Deployment of SE-SqueezeNext on
NXP BlueBox 2.0 and NXP 1.MX RT1060 MCU

Ravi Teja N.V.S Chappa
Electrical and Computer Engineering
Purdue School of Engineering and Technology
Indianapolis, USA
nagchapp @iupui.edu

Abstract—Convolution neural system is being utilized in field
of self-governing driving vehicles or driver assistance systems
(ADAS), and has made extraordinary progress. Before the
CNN, conventional AI calculations helped ADAS. Right now,
there is an incredible investigation being done in DNNs like
MobileNet, SqueezeNext & SqueezeNet. It improved the CNN
designs and made it increasingly appropriate to actualize on
real-time embedded systems. Due to the model size complexity
of many models, they cannot be deployed straight away on
real-time systems. The most important requirement will be to
have less model size without a tradeoff with accuracy.
Squeeze-and-Excitation SqueezeNext which is an efficient DNN
with best model accuracy of 92.60% and with least model size
of 0.595MB is chosen to be deployed on NXP BlueBox 2.0 and
NXP i.MX RT1060. This deployment is very successful because
of its less size and better accuracy. The model is trained and
validated on CIFAR-10 dataset.

Index Terms—Squeeze-and-Excitation SqueezeNext
architecture(SE-SqueezeNext), Convolution Neural Networks
(CNN), Deep Neural Networks (DNN), SqueezeNext, SqueezeNet,
CIFAR-10, NXP BlueBox 2.0, NXP i.MX RT1060 MCU.

I. INTRODUCTION

The majority of the applications continuously, for example,
computer vision, mechanical autonomy, image recognition and
grouping of images [10], autonomous vehicles and ADAS have
been changed with assistance of Deep Neural Networks. This
has been made conceivable by experiencing profound research
right now the previous decade with the accessibility of all the
more preparing information, and for preparing and approval
having quicker equipment. Be that as it may, not incredible
measure of work is done in parts of model size and speed.
There is a drawback to DNNs that it require more spending
plan of assets that alludes to more calculation and memory
assets. Most as of late, DNN achieved a befuddling benchmark
of exactness at 99% with GPipe [17].

In this paper, we have used Squeeze-and-Excitation
SqueezeNext which is abbreviated as SE-SqueezeNext. This
is modified version of SqueezeNext. The modifications
includes the addition of SE block(Squeeze and Excitation
block), Relu inplace activation, learning rate scheduling
along with nestrov, decay and momentum implemented with
SGD optimizer. These changes are respect to CIFAR-10
dataset [16] so that the model size is reduced without

Mohamed El-Sharkawy
Electrical and Computer Engineering
Purdue School of Engineering and Technology
Indianapolis, USA
melshark @iupui.edu

affecting the accuracy. The architectural representation of
SE-SqueezeNext is shown in Figure 1.

Basic Block

Convolution — Stage 1 ‘ ‘ Averae Pool }:&{ FC Convolution ‘
[Batch Normalization in | Stage 2
place 4 |
RelLu in place Output
SE Block Stage4 =) Basic Block 2

Fig. 1: Illustration of Basic Block (left) and Squeeze-and-
Excitation SqueezeNext architecture.

In applications, for example, ADAS frameworks, image
recognition and so forth we need a system that is
straightforward and ought to be adaptable to make the
application work quicker. One of those structures is RTMaps.
RTMaps V4.5.0 makes the programming run on installed
targets. Along these lines, one of those high computational
targets is NXP Bluebox 2.0. The RTMaps installed
accessible on NXP Bluebox 2.0 causes us to create
applications, for example, ADAS frameworks and so on.
NXP Bluebox 2.0 is an improvement stage that gives an
essential presentation, utilitarian security to structure an
autonomous vehicle. NXP Bluebox 2.0 comprises of
S32V234 for vehicle vision and sensor combination
microchip, the LS2084A implanted PC processor and the
S32R27 radar microcontroller. The calculations created in
have PC are conveyed in NXP Bluebox 2.0 utilizing a SSL
connection.

NXP i.MX RT1060 is highest performing Arm Cortex-M7
MCU. It has industry’s lowest dynamic power with an
integrated DC-DC converter and operates at speeds up to 600
MHz to provide high CPU performance and best real-time
response. It is supported by NXP’s MCUXpresso Software’s
and tools. It can compute computer vision algorithms with
low latency. The elQ machine learning software helps us
developing machine learning algorithms in i.MX RT1060.

The paper is organized as below. In section II, we discuss
about the previous efforts which are related our work.
Followed by section III describes the implementation
SE-SqueezeNext on the target hardware. Section IV explains
the hardware and software used for deployment of the

This is the author's manuscript of the work published in final edited form as:

Chappa, R. T. N. V. S, & El-Sharkawy, M. (2020). Deployment of SE-SqueezeNext on NXP BlueBox 2.0 and NXP i. MX
RT1060 MCU. 2020 IEEE Midwest Industry Conference (MIC), 1, 1-4. https://doi.org/10.1109/MIC50194.2020.9209612

architecture. Section V shows the experimental results
obtained after successful deployment using CIFAR-10
dataset. In section VI, lastly conclusions are made in the

paper.
II. PREVIOUS WORK

There have been numerous structures presented after
Alexnet. A portion of those systems are VGG, Inception
[21], [22] and so forth. These are more precise than Alexnet
yet in addition confounded. So as to execute these structures
continuously is beyond the realm of imagination due to the
high model size. At that point, there has been a great deal of
dynamic research proceeding to create models that are good
to convey continuously gadgets without settling on exactness.
Out of which, two strategies are portrayed in building up
these little models. One is building up a little model without
any preparation or packing a huge system. Quantization,
hashing [1], Pruning, vector quantization and Huffman
encoding and so on. These techniques are used to compress
a huge system. Systems like Mobilenet V1 and Mobilenet
V2 are little models that are created without any preparation.
These systems didn’t concentrate on speed. Squeezenet and
Squeezenext are presented which are little in size as well as
concentrated on speed also. There are a lot of new systems
like [19],[20],[21] they are created utilizing various
convolutions like gathered convolutions and a mix of
convolutions shaping remaining sort associations and so forth
[22] gives a few bits of knowledge into different applications
with RTMaps and BlueBox 2.0.

III. DEPLOYMENT OF SE-SQUEEZENEXT
A. SE-SqueezeNext on NXP BlueBox 2.0

The python part in RTMaps will permit us to create and
incorporate PC vision calculations for ADAS applications
like Image arrangement, traffic sign recognition, and driving
assistance and so on. The python segment in RTMaps has an
editorial manager in it that permits clients to make, create
and convey their python contents. Right now, are three
principle capacities that are essential to know so as to
actualize clients python content in equipment. Birth(), Core()
and Death() are the three capacities that are accessible in the
proofreader. Birth() is executed once toward the starting to
introduce and set up the code. Core() is a capacity that runs
in an unbounded loop. Along these lines, the client’s code
can be characterized right now permits code to run
persistently. Demise() is characterized at the end and it is
considered when the program is ended.

The python component in RTMaps is appeared in the figure
2. This structure of composing code makes it simpler for the
client to prototyping and building up their own code as for
the application. When the scripting is done, the client can
utilize the RTMaps Embedded to run their application on the
Bluebox platform. Figure-5 shows the flowchart of RTMaps
arrangement with Bluebox 2.0. The association between the
have pc and the objective Bluebox is TCP/IP. In the wake
of interfacing with have pc, the client can check right COM

ports in the gadget administrator. At that point client should
arrangement Teraterm for LS2 interface also, S32V interface.
Right now, classifier is prepared as it were in GPU yet tried
in NXP Bluebox 2.0.

mouseClick
keyPress

A

python v3 2

np
iDrawingObjects

ImageViewer_1

Fig. 2: The python component in RTMaps.

Generate checkpoint file Generate

using torch.save()

‘

Train proposed SE-
SqueezeNext arch. In
Pytorch using GPU

—

RTMaps Python module

BlueBox2.0

TCP/IP

RTMaps execution
engine

RTMaps remote
studio connector

Fig. 3: Flowchart of deployment on NXP BlueBox 2.0

B. SE-SqueezeNext on NXP i.MX RT1060 MCU

Deploying SE-SqueezeNext on NXP i.MX RT1060 involves
two steps, first to convert our model to TensorflowLite model
and deploying that tensorflowLite model into the board.

1) Converting into TensorflowLite Model:: The NXP elQ
is an Al software development environment to create Al
applications for implanted processors, for example, i.MX RT
hybrid processors. The elQ programming incorporates neural
network compilers, and improved libraries. TensorFlow Lite
is one of the derivation motors bolstered by elQ
programming with elite and enhanced memory use than
TensorFlow. TFLite-Converter takes a current model in the
keras system and creates the TensorFlow Lite FlatBuffer
document (.tflite). The Python API for TFLiteConverter
permits custom articles, for example, activation functions,
loss functions and so forth to be passed during the change
procedure. The IDE utilized for this change procedure is
Microsoft Visual Studio Code (VS Code). This process can
be visualised from Figure 4.

2) Deploying on i.MX RT1060:: The MCU Xpresso SDK
is explicitly planned by NXP to quicken application
advancement in i.MX RT hybrid processors. The most recent
adaptation incorporates the refreshed elQ libraries and
demos. This SDK additionally bolsters UART investigate
support to run the application on Teraterm. The tflite model
is changed over into a C array header file (.h) that can be
imported on the board. The API call is utilized in the code
to stack the model utilizing this header file. At that point, the
model is fixed and we can see the result in Teraterm.

Checkpoint Tensorflow Lite » tflite file to .h Running on
file(.ckpt format) Flat Buffer File file LMX RT1060
TeraTerm
| NN Compilers ‘ ‘ LARTebee |
console
elQ Software MCU Xpresso
Label image
Optimized libraries example for
TfLite

Fig. 4: Flowchart of deployment on i.MX RT1060 MCU.

IV. HARDWARE AND SOFTWARE REQUIREMENTS

o Aorus Geforce RTX 2080Ti GPU.
o Nvidia Geforce GTX 1080Ti GPU.
o Python version 3.6.7.

o Spyder version 3.6.

o Pytorch version 1.0.

o Netscope (SE-SqueezeNext visualization).
o RTMaps by Intempora

o NXP BlueBox 2.0

o NXP i.MX RT1060 MCU

¢ MCU Xpresso SDK

o Teraterm

V. RESULTS

In this paper, we have considered a pretrained
SE-SqueezeNext model. This is trained and validated for
CIFAR-10 dataset. We used Nvidia Geforce GTX 1080Ti
GPU for training of the model. The original network is
trained using the Pytorch framework with a total number of
epochs to 200 and with a variable learning rate of 0.1, 0.01
and 0.001. We have used Stochastic gradient descent (SGD)
optimizer with nestrov, decay and momentum. The batch size
for training the network is 128 and for the test set, it is 64.
We have replicated a similar configuration to the model with
Keras as well. The results of the deployment are as follows.

A. With NXP BlueBox 2.0

Here, we are endeavoring to make classifier work
effectively on NXP Bluebox 2.0. In this way, the model is
sustained with a few irregular pictures taken from the test
dataset with right ground truth esteems and requesting that
the model anticipate those arbitrary pictures. The RTMaps
Console result is appeared underneath in Figure 5. The
BlueBox result can be seen utilizing Teraterm terminal. The
Teraterm result can be seen underneath in figure 6. The
model is given some arbitrary information pictures like cat,
boat and plane. It accurately predicts those pictures on NXP
Bluebox 2.0.

Eeng Flussas Plusins

=1

Fig. 5: The RTMaps Console Result.

: B.8118 Tr_Acc: B.446
component python_wvw2_1:
component python_v2_1: Training Epoch [1-208] Iter[358-398]
B118 Ty_Acc: B.446
mponent python_wv2_1:
component python_wv2_1: Training Epoch [1-208] Iter[359-390]
: 8.8117 Tr_Acc: B.446
: component python_w2_1:
component python_v2_1: Training Epoch [1-200] Iter[3606-3901]
8.8117 Tr_Acc: 8.
component python H
component python_w : Training Epoch [1-200] Iter[361-3901]
: 8.8117 Tr_Acc: 6.4
: component python_w2_1:
: component python_v2_1: Training Epoch [1,208]1 Iter[362-3901]
: 8.8117 Tr_Acc: 6.447
: component python_w2_1:
: component python_w2_1: Training Epoch [1,208] Iterl[363-/3981
: 8.8117 Tr_Acc: 6.447

Fig. 6: The Teraterm result of the deployment.

B. With NXP i.MX RT1060 MCU

Right now, attempted to give some irregular pictures like
cat and plane, requesting that the model foresee them. For
the most part, we gave cat and plane on the grounds that
these classes have a place with the CIFAR10 dataset and our
model is just prepared to this dataset. The result can be seen
in Teraterm terminal. Our model is effectively capable to
characterize cat and plane images effectively on NXP i.MX
RT1060 alongside inference times appeared in the Figure 8.

Epoch #45 Cost 1s
Loss: ©.0033 Te_Acc: 0.905

Loss: ©.0033 Te. o.90s

Loss: ©.0033 Te. o.90s

Loss: ©.0033 Te_Acc: 0.905

Loss: ©.0033 Te_Acc: 0.905

Clipping input data to the valid range for imshow with RGE data ([@..1] for floats or [0..255] for integers).

For CIFAR-10

Output comparison of images for
"I ground truth & predicted output.

Fig. 7: The image classifier result on the console.

Inference tim

Inference time: 115
Detected: cat (87x)

Inference

Inference time: 118
Detected: cat <97x>

Inference time: 118
Detected: cat <(9@x>

Inference
Detected:

Inference
Detected:

Inference
Detected:

Inference

Detected:

(b) Teraterm result of airplane.

Fig. 8: Results of Successful Recognition of Cat and Airplane.

VI. CONCLUSION

It is evident from the results that we have successfully
deployed SE-SqueezeNext architecture on flexible and highly
computational embedded platforms like NXP BlueBox 2.0
and NXP i.MX RT1060. The model is as small as 0.595MB
and with accuracy of 92.60% makes it the appropriate choice
for the deployment on the respective embedded platforms.
There can be many tweaks be implemented on the existing
architecture to make it more efficient for deployment on
real-time systems. This can also be further developed for
object tracking and detection applications. On a further note,
this model can also be tested for deployment on NXP i.MX
8M Mini MCU which is more advanced than NXP i.MX
RT1060 MCU.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

REFERENCES

R. T. N. V. S. Chappa and M. El-Sharkawy, ”Squeeze-and-Excitation
SqueezeNext: An Efficient DNN for Hardware Deployment,” 2020
10th Annual Computing and Communication Workshop and Conference
(CCWCQ), Las Vegas, NV, USA, 2020, pp. 0691-0697.

J. K. Duggal and M. El-Sharkawy, ”Shallow SqueezeNext: An Efficient
& Shallow DNN,” 2019 IEEE International Conference of Vehicular
Electronics and Safety (ICVES), Cairo, Egypt, 2019, pp. 1-6. doi:
10.1109/ICVES.2019.8906416

Duggal, Jayan Kant, 2019. Design Space Exploration of DNNs for
Autonomous Systems (MSECE Thesis, Purdue University, Indianapolis).
Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J. and
Keutzer, K., (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and ; 0.5MB model size.arXiv preprint arXiv:1602.07360.
Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai,Xiangyu Yue,
Peter Jin, Sicheng Zhao, Kurt Keutzer, (2018). SqueezeNext: Hardware-
Aware Neural Network Design. arXiv preprint arXiv: 1803.10615
Howard, Andrew G., et al. “Mobilenets: Efficient convolutional
neural networks for mobile vision applications.” arXiv preprint
arXiv:1704.04861 (2017).

J. Hu, L. Shen, S. Albanie, G. Sun and E. Wu, ”Squeeze-and-Excitation
Networks,” in IEEE Transactions on Pattern Analysis and Machine
Intelligence. doi: 10.1109/TPAMI.2019.2913372

Ashraf, Khalid, et al. ”Shallow networks for high-accuracy road object-
detection.” arXiv preprint arXiv:1606.01561 (2016).

Toffe, Sergey, and Christian Szegedy. ”Batch normalization: Accelerating
deep network training by reducing internal covariate shift” arXiv
preprint arXiv:1502.03167 (2015). 1

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional
networks for large-scale 1image recognition.” arXiv preprint
arXiv:1409.1556 (2014).

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural
networks from overfitting.” The Journal of Machine Learning Research
15.1 (2014): 1929-1958.

B. Wu, A. Wan, X. Yue, and K. Keutzer. Squeezeseg: Convolutional
neural nets with recurrent crf for real-time road-object segmentation
from 3d lidar p

B. Wu, E Iandola, P. H. Jin, and K. Keutzer. Squeezedet: Unified,
small, low power fully convolutional neural networks for real-time object
detection for autonomous driving. arXiv preprint arXiv:1612.01051,
2016.

J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, et al. Speed/accuracy trade-offs for
modern convolutional object detectors. arXiv preprint arXiv:1611.10012,
2016. preprint arXiv:1609.07061, 2016.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.
Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast
feature embedding. arXiv preprint arXiv:1408.5093, 2014.

Krizhevsky, Alex, Vinod Nair, and Geoffrey Hinton. ”Cifar-10 (canadian
institute for advanced research).” URL http://www. cs. toronto.
edu/kriz/cifar. html (2010).

Huang, Yanping, et al. ”Gpipe: Efficient training of giant neural networks
using pipeline parallelism.” arXiv preprint arXiv:1811.06965 (2018).

S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural
information processing systems, pages 91-99, 2015.

T. Hsiao, Y. Chang and C. Chiu, Filter-based Deep-Compression
with Global Average Pooling for Convolutional Networks,” 2018 IEEE
International Workshop on Signal Processing Systems (SiPS), Cape
Town, 2018, pp. 247-251.

Barret Zoph, Ekin D. Cubuk, Golnaz Ghiasi, Tsung-Yi Lin, Jonathon
Shlens, Quoc V (2019). Le. Learning Data Augmentation Strategies for
Object Detection. arXiv preprint arXiv : 1906.11172

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision. arXiv preprint
arXiv:1512.00567, 2015.

Ludermir, Teresa B., Akio Yamazaki, and Cleber Zanchettin. ”An
optimization methodology for neural network weights and architectures.”
IEEE Transactions on Neural Networks 17.6 (2006): 1452-1459.
Chappa, Naga Venkata Sai Raviteja, 2020. Squeeze-and-Excitation
SqueezeNext: An Efficient DNN for Hardware Deployment (MSECE
Thesis, Purdue University, Indianapolis.)

