0 to t = T , and assume that y(t) has
finite energy such that

∑∞
t=−∞ y(t) < ∞. Let r(q) be the

autocovariance sequence obtained from the lag q between
sampling data such that r(q) = E[y(t) ∗ y(t − q)]. Lag
is the amount of time between measuring signal output.
Then, the power spectral density (PSD) of r(q) is

ϕ(ω) =

∫ ∞

−∞
r(q)e−iωq dq,

where ϕ(ω) is the PSD and Fourier transform of r(q),
ω is the frequency of the signal, and i =

√
−1. Then,

Figure 4: A plot of k∗ from a uniform distribution vs. the
real variation of the interaction.

Figure 5: A plot of k∗ from a uniform distribution vs. the
complex variation of the interaction.

Figure 6: The beta distribution with shape parameters
α = 3 and β = 5.
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Figure 7: The beta distribution with shape parameters
α = 4 and β = 1.

Figure 8: The beta distribution with shape parameters
α = 2 and β = 2.

ϕ(ω) is the power at different bands of frequency [36].
Therefore, the integral of ϕ(ω) across all possible frequen-
cies is the total power of the signal. Furthermore, since
r(0) = E(y(t)2), and if we assume that E(y(t)) = 0, the
integral of ϕ(ω) across all frequencies is also the variance
[36].

Although we do not have data for the transitions of
gene states, we use the transition function to demonstrate
how this process would work for variance estimation. In
this case, the transition function (1) is equal to r(t) so
that the Fourier transform of r(t) will result in the PSD,
and the integral of the PSD will be the variance of the
system.

Biologically it is possible for the decay rate to vary
[41]. If k varies, we replace it with a probability den-
sity function g(k). This alters the transition function de-
scribed in [28] and [12] such that the rate of transcrip-
tion is a∗(x) = kg(k)x. Thus, f∗(t) = a0e

−k∗t, where
k∗ = kg(k). Here, we allow the decay rate k to vary
according to a specific statistical distribution.

In order to use a distribution for k, it is necessary to
determine the variation of k. However, the decay rates
of interaction molecules, like mRNA, are not well stud-
ied [41]. In this section, we explore how the variation of
interactions is affected by different distributions of k.
To do this we will generate different values of k from

different distributions and multiply them by their prob-
ability density function, g(k), in order to obtain k∗ and
f∗(t). The first moment of f∗(t) is given by the Fourier
Transform which is also the power spectral density in this
case. The units of frequency that we use are cycles per
sampling period. Then, we will calculate the variation of
these interactions by integrating the power spectral den-
sity function.

We will include the entire time interval for these in-
teractions, but we will only consider frequencies ranging
from 0 to 100 periods per time interval. This interval has
been chosen because it is unlikely that we will see fre-
quencies greater than 100. For example, cos(x) has two
frequencies because it has nonzero energy at two different
amplitudes. Based on our function, it seems more likely
that we only have one frequency per time interval. Either
way, the interval [0, 100] should include our frequency.

2.3.1 Uniform distribution

The uniform distribution describes scenarios where every
value of k is equally likely to be chosen. Since k is a rate of
decay, we let k ∈ [0, 1]. Then, the expected value of g(k)
is E(g(k)) = 1 and the power spectral density function is

ϕ∗(ω) =
a0

iω + k∗

Let a0 = 1 and find
∫ 100

0
1/(iω + k∗) dω to find the total

variance across frequencies, V ar(ω)

V ar(ω) = −i log
(
100i
k∗

+ 1
)

Using polar coordinates and Euler’s Theorem, we can
rewrite V ar(ω) as the following

V ar(ω) = −i log

(√(
100
k∗

)2
+ 1

)
− arctan

(
100
k∗

)
.

At 100 random values of k∗ we obtain variations shown
in Figures 4 and 5.

2.3.2 Beta distributions

We then repeat this process for the beta distribution with
different shape parameters. The probability density func-
tion of the beta distribution is

g(k) =
kα−1e−kββα

Γ(α)
.
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Figure 9: Variation measured from different spectral den-
sities and beta distributions of k∗. All distributions
contain real (left) and imaginary (right) components.
(a) k∗ ∼ Beta(α = 2, β = 2); (b) k∗ ∼ Beta(α = 4,
β = 1); (c) k∗ ∼ Beta(α = 3, β = 5).

Figure 10: The transition function, X(t) = x0e
−kt, illus-

trated with different rates of decay, k, and a threshold,
m = 0.4.

Figure 11: (a) How different decay rates, k, and time, τ ,
to cross the threshold, m = 0.4, interact. Tau is the time
it takes for the proportion of molecules to cross a thresh-
old that triggers a state change in the network. (b) How
different decay rates, k, and time, τ , to cross a threshold,
m, interact. This behavior is shown for different values
of m to illustrate how m may impact each network.
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Here, we generate three different beta distributions with
shape parameters (α, β) = [(4, 1), (2, 2), (3, 5)], which can
be seen in Figures 6, 7, and 8. Notice that g(k) is not a
function of t, so all power spectral density functions will
be in the form of

ϕ∗(ω) =
a0

iω + k∗
.

Then, variation of each beta distribution, when ω ∈
(0, 100), will be of the form

−i log

(
100i+ k∗

k∗

)
.

which can be rewritten as

V ar(ω) = −i log

(√(
100

k∗

)2

+ 1

)
− arctan

(
100

k∗

)
.

using a process similar to the one described for the uni-
form distribution. Due to the fact that different shape
parameters for the beta distribution can result in a vari-
ety of curves, we explore three different cases. One where
α > β, one where α = β, and one where α < β. The spe-
cific shape parameters chosen visually created different
curves, but we believe the general behavior of variation is
still captured in Figure 9.

Case I: α = 4, β = 1
The first case for beta distributions that we investigate
is when the shape and rate parameters are α = 4 and
β = 1. This distribution can be seen in Figure 7 Then,
we obtain the probability density function:

g(k) =
k3e−4

6
.

From here, we find the expected value of k, k∗, and the
PSD, ϕ∗(ω):

k∗ =
k4e−4

6

ϕ∗(ω) =
6

6iω + k4e−4
.

The resulting variation can be seen in Figure 9a.

Case II: α = 2, β = 2
The second case for beta distributions that we investigate
is when the shape parameters are α = 2 and β = 2.
Figure 8 shows the behavior of this distribution. The
probability density function under these parameters is

g(k) = 4ke−2k.

Then, we can find the expected value of k, E(k) = k∗,
and the PSD, ϕ∗(ω):

k∗ = 4k2e−2k

ϕ∗(ω) =
1

iω + 4k2e−2k

The resulting variation can be seen in Figure 9b.

Case III: α = 3, β = 5
The third and final case that we investigated for the beta
distribution was when the shape and rate parameters were
α = 3 and β = 5. From here, we obtain the probability
density function:

g(k) = 62.5k2e−5k

Then, the expected value of k, E(k) = k∗, and the PSD,
ϕ∗(ω) are

k∗ = 62.5k3e−5k

ϕ∗(ω) =
1

iω + 62.5k3e−5k
.

The resulting variation can be seen in Figure 9c.

3 Results

3.1 Results Method 1:
Transition function

In Figure 10 we illustrate the behavior of the transition
function, X(t) = x0e

−kt. The shape of the transition
function and the time that the curve passes the thresh-
old m are dependent on the value of the decay rate k.
Higher values of k correlate with faster rates of decay and
a shorter time τ that is needed for the curve to pass the
threshold. Lower values of k correlate with slower rates of
decay and a longer time period τ to cross the threshold.
Concentrations of molecules that dip below the threshold
are expected to change states.

In Figure 11a the relationship between the rate of decay
k and the time τ that it takes to cross the threshold m is
shown. A system that involves molecules with high decay
rates, such as k = 8, will have faster response times,
τ ≤ 0.2. In comparison, systems with molecules that
take a longer time to decay k = 1 will take longer to
change from state to state in a system, τ > 0.2. In reality,
the rate at which proteins can be produced is limited by
the speed of transcription and translation as well as the
capacity for ribosomes to assemble amino acids [4].

Although the threshold for state changes to occur does
not vary significantly [4], we show how the threshold, m,
can affect the time τ to change states in Figure 11b. Here,
we see that whenm is approximately 90% of the molecules
present τ.9, will be much smaller than τ.1 when m is ap-
proximately 10%. Therefore, when m is high, the rate of
decay k will have a smaller impact on the network than
when m is low.

Overall, Figures 10 and 11 illustrate that GRNs with
the ability to change the number of molecules quickly will
have faster response times to any environmental changes.
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In addition, GRNs that only require small changes in the
number of molecules in order to trigger a state change will
also have faster response times. Fast response times in a
system lead to lower fluctuations and thus lower cell-cell
variability [4]. These figures show what we expect to oc-
cur in a GRN without stochastic behavior. Since it is well
known that regulatory networks have stochastic behavior
[2, 4, 12, 20, 28], finding ways to incorporate stochastic-
ity and variation within mathematical models may prove
beneficial such that they may be better equipped for cap-
turing variability in the future.

In Figures 12, 13, and 14, two sets of points are shown
in each graph. In these figures we see the proportion of
genes that have changed state by the indicated time step
τ on the x-axis. The genes change states at different time
steps because k varies uniformly from 0.1 to 10. The light
gray set of points represent the deterministic outcome
of a gene transition. The color coded sections of each
of these figures represents 5% intervals of genes. The
majority of the genes transition into a new state within
the first quarter of total time steps. In Figure 12 it takes
roughly 20 time steps for all of the genes to transition.
This is considerably more time steps compared to the
roughly 7 time steps in Figure 13 and roughly 1 time step
in Figure 14. In Figure 15 we see again that whenm = 0.1
it takes much longer for all of the genes to transition
and also that there are more genes with higher variance
compared to genes with a threshold of m = 0.9.
The variation of each of these 5% intervals is plotted in

Figure 16. In Figure 16a the threshold used is m = 0.1
and in Figure 16b the threshold used is m = 0.9. This
figure shows that the longer it takes for a gene to react
to its surroundings, the more variation will exist during
gene transitions.

3.2 Results Method 2:
Beta distributed propensities

3.2.1 Effects on variation

In the following sections we discuss how different param-
eters and values effect the variation of a state transition.
First we see how the two actions, one changing shape pa-
rameters of the beta distribution and two changing the
expected value affect variation of transitions.

Case I: Holding Expected Value Constant
We explore how the variation of transitions is affected by
different shape parameters when the expected value of an
entry is held constant. In Figure 17 we see the relation-
ship between shape parameters and variation when the
entry X has 4 different expected values with correspond-
ing gene transition probabilities (a), (b), (c), and (d).
These figures reveal that high variation occurs when the
shape parameter of one gene is high and the other is low.

Figure 12: The proportion of genes that have changed
states at time τ when m = 0.1.

Figure 13: The proportion of genes that have changed
states at time τ when m = 0.4.

Figure 14: The proportion of genes that have changed
states at time τ when m = 0.9.
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Figure 15: Graphs of the variation at every fifth percentile
for m = 0.1 in black, m = 0.4 in red, and m = 0.9 in blue.

Figure 16: How variation changes with respect to the time
it takes for the transition function to cross the threshold.
(a) Threshold m = 0.1; (b) Threshold m = 0.9.

High variation also appears to be correlated with higher
expected values (17c–17d). Since the shape of beta distri-
butions is dependent on the shape parameters, there is no
set distribution for each of the graphs being represented.
The variation for each of these figures indicates that vari-
ation is highest when the shape parameter of gene 1 α1 is
high and the shape parameter of gene 2 α2 is low. A closer
look reveals that when the expected value of a transition
is low for both genes, Figure 17a, the maximum variance
is less than 0.1. However, when the expected value for
both genes is high, Figure 17d, the maximum variance is
greater than 10.

Case II: Holding Shape Parameters Constant
Here we look at how the variation is affected by changes
in expected value, but when one of the shape parameters
is held constant. Here, the relationship between α, β,
and the expected value allow us to look at how changes in
expected value affect the variation in a transition between
gene states. In Figure 18 the x-axis is the expected value
of gene 1 and the y-axis is the expected value of gene 2.
We see that in general, when one gene has an expected
value of approximately 0.5 and the other has an expected
value close to 1 the variance of the transition will be high.

3.2.2 Variance of the GRN

Given independence between each of the gene transitions
in the network, the variance of the entire network will
have a covariance of zero and the network’s variance will
equal the variance of the product of the two beta distri-
butions. The variance of the entire network is shown in
Table 4.

Recall that the variation of each edge of two beta dis-
tributions with shape parameters (a1, b1) and (a2, b2) for
genes 1 and 2 respectively is

E1
2(1 + a1)E2

2(1 + a2)

(E1 + a1)(E2 + a2)
− (E1E2)

2.

3.3 Results Method 3: Spectral density

Figures 4 and 5 show the behavior of variation for differ-
ent values of k∗. The real variation is shown in Figure 4.
This variation is linear and negative. The magnitude of
variation is greater for lower values of k∗. In Figure 5 vari-
ation takes on a logarithmic shape and is also negative.
The magnitude of variation decreases as k∗ increases.

Figure 9 shows the variation from three different beta
distributions, α = 4 and β = 1, α = 2 and β = 2, and
α = 3 and β = 5. Similar to the uniform distribution,
there is a real and complex component to each of these
distributions. The real component for each of these dis-
tributions is also linear, and the complex component is
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logarithmic. All variation shown is negative. All varia-
tion decreases as the magnitude of k∗ decreases.

4 Discussion

4.1 Method 1: Transition function

In Figure 10 we show how the rate of decay effects the
time required for the curve to pass the threshold m. We
see that larger values of k lead to a shorter time tau for the
curve to pass the threshold. On the other hand, smaller
values of k create a longer time period to cross the thresh-
old. We also look at the relationship between the rate of
decay and the time that it takes to cross the threshold in
Figure 11. Again, higher rates of decay indicate a faster
response time for change in gene states. We also found
that higher thresholds are more responsive to change than
lower thresholds and also less affected by changes in decay
rates.

Later, in Figures 12, 13, and 14, we include stochas-
ticity while using the transition function and by using
a binomial distribution where there is a 75% probabil-
ity that genes which are supposed to change states ac-
tually do change states. [2] argue that the use of the
binomial distribution to determine the outcome of genes
likely overestimates the variation of transitions [2], but
this distribution was used for the sake of a preliminary
investigation and could easily be changed in the future.
Overtime, we see that the number of genes that transition
has a propensity of 75%, which is the given probability of
the binomial distribution used to determine the outcome
of each gene.

In Figure 16, we see that as time increases, the variation
present in transitions also increases. This is true regard-
less of the threshold value. This would indicate that cells
with genes that can respond quickly to their surroundings
are more likely to have lower variability between cells.
This is consistent with literature that indicates that fast
response times in a system lead to lower fluctuations and
thus lower cell-cell variability [4]. It has been shown that
frequent transcriptions with fewer proteins per transcrip-
tion lead to networks with less variation, whereas, less
frequent transcriptions and larger protein yield per tran-
scription results in more noise [27]. Low protein yield per
transcription is energy inefficient [27]. High protein yield
per transcription leads to more variation but is energy
efficient [27].

4.2 Method 2:
Beta distributed propensities

In Figure 17 we find that large differences in shape pa-
rameters and high expected values for transitions lead
to greater variation in gene state transitions. We also

find that a mix of intermediate and high expected val-
ues leads to greater variation than low expected values in
Figure 18. There is currently no known biological expla-
nation for this behavior in the literature. We hypothesize
that genes that are acting effectively, and thus have a
high expected value or high propensity and are working
appropriately, are able to handle more variation without
a decrease in fitness compared to genes that are ineffi-
ciently working. It may also be unlikely to see a mixture
of intermediate and high propensities in a system, since
most systems were likely selected to have lower variation
through evolution.

One of the benefits to using the beta distributed ac-
tivation and degradation propensity method is that no
simulation of the network is needed. There is also a
natural extension to the beta distributed activation and
degradation propensity method. When shape parameter
aB = aA + bA, the distribution is a bivariate beta distri-
bution according to a lemma discussed in [21] and [30].
[21] also showed that this property extends to multiple in-
dependent beta random variables [21]. “If U1, U2, . . .Up

are independent beta random variables with shape pa-
rameters (ai, bi), i = 1, 2, . . . , p and if ai+1 = ai + bi,
i = 1, 2, . . . , p − 1, then the product U1 ∗ U2 ∗ . . . Up

is also a beta random variable with shape parameters
(a1, b1 + . . .+ bp)” [21].

[30] discuss the relationships among two independent
beta distributions using this lemma but leave the rela-
tionships created from multiple independent beta distri-
butions for future work [30]. Although we limit ourselves
to two genes for the majority of our work, it is more real-
istic to consider cases with more than 2 genes interacting
and so exploring these properties between 3 and more
beta distributions may yield interesting results. In fact,
the bivariate beta distribution has been used to model
proportions of alleles in population dynamics [40]. There-
fore, future use of the bivariate beta distribution may lead
to promising results and insights.

4.3 Method 3: Spectral density

In Figures 4, 5, and 9 we see the behavior of variation for a
variety of distributions. In all cases, the real component
of the PSD is linear and the complex component loga-
rithmic. This indicates that the distribution of k does not
have a large impact on the variation of transitions. There
is some literature that agrees with the results shown here.
Stochasticity in gene expression is not strongly dependent
on the statistical distribution of transcription initiation
[27]. Stochasticity will occur when there are a limited
number of promoters for gene regulation in the cell and
the time interval for transcription time is longer [27].

All of the variation represented through this method
is less than zero. This is likely due to the fact that the
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Fourier transform involves complex values and that i2 =
−1. Interpretation of negative variation is not common,
but there is some evidence that the magnitude of variation
is more important than the sign [9]. Likewise, complex,
or imaginary, variation is also difficult to interpret. The
resulting negative and complex variation for all cases is
a possible downfall to this modeling process and future
investigation is needed to see if this behavior is prevalent
across all distributions.

5 Conclusion

Collectively, each of these modeling techniques provides
different qualitative information about gene state transi-
tions. Integrating these models and the information that
they provide into future models could help to create more
accurate models overall. However, these models do not
capture the larger picture of interwoven networks that
each impact one another. Separating networks mathe-
matically does not provide an accurate view of an or-
ganism’s complex system of networks each impacting one
another.

Appendix

Justification of Method 3

Justification for (1)

A stochastic matrix is an n×nmatrix such that each entry
is less than or equal to 1 and each row sum is equal to 1
[7]. In the Transition Matrix, 0 ≤ p↑i ≤ 1 and 0 ≤ p↓i ≤ 1.

Therefore, 0 ≤ (1 − p↑i ) ≤ 1, and 0 ≤ (1 − p↓i ) ≤ 1. Let
x be the product of any of these terms. Then 0 ≤ x ≤ 1.
Furthermore,

(1− p↑1)(1− p↑2) + (1− p↑1)p
↑
2 + p↑1(1− p↑2) + p↑1p

↑
2 = 1,

(1− p↑1)p
↓
2 + (1− p↑1)(1− p↓2) + p↑1p

↓
2 + p↑1(1− p↓2) = 1,

p↓1(1− p↑2) + p↑1p
↓
2 + (1− p↓1)(1− p↑2) + (1− p↓1)p

↑
2 = 1,

p↓1p
↓
2 + p↓1(1− p↓2) + (1− p↓1)p

↓
2 + (1− p↓1)(1− p↓2) = 1.

Justification for (2)

Let A ∼ Beta(aA, bA) and Z = 1 − A. The probability
density function of A is

fA(A) =
(A)aA−1 ∗ (1−A)bA−1

B[aA, bA]
.

The transformation of Z = 1−A creates the new pdf

fZ(Z) =
(1− Z)aA−1 ∗

(
1− (1− Z)

)bA−1

B[aA, bA]
.

Which simplifies to

fZ(Z) =
(1− Z)aA−1 ∗ (Z)bA−1

B[aA, bA]
.

This implies that Z has a beta distribution with shape
parameters bA and aA.

Z ∼ Beta(bA, aA)

Therefore the distribution of Z = 1 − A, where A is a
beta distribution, is also a beta distribution.

Justification of (3)

The pdf of f(x, y) whenX = A∗B and Y = B where both
A and B are beta distributions. A ∼ Beta(aA, bA) and
B ∼ Beta(aB , bB) is shown below and obtained though a
transformation of variables.

f(x, y) =

(
x
y

)aA−1 ∗
(
1− x

y

)bA−1 ∗ (y)aB−1 ∗ (1− y)bB−1

B[aA, bA] ∗ B[aB , bB ] ∗ y
for 0 < x ≤ y and 0 < y < 1.

∫ 1

x
f(x, y) dy

=

(
xa2Γ

[
b1
]
Γ
[
a1 − a2

]
HypG2F1

[
1 − b2, 1 − a1 − b1 + a2, 1 − a1 + a2, x

]
Γ
[
a1 + b1 − c

]
+

xa1Γ
[
b2
]
Γ
[
−a1 + a2

]
HypG2F1

[
1 − b1, 1 + a1 − b2 − a2, 1 + a1 − a2, x

]
Γ
[
−a1 + b2 + a2

]
)

∗
1(

xB
[
a1, b1

]
B
[
a2, b2

])

Justification of (4)

Expected value is a positive linear operator. Results fol-
low.

Justification of (5)

The expected value of X is dependent on the shape pa-
rameters of A ∼ Beta (aA, bA) and B ∼ Beta (aB , bB).∫ 1

0

∫ y

0

x ∗ f (x, y) dx dy =
aAΓ [1 + aB ] Γ [aB + bB ]

(aA + bA) Γ [aB ] Γ [1 + aB + bB ]

The expected value of X is also the same as the product
of expected values of A and B. This follows naturally
because A and B are independent, but this property can
also be motivated by the relationship between the shape
parameters.

Recall that the expected value of A is aA

aA+bA
and there-

fore, based on a proportional relationship between a and
b, the expected value EA or EB creates the relationship:
bA = 1−EA

EA
aA and similarly bB = 1−EB

EB
aB

Substituting this expression into the expected value of
X for bA or bB leads to the expression

aAΓ[1 + aB ]Γ
[
aB + 1−EB

EB
aB

]
(
aA + 1−EA

EA
aA

)
Γ[aB

]
Γ
[
1 + aB + 1−EB

EB
aB

] ,
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Figure 17: (a) E(X) = 0.02, the expected value of the transition in gene 1 is 0.2, and the expected value of the
transition in gene 2 is 0.1. (b) E(X) = 0.06, the expected value of the transition in gene 1 is 0.3, and the expected
value of the transition in gene 2 is 0.2. (c) E(X) = 0.56, the expected value of the transition in gene 1 is 0.8, and
the expected value of the transition in gene 2 is 0.7. (d) E(X) = 0.63, the expected value of the transition in gene 1
is 0.9, and the expected value of the transition in gene 2 is 0.7.
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Figure 18: Three surfaces measuring variation when the expected value varies. Different shape parameters are used
for each set of figures: (a) aa = 20 and ab = 9; (b) aa = 0.5 and ab = 0.3; (c) aa = 2 and ab = 9.
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Table 3: Transition Matrix of State Update Propensities.

Output

00 01 10 11

In
p
u
t

00 (1− p↑1)(1− p↑2) (1− p↑1)(p
↑
2) (p↑1)(1− p↑2) (p↑1)(p

↑
2)

01 (1− p↑1)(p
↓
2) (1− p↑1)(1− p↓2) (p↑1)(p

↓
2) (p↑1)(1− p↓2)

10 (p↓1)(1− p↑2) (p↓1)(p
↑
2) (1− p↓1)(1− p↑2) (1− p↓1)(p

↑
2)

11 (p↓1)(p
↓
2) (p↓1)(1− p↓2) (1− p↓1)(p

↓
2) (1− p↓1)(1− p↓2)

Table 4: Variation of the entire GRN.

00 01 10 11

V((1− p↑1)(1− p↑2)) 0 0 0

0 V((1− p↑1)(1− p↓2)) 0 0

0 0 V((1− p↓1)(1− p↑2)) 0

0 0 0 V((1− p↓1)(1− p↓2))

which can be reduced to

aAaBΓ[aB ]Γ
[
aB + 1−EB

EB
aB

]
aA

(
1 + 1−EA

EA

)
Γ
[
aB

](
aB + 1−EB

EB
aB

)
Γ
[
aB + 1−EB

EB
aB

]
=

aAaBΓ[aB ]Γ
[
aB + 1−EB

EB
aB

]
aA

(
1 + 1−EA

EA

)
Γ[aB ]aB

(
1 + 1−EB

EB

)
Γ
[
aB + 1−EB

EB
aB

]
=

1(
1 + 1−EA

EA

)(
1 + 1−EB

EB

) =
EAEB

1
= EAEB .

Justification for (6)

The variance of X is also dependent on the shape param-
eters of A ∼ Beta(aA, bA) and B ∼ Beta(aB , bB)

V ar(X) =
Γ
[
2 + aA

]
Γ
[
bB
]
Γ
[
bA
]
Γ
[
2 + aB

]
β
[
aA, bA

]
β
[
aB , bB

]
Γ
[
2 + aA + bA

]
Γ
[
2 + aB + bB

]−E(X)
2

As before, we substitute the expressions bA = 1−EA

EA
aA

and bB = 1−EB

EB
aB into the variance of X and we obtain

the expression

Γ
[
2 + aA

]
Γ

[
1−EB
EB

aB

]
Γ

[
1−EA
EA

aA

]
Γ
[
2 + aB

]
β

[
aA,

1−EA
EA

aA

]
β

[
aB,

1−EB
EB

aB

]
Γ

[
2 + aA +

1−EA
EA

aA

]
Γ

[
2 + aB +

1−EB
EB

aB

]
−
(
EAEB

)2

=

(
1 + aA

)(
1 + aB

)(
1 + aA +

1−EA
EA

aA

)(
1 +

1−EA
EA

)(
1 +

1−EB
EB

)(
1 + aB +

1−EB
EB

aB

)
−
(
EAEB

)2

=
EA

2(1 + aA)EB
2(1 + aB)

(EA + aA)(EB + aB)
− (EAEB)

2.

Equations

The gamma function

Γ(z) =

∫ ∞

0

x(z−1)e−x dx.

When z is an integer n, the gamma function is also equiv-
alent to

Γ(n) = (n− 1)!.

The beta function

B(x, y) =
∫ 1

0

tx−1(1− t)y−1 dt.

The beta function is also equivalent to

B(x, y) = Γ(x)Γ(y)

Γ(x+ y)
.

The Gauss hypergeometric function

HypG2F1(a, b; c;x) =

∞∑
k=0

(a)k(b)kx
k

(c)kk!
.

The bivariate beta Distribution

f (x, y) =
Γ (a+ b+ c)

Γ (a) Γ (b) Γ (c)
xa−1yb−1 (1− x− y)

c−1

where a, b, c > 0, x ≥ 0, y ≥ 0 and x+ y ≤ 1.

Equation of the probability density function of the
product of two beta distributions with shape pa-
rameters (a1, b1) and (a2, b2)(
xa2Γ[b1]Γ[a1 − a2]HypG2F1[1 − b2, 1 − a1 − b1 + a2, 1 − a1 + a2, x]

Γ[a1 + b1 − c]

+
xa1Γ[b2]Γ[−a1 + a2]HypG2F1[1 − b1, 1 + a1 − b2 − a2, 1 + a1 − a2, x]

Γ[−a1 + b2 + a2]

)

∗
1(

xB[a1, b1]B[a2, b2]
) .
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