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ABSTRACT

The internet is the home for massive volumes of valuable data constantly being created,

making it difficult for users to find information relevant to them. In recent times, online

users have been relying on the recommendations made by websites to narrow down the

options. Online reviews have also become an increasingly important factor in the final choice

of a customer. Unfortunately, attackers have found ways to manipulate both reviews and

recommendations to mislead users. A Recommendation System is a special type of information

filtering system adapted by online vendors to provide suggestions to their customers based

on their requirements. Collaborative filtering is one of the most widely used recommendation

systems; unfortunately, it is prone to shilling/profile injection attacks. Such attacks alter

the recommendation process to promote or demote a particular product. On the other

hand, many spammers write deceptive reviews to change the credibility of a product/service.

This work aims to address these issues by treating the review manipulation and shilling

attack scenarios independently. For the shilling attacks, we build an efficient Reinforcement

Learning-based shilling attack method. This method reduces the uncertainty associated with

the item selection process and finds the most optimal items to enhance attack reach while

treating the recommender system as a black box. Such practical online attacks open new

avenues for research in building more robust recommender systems. When it comes to review

manipulations, we introduce a method to use a deep structure embedding approach that

preserves highly nonlinear structural information and the dynamic aspects of user reviews

to identify and cluster the spam users. It is worth mentioning that, in the experiment with

real datasets, our method captures about 92% of all spam reviewers using an unsupervised

learning approach.
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1. INTRODUCTION

There is an abundance of data, resources, and knowledge available on the internet in the

current day and age, making it impossible for users to reach the most relevant information

to suit their needs. Many websites use recommender systems to make the searching process

easier for users. There are different recommender systems; we will be focusing on the explicit

rating-based systems, which use the ratings provided by some users to make recommendations

to the other users. The users also directly decide the quality of an item based on ratings; the

general rule of thumb is that high ratings are considered good. On top of using ratings, users

also use the reviews provided by other users to estimate product quality.

Let us now discuss the influence of ratings and reviews on a customer. For our investiga-

tions, let’s consider the case of e-commerce websites, which provide both ratings and reviews

to support a customer’s decision. For example, consider a customer trying to buy a flashlight

from an e-commerce website; once the customer enters the search term, “Flashlight”, an array

of items is displayed. The order in which the items are displayed depends on the website.

Now, the customer uses the rating and the reviews for each item to decide which one to

purchase. When it comes to the rating, the selection is based on two factors: 1) The number

of ratings for an item, 2) The actual rating value. Usually, the customer prefers the item

with the maximum number of ratings and the highest ratings. Once they select a product

based on rating, then for further scrutiny, the customers check the reviews written for the

item. The reviews associated with the highest rating and the lowest rating are valued more

by the customer. Usually, such reviews help new customers understand the experiences of

other customers who have already used the product. The more elaborate the review, the

more valuable it is considered.

The other way in which the rating of an item impacts a customer is through recommenda-

tions. Even if the customer does not explicitly search for an item, it can still be recommended

to a customer based on their past purchases. Only the top-rated items relevant to a customer

end up being recommended to the customer. Now that we have seen how ratings and reviews

influence a customer’s decision let us look at ways in which an adversary can alter the ratings,

reviews, and, subsequently, the recommendations made to a customer.
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1.1 How to deceive a customer by attacking the rating and review systems of
a website?

Now, let’s consider the same situation from the perspective of an attacker. The attacker

can have one of the three motives:

1) To promote an item favorable to the attacker,

2) To demote a rival item, and

3) To disrupt the trustworthiness of the website.

The lack of access to the back end forces the attackers to alter the rating and reviews

written for items to accomplish their goals.

1.1.1 Attacking the review system of a website: Fake Review Injection

Spammers post unauthentic reviews for their benefit, manipulating users to buy products

of poor quality. In 2008, Liu et al. published a paper analyzing the influence of opinion spam

on online reviews [1 ]. Since then, multiple types of research have been conducted to find

ways to attack and protect the review system. When only a few fake reviews are injected,

its impact on the system will be minimal. If many fake reviews are written, it alters the

credibility of the product. About one-third of the total reviews on Amazon and one-fifth of

all reviews on Yelp are claimed to be fake reviews [2 ].

When spammers work together as a group or when the same spammer maintains multiple

user accounts, its corresponding impact on a business is much more significant. Such spammer

groups exhibit certain characteristic traits that differentiate them from authentic users. Some

paymasters on crowdsourcing platforms like RapidWorkers and ShortTask, purchase fake

reviews for their products on sites like Amazon and Yelp.

1.1.2 Attacking the rating system of a website: Shilling Attack

An item can be promoted by increasing the overall rating of the item. To do so, the

attacker injects many fake profiles into the website. These fake profiles are used to give a high

rating to the target item, which needs to be promoted. These fake profiles can also be used

to provide low ratings to rival items to reduce their overall rating. If the ratings assigned

13



by these fake profiles are carefully curated, then the recommender system will promote the

target item to many authentic users. Such an attack on the recommender system is known

as the shilling attack.

A shilling attack is a special type of attack that injects multiple fake profiles into the

recommender system. Shilling attacks can be classified based on intent as a push or nuke

attack, where a product is either promoted or demoted, respectively, to gain an economic

advantage over competitors. Over the years, multiple attack profiles and models have been

developed [3 ]–[9 ]. Simultaneously, many detection techniques and algorithms have emerged

to counter such attacks [10 ]–[15 ]. Almost all of the attack models use the same attack profile

while generating malicious users. The attack models’ differences are attributed to how the

individual elements of the attack profiles are formed. The simplicity of existing attack models

makes them easy to detect, but such simplistic attack models are not used in practice.

1.2 Contributions

The motive of this thesis is to act as an impetus for furthering the research in the practical

implication of attacks against Recommender Systems by conducting the following works.

1.2.1 Fake Review Injection Scenario

Though the act of writing a fake review is trivial, recent developments in the domain

have made this type of attack truly notorious. Attackers have come up with sophisticated yet

practical procedures to increase the severity of the attack. In this work, we build a Dynamic

Deep Learning-based clustering of spam reviewers using graph-embedding methods. We

target high-impact fake reviewers who work in groups.

1.2.2 Shilling Attack Scenario

Unlike Fake Review Injection, the practical applicability of existing Shilling Attack works

is minimal. This impracticality makes it easier to detect such attacks because of their

prominent traits. Our work develops a sophisticated Reinforcement Learning-based attack

process that improves attack reach while maintaining high similarity with authentic users.
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1.3 Thesis Outline

This thesis contributes to the recommender system attack scenario in the following ways:

1) The next chapter, Chapter 2, discusses the State-of-the-art research works on the topics of

Fake Review Injection and Shilling Attacks.

2) We will discuss our Deep learning-based clustering method to detect and remove spam

reviews from the recommendation system in Chapter 3 .

3) We focus on understanding the existing types of shilling attacks, their defenses, and the

common traits that make them detectable in Chapter 4.

4) We build a practical Reinforcement Learning-based shilling attack that can avoid being

detected by the most common detection techniques in Chapter 5.

5) Chapter 6 summarizes this Thesis work.
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2. LITERATURE REVIEW

In this chapter, we will be looking at various research works related to Fake Reviews Injection

in Recommender Systems, Shilling Attacks in Recommender Systems, and their defenses. We

also focus on how the Deep Learning and Reinforcement Learning approaches used in our

work are utilized in other researches.

2.1 Fake Review Injection

In 2008, Liu et al. published a paper analyzing the influence of opinion spam on online

reviews [1 ]. Since then spam detection has been a topic of rigorous study and research.

2.1.1 Traditional Machine Learning Models.

Earlier researchers exploited the text and behavioral features for detecting individual fake

reviewers. [16 ] utilized the rating behavior of users to detect spam. [17 ] used an approach

in which the burstiness in the review is exploited. [18 ] models the spamicity of authors.

Rating deviation, review count, and the ratio of first reviews were some of the attributes used

by most earlier researchers [18 ]. These works mainly focused on detecting individual fake

reviewers, whereas our work focuses on detecting fake reviewers exhibiting group behavior.

Most of the initial works in group spam also relied on features like time window, group

content similarity, and group deviation as attributes [19 ], [20 ]. These methods did not adopt

an embedding approach to learn the features. Our work focuses on finding the nonlinear

relationships between group members.

2.1.2 Neural Network Models.

Some of the more recent works in the deceptive opinion spam detection have been

adopting the neural network-based approaches [21 ], [22 ]. [23 ] employs neural network on a

document-level representation learning method. [24 ] relies on a data-driven approach instead
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of depending on expert knowledge. [25 ] proposed a method based on the differences in the

experience of the reviewers. These techniques are more reliant on the text-based features for

its detection process while our approach takes both the linguistic-based and meta-data based

features.

2.1.3 Graph-based models.

[26 ] approached the spam detection problem as a graph problem; the review classification

was based on trustiness, honesty, and reliability scores. [27 ] only depends on the topology of

the graph for fraud detection. [28 ] is a joint deep embedding technique that aims at grouping

users and items in the same low dimensional latent space. [29 ] adopts a neighborhood-based

approach to classify the spam reviewers. [30 ] applies logistic regression on the review data

after learning the reviewer and product node embeddings. These approaches ignore the

dynamic aspect of the reviewer - product relationship. Our approach efficiently integrates the

linguistic features into the graph model while simultaneously utilizing the dynamic aspects

associated with reviewer behavior.

2.2 Shilling Attacks

Shilling attack techniques came into existence from the early 2000s. The initial attack

models focused more on disrupting the RS’s performance rather than pushing or nuking a

target product. In [31 ], Random attack and Average attack models were used to check the

effectiveness of the attacks on User-User and Item-Item based CF. A more sophisticated

model with better results in promoting the product was used in [32 ]. This attack, known as

the bandwagon attack, chose the popular items to be the selected items. Reverse-bandwagon

and love/hate attacks were two effective nuke attacks in [33 ]. Attacking only a segment of the

RS instead of the entire items list was executed in [34 ]. Some recommenders gave possible

ratings for its items, which was used in probe attack, [35 ]. As soon as shilling attacks were

discovered to be possible, simultaneously, there were many research works to detect such

attacks. A series of obfuscated attack strategies were created to avoid detection. In [36 ], user
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shifting and target shifting techniques were used to hide some of the attack profiles and target

items. Bhaumik et al. in [37 ] used a combination of the random, average, bandwagon, and

segmented attacks to avoid detection. Both [38 ] and [39 ] designed the attack profiles to be

similar to the most popular users and most popular items, respectively. Compared to other

methods, our method works online and considers other possible features present in the RS.

2.3 Multi-Armed Bandits

Multi-Armed bandits have recently been used in many applications. We discuss some

of those applications here. In the healthcare segment, [40 ] employs an adaptive model and

allocate more samples to provide better treatment options. In the finance segment, [41 ]

use MAB for making online portfolio choices. In [42 ], the authors make an algorithm to

choose between earning an immediate profit and learning for future profit when the demand

information is incomplete. In RS, [43 ] apply MAB on large-scale RS even when no prior

information about the user is available. In [44 ], the authors use MAB to maximize the

influence of a product by selecting the optimal seed profiles for promotion. The authors of [45 ]

utilize MAB for selecting the proper response for dialogue+ in online learning systems. In [46 ],

MAB is used for anomaly detection by interacting with human subjects to learn ground truth.

In the telecommunication segment, [47 ] use MAB for the best wireless network selection by

multiRadio Access Technology. In our work, we use MAB to reduce the uncertainty related

to optimal item selection.
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3. A DYNAMIC DEFENSE AGAINST SPAM REVIEWERS ON

RECOMMENDER SYSTEMS- A GRAPH

EMBEDDING-BASED DEEP LEARNING APPROACH

A version of this work and some preliminary experiment data of this chapter has been

published in IEEE GLOBECOM 2020 [48 ].

3.1 Introduction

In recent times, the number of online product/service providers have increased rapidly.

User feedback plays a crucial role in influencing their buyers. This factor has led to a

widespread increase in fraudulent behavior: fake reviews and ratings to sway customers.

Spammers post unauthentic reviews for their benefits, manipulating users to buy products of

low quality. About one-third of the total Amazon reviews and one-fifth of all Yelp reviews

are claimed to be fake reviews [2 ].

When spammers work together as a group or when the same spammer maintains multiple

user accounts, its corresponding impact on a business is much more significant. Some

paymasters on crowdsourcing platforms like RapidWorkers and ShortTask, purchase fake

reviews for their products on sites like Amazon and Yelp. These crowdsourced reviews end up

exhibiting group behavior even without the spammer’s knowledge. Such groups exhibit group

behavioral traits that are valuable in spammer detection. Most of the existing detection

methods rely only on review text and reviewer linguistic behavior as attributes, which can be

easily modified by spammers to go undetected ([1 ],[16 ]).

The features that cannot easily be changed by a spammer are the ‘time of post’ and the

‘graph topology’ associated with the review graph. The attributed bipartite review graph

consists of the users as the source nodes and the products as the destination nodes. The

review timestamp, rating, and content are the attributes on the edges. But the existing

graph-based spammer detection approaches do not utilize the nonlinear relationship between

different users or the dynamic aspect of user behavior ([26 ], [27 ]).
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Paymasters post requests on crowdsourcing platforms for a specific number of spam

reviews. Most spammers tend to respond to these requests as early as they can, leading to

a series of spam reviews posted within a short time frame. Likewise, spammer groups also

post reviews within a particular time frame to increase their attack efficiency. This dynamic

aspect needs to be captured to differentiate between the fake reviewer groups that work on

the same product.

At the same time, some of the linguistic features like self-similarity can be used to

differentiate between the spammers and authentic users. The majority of authentic user

misclassifications can be avoided by efficient incorporation of such linguistic characteristic

traits into the graph model.

To address these issues, we propose a scheme to detect spam reviewers through deep

network embedding. The network embedding learns the underlying representation of user

nodes while preserving the local and global spam reviewer network structure. This work aims

to represent all the users in the same low dimensional latent space, such that the spam users

get clustered closer together while the regular users get evenly distributed.

In summary, the contributions of this chapter are the following:

• We propose a novel scheme to detect fake reviewers through deep dynamic structure learning

on an extrapolated bipartite graph using unsupervised learning.

• We propose an unsupervised clustering approach that can capture about 92% of all the

fake reviewers in the experimental dataset by utilizing a neighborhood-based graph.

• By exploiting the similarity between different reviews posted by the same reviewer, we

adequately and correctly classify a large number of authentic users.

3.2 Problem Definition

We first define how to construct the homogeneous user proximity graph from the hetero-

geneous bipartite user-product graph, consisting of users linked to the products they have

reviewed.

Given a bipartite multigraph, G = (U, V,E), where U is the set all user nodes, V is the

set of all product nodes, and E is the set of all edges representing the reviews. E = {ei,j} is
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the review written by user ui for product vj. If a user leaves multiple reviews on the same

product, then multiple edges are present between the user and the product.

DEFINITION 1. (Dynamic Network) A series of dynamic network snapshots is a set of

bipartite graphs (G1, ..., GT ), where Gt = (U, V,Et), 1 ≤ t ≤ T represents how the edges are

connected from U to V at time t. A dynamic sliding window generates another series of

graphs (G41 , G42 , ...), where G4x = Gx ∪Gx+1 ∪ ...∪Gx+n, x ∈ t is combination of the graph

snapshots within the given window size n.

In a user-product graph, each network snapshot signifies the reviews posted in one day,

and the dynamic sliding window represents multiple consecutive days depending on the

window size n. For example, if n = 4, then G41 would be from Monday to Thursday, G42 is

Tuesday to Friday, G43 is Wednesday to Saturday, and so on.

DEFINITION 2. (User Proximity Graph) Given a graph G = (U,V,E), such that two

source vertexes ux and uy are connected to the same destination vertex vj through edges exj

and eyj respectively. Then a new graph G = (U,E) with only the user-nodes is formed by

introducing an edge exy between the two source nodes ux and uy.

If a product vk has a review from only one user or does not have any reviews at all within

the given time frame, then the product vk does not contribute to any edges in the final graph

G.

3.3 Framework

For our discussions, we are also going to treat spammers from crowdsourcing websites as

spammer groups. This consideration holds because the paymasters in crowdsourcing websites

act analogous to the leaders of the spam groups. They assign review tasks to the spammers

(group members) in crowdsourcing sites, and the spammers end up posting reviews as early as

they can to earn rewards. Most of the spammers from crowdsourcing sites work on multiple

tasks to maximize their earnings, which further asserts our consideration.
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Figure 3.1. User Proximity Graph-based User Node Embedding
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The two major tasks addressed in our method are clustering spam users based on review

similarity and avoiding authentic user misclassification based on linguistic behavior. Our

proposed scheme works as follows:

3.3.1 Dynamic User Proximity Graph Generation

In general, a review network is expressed as a bipartite graph, where the source nodes are

the users, and the destination nodes are the products for which they wrote the reviews. From

this graph, we form links between users to establish their review similarity. We consider the

review time window as the metric for this purpose. Members of a review group tend to work

together on a target product in a short time interval [19 ]; this feature is captured by dividing

the graph into dynamic network snapshots. Edges between two users are formed if and only

if both the users have reviewed the same product in the same time window.

Fig.3.1 depicts the steps involved in learning the embeddings from the initial graph. For

ease of understanding, each snapshot in the figure represents one time window. The different

colored edges indicate the different time windows in which those reviews were written. In (A),

which is the bipartite user-product graph, if a user gives a positive review to a product, it is

depicted by a solid line, and a dotted line depicts a negative review. (B) is the connections

between products and users in different time windows, and (C) represents the links present in

the user-user graph formed from (B). In (C), when two users give a similar rating to the same

product, they are connected by a positive edge. But if the ratings are dissimilar, then they

are connected by a negative edge. (D) and (E) are the weight calculation and the embedding

process to find the latent representation of the users, and (F) is a toy 2D representation of

the users in the latent space.

3.3.2 Spammer Identification

Now, with the links between users established, the objective is to alter edge weights such

that the spammer groups are closely positioned in the latent space. We modify the weight of

the edges between the nodes based on two spam indicators: Review Rating count(RRC) and

Individual-Content Similarity(ICS). ICS is a well studied linguistic spam indicator considered
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to be a dominant trait in a spammer behavior. Unlike in previous works ([26 ], [49 ]), we use

ICS for edge weight calculation.

Individual-Content Similarity

Often, a spammer ends up slightly modifying one of their previous reviews and re-posts

it on the same or different product, owing to the lack of firsthand experience. We call this

feature the individual content similarity. Typically, the ICS of a spammer is much higher

than the authentic user. We calculate the ICS of a user:

ICS(ui) =
∑k

0 desc(cosine(rix , riy))
k

, x, y ∈ ri (3.1)

Where rix and riy are two different reviews written by the same user. ICS of a user is

calculated by taking the average of the top k cosine similarities of each pair of reviews written

by the user. The value of k is dependent on the number of reviews posted by the user. The

reason to be using the top k values instead of all the values is to ensure that there exists a

prominent gap between the ICS of the spam users and authentic users. By selecting only

the top k values, most of the non-fake reviews posted by the spammer are not taken into

consideration for ICS calculation, thereby avoiding a decrease in their ICS value. This also

ensures the efficiency of ICS threshold. The definition and integration of the ICS threshold

into the weight calculation is explained next.

Review Rating Count

The number of occurrences in which two users have reviewed the same product is

indispensable in revealing if they work in connivance. If the frequency of such occurrences is

low, then there is a possibility of it being a coincidence.
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Likewise, if the rating behavior of two users is not similar to each other, they are not part

of the same review group and should be placed farther away in the latent space. Both these

factors are expressed by the Review Rating Count. RRC is calculated as:

RRC(ui, uj) =


s(ri, rj) − d(ri, rj) if d(ri,rj)

s(ri,rj) ≤ γ

0 otherwise
(3.2)

Where s(ri, rj) and d(ri, rj) are the total number of positive edges (similar ratings) and

negative edges (dissimilar ratings) between users ui and uj respectively. γ is a threshold value

beyond which the RRC becomes zero. In other words, a high number of dissimilar ratings,

as opposed to similar ratings, indicate that the two users are not correlated. If multiple edges

exist between two users, they are replaced by a single edge after RRC calculation.

Edge Weight and ICS Threshold

Here, we discuss a way to avoid authentic user misclassification. The weight of the edge

between users ui and uj is a combination of RRC and ICS values. The directed edge weight

between user ui and user uj is given by:

w(ei,j) =


RRC(ui, uj) + α(ICS(ui)) if ICS(ui) ≥ ψ

η otherwise
(3.3)

α is the factor used to scale the min-max value of ICS to match the value of RRC. ψ is

the ICS threshold value, and η is a small constant.

This edge weight calculation leads to most of the spammers having high edge weights,

clustering them closer together in the latent space. But unfortunately, some of the authentic

users who review many products may also get clustered, leading to their misclassification.

Using ICS threshold is a way to utilize the linguistic features to avoid such misclassifications.

ICS of authentic users is usually low. If a user has an ICS lower than the threshold value,
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the user is potentially authentic. Then the weights of the user’s edges are equated to the

small constant η, chosen such that it is the smallest value in the set of all edge weights.

It is important to note that this is a directed edge from ui to uj. The edge weight from uj

to ui is calculated using the same technique.

3.3.3 Embedding and Clustering

Graph Embedding

The number of edges in the User Proximity network is much higher than the bipartite

graph. Embedding places each of the users in a low dimensional latent space. The distance

between each user has a direct correlation to the weight calculated between the users. Most

of the network embedding techniques are not efficient for large-scale networks, and also don’t

work with directed or weighted edges ([50 ],[51 ]).

The embedding technique used in our method is Large-scale Information Network Embed-

ding (LINE) [52 ], which is highly scalable. LINE takes into account both the first and the

second-order proximity of the network. For the sake of being self-sufficient, a brief description

of the Loss functions used in the LINE method is presented here.

The first-order proximity preserves the direct relationship between user nodes. In LINE,

the first-order proximity is preserved by minimizing the objective function:

O1 = −
∑

i,j∈E

w(ei,j) log p1(ui, uj) (3.4)

Where p1(ui, uj) is the joint probability between the user nodes ui and uj. The first order

proximity is only applicable for undirected graphs and hence the first half of the edge weight

equation needs to be modified as follows to fit the model.

w(ei,j) =RCC(ui, uj) + α(MCS(ui, uj))

+ α(ICS(ui)) + α(ICS(uj))]
(3.5)

The second-order proximity preserves the neighborhood similarity between user nodes. In

second-order proximity, each vertex has two roles: context for other vertexes and the vertex
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itself. The vertexes with identical distribution over the contexts are embedded closer together.

The second-order proximity is preserved by minimizing the objective function:

O2 = −
∑

i,j∈E

w(ei,j) log p2(ui|uj) (3.6)

Where p2(ui|uj) is the conditional distribution of each vertex over the contexts. The

directed edge approach, eqn.3.3 , is used for edge weight calculation while preserving the

second-order proximity. The proximity calculations and optimization methods were adopted

from LINE [52 ].

Clustering Fake Reviewers

After obtaining the low dimensional vector representation of all the user nodes, the

spammers exhibiting group behavior need to be clustered together. If two users have a

relatively high edge weight between them, they would exist closer to each other in the latent

space. In our approach, spammers tend to have such high edge weights and can be clustered

based on the distance between them. The fake review group detection is carried out using

DBSCAN [53 ], a density-based clustering method. The reason for selecting this algorithm

over other methods is its ability to recognize the number of fake reviewer clusters without

having to input the block count explicitly. Algorithm 1 explains the process in detail.

3.4 Experiments

3.4.1 Datasets

The dataset used for the experimental evaluations consists of more than half a million

unique reviews from users on Amazon. 300 of the products in the dataset are considered

to be target products as they have requested fake reviews from the crowdsourcing platform

RapidWorkers. This dataset was first collected and used by Kaghazgaran et al. for their

work in [29 ] and [49 ]. Table 3.1 shows the details about the dataset.
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Algorithm 1: Fake Review Group Clustering
Input : Latent representation of weighted User - Proximity Graph G, distance ε

and minPoints
Output : Clusters of Spammers

1 DBSCAN:
2 Initialize: Arbitrary starting data point;
3 1: Determine neighborhood of the point based on distance ε;
4 2: If number of points in neighborhood is higher than minPoints, all points in

neighborhood becomes part of the cluster. Otherwise point is marked as noise point.;
5 3: Identify n such core points that have more number of neighbors than minPoints ;
6 4: The non-core points are either assigned to nearby clusters if they are ε distance

from the cluster or marked as noise;
7 5: The points which are part of the cluster are fake reviewers and the noise is

authentic user.
8 return Clusters of Fake Review Groups

Table 3.1. Datasets
Total Reviews 580,000

Total Reviewers 12,212

Target Products 300

Reviews on Target Products 21,162

Number of Spam Reviewers 3,116

3.4.2 Ground Truth

This dataset consists of 12,212 reviewers, which is a mix of both authentic users and

spammers. To differentiate between authentic and spam users, we consider the case where a

user has reviewed two or more of the 300 target products between 2016-17. Given that the

dataset contains more than 135,000 products, the odds of an authentic user reviewing two

target products is low. We can safely assume that the users who have reviewed at least two

target products are either members of the crowdsourcing sites or spam reviewers from other

sources, labeling about 3,116 users as spam users.
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3.4.3 Evaluation Metrics and Baselines

The evaluation of the Unsupervised learning method is going to be based on Precision,

Recall, and F1-Scores. As the baseline algorithms, we are using Wang et al. [26 ] and Fraud

Eagle [54 ] methods. The reason to be choosing these methods is that these are also graph-

based approaches. Wang et al. define variables to quantify the quality of reviewers, reviews,

and products based on ‘trustiness of reviewers’, ‘honesty of reviews’, and ‘reliability of stores’.

Fraud Eagle framework treats the spam detection problem as a network classification problem

by employing a propagation-based algorithm. Our approach captures the nonlinear structural

information as well as the dynamic features. Either of which is not utilized in either of the

baseline algorithms.

Unsupervised Clustering

In the unsupervised clustering process, DBSCAN [53 ] is applied to the output of the

network embedding. The two hyperparameters which influence the number of clusters that

are formed are the min-sample, which is set to 2, and the ε value. The choice of ε determines

the algorithm’s efficiency. For lower values of ε, the clusters that are formed consist of users

that have a high probability of being a spammer, but not all of the spammers are detected.

As we increase the value of epsilon, the number of spammers getting clustered increases.

Table 3.2 gives the precision, recall, and F1 score of the unsupervised clustering method at

ε=0.8. In this experiment, we chose an ICS threshold such that only 40% of the users have

ICS greater than the threshold ψ.

Table 3.2. Unsupervised Method Results (@ε=0.8)[with ψ]

Window Size 15 Days 30 Days 45 Days 60 Days

Precision 0.968 0.976 0.974 0.971

Recall 0.867 0.913 0.887 0.878

F1-macro 0.927 0.949 0.940 0.929
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As we can observe from the table, the precision, recall, and F1 score reaches a peak at a

window size of 30 days. This means that most of the fake review groups and crowdsourced

manipulators work within this time frame.

Baseline Comparison

The users in both [26 ] and [54 ] are given an anomalous score, which specifies the extent

to which a user deviates from authentic behavior. The drawback of these approaches is that

the performance of these methods is highly dependent on the quality of the data available. If

all the products in the dataset had multiple reviews, then there will be an increase in the

performance efficiency of these methods. But the dataset used is sparse in this sense, that is,

not all the products in the dataset have multiple reviews. Table 3.3 shows its comparison

against our approach.

Table 3.3. Comparison with baseline approaches

Approach Precision Recall F1-macro

Wang et al.[26 ] 0.58 0.73 0.54

Fraud Eagle[54 ] 0.61 0.78 0.67

This work 0.97 0.91 0.94

3.4.4 Analysis on System Parameters

Choice of Epsilon

Epsilon value is the minimum distance between nodes for them to be clustered together.

The choice of epsilon determines how many users get clustered. To select the best epsilon

value for the dataset, we define a method to set the upper and lower bounds. Fig. 3.2 shows

how there is an exponential increase in the number of users that are being clustered after

the value ε = 1.10. Beyond this ε value, the users who are evenly distributed because of the

ICS threshold also get clustered. To avoid this, we set the upper bound for ε value to be

0.1 lesser than the this ε(=1.10) value . In the dataset used, the upper bound was set to be
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ε=1.0. We set the ε to a value where 10% of the total users get clustered as lower bound,

safely assuming that at least 10% of all the users are fake users, based on the knowledge

about the dataset and prior literature [2 ]. In this study, we work with epsilon values between

0.65 and 0.8, which gives the maximum efficiency.

Figure 3.2. Users Clustered in different ε values

Impact of Window Size

We have considered four window sizes for experimentation. Most of the group activity

or crowdsourced attack occurs within a time interval of one to two months. We test the

classification performance of our approach in 15-day, 30-day, 45-day, and 60-day windows.

As can be observed from the table. 3.2 , and the fig. 3.3 , the performance is at its best in the

window size of 30 days. If we further increase the window size, there is a drop in the number

of users that are being clustered. It could be possible that the ratings which are within a

30-day window have the maximum influence in the overall rating of the product, forcing

the members of a group or crowdsourced workers to post a review within that time frame.
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Fig.3.3 is a graph depicting the number of users that are being clustered for the different

window sizes.

Figure 3.3. Impact of Window Sizes

Impact of ICS threshold

With the ICS threshold, many of the authentic users get their edge weight reduced to a

small constant, evenly distributing them in the latent space. Such a distribution causes the

authentic users to be farther away from all other users, leading to them becoming outliers

during the clustering process. Fig. 3.4 shows the jump in precision and recall values with

ICS threshold. In this experiment, we chose an ICS threshold such that only 40% of the

users have ICS greater than the threshold ψ. If we arrange the ICS values of all the users

in ascending order into a set, the ICS value which splits the set in a 60:40 ratio is taken as

the ψ value. This is feasible because of the relatively small number of spammers.
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Figure 3.4. Impact of ICS threshold

3.5 Conclusion

In this chapter, we have explored how group behavioral traits of fake reviewers can be

exploited to cluster spammers together in a low dimensional latent space, that works both

for fake review groups and crowdsourced review manipulators. The framework takes into

consideration the dynamic aspect of the user-product spatial-temporal relationships and

converts it to a user proximity graph, which includes: (i) Recalculated weights to incorporate

the rating behavior of the user based on dynamic attributes, (ii) utilization of linguistic

characteristics of a reviewer to identify connivance among users; and (iii) application of a

threshold to prevent the majority of the authentic reviewers from being misclassified. Our

results are encouraging, showing the impact of window size in clustering the fake reviewers,

further asserting our intuition to include the dynamic aspect of a reviewer’s behavior. In the

future, we are planning to expand our scheme to work across multiple domains.
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4. AN OVERVIEW ON SHILLING ATTACKS AND THEIR

DEFENSES

A version of this chapter has been published as a survey in IEEE Access 2020 [55 ].

4.1 Introduction

We live in the information age where there is an overload of information generated by

individuals, companies, and governments. The internet has become a common platform for

all of this information to be shared and stored. Multiple e-commerce platforms have come

into existence, selling all kinds of products and services. With this information overload,

it has become increasingly difficult for online users to find content relevant to them. As a

means of addressing this problem, many websites are utilizing the recommender system [56 ].

The recommender system is an information filtering mechanism to provide customers with

products/services based on their requirements.

Multiple Recommender System approaches are employed to cater to different kinds of

needs in different websites. Over the years, there has been a drastic growth in the methods

used to improve recommendation results for different purposes [57 ]–[63 ]. Recommendation

systems can be broadly classified into two types, content-based [64 ]–[69 ] and collaborative

filtering-based [70 ]–[75 ].

Content-based filtering recommends products to users by comparing the content of the

products to the users’ profiles. The downside of using content-based filtering is the over-

specialization; they tend to recommend only the products that are very similar to what

has already been consumed by the user which wasn’t the case with collaborative filtering.

The collaborative filtering recommender system works by analyzing the past behavior of

a user. The key idea is that users with similar behavior have similar needs and interests.

Recommendations made using collaborative filtering depend on relationships between the users

and items. Unfortunately, due to its openness and dependency on user ratings, collaborative

filtering is prone to shilling attack, also known as a profile-injection attack.
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Shilling attack [3 ], [76 ]–[79 ] is a particular type of attack where a malicious user profile is

inserted into an existing collaborative filtering dataset to alter the outcome of the recommender

system. The injected profiles explicitly rate items in such a way that the target item is either

promoted or demoted. It has been a topic of study for over a decade, and multiple survey

papers have covered different parts of this domain. In [80 ], Mehta et al. focus exclusively on

robust collaborative filtering techniques and not on detection techniques or attack strategies.

In [81 ], the types of attacks and the detection techniques discussed are limited. In 2014, [82 ]

produced one of the most comprehensive surveys on the topic, but it presents details on the

attacks only until 2011. The survey in [77 ] focuses only on the statistical measures used in

the detection and the basic shilling attack methods. Kaur et al. [83 ] perform experimental

evaluation comparing the most commonly used shilling attack methods. In [84 ] and [76 ],

the discussions do not consider the different detection attributes used in supervised and

unsupervised detection methods. Both [78 ] and [79 ] briefly discuss the various attack and

detection methods. There is no discussion on robust algorithms, and the detection methods

are not categorized.

This chapter aims to be a comprehensive survey of different attack models and detection

attributes for shilling attacks on collaborative filtering recommender systems. Since shilling

attacks are more prominent in explicit rating systems, this chapter’s scope is limited to

methods that work on explicit rating systems where the user explicitly gives one rating

for each item. Shilling attacks are possible in both nearest-neighbor-based and matrix

factorization-based recommender systems; it is predominantly tested in nearest-neighbor

settings, which will be used in our explanations.

4.2 Understanding Collaborative Filtering

The function of a recommender system is to suggest items that may be of interest to a

website’s users. This suggestion is based on the other items that the users have rated or

purchased on the website. The recommender system intends to make these recommendations

to let the users explore items that may have been otherwise missed. For instance, users may

be recommended with movies they have never heard of, based on the other movies they have
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rated. At the same time, a recommender system also suggests items that a user might need,

reducing the effort needed to find it. For example, batteries are recommended to users with a

flashlight in their online shopping cart, making the user experience more pleasant and easier.

4.2.1 Collaborative Filtering

It is the most commonly used system in practice. It can be broadly classified as User-

User-based and Item-Item-based.

Orders
Item A
Item B
Item C
Item D

Orders
Item A
Item B
Item X
Item Y

Orders
Item A
Item B
Item X
Item Z

Orders
Item A
Item B
Item C

USER -USER
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Customer 2

Customer 3

Customer 4

ITEM XITEM D

Figure 4.1. An illustration of user-user and item-item collaborative filtering methods.

User-User-based CF

[85 ] This CF works by finding users who have purchased/rated a similar set of items and

recommends the items purchased by one user to the other. To illustrate, if users u1 and
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u2 purchased items i1, i2 and i3, then these two users are considered to be similar to each

other. When user u1 purchases another item i4, then this item will be recommended to user

u2 based on user-user CF.

Item-Item-based CF

[86 ] This type of CF forms relationships between items based on how often those items

are purchased together. Consider that the item sets {i1, i2, i3}, {i1, i2, i4}, and {i1, i2, i5} are

purchased by users u1, u2, and u3 respectively. When another user u4 purchases item i1, then

item i2 will be recommended to the user. If two items are found together frequently in the

purchase history of multiple users, then those items will be strongly related in the item-item

based CF.

Collaborative filtering can be interpreted as a way to extract relationships and similarities

based on how users interact with items in an online platform. Fig. 4.1 illustrates the difference

in the outcome of the two types of CF.

4.3 Shilling Attacks

Shilling attacks can be classified based on intent as a push or nuke attack, where a product

is either promoted or demoted, respectively, to gain an economic advantage over competitors.

Fig.4.2 gives an example of the impact of a shilling attack on a recommender system. Here,

item X is the target item that is promoted by the shilling attack. Over the years, multiple

attack profiles and models have been developed [3 ]–[9 ]. Simultaneously, many detection

techniques and algorithms have emerged to counter such attacks [10 ]–[15 ]. Almost all of

the attack models use the same attack profile while generating malicious users. The attack

models’ differences are attributed to how the individual elements of the attack profiles are

formed.

4.3.1 Attack Profile

The attack profile is segmented into four sets: Selected items Is, Filler items If , Null

items I∅, and the Target item(s) It. It is the set of items or an individual item which needs
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Figure 4.2. An Illustration of a Shilling Attack

to be pushed or nuked. Is is the set of items carefully chosen so that a malicious profile has a

similarity with the maximum possible number of genuine users. The efficiency of an attack is

decided by how many users are recommended with the target item. Is plays a crucial role in

attack efficiency. If is the set of filler items chosen and rated in such a way that the malicious

profiles can camouflage with the genuine profiles. I∅ is the set of items that are not rated by

the malicious user [87 ]. Fig.4.3 illustrates an attack profile.

Rated Items Unrated Items

Target 
Items

Selected 
Items

Filler 
Items

Null set

Figure 4.3. Attack Profile
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Attack Size

The number of injected profiles and the number of items rated per profile considerably

influences an attack’s reach. The number of injected profiles, also known as attack size,

should be large enough to have any impact on the system. Fig.4.4a shows the increase in

the reach of the target item with respect to the attack size. The MovieLens dataset [88 ]

with 100,000 movie ratings from 943 users on 1682 items were used for the generation of this

graph. A random attack discussed in the next section, with various attack sizes (1% to 7% of

the number of authentic users), was implemented. A movie with an average rating of 1.9

calculated from 31 authentic ratings was chosen as the target item. Before the attack, the

target item was not part of the top-40 recommendations made to any of the authentic users

using a kNN-based algorithm. Fig. 4.4a shows the number of users who have the target item

in their top-10,20 and 40 recommendations after the attack. The graph shows that the target

item reaches more people as the attack size increases. The number of filler items per attack

profile was fixed at 2% of the total number of items.

Filler Length

The number of filler items rated per injected profile is known as the filler size. Fig.4.4b 

shows the impact of increasing the number of rated items, also known as filler length, on the

target recommendation. For the evaluation of this graph, the number of injected profiles was

fixed at 3% of total users. From this graph, it can be seen that increasing the filler length

can be detrimental to attack efficiency, implying that high filler length can cause the attack

profiles to be less similar to authentic users.

4.3.2 Attacks Models

Based on the attackers’ motivation and knowledge, multiple attack models have been

developed over the years. All these attacks can be categorized either as a high-knowledge

attack or a low-knowledge attack. Low-knowledge attacks are more practical and have a

higher chance of having a real-world impact, but the efficiency of such attacks is also low. On
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the other hand, high-knowledge attacks can have a massive effect on Recommender Systems’

performance, but they are harder to pull off. From a practical standpoint, an inside job

is a viable option to execute a high-knowledge attack, the chances of which are negligible.

So, in real-world applications, a moderately efficient low-knowledge attack poses a more

significant threat than a highly efficient high-knowledge attack. Based on how the selected

items and filler items are chosen, multiple attack models exist which can further be classified

as standard or obfuscated, based on the attacks’ ability to go undetected.

Standard Attacks

These are the attack models that do not make an exclusive attempt to go undetected in

a recommender system. Many detection algorithms have a higher chance of detecting the

shilling attack profiles injected using these attacks.

Random Attack [3 ], also known as the RandomBot attack, is the simplest form of

shilling attack. In this model, the items rated by the attack profile are chosen at random

except for the target item. The ratings for these items is around the system overall mean.

The target item gets the maximum or minimum rating based on whether it is a push or a

nuke attack. Some attacks are intended to disrupt the trustworthiness of a recommender

system, known as random vandalism [84 ]. Being the most straightforward attack, it is also

the least effective. The purpose of a random attack is usually more effective in disrupting the

performance of a Recommender System rather than promoting the target item. The ease

of execution of random attacks is because of its low-knowledge requirement. All that the

attacker needs are the overall system mean which can be easily empirically calculated. Being

the simplest attack, it is not very effective.

Average Attack [3 ] is similar to the random attack in terms of the item selection process.

The randomly chosen items are rated based on the rating distribution of the individual items.

Each filler item is assigned the mean rating of that item. This attack is feasible only if the

attacker has immense knowledge about the dataset on which the recommender system is

built. The effectiveness of this model is proportional to the attacker’s knowledge. Though
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the only difference between random attack and average attack is the filler ratings, the average

attack’s effectiveness is much better.

Bandwagon Attack [4 ], [6 ] is the type of attack where the profiles generated by attackers

are filled with popular items with high ratings. The attack profiles are naturally closer to a

large number of users. The target item is given the highest rating. This attack can be further

divided into bandwagon-random and bandwagon-average depending on the rating scheme

used for the filler items. Bandwagon also falls under the low-knowledge attack category since

the attacker only needs publicly available data.

Probe Attack [89 ] is not an attack that can be generalized for all systems. Some

recommender systems project a predicted rating score for each of the items. The attacker

uses this detail to rate the items, enabling it to be similar to other users. The attacker gives

genuine ratings to some seed items. Then, when the recommender suggests more items, the

attacker forms the rated items list based on these items. This scheme ensures that the attack

profiles stay close to its neighbors. It also enables the attacker to learn more about the

system.

Segmented Attack [90 ] targets a specific group of users who are likely to purchase the

target item in an e-commerce setup. Segment attacks are usually deployed in item-based

collaborative filtering. The rated items and the ratings are based on the attacker’s knowledge

about the segment. The significant advantage that this method has over other methods is

its ability to reach potential customers. For example, if the target item is a book in the

science fiction genre, then the selected items will also be from the same genre. Such selection

increases the chances of the target book reaching more fans of science fiction. Since the

attack is deployed only in a segment of the system, the impact is high.

Love/Hate Attack [5 ] is a highly effective nuke attack. Here, the attacker randomly

chooses filler items and gives them the highest ratings and the least rating to the target item.

Despite the simplicity of this model, the effectiveness is surprisingly high. Though it was

predominantly designed for nuke attacks, it can also be used for a push attack by altering

the ratings. Push attack is not as effective as a nuke attack. Table 4.1 . comprehensively

summarizes the differences in various attack models.
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Reverse Bandwagon Attack [5 ], [6 ] is the exact reversal of a bandwagon attack. This

attack is used to nuke the target product by giving low ratings to the items with high negative

reviews and giving the least rating to the target item. It is also a low-knowledge attack,

just like the bandwagon attack. Though it is highly similar to the bandwagon attack, the

efficiency of the reverse bandwagon attack is slightly better.

Obfuscated Attacks

To go undetected from detection algorithms, attackers try to obfuscate their attack

signature. Many models incorporate slight modifications to the standard attack techniques

to achieve obfuscation. Fig. 4.5 shows which of the standard attacks have influenced which

of the obfuscated ones. The dotted lines indicate a direct influence between the attacks.

The ones that are not derived from specific standard attacks can be incorporated with any

standard attack. Though obfuscation might slightly reduce the impact of the attack, it is

better than being detected.

Average Over Popular [91 ] is a technique used to obfuscate the Average Attacks. Here,

the filler items are chosen from the top X% of the most popular items with equal probability.

This method is much more effective than randomly choosing from the entire collection of

items. The choice of X influences the detectability of the attack.

Mixed Attack [92 ] is done by using the random, average, bandwagon, and segmented

attacks in equal proportions, simultaneously. The detection technique should have the ability

to detect all of the standard attacks to be successful. The different attack methods are used

to push/nuke the same target item. It helps in evading multiple detection techniques.

Noise Injection [93 ] adds to a Gaussian distributed random number multiplied by

a constant to each rating, for a subset of injected profiles. The degree of obfuscation is

dependent on the constant that is multiplied. It can be effectively applied to all of the

standard attack methods to obfuscate its signature. Since the rating scheme is affected by

noise injection, a slight but observable drop in the attack efficiency can be noticed.

User Shifting [93 ] is an obfuscation tactic where a subset of the rated item of each

injected profile is modified. The ratings of this subset of items are either increased or decreased
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to reduce the similarity between attack profiles. For different groups of the injected profiles,

different subsets of rated items have their ratings modified.

Target Shifting [93 ] shifts the rating of the target item to one level lesser than the

highest possible in push attacks. In nuke attacks, the target rating is shifted to one rating

higher than the least possible rating. This strategy is specifically useful in evading the

detection methods that penalizes users that give an extreme rating to items. If the target

item is already popular, it will be harder to push while employing target shifting obfuscation.

In such cases, some other obfuscation methods should be used.

SAShA [7 ] is an attack strategy that uses the semantic features extracted from a

knowledge graph to improve the performance of standard CF attack models. A knowledge

graph is a structured repository of factual, categorical, and ontological information [94 ]. This

attack works by computing the semantic similarity between the knowledge graph derived

features of the target item and all other items in the system. This information is leveraged

to generate the most efficient set of filler items.

Power Item Attack [9 ], [95 ] utilizes the power items which are chosen based on three

methods. Power items are defined as the set of items that can influence the largest group of

items. These items effectively alter the recommendations made for other users. In PIA-AS,

the top-N items with the highest aggregate similarity are chosen to be the power items. Such

similarity is possible only when a considerable number of users have rated the same two

items. In PIA-ID, the In-Degree centrality is the criteria for choosing the power items. The

similarity of each pair of items is calculated using weighted significance and the top-N of each

item is selected. PIA-NR chooses the items with the highest number of users as the power

items.

Power User Attack [9 ], [95 ], similar to PIA, chooses the set of users who have the

maximum influence on the broadest group of users. In PUA-AS, the top X users with the

highest Aggregate Similarity are chosen as the power users. In PUA-ID, the users who

participate in the highest number of neighborhoods are selected as power users, based on the

In-Degree centrality concept. The power users in PUA-NR are the users with the highest

number of ratings in their profile.
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In [8 ], Chen et al. describe a method to use both rated item correlation and item popularity

to generate malicious users with strong attack ability and similarity to real users. In their

approach, each malicious user profile is generated individually. The rated items of a profile

are selected based on a matrix of real user profiles.

As soon as the vulnerability of Collaborative Filtering to shilling attacks was discovered,

various detection techniques were also constructed. We can broadly classify these techniques

into supervised and unsupervised detection techniques. In literature, there is an array of

detection attributes that govern these methods.

SHILLING ATTACKS

STANDARD 
ATTACKS

OBFUSCATED 
ATTACKS

RANDOM

AVERAGE

BANDWAGON

REVERSE
BANDWAGON

SEGMENTED

PROBE
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USER
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TARGET
SHIFTING

AVERAGE
OVER

POPULAR

MIXED

POWER 
ITEM

POWER 
USER

Figure 4.5. Types of Shilling Attack
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4.4 Detection Attributes

The attributes that differentiate the shilling profiles from the authentic profiles are

considered as the detection attributes. The detection attributes that are designed to work

irrespective of the type of attack model are known as Generic attributes.

4.4.1 Generic Attributes

The attributes that are not tailored for specific attack models fall under this category.

The efficiency of these attributes alters with the different attack models used. Table. 4.2 

gives the definitions for the symbols used in the explanations below.

Length Variance (LengthVar) measures the difference in the length of a user’s profile

from the average length of a profile. Here, length denotes the number of items rated by

a given user profile. Some attack profiles tend to have too many rated items, deviating

substantially from an average user’s length [11 ].

LengthV ar = |Nu − n|∑
k∈U (nk − n)2 (4.1)

Rating Deviation from Mean Agreement (RDMA) is the measure of rating deviation

of a user on a set of target items with respect to other users, combined with the inverse

rating frequency of these items [10 ].

RDMA =
∑Nu

i=0
|ru,i−ri|

NRi

Nu

(4.2)

Weighted Deviation from Mean Agreement (WDMA) is firmly based on the RDMA

attribute. The significant difference of this attribute is that it places high weight for rating

deviations for sparse items. WDMA was experimentally found out to give higher information

gain [11 ].

WDMA =
∑Nu

i=0
|ru,i−ri|

NR2
i

Nu

(4.3)
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Table 4.2. Symbol definitions
Symbols Definitions

Nu Number of ratings from user u
NRi Number of ratings for item i
ru,i User u’s rating for item i
ri Mean rating for item i
U Total number of users
u Average length of a profile
Pu Profile of user U
Pu,T Target items in the profile
Pu,F Filler items in the profile
Iu Set of items rated by user u
Uu Partition of the profiles of user u
|Uu| Number of profiles of user u

Weighted Degree of Agreement (WDA) captures the cumulative differences of a

user’s rating of an item from the item’s average rating, divided by the number of ratings for

the item. WDA is empirically the same as the numerator of the RDMA [11 ].

WDA =
Nu∑
i=0

|ru,i − ri|
NR2

i
(4.4)

4.4.2 Model Specific Attributes

The problem with using only the generic attributes is that sometimes it is unable to

distinguish malicious profiles from the authentic users, especially when the authentic user

exhibit unusual behavior. Attack specific attributes were constructed to overcome these

shortcomings. These detection attributes discover the partitions in user profiles so that their

behaviors exhibit similarity to one particular attack model.

Mean Variance (MeanVar) is used to detect average attacks. It partitions the attack

profiles into three parts: the items with extreme ratings (target items), all other rated

items in profiles (filler items), and unrated items. This attribute works by computing the
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mean-variance between all the filler items and the overall average. A low variance would

indicate the possibility of an average attack [11 ].

MeanV ar =
∑

j∈Pu,F
(ru,jru)2

|Pu,F |
(4.5)

Filler Mean Target Difference Model (FMTD) targets the segmented attack model.

This attribute relies on the difference between ratings of the items in target partition and the

items in filler partition [11 ].

FMTD =
∣∣∣∣∣
∑

i∈Pu,T ru,i

|Pu,T |
−

∑
k∈Pu,F ru,k

|Pu,F |

∣∣∣∣∣ (4.6)

Filler Average Correlation (FAC) focuses on detecting the random attack model.

When a random attack is executed, then the ratings given to the items are chosen at random.

This attribute calculates the correlation between the ratings in the profile and the average

ratings of the items. The correlation is expected to be low for random attacks [12 ].

FAC =
∑

i∈Iu
(ru,i − ri)√∑

i∈Iu
(ru,i − ri)2

(4.7)

Filler Mean Difference (FMD) utilizes the fact that the filler items have a mean rating

similar to the overall system average in the random attack model. If the mean ratings are

similar, then the user profile could potentially be a random attack profile [12 ].

FMD = 1
Uu

|U |∑
i=1

|ru,i − ri| (4.8)

4.5 Detection Algorithms

The detection algorithms can be broadly classified into two: Supervised detection methods

and Unsupervised detection methods. The supervised techniques require the data to be

labeled during the training process, whereas the unsupervised approaches do not. The

availability of labeled ground truth is minimal in the recommender system datasets. This
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downside has led to unsupervised approaches being adopted more than supervised in recent

times.

4.5.1 Supervised Approaches

The shilling attack problem was treated as a classification problem by Chirita et al.

[10 ], used the RDMA and DegSim as the feature metrics for detecting malicious profiles.

The method was developed to detect random and bandwagon attacks. Later on, two more

generic metrics, namely WDMA and WDA, were added by Burke et al. [11 ] to improve the

classifier’s performance. SVM, kNN, and C4.5 were the most commonly used classifiers for

the detection of fake injected profiles. The problem with using the generic attributes was that

many authentic users who had extreme behaviors were misclassified as shilling profiles. To

overcome this problem, as well as to improve the accuracy of the classifications, attack specific

attributes were formulated by [11 ],[12 ]. Different attack specific attributes were formed for

average, random, segment, and bandwagon attacks.

Williams et al. [96 ] utilized three strategies to increase the accuracy of detection in

the supervised approaches: similarity to reverse-engineered attacks, target concentration,

and rating anomaly detection. This detection technique is effective because of the added

robustness to the system, but it is highly reliant on the classifier’s choice. Their study shows

that combining various attributes improves the classifier’s performance, especially the support

vector machine, and significantly reduces the impact of the most potent attack models. The

attributes used in their method are RDMA, WDMA, DegSim, LengthVar, MeanVar, FMD,

FAC, and FMTD.

The use of meta-learning was introduced by [97 ] to improve the precision of the detection.

This algorithm can be considered a two-step process where the base-level training is done on

attack profiles and available ratings. The second step is to combine the base-level output

with the meta-level input for final attack detection. This algorithm had higher precision than

previous methods. The diversity of the classifiers reduces the correlation of misclassification,

positively impacting the meta-level prediction. They tested their approach against single
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SVM and voting SVM and experimentally proved to be more effective. The attributes used

in their method are WDMA, RDMA, WDA, LengthVar, DegSim, MeanVar, FMD, and FAC.

SVM-TIA [98 ] had supervised, unsupervised, and semi-supervised detection approaches.

The pitfall with using the supervised approach was that it needs a balanced data; it means

that there should be an equal number of authentic profiles and attack profiles. The accuracy

of the supervised approach was lower than their unsupervised approach which involved

clustering and statistical methods. It is a two-phase process where rough detecting results are

obtained in the first phase by alleviating class imbalance. In the second phase, the potential

attack profiles are analyzed to discover the target profiles. Model-specific attributes like

FMTD, MeanVar, FAC, and FMD are used in this method.

As mentioned earlier, the imbalance in the data available skewed the outcome of the

supervised learning classifiers. AdaBoost was incorporated in [14 ] to diminish the perturbation

caused by the imbalance. The authors first ease the hard classification task by using well

designed features for the user profiles. It was achieved by applying weights to the various

observations to accentuate the poorly modeled samples. This process was done repetitively

to strengthen the correction of misclassification. The attributes used are RDMA, WDMA,

WDA, LengthVar, MeanVar, FMTD, and FAC. In addition, they also use attributes that

detect filler size with unpopular items.

Hao et al. [99 ] employed an ensemble detection method on features extracted from

ratings, item popularity, and user-user graph. The feature extraction is performed by using

Stacked Denoising AutoEncoders and PCA. It automatically extracts user features with

different corruption rates. It used a three-stage process involving data preprocessing, feature

extraction, and detection using weak classifiers. The novelty of items- the degree of difference

between various items- was also used as a feature.

Table. 4.3 explains the different traits used for detection in some of the algorithms. It

also discusses the various assumptions based on which the algorithms are built.
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4.5.2 Unsupervised Approach

The initial unsupervised approach introduced by Mehta et al. [100 ] applied Principle

Component Analysis to the profile detection problem. Four factors led to this problem being

suitable for PCA: spam users are highly correlated, low deviation from mean rating value,

a high similarity with a large number of users, and the assumption that spam users work

together. All the user profiles in the recommender system were projected onto a hyperplane

formed from the user-item matrix. The user profiles which were clustered closer to the origin

of the hyperplane were the attack profiles. The sparsity of the user-item matrix makes it

harder for these predictions to be reliable. RDMA and WDMA are also used as detection

attributes.

Bryan et al. [101 ] formulated a generic attribute aiding in the detection of attack profiles

in an unsupervised manner. Their approach treats the attack profiles detection problem as

an anomalous structure detection problem. The metric used is a variation of the Hv-score

metric which was initially used in gene data analysis to aid in locating biclusters. This

algorithm, called the UnRAP, seems useful in detecting both standard and obfuscated attacks.

Their approach has better chances of catching future novel attack strategies that may escape

supervised methods.

Based on the assumption that attack profiles are lesser in number and exhibit high

similarity, [92 ] applied an attribute-based k-means clustering technique. The users were

divided into two clusters, and the smaller cluster was identified as attack profiles. This

method showcased a higher accuracy and lesser misclassification of genuine users. Irrespective

of the attack strategy used, this work claims to have fewer authentic user misclassifications

than previous methods. The attributes used include RDMA, WDMA, WDA, and LengthVar,

along with the Hv-score metric used in [101 ].

Chung et al. [102 ] applied the Beta distribution algorithm to detect attacks. This method

detected as many attacks as possible without penalizing the authentic users. Most of the

problems associated with this method were inherited from Beta probability distribution itself.

The upsides of using this method are its low alarm rate and high detection rate. This method
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claims to work with sparse data and an unbalanced attack-normal profile ratio. This approach

exhibits high performance even with a small attack size and has a low false alarm rate.

Another clustering approach relying on the attack profile similarities was [103 ], which

used k-means clustering to move the fake profiles to the leaf nodes of a binary tree. With the

user-item matrix and an optimal number of neighbors N, it recursively uses k-means clustering

to cluster the users into two distinct groups. The indexed-cluster centers and intra-cluster

correlation of the binary tree are used for attack profile detection. This approach’s success

rate is particularly high in the average, segment, and bandwagon attack models.

Yang et al. [104 ] developed an algorithm that focused on analyzing target users and

items. It was a two-phase method. First, a density-based clustering method is applied to

the dataset based on some selection features to identify malicious users. DBSCAN is used

to determine the suspected users based on user features. Second, it spots suspicious items

based on adaptive structure learning on selected features and further uses it to capture the

attackers. The second phase helps in further scrutinizing the users from the first phase.

Zhang et al. [105 ] built a clustering approach based on the hidden Markov model (HMM)

and hierarchical clustering. The users’ rating behaviors are modeled using HMM. Based on

the users’ preference sequence and modeled rating behavior, each user’s suspicion degree is

calculated. Then, a hierarchical clustering method is used to group these users based on

their suspicion degree into genuine and attack user clusters. They also apply their method

on sampled Amazon review dataset to show its effectiveness.

Zhang et al. [106 ] proposed a method to improve the PCA approach in shilling profile

detection. PCA is initially used to separate the profiles into two classes, positive labels for the

detected and negative labels for all other users. Then they use the detection features - RDMA,

WDMA, WDA, and LenVar - as data complexity features to calculate the CCMeasure of the

dataset. CCMeasure is the classification complexity, a quantitative estimate on how difficult

it is to classify the dataset. If the measure is high, it indicates that a significant number of

authentic users are mislabeled, and the labels are flipped to reduce the data complexity.

Table. 4.4 shows the assumptions, traits, and the downsides of using some of these

algorithms.
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Having discussed detection techniques, other privacy risks that come with attack detection

methods are also studied. Luo et al. [107 ] discuss the impact of an insider attack on

shilling attack detection for recommendation systems. They consider a possible scenario

where an attacker poses as an examiner who is kept from individual rating profiles by secure

computations. Their attack model can infer the target rating profile with little prior knowledge

and the output of the secure computations. Such an insider attack would pose a serious

threat to the privacy of users.

4.5.3 Defense against Shilling Attacks

Parallel to the works focusing on shilling attack detection, there is a line of research

intended to create robust algorithms that are immune to shilling attacks. These algorithms

do not have a mechanism to find and remove the shilling profiles but can reduce the attack’s

effectiveness. We briefly discuss some of the recent robust algorithms in this subsection.

Yang et al. [108 ] combined the soft co-clustering algorithm with the user propensity

similarity method to enhance the robustness of the recommender system and detect shilling

attacks. It uses Bayesian co-clustering, a soft co-clustering algorithm that allows mixed

membership of row and column, highly suitable for real data. This model combines RDMA

with soft co-clustering to reduce the influence of shilling attacks. All the attack profiles are

clustered into the same cluster, limiting the shilling influence amongst the attack profiles.

Turk et al. [109 ] developed a robust multi-criteria collaborative filtering algorithm. A

multi-criteria CF has multiple categories in which the user can rate each item. MCCF helps

in better understanding the likes and dislikes of a customer. The robustness in their method

is achieved by eliminating suspicious ratings based on the degree of uncertainty. The users

are also categorized into different groups based on preference similarities to restrict authentic

users from mixing with attack profiles.

Deng et al. [110 ] integrated entropy scaling into the collaborative filtering process to

reduce the impact of over positive and negative users. They also used a minimum threshold

to invert the entropy further assisting in the prevention of random attacks.
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Alonso et al. [111 ] calculated a reliability value for each prediction of a user to an item.

When an unusual change is observed in the item prediction’s reliability value, it indicates a

possible shilling attack. They use the Matrix Factorization method to neutralize the impact

of a shilling attack. Promoting such shilling predictions can be avoided to reduce the extent

of the attack and neutralize the presence of shilling profiles. This method’s performance

drops with a decrease in the size of the attack, but it is claimed that such a small attack size

has a negligible impact.
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5. A PRACTICAL SHILLING ATTACK ON RECOMMENDER

SYSTEMS- A MULTI-ARMED-BANDIT-BASED

REINFORCEMENT LEARNING APPROACH

A version of this chapter and some preliminary experimental data have been published in

IEEE MASS 2020 [112 ].

5.1 Introduction

Though the State-of-the-art shilling attacks can theoretically push/nuke items effectively,

they come with their own pitfalls. The downside of most existing attacks is that their

performance varies drastically with the type of CF algorithm used. These attacks work well

in offline evaluations but cannot be used to execute an effective real-world attack. Moreover,

these are single-time attacks; all the fake profiles and all their ratings are injected at once.

Most attack schemes do not get feedback from the recommender system to assert the efficacy

of the attack.

To overcome these drawbacks, we propose an online shilling attack scheme with high-

efficiency under different CF algorithms. For an attack to work under multiple algorithms,

the items selected by the attack should suit the particular algorithm under consideration,

and cannot be the same for all systems. But, there is a high degree of uncertainty associated

with choosing the most optimal items without knowing the algorithm. To tackle this problem,

we develop a Multi-Armed-Bandit-based item selection process that uses the recommender

system’s feedback. We inject observer profiles, exclusively to understand and categorize the

recommendations made by the system. We use these recommendations to reduce uncertainty

categorically while simultaneously extending the attack reach.

Our work proposes an online attack method that aims to be efficient with different types

of collaborative filtering methods used. The contributions of our work are the following:

• We design an online attack scheme that treats the recommender system as a black-box,

knowing what the system is capable of doing but not the algorithm behind it.

• We employ a multi-armed bandit-based approach for selecting the most optimal items to
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enhance the attack performance.

• We inject observer profiles to get the recommendations made by the CF and use these

recommendations to extend attack reach.

5.2 Motivation

This section discusses the need for a Reinforcement Learning-based shilling attack. We

discuss the newer developments and inferences that act as motivators for this attack.

5.2.1 Developments in Collaborative Filtering

In recent years, with the need to improve the recommenders’ performance, online platforms

have been including newer features into the CF process [113 ]. These features are modified

according to the platform’s needs. Some of those features are:

• The similarity of items depends on the probabilistic association between items. In other

words, the number of items purchased by a customer is also taken into account while

calculating the similarity.

• The similarity between items also depends on the period of the purchase/rating of the

items. The items bought months apart from each other will have far less similarity score

than items which are purchased on the same day.

• Sometimes, the recommender system recommends a variety of moderately related items than

a narrowly targeted list. For instance, if a user only purchases books, sometimes non-books

are also recommended to the user.

Intuitively, not all online platforms need these added features to be better, but there is

no guarantee of whether such elements are present in a CF system. But these changes do

affect the way items are recommended; each recommendation includes a fraction of the CF’s

hallmark. We want to build an attack scheme which works both when these developments

are present, and when they are absent.
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5.2.2 Detection Traits

Most of the detection algorithms work by targeting a particular trait observed in the

shilling attacks. Though obfuscation manages to evade detection to some extent, some innate

qualities need to be present in an attack, to be effective. Such qualities are usually targeted by

the detection algorithms, both in the supervised classification and the unsupervised clustering

methods. We briefly discuss what those qualities are in this section.

DETECTION TRAITS

USER BASED
TRAITS

ITEM BASED
TRAITS

SIMILARITY

RATEDTARGET

LENGTH

RATING

CROWDINGSIZE

Figure 5.1. Characteristic traits of an attack which are exploited during the
detection process

User-based Traits

The basic division of such detection traits comes from whether the detection algorithm is

focusing on finding the attack user profiles or the items. In the user-based trait, the user’s

behavior is checked for anomalies, which can imply that the profile is fake.

Similarity. The similarity of a user profile to a large number of its neighbors is exhibited

by most attack profiles.
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Size. The size of an attack, the number of attack profiles injected, is relatively much

smaller than the entire user set. This size difference, combined with the high similarity among

them, prove to be useful resources in detection.

Item-based Traits

Most of the detection methods rely on the set of items rated by each profile to check if it

is a fake profile or not. From a detection point of view, we can categorize the items in an

attack profile into 2.

Rated Items. Rated items are the items that are used for supporting the push/nuke of

the target profile. Both the selected and filler items fall into this category from a detection

front.

• Length: The length of an attack profile, the number of items rated by an attack profile,

is usually much higher than an ordinary profile. An attacker usually tries to increase the

similarity between the attack profile and many other profiles by rating several filler items.

• Rating: The rating given to an item is maintained closer to the average rating of the

item to ensure maximum similarity. Detection algorithms usually target such anomalous

rating behaviors.

Target Item. The target item is the item that is promoted or demoted in an attack.

• Crowding: The concentration of users rating a target item will be abnormally high

when an attack is executed. Such abnormalities have a sizeable effect on the overall rating of

the item.

• Rating: The primary reason behind an attack is to modify the opinion about the target

item among users. The opinion cannot be altered without giving the target item a high

rating in the case of a push attack and the least possible rating in the case of a nuke attack.

Usually, such ratings widely deviate from the authentic ratings given to the item.

Fig. 5.1 showcases the different types of traits used in detection. Here, both the attack

size and filler length indicate the numerical differences in their behaviors and are detected

using similar techniques. Likewise, the rating behavior is one of the most important features

used in identifying an attack. Detection algorithms use the rating behavior differences in
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one form or the other in their algorithms. We want to create an approach which can evade

conventional detection algorithms built based on these traits.

5.2.3 Factors Influencing the Effectiveness of a Shilling Attack

The attackers have two significant factors that can be modified: the number of profiles

injected and items rated by these profiles.

Attack Size

Attack size is the number of fake profiles injected by the attacker. The larger the attack

size, the better the reach of the attack but the cost involved will also exponentially increase.

Choice of Rated Items (Selected Items)

Items to be rated by the injected profiles are selected in such a way that-

• The attack profiles have maximum similarity with other authentic users in a User-User

based CF system.

• The target items have a high degree of co-occurrence with many of the other items in

an Item-Item based CF system.

The attacker does not know the type of CF used in most of the cases. The existing attack

schemes use offline strategies to choose these selected items. Moreover, other factors, like the

developments we discussed earlier, also impact the attack but are unknown to the attacker.

We want our approach to have maximum similarity with as many benign users as possible,

irrespective of the CF type.

5.3 Methodology

In our method, we focus on creating an online attack, utilizing the CF’s recommendation

feedback while concurrently attaining maximum efficiency for a given attack size. We show

that our method is system-agnostic by treating the CF as a black box; the internal parameters

and the CF algorithm used are unknown to the attacker. The attacker can only rate/review
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the items and view the recommendations made to him by the system. To make the attack

online, we deploy a continuous attack strategy, where the selected items are added over a

more extended period.

Owing to the different CF algorithms and the newer developments in CF, it is evident

that each recommendation made by the system has imbibed the essence of the entire CF

system. The best way to subsume the recommendations into the attack is by adding these

recommended items to the fake profile’s selected items list. To get the recommendations,

we exclusively create multiple fake profiles (observer profiles) and fill them with some items

appropriate for the target item.

Not all recommendations made by the system adds value to the attack, but only the ones

relevant to the target items. This criterion leaves an uncertainty associated with choosing

the most optimal recommended items from all the profiles created. Only a limited number of

items can be added to the selected items for a given cost. Such a limitation leads to making

two modifications to reduce this uncertainty.

5.3.1 First, instead of treating each profile individually, grouping them into cat-
egories, makes it easier to reduce the uncertainty as a group: Categorizing
Injected Profiles.

In most of the existing works, only the attack profiles are injected into the recommender

system, but in our work, we inject two types of profiles into the system.

Observer Profile

These profiles are injected to learn from the recommender system. The observer profiles

use the recommendations made by the system to populate the attacker profiles.

• Selected Items Subset: These are the items that are a randomly chosen subset of the

attacker profile’s initial selected items.

• Random Items: These items are randomly chosen from the entire website’s list of items.

• Recommended Items: These are the items that are recommended to the observer profiles

after the subset of selected items and random items have been rated.
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Figure 5.2. A toy example of possible observer profile combos.

The observer profiles are divided into multiple combinations, with each combination

having an equal number of profiles. The combinations differ from each other based on the

ratio of selected subset, random, and recommended items. Fig. 5.2 illustrates six of the

possible observer profile combos. This figure is only an example of the possible combinations.

Attacker Profile

The attacker profile is the major part of the injected profiles used for promoting the target

item to as many authentic users as possible. The profile has three types of rated items.

• Target Item: The item which needs to be promoted or demoted.

• Selected Items: The set of items that are rated to increase the reach of an attack.

• Filler Items: The items which are rated to camouflage the presence of an attack profile

among authentic profiles to avoid detection.
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5.3.2 Second, to ensure high efficiency, the uncertainty reduction process needs
to happen simultaneously with the item selection proces: Multi-Armed-
Bandit-based Uncertainty Reduction.

In MAB, a fixed number of resources need to be apportioned among multiple opposing

choices in a way such that the overall gain is maximized [114 ]. The individual reward

associated with each of the options is not known at the beginning. This problem models the

exploration vs. exploitation dilemma. The name comes from a gambler having to choose the

right one-armed bandit, or slot machine, to play from a row of bandits with varying rewards.

The gambler has to select the number of plays in each bandit as well as the sequence of

play. In scientific research, MABs are used in pharmaceutical trials, information retrieval,

and even recommender systems. There are many optimal solutions for the MAB problem,

but we are only using Thompson Sampling [115 ] approach in our method. Epsilon Greedy

bandit algorithm undertakes a random exploration strategy which is not suitable for our work.

Upper Confidence Bound acts under the optimistic assumption that the selection made has

the highest possible reward and expends on exploring other options to decrease uncertainty.

Thompson Sampling, on the other hand, is solely bayesian and is more suitable for our work.

Thompson Sampling uses the concept of probability and depends on the Beta distribution

to make each selection.

β(x) = Γ(α + β)
Γ(α)Γ(β)x

α−1(1 − x)β−1 (5.1)

Here, α value is increased by 1 for a win, and β value is increased by 1 for a loss after each

iteration.

In the shilling attack process, MAB can be used to balance the exploration vs. exploitation

with uncertainty in the item selection process. Each of the observer profile combos act as

individual arms in the MAB. With each trial of the MAB, the uncertainty associated will the

selected observer combo gets reduced. The probability of success replaces this uncertainty in

each combo. If the recommended item is relevant to the target item, it is considered a win.

If the recommended item is either irrelevant or is already part of the attacker profile, then

it is a loss. Through multiple iterations, the MAB eventually starts exploiting the observer

combo that makes the most useful recommendations.
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Algorithm 2: Iterative and Termination Phase.
Input : Attacker and Observer profiles formed from Setup Phase.

Assume α = 1 and β = 1 for all combos(bandits)
Output : Efficient Attacker and Observer profiles

1 Iterative Phase:
2 MAB Selection Process:
3 •Use eqn.5.1 to get beta distribution.
4 •Randomly sample a value from the probability density function beta

distribution of all the combos;
5 •Select the combo with maximum sampled value;
6 Check recommendations for first observer profile in selected observer combo;
7 if Recommended item is related to Target item then
8 MAB Combo Reward = 1;
9 α = α + 1

10 Add item to all Attacker Profiles;
11 else
12 MAB Combo Reward = 0;
13 β = β + 1
14 end
15 Add item to current observer profile;
16 Move current observer profile to the end of queue in observer combo;
17 Termination Phase
18 if New Items Count <= Batch Threshold then
19 goto 1;
20 else
21 if Attacker Profile Length < Filler Size then
22 Terminate one batch of attack profiles;
23 Reset New Items Count;
24 Add Target item to terminated batch;
25 goto 1;
26 else
27 Attack Size Reached;
28 Terminate Attack;
29 end
30 end
31 return Fully-populated Attacker and Observer profiles
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5.3.3 Rating Scheme

For each new item added to the attacker profile or the observer profile, a rating needs to

be included. For the simplicity of discussion, we pick the two most common rating scales as

examples. If the system uses the 0 - 1 rating scale, then the ratings given to all the items

should be 1. If the 1 - 5 rating scale is used in the system, then the rating provided by the

attacker profile for an item should be equivalent to the average rating of the item in that

platform. The rating given by the observer profile should be similar to the system mean

rating. These details are readily available in most of the online platforms.

5.4 MAB-based Shilling Attack Scheme

In this section, we explain the scheme in which the online attack is executed. Our attack

scheme is categorized into three phases for ease of understanding.

5.4.1 Setup Phase

The selection of the items for the initial attacker profile and observer profiles constitute

the setup phase. The attacker profile mostly consists of the essential selected items, which

are chosen as per the target item. The most popular items which are similar to the target

item are chosen to be the selected items. For example, if the target item is a sci-fi novel, then

the selected items should be set of the most famous novels.

We want the initial items in the attack profile to be 70% filled with the selected items

at the setup phase. The rest of the items are filler items chosen at random from the entire

item set. This mix of items ensures that the attacker profile is very similar to the target item

while also evading detection because of filler items. The target item is not introduced during

the setup phase.

The observer profile has fewer items than the attacker profile. The number of combinations

that can be used in an attack is dependent on the size of the attack. If many profiles are

injected, and the number of items that can be rated by each profile is higher, then more

observer combinations can be explored.
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Having multiple observer combos means getting a better understanding of how the

recommender system treats the different types of users. The system treats the user who has

only purchased books different from the user who has consumed an array of items. So, the

recommendations made to these users differ drastically. Having different observer combos

helps in mimicking various types of authentic users.

5.4.2 Iterative Phase
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Figure 5.3. Using MAB for observer combo selection.

In the iterative phase, the recommendations made to the observer profiles are added

to the attacker profile. In this phase, the multi-armed bandit algorithm is used to select

the observer combo. Each observer combo has a specific number of profiles arranged in a

queue; the recommendation is chosen from the first profile in the line. The observer profiles

are presented as given in Fig. 5.3 . If the recommended item is related to the target item,

then it is added to the attacker profile as well as the observer profile. If not, then it is only

added to the observer profile. Adding the recommended item to the observer profile ensures
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that the item is not recommended again. After each iteration, the profile which made the

recommendation is moved to the back of the queue.

Alg.2 explains the algorithm involved in the iterative and termination phases. Initially,

all the observer combos are likely to be selected equally. But, as the number of iterations

increases, the observer combos, which have a higher chance of giving a reward, are selected

with a higher probability by the MAB.

5.4.3 Termination Phase

As the name suggests, the termination phase terminates the addition of new items to the

attacker profile in batches and the termination of the attack process. Two main activities

take place in the termination phase. These two actions help in tackling some of the newer

developments in the CF.

First, after a threshold number of new items are added to all the attacker profiles, one

batch of the attacker profile is retired after adding the target item as the final item to the

batch. The size of the batch depends on the number of iteration cycles we want to continue

and the attack size. Such batched termination creates attack profiles of different lengths.

As mentioned earlier, some of the more recent CF models take into consideration the

number of items rated by an account for similarity calculation. By creating attacker profiles

of different lengths, we are ensuring that there is some attack profile batch to match each

kind of authentic users: from people who have rated only a few items to people who have

rated many items.

At the termination of each batch, adding the target item creates a higher similarity

between the newly added selected items and the target item. If the period in which the items

were rated is taken into consideration in the CF, then the target would still have a high

similarity with all the selected items.

Once the final batch reaches the predetermined maximum number of items allowed per

attack profile, the attack process gets terminated. This termination keeps the estimated cost

of the attack in check. After the final batch termination, the target item is added to all the

observer profiles.
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Figure 5.4. Attacker profiles at the end of the attack.

The attacker profiles at the end of the attack are illustrated in fig. 5.4 . Initially, all the

attacker profiles are of the same length. After the attack, the orange portion shows the items

that were part of the batch during the previous iterative cycle. The blue-colored portion

shows the newly added items after the termination of the previous batch. The green-colored

part is the target item, the last item added before batch termination. The dotted region is a

representation of the items which will have high similarity with the target if the time-period

of rating is taken into consideration by the CF algorithm. By adding the target item as the

last item of a batch, we are ensuring that all the newly added items get closely related to the

target. It is important to note here that the different profile length or adding the target as

the last item does not affect the attack even if the system doesn’t use any additional features.
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5.4.4 Toy Example of MAB Shilling Attack

To better understand the attack scheme, let us consider the toy example in fig. 5.5 . In

the example, we are injecting 200 profiles into the system, out of which 140 are attacker

profiles, and 60 are observer profiles. The attacker profiles are divided into ten batches, and

the observer profiles into six observer combos, with ten profiles each. The initial number

of rated items in the attacker profile is 30, and that of the observer profile is 15. For this

example, we are going to consider a filler size of 80 items. This size implies that no injected

profile should have more than 80 rated items. Given that the filler size, initial rated items,

and the number of batches in the attacker profile, we can estimate that one batch should be

terminated after every 5 new items added. This way, the first terminated batch will have 35

rated items, and the last terminated batch will have 80 rated items. The batch threshold

value for this attack is 5.

In the iterative phase, the MAB algorithm is used to select one of the observer combos.

The recommendation made to the first profile of the chosen observer combo is examined. If

the recommended item is related to the target item, then it is a win for the MAB, and the

item is added to both the chosen observer and all the attacker profiles. If the recommended

item is not related, then it is a loss, and the item is only added to the chosen observer. After

each new item added, the control is passed to the termination phase. This process is repeated

until the attacker profile length is the same as the filler size.

The first step in the termination phase is to check if the new items added after the

previous batch termination are less than the batch threshold, which is 5 in the example. If

so, then the control is passed back to the iterative phase. If not, the length of the current

attacker profiles is inspected. If the profile length is the same or greater than filler size, then

the attack is terminated. If the profile length is less than filler size, then one batch of attacker

profile is terminated after adding the target item as the last new item to the batch. The

control is then passed back to the iterative phase, and the process continues until the last

batch has a length of 80.
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Figure 5.5. Toy example of a shilling attack with 200 injected profiles.

5.5 Experiments

In this section, we discuss the experimental evaluation of our method.
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Figure 5.6. Probability density of the beta distribution for four observer
combos at different steps.

5.5.1 Dataset

We used the MovieLens 1M dataset for the evaluation of our method. This dataset was

collected as part of the GroupLens Research Project for their work in [116 ]. It consists of

1,000,209 ratings from 6040 users on 3,900 items (including movies, series, and documentaries),

with the genre included. Each user has rated a minimum of 20 items. The users rate the

items on a scale of 1 to 5, with 1 being the least and 5 being the maximum possible rating.

5.5.2 Our Approach

We incorporate our MAB-based attack scheme by utilizing the genre of the items. 70% of

the injected profiles are attacker profiles, and the remaining 30% are observer profiles. We
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choose the selected items related to the target by comparing their genre. We use four different

observer combos for this attack, with 0%, 33%, 66%, and 100% selected items each, and the

rest are filler items. We do not use recommended items in the observer combo formations,

owing to the small number of total items. While using the MAB for item selection, if the

genre of the item matches the target, then it is a win; otherwise, it is a loss.

Fig. 5.6 shows the probability density function of the beta distribution for the four

observer combos at different steps while using kNN basic algorithm at 3% filler size, and 5%

attack size. As the number of trials increases, the uncertainty associated with each combo

decreases. Here, the color blue represents the 66% observer combo, which is the most explored

arm and gives the most wins. One possible reason for this combo to be selected more often

than the 100% combo could be that the 100% combo only recommends the items which are

very similar to the target item. Most of the profiles in the 100% combo might have the same

list of recommendations. Once an item is selected, the same item cannot be selected again,

causing the trial to fail. On the other hand, the 66% combo would have a more diverse list of

recommended items, leading to a higher win rate. It is important to note that the number of

trials shown in the MAB, 1000, is depicted to show how the attack works. Generally, the

attack terminates once the filler size is reached.

5.5.3 Baseline Attack Algorithms

We briefly reiterate the baseline algorithms against which we compare our method.

Bandwagon Attack

The Bandwagon attack operates by choosing all the rated items for the attack profiles

from the most popular items in the dataset and give them high ratings. These items have a

high rating from a large number of users [32 ].

Average Over Popular Attack

The AoP attack is a variation of the average attack, used to obfuscate the attack signature.

In AoP, the rating scheme is similar to the average attack, but the items are not chosen at
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random. The most popular items in the dataset are selected to be the filler items for this

attack [38 ].

Random Attack

It is the primary form of shilling attack, where the items rated by the attack profile are

chosen at random. The system overall mean is used for rating each of these items, with a

standard deviation of 1.1. The target item is given the maximum rating [31 ].

Average Attack

This attack is a slightly more sophisticated form of the random attack. Here too, the

rated items are chosen at random, but the rating is the average rating of the item. The target

item is given the maximum rating [31 ].

5.5.4 Baseline CF Algorithms

Different websites use different algorithms to fulfill their recommendation system needs.

The attacker does not know of the algorithm used, making it necessary for the attack to be

successful under different algorithms.

CoClustering Algorithm

CoClustering algorithm simultaneously clusters users and items. This algorithm is designed

to be a practical real-time CF approach owing to its low computational requirement. It works

by generating user and item co-clusters and obtaining the average rating predictions based

on these co-clusters [117 ].

kNN Basic

k-Nearest Neighbor algorithm works by finding the closest neighbors of a user and

estimating the ratings for this user from the rating behavior of the neighboring users. The
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similarity measure between two users needs to be positive for them to be considered a neighbor.

This algorithm is the vanilla implementation of the kNN approach [118 ].

kNN with Means

This algorithm additionally takes into account the mean ratings of users in the similarity

calculation process of the kNN algorithm. By including the mean rating values, the overly

positive and overly negative users will not be part of an average user’s neighborhood [118 ].

Non-negative Matrix Factorization (NMF)

NMF-based CF model is a single-element-based approach, such that none of the matrices

involved in the factorization have negative elements. This algorithm works by examining the

non-negative update process depending on each involved feature rather than on the entire

feature matrices [119 ].

5.5.5 Evaluation Metrics

We conduct experiments to test the ability of the attack to push a target product. Initially,

we select a target product that is not a part of the top-N recommended items of any of the

6,040 authentic users under various CF algorithms. Then we inject the same number of

profiles into the system for each of the attacks. At the end of the attack, we evaluate the

success of the attack by checking the percentage of authentic users with the target item as

part of their top-N recommended items list. We repeat the evaluations by varying the attack

size, filler size, and CF algorithms for all the attacks.

5.5.6 Result Analysis

We will discuss how the different attacks perform in the various algorithms and the impact

of filler size. Fig. 5.7 and fig. 5.8 show the extent of attack in the different algorithms. The

x-axis shows the attack size, and the y-axis shows the percentage of authentic users who have

the target item in their top-20 recommendations after the attack.
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Figure 5.7. Percentage of users with target item in their top-20 recommenda-
tion list when filler size is 3%.
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Figure 5.8. Percentage of users with target item in their top-20 recommenda-
tion list when filler size is 5%.

Changes with filler size

Fig. 5.7 shows the impact of the different attacks in different algorithms when the filler

size is 3%. Similarly, fig. 5.8 shows filler size of 5%. Increasing the filler size does not

hugely enhance the attack efficiency in either of the algorithms. In some instances, the

similarity between attack and authentic profiles is lost because of the attack profile length.

Moreover, profiles with too many rated items can easily be detected using simple detection

techniques. By using attack profiles of different lengths, our approach has better reach and

lesser detectible features.

Changes with CF Algorithms

One of the key advantages of using our MAB-based approach is the ability to adapt to

the CF system used. By using the recommendations made by the system, MAB manages to

choose the optimal items to attack the system. The MAB performance with different CFs

alters with how the CF handles the recommendation process and user information.
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kNN Basic: In both the 3% and 5% filler sizes, the MAB based attack seems to be

outperforming the other attacks. We can notice that the average and random attacks, being

the simplest, seem to be performing significantly lower than others.

kNN with Means: By including the mean rating of a user, the CF alters the outcome

of the attack. In the kNN basic method, the bandwagon attack performed better than the

average attack. But, giving high ratings to most of its items reduces the similarity between

bandwagon’s attack profiles and the authentic users in kNN with means. This aspect affects

its performance.

CoClustering: When it comes to the CoClusteing approach, both average and AoP attacks

have low efficiency. This outcome could be because of the rating schemes used in these

approaches. Using the system mean for rating the observer items and varying filler length of

attack profiles, gives MAB method an edge over the other attacks.

NMF: By observing the attack reach in this method, we can notice that there is not a

significant difference between the baseline attacks. The NMF algorithm does not seem to

take the attacks’ rating scheme into account during the recommendation process. The item

selection method used by MAB appears to be giving it an edge over the other methods.

5.6 Conclusion

In this chapter, we have explored the possibility of applying an online shilling attack,

which utilizes the feedback from the recommendation system to increase the reach of the

attack. The framework treats the Collaborative Filtering RS as a BlackBox and functions

well with both user-user-based and item-item-based methods. We use a Multi-Armed Bandit

based approach to reduce the uncertainty associated with the item selection process. Our

results are encouraging and show that our online shilling attack approach has a better reach

than the existing baseline methods. More research on shilling attacks is imperative as more

and more businesses are using Collaborative Filtering systems. We are currently working on

obfuscating our attack without affecting efficiency. In the future, we are planning to extend

our approach to work on a Graph-based Recommender System as well.
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6. SUMMARY

In this work, we have applied Deep Learning and Reinforcement Learning-based defense and

attack, respectively, on Recommender Systems. We have shown that the Deep Dynamic

Clustering approach can effectively remove the influence of spam reviewers, especially in the

crowdsourced manipulators’ scenario. When it comes to the shilling attack, we have proposed

a practical attack method; a MAB-based reinforcement learning strategy is used to select

the items to increase the attack reach effectively. On top of expanding the attack reach, our

approach intuitively evades most of the standard detection techniques. It is important to

note that this work incorporates sophisticated strategies while strongly emphasizing practical

applicability.
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