
SOLVING PREDICTION PROBLEMS FROM TEMPORAL
EVENT DATA ON NETWORKS

by

Hao Sha

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer and Information Science

Indianapolis, Indiana

August 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. George Mohler, Chair

Department of Computer and Information Science

Dr. Mohammad Hasan

Department of Computer and Information Science

Dr. Murat Dundar

Department of Computer and Information Science

Dr. Snehasis Mukhopadhyay

Department of Computer and Information Science

Approved by:

Dr. Shiaofen Fang

2

To my wife and parents

3

ACKNOWLEDGMENTS

I want to thank Dr. George Mohler and Dr. Mohammad Hasan for letting me join their

group. I appreciate their contributions of time, ideas, and resources to make my PhD career

productive. I also want to thank Dr. Murat Dundar and Dr. Snehasis Mukhopadhyay for

the guidance they provided as part of my dissertation committee. Last but not least, I want

to thank my wife and parents for their love and support.

4

Contents

LIST OF TABLES . 8

LIST OF FIGURES . 10

ABSTRACT . 13

1 INTRODUCTION . 14

1.1 Given networks, predict future events . 15

1.2 Given networks, predict sources of events . 16

1.3 Given events, infer networks . 16

1.4 Given events, predict group links . 17

1.5 Contribution . 18

1.6 Organization . 19

2 BACKGROUND . 21

2.1 Networks . 21

2.2 Hawkes Processes . 22

2.3 Recurrent Neural Networks . 25

2.4 Variational Autoencoder . 28

2.5 Graph Convolutional Networks . 30

3 LEARNING NETWORK EVENT SEQUENCES USING LONG SHORT-TERM

MEMORY AND SECOND-ORDER STATISTIC LOSS 32

3.1 Introduction . 32

3.2 Background . 35

3.2.1 Hawkes Process . 35

3.2.2 Long Short-term Memory Architecture 36

3.2.3 Second-order Statistics of Sequential Events 37

3.3 Related Works . 38

3.4 Methods . 39

5

3.4.1 Problem Description . 39

3.4.2 Model Formulation . 39

3.4.3 Training Protocol . 44

3.5 Experiment . 44

3.5.1 Data Description . 45

3.5.2 Competing Methods . 47

3.5.3 Hyper-parameter Tuning and Sensitivity 48

3.5.4 Model Convergence . 50

3.5.5 Results . 50

3.6 Chapter Summary . 53

4 SOURCE DETECTION ON NETWORKS USING SPATIAL TEMPORAL GRAPH

CONVOLUTIONAL NETWORKS . 54

4.1 Introduction . 54

4.2 Background . 55

4.2.1 Epidemic Models . 55

4.2.2 STGCN . 60

4.3 Methodologies . 61

4.4 Related works . 64

4.5 Experiments . 65

4.5.1 Experiments with standard S(E)IR simulations 67

4.5.2 Experiments with delay SIR simulations 70

4.5.3 Sliding windows . 71

4.5.4 Case study: real COVID-19 case data 73

4.5.5 Impact of graph and simulation related factors 75

4.5.6 Training without pre-knowledge of epidemics 76

4.6 Discussion . 77

4.7 Chapter Summary . 82

5 DYNAMIC TOPIC MODELING OF THE COVID-19 TWITTER NARRATIVE

AMONG U.S. GOVERNORS AND CABINET EXECUTIVES 83

6

5.1 Introduction . 83

5.2 Hawkes Binomial Topic Model . 84

5.2.1 Related work . 86

5.3 Data . 86

5.4 Results . 87

5.4.1 Risk, treatment and testing sub-topics 90

5.5 Chapter Summary . 93

6 GROUP LINK PREDICTION USING CONDITIONAL VARIATIONAL AUTOEN-

CODER . 95

6.1 Introduction . 95

6.2 Method . 98

6.2.1 Problem Description . 98

6.2.2 Preliminaries . 99

6.2.3 Member-recommendation . 102

6.2.4 Group-recommendation . 104

6.3 Related works . 104

6.4 Experimental Results . 105

6.4.1 Data Description . 105

6.4.2 Baseline Methods . 107

6.4.3 Experimental Setup . 110

6.4.4 Results . 113

6.5 Chapter Summary . 119

7 Conclusions and future work . 120

REFERENCES . 121

VITA . 136

PUBLICATIONS . 137

7

LIST OF TABLES

3.1 Key variables in this work. |V | is the number of vertices in the graph. 40

3.2 Dataset properties. |V | and |E| are the number of nodes and number of edges
of each network, respectively. Sequence size gives the number of events in each
sequence. 45

3.3 Embedding Dimension Sensitivity. The values are Hit@10 rates with different
embedding dimensions on each dataset. . 49

3.4 Learning Rate Sensitivity. The values are Hit@10 rates with different learning
rates on each dataset. . 49

3.5 Experimental Results. 50

3.6 Jaccard Similarity between a generated sequence and a real sequence for snap-
shots at different steps. The scores are in the form of mean +/- standard devia-
tion, which are estimated over 100 experiments. 51

4.1 Network statistics. The columns from left to right are the network name, number
of nodes |V |, number of edges |E|, average degree d, and clustering coefficient C
[104]. 65

4.2 Performance of SD-STGCN and GCN trained and tested on SIR simulations
using R0 = 2.5 and γ = 0.4, over random graphs of different types. The scores
are evaluated over five graphs per type and five runs per graph. The format is
mean (standard deviation). 67

4.3 Performance of SD-STGCN and GCN trained and tested on SEIR simulations
using R0 = 2.5, γ = 0.4 and α = 0.5, over random graphs of different types.
The scores are evaluated over five graphs per type and five runs per graph. The
format is mean (standard deviation). 68

4.4 Performance of SD-STGCN evaluated against baseline methods over standard
SIR simulations on empirical contact networks. The scores are evaluated across
five runs per network. The format is mean (standard deviation). 69

4.5 Performance of SD-STGCN evaluated against GCN over delay SIR simulations.
The scores are evaluated across five runs per network. The format is mean
(standard deviation). 70

4.6 COVID-19 case data network statistics. The columns from left to right are the
network name, number of nodes |V |, number of edges |E|, clustering coefficient
(C) [104]. 73

4.7 Performance of SD-STGCN over real COVID-19 cases. The cases are projected
onto random networks generated by ER, RGG, and the Configuration (Conf)
models, and an empirical contact network (Emp). The scores are evaluated across
five runs and five networks per model. The format is mean (standard deviation). 73

8

4.8 Performance of SD-STGCN trained and tested on SIR simulations using R0 = 2.5
and γ = 0.4, over ER graphs of different sizes. The scores are evaluated over five
graphs per size and five runs per graph. The format is mean (standard deviation). 75

4.9 Performance of SD-STGCN trained and tested on SIR and SEIR simulations
using different R0. The scores are evaluated over five ER graphs and five runs
per graph. The format is mean (standard deviation). 76

4.10 Performance of SD-STGCN trained on SIR simulations using random R0 and γ,
and tested on simulations with different R0. The scores are evaluated over five
ER graphs and five runs per graph. The format is mean (standard deviation). . 77

4.11 Recovering X from Y with noise using different methods, with W = ones(16, 16).
The graph is an ER random graph. The true X ∈ R1000 ×R16 is drawn from a
uniform distribution U(0, 1) and a normal distribution N(0, 1). 80

4.12 Recovering X using different methods, with W = I(16, 16). The graph is an ER
random graph. The true X ∈ R1000 ×R16 is drawn from a uniform distribution
U(0, 1) and a normal distribution N(0, 1). 81

4.13 Recovering X using different methods, with W ∈ U(0, 1)16×U(0, 1)16. The graph
is an ER random graph. The true X ∈ R1000 × R16 is drawn from a uniform
distribution U(0, 1) and a normal distribution N(0, 1). 81

5.1 Officials ranked by in-degree (most influenced) and out-degree (most influential)
in influence networks. . 91

6.1 Data set properties. N denotes the number of events (groups). |V | and |E| are
the number of nodes and number of edges for each network, respectively. 106

6.2 Member recommendation hit rates. The highest and the second highest hit rates
are bold. 113

6.3 Member recommendation mean reciprocal ranks (MRR). The highest and the
second highest MRR scores are bold. 114

6.4 Group recommendation hit rates. The highest and the second highest hit rates
are bold. 115

6.5 Group recommendation mean reciprocal ranks (MRR). The highest and the sec-
ond highest MRR scores are bold. 116

9

LIST OF FIGURES

1.1 Visual depiction of the thesis organization. 20

3.1 Network Architecture. The shaded areas represent LSTMs; while the cyan circles
represent cells. Each LSTM contains two layers. 41

3.2 Cost for LC and LC + LK with different datasets. 50

3.3 Diffusion on grids. The sequences start from the center (red) of the grids. The
green dots represent the nodes where events have occurred; while the purple dots
represent the grid. The top and bottom rows are snapshots taken at time step 100
and 1000, respectively. Images from left to right represent different models. JS
denotes the Jaccard Similarity between a generated sequence and a real sequence
for each snapshot. 51

3.4 Earthquakes in Southern California. Blue circles represent earthquake locations;
red heatmaps indicate the number of earthquakes at each location. The correla-
tion is between the event count distributions of the real and generated sequences. 52

4.1 SD-STGCN architecture. The blue areas on the left represent the input snap-
shots, which are one-hot encoded network states at multiple time steps. The
orange areas on the right illustrate the model architecture consisting of a stack of
ST-Conv blocks followed by an output layer. The output is a list of probabilities
of each node being the source. 61

4.2 Top-1 accuracy across sliding windows with standard and delay SIR simulations
on different networks. (a)-(d) Top-1 accuracy for standard SIR simulations. The
horizontal axis represents the first frame in each window. (e)-(h) Top-1 accuracy
for delay SIR simulations. The horizontal axis represents percentage windows.
(i) Top-1 accuracy for delay SIR on ER graph with R0 = 10. (j)-(k) nDCG across
sliding windows on Singapore and Tianjin datasets. The black crosses represent
the source cases, which are jittered to avoid overlapping. 71

5.1 In the HTBM, spontaneous events occur with marks generated by a binomial random
variable over the dictionary of keywords contained in the data set. Events then trig-
ger offspring events whose marks are generated by switching parent event words off
(white circle) with probability poff and on (black circle) with probability pon. Unique
events are delineated with dashed lines. Clusters are groups of parent daughter events
connected by triggering. . 85

5.2 UCI coherence of HBTM vs. LDA when applied to COVID-19 related tweets by
governors and cabinet members. 87

5.3 Topic timeline. Clusters with size greater than 10 are pinned. Keywords indicate
the topic of the clusters. The marker color indicates the dominant component of
the cluster. 87

10

5.4 Granger causality [161] influence network. Democrats (blue), Republicans (red).
Weights of the edges of the directed graph correspond to the fraction of events
estimated to be triggered across the edge. Edges with weights less than 10 are
removed. 88

5.5 Spontaneous vs. triggering effects of politicians on Twitter. Vertical axis: base
intensities (spontaneous) and effective influences (triggering) are normalized over
politicians; horizontal axis: Twitter handles of politicians. To save space, vertical
axis is truncated at 0.08, rendering President Trump’s spontaneous rate off the
chart (∼ 0.16). 89

5.6 Timeline of sub-topics on risk, treatment and testing. Clusters with size at least
2 are pinned. Keywords indicate the topic of the clusters. The marker color
indicates the dominant component of the cluster. 92

5.7 Granger causality influence network for “risk” (top), “treatment” (middle) and
“test” (bottom) sub-topics. 93

6.1 Conventional link prediction and group link prediction in social networks. (a)
In link prediction, links are between a pair of individuals. (b) In group link
prediction, links are between a group and an individual. The goal is to predict
future links given the current state of the network. 96

6.2 Network architecture. xfull,i and xob,i are encoding vectors representing the entire
group and observed member(s), which are concatenated as the input to the en-
coder (green). hi contains the historical event counts, which is also concatenated
with the input for the CVAEH model. Mean µ and the diagonal elements of
standard deviation σ are encoder outputs, with which we sample the latent vec-
tor z. z is concatenated with xob,i and hi (CVAEH only) and fed to the decoder
(blue). The output P (x|z,xob,i,hi) is the conditional probability indicating the
likelihood for x to join xob,i. 101

6.3 Prediction Illustration. The one-hot encoding of the observed group member(s)
is fed to the decoder. z0 is sampled multiple times, generating a multiplicity
of outputs, which are averaged to obtain the final conditional probability. (a)
For member-recommendation, we predict the one most probable member. (b)
For group-recommendation, we find a group that best aligns with the probability
distribution. 110

6.4 Correlograms for the samples in the datasets. The horizontal axis is the time
difference; the vertical bars (light blue) are the autocorrelations; the correlation
bands (dark blue) indicate the 90% confidence interval. Note, as the correlo-
grams for Meetup-NYC and Meetup-CA are very similar, we only show the one
for Meetup-NYC. The plots suggest that the samples in HT09 and SFHH are
correlated in ∼ 2 steps; while the samples in the other datasets are time inde-
pendent. 117

11

6.5 Case study: Ernon email member composition. The color bars indicate the
percent composition of critical members (”influencers”) grouped by job titles. . . 118

12

ABSTRACT

Many complex processes can be viewed as sequential events on a network. In this thesis,

we study the interplay between a network and the event sequences on it. We first focus

on predicting events on a known network. Examples of such include: modeling retweet

cascades, forecasting earthquakes, and tracing the source of a pandemic. In specific, given

the network structure, we solve two types of problems - (1) forecasting future events based on

the historical events, and (2) identifying the initial event(s) based on some later observations

of the dynamics. The inverse problem of inferring the unknown network topology or links,

based on the events, is also of great important. Examples along this line include: constructing

influence networks among Twitter users from their tweets, soliciting new members to join

an event based on their participation history, and recommending positions for job seekers

according to their work experience. Following this direction, we study two types of problems

- (1) recovering influence networks, and (2) predicting links between a node and a group of

nodes, from event sequences.

13

1. INTRODUCTION

An event sequence is a series of timestamp and mark pairs organized in time ascending order

[45 , 106]. The timestamps denote the time when events occur; while the marks are features

indicating event types, locations, participants, and so on. For instance, an event sequence

could be a series of time and user ID pairs indicating when and who posts a tweet [173 , 98].

It may also be a sequence of time and longitude/latitude coordinates indicating when and

where earthquakes occur [108]. Modeling event sequences plays an important role in many

areas, such as earthquake forecasting [108], crime prevention [99 , 133], and user-behavior

study in social networks [173 , 98].

Networks are a kind of data structure that models a set of objects (nodes) and their

relationships (edges) [103]. Network data arises in many real-world applications. The users

of a social media platform can be viewed as nodes and their relationships as edges in a social

network [80 , 173]. Sensor stations deployed across a city form a sensor network, and their

readings are time-dependent signals on the nodes [170]. In genetics, gene expression data

can be represented as signals defined on the regulatory network [23 , 47]. In neuroscience,

brain networks can reveal structural and functional characteristics of the human brain [167].

Many real-world phenomena can be modeled by the interplay between event sequences

and networks. In one particular kind of scenarios, sequential events occur at the nodes of a

network whose structure is known. For instance, earthquake cascades can be mapped to the

nodes of a fault-line network [15]. Contagion process (e.g. virus, rumor, idea) propagates

through a contact network or a social network from one node to another [67 , 126]. In these

cases, we are interested in leveraging the known network topology for learning the sequences.

In an opposite kind of scenarios, only the sequential events are observed, while the underlying

network structure is unknown. For example, on Twitter, we only observe the times when

a user tweets about something, but we do not know from whom she gets the idea, unless

she cites the source. In cases like this, we are interested in inferring the network structure

or links between particular nodes, based on the observed events. The applications of such

include: identifying Twitter influencers by constructing the influence networks of users from

their tweets [161]; recommending collaborations by inferring co-authorship networks based

14

on past publications [102 , 149]. In this thesis, we discuss four prediction problems related to

event sequences and networks: (1) given networks, predict future events; (2) given networks,

predict sources of events; (3) given events, infer networks; and (4) given events, predict group

links.

1.1 Given networks, predict future events

In this setting, we consider the problem of modeling sequential events occurring on the

nodes of a static network whose topology is known. In specific, we study the forward predic-

tion problem of inferring the nodes where future events are likely to occur. Sequential events

are well-known to exhibit mutual correlations. For instance, the arrival of an event may

increase the rate of observing a future event. This is called the self-exciting effect, which can

be seen in earthquake aftershocks or preferential attachments in social media. Traditionally,

various point processes are developed for modeling event correlation [106 , 45 , 60]. Particu-

larly, Hawkes processes [60] introduce a time-varying intensity conditioned on all the past

events on top of a Poisson noise of constant intensity. Hawkes process models can effectively

capture the aforementioned self-exciting effect, and are applied broadly in seismicity [108],

crime forecasting [99 , 133], and social media analysis [98].

Although point processes can model the space-time coupling of event sequence, they

rely on predefined kernel functions and assumptions of the generation process, thus limiting

their capacity of modeling sequences of arbitrary distributions. [33 , 157 , 95] propose using

Recurrent Neural Net (RNN) [121], and in particular, Long Short-term Memory (LSTM)

[61 , 50] to model arbitrary sequences. However, they do not consider the locations of events.

Another potential approach is to pose event prediction as a node classification problem using

network embeddings [171]. However, this approach ignores the temporal dependency of

successive events, thus leading to poor performance. Although dynamic embedding methods

[181 , 105 , 178] exist, they are not appropriate for our task, because they assume that the

networks are changing, whereas in our case the networks are fixed. In Chapter 3 , we propose

a LSTM based approach that is capable of modeling arbitrarily distributed event sequences

and incorporating both temporal and spatial dependencies.

15

1.2 Given networks, predict sources of events

In this section, we consider the inverse problem - source detection. In specific, given a

network and some snapshots of the propagation, we want to locate the sources that induce

the propagation. Here a snapshot contains the states of all the nodes of the network. For

example, a snapshot of an epidemic spread contains the infection status (susceptible, in-

fectious, recovered) of each individual in the population under consideration. Solving the

source detection problem has broad applications, for example, identifying rumor centers in

social networks [27], detecting sources of computer viruses [153], isolating initial failures that

lead to rolling blackouts in power grids [166], and finding patient-zero of infectious diseases

in human contact networks [126].

Various methods have been proposed to conduct source detection [67]. Early approaches

resort to centrality measures, such as rumor center [127 , 128 , 29 , 92], eigenvector cetner [116 ,

117 , 44], and Jordan center [180]. However, these methods are heuristic and only give sub-

optimal solutions. In contrast, Dynamic Message Passing (DMP) [89] provides near-optimal

solutions. However, DMP is computationally expensive and requires the time of the snap-

shots, which are normally unavailable [67 , 126]. [126] proposes a graph neural network [175]

based model that takes advantage of the power of neural networks. However, it utilizes only

one snapshot, whereas there can be multiple snapshots available in practise. Furthermore, it

has been shown that using multiple independent snapshots together can enhance detectabil-

ity [154]. So an ideal model should incorporate both the spatial information in the network

and the temporal information in the multiple snapshots. In Chapter 4 , we adopt a spatial

temporal graph convolutional network (STGCN) architecture [170] for solving the source

detection problem on networks and show that utilizing multi-snapshot leads to significant

accuracy improvements.

1.3 Given events, infer networks

In many real-world cases, only time series of the node states are observed, while the

network structure is not known. Inferring networks from time series data can provide in-

sight into the internal structure of a system and help explain the dynamics. For example,

16

inferring genetic networks from expression data can help identifying molecular targets of

pharmacological compounds [47]; constructing atmospheric teleconnection networks from

extreme-rainfall events can help revealing the mechanisms of climate change [9]; recovering

the network that hosts epidemic spreading or information propagation can help controlling

infectious diseases or rumors [129].

Existing methods for inferring network from time series data fall into two categories. The

first category includes methods like Granger causality [161 , 38] and correlation measurements

[137 , 6], which discover functional connections. The other category includes methods like

driving response [146], and compressed sensing [152 , 129], which focus on structural con-

nections. In Chapter 5 , we construct influence networks among a group of U.S. politicians

from their tweets related to COVID-19. In specific, we estimate Granger causality using a

Hawkes Binomial Topic Model (HBTM) [100]. With the influence network, we can find out

how decision makers have influenced each other, and whom among the decision makers have

emerged as leaders.

1.4 Given events, predict group links

Events can be mapped to not only nodes, but also edges. In many real networks, edges

between nodes are established by sequential events [62]. For example, in networks of commu-

nication via email, edges represent sequences of instantaneous contacts; in social networks

such as Twitter, edges represent sequences of following events. An essential problem in mod-

eling edge formation is predicting new edges. In network theory, the problem of predicting

new edges is called link prediction [87 , 59]. Link prediction is well-studied and has appli-

cations in areas like social media [87], e-commerce [14], and molecular biology [84]. Link

prediction can be solved using heuristic measures (e.g. Common Neighbor, Jaccard Index,

and Adamic/Adar) [87] or methods based on node embeddings [59]. Node embeddings are

low-dimensional representations that preserve the network structure [171]. Traditional node

embedding methods, like DeepWalk [112] and Node2Vec [54], are static methods based on

the latest snapshot of the network. To account for the historical snapshots, various dynamic

embedding methods, such as TNE [182], DynamicTriad [179], CTDNE [105] and HTNE

17

[183], are proposed. Moreover, as many real-world applications, such as recommender sys-

tems in e-commerce, involve nodes of different types (e.g. users and items), methods like

metapath2vec [30] and HERec [132] are developed for learning embeddings for heterogeneous

networks [131]. Recently, a method named change2vec [8] is proposed to learn embeddings

for dynamic heterogeneous networks.

Patterns of link formation are not exclusively limited to two nodes. For instance, an

author can collaborate with different groups of co-authors in different articles. Likewise, a

Facebook user can join various Facebook Groups consisted of other users who share com-

mon interests. In these examples, links are formed between an individual and a group of

individuals. We refer to this kind of link prediction problem as “group link prediction”.

Many recommendation problems can be modeled by group link prediction. For instance,

Facebook makes suggestions for potential users to join certain Facebook Groups; LinkedIn

recommends potential employers to a job-seeker or vice versa; Meetup.com recommends a

user for an event, based on who else are participating in that event. To solve group link

prediction, we can pose it as a traditional link prediction problem in a heterogeneous network

where nodes are individuals and groups. However, in the cases where a group’s identity is

determined by its participants, we will end up constructing a very large network. For exam-

ple, to model co-authorship involving N authors, we will need to consider 2N groups, leading

to a heterogeneous network of ∼ O(2N) nodes. In Chapter 6 , we propose a Conditional Vari-

ational Auto-encoder (CVAE) [136] based model that solves group link prediction without

constructing a heterogeneous network. In addition, we provide a variant of the CVAE model

- Conditional Variational Auto-encoder with History (CVAEH) to incorporate the temporal

characteristics, where the historical links are considered.

1.5 Contribution

We summarize the major contributions of this dissertation:

• Given networks, predict future events: We combine two LSTMs to model both

the slowly varying base intensity and the fast varying conditional intensity of an event

sequence on a network. We introduce a new loss function using the network distance

18

distribution of consecutive events. We compare our model with various baselines on

both synthetic and real-world datasets to show its superiority for event prediction and

sequence generation.

• Given networks, predict sources of events: We propose a spatial temporal graph

convolution based model - SD-STGCN for source detection on networks using mul-

tiple snapshots. We show that SD-STGCN outperforms state-of-the-art models over

realistic transmissions, including non-Markovian epidemic simulations with delay, and

realistic network topology, including both synthetic and empirical contact networks.

Additionally, we apply our model to real COVID-19 case data. The experiments

demonstrate the superior performance of SD-STGCN.

• Given events, infer networks: We analyze COVID-19 related tweets by prominent

US politicians during early 2020. We use a Hawkes binomial topic model (HBTM) to

track evolving topics and construct influence networks amongst these politicians based

on Granger causality.

• Given events, predict group links: We reframe a special case of link prediction on

heterogeneous networks that considers the links between an individual and a group,

which we call “group link prediction”. We propose a CVAE-based model to solve

group link prediction. We also introduce a second CVAE model (named CVAEH) that

considers the temporal effect by incorporating the historical links. We examine the

group link prediction problem in five real-world datasets and show the superiority of

our CVAE/CVAEH models in comparison with various competing methods.

1.6 Organization

The dissertation is organized into two tracks - (i) given networks predict events, and (ii)

given events predict networks. On the first track, in Chapter 3 , we perform the forward task

of predicting future events, using a hierarchical LSTM with second-order statistic regular-

ization; in Chapter 4 , we perform the backward task of finding the source(s) of a sequence of

events, using a spatial temporal graph convolution model (STGCN). On the second track,

19

Figure1.1. Visual depiction of the thesis organization.

in Chapter 5 , we construct influence networks of twitter users based on their tweets, using

a Hawkes process binomial topic model (HBTM); in Chapter 6 , we learn the link formation

mechanism between an individual and a group of individuals, which we call “group link

prediction”, using Conditional Variational Auto-Encoder (CVAE). In Fig. 1.1 , we illustrate

this organization.

20

2. BACKGROUND

In this chapter, we discuss background material: networks, Hawkes process, recurrent neural

networks, (conditional) variational autoencoder, and graph convolutional neural networks.

2.1 Networks

Network [103] is a natural data structure representing relationships among entities. A

network contains a set of nodes connected by edges. A node represents an entity which

can have attributes (such as text or metadata). An edge represents a relationship between

two nodes, and it can have attributes as well. A particular kind of edge attribute is edge

weight which measures the strength of the relationship. An edge can have direction(s), i.e.

going from one node to another or going both ways. A network whose edges are all directed

is called a directed network. In contrast, a network with only undirected edges is called

a undirected network. Formally, we denote a network G = (V,E), where V is the set of

nodes (also called vertices) and E is the set of edges. The connectivity of a network can

be summarized by an adjacency matrix A ∈ R|V |×|V |, with Auv = 1 if u ∈ V and v ∈ V

are connected, and Auv = 0 otherwise. If the edges are weighted, then Auv = wuv with wuv

representing the weight of edge euv ∈ E. We further denote the nodal attributes by a matrix

X ∈ R|V |×d, where d is the dimension of the attribute (feature) space.

Network goes hand in hand with event data. Firstly, we can model event propagating

on nodes of networks. Examples along this line include: retweet cascades on the Twitter

network [173]; viral marketing on social networks [13]; infectious diseases spreading in hu-

man contact networks [126]. In Chapter 3 , we follow this approach and study the forward

problem of forecasting future events given the historical events; in Chapter 4 , we study the

backward problem of finding the very first event that triggers the rest based on some later

snapshots of the propagation. Another way of modeling events using networks is directly

mapping events to nodes and their correlations to edges. For instance, in a Hawkes process

[101] events trigger one another following certain underlining branching structures which are

essentially networks with edge weight wuv = Puv, u, v ∈ V representing the probability of v

being triggered by u. Moreover, a Granger causality network [38] can be constructed among

21

different types of events, to discover, for instance, the mutual influence among Twitter users.

In Chapter 5 , we recover the branching structure of tweets posted by prominent U.S. politi-

cians about COVID-19 and construct an influence network among these politicians. Last

but not least, we can model event participants as nodes in a network and frame the event

recommendation problem as a link prediction problem [87 , 59 , 14]. In specific, we want

to recommend a new participant to an event or alternatively recommend an event for an

individual to join. Traditionally, link prediction can be solved by ranking some heuristic

measures between two nodes, including neighbor-based measures like Common Neighbor,

Jaccard Index, Adamic/Adar and Preferential Attachment, and path-based measures like

Graph Distance, Katzβ, and hitting time. Recent approaches focus on learning nodal repre-

sentations (i.e. embeddings). Embeddings can be obtained through matrix factorization [79]

or random walk [112 , 54]. In Chapter 6 , we propose solving the event participants prediction

problem using a novel conditional variational auto-encoder (CVAE) approach.

2.2 Hawkes Processes

Univariate Hawkes Process A temporal point process [106] is an ordered set of event

times {ti}N
i=0. We typically describe a point process by its conditional intensity function

λ(t|Ht−) which can be interpreted as the instantaneous probability of an event occurring at

time t given the history Ht− consisting of all the events before t. This can be written as

λ(t|Ht−) := lim
∆t→0+

P (N [t, t+ ∆t)|Ht−)
∆t (2.1)

where N [t, t + ∆t) is the number of events in [t, t + ∆t). Point processes can be specified

by choosing a functional form of the intensity. In particular, a Hawkes process [60] has the

following intensity:

λ(t|Ht−) = µ(t) +
∑

ti∈Ht−

g(t− ti) (2.2)

22

where µ(t) is the base intensity and g(t− ti) is the triggering kernel that describes the self-

exciting effect by a historical event at ti. The log-likelihood of observing N events in [0, T)

is:

LL(µ, g) =
N∑

i=1
ln(λ(ti|Ht−

i
))−

∫ T

0
λ(t|Ht−)dt

=
N∑

i=1
ln(µ(ti) +

∑
tj<ti

g(ti − tj))−
∫ T

0
µ(t)dt−

N∑
i=1

∫ T −ti

0
g(s)ds.

(2.3)

Given sequences of observations, we can fit the intensity in Eq. 2.2 by maximizing Eq. 2.3 , i.e.

to obtain the maximum likelihood estimation (MLE) of µ and g - µMLE and gMLE. However,

an analytical solution of Eq. 2.3 is intractable, as LL(µ, g) involves a sum of logarithms of

conditional intensities, which themselves involve sums over previous points. Moreover, [148]

shows that the use of numerical methods like the Newton-type to maximize Eq. 2.3 can be

problematic in cases where the log-likelihood is extremely flat. To overcome this problem,

expectation maximization (EM) based algorithms [148 , 101] are proposed. By introducing

latent variables to describe the branching structure, these methods can significantly simplify

the log-likelihood and find the MLE much more efficiently. With the estimated intensity,

we can infer the arriving time of the next event or simulate a sequence of events through

methods like thinning [107].

Multivariate Hawkes process In many real-life scenarios such as earthquake after-

shocks [148], civilian death in conflicts [101] and user behaviors in social networks [98], event

sequences involve events of different types and exhibit self-exciting and mutually-exciting

properties - an event not only can be triggered by a previous event of the same type, but

also can be triggered by a previous event of another type. Multivariate Hawkes process [177 ,

176] is thus introduced to capture such effects. Formally, let {(ui, ti)}N
i=1 be a sequence of N

events in a time interval [0, T), with ui ∈ U and 0 ≤ ti < T denoting the event type and

occurrence time of event i, respectively. U is a finite set of event types. The intensity for

type u is:

λu(t|Ht−) = µu(t) +
∑

(ui,ti)∈Ht−

guui(t− ti), (2.4)

23

where Ht− = {(ui, ti)|ti < t, ui ∈ U} is the history consisting of all the events before t.

µu(t) ≥ 0 is the base intensity for type u. The kernel guu′(t) ≥ 0 captures the mutually-

exciting property between type u and u′. Suppose we have m samples {ci}m
i=1, with each

sample c containing a sequence of observed events {(uc
i , t

c
i)}Nc

i=1 in time intervals [0, Tc), the

log-likelihood of the multivariate Hawkes process is:

LL(µ, g) =
∑

c

(
Nc∑
i=1

λuc
i
(tci)−

∑
u∈U

∫ Tc

0
λu(t)dt

)

=
∑

c

(
Nc∑
i=1

ln
(
µuc

i
(tci) +

∑
tc
j <tc

i

guc
i uc

j
(tci − tcj)

)

−
∑
u∈U

∫ T

0
µu(t)dt−

∑
u∈U

Nc∑
i=1

∫ Tc−ti

0
guuc

i
(s)ds

)
,

(2.5)

where for simplicity, we use λu(t) to denote λu(t|Ht−). The MLE of µ and g can be obtained

by EM alogirthms [177 , 176].

Assuming that the kernels in Eq. 2.4 share the same parametric form g, we have:

λu(t|Ht−) = µu(t) +
∑

(ui,ti)∈Ht−

auuig(t− ti), (2.6)

where the coefficient auu′ ≥ 0 captures the mutually-exciting effect between type u and

u′ ∈ U . We collect all the pair-wise coefficients into a matrix, A = (auu′), called the

infectivity matrix. Note that an event can be triggered by a previous event of the same type,

so the diagonal elements of A are not necessarily zero. In a scenario where u represents a node

in a network allowing self-connections, A is effectively the adjacency matrix. Specifically,

given a network G = {V,E}, we have a sequence of events {(ui, ti)}N
i=1 occurring on the nodes,

i.e. ui ∈ V . The cross-excitation effects of the events are modulated by the network topology,

where an event on node u can be triggered by a previous event on either a neighboring node

v or u itself (i.e. auv > 0 or auu > 0). The self-excitation on the other hand is governed

by the background intensity term µu, indicating that an event can also occur spontaneously

on any of the nodes. In Chapter 3 , we study the event prediction problem under this

multivariate/network Hawkes process framework.

24

Multivariate point process is a special case of the marked point process [60]. In general,

point processes may be marked if features of events beyond their time are also observed. For

example, we can model earthquakes using their magnitudes as marks. Formally, a marked

point process is a point process of events {(ui, ti)}, where ti ∈ [0, T), and ui ∈ U , with U

the mark space. If the mark space U is a finite set, the marked point process becomes a

multivariate point process. Let ~m denote the feature vector of an event, the intensity of a

marked Hawkes process can be written as:

λ(t, ~m) = µ(t, ~m) +
∑
ti<t

g(t− ti, ~m, ~mi), (2.7)

where we drop Ht− for simplicity. In Chapter 5 , we use ~m to represent the content of a tweet,

and apply a Hawkes Binomial Topic Model (HBTM) to study how the Twitter narratives

around COVID-19 evolve among prominent U.S. politicians.

2.3 Recurrent Neural Networks

Sequential data exhibits temporal correlation, so a well-suited model for modeling se-

quential data should be able to capture this property. Feedforward neural networks [63]

are proved to be universal approximators, however they assume that the data points are

independent. In these networks, the entire state is lost after each data point is processed.

So feedforward neural networks are not ideal for modeling sequential data. In contrast, re-

current neural networks (RNN) [121] can process the data points successively and keep the

network state up-to-date. Specifically, a typical RNN takes in the input at the current step

and the state from the previous step, and outputs the prediction for the current step or the

next step. RNNs are thus appropriate choices for modeling sequences of data points that

are not independent.

Moreover, it has been proved that a finite-sized recurrent neural network with sigmoidal

activation functions are Turing complete [134], which indicates that RNN is capable of

performing nearly arbitrary computations. There are two reasons making RNN stand out

from other universal Turing machines: (1) RNN is differentiable and thus can be learned via

gradient descent; (2) RNN can be regularized via methods like dropout and weight decaying,

25

to prevent overfitting. Without the means of regularization, there exist countless programs

that can generate desired outputs for training data, but failing to generalize to test data.

For an input sequence {xt}T
t=1 and a target sequence {yt}T

t=1, a traditional RNN is often

specified by the following equations:

ht = σ(W hxxt +W hhht−1 + bh)

ŷt = softmax(W yhht + by)
(2.8)

where the first equation describes the latent model and the second equation describes the

output model. ht is the latent state at time t, and ŷt is the predicted output at time t. W hx,

W hh, and W yh are the weight matrices mapping inputs to latent states, latent states from

time step t − 1 to t, and latent states to outputs, respectively. bh and by are bias terms

for the latent state and the output. σ is an activation function such as sigmoid, tanh, and

rectified linear unit (ReLU). Note that we assume a multi-class classification, so a softmax

activation is adopted in the output model. A linear activation should be used for regression

or a sigmoid activation should be used for binary classification (logistic regression). RNNs

can be learned through backpropagation through time (BPTT) [156]. For instance, for

multi-class classification, we minimize the following cross-entropy loss:

loss = −
T∑

t=1

m∑
k=1

yk
t log(ŷk

t) (2.9)

where m is the dimension of the output (observation) space (m = |y|). Note this is essentially

MLE through gradient ascent, so the loss function is the negative log-likelihood for the task

- for example mean squared error (MSE) should be used for regression.

The form of RNNs described in Eq. 2.8 is notoriously difficult to train due to vanishing

(exploding) gradient, especially for modeling long-range dependencies [7 , 111]. The gradient

over T time steps is:

∂loss

∂θ
=

T∑
t=1

∂losst

∂θ
, (2.10)

26

where θ denotes the set of parameters. The gradient at t is:

∂losst

∂θ
= ∂losst

∂ŷt

∂ŷt

∂ht

(
t∏

i=2

∂hi

∂hi−1

)
∂h1

∂θ

= ∂losst

∂ŷt

∂ŷt

∂ht

(
t∏

i=2
σ′(W hxxi +W hhhi−1)W hh

)
∂h1

∂θ

(2.11)

where σ′ is the derivative of the activation. For tanh and sigmoid, σ′(x) ≤ 1; for ReLU,

σ′(x) = 1 when x > 0. We can see that if σ′W hh < 1, the product vanishes when t→∞; if

σ′W hh > 1, the product explodes when t→∞. So the signals far from the beginning rarely

have any contributions to the total gradient. Furthermore, the latent state ht for large t

could easily vanish or explode, if the weight matrices were not initialized properly.

Various modern RNN models [17 , 61] have been proposed to remedy the vanishing gradi-

ent problem. Long Short-term Memory (LSTM) [61] is one of the most popular. It introduces

a cell state and uses gates to modulate the states. Specifically, LSTM can be described by

the following equations:

it = σ(Wi[ht−1, xt] + bi), ft = σ(Wf [ht−1, xt] + bf), ot = σ(Wo[ht−1, xt] + bo),

c̃t = tanh(Wc[ht−1, xt] + bc), ct = ft � ct−1 + it � c̃t, ht = ot � tanh(ct),
(2.12)

where σ is the sigmoid function and � is the Hadamard product. it, ft, and ot are input,

forget, and output gates. xt, ht, and ct are input, hidden, and cell states. W∗, U∗, V∗, and

b∗ are trainable parameters. Similar to Eq. 2.11 , the gradient at t contains the product∏t
i=2

∂ci
∂ci−1

, and it can be shown that

∂ct

∂ct−1
= σ′(Wf [ht−1, xt]) ·Wf · ot−1 � tanh′(ct−1) · ct−1 + ft

+ σ′(Wi[ht−1, xt]) ·Wi · ot−1 � tanh′(ct−1) · c̃t

+ σ′(Wc[ht−1, xt]) ·Wc · ot−1 � tanh′(ct−1) · it

(2.13)

as a sum of four terms. In particular, the ft term makes the gradient difficult to vanish. In

addition, one can further constrain the weights to prevent the gradient from blowing out.

27

LSTM has been successfully applied to various sequence related learning problems, such

as, speech recognition [51], language translation [140], handwriting synthesis [50], and image

generation [52]. In Chapter 3 , we combine two LSTMs for modeling event sequences on

networks.

2.4 Variational Autoencoder

Variational autoencoder (VAE) [28 , 73] is a generative model consist of an encoder and

a decoder that are learned jointly through gradient descent. Let x be a random variable

representing a data point. The data generating process can be modeled by:

pθ(x) =
∫
pθ(x, z)dz, (2.14)

where θ denotes the set of parameters and z denotes a vector of latent variables. Learning

pθ(x) via maximum likelihood is generally difficult due to the integral in Eq. 2.14 . Learning

pθ(z|x) is equally difficult because pθ(z|x) = p(x, z)/pθ(x). So we approximate pθ(z|x) by

a parametric model qφ(z|x), where φ denotes the set of parameters of the encoder. So the

log-likelihood of the data can be written as:

logpθ(x) = Eqφ(z|x)[logpθ(x)] = Eqφ(z|x)

[
log

pθ(x, z)
pθ(z|x)

]
= Eqφ(z|x)

[
log

pθ(x, z)qφ(z|x)
qφ(z|x)pθ(z|x)

]

= Eqφ(z|x)

[
log

pθ(x, z)
qφ(z|x)

]
︸ ︷︷ ︸

Lθ,φ(x)

+Eqφ(z|x)

[
log

qφ(z|x)
pθ(z|x)

]
︸ ︷︷ ︸

DKL(qφ(z|x)||pθ(z|x))

.
(2.15)

where the log-likelihood is decomposed into two terms - Lθ,φ(x) and DKL(qφ(z|x)||pθ(z|x)).

The second term is the Kullback-Leibler (KL) divergence between qφ(z|x) and pθ(z|x), which

28

is non-negative. So the first term Lθ,φ(x) is a lower bound on the log-likelihood, called the

evidence lower bound (ELBO). We can further write:

Lθ,φ(x) = Eqφ(z|x)[log(pθ(x, z))]− Eqφ(z|x)[qφ(z|x)]

= Eqφ(z|x)[log(pθ(x|z))] + Eqφ(z|x)[logp(z)]− Eqφ(z|x)[qφ(z|x)]

= Eqφ(z|x)[log(pθ(x|z))]−DKL(qφ(z|x)||p(z))

≈ log(pθ(x|z))−DKL(qφ(z|x)||p(z))

(2.16)

where qφ(z|x) is the encoder and pθ(x|z) is the decoder. Note that in the last line of Eq. 2.16 ,

we take one sample z ∼ qφ(z|x) and approximate Eqφ(z|x)[log(pθ(x|z))] by logpθ(x|z) at that

z. The usual choice of qφ(z|x) is a multivariate Gaussian - qφ(z|x) = N (z|µ(x, θ),Σ(x, θ)).

We further assume that p(z) is a standard Gaussian p(z) = N (0, I). So the KL-divergence

in Eq. 2.16 becomes:

DKL(qφ(z|x)||p(z)) = 1
2

(
tr(Σ(x, φ)) + µ(x, φ)Tµ(x, φ)− k − logdet(Σ(x, φ))

)
(2.17)

where k is the dimensionality of the distribution. However, we cannot directly sample z from

N (z|µ(x, θ),Σ(x, θ)), because the back-propagation would not go through. So [73] proposed

a method called the “reparameterization trick”, to first sample ε ∼ N (0, I), then compute

z = µ(x, φ) + Σ1/2(x, φ) · ε. ELBO is now:

Lθ,φ(x) = log(pθ(x|z = µ(x, φ) + Σ1/2(x, φ) · ε))

− 1
2

(
tr(Σ(x, φ)) + µ(x, φ)Tµ(x, φ)− k − logdet(Σ(x, φ))

)
,

(2.18)

where µ(x, φ) and Σ(x, φ) are the outputs of the encoder. The gradients of Eq. 2.18 w.r.t.

θ and φ can be efficiently computed using packages such as Tensorflow.

In some cases, we not only have data but also observe some additional information. For

example, in image inpaintings, we want to restore the missing pixels in an image given the

observed ones. [65] proposed to solving such problems using an extended VAE model that

is able to incorporate conditions, called conditional variational autoencoder (CVAE). Let y

29

denote the conditions. The ELBO of CVAE is similar to Eq. 2.16 except that x is conditioned

on y:

Lθ,φ(x|y) = log(pθ(x|y, z))−DKL(qφ(z|x, y)||p(z|y)). (2.19)

Note that p(z|y) can still be N (0, I), because z is sampled independently of y at test time.

To implement qφ(z|x, y) and pθ(x|y, z), we can, for example, concatenate y with x and z at

the encoder and the decoder, respectively. In Chapter 6 , we develop a CVAE-based model

for predicting the event participants.

2.5 Graph Convolutional Networks

Graph Convolutional Networks (GCNs) are neural networks that can perform convolution

operations on graph signals [175]. Prior to GCNs, Convolutional Neural Networks (CNNs)

[83] achieved great success in extracting multi-scale localized features from structured data

like images. As graphs are also locally connected structures, it is natural to think of general-

izing CNNs to graphs. However, it is hard to directly transform the localized convolutional

filters from images to graphs, as the nodes in the later are not ordered.

One way to solve the problem is to define the filters in the Fourier domain. Given

a undirected and connected graph G = (V,E) with N nodes, let A ∈ RN×N denote the

weighted adjacency matrix. The normalized graph Laplacian is L = I−D− 1
2AD− 1

2 ∈ RN×N

where D ∈ RN×N is the diagonal degree matrix with Dii = ∑
j Aij. Let U = [u0, . . . , uN−1] ∈

RN×N and {λi}N−1
i=0 denote the eigenvectors and eigenvalues of L, then L = UΛUT where

Λ = diag([λ0, . . . , λN−1]) ∈ RN×N . The graph Fourier transform of a signal x ∈ RN is then

defined as x̂ = UTx and its inverse as x = Ux̂. The convolution on graph in the Fourier

domain is defined as x ∗ y = U((UTx) � (UTy)), where � is the Hadamard product, based

on the convolution theorem - the Fourier transform of a convolution of two functions is the

pointwise product of their Fourier transforms. Replacing (UTx)� by a matrix multiplication

with a filter gθ = diag(θ) paremeterized by θ ∈ RN , we arrive at the following definition of

the convolution on x ∈ RN [11]:

gθ ∗ x = UgθU
Tx. (2.20)

30

However, this form of convolution is expensive and non-localized. So [58] proposes approx-

imating gθ by a truncated expansion of Chebyshev polynomials Tk(x) up to K’th order:

gθ ∗ x ≈
K∑

k=0
θkTk(L̃)x, (2.21)

where L̃ = 2
λmax

L − I with λmax being the largest eigenvalue of L. θ ∈ RK is a vector of

Chebyshev coefficients. The Chebyshev polynomials are Tk(x) = 2xTk−1(x)− Tk−2(x), with

T0(x) = 1 and T1(x) = x. Eq. 2.21 is K-localized and needs less parameters K < N . Also,

there is no need to calculate the eigenvectors of L.

Alternatively, [74] suggests stacking multiple layers of K = 1 convolution with λmax ≈ 2.

So the convolution becomes:

gθ ∗ x ≈ θ0x+ θ1(L− I)x = θ0x− θ1D
− 1

2AD− 1
2x, (2.22)

where θ0 and θ1 are two parameters. Setting θ = θ0 = −θ1 renders:

gθ ∗ x ≈ θ(I +D− 1
2AD− 1

2)x. (2.23)

Stacking this operation is not stable, thus renormalization is needed at each layer: I +

D− 1
2AD− 1

2 → D̃− 1
2 ÃD̃− 1

2 , with Ã = A+ I and D̃ii = ∑
j Ãij. So for a signal X ∈ RN×C with

C channels, a convolution layer can be summarized by the following matrix multiplications:

Z = D̃− 1
2 ÃD̃− 1

2XΘ (2.24)

where Θ ∈ RC×F is a matrix of filter parameters and Z ∈ RN×F is the output of the layer.

In Chapter 4 , we apply a spatial-temporal graph convolutional network (STGCN) [170] to

detect diffusion source(s) on networks. In specific, we adopt both Eq. 2.21 and Eq. 2.24 for

graph convolution.

31

3. LEARNING NETWORK EVENT SEQUENCES USING

LONG SHORT-TERM MEMORY AND SECOND-ORDER

STATISTIC LOSS

A version of this chapter was previously published by Statistical Analysis and Data Mining:

The ASA Data Science Journal. Sha, H, Al Hasan, M, Mohler, G. Learning network event

sequences using long short‐term memory and second‐order statistic loss. Stat Anal Data

Min: The ASA Data Sci Journal. 2021; 14: 61– 73. [124]. DOI: 10.1002/sam.11489.

3.1 Introduction

Modeling event sequences is essential in many areas, such as earthquake forecasting [108],

crime prevention [99 , 133], and user-behavior study in social networks [173 , 98]. Earthquakes

tend to occur as sequences or clusters in close spatial and temporal proximity. Modeling

earthquake sequences helps forecast future earthquakes and mitigate the seismic hazard.

Space-time clustering event sequences are also observed in certain types of crime data, such as

burglary and gang violence [133]. Studying these sequences may help identify crime patterns

and prevent crimes from happening. Social networking services allow users to share content,

and widely popular content can be shared by hundreds of thousands of users. Content

sharing events form a sequence that spreads through social networks, as such, modeling this

sequences could help predict content popularity, and provide useful information for content

ranking and aggregation. It also helps better understanding of influence, fake-news or rumor

propagation over the social networks.

An event sequence is a series of timestamp and mark pairs organized in time ascending

order. The timestamps denote the time when events occur; while the marks indicate the

identity of events. For instance, an event sequence could be a series of time and user ID

pairs indicating when and who posts a photo. It may also be a sequence of time and

longitude/latitude coordinates indicating when and where earthquakes occur. In many cases,

sequential events occur at the vertices of an existing network or the events can be mapped

to one of the vertices of a constructed network. For instance, earthquakes predominantly

32

occur along fault lines, where tectonic movements are active. Therefore, earthquakes can

be assigned membership to a large-scale fault-line cluster [15]. By inserting vertices on a

fault line and then connecting nearby vertices, an earthquake network can be constructed.

A sequence of earthquakes can thus be viewed as a series of events occurring on the nodes of

this network. As another example, posting messages on an online social network (such as,

Facebook or Twitter) can be viewed as an event occurring at a node of that network. In this

work, we focus on modeling the event sequences in a network with an objective to predict

the nodes where the future events are likely to occur and to generate sequences that closely

resemble the real sequences.

The occurrence of an event may be spontaneous and independent of other events. On the

other hand, it may also be triggered by the previous events (self-excitation). Traditionally,

event sequences are modeled by various point processes [106 , 45 , 60]. In particular, Hawkes

processes [60] model the spontaneity by a based intensity and the self-excitation by a time-

varying conditional intensity. However, these models rely on some predefined parametric

forms, thus limiting their capability of modeling arbitrarily distributed event data. To

remedy this problem, EM-based nonparametric models [85 , 176] are proposed. However,

these models are still under the framework of Hawkes processes and may suffer from model

mis-specification when the underlining event generation mechanism is not known a priori.

Alternatively, one could ignore the space-time coupling of event sequence and model an

event’s time and location independently. For instance, one can turn to Recurrent Neural

Net (RNN) [121], specifically, Long Short-term Memory (LSTM) [61 , 50] to model a gen-

eral point process. Various models [33 , 157 , 95] along this line are proposed, but in these

models, the events’ locations are not considered, and they are not necessarily occurring in

a network node. One can also emphasize the network on which the events occur, ignoring

their timestamp and consider event prediction as a node classification task, which can be

solved by using a network embedding model [171]; however, such a direction ignores the

temporal dependency of successive events, resulting in poor performance. Some existing

works on network embedding consider temporal change in network [181 , 93], but they are

not appropriate for our task because in our task the underlying network is fixed, and we are

merely interested in the temporal sequence of nodes where the future events will occur.

33

In this work, we propose a novel method for modeling temporal event sequence in the

vertices of a network. Our proposed model uses LSTM to minimize the cross-entropy between

the generated event probability and the one-hot encoding of the real event, which essentially

enforces the generated sequences to have a first-order statistics similar to the real sequence.

However, a potential next event may occur at any of the neighbors of the current event node

and does not have to be the exact neighbor in the real sequence. The first-order statistic

loss (cross-entropy loss) does not take into account this aspect. In contrast, the second-order

loss penalizes the network distance between events rather than their identity, thus favoring

the events that are within the correct hop distance in the network. For implementation,

we combine two LSTMs—our first LSTM takes long-term event counts as inputs, while

the second LSTM takes short-term event marks as inputs. For instance, we may feed the

monthly event counts during the past 30 months to the first LSTM and the latest 30 events

to the second LSTM. The first LSTM thus learns the slowly varying characteristics, while

the second LSTM learns the fast-changing characteristics. Unlike existing works on point

process [157], our model does not require domain-specific features and solely relies on the

event sequences.

The contributions of this chapter are: We combine two LSTMs to model both the slowly

varying base intensity and the fast varying conditional intensity of an event sequence on

a network. We introduce a new loss function using the network distance distribution of

consecutive events. We compare our model with various baselines on both synthetic and

real-world datasets to show its superiority for event prediction and sequence generation.

The rest of the chapter is organized as follows: In Section 3.2 , we provide some back-

grounds regarding the important components of our model. In Section 3.3 , we discuss related

works in learning event sequence. In Section 3.4 , we present a detailed description of our

method. In Section 3.5 , we describe the experiments and present the results. Finally, we

summarize our work in Section 3.6 .

34

3.2 Background

In this section, we briefly go through the major building components of this work and

provide necessary background information.

3.2.1 Hawkes Process

Hawkes processes [60] are self-exciting point processes where the occurrence of an event

increases the likelihood of the occurrence of future events. Hawkes processes are characterized

by an intensity function

λv(t) = µv(t) +
∑

{(vi,ti)|t>ti}
gv(vi, t− ti), (3.1)

where λv(t) is the intensity of an event v at time t. µv(t) represents the base intensity.

The triggering kernels gv(vi, t − ti) are accumulated over the historical events {vi, ti}. It

is common to assume that the base intensity is constant over time µv(t) = µv when the

triggering kernels gv(vi, t − ti) vary significantly faster than µv(t). Furthermore, one may

assume that the kernels have some predefined functional forms, such as the exponential

function or the power-law function. With a constant base intensity and exponential kernels,

Eq. 3.1 becomes

λv(t) = µv +
∑

{(vi,ti)|t>ti}
Wv,vie−w(t−ti), (3.2)

where µv ≥ 0 is the time-independent base intensity, w is the decay rate, and Wv,vi ≥ 0 is a

measurement by which vi initially excites v. Let G = {V,E} denote a graph, where V and E

are collections of vertices and edges. Let the subscript v in Eq. 3.2 denote an event occurring

on node v ∈ V . If we assume that an event at node v is either spontaneous (determined

by µv) or triggered homogeneously by its neighbors vi, then we have Wv,vi = Av,vi , where A

is the adjacency matrix of G. We use the Hawkes process of Eq. 3.2 to generate synthetic

sequences in experiments [163]. In addition, one of the baselines, multidimensional Hawkes

process model [163], is also based on this formula.

35

3.2.2 Long Short-term Memory Architecture

Recurrent Neural Net (RNN) [121] is a neural network model designed for modeling

time series data. Besides taking input at each time step, it passes down the hidden state

of the previous time step. Thus, it is capable of exhibiting temporal dynamic behaviors.

However, as pointed out by [7 , 111], traditional RNNs suffer from vanishing (exploding)

gradient problem, preventing them from learning relationships separated by an extended

period. To remedy this problem, authors of [61] propose a Long Short-term Memory (LSTM)

architecture where a cell state is introduced. Now the output and the intermediate states at

time t are collectively determined by the input, the hidden state and the cell state at time

t− 1. Such design effectively reduces the multiplicative effect of the small gradients. In this

work, we adopt the version of LSTM implemented by the following equations:

it = σ(Wixt + Uiht−1 + Vict−1 + bi),

ft = σ(Wfxt + Ufht−1 + Vfct−1 + bf),

ct = ftct−1 + it � tanh(Wcxt + Ucht−1 + bc),

ot = σ(Woxt + Uoht−1 + Voct + bo),

ht = ot � tanh(ct),

(3.3)

where σ is the sigmoid function and � is the Hadamard product. it, ft, and ot are vectors

of intermediate states; while xt, ht, and ct are vectors of input, hidden, and cell states,

respectively. Matrices W∗, U∗, V∗, and vectors b∗ are trainable parameters.

In recent years, LSTM has become a popular choice for modeling sequential data, along

with other methods such as dilated causal convolutions [109] and Gated Recurrent Unit

(GRU) [17]. LSTM has been successfully applied to solve various sequence related learning

problems, such as, speech recognition [51], language translation [140], handwriting synthesis

[50], and image generation [52].

36

3.2.3 Second-order Statistics of Sequential Events

Besides correlating in time, sequential events may also correlate in types or space. For

instance, aftershocks commonly occur in the vicinity of a major earthquake. A picture posted

by a user is more likely to be liked by a friend than a stranger. The general spatial correlation

could be measured by Ripley’s K-function [120 , 26] which is defined as:

K(d) =λ−1E[number of extra events within

distance d of a randomly chosen event],
(3.4)

where λ is the event density (number per unit area). If edge effects are ignored, K(d) can

be estimated by [26]:

K̂(d) =
∑

i,j 1(di,j < d)
Nλ

, (3.5)

where N is the number of events and di,j is the distance between the i’th and j’th events.

1(x) is the indicator function with the value 1 if x is true and 0 otherwise. For network

events, di,j can be defined as the length of the shortest path between node vi and vj where

the i’th and j’th events occur. Based on this concept, we propose using a normalized K1

estimate to describe the second-order property of a sequence in a network. In specific, given

a sequence S = {ti, vi} in a network G = {V,E} with vi ∈ V , we define the following K1

estimate:

K1(dm|S,G) =
∑N−1

i=1 1(di,i+1 < dm)∑d
dm=0

∑N−1
i=1 1(di,i+1 < dm)

(3.6)

where N is the size of the sequence and d is the diameter of the network. dm can take discrete

values from 0 to d, representing the range of all possible network distances between any two

nodes. K1(dm|S,G) is essentially an estimate of the distribution of the distance between

two consecutive events in the network G. Assuming S ′ = {t′i, v′
i} is an artificial sequence

generated by some model in the same network G, we can enforce S ′ to have the same distance

distribution as S by minimizing D(K1(dm|S,G)||K1(dm|S ′, G)), where D(P ||Q) measures the

37

distance between distribution P andQ (such as Kullback-Leibler divergence, Jensen-Shannon

divergence and L2-norm).

3.3 Related Works

Event sequences have been primarily modeled by point processes [106], where predefined

intensity functions are used to capture the generative mechanisms. For instance, Hawkes

processes [60] model the self/mutual-excitation effect by a time-varying conditional intensity,

which is boosted upon the arrival of a new event (Eq. 3.1). Point processes have been widely

applied to the areas such as seismology [108 , 94], criminology [99 , 133], social activity analysis

[40 , 173], and information diffusion [34 , 35]. Despite their success, parametric point process

models (such as Eq. 3.2) have some limitations. Most notably, their intensities rely on

explicitly defined kernel functions. An inappropriate selection of the kernel function may

cause significant degradation of the model. To remedy the problem, [85] proposes an EM-

based nonparametric model to estimate the intensity functions without prior knowledge of

their form. Furthermore, [176] and [91] extend this method to the multidimensional Hawkes

processes. Despite their enhanced flexibility, these models still rely on the assumption that

the events are generated by a Hawkes process, and may not perform well for other point

processes.

For better generalization, [33 , 157] resort to RNN to model arbitrarily distributed event

data. In particular, [157] combines two LSTMs that take synchronized time series as well

as asynchronous event sequences as inputs to predict both timestamps and marks. But, in

their model, the event process does not occur in the vertices of a network. Besides, their

model relies on domain-specific features such as ATM logs, which are often not available.

Alternatively, [158] replaces RNN with Generative Adversary Net (GAN) [49 , 48], specifically,

Wasserstein GAN [3]. However, their model is specialized in unmarked temporal point

processes and is not capable of predicting event types. Another line of researches [160] focuses

on inferring the causal network among different types of events. Our model is different from

these models as our networks are constructed beforehand; besides, our causal networks are

significantly larger.

38

3.4 Methods

3.4.1 Problem Description

Given a network G = {V,E} where V and E are the collections of vertices and edges,

we can represent a sequence of N events on the vertices V before time T by a series of

vertex-time pairs, S = {(vi, ti)|vi ∈ V, ti ∈ [0, T), ti < ti+1, i = 1, ..., N}. Furthermore, we can

extract the vertices from S to form a vertex sequence Ŝ = {vi|vi ∈ V, i = 1, ..., N}. In this

work, we focus on learning a model to predict the vertex where the next event is most likely

to occur based on the previous events. Formally, given a graph G = {V,E} and a sequence

Ŝ = {vi|vi ∈ V, i = 1, ..., N}, we denote

uv
N+1 = P (v|Ŝ) (3.7)

where uv
N+1 is the probability for the (N + 1)’th event to occur on vertex v ∈ V , and P (v|Ŝ)

is the model. We can sample the next event via v ∼ P (v|Ŝ), v ∈ V , and we call this task

event prediction. Assuming that v′
N+1 is the (N + 1)’s event predicted by the model, we

can append it to the end of Ŝ, to obtain an extended sequence Ŝ ′ = [Ŝ, v′
N+1]. We then feed

Ŝ ′ to Eq. 3.7 to predict the (N + 2)’th event. By repeating this process, we can generate

an artificial sequence of arbitrary length on the graph, and we call this task sequence

generation. Some key variables adopted in the following section are listed in Table 3.1 .

3.4.2 Model Formulation

We propose an architecture consisting of two LSTMs, denoted by LSTM1 and LSTM2.

Fig. 3.1 is an illustration of this architecture. Both LSTMs (shaded areas in Fig. 3.1) are

deep (multi-layer) and contain a stack of recurrently connected memory cells, each of which

performs the calculations in Eq. 3.3 . Note that the number of layers and cells in either

LSTM are adjustable and not necessarily the same as those in Fig. 3.1 . Summarized in

Eq. 3.8 , a cell in LSTM1 (LSTM2) takes an input xl
i (xs

i), a hidden state hl
i (hs

i) and a cell

state cl
i (cs

i), and outputs a new hidden state hl
i+1 (hs

i+1) and a new cell state cl
i+1 (cs

i+1).

As shown in Fig. 3.1 , these new states are then passed horizontally to the next cell in the

39

Table3.1. Key variables in this work. |V | is the number of vertices in the graph.

symbol size description
kl 1 number of cells in an LSTM1 layer
ks 1 number of cells in an LSTM2 layer
dh 1 LSTM hidden dimension
y |V | × 1 one-hot encoding of a real event
xl kl × 1 event count vector
xs ks × 1 embedding vector of an event
u |V | × 1 predictive distribution
h dh × 1 LSTM hidden state
c dh × 1 LSTM cell state
D |V | × |V | network distance matrix
W |V | × (|V |+ dh) weight (fully-connected layer)
b |V | × 1 bias (fully-connected layer)

same layer and vertically to the cell in the next layer. The final outputs of the two LSTMs

are concatenated and fed to a fully-connected layer with a Softmax activation, to generate

a predictive distribution ui+1 over the vertices (V) for the next event (Eq. 3.8).

(hl
i+1, cl

i+1) = cellLST M1(xl
i,hl

i, cl
i)

(hs
i+1, cs

i+1) = cellLST M2(xs
i ,hs

i , cs
i)

ei = [hl
f ,hs

f,i]

ui+1 = Softmax(Wei + b)

(3.8)

LSTM1 takes long-term event counts as input and learns the slowly varying background

rate (similar to µv(t) in Eq. 3.1). We define an event count vector xl
i = [xl

i,v], v ∈ V , with xl
i,v

representing the number of events on node v during [(i−1)∆t, i∆t). The inputs of LSTM1 are

xl
i, xl

i+1, xl
i+2, ..., xl

i+kl−1, corresponding to the latest kl intervals. Note these pre-computed

vectors are not trainable. LSTM2, on the other hand, learns the short-range correlation

(resembling the triggering kernels in Eq. 3.1). Given that the latest ks events occur on

nodes vi, vi+1, ..., vi+ks−1, the inputs of LSTM2 are their embedding vectors xs
i , xs

i+1, xs
i+2,

..., xs
i+ks−1. Note these embedding vectors are learned during training by back-propagation.

Let hl
f denote the hidden state of the last cell in LSTM1, and {hs

f,i, ...,hs
f,i+ks−1} denote

the hidden states in the last layer of LSTM2. Summarized in the last two equations in

40

Figure3.1. Network Architecture. The shaded areas represent LSTMs; while
the cyan circles represent cells. Each LSTM contains two layers.

Eq. 3.8 , concatenating hl
f to each element in {hs

f,i,hs
f,i+1, ...,hs

f,i+ks−1}, we obtain a series of

vectors {ei, ei+1, .., ei+ks−1}, which are then fed to the Softmax layer to generate a series of

vectors {ui+1,ui+2, ...,ui+ks}, representing the probability distributions over the vertices for

the next events. Let {yi+1,yi+2, ...,yi+ks
} denote the one-hot encoding of the nodes where

the real events occur. The cross-entropy loss can thus be written as the following:

LC = − 1
ks

ks∑
k=1

|V |∑
j=1

yj
i+klog(u

j
i+k), (3.9)

where yj
i+k and uj

i+k are the j’th elements of yi+k and ui+k, respectively. The summation is

over the number of steps ks and the number of nodes |V | in the network.

As mentioned in Sec. 3.2.3 , by minimizing D(K1(dm|S,G)||K1(dm|S ′, G)), we could

ensure that the generated sequence S ′ has the same distance distribution as the real sequence

S. However, implementing K1 in a neural network setting is not trivial. In particular, the

right-hand side of Eq. 3.6 is not differentiable. If our loss function contains Eq. 3.6 , we

would not be able to perform gradient descent. To overcome this problem, we smooth Eq.

3.6 using Kernel Density Estimation (KDE) with a Gaussian kernel:

K1(dm|S,G) =
∑N−1

i=1 exp(−(di,i+1−dm

h
)2)∑d

dm=0
∑N−1

i=1 exp(−(di,i+1−dm

h
)2)
, (3.10)

41

where h > 0 is the bandwidth. With a small enough h, Eq. 3.10 is a good approximation

to Eq. 3.6 . Most importantly, Eq. 3.10 is differentiable and thus can be used to construct a

loss function.

Furthermore, we can calculate di,i+1 efficiently by matrix multiplication. We pre-compute

a distance matrix D with entry Di,j representing the distance between node vi and vj. Let

di,i+1 denote the distance between the real events vi and vi+1 and d′
i,i+1 denote the distance

between the generated events v′
i and v′

i+1, then we have

di,i+1 = yT
i Dyi+1,

d′
i,i+1 = uT

i Dui+1,
(3.11)

where yi and yi+1 are the one-hot encoding of the real events at step i and i + 1, and ui and

ui+1 are predictive distributions over events at step i and i + 1.

Plugging Eq. 3.11 into Eq. 3.10 , we obtain

K1(dm|S,G) =
∑N−1

i=1 exp(−(yT
i Dyi+1−dm

h
)2)∑d

dm=0
∑N−1

i=1 exp(−(yT
i Dyi+1−dm

h
)2)
, (3.12)

for a real sequence S, and

K1(dm|S ′, G) =
∑N−1

i=1 exp(−(uT
i Dui+1−dm

h
)2)∑d

dm=0
∑N−1

i=1 exp(−(uT
i Dui+1−dm

h
)2)
, (3.13)

for a generated sequence S ′.

Accordingly, we define the following loss function:

LK(S, S ′|G) = D(K1(dm|S ′, G)||K1(dm|S,G)), (3.14)

42

Algorithm 2: Composite LSTM with Second-order Statistic Loss
1 model M with optimal set of parameters Θ;
2 for epoch = 1 to n do
3 for batch = 1 to m do
4 for i = 1 to o do
5 Initialize hl

0 = cl
0 = hs

0 = cs
0 = 0;

6 Hl
i ← LSTM1(xl

i, ...,xl
i+kl−1,hl

0, cl
0);

7 hl
i+1, ...,hl

i+kl
← Hl

i;
8 Hs

i ← LSTM2(xs
i , ...,xs

i+ks−1,hs
0, cs

0);
9 hs

i+1, ...,hs
i+ks
← Hs

i ;
10 for j = 1 to ks do
11 ei+j ← Concatenate(hl

i+kl
,hs

i+j);
12 ui+j ← Softmax(Wei+j + b);
13 di+j−1,i+j ← yT

i+j−1Dyi+j;
14 d′

i+j−1,i+j ← uT
i+j−1Dui+j;

15 end
16 end
17 Calculate loss L using Eq. 3.15 and update W, b, embedding, and the

trainable parameters in Eq. 3.3 using gradient descent.
18 end
19 end

where D(P ||Q) could be KL-divergence, JS-divergence or L2-norm. Overall, we propose a

total loss function of the following form:

L = LC + λLK

= − 1
ks

ks∑
k=1

|V |∑
j=1

yj
i+klog(u

j
i+k)

+ λD(K1(dm|S ′, G)||K1(dm|S,G)),

(3.15)

where λ is a hyper-parameter for regularization. ks is the number of cells in a layer of

LSTM2. The second term on the right (regularization) is obtained by plugging Eq. 3.12 and

3.13 into Eq. 3.14 .

43

3.4.3 Training Protocol

In Algorithm 2 , we show the pseudo-code of our training procedure. A sample of input

contains ks embedding vectors xs
i representing the current window of events. It also contains

kl event count vectors xl
i that provide the background information of the current window.

At the beginning of each window, the hidden states and the cell states are initialized as zero

vectors, which are passed to the LSTMs along with the inputs at various steps (intervals).

The final hidden state (hl
i+kl

) of LSTM1 is concatenated with each of the ks hidden state

of LSTM2. The resulting vectors ei+j then go through a fully-connected layer with Sofmax

activation, to generate the predictive distributions ui+j. Meanwhile, the network distances

between consecutive events, di+j−1,i+j (real) and d′
i+j−1,i+j (predicted) are retrieved from a

precomputed hop-distance matrix D. At the end of a batch, the total loss function is

computed using Eq. 3.15 and its gradient is evaluated and averaged over the entire batch.

The gradient descent optimizer is adopted to update the trainable parameters, including the

embedding, the parameters in the LSTMs and those in the fully-connected layer.

3.5 Experiment

We run several experiments to validate the effectiveness of our proposed model and

to compare the performance of our model over a set of competing models. In our first

experiment, we perform event prediction, using the proposed model to predict the vertices

of a network in which future events will occur. In detail, we feed event counts at each

vertex in the past 30 (kl = 30) successive intervals {xl
i,xl

i+1, ...,xl
i+29} to LSTM1 and the

embedding vectors of 32 (ks = 32) historical events {xs
i ,xs

i+1, ...,xs
i+31} to LSTM2. Note that

the selections of kl and ks are heuristic. In general, using values too small might reduce the

model’s capacity, whereas using values too large might make the training very expensive.

The output ui+32 gives a probability distribution for an event to occur at each vertex at step

i + 32. To evaluate our predictions, we calculate a series of hit rates (hit@10, hit@20, and

hit@30). For instance, if the true event vi+32 is among the top 10 most probable vertices

given by ui+32, we consider it as a hit. We slide a window of 32 events through the entire

test set and obtain the average hit rates to indicate the prediction performance.

44

Table3.2. Dataset properties. |V | and |E| are the number of nodes and
number of edges of each network, respectively. Sequence size gives the number
of events in each sequence.

dataset |V | |E| sequence size
Rand-1 291 290 10000
Rand-2 1599 1940 10000
Earthquake 648 41744 17381
Email 2634 6458 14092
Twitter 393 777 18879

Our second experiment is sequence generation. Similar to what we did in event

prediction, 30 (kl = 30) event count vectors and 32 (ks = 32) embedding vectors are fed

to LSTM1 and LSTM2, to generate a predictive distribution for the next event. However,

here we sample the next event at step i + 32 from a multinomial distribution given by ui+32.

Assuming that the event that we draw is v′
i+32, we then append it to the past 31 events,

resulting a new list of 32 events {vi+1, vi+2, ..., v
′
i+32}. Here we essentially keep a queue of

32 successive events, where the oldest event leaves the queue when a newly sampled event

enters the queue. We then feed the embedding vectors and event count vectors of the current

queue to the model to obtain the probability distribution for the next event at step i + 33.

By repeating this process, we can generate a fake sequence of arbitrary length. To see how

realistic the generated sequences are, we compare them with the real sequences in terms of

diffusion pattern.

We also perform additional experiments for validating model convergence, and robust-

ness, which are presented in the Supplement. Below, we first discuss the datasets on which

we run our experiments and the competing models with which we compare our model.

3.5.1 Data Description

We use three real-world datasets, Earthquake, Email and Twitter, and two synthetic

datasets, Rand-1, and Rand-2. Each of these is a composition of a graph and a node

sequence on which an event occurred. For all datasets, 70% of the sequence from its prefix

45

is used for training and the remaining part of the sequence is used for test. Statistics of the

dataset is provided in Table 6.1 . More discussion of the datasets is provided below:

Earthquake: [123] contains the location, time and magnitude of earthquakes that occurred

in Southern California. We construct a network based on the Community Fault Model 3.0

[115], which is a 3D representation (latitude, longitude, and elevation) of faults in Southern

California. Specifically, we sample every 100 points from each fault line and add an edge

between two points if their distance is less than 40 kilometers. The resulting network contains

648 nodes and 41744 edges (Table 6.1). We collect earthquakes from 1997 to 2018 with a

magnitude of at least 2.5 and map them to the nearest location (node) in the network.

Consequently, we obtain a sequence of 17381 earthquakes that occur on the nodes of the

fault network.

Email: Enron email is a publicly available dataset that contains ∼ 500, 000 emails generated

by employees of the Enron Corporation. We use email addresses owned by Enron employees

as nodes, and add an edge between two nodes if at least one email has been exchanged

between the corresponding addresses. Since the resulting network is not connected, we

select the largest connected component that contains 2634 nodes and 6458 edges as our

final network (Table 6.1). We extract the sender address and timestamp from each email

across the entire corpse. The sender-time pairs are then sorted in time ascending order. The

resulting sequence contains 14092 email sending events (sender-time pairs).

Twitter: This dataset contains Twitter data collected during the presidential election in

South Africa in 2014. We define a tweet as popular if it is retweeted more than 10 times,

and a user as popular if she has posted a popular tweet. We use the popular users as nodes

to construct a network. We add an edge (undirected) between two nodes if one of them

has mentioned the other in a popular tweet. The resulting network is not connected. We

thus select the largest connected component that has 393 nodes and 777 edges (Table 6.1).

We consider that an event occurs on a node when the corresponding user posts a tweet. We

gather a series of such events in time ascending order. The resulting sequence contains 18879

events (user-time pairs).

Rand-1 & Rand-2: We use Erdős-Rényi model to generate random graphs G(n, p) with

n nodes, where an edge is connected randomly with probability p independent of every

46

other edge. First, we generate two random graphs G(n = 2000, p = 0.0001) and G(n =

2000, p = 0.001), then we extract the largest connected components from these random

graphs, rendering two connected graphs with (|V | = 291, |E| = 290) and (|V | = 1599,

|E| = 1940), respectively (Table 6.1). Next, we simulate two event sequences on these

two graphs using multi-dimensional Hawkes Process [163]. Specifically, these sequences are

generated with predefined base intensities µv
0 = 10−3u/|V |, u ∼ U(0, 1), v ∈ V and decay

rate w = 1. We use adjacency matrix for Wv,vi in Eq. 3.2 . Both sequences contain N = 104

events.

3.5.2 Competing Methods

We compare our proposed model with the following competing methods. All methods

were given the identical experimental setup (same data input) to maintain fairness.

DeepWalk: DeepWalk [113] learns latent representations of nodes in a network using trun-

cated random walks. We apply DeepWalk to each of the networks with the embedding dimen-

sion in {64, 128, 256}, the walk length in {20, 40, 60}, and the window size in {5, 10, 15}. We

adopt Multilayer Perceptron (MLP) (hidden dimension {256, 128}) with Softmax activation

as the classifier in our DeepWalk-dense model. The classifier takes the embedding vectors

of 32 historical events, and outputs the probability distribution of the next event. Addition-

ally, we use a Convolutional Neural Network (CNN) as the classifier in our DeepWalk-cnn

model. The classifier contains two CNN layers (hidden dimension {256, 128}), and two fully-

connected layers (hidden dimension {100, |V |}). We use a filter size of 3, a stride of 1, and a

max-pooling size of 2. We apply dropout of 0.5 in both DeepWalk-dense and DeepWalk-cnn.

Node2Vec: Node2Vec [53] uses biased random walks to learn node embeddings in a network.

We apply Node2Vec to each of the networks with the embedding dimension in {64, 128, 256},

and the return parameter p and the in-out parameter q in {0.5, 1.0., 1.5}. Similar to Deep-

Walk, we build classifiers using MLP (Node2Vec-dense) and CNN (Node2Vec-cnn). The

classifiers have the same architecture and hyper-parameters as those of DeepWalk.

47

Random Walk: Given the current event, the next event is predicted by performing a ran-

dom walk. Precisely, let vi denotes the current node, the next node vi+1 is chosen uniformly

at random from N(vi)
⋃{vi}, where N(vi) is the set of neighbors of vi.

Hawkes Processes (Hawkes-Exp): We fit a multi-dimensional Hawkes process using

Eq. 3.2 with constant base intensity µ0 and exponential kernels. In specific, we use a

maximum likelihood estimator (MLE) with a sparse-group-lasso regularizer [163]. We test

all combinations of hyper-parameters given decay rate w in {0.1, 0.5, 1.0} and regularizer

in {0.1, 1.0, 10.0}. For better performance, the original sequences are cut into subsequences

based on constant time intervals. For a fair comparison, we feed the Hawkes process model

with 32 historical events, the same as the number of cells in LSTM2. Therefore, the results

of Hawkes-Exp should not be considered as the upper limit for Rand-1 or Rand-2, despite

that they were generated using Hawkes processes.

RNN for Point Processes (RNNPP): [157] is an RNN model consist of two LSTMs

that combine synchronized time series and asynchronous event sequences. The model is

primarily designed for maintenance support services problem and relies on domain-specific

features such as ATM logs. Without domain-specific features, we use sequences of constant

features (e.g. vectors of ones) instead.

Logistic Classification (Logistic): The model is a multi-class logistic regression classifier

with cross-entropy loss. It virtually fits Softmax(Wx + b) = y and resembles the last layer

of our LSTM model (Fig. 3.1); x contains event counts on each node in a given window,

and y indicates the identity of the next event.

3.5.3 Hyper-parameter Tuning and Sensitivity

In the experiments, we tune the following hyper-parameters across all the datasets: λ in

{0.1, 1, 10, 100, 1000}; learning-rate in {0.01, 0.1, 1.0, 10} with a decay rate of 0.9; embedding

dimension in {64, 128, 256, 512}. For the LC+LK model, the results shown in Table 3.5 are

obtained using the optimal parameters. For the LC model, the hit rates are obtained using

the same parameters as the LC+LK model without the second-order constraint.

48

Table3.3. Embedding Dimension Sensitivity. The values are Hit@10 rates
with different embedding dimensions on each dataset.

dataset 64 128 256 512
rand-1 0.531 0.532 0.527 0.527
rand-2 0.234 0.241 0.233 0.234
earthquake 0.648 0.591 0.560 0.503
email 0.302 0.301 0.306 0.284
twitter 0.649 0.652 0.655 0.654

Table3.4. Learning Rate Sensitivity. The values are Hit@10 rates with dif-
ferent learning rates on each dataset.

dataset 0.01 0.1 1.0 10
rand-1 0.532 0.509 0.524 0.227
rand-2 0.241 0.142 0.139 0.081
earthquake 0.627 0.628 0.648 0.538
email 0.306 0.272 0.186 0.193
twitter 0.655 0.607 0.585 0.607

The rest of the parameters are fixed. We use a batch-size of 32 and a dropout of 0.5.

The number of layers in each LSTM is 2 and the numbers of cells in a layer of LSTM1 and

LSTM2 are 30 and 32, respectively. Event counts are calculated using time intervals of 0.01

seconds (Rand-1 and Rand-2), 1 day (Email and Twitter), and 30 days (Earthquake). We

adopt KL-divergence for all the datasets to evaluate the distance between two distributions

(Eq. 3.14).

We examine the impact on the performance of changing some key hyper-parameters. For

each dataset, we vary these hyper-parameters while keeping the other hyper-parameters as

their optimal values. We use Hit@10 rate as an indicator to illustrate the performance. In

Table 3.3 , we show Hit@10 values under different embedding dimensions. The results show

that our model is insensitive to the change of the embedding dimension. We also test the

effect of changing the learning rates in Table 3.4 . Here we can see that a large learning rate

may cause significant degradation of the performance; for instance, using a learning rate of

10 in the rand-2 dataset reduces the performance by more than 66%.

49

Table3.5. Experimental Results.

Model
Rand-1 Rand-2 Earthquake Email Twitter

Hit@10 Hit@20 Hit@30 Hit@10 Hit@20 Hit@30 Hit@10 Hit@20 Hit@30 Hit@10 Hit@20 Hit@30 Hit@10 Hit@20 Hit@30
LC 0.527 0.768 0.879 0.237 0.352 0.437 0.638 0.715 0.756 0.293 0.412 0.465 0.652 0.708 0.740
LC + LK 0.532 0.769 0.886 0.241 0.358 0.442 0.648 0.722 0.768 0.306 0.411 0.467 0.655 0.711 0.742
Node2Vec-dense 0.420 0.655 0.786 0.148 0.251 0.337 0.494 0.589 0.672 0.176 0.248 0.298 0.533 0.603 0.650
Node2Vec-cnn 0.449 0.724 0.872 0.165 0.307 0.410 0.452 0.585 0.649 0.162 0.233 0.282 0.507 0.555 0.605
DeepWalk-dense 0.403 0.627 0.756 0.150 0.245 0.331 0.526 0.625 0.677 0.182 0.256 0.309 0.540 0.610 0.655
DeepWalk-cnn 0.423 0.697 0.863 0.168 0.292 0.384 0.478 0.579 0.667 0.148 0.233 0.293 0.511 0.580 0.631
Random-Walk 0.013 0.016 0.066 0.005 0.015 0.016 0.300 0.364 0.370 0.003 0.009 0.013 0.143 0.159 0.175
Hawkes-Exp 0.503 0.721 0.827 0.196 0.302 0.362 0.622 0.672 0.697 0.257 0.325 0.355 0.599 0.640 0.664
RNNPP 0.348 0.717 0.826 0.208 0.308 0.375 0.376 0.493 0.554 0.249 0.359 0.406 0.587 0.649 0.692
Logistic 0.005 0.113 0.147 0.015 0.029 0.037 0.122 0.197 0.200 0.002 0.004 0.005 0.008 0.025 0.045

3.5.4 Model Convergence

In Fig. 3.2 , we plot the cost for LC model and LC + LK model with the five datasets.

The cost is the cross-entropy loss (Eq. 3.9) for the LC model and the combination of the

cross-entropy loss and the second-order statistic loss (Eq. 3.15) for the LC + LK model.

The curves here indicate a convergence of the training. A few spikes appear during the early

stage of the LC + LK curves, which is likely due to a finite batch size (= 32).

Figure3.2. Cost for LC and LC + LK with different datasets.

3.5.5 Results

Event prediction. In Table 3.5 , we show the comparison results of the event prediction

task for ten methods over five datasets using hit rate (@10, @20, and @30) as the evaluation

metric. In the table, LC is our basic LSTM model, while LC + LK is our LSTM model with

the second-order statistic loss. Remaining eight are competing methods. As we can see from

50

(a) Real: 100 (b) LC: 100, JS: 0.732 (c) LC+LK: 100, JS:
0.756

(d) Hawkes-Exp: 100, JS:
0.290

(e) RNNPP: 100, JS:
0.655

(f) Real: 1000 (g) LC: 1000, JS: 0.732 (h) LC+LK: 1000, JS:
0.753

(i) Hawkes-Exp: 1000, JS:
0.371

(j) RNNPP: 1000, JS:
0.428

Figure3.3. Diffusion on grids. The sequences start from the center (red) of
the grids. The green dots represent the nodes where events have occurred;
while the purple dots represent the grid. The top and bottom rows are snap-
shots taken at time step 100 and 1000, respectively. Images from left to right
represent different models. JS denotes the Jaccard Similarity between a gen-
erated sequence and a real sequence for each snapshot.

Table3.6. Jaccard Similarity between a generated sequence and a real se-
quence for snapshots at different steps. The scores are in the form of mean
+/- standard deviation, which are estimated over 100 experiments.

Step LC LC+LK Hawkes-Exp RNNPP
100 0.754+/-0.108 0.747+/-0.098 0.298+/-0.030 0.656+/-0.019
500 0.661+/-0.061 0.673+/-0.058 0.282+/-0.058 0.333+/-0.018
1000 0.755+/-0.039 0.756+/-0.045 0.435+/-0.066 0.414+/-0.018

the table, for all the datasets and for all different hit rates, LC + LK is the best method

(except for Email for hit@20). Our proposed LC and LC + LK models win over Hawkes-Exp

even for the random datasets in which events actually follow a Hawkes distribution. We can

also see that our models outperform the embedding based methods where latent representa-

tions of the nodes are learned from the network topology. Our LC+LK model’s performance

is better than that of the LC model in all cases (except for Email for hit@20), which suggests

that adding the second-order statistic loss can improve the model for predicting the future

event.

51

(a) Real (b) LC, corr: 0.515 (c) LC+LK, corr: 0.936

Figure3.4. Earthquakes in Southern California. Blue circles represent earth-
quake locations; red heatmaps indicate the number of earthquakes at each
location. The correlation is between the event count distributions of the real
and generated sequences.

Sequence generation. We also test if our model can learn the correct diffusion of the real

sequence. We simulate a sequence on a 20× 20 grid such that the event marks (nodes) are

determined by a simple symmetric random walk and the event timestamps are determined by

a homogeneous Poisson process with a rate of 10. We train various models with this sequence

and generate fake sequences using them. We illustrate the diffusion processes in Fig. 3.3 .

The snapshots are taken at the 100’th and 1000’th time-step. The green nodes represent the

nodes that have been visited by the sequences, while the purple nodes represent the grid. We

calculate the Jaccard Similarity (JS under each image) between a generated sequence and a

real sequence for each snapshot. A higher score indicates that the generated sequence better

mimics the real sequence. In the snapshots, LC (2nd column) and LC+LK (3rd column)

show similar patterns as the real sequence (1st column). In contrast, the last two columns

suggest that Hawkes-Exp may be too conservative; while RNNPP may be too aggressive.

In Table 3.6 , we list the mean and standard deviation of Jaccard Similarity scores over 100

experiments. The snapshots are sampled at step 100, 500, and 1000. We can see that our LC

and LC+LK models outperform the other two methods significantly. Notably, the LC+LK

model scores the highest mean Jaccard Similarity in two out of the three cases. Overall, our

models generate more realistic sequences than the competing methods, and by adding the

second-order statistic constraint, the LC+LK model better captures the characteristics of

the real sequence than the LC model.

52

Case study. We show the effectiveness of our model in the earthquake forecasting task.

As mentioned in the previous section, we map earthquakes in Southern California during

1997 ∼ 2018 to a network constructed based on the fault lines (CFM3). After training, we

use both LC and LC+LK models to generate fake sequences of the same length as the test

data. In Fig. 3.4 , we mark the locations of earthquakes (blue circles) on the map of Southern

California. From left to right, the figures represent the real sequence (test data), the fake

sequences generated by the LC model and the LC+LK model. On the same map, we indicate

the number of earthquakes at each location using a heatmap (in red). Notably, the LC+LK

heatmap captures the hot spot at (32.5°N, 115.5°W) (green square). In contrast, the LC

heatmap shows an additional hot spot at (36°N, 118°W) (green circle) which is not in the

real heatmap. We also estimate the correlation between the event count distributions of the

real and the generated sequences. The LC+LK model renders a 0.936 Pearson correlation,

while the LC model only scores 0.515. Therefore, using second-order statistic constraint can

significantly enhance the model for generating more realistic sequences.

Model reproducibility. We make our datasets and code available at https://github.com/

daDiz/LSTM2-2ndStat .

3.6 Chapter Summary

In this work, we proposed an LSTM based model for the task of modeling event sequences

on network vertices. We integrated structural information of the network into conventional

LSTM models to achieve improved performance. Specifically, we introduced a second-order

statistic loss that measures the difference between distance distributions of the generated

sequence and the target sequence. Moreover, we proposed an architecture that combines

two LSTMs to learn both the slowly varying base intensities and the fast varying triggering

kernels. We tested our model on synthetic and real-world datasets and illustrated its superior

performance in forecasting future events.

53

https://github.com/daDiz/LSTM2-2ndStat
https://github.com/daDiz/LSTM2-2ndStat

4. SOURCE DETECTION ON NETWORKS USING SPATIAL

TEMPORAL GRAPH CONVOLUTIONAL NETWORKS

A version of this chapter is pending publication in Data Science and Advanced Analytics for

Smart & Connected Communities - a Special Session of the 8th IEEE International Confer-

ence on Data Science and Advanced Analytics (DSAA 2021) with Hao Sha, Mohammad Al

Hasan, George Mohler.

4.1 Introduction

By early January 2021, the number of confirmed COVID-19 cases has reached 83.6 mil-

lions world-wide, and over 1.8 million people have lost their lives. One important method

for limiting transmission of an infectious disease consists of identifying epidemic cluster

sources and isolating them from the population. Epidemiologists conduct source detection

by analysing the genetic evolution of virus strains [143] or by contact tracing [4], which

can be time-consuming and labor-demanding. However, COVID-19 has demonstrated limits

to contact tracing when prevalence is widespread, for example in the United States, and

methods are needed for source detection in such situations.

In real life, most individuals have high probability of contact with only a small portion

of the population. It is thus realistic to model an epidemic as a spreading process on an

interpersonal network, where infection can only transmit from an individual to its neighbors.

Moreover, the interpersonal network can be obtained through IoT technology [66]. For

example, [41] reconstructs contact networks through mobile phone communication data. So

in this work, we solve the source detection problem in a network setting and assume the

availability of the network.

Source detection on networks is a well studied problem with wide applications [67]. Ex-

isting solutions include centrality based methods [127 , 116 , 180], Dynamic Message Passing

(DMP) [89] and Label Propagation based Source Identification (LPSI) [155]. Recently, [126]

proposed using graph convolutional network (GCN) to solve source detection with improved

efficiency and accuracy. The method takes as input a snapshot of the spreading and out-

54

puts a probability for each node in the graph as to whether the node is the source. There

appears to be some controversy [110] as to whether a GCN approach is valid compared to

more standard (non-deep learning based) methods for source detection. In particular, some

discussion on the 2021 ICLR open review portal questions whether a GCN approach can

handle diverse and realistic transmission dynamics (beyond SIR), diverse network topology,

and can even be solved using a single snapshot.

In practice, there can possibly be multiple snapshots observed at different stages of an

epidemic; these snapshots can help revealing the temporal dynamics of the disease propaga-

tion. As suggested in [154], multiple independent snapshots can enhance detectability. So

an ideal model should be able to take advantage of richer observations and at the same time

exploit the underlining connectivity of the network. This motivates us to adopt a spatial

temporal graph convolutional network (STGCN) architecture that combines the best of the

two worlds. STGCNs were originally developed for the tasks of traffic forecasting [170] and

action recognition [165], where the data contains sequences of temporal snapshots of route

networks and skeleton networks, respectively. We adapt the particular form of STGCN pro-

posed in [170] for source detection, and name it Source-Detection-STGCN (SD-STGCN).

In this work we show that single snapshot GCNs [126] do not perform significantly better

than simpler message passing algorithms, however multi-snapshot STGCNs do lead to sig-

nificant accuracy improvements. We validate these findings using more realistic models of

transmission, including non-Markovian epidemic simulations with delay, and more realistic

network topology, including both synthetic and empirical contact networks. Additionally,

we apply our model to real COVID-19 case data. The experiments demonstrate the superior

performance of SD-STGCN.

4.2 Background

4.2.1 Epidemic Models

SD-STGCN is a deep learning model that requires abundant data to train. However, real

infection records are very limited in the public domain. So we resort to epidemic models

to generate simulations that resemble the real contagion processes. It is worth noting that

55

although SD-STGCN is trained on simulation data, it is independent with the particular

epidemic models, and thus can be applied to more complex and realistic cases.

SIR [69 , 31] splits the population into three compartments - susceptible (S), infectious

(I), and recovered (R). Let S(t), I(t), and R(t) denote the ratios of individuals who are

susceptible, infectious, and recovered, respectively, at time t. They follow the transformation

rule: S → I → R, and satisfy S(t) + I(t) +R(t) = 1, assuming a close system. The ordinary

differential equations of the system are given by:

dS

dt
= −βIS, dI

dt
= βIS − γI, dR

dt
= γI (4.1)

where β is the transmission rate (S → I) and γ is the recovery rate (I → R). Given β, γ,

and initial conditions (S0, I0, R0), one can solve S(t), I(t), and R(t) at any t from Eq. 4.1 .

Network SIR [103 , 126] assumes that the population form a static contact network G

of N nodes, with each node representing an individual. An infectious node i can transmit

the disease to a node j if and only if j is susceptible and is a neighbor of i, i.e. j ∈ N (i).

Let A be the adjacency matrix of G, with Aij = 1 if j ∈ N (i), Aij = 0 otherwise. Let Si(t),

Ii(t), and Ri(t) be the probabilities of node i being in each of the states at time t, with

Si(t) + Ii(t) + Ri(t) = 1. Let I0 denote the initial infected persons at time t = 0, where

I0,i = 1 if i is initially infectious (i.e. patient zero), otherwise I0,i = 0. Let P(t) denote

the probability of remaining infectious at later time t after becoming infectious. P(t) is

monotonic decreasing with P(0) = 1 and limt→∞P(t) = 0. The probability for node i being

in state I at time t is:

Ii(t) = I0,iP(t) + β
∫ t

0

∑
j
AijSi(x)Ij(x)P(t− x)dx (4.2)

where β is the transmission rate. So the derivative of Ii is:

dIi(t)
dt

= β
∑

j
AijSi(t)Ij(t) + I0,iP ′(t)

+ β
∫ t

0

∑
j
AijSi(x)Ij(x)P ′(t− x)dx.

(4.3)

56

As P(t) is non-increasing, P ′(t) is non-positive, so the last two terms reduce the increase of

infection, which corresponds to the increase of the recovered:

dRi(t)
dt

= −I0,iP ′(t)− β
∫ t

0

∑
j
AijSi(x)Ij(x)P ′(t− x)dx. (4.4)

Given that dSi(t)
dt

+ dIi(t)
dt

+ dRi(t)
dt

= 0, we also have:

dSi(t)
dt

= −β
∑

j
AijSi(t)Ij(t). (4.5)

Let Fi(t) be the probability of node i being in either I state or R state, i.e. Fi(t) = Ii(t)+Ri(t)

and Si(t) + Fi(t) = 1. We further have the derivative of Fi(t) as:

dFi(t)
dt

= dIi(t)
dt

+ dRi(t)
dt

= β
∑

j
Aij(1− Fi(t))(Fj(t)−Rj(t))

(4.6)

In summary, Si, Ii, and Ri obey the following differential equations:

dSi(t)
dt

= −β
∑

j
AijSi(t)Ij(t)

dIi(t)
dt

= β
∑

j
AijSi(t)Ij(t) + I0,iP ′(t)

+ β
∫ t

0

∑
j
AijSi(x)Ij(x)P ′(t− x)dx

dRi(t)
dt

= −I0,iP ′(t)− β
∫ t

0

∑
j
AijSi(x)Ij(x)P ′(t− x)dx

(4.7)

where β is the transmission rate. Note that a similar derivation can be found in [25], but there

they assume that the population is homogeneously mixed and an individual can have contact

with anyone else. In contrast, here we derive the system assuming that the population is in

a network and an individual has only limited contacts.

57

Standard network SIR model Let P(t) = e−γt, i.e. the probability for an I node to

stay infectious decays exponentially [25]. Eq. 4.7 becomes:

dSi(t)
dt

= −β
∑

j
AijSi(t)Ij(t)

dIi(t)
dt

= β
∑

j
AijSi(t)Ij(t)− γIi(t)

dRi(t)
dt

= γIi(t)

(4.8)

In the early stage, we have Si(t) ≈ 1. Plugging Si(t) ≈ 1 and P(t) = e−γt in Eq. 4.3 , dIi(t)
dt

becomes:
dIi(t)
dt

=
∑

j
(βAij − γδij)Ij(t)

=
∑

j
(βA− γ1)ijIj(t)

(4.9)

where δij is Kronecker delta. Solving Eq. 4.9 , we have

I(t) = exp((βA− γ1)t)I0

= exp((βQΛQT − γQQT)t)I0

= exp(Q(βΛt− γ1t)QT)I0

= Qexp(βΛt− γ1t)QT I0

≈ ψ1exp((βλ1 − γ)t)ψT
1 I0

= exp((βλ1 − γ)t)(ψT
1 I0)ψ1

(4.10)

where we expand A using the eigenvalue decomposition A = QΛQT with Q and Λ being

the eigen-vector and eigen-value matrices. λ1 and ψ1 are the largest eigen-value and the

corresponding eigen-vector, respectively. Eq. 4.10 gives the basic reproduction number

R0 = βλ1

γ
, (4.11)

and we can see that when R0 > 1 the disease will spread to form an epidemic.

58

Delay network SIR model For delay SIR, following [25], we assume P(t) = Θ(t− T),

a step function, with P(t) = 1 for 0 ≤ t ≤ T and P(t) = 0 for t > T , then P ′(t− x) in Eq.

4.7 becomes −δ(t − x − T). Here T is the delay time for recovery, i.e. an infectious node

would recover after T units of time. Now Eq. 4.7 becomes

dSi(t)
dt

= −β
∑

j
AijSi(t)Ij(t)

dIi(t)
dt

= β
∑

j
AijSi(t)Ij(t)− β

∑
j
AijSi(t− T)Ij(t− T)

dRi(t)
dt

= β
∑

j
AijSi(t− T)Ij(t− T)

(4.12)

Such delay differential equations are known to be associated with non-Markovian dynamics

[25 , 76]. Plugging P(t) = Θ(t− T) in Eq. 4.3 and combing the result with dFi(t)
dt

= dRi(t)
dt

+
dIi(t)

dt
= β

∑
j AijSi(t)Ij(t), we have dRi(t)

dt
= dFi(t−T)

dt
, which leads to Ri(t) = Fi(t) + C where

C is a constant. Since Ri(t) and Fi(t) are both monotonic increasing and Fi(t) saturates at

t→ +∞, therefore C = 0, namely Ri(t) = Fi(t− T). Plugging this into Eq. 4.6 , we have

dFi(t)
dt

= Tβ
∑

j
Aij

Fj(t)− Fj(t− T)
T

, (4.13)

or equivalently
dF (t)
dt

= TβQΛQT F (t)− F (t− T)
T

≈ Tβψ1λ1ψ
T
1
F (t)− F (t− T)

T

= Tβλ1(ψT
1
F (t)− F (t− T)

T
)ψ1,

(4.14)

which gives the basic reproduction number

R0 = βλ1T. (4.15)

SEIR is another popular epidemic model [69 , 31] that is well-suited for modeling the

infectious diseases with an exposed/latent period. During such period, the pathogen in

the host is in low numbers, so that the host is infected but cannot transmit it to others. In

59

addition to S, I, and R, the model further assumes an exposed (E) compartment, to account

for the latent period. The compartments follow the transformation rule: S → E → I → R,

and obey the following differential equations:

dSi(t)
dt

= −β
∑

j
AijSi(t)Ij(t)

dEi(t)
dt

= β
∑

j
AijSi(t)Ij(t)− αEi(t)

dIi(t)
dt

= αEi(t)− γIi(t)

dRi(t)
dt

= γIi(t),

(4.16)

where β is the transmission rate, γ is the recovery rate, and α is the rate from E to I (or

equivalently 1/α is the mean latent period). The basic reproduction number is of the same

form as Eq. 4.11 .

4.2.2 STGCN

Although STGCN is separately developed in [165] and [170], here we adopt the one

designed for traffic forecasting [170]. The model combines graph convolutional network

(GCN) [24 , 75] and convolutional neural network (CNN) for extracting spatial and temporal

information. The model takes a traffic network (i.e. a network of sensor stations) and a

sequence of sensor data (e.g. traffic speed, volume, density) as input, and predicts the future

traffic status. The core of STGCN is a stack of the so-called spatio-temporal convolution (ST-

Conv) blocks. An ST-Conv block consists of a spatial layer sandwiched by two temporal

layers. A temporal layer contains a 1-D CNN along time axis followed by a gated linear

unit (GLU), to capture the temporal dynamics. The spatial layer is a GCN implemented

using the Chebyshev polynomials approximation [24] or the 1st-order approximation [75].

As suggested in [170], such sandwich architecture allows jointly processing graph-structured

time series; the spatial layer in the middle can serve as a bottleneck to help achieve scale

compression and feature squeezing.

60

4.3 Methodologies

Problem description In general, a contact network during a contagion process can be

temporal, directed, and weighted, but here we concentrate on a static undirected and non-

weighted graph G = (V,E), where V and E are the sets of nodes and edges; the number

of nodes in G is N = |V |. For a contagion process on G, we observe a sequence of k

snapshots X = {xt1 , . . .xtk
} at time steps {t1, t2, . . . tk}. Note that the snapshots are not

necessarily consecutive. A snapshot xtk
contains the states of all the nodes of G at tk,

i.e. xtk
= {xtk,1, . . . xtk,N}, with each node’s state xtk,i ∈ {S, I, R} for the SIR model or

∈ {S,E, I, R} for the SEIR model. The problem of source detection is to find the set of

initially infected nodes Y = {i|xt=0,i = I, i ∈ V } by solving the following objective:

Y? = argmaxYP (X|Y , G) (4.17)

where P (X|Y , G) is the likelihood of observing X with Y being the source.

Figure4.1. SD-STGCN architecture. The blue areas on the left represent
the input snapshots, which are one-hot encoded network states at multiple
time steps. The orange areas on the right illustrate the model architecture
consisting of a stack of ST-Conv blocks followed by an output layer. The
output is a list of probabilities of each node being the source.

61

Model description Our SD-STGCN model is built upon the STGCN architecture. Fig.

4.1 is an illustration of SD-STGCN. The input is a sequence of k snapshots X = {xt1 , . . .xtk
}

(the blue areas in Fig. 4.1). A snapshot xtk
= {xtk,1, . . . xtk,N} contains the states of all the

nodes of G, with xtk,i being a one-hot encoded vector of the states. So the input X is of the

shape k×N ×Cin, where k is the number of snapshots, N is the number of nodes, Cin is the

number of channels (= 3 for SIR or 4 for SEIR). X then goes through a series of ST-Conv

blocks (the orange areas in Fig. 4.1), each consisting of two temporal layers and one spatial

layer.

A temporal layer contains a 1-D CNN followed by a GLU. The CNN has a kernel of size

Kt and applies to every node of G without padding, thus compressing X along time axis by

Kt − 1. This part of the operation can be summarized as:

Z1 = GLU(CNN(X)) ∈ R(k−Kt+1)×N×Ch , (4.18)

where Z1 is the output of the layer and Ch is the number of channels.

Z1 is then fed to the spatial layer, which is a GCN followed by a rectified linear unit

(ReLU). The GCN has a kernel of size Ks. If the GCN is implemented by Chebyshev

polynomials approximation [24], then Ks − 1 is the order of the truncated expansion; if the

GCN is implemented by 1st-order approximation [75], then Ks is the number of successive

convolutional layers. The spatial layer can effectively encode the information in the spatial

domain by aggregating the signals in the Ks neighborhood of each node in each snapshot. Let

the graph convolution preserve the channel dimension, the spatial layer can be summarized

as:

Z2 = ReLU(GCN(Z1)) ∈ R(k−Kt+1)×N×Ch , (4.19)

where Z2 is the output of the layer.

Following the spatial layer is another temporal layer. It performs the same operation

as the first temporal layer, and further reduces the time dimension by Kt − 1. Unlike the

62

spatial layer, this layer does not preserve the channel dimension, but instead magnifies it, so

the spatial layer becomes a bottleneck. The formula for this layer is:

Z3 = GLU(CNN(Z2)) ∈ R(k−2Kt+2)×N×Cout , (4.20)

where Z3 is the output of the ST-Conv block and Cout is the number of channels (Cout > Ch).

As in Fig. 4.1 , Z3 then goes through more ST-Conv blocks that repeat the same sequence

of operations. Assuming that M ST-Conv blocks are used, the output of the last ST-Conv

block has the shape Z3 ∈ R(k−2MKt+2M)×N×Cout .

Finally, we send Z3 to an output layer, which contains a temporal layer followed by a

fully-connected (dense) layer with softmax activation. The temporal layer is a 1-D CNN

with a kernel of size Ko = k − 2MKt + 2M , so that the time dimension becomes 1. The

fully-connected layer further reduces the channel dimension from Cout to 1, and the soft-

max function normalizes the output across the nodes to represent the source probability

distribution. The output layer can be summarized as:

P = Softmax(Dense(CNN(Z3))) ∈ RN , (4.21)

where P = {P1, . . . , PN}, with ∑N
i=1 Pi = 1. We then pick the set of nodes with top Pi as

Y?. For single-source detection (i.e. |Y?| = 1), we select the node i? = argmaxiPi as the

source. We perform single-source detection in Sec. 4.5.1 -4.5.2 , and multi-source detection in

Sec. 4.5.4 .

The model parameters Θ are learned in a supervised manner. In specific, we generate

S(E)IR simulations on G with random sources Ytrue (the ground truth), and sample k random

snapshots X from the simulations. We then minimize the following cross-entropy loss:

Θ = argminΘ −
∑
i∈V

yilog(Pi) (4.22)

where Ytrue = {y1, . . . yN} is the one-hot encoded source set; P = {P1, . . . , PN} is the output

of SD-STGCN.

63

Training protocol We adopt two ST-Conv blocks in SD-STGCN. We set the block

dimensions as (C1
in, C

1
h, C

1
out) = (3, 36, 144) and (C2

in, C
2
h, C

2
out) = (144, 36, 72) for SIR model;

(C1
in, C

1
h, C

1
out) = (4, 36, 144) and (C2

in, C
2
h, C

2
out) = (144, 36, 72) for SEIR model. To train the

model, we perform batch gradient descent with RMSProp optimizer, a batch size of 16, and

a learning rate of 0.001. In each pass, a series of k = 16 snapshots are sampled uniformly at

random from every simulation. We examine different configurations - Chebyshev polynomials

approximation [170] vs. 1st order approximation [75], spatial kernel size Ks in {2, 3, 4}, and

temporal kernel size Kt in {2, 3, 4}. In our experiments, for each graph, we generate 2, 000

simulations and split into 80% training, 10% validation, and 10% testing. Grid search on

validation data suggests that using 1st order approximation with Ks = 4 and Kt = 3 renders

the best performance. In the following experiments, we adhere to this setup.

4.4 Related works

There have been a surge of works on various topics related to the COVID-19 pandemic

[16 , 25 , 125]. To the best of our knowledge, there was only one work [126] before us using

deep learning to solve the source detection problem of COVID-19, although the general

problem of identifying the propagation sources in networks [67] is well studied. Early methods

resort to graph-centrality measures such as rumor center [127 , 128 , 29 , 92], eigenvector

center [116 , 117 , 44], and Jordan center [180]. However, these methods are heuristic and

only provide suboptimal solutions. Alternatively, [89] proposes a method named dynamic

message passing (DMP) that provides near-optimal solution. However, this method has high

computational complexity and requires the propagation time, which is in general not available

in practise. [155] performs multi-source detection based on the idea of source prominence and

label propagation, nonetheless, its convergent version has O(N3) complexity. Recently, [126]

proposes using graph neural networks (GCN) [24 , 75] for single-source detection without

knowing the propagation time. But this method utilizes only one snapshot, while multiple

snapshots may be observed in reality. Moreover, it has been shown in [154] that using

multiple independent snapshots can improve source detection accuracy. In the fields of

traffic forecasting [170] and action recognition [165], different forms of spatial temporal graph

64

Table4.1. Network statistics. The columns from left to right are the net-
work name, number of nodes |V |, number of edges |E|, average degree d, and
clustering coefficient C [104].

network |V | |E| d C

ER 1000 10128 20.3 0.020
BA 1000 9900 19.8 0.062
BA-Tree 1000 999 2.0 0
RGG 1000 9326 18.7 0.618
Frat 58 967 33.3 0.747
Conf 403 9565 47.5 0.282
High 774 7992 20.7 0.186

convolutional networks were developed for prediction involving spatial and temporal signals.

Inspired by these works, especially [170], we propose SD-STGCN, a spatial temporal graph

convolutional network for source detection that utilizes multiple snapshots.

4.5 Experiments

Data We run standard and delay S(E)IR simulations with synthetic random graphs

[104] and empirical contact networks. We generate different types of random graphs using

Erdös–Rényi (ER), Barabási–Albert (BA & BA-Tree) [2], and Random Geometric Graph

(RGG) [21] models. We adopt three empirical contact networks - Bernard and Killworth

Fraternity (Frat) [70 , 36], SFHH conference (Conf) [46], and High school (High) [122],

which are static networks obtained by aggregating dynamic contact sequences. Fraternity

network describes the interactions between students living in a fraternity at a West Virginia

college. An edge is added if two students are spotted engaged in a conversation. Conference

network describes the face-to-face interactions of participants of the SFHH 2009 conference.

High-school data contains close proximity records of students, teachers, and other persons

in an American high school. We add an edge if two people are in close proximity for more

than 5 minutes. The statistics of the networks are listed in Table 4.1 . Note in addition to

the entries in Table 4.1 , we also test our model on ER graphs with 5, 000 and 10, 000 nodes.

We defer the description of the real COVID-19 cases data to Sec. 4.5.4 .

65

Baseline methods We compare our SD-STGCN with two popular baseline methods

- Dynamic Message Passing (DMP) [89] and a graph convolutional network based model

(GCN) [126]. We choose DMP as a representative of the non-deep learning based methods,

as it has been shown in [89] to considerably outperform other popular methods like rumor

center [127] and Jordan center [180]. We select the GCN model as the second baseline,

as it also utilizes deep learning for source detection. We show that by leveraging multiple

snapshots, our model can achieve significant improvement over this model. We notice that

the algorithm proposed in [155] can perform multi-source detection, however their code is

not publicly available.

DMP [89] is a source detection model based on the message passing framework [68].

For a single source SIR on a network G = {V,E}, it predicts the source given a snapshot

O at time t. Assuming an arbitrary node i as the source, it first estimates the marginal

probabilities for any node to be in each of the three states S, I, R, at time t. It then

approximates the joint likelihood P (O|i) as the product of the marginal probabilities of the

observed nodes being in the observed states. It then goes through all i ∈ V and picks the

one that maximizes P (O|i) as the source. The time complexity of the model is O(tN2d),

where t is the time step of the observations, N is the number of nodes, and d is the average

degree of the network. It is thus computationally expensive for very large networks that are

strongly connected [126 , 67]. Besides, the method requires the propagation time t of the

observations, which is generally unknown.

GCN [126] is a graph convolutional network [75] based model for source detection.

Similar to DMP, it predicts the source using one snapshot of the network. But unlike DMP,

it does not need to know the time of the snapshot. Moreover, it can be applied to both

SIR and SEIR. The model takes one-hot encoded node states as features and outputs the

probabilities of each node being the source. In [126], the authors actually proposed three

GCN models (i.e. GCN-S, GCN-R, GCN-M) varied by propagation rules (i.e. symmetric,

random walk, mixture). We adopt GCN-S as it appears to have the best performance among

the three.

Performance metrics For single-source detection, we adopt three types of metrics -

top-1 accuracy, mean reciprocal rank (MRR), and hit rates. Top-1 accuracy (Top-1 Acc)

66

Table4.2. Performance of SD-STGCN and GCN trained and tested on SIR
simulations using R0 = 2.5 and γ = 0.4, over random graphs of different types.
The scores are evaluated over five graphs per type and five runs per graph.
The format is mean (standard deviation).

Type Model Top-1 Acc MRR Hit@5
ER SD-STGCN 0.694 (0.017) 0.816 (0.012) 0.974 (0.006)

GCN 0.302 (0.029) 0.375 (0.025) 0.450 (0.028)
DMP 0.258 (0.009) 0.291 (0.008) 0.328 (0.006)

BA SD-STGCN 0.818 (0.027) 0.892 (0.016) 0.981 (0.005)
GCN 0.523 (0.035) 0.598 (0.029) 0.685 (0.031)
DMP 0.383 (0.013) 0.415 (0.011) 0.451 (0.010)

BA-Tree SD-STGCN 0.908 (0.042) 0.948 (0.023) 0.994 (0.004)
GCN 0.753 (0.029) 0.834 (0.019) 0.935 (0.018)
DMP 0.781 (0.016) 0.854 (0.011) 0.949 (0.014)

RGG SD-STGCN 0.724 (0.020) 0.839 (0.012) 0.984 (0.008)
GCN 0.413 (0.041) 0.517 (0.037) 0.629 (0.043)
DMP 0.362 (0.042) 0.439 (0.050) 0.529 (0.057)

examines whether the highest ranking node is aligned with the true source. MRR is the

average reciprocal ranks of the true source given by the model, and a greater MRR indicates

better performance. In addition, we evaluate hit rates at k (Hit@k) to see if the true source is

among the top k candidates given by the model. For multi-source detection, besides Hit@k,

we adopt Jaccard Similarity (JS) and normalized discounted cumulative gain (nDCG). JS

and nDCG are estimated between the true source set Y? and the predicted set Y of the same

size, i.e. |Y?| = |Y|. These metrics can measure the model’s ranking quality.

Model reproducibility All experiments were conducted on a server with Nvidia Tesla

V100-PCIE-16GB GPU. We make our datasets and code available at https://github.com/

daDiz/SD-STGCN .

4.5.1 Experiments with standard S(E)IR simulations

In this section, we examine our SD-STGCN model on standard S(E)IR simulations obey-

ing Eq. 4.8 and 4.16 over random graphs and empirical contact networks.

SIR on random graphs We generate standard SIR simulations (Eq. 4.8) with R0 = 2.5

(the basic reproduction number of COVID-19 [16]), γ = 0.4 on ER, BA, BA-tree, and RGG

67

https://github.com/daDiz/SD-STGCN
https://github.com/daDiz/SD-STGCN

Table4.3. Performance of SD-STGCN and GCN trained and tested on SEIR
simulations using R0 = 2.5, γ = 0.4 and α = 0.5, over random graphs of
different types. The scores are evaluated over five graphs per type and five
runs per graph. The format is mean (standard deviation).

Type Model Top-1 Acc MRR Hit@5
ER SD-STGCN 0.775 (0.028) 0.849 (0.019) 0.954 (0.012)

GCN 0.126 (0.019) 0.192 (0.019) 0.252 (0.023)
BA SD-STGCN 0.802 (0.029) 0.870 (0.021) 0.959 (0.012)

GCN 0.154 (0.024) 0.226 (0.025) 0.291 (0.033)
BA-Tree SD-STGCN 0.983 (0.011) 0.990 (0.007) 0.997 (0.003)

GCN 0.439 (0.053) 0.583 (0.043) 0.754 (0.035)
RGG SD-STGCN 0.775 (0.032) 0.846 (0.026) 0.942 (0.025)

GCN 0.207 (0.038) 0.319 (0.042) 0.435 (0.059)

networks of 1, 000 nodes. The transmission rate β can be calculated using Eq. 4.11 . To

compare with the results in [126], we adopt a similar setup with the simulation length fixed

at 30 time steps. SD-STGCN infers the source using 16 randomly sampled snapshots, while

DMP and GCN use only one. We evaluate the average performance across five independent

runs per graph, and five graphs per type. The results are shown in Table 4.2 . We can

see that SD-STGCN outperforms DMP and GCN by a significant margin, which indicates

the advantage of leveraging multiple snapshots. Like the two baselines, the performance of

SD-STGCN varies across graph types: the highest top-1 accuracy ∼ 0.908 in BA-Tree; the

lowest ∼ 0.694 in ER.

SEIR on random graphs In addition to SIR, we evaluate SD-STGCN with SEIR sim-

ulations on ER, BA, BA-Tree and RGG random graphs with 1, 000 nodes. The simulations

are generated using R0 = 2.5, γ = 0.4, and α = 0.5. Note that DMP is designed for SIR

and not applicable for SEIR [89], so we evaluate SD-STGCN against GCN only. The results

across different types of random graphs are listed in Table 4.3 . We can see that SD-STGCN

is the clear winner over GCN by more than two folds in most of the cases. We also observe

a similar trend like in the SIR case, where the performance varies across graph types, with

BA-Tree the easiest to predict. Overall, the results here highlight that by using multiple

snapshots, our SD-STGCN outperforms GCN for not only SIR but also SEIR.

68

Table4.4. Performance of SD-STGCN evaluated against baseline methods
over standard SIR simulations on empirical contact networks. The scores
are evaluated across five runs per network. The format is mean (standard
deviation).

Data Model Top-1 Acc MRR Hit@5
Frat SD-STGCN 0.664 (0.002) 0.805 (0.009) 0.976 (0.004)

GCN 0.457 (0.035) 0.561 (0.031) 0.670 (0.040)
DMP 0.546 (0.161) 0.642 (0.157) 0.738 (0.180)

Conf SD-STGCN 0.540 (0.006) 0.708 (0.003) 0.926 (0.002)
GCN 0.480 (0.038) 0.549 (0.031) 0.623 (0.027)
DMP 0.414 (0.341) 0.448 (0.356) 0.475 (0.382)

High SD-STGCN 0.644 (0.022) 0.781 (0.013) 0.953 (0.007)
GCN 0.408 (0.029) 0.482 (0.027) 0.564 (0.034)
DMP 0.346 (0.310) 0.376 (0.326) 0.404 (0.359)

SIR on empirical contact networks Empirical contact networks can exhibit different

characteristics from random graphs. For example, as shown in Table 4.1 , the empirical

contact networks under consideration show higher clustering coefficients than the random

graphs except for RGG, which indicate that the nodes in these empirical networks are more

likely to form clusters. It is thus important to examine SD-STGCN over contagion processes

on empirical contact networks.

For data generation, we run standard SIR simulations on Frat, Conf and High networks.

The training set is generated using random R0 ∈ [1, 15) and γ ∈ [0.1, 0.2) for Frat and

γ ∈ [0.1, 0.3) for Conf and High. The ranges are determined such that the simulations

are longer than 20 iterations. The test set is generated using R0 = 2.5 and γ = 0.2 for

Frat and Conf, and γ = 0.4 for High. We evaluate the performance of SD-STGCN against

GCN and DMP on the test set, and the results are listed in Table 4.4 . We can see that

SD-STGCN outperforms the competing methods by a significant margin, in particular SD-

STGCN achieves above 90% Hit@5 rates higher than the runner-up by about 30%. This

demonstrates that our method is effective for not only random graphs but also empirical

contact networks.

69

Table4.5. Performance of SD-STGCN evaluated against GCN over delay SIR
simulations. The scores are evaluated across five runs per network. The format
is mean (standard deviation).

Data Model Top-1 Acc MRR Hit@5
ER SD-STGCN 0.573 (0.165) 0.708 (0.149) 0.881 (0.139)

GCN 0.130 (0.025) 0.203 (0.025) 0.285 (0.029)
Frat SD-STGCN 0.773 (0.012) 0.875 (0.005) 0.995 (0.000)

GCN 0.231 (0.033) 0.367 (0.037) 0.504 (0.047)
Conf SD-STGCN 0.719 (0.007) 0.833 (0.004) 0.982 (0.002)

GCN 0.145 (0.044) 0.230 (0.044) 0.306 (0.039)
High SD-STGCN 0.722 (0.013) 0.828 (0.006) 0.953 (0.005)

GCN 0.141 (0.027) 0.214 (0.024) 0.280 (0.027)

4.5.2 Experiments with delay SIR simulations

The experiments up to this point are based on simulations that are Markovian, while in

reality the disease diffusion process is better described as non-Markovian [130]. To generate

non-Markovian simulations, we adopt a delay SIR model [77 , 97] that follows the dynamics

in Eq. 4.12 . In particular, it assumes that a constant delay period T between infectious and

recovery states. Although, in real epidemics, T can vary from one individual to another, for

simplicity, we adopt a constant T representing the average length of delay across population,

and most importantly, using constant T already induces non-Markovian property.

We run delay SIR with R0 = 2.5 and T = 14 (e.g. days) on random graphs (ER with

1, 000 nodes) and empirical contact networks (Frat, Conf, and High). Since no tractable

form of DMP is known for the non-Markovian simulations [89], we only evaluate SD-STGCN

against GCN. The results are shown in Table 4.5 . We can see that SD-STGCN significantly

outperforms GCN. Comparing to Table 4.2 , for ER, we find that the performance of GCN

reduces significantly, whereas the performance of SD-STGCN only reduces slightly. For

example, GCN’s top-1 accuracy drops by ∼ 56%, in contrast, SD-STGCN’s top-1 accuracy

only decreases by ∼ 17%. Comparing to Table 4.4 , for Frat, Conf and High, we observe

that the performance of SD-STGCN improves, whereas the performance of GCN reduces by

more than 50%. Overall, we can see that SD-STGCN remains effective for non-Markovian

70

simulations, while GCN deteriorates, which highlights the fact that SD-STGCN is better

than GCN by utilizing multiple snapshots instead of only one.

(a) standard SIR, ER
R0 = 2.5

(b) standard SIR, Frat (c) standard SIR, Conf (d) standard SIR, High

(e) delay SIR, ER R0 =
2.5

(f) delay SIR, Frat (g) delay SIR, Conf (h) delay SIR, High

(i) delay SIR, ER R0 = 10 (j) Singapore (k) Tianjin

Figure4.2. Top-1 accuracy across sliding windows with standard and delay
SIR simulations on different networks. (a)-(d) Top-1 accuracy for standard SIR
simulations. The horizontal axis represents the first frame in each window. (e)-
(h) Top-1 accuracy for delay SIR simulations. The horizontal axis represents
percentage windows. (i) Top-1 accuracy for delay SIR on ER graph with
R0 = 10. (j)-(k) nDCG across sliding windows on Singapore and Tianjin
datasets. The black crosses represent the source cases, which are jittered to
avoid overlapping.

4.5.3 Sliding windows

In the previous sections, we perform source detection based on randomly sampled snap-

shots distributed over different stages of the spread. In real life contact tracing, we may

observe consecutive snapshots in a time window of limited length. Therefore, in this section,

we mimic such scenario and place sliding windows across standard and delay SIR simulations

71

on ER random graph and Frat, Conf and High contact networks, and examine SD-STGCN’s

performance at these windows.

For standard SIR, we train SD-STGCN using simulations with random R0 ∈ [1, 15) and

γ ∈ [0.1, 0.4). For testing, we generate simulations using R0 = 2.5 and γ = 0.4, with a fix

size of 30 iterations. We then place sliding windows of size 16 at step 1, 5, 10, 15, 20, and

25, and evaluate the top-1 accuracy. As comparison, we apply GCN and DMP at the same

windows with the first frame of each window as input. The results are illustrated in Fig. 4.2

(a)-(d) (top-1 accuracy). We can see that the performances of all the three models decrease

as the window moving away from the starting point. Nevertheless, SD-STGCN and GCN

outperform DMP significantly after 10 iterations except for the Frat case in Fig. 4.2 (b)

where the network size (58 nodes) is smaller than the others (Table 4.1). Also notice that

SD-STGCN and GCN give very close scores. This is because the standard SIR simulations

following Eq. 4.8 are Markovian - the subsequent snapshots are conditionally independent

of the source given the first snapshot in the window [154]. Therefore, SD-STGCN essentially

operates like a GCN in this case. In the following, we will demonstrate that this is not the

case for delay SIR simulations which are non-Markovian.

For delay SIR, we run simulations using R0 = 2.5 and T = 14. Since the simulations

generated in this way have different sizes, we place windows at fix percentages rather than

at fix time steps, to better represent the various stages of the spread. Note that DMP is

not available for non-Markovian simulations, so we only compare SD-STGCN against GCN.

The results are illustrated in Fig. 4.2 (e)-(h) (top-1 accuracy). We can see that GCN suffers

a performance degradation in the early stage (near the 10% window). In contrast, our SD-

STGCN achieves above 80% top-1 accuracy in this period. This is because in the early

stage many newly infected nodes emerge while none is yet recovered, so GCN has to pick

the source out of many I nodes in one snapshot. In contrast, SD-STGCN can look ahead

for multiple snapshots (e.g. 16 frames) in which the source and other early infected nodes

recover, so it only needs to select the source from the fewer recovered nodes. In the later

stage, as more and more nodes recover, the difference between one snapshot and multiple

snapshots becomes less significant, and therefore we can see that SD-STGCN and GCN have

similar performance.

72

Table4.6. COVID-19 case data network statistics. The columns from left
to right are the network name, number of nodes |V |, number of edges |E|,
clustering coefficient (C) [104].

network |V | |E| C

Emp-HighSchool 774 7992 0.172
Singapore-ER 1000 9999 (84) 0.021 (0.000)
Singapore-RGG 1000 9463 (75) 0.601 (0.009)
Singapore-Conf 1000 10311 (79) 0.029 (0.001)
Tianjin-ER 1000 10074 (88) 0.020 (0.000)
Tianjin-RGG 1000 9439 (104) 0.589 (0.004)
Tianjin-Conf 1000 10348 (79) 0.029 (0.001)

Table4.7. Performance of SD-STGCN over real COVID-19 cases. The cases
are projected onto random networks generated by ER, RGG, and the Config-
uration (Conf) models, and an empirical contact network (Emp). The scores
are evaluated across five runs and five networks per model. The format is
mean (standard deviation).

Singapore Tianjin
Data Model Hit@10 JS nDCG Hit@10 JS nDCG
ER SD-STGCN 0.624 (0.076) 0.398 (0.034) 0.738 (0.058) 0.400 (0.000) 0.198 (0.076) 0.644 (0.095)

GCN 0.528 (0.151) 0.280 (0.099) 0.724 (0.089) 0.312 (0.170) 0.138 (0.077) 0.609 (0.086)
RGG SD-STGCN 0.632 (0.112) 0.425 (0.044) 0.802 (0.060) 0.428 (0.053) 0.219 (0.079) 0.688 (0.102)

GCN 0.464 (0.176) 0.248 (0.085) 0.724 (0.077) 0.216 (0.164) 0.130 (0.092) 0.579 (0.056)
Conf SD-STGCN 0.656 (0.070) 0.393 (0.061) 0.771 (0.051) 0.400 (0.000) 0.185 (0.090) 0.625 (0.118)

GCN 0.524 (0.166) 0.287 (0.099) 0.757 (0.088) 0.284 (0.138) 0.129 (0.086) 0.601 (0.085)
Emp SD-STGCN 0.560 (0.150) 0.396 (0.034) 0.712 (0.042) 0.400 (0.000) 0.276 (0.013) 0.733 (0.038)

GCN 0.572 (0.137) 0.261 (0.065) 0.797 (0.062) 0.468 (0.122) 0.193 (0.080) 0.684 (0.069)

To verify this reasoning, we further compare SD-STGCN against GCN on sliding windows

using delay SIR with R0 = 10 on ER graph. The results are shown in Fig. 4.2 (i). With

a greater R0, more nodes become infectious in the early stage, making it more difficult for

GCN to predict the source. Therefore, we can see that the difference between the two curves

here is even more significant. Before the 40% window, SD-STGCN maintains high accuracy,

whereas the one of GCN drops to near zero.

4.5.4 Case study: real COVID-19 case data

In this experiment, we assess SD-STGCN on two real world datasets of COVID-19 cases

in Singapore and Tianjin. The Singapore dataset comprises 93 confirmed COVID-19 cases

in Singapore from Jan 19, 2020 - Feb 26, 2020; the Tianjin dataset contains 135 confirmed

73

cases in Tianjin, a city in the northeast of China, from Jan 21, 2020 - Feb 27, 2020 [147]. In

both datasets, the initial cases were imported from Wuhan (or Hubei province), with later

cases being caused by local transmission. The datasets provide temporal information like

date of onset symptoms, date of confirmation, and date discharged for those who recovered

(or date of death). Assuming SIR type, we use the date of onset symptoms as the step when

an individual turns from S to I; while the date of onset symptoms is not available, we use

the date of confirmation instead. For the recovered/death cases, we assume that they turned

from I to R on the date discharged or date of death.

The datasets also provide links between the cases that are related (e.g. by family or

location). We can thus connect these cases and form a network G0. However, G0 is likely

a subset of a larger network G, as the confirmed cases may have unidentified contacts. To

model this, we overlay G0 onto a greater network G of 1, 000 nodes. Note that the size

of G is arbitrary, and a different value can be used. We generate G using ER, RGG, and

a configuration model [103] with the degree distribution of the High school network. In

addition, we simply adopt the high school network as G. The network statics are listed in

Table 4.6 .

For training, we generate 2, 000 SIR simulations per network, using random R0 ∈ [1, 15)

and γ ∈ [0.1, 0.4). For testing, we project the states of the confirmed cases to a sequence of

daily snapshots of the network (treating the unknown cases as susceptible), rendering 38 and

40 consecutive snapshots for Singapore and Tianjin, respectively. For prediction, we take 16

random snapshots as input, and rank the nodes by the probability of being the source. We

take the set of the top k candidates and evaluate how much it overlaps with the set of the

initial cases from Wuhan (or Hubei province). The results are shown in Table 4.7 . Note the

scores are evaluated over five runs and five networks for each graph type. As the sources here

are more than one, we utilize Hit@10, Jaccard Similarity (JS), and normalized discounted

cumulative gain (nDCG) as performance measure. The Hit@10 scores indicate that ∼ 60%

(Singapore) and ∼ 40% (Tianjin) of the top 10 predictions are overlapped with the reported

sources. The JS scores (between the set of sources and the set of top predictions of the

same size) are around 0.4 for Singapore and 0.2 for Tianjin. The nDCG scores are above

0.7 for Singapore and 0.6 for Tianjin. We can also see that the performance does not vary

74

Table4.8. Performance of SD-STGCN trained and tested on SIR simulations
using R0 = 2.5 and γ = 0.4, over ER graphs of different sizes. The scores
are evaluated over five graphs per size and five runs per graph. The format is
mean (standard deviation).

|V | Top-1 Acc MRR Hit@5
1000 0.541 (0.038) 0.704 (0.022) 0.928 (0.018)
5000 0.532 (0.044) 0.689 (0.030) 0.896 (0.019)
10000 0.441 (0.018) 0.616 (0.016) 0.845 (0.032)

significantly between different networks. In Fig. 4.2 (j)-(k), we plot nDCG scores at different

sliding windows. The curves here are not monotonically decreasing as time increases. This

is likely because multiple sources emerge at different time steps. The black crosses in Fig.

4.2 (s)-(t) mark the time when a source emerges. We can see that the nDCG scores are high

at the steps when the source cases cluster, especially in the Tianjin case.

4.5.5 Impact of graph and simulation related factors

Effect of graph sizes We also examine SD-STGCN on ER graphs of different sizes.

In addition to graphs of 1, 000 nodes, we generate ER graphs of 5, 000 and 10, 000 nodes.

We train and test SD-STGCN using standard SIR simulations with R0 = 2.5 and γ = 0.4

on these graphs. The performance metrics are shown in Table 4.8 . We observe a slightly

decrease in performance as the graph size increases, which is understandable as the model

has to pick the correct source out of more candidates. Nonetheless, SD-STGCN achieves

above 44% top-1 accuracy for a network of 10, 000 nodes.

Effect of basic reproduction numbers R0 In this experiment, we evaluate SD-

STGCN with standard SIR and SEIR simulations using different R0. [31] provides a list

of estimated reproduction numbers for some well-known diseases, ranging from 1.5 (Spring

wave) to 14.5 (Measles in Ghana). We thus train and test SD-STGCN over simulations with

R0 = 1.5, 2.5, 5 and 10 on ER graphs of 1, 000 nodes. For fair comparison, we keep the

simulation length roughly the same for different R0 (∼ 40 for SIR and ∼ 70 for SEIR), by

adjusting γ and α. The results are shown in Table 4.9 . We can see that the performance

75

Table4.9. Performance of SD-STGCN trained and tested on SIR and SEIR
simulations using different R0. The scores are evaluated over five ER graphs
and five runs per graph. The format is mean (standard deviation).

R0 Top-1 Acc MRR Hit@5

SI
R

1.5 0.597 (0.035) 0.735 (0.024) 0.924 (0.008)
2.5 0.541 (0.038) 0.704 (0.022) 0.928 (0.018)
5 0.483 (0.029) 0.655 (0.019) 0.885 (0.024)
10 0.369 (0.036) 0.533 (0.028) 0.735 (0.032)

SE
IR

1.5 0.883 (0.019) 0.929 (0.011) 0.988 (0.004)
2.5 0.887 (0.012) 0.933 (0.007) 0.993 (0.005)
5 0.837 (0.021) 0.902 (0.014) 0.986 (0.006)
10 0.814 (0.023) 0.878 (0.015) 0.965 (0.009)

reduces as R0 increases. This is likely because when R0 is large, the number of I nodes

reaches a large value in a relatively short period of time, thus making the back-tracking

more difficult.

4.5.6 Training without pre-knowledge of epidemics

In real-world scenarios, we may not know the true R0 and γ during training. In this

case, we train our model with bunch of R0 and γ combinations in the range of the well-

known diseases [31]. In specific, we train SD-STGCN on simulations generated using R0

and γ sampled uniformly at random in [1, 15) and [0.1, 0.4), respectively. The range of R0

is based on the estimated reproduction numbers of well-known diseases [31]; the range of γ

is determined such that the simulations are at least 20 iterations. To evaluate the model

trained in this way against that trained with known parameters, we use the same test sets

described in the previous section. The results are listed in Table 4.10 . Compared to Table

4.9 , the results here are slightly better, except for the case when R0 = 10. Therefore, in

practise, we can train SD-STGCN in this way and apply it to real epidemics with unknown

parameters. It is worth pointing out that in some of the experiments earlier in this work,

we have already adopted this approach.

76

Table4.10. Performance of SD-STGCN trained on SIR simulations using
random R0 and γ, and tested on simulations with different R0. The scores are
evaluated over five ER graphs and five runs per graph. The format is mean
(standard deviation).

R0 Top-1 Acc MRR Hit@5
1.5 0.619 (0.029) 0.749 (0.026) 0.930 (0.021)
2.5 0.568 (0.029) 0.725 (0.016) 0.931 (0.013)
5 0.504 (0.035) 0.675 (0.021) 0.896 (0.014)
10 0.359 (0.039) 0.526 (0.027) 0.738 (0.014)

4.6 Discussion

In our SD-STGCN model, we use GCN for spatial convolution. A layer of GCN performs

a 1-hop neighborhood aggregation. So after L layers of GCN, each node learns a represen-

tation vector that captures the topological information within its L-hop neighborhood. For

a connected network, when L ≥ d (the network diameter), the representation vector of each

node can comprehend the entire network. This is the rationale behind the use of GCN in our

SD-STGCN model. On the other hand, a layer of GCN can be seen as a step of diffusion,

and a stack of L layers of GCN is equivalent to L steps of diffusion [126]. The forward dy-

namics of an epidemic on a network until time T can be viewed as a diffusion starting from

some source(s) after T iterations, and thus can be modeled by T layers of GCNs. So if we

can somehow reverse these GCNs, we might be able to reverse the diffusion and recover the

source(s). In a recent publication [126], the authors use GCN as its own inverse to perform

source detection, without proving it. This leads us to ask: can GCN actually model the re-

verse dynamics? In specific, if GCN(A,X,W) = σ(AXW) = Y is the forward step, we want

to find A′ and W ′ such that GCN(A′, Y,W ′) = σ(A′YW ′) = X, where σ is some activation

function. Note that the A′ and W ′ in the backward GCN are not necessarily the same as

the A and W in the forward GCN. Also note that we can directly solve for X using gradient

descent, which should be a performance upper bound for the inverse GCN approach. In the

following, we show that in general the inverse of a GCN cannot be learned by another GCN

with an arbitrarily small error. We perform a series of experiments to validate our findings.

77

Gradient Descent: GCN can be summarized by:

σ(AXW) = Y, (4.23)

where σ is a non-linear function. A ∈ RN × RN is the normalized adjacency matrix;

X ∈ RN ×Rc is the input features; W ∈ Rc ×Rc is the filter; Y ∈ RN ×Rc is the output

features. N and c are the number of nodes and the number of channels, respectively. In our

experiments, we use a leaky-ReLU activation, as it is reversible. The leaky-ReLU function

is defined as:

σ(x) =

x, if x ≥ 0

αx, otherwise
(4.24)

where α is a constant between 0 and 1.

For regression, we evaluate the sum of squared error (SSE):

SSE =
∑

i

∑
l

(Yil − Ŷil)2

=
∑

i

∑
l

[σ(
∑

j

∑
k

AijXjkWkl)− Ŷil]2 (4.25)

where Ŷ is the true value. The derivative of SSE w.r.t Xjk is:

∂SSE

∂Xjk
= ∂

∂Xjk

∑
i

∑
l

[σ(
∑

j

∑
k

AijXjkWkl)− Ŷil]2

= 2
∑

i

∑
l

[σ(
∑

j

∑
k

AijXjkWil)− Ŷil](βAijWkl)
(4.26)

where β = 1 when the term in σ is positive; β = α when it is negative. To update Xjk, we

have:

X t
jk = X t−1

jk − lr ×
∂SSE

∂Xjk
, (4.27)

where lr is the learning rate.

78

Given Ŷ and A, it is impossible to fully recover X for some W . For example, with

W = ones(c, c), we can see from Eq. 4.26 , that ∂SSE
∂Xjk1

= ∂SSE
∂Xjk2

for ∀k1, k2 ∈ [0, c], since

Wk1l = Wk2l = 1. The updates to Xjk are therefore identical across k, i.e. Xj∗ ∝ ones(c).

So gradient descent would never get to the true Xjk, unless the initial guess X0
jk satisfies

Xjk1 − X0
jk1 = Xjk2 − X0

jk2 for ∀k1, k2 ∈ [0, c]. Therefore, gradient descent cannot

recover X of an arbitrary form, when W = ones(c, c).

Inverse GCN: The inverse GCN can be written as:

σ−1(AYW ′) = X (4.28)

where W ′ is a trainable filter, which is not necessarily the same as the W in the forward

pass (Eq. 4.23). σ−1 is the inverse σ. In our experiments, σ is leaky-ReLU, so σ−1 is:

σ−1(x) =

x, if x ≥ 0

1
α
x. otherwise

(4.29)

Let X̂ denote the true X that generates Y . We want to see if Eq. 4.28 can recover X̂ by

solving the objective:

argminW ′

N∑
i=1

c∑
j=1

(Xij − X̂ij)2, (4.30)

where N is the number of nodes and c is the number of channels. We can solve this objective

by gradient descent. However, X might not be arbitrarily close to X̂ in some cases. For

example, when W = ones(c, c), from Eq. 4.23 , for an arbitrary X̂, we can see that Y is

channel-wise constant, i.e. Yij1 = Yij2 for ∀j1, j2 ∈ [0, c]. Plugging Y into Eq. 4.28 , we can see

that X’s rows are only differed by a scaling factor, regardless W ′. So X cannot approximate

X̂ arbitrarily well. Therefore, the inverse GCN in Eq. 4.28 cannot recover an

arbitrary X arbitrarily well, when the forward pass in Eq. 4.23 uses a filter

W = ones(c, c).

Experiments To validate our findings, we run inverse GCN with synthetic data. In specific,

we generate 5, 000 X ∈ R1000 × R16 sampled from a uniform distribution U(0, 1) and a

79

standard normal distribution N(0, 1). We use the forward GCN in Eq. 4.23 to generate

Y . For the inverse, we add Gaussian noise ∼ 0.1×N(0, 1) to Y , to resemble the real-world

applications where the observations are usually noisy. So, we essentially recover X from

Y ′ = Y + 0.1 ×N(0, 1). We adopt a ER random graph of 1, 000 nodes, with A normalized

by row, i.e. Aij/
∑

j Aij + Iij. On top of the model described in Eq. 4.28 , we replace A

by its inverse i.e. A−1 and a matrix constructed using page-rank [159]. The page-rank

matrix is defined as S = α(I − (1 − α)Anorm)−1, where Anorm is the normalized adjacency

matrix. According to [159], one layer of page-rank GCN can represent infinite steps of

random walks and thus cover higher order neighborhoods. Besides the inverse GCNs, we

also perform gradient descent (GD) to directly learn X. Note that we regularize the norm

of X in gradient descent, i.e. 0.1× ||X||2, as our experiments indicate better results with it.

As a baseline, we guess X randomly from U(0, 1) and N(0, 1) for the respective datasets. To

evaluate the performance, we measure mean squared error (MSE) and mean absolute error

(MAE). We split the data into 80% train, 10% validation, and 10% test sets. The results

evaluated on the test sets are listed in Table 4.11 .

Table4.11. Recovering X from Y with noise using different methods, with
W = ones(16, 16). The graph is an ER random graph. The true X ∈ R1000 ×
R16 is drawn from a uniform distribution U(0, 1) and a normal distribution
N(0, 1).

Model U(0,1) N(0,1)
MSE MAE MSE MAE

A 0.0831 (0.0001) 0.2496 (0.0001) 0.9770 (0.0000) 0.7886 (0.0000)
A−1 0.1686 (0.0038) 0.3272 (0.0031) 0.9992 (0.0001) 0.7975 (0.0000)
pageRank 0.0834 (0.0001) 0.2500 (0.0001) 0.9964 (0.0001) 0.7964 (0.0000)
GD 0.0817 (0.0000) 0.2439 (0.0000) 0.9560 (0.0000) 0.7802 (0.0000)
random guess 0.1667 (0.0000) 0.3333 (0.0001) 1.9995 (0.0010) 1.1283 (0.0004)

From Table 4.11 , we can see that GD gives the best estimations in both datasets. But

even GD cannot achieve zero MSE or zero MAE, which as stated earlier, is due to W =

ones(16, 16). We also observe that the inverse GCN with A (the first row) is the close runner-

up in both datasets. Page rank is slightly behind using just A. Using A−1 is close to random

guess for the uniform data (∼ U(0, 1)), but is not far behind page rank for the normal data

80

(∼ N(0, 1)). In addition, we can see that the uniform dataset is easier to learn than the

normal dataset, which is likely because the normal dataset has a greater range. Overall, the

results here confirm our findings that GCN cannot be reversed by itself with a different W

nor by gradient descent. Although not perfect, GCN can give performance close to gradient

descent for recovering X from Y . We also perform experiments with W = I(16, 16) (an

identity matrix) and W = U(0, 1)16 × U(0, 1)16 (a random uniform matrix). The results are

listed in Table 4.12 and Table 4.13 , respectively. Similar to the previous case, we can see

that GD is the winner in these two cases, and the inverse GCN with A is the runner-up.

However, the gap between them becomes more significant.

Table4.12. Recovering X using different methods, with W = I(16, 16). The
graph is an ER random graph. The true X ∈ R1000 × R16 is drawn from a
uniform distribution U(0, 1) and a normal distribution N(0, 1).

Model U(0,1) N(0,1)
MSE MAE MSE MAE

A 0.0827 (0.0000) 0.2491 (0.0000) 0.8587 (0.0000) 0.7392 (0.0000)
A−1 0.3313 (0.0000) 0.4972 (0.0000) 1.0001 (0.0000) 0.7978 (0.0000)
pageRank 0.0832 (0.0000) 0.2498 (0.0000) 0.9886 (0.0000) 0.7932 (0.0000)
GD 0.0670 (0.0000) 0.2184 (0.0000) 0.7865 (0.0000) 0.7066 (0.0000)
random guess 0.1667 (0.0000) 0.3333 (0.0000) 2.0004 (0.0010) 1.1284 (0.0003)

Table4.13. Recovering X using different methods, with W ∈ U(0, 1)16 ×
U(0, 1)16. The graph is an ER random graph. The true X ∈ R1000 × R16 is
drawn from a uniform distribution U(0, 1) and a normal distribution N(0, 1).

Model U(0,1) N(0,1)
MSE MAE MSE MAE

A 0.0829 (0.0000) 0.2494 (0.0000) 0.9020 (0.0002) 0.7577 (0.0001)
A−1 0.2562 (0.0001) 0.4132 (0.0001) 0.9985 (0.0000) 0.7972 (0.0000)
pageRank 0.0833 (0.0000) 0.2499 (0.0000) 0.9875 (0.0000) 0.7928 (0.0000)
GD 0.0629 (0.0000) 0.2108 (0.0000) 0.7892 (0.0000) 0.7083 (0.0000)
random guess 0.1667 (0.0001) 0.3333 (0.0001) 1.9989 (0.0008) 1.1281 (0.0003)

81

4.7 Chapter Summary

In this work, we tackled the problem of identifying the source(s) of epidemics. We

considered the problem in the framework of source detection on networks and solved it

using SD-STGCN - a model that extracts both spatial and temporal features of a contagion

process. We conducted a series of experiments using standard and non-Markovian epidemic

simulations, on synthetic and empirical contact networks. We compared our model with two

state-of-the-art baselines - DMP and GCN. The results suggest that SD-STGCN outperforms

the baselines for randomly sampled snapshots and consecutive snapshots at sliding windows

with non-Markovian simulations. Lastly, we applied SD-STGCN to two real COVID-19

cases datasets with multiple sources, and we found that the prediction was well aligned

with the ground truth. For future work, we like to replace the graph convolutional network

by some architecture that is better suited for modeling the inverse process of the forward

propagation. Moreover, we like to examine SD-STGCN on simulations not limited to fix

reproduction number and extend SD-STGCN to directed acyclic graph (DAG) and subgraph

with a fraction of the nodes observed.

82

5. DYNAMIC TOPIC MODELING OF THE COVID-19

TWITTER NARRATIVE AMONG U.S. GOVERNORS AND

CABINET EXECUTIVES

A version of this chapter was previously published by Workshop Proceedings of the 14th

International AAAI Conference on Web and Social Media. H. Sha, M. Al Hasan, P.J.

Brantingham, and G. Mohler. (2020). Dynamic topic modeling of the COVID-19 Twitter

narrative among U.S. governors and cabinet executives. 5th International Workshop on

Social Sensing (SocialSens 2020). [125]. DOI: 10.36190/2020.21.

5.1 Introduction

By mid-April 2020, the number of active COVID-19 cases has reached over 2 million and

the number of deaths is over 140,000 world-wide. The United States has the largest share

of confirmed cases (over 670,000) and confirmed deaths (over 27,000). Without a vaccine

yet available, states throughout the U.S. are attempting to control transmission and reduce

strain on the healthcare system through school and business closings, along with shelter-in-

place orders. Careful planning and coordination is needed both to minimize risk from the

disease, and to minimize the long-term economic impact.

In the U.S., a combination of federal and state-level decision making has shaped the

country’s response to COVID-19. The response is quickly evolving, making it difficult to

understand how decision makers have influenced each other, and whom among the decision

makers have emerged as leaders on different topics. To overcome this difficulty, we analyze the

Twitter narrative of various decision makers through dynamic topic modeling. Specifically,

we analyze a dataset of all COVID-19 related tweets by U.S. Governors, the President,

and his cabinet members between January 1st 2020 and April 7th 2020. We use a Hawkes

binomial topic model (HBTM) [100] to track evolving sub-topics around risk, testing and

vaccination/treatment. The model also allows for estimation of Granger causality [161] that

we use to construct influence networks amongst government officials.

83

Our work contributes to the growing body of literature on social media analytics and

COVID-19. A summary of the most related work is as follows. In [20], general COVID-

19 related topic diffusion across different social media platforms is analyzed. In [168], the

authors study COVID-19 discussions on Chinese microblogs. Gender differences in COVID-

19 related tweeting is investigated in [144] and in [145] the authors analyze consensus and

dissent in attitudes towards COVID-19. Geolocated tweets are used to estimate mobility

indices for tracking social distancing in [164].

5.2 Hawkes Binomial Topic Model

We analyze COVID-19 related tweets by U.S. governors and cabinet members using a

network Hawkes binomial topic model1 (HBTM) [100] with intensity λs(t, ~m) at node s in

the network determined by,

λs(t, ~m) = µs(t)J0(~m|ps
0)+ (5.1)∑

t>ti θssiωssie−ωssi (t−ti)J1(~m, ~mi|pssi
off , p

ssi
on).

A Hawkes process is a model for contagion in social media where the occurrence of a post

increases the likelihood of more posts in the near future. In the HBTM, tweets are represented

as bags of words following a Binomial distribution. When viewed as a branching process, the

daughter event bag of words is generated by randomly turning on/off parent words through

independent Bernoulli random variables.

In Equation 5.1 events at time ti are associated with a mark ~mi, a vector of size W ,

the number of words in the overall dictionary across events. The binary variables indicate

whether each word is present or absent in the event at time ti. Spontaneous events occur

according to a Poisson process with rate µs(t) at node s in the network (here a node is either

a governor or cabinet member). Unlike in [100], we let the spontaneous rate vary in time to

reflect the exponential increase in overall COVID-19 related Twitter activity (for estimation
1↑ Code and data available at: https://github.com/daDiz/hbtm_covid19_twitter

84

https://github.com/daDiz/hbtm_covid19_twitter

ti tj tn…

cluster 1 cluster 2singleton

w
or

ds
time

……

Figure5.1. In the HTBM, spontaneous events occur with marks generated by
a binomial random variable over the dictionary of keywords contained in the data
set. Events then trigger offspring events whose marks are generated by switching
parent event words off (white circle) with probability poff and on (black circle) with
probability pon. Unique events are delineated with dashed lines. Clusters are groups
of parent daughter events connected by triggering.

we use a non-parametric histogram). The mark vector of spontaneous events is determined

by,

J0(~m|ps
0) = ps

0

∑W

j=1 mj(1− ps
0)

W −
∑W

j=1 mj , (5.2)

which is the product of W independent Bernoulli random variables with parameters ps
0

The parameter θss′ determines the expected number of tweets by individual s triggered by

a tweet by individual s′ and can be viewed as a measure of influence. The expected waiting

time between a parent-daughter event pair is given by ω−1
ss′ . The mark of a daughter event

is determined by two independent Bernoulli processes. Each word absent, or “turned off,”

in the parent bag of words is added to the bag of words of the child event with probability

pss′
on . Each word present in the parent bag of words is deleted with probability pss′

off . Thus J1

is given by,

J1(~m, ~mi|pss′

off , p
ss′

on) = (5.3)

(pss′

on)W
~m, ~mi

1 (1− pss′

on)W
~m, ~mi

2 (pss′

off)W
~m, ~mi

3 (1− pss′

off)W
~m, ~mi

4 ,

where W ~m,~mi
1 is the number of words present in the child vector and absent in the parent

vector, W ~m,~mi
2 is the number of words absent in both vectors, W ~m,~mi

3 is the number of words

85

in the parent vector absent in the child vector, and W ~m,~mi
4 is the number of words present

in both vectors.

After removing stop words we restrict the dictionary to the W most frequent words, on

the order of several hundred most frequent words across tweets. The Model given by Eq.

5.1 can be viewed as a branching process and is estimated using Expectation-Maximization

(EM) [100]. Using the EM algorithm for estimation has the added benefit that branching

probabilities, estimates of the likelihood that tweet i was triggered by tweet j, are jointly

estimated with the model:

qij =
θsisjωsisje

−ωsisj (ti−tj)J1(~mi, ~mj|p
sisj
off , p

sisj
on)

λ(ti, ~mi)
. (5.4)

These branching probabilities can then be clustered to generate families of dynamic topics

over time [100].

5.2.1 Related work

We note that Hawkes branching point processes in general are a popular model for mim-

icking viral processes on social media. Previous studies have utilized temporal point pro-

cesses to model Twitter [174 , 135], Dirichlet Hawkes processes [32 , 162 , 81], joint models of

information diffusion and evolving networks [39], Hawkes topic modeling for detecting fake

retweeters [37], and Latent influencers are modeled in [141] using an Indian buffet Hawkes

process. For a review of point process modeling of social media data see [71].

Compared to standard LDA-type Hawkes processes, the HBTM has the advantage that

it jointly estimates a network that can be used to measure influence; additionally, HBTM

automatically detects the number of clusters. The temporal aspect of HBTM-like dynamic

topic models tend to improve topic coherence in relation to LDA (see Figure 5.2).

5.3 Data

We first collected the verified Twitter handles of all U.S. state governors, presidential

cabinet members, and the president (a total of 73 politicians, see Fig. 5.5 for their handles).

86

Figure5.2. UCI coherence of HBTM vs. LDA when applied to COVID-19
related tweets by governors and cabinet members.

Figure5.3. Topic timeline. Clusters with size greater than 10 are pinned.
Keywords indicate the topic of the clusters. The marker color indicates the
dominant component of the cluster.

Next, we used the Twitter API to query all tweets by these users during the period of January

1, 2020 to April 7, 2020. We then performed a keyword expansion [12 , 100] to extract a list

of keywords related to COVID-19. This method iteratively adds keywords to a query list

whose frequencies in the set of matching tweets are significantly higher than in the general

sample. We then scanned the corpus with the expanded keyword list, obtaining a set of

7881 COVID-19 related tweets by these politicians. These tweets were further sorted in

time-ascending order and converted to a bag-of-word representation. The vocabulary was

then restricted to the top 425 words according to frequency.

5.4 Results

We cluster the data into space-time topics by sampling the branching probabilities qij in

Equation 5.4 . In particular, we assign tweets to the same group when a link between tweet

87

Figure5.4. Granger causality [161] influence network. Democrats (blue),
Republicans (red). Weights of the edges of the directed graph correspond to
the fraction of events estimated to be triggered across the edge. Edges with
weights less than 10 are removed.

i and tweet j is sampled. In Fig. 5.3 , we show topic clusters over time consisting of more

than 10 tweets. Each marker height represents the size of the cluster and the most frequent

keywords per marker indicate the topics of the clusters.

The clusters show roughly four phases in time, with a significant gap between the first

phase and the rest. In the first phase (early February), the federal government (most frequent

handle @SecAzar, Alex Azar, Sec. of Health) informed the public of the outbreak in

China and claimed to closely monitor the situation. Also in this phase several state

governors (most frequent handle @NYGovCuomo, Andrew Cuomo, Gov. of New York)

started reporting confirmed cases, but stated that the risk was low, as the number of

cases was limited.

The second and the third phases (early March) appeared almost a month later. From

the keywords in these two phases, we can see that the government started to take action

to protect the American citizens (possibly overseas in the regions of the outbreak). We

can also see that live updates and press conferences were given to brief the public.

Keywords like spread and emergency indicate that the outbreak was getting worse in

the U.S. Meanwhile, the keyword test was mentioned frequently alongside laboratory, as

limitations in U.S. testing was driving some of the narrative.

The fourth phase starts around mid-March, when clusters became larger and denser. In

this phase, live updates were held by many governors on a regular basis (the highest peak

88

Figure5.5. Spontaneous vs. triggering effects of politicians on Twitter. Ver-
tical axis: base intensities (spontaneous) and effective influences (triggering)
are normalized over politicians; horizontal axis: Twitter handles of politicians.
To save space, vertical axis is truncated at 0.08, rendering President Trump’s
spontaneous rate off the chart (∼ 0.16).

in Fig. 5.3). We also see the separation between the federal and state governments, as

the clusters divided into government, administration, america and the various states

(maryland, ohio, louisiana, arizona, indiana). The Louisiana governor John Bel Ed-

wards (@LouisianaGov) and the Ohio governor Mike DeWine (@GovMikeDeWine) were

among the most active on Twitter sending information to the people in their respective

states.

The topic of risk appears in this phase, and the message is that risk remains low. New

topics also emerged on social distancing policies such as school close, stay home, and

work (from) home. During the third phase the government began addressing problems

like healthcare for workers and families, and loan(s) for small businesses due to the

impact of the pandemic. The slogan socialdistancing was widely adopted in this phase.

In the most recent phase, a cluster with frequent words live update, press conference,

and briefing is the largest, alongside a narrative around the number of tested, confirmed

positive and death cases in different states. The Louisiana and Ohio governors continued

to be the most active. Also small businesses remained a concern during this phase and the

89

keyword disaster indicates the negative impact of COVID-19. Meanwhile, quarantine and

stay home were encouraged and reiterated on Twitter. The sacrifices of health workers

were acknowledged (thank).

In Figure 5.4 , we show inferred influence among governors and cabinet members by plot-

ting a network where each edge weight from i → j is determined by the total estimated

number of tweets triggered at node j by tweets from node i. The network shows influence

across party lines, with Democrat governors GovNedLamont, GovernorTomWolf, Gov-

Murphy and LouisianaGov highly connected with Republican governors GovRicketts,

GovLarryHogan and GovParsonMO. We caution that this network captures Granger

causality [161], and does not control for confounding effects. In Figure 5.5 , we plot the

estimated baseline rate of spontaneous tweets per governor and cabinet member (i.e. µs(t)

averaged across time), along with each individual’s estimated influence (average number of

subsequent tweets in the network directly triggered by a Tweet, i.e. θss′ summed over s′

and scaled by the number of tweets by s). Here we observe that President Trump has the

highest rate of spontaneous tweets, followed by the Governor of Hawaii and Secretary Azar.

Governors Ducey, Wolf and Lamont are the largest estimated influencers.

5.4.1 Risk, treatment and testing sub-topics

In addition to applying the HBTM to all COVID-19 related tweets, we also apply the

model separately to three sub-categories. We first apply HBTM to tweets containing the

word ”risk”. A sequence of clusters are illustrated in the top row of Fig. 5.6 . The emergence

of this sub-category coincides with the start of the second phase of the general timeline, and

it appears that the CDC was among the first to mention how serious the risk was and asked

for immediate actions. However, the subsequent clusters in early March indicate that both

state and federal governments (Republicans and Democrats) were telling the public that the

risk remains low. Also in this period, we observe calls for washing hands to reduce risk,

and that seniors were identified to be the most vulnerable. After March 15, the narrative

changes and the high risk to the general population is acknowledged. Keywords like age

and adult indicate the high risk across age groups, even for young adults. The word high

90

frequently co-occurs with test and quarantine; due to the high risk of transmission, state

governments increased testing and enforced quarantine(s). Overall, from left to right, the

sequence of clusters show a clear trend in the narrative from low risk in late February to

high risk in April.

Next, we apply HBTM to tweets containing the words “vaccine” and “treatment”. The

resulting clusters are illustrated in the middle row of Fig. 5.6 . In mid-March, keywords

launch, trial, clinicaltrial, phase, and candidate indicate that vaccine candidates were

identified and entered the clinical trial phase. We can also see the National Institute of

Health (NIH) partner with the pharmaceutical industry in developing the vaccine. Later

in March, we start to see clusters where state governors (mainly Democrats) commented on

the lack of resources, equipment, ventilators, and hospital beds. We also see cabinet

members (specifically Sec. of Health @SecAzar) giving updates about vaccine development

(genetic sequence and clinical trial). Another narrative is around an agreement (agree)

with insurance companies to ease the burden of the pandemic on their customers. Ad-

ditionally, we see the request to create global researcher team in developing a vaccine.

In general, the clusters here suggest that the search for a vaccine has been a collective effort

that crosses political parties and national boundaries.

Table5.1. Officials ranked by in-degree (most influenced) and out-degree
(most influential) in influence networks.

Topic In-degree Out-degree
all GovMurphy, GovRicketts, LouisianaGov GovNedLamont, GovMurphy, GovMLG
risk GovMikeDeWine, NYGovCuomo, GovMLG GovMikeDeWine, GovPritzker, SecAzar
treatment SecAzar, GovNedLamont, GovofCO GovofCO, GovChrisSununu, GovNedLamont
test GovNedLamont, GovMikeDeWine, LouisianaGov NYGovCuomo, GovHerbert, GovKemp

In the bottom row of Fig. 5.6 , we show clusters found by applying HBTM after filtering

the dataset on the keyword “test”. In early March, we see that new test kits were available.

Tweets mention (negative) test results of some individuals by the Democrat governors and

cabinet members. Concern about the capacity of testing facilities and hospitals is also

discussed in early March. In mid-March, testing is expanded to the community, followed

by requests for expanding facility capacity and increasing laboratories. During this

91

Figure5.6. Timeline of sub-topics on risk, treatment and testing. Clusters
with size at least 2 are pinned. Keywords indicate the topic of the clusters.
The marker color indicates the dominant component of the cluster.

period, state governors (especially Democrats, the two highest green markers in Fig. 5.6)

start updating test results (in particular number of positive cases) and providing stats

in their press conferences. The HBTM model identifies a cluster in which drive thru site

is suggested as a way to expand testing capacity. In early April, we observe that the

narrative has shifted away from a lack of testing resources; keywords indicate that screen

tools, test kits, and test sites are available, and the testing capacity has increased.

In Figure 5.7 , we plot Granger causality influence networks for the risk, treatment and

testing sub-topics. Again we see connections crossing party lines. In the case of testing, the

network is characterized by a dense set of connections between a select set of governors. The

risk and treatment networks are characterized by more active nodes with fewer connections.

In Table 5.1 we also list the most influential officials by sub-topic along with those officials

most influenced.

92

Figure5.7. Granger causality influence network for “risk” (top), “treatment”
(middle) and “test” (bottom) sub-topics.

5.5 Chapter Summary

We analyzed the COVID-19 Twitter narrative among U.S. governors and presidential

cabinet members using a Hawkes binomial topic model. We observed several narratives

between January 1st and early April 2020, including a shift in the assessment of risk from

low to high, discussion of a lack of testing resources which later subsided, and sub-topics

around the impact of COVID-19 on businesses, efforts to create treatments and a vaccine,

and calls for social distancing and staying at home. We also constructed influence networks

amongst government officials using Granger causality inferred from the network Hawkes

process. President Trump stands out for spontaneity, yet appears to have little influence

with respect to network cross-excitation. Polarization is not obvious in the Granger influence

networks; we observe a high level of cross party event triggering and influence seems more

geographically clustered and related to state size.

We see several potential directions for future work. Here we limited the analysis to

only COVID-19 related tweets among U.S. government officials. The HBTM can be used

93

to explore the COVID-19 narrative among the general population and may highlight issues

around trust in institutions, adherence to social distancing, and economic impacts. Further-

more, analyzing non-COVID related tweets by government officials prior to the pandemic

and constructing an evolving influence network may provide insights into how bi-partisan

cooperation changes during national emergencies.

94

6. GROUP LINK PREDICTION USING CONDITIONAL

VARIATIONAL AUTOENCODER

A version of this chapter was previously published by Proceedings of the Fifteenth Interna-

tional AAAI Conference on Web and Social Media (ICWSM). H. Sha, M. Al Hasan, and G.

Mohler. Group link prediction Using Convolutional Variational Autoencoder. Accepted in

the Fifteenth International AAAI Conference on Web and Social Media (ICWSM 2021).

6.1 Introduction

Link prediction [87] is a widely studied problem with successful applications in social

networks [87], co-authorship networks [59], protein-protein interactions [84] and item rec-

ommendation [14]. As illustrated in Fig. 6.1a , given the current state of a network (say,

a friendship network), the conventional link prediction task looks at a pair of disconnected

nodes (such as A and C in Fig. 6.1a) and predicts if a link will form between them at a

future time. Numerous machine learning models have been proposed for solving this task;

for a comprehensive listing of the models, see the following surveys [90 , 1].

In many real-world networks, patterns of link formation are not exclusively limited to

two nodes. For instance, in a co-authorship network, more than two people may co-author

an article. Likewise, in a network of online groups, where members sharing a group are

connected by edges, the addition of a new individual to a group creates links between the

individual and all of the existing members of that group. For accurately predicting links in

such networks, one would need to consider the collective link formation between an individual

and a group of individuals, a task which we refer to as “group link prediction”.

Fig. 6.1 illustrates the difference between traditional link prediction and group link

prediction. In the top graph, we are simply interested to know whether A and C, two

disconnected nodes, will be connected in the future. In the bottom graph, we have two types

of nodes: individuals and groups. Observing that a group G1 connects with individuals A,

B, and C at time t1, t2, and t3, we would like to know the likelihood that G1 will link with

95

(a) Conventional Link Prediction (b) Group Link Prediction

Figure6.1. Conventional link prediction and group link prediction in social
networks. (a) In link prediction, links are between a pair of individuals. (b) In
group link prediction, links are between a group and an individual. The goal
is to predict future links given the current state of the network.

individual D at time t4. Conversely, knowing that individual A joins groups G2 and G3 at

time t5 and t6, we would like to predict if she will join group G4 at time t7.

Many real-life problems related to social media can be modeled as a task of group link

prediction. For instance, Facebook makes suggestions for potential users to join certain

Facebook Groups (e.g. sports enthusiast group, animal lover group)—a task of predict-

ing/recommending a potential group to a user. The same is true for LinkedIn’s recom-

mendation of potential employers to a job-seeker. The above are examples of an individual

connecting to a group given a list of possible groups—a task, what we also name as group-

recommendation. The role of group and individual can be reversed in other applications.

For instance, given a group (a partial list of emails), Gmail uses auto-complete to recommend

additional email recipients. In this case, a group is creating a link to an individual out of

many possible choices, which we call member-recommendation. Other examples of such

tasks are below: a jobseeker is recommended to a potential employers, based on how much

she aligns with the current employees at the company; Meetup.com (an event-based social

network platform) recommends a user for an event, based on who else are participating in

that event.

The existing link prediction solutions [87 , 59 , 14] make use of a pair-wise score r(u, v)

to measure the similarity between entities u and v. Often r(u, v) is constructed based on

96

some topological properties of the network, including neighbor-based scores like Common

Neighbor, Jaccard Index, Adamic/Adar and Preferential Attachment, and path-based scores

like Graph Distance, Katzβ, and hitting time, or scores from dot product of latent represen-

tation of u and v obtained through matrix factorization [79]. Given the current state of the

network, one predicts the pair (u, v) with the highest r(u, v) to form a link in the future.

Link prediction can also be posed as a binary classification problem with the labels

indicating whether two entities are connected [59]. In this approach, the features may be node

embeddings obtained through static methods like DeepWalk [112], Node2Vec [54], and LINE

[142]; dynamic methods like TNE [182], DynamicTriad [179], CTDNE [105], and HTNE [183];

attribute methods like Graph2Gauss [10], Neural-Brane [22], and DANE [86]; graph neural

network (GNN) methods like Graph Convolutional Networks (GCN) [74], GraphSAGE [56],

and Deep Graph Infomax (DGI) [150]

One possible adaptation of existing methods for solving group link prediction is to aggre-

gate the pair-wise similarity scores r(u, v) of traditional link prediction over a group, through

functions like sum, mean, max, and min, to obtain the corresponding score r(g, v) between

a group g and an individual v. For instance, we can use the maximum r(u, v) for u ∈ g

as r(g, v). Similarly, for adapting the classification-based approach, we can aggregate (e.g.

sum, max-pool, etc) the embedding vectors of all group members to represent the entire

group.

Group link prediction can also be cast as link prediction on heterogeneous networks [131].

With individuals and groups as nodes, we can construct a bipartite heterogeneous network

as illustrated in Fig. 6.1b . In this context, without aggregation, r(g, v) can be directly

obtained from measures such as random walk with restart [82] and meta-path similarity

[139]. Moreover, nodal representations can be learned for link prediction, via methods like

meta-path guided random walks [30] and matrix factorization [132].

While potentially easy to implement, these adaptations are not specifically designed

for group link prediction and, as we will show in experiments to follow, are not consis-

tently effective for group link prediction. In this work, we propose a Conditional Variational

Auto-encoder (CVAE) [136] based model specially designed for solving both the member-

recommendation task and the group-recommendation task. In addition, we provide a

97

variant of the CVAE model - Conditional Variational Auto-encoder with History (CVAEH)

to incorporate the temporal characteristics, where the historical links are considered.

The contributions of this work are three-fold: We reframe a special case of link prediction

on heterogeneous networks that considers the links between an individual and a group,

which we call “group link prediction”. We propose a CVAE-based model to solve group link

prediction. We also introduce a second CVAE model (named CVAEH) that considers the

temporal effect by incorporating the historical links. We examine the group link prediction

problem in five real-world datasets and show the superiority of our CVAE/CVAEH models

in comparison with various competing methods.

The rest of the chapter is organized as follows. In Section 6.2 , we give a detailed descrip-

tion of our model. In Section 6.3 , we review other works related to group link prediction.

In Section 6.4.1 , we provide details on the datasets used to assess our approach. In Sec-

tion 6.4.2 , we describe the various baseline models used for comparison. We present several

group link prediction experiments in Section 6.4.3 and the results in Section 6.4.4 . Finally,

we summarize our work in Section 6.5 .

6.2 Method

In this section, we first formally define group link prediction. We then provide background

information about the building blocks of our model. Lastly, we give a detailed description

on how to implement our model.

6.2.1 Problem Description

First we describe the terminology. Given a set of n individuals G = {v1, v2, · · · , vn}, a

subset of them form a group gi ⊆ G to participate in an event ei at time ti, i.e. ei = (ti, gi).

We denote a sequence of historical events up to time ti as H(ti) = {e1, e2, · · · , ei−1} =

{(t1, g1), (t2, g2), · · · , (ti−1, gi−1)}. Note, throughout the paper, v denotes an individual and

g denotes a group. We use the subscription “ob” to indicate that the subject is observed,

and “unob” to indicate the opposite.

98

Group link prediction is to predict the temporal association between an individual v and

a group g in an event e at time t. It can be decomposed into two sub-problems - member-

recommendation and group-recommendation. In essence, they differ in what is observed and

what is to predict. If we observe a group of individuals in an event, and want to predict

an individual to join them, then we have a member-recommendation problem; if we observe

an individual, and want to predict a group for the individual to join an event with, then

we have a group-recommendation problem. To facilitate ground truth based evaluation, we

formalize them as the following:

Definition 6.2.1. Member-recommendation Given an event ei = (ti, gi) and the history

H(ti), we randomly hold out a member vunob,i ∈ gi from gi as unobserved, and denote the

rest of the group gob,i = gi \ {vunob,i} as observed. The member-recommendation task is to

recommend an individual v ∈ G for gob,i such that v = vunob,i, provided that gob,i and H(ti)

are known.

Definition 6.2.2. Group-recommendation Given an event ei = (ti, gi) and the history

H(ti), we randomly select an individual vob,i ∈ gi as observed, and denote the rest of the group

gunob,i = gi \ {vob,i} as unobserved. The group-recommendation task is to recommend a group

g for vob,i such that g = gunob,i, provided that vob,i and H(ti) are known.

Remark. For group-recommendation, in general, we need to rank every group g for a given

individual vob,i, which is intractable as the number of possible g is 2n. Therefore, we simplify

group-recommendation to picking the positive group gpos = gunob,i which vob,i actually joins

at time ti, out of a set of m negative groups {gneg,i|i = 1, 2, · · · ,m}, which vob,i does not join.

Remark. Although our proposed models can be easily adapted to the more general task of

recommending one group for another (or given a partial group, predicting the rest of the

group), we leave this exciting direction to future work.

6.2.2 Preliminaries

Variational Autoencoder A variational autoencoder (VAE) [72] is an unsupervised neural

network model for embedding high-dimensional data into a latent space. Unlike a traditional

99

autoencoder, this is accomplished by approximating the true distribution Preal(x) for the

data x through a variational Bayes approach. VAEs have the added advantage of being

capable of generating artificial data that resembles the real data. The generative process

starts by sampling a latent variable z from a prior Gaussian distribution P (z). The VAE

then generates a data point x conditioning on z, using a generative distribution Pθ(x|z),

where θ are the parameters of the generative model. Usually P (z) is assumed to be standard

Gaussian and a neural network is used to model Pθ(x|z). To obtain the parameters θ, one

can maximize the log-likelihood logPθ(x) = Ez∼P (z) [logPθ(x|z)P (z)]. In practice, directly

maximizing this log-likelihood is inefficient, as for most z, Pθ(x|z) will be nearly zero, and

contribute almost nothing to the estimate of Pθ(x). Instead, it would be more efficient to

sample from the posterior distribution P (z|x). However, in general, the posterior distribution

inference is intractable. To alleviate the difficulty, one can approximate P (z|x) by a proposal

distribution Qφ(z|x), where φ denotes the model parameters. Furthermore, [72] proposed to

maximize a variational lower bound of the log-likelihood as the following:

logPθ(x) = E
Qφ(z|x)

[log Pθ(x, z)
Qφ(z|x)] +KL(Qφ(z|x)||P (z|x))

≥ E
Qφ(z|x)

[logPθ(x|z)]−KL(Qφ(z|x)||P (z))

= LV AE(x;φ, θ),

(6.1)

where KL denotes the Kullback–Leibler divergence. In Eq. 6.1 , Qφ(z|x) is essentially an

encoder, mapping a data point x to z in the latent space. The generative model Pθ(x|z),

on the other hand, acts as a decoder, converting the sampled latent vector z back to the

data space. In practise, Qφ(z|x) is a neural network that maps a data point to two vectors -

mean µ and the diagonal elements of the standard deviation σ. The reparameterization trick

is used to sample z from µ + σ � z0, where z0 ∼ N (0, I). The lower bound LV AE(x;φ, θ)

can thus be optimized using stochastic gradient ascent w.r.t φ and θ. The optimal θ should

render Pθ(x) resembling the true data distribution Preal(x).

Conditional Variational Autoencoder A conditional variational auto-encoder (CVAE)

[136] approximates the conditional probability distribution Preal(x|y), where x is the data

and y is the observed features. For instance, if x is an MNIST handwritten digit image and

100

Figure6.2. Network architecture. xfull,i and xob,i are encoding vectors repre-
senting the entire group and observed member(s), which are concatenated as
the input to the encoder (green). hi contains the historical event counts, which
is also concatenated with the input for the CVAEH model. Mean µ and the
diagonal elements of standard deviation σ are encoder outputs, with which we
sample the latent vector z. z is concatenated with xob,i and hi (CVAEH only)
and fed to the decoder (blue). The output P (x|z,xob,i,hi) is the conditional
probability indicating the likelihood for x to join xob,i.

y encodes a number, then CVAE would generate an image of that number. In contrast, VAE

would generate images of any number between 0 and 9. Like the VAE model, a variational

lower bound defined as the following can be maximized for training:

logPθ(x|y) ≥ E
Qφ(z|x,y)

[logPθ(x|y, z)]

−KL(Qφ(z|x,y)||P (z|y))

= LCV AE(x,y;φ, θ),

(6.2)

where Qφ(z|x,y), Pθ(x|y, z), and P (z|y) represent the encoder, decoder, and conditional

prior networks, respectively. Note, in our implementation, we do not explicitly construct

a conditional prior network. Instead, we adopt the reparameterization trick to model the

conditional prior P (z|y). Also note, unlike the existing applications of CVAE focusing on

image generation/reconstruction [136 , 65], we use CVAE to learn a conditional probability

for the unobserved group member(s) given the observed one(s).

101

6.2.3 Member-recommendation

In this section, we provide detailed description of our CVAE model and its variant—the

CVAEH model, in the context of member-recommendation. We will explain how to adapt

them for group-recommendation in the next section. The network architectures of these two

models are illustrated in Fig. 6.2 .

CVAE In Fig. 6.2 , xfull,i is an n-dimensional many-hot vector that encodes the entire group

gi, whereas xob,i is another n-dimensional many-hot vector that only encodes the observed

members gob,i. Here we should ignore hi, as it is only intended for the CVAEH model.

The input of the encoder is the concatenation of xfull,i and xob,i, whilst the outputs are the

Gaussian mean µ and standard deviation σ (the diagonal elements). We then sample a latent

vector z using the reparameterization trick [72], i.e. z = µ + σ � z0, where z0 ∼ N (0, I).

The process up to now is equivalent to Qφ(z|x,y) and P (z|y) in Eq. 6.2 . Next, z and

xob,i are concatenated and fed to the decoder. The output of the decoder is a conditional

probability P (v|gob,i) = P (x|z,xob,i), where x is the one-hot encoding of v ∈ G. Now we

can recommend the individual v with the highest P (v|gob,i) for the observed group

gob,i.

CVAEH is similar to CVAE, except that it introduces an additional vector hi whose v’s

entry represents the number of events that an individual v has attended during [ti−m, ti),

with ti−m being the time m events prior to the current time ti. hi is thus a representation

of the event history H(ti). As shown in Fig. 6.2 , xfull,i, xob,i and hi are concatenated at the

encoder; while z, xob,i and hi are concatenated at the decoder. Accordingly, the output of the

decoder is a conditional probability P (v|gob,i,H(ti)) = P (x|z,xob,i,hi), where x is again the

one-hot encoding of an individual v ∈ G. By introducing hi, the CVAEH model is able to

take advantage of the temporal correlation in the data. As will be shown in our experiments,

for the datasets where samples are time-correlated, the CVAEH model is generally better

than the CVAE model in group link prediction.

102

Algorithm 3: CVAE/CVAEH learning process
1 learning rate lr, batch size m randomly initialize φ, θ;
2 while not converge do
3 sample batch of xfull,i, xob,i, hi;
4 for i← 1 to m do
5 ci ← concat(xfull,i,xob,i,hi);
6 µ, σ ← encoder(ci);
7 z← µ+ σ � z0 where z0 ∼ N (0, I);
8 c′

i ← concat(z,xob,i,hi);
9 Pθ(x|z,xob,hi)← decoder(c′

i);
10 calculate L(φ, θ) using Eq. 6.3 ;
11 ∂Lφ,i ← ∂L(φ,θ)

∂φ
and ∂Lθ,i ← ∂L(φ,θ)

∂θ
;

12 end
13 φ← φ− lr × 1

m

∑m
i=1 ∂Lφ,i;

14 θ ← θ − lr × 1
m

∑m
i=1 ∂Lθ,i;

15 end

Loss function To train CVAE and CVAEH, we maximize the variational lower bound

defined in Eq. 6.2 . More concretely, we minimize the following loss function using mini-

batch gradient descent:

L(φ, θ) =
n∑

v=1
[− xfull,vlog(Pθ(xv|z,xob,h))

− (1− xfull,v)log(1− Pθ(xv|z,xob,h))]

+ 1
2

n∑
v=1

(exp(σv) + µ2
v − 1− log(σv))

(6.3)

where xv, xfull,v, σv and µv are the v’th element of x, xfull, σ and µ, respectively. Note, h

here is only for the CVAEH model. Although not shown explicitly, µ, σ, and z are dependent

on φ. The second summation on the right is the closed form of the KL-divergence in Eq.

6.2 , as the result of the reparameterization trick [72].

Learning process is outlined in Alg. 3 . Note hi is only intended for the CVAEH model.

The algorithm starts by initializing the encoder and decoder parameters φ and θ. We then

sample a batch of data (line 3), and for each data we go through the encode-decode process

(line 5 − 9), estimate the loss L(φ, θ) in Eq. 6.3 (line 10), and obtain the gradients w.r.t φ

103

and θ (line 11). At the end of each batch, we calculate the mean gradients and update φ

and θ (line 13− 14). This process (line 3− 14) repeats until the model converges.

6.2.4 Group-recommendation

The architecture shown in Fig. 6.2 remains the same for group-recommendation. How-

ever, xob,i is now a one-hot encoded vector of the observed individual vob,i, and x is a many-hot

encoded vector of a group. Consequently, the output of the decoder gives a conditional prob-

ability P (g|vob,i) = P (x|z,xob,i), for g ⊆ G \ {vob,i}. We thus recommend the group g

with the highest P (g|vob,i) for the observed individual vob,i. The learning process is

also the same except that the contents of xob,i, and x have changed.

6.3 Related works

Recommender systems Traditionally, recommender systems are mostly based on col-

laborative filtering [138], especially matrix factorization (MF) [79]. To reduce cold start,

many works [42 , 172] leverage additional information to improve performance. For exam-

ple, [172] adopts an extended MF approach that incorporates location features and social

features. Since we do not use additional features, our approach is different, nevertheless we

compare our methodology with a matrix factorization baseline in Sec. 6.4.3 . There exists a

few works on “group recommendation” [88 , 118], which refers to recommending items for a

group of users, which is not the same as our group link prediction task, where we recommend

a user for a group or vice-versa.

Heterogeneous networks The proposed group link prediction problem can be posed

as link prediction on (bipartite) heterogeneous networks [131] with nodes of individuals

and groups. Node proximity on heterogeneous networks can be evaluated via path-based

similarity measures, such as random walk with restart [82 , 114] and meta-path similarity

[139]. Furthermore, nodal representations can be learned from meta-path guided random

walks [30]. In addition, matrix factorization can be adopted for heterogenous networks [132].

We compare our models with two state-of-the-art models - metapath2vec [30] and HERec

[132] in Sec. 6.4.3 .

104

Dynamic graph embedding As many real-world networks evolve over time, many dy-

namic graph embedding models [179 , 182 , 105 , 183] are proposed to learn time-respecting

representations. For example, [105] leverages temporal random walks to learn node embed-

dings in continuous-time dynamic networks. [183] combines the Hawkes process [60] and

the attention mechanism [5] to learn temporal embeddings via neighborhood formation. We

compare our models (also dynamic) with these two models as well as a Long Short-Term

Memory (LSTM) based model [61] in Sec. 6.4.3 .

Graph neural networks Recent years have witnessed the surge of graph neural net-

works (GNN) [57]. Many GNN models, such as graph convolutional networks (GCN) [74]

and GraphSAGE [56], generate nodal representations by aggregating local neighborhood fea-

tures or attributes. Alternatively, [150] proposes a unsupervised node embedding method

by maximizing mutual information. Furthermore, [169] extends GNN-based representation

learning to web-scale bipartite networks of billions of nodes, by combining random walks

and GCN. We compare our models with a state-of-the-art GNN model in Sec 6.4.3 .

6.4 Experimental Results

In this section, we present experimental results to validate the effectiveness of our pro-

posed group link prediction models for solving member and group recommendation tasks on

five real-world datasets. We also compare the performance of our models with several base-

line models. Below we first discuss the datasets and the baseline methods before presenting

the experimental results.

6.4.1 Data Description

We use five real-life datasets. Their statistics is provided in Table 6.1 . For data pre-

processing, we organized the datasets into sequences of time-group pairs {(ti, gi)}, sorted in

time ascending order. We then split each dataset into training (80%), validation (10%), and

test (10%) sets. Any group member that appears in the validation or test split, but not

in the training split, are removed from the corresponding data-split. Also, a group consists

of less than three group members are also removed from the group-list. Let Mtrain, Mvalid,

105

Table6.1. Data set properties. N denotes the number of events (groups).
|V | and |E| are the number of nodes and number of edges for each network,
respectively.

Data set N |V | |E|
Enron 31145 1946 47164
HT09 3703 113 9317
SFHH 3331 403 120507
Meetup NYC 11136 25458 340751
Meetup CA 15717 36799 407584

and Mtest denote the set of individuals in the training, validation, and test splits, respec-

tively. The processed datasets then satisfy (1) Mvalid ⊆ Mtrain, (2) Mtest ⊆ Mtrain, and (3)

G = Mtrain. More discussion of each datasets are below:

Enron Email: This dataset [78] contains emails collected by the Federal Energy Regula-

tory Commission (FERC) during the investigation of the Enron Corporation. It contains

∼ 600, 000 emails from the year of 1999 to 2002, involving more than three thousands email

addresses, most of which belong to the employees of the company. We organize the emails in

time ascending order and extract the sending and receiving addresses owned by the employees

(i.e. addresses ending with ”@enron.com”). For member-recommendation, we only keep the

emails with 3 ∼ 10 people, as the emails that include too many people are mostly messages

broadcasted to everyone without distinguishing the groups. After the processing described

earlier, we obtain a sequence of 31145 samples involving 1949 email addresses (Table 6.1).

For group-recommendation, we keep the people who have involved in at least 1000 emails

so that we can obtain enough negative samples. This also helps identify the major players

behind the Enron scandal as discussed later in the case study. This treatment renders us a

sequence of 15801 emails involving 114 email addresses.

Dynamic Contact Networks: These two datasets contain spatial temporal contact infor-

mation of attendees during the ACM Hypertext 2009 conference (HT09) [64] and the 2009

SFHH conference (SFHH) [46]. The attendees of the conferences voluntarily wore radio

106

badges that monitored their face-to-face proximity. If a group of individuals engaged in a

conversation, the time-stamp and their IDs would be recorded. During the course of the

conferences, such events were collected, rendering a sequence of (time, attendee-list) sam-

ples. HT09 dataset has 3703 conversational groups and 113 attendees, and SFHH has 3331

conversations groups involving 403 attendees (Table 6.1).

Event-based Social Networks: These datasets [114] were crawled from an event-based

social network platform - Meetup.com . This platform allows its users to create/join groups

and announce events for the group members. For instance, a user in the sports-enthusiastic

group may invite other group members to a football watch-party. In this work, we adopt

the Meetup-NYC dataset and the Meetup-CA dataset containing events taking place in

New York City and California, respectively. Note although a user can be part of multiple

groups and join various events, she cannot join the events created by a group of which

she is not a member. For member-recommendation, we only keep the events with 3 ∼ 20

participants due to performance consideration. This renders a sequence of 11136 events

involving 25458 users (Meetup-NYC) and a sequence of 15717 events involving 36799 users

(Meetup-CA) (Table 6.1). Also notice that for a user who is only in one group, it would be

trivial to recommend an event for her, as she would join the events exclusively of this group.

Therefore, to effectively evaluate our model, for group-recommendation, we only keep users

who are member of at least 10 groups, which leads to a sequence of 4500 events including

2286 users (Meetup-NYC) and a sequence of 2392 events including 1649 users (Meetup-CA).

6.4.2 Baseline Methods

In this section, we discuss the various competing methods.

Graph topology-based Link Prediction We convert our data into an undirected graph

where nodes are event participants (e.g. email addresses, conference attendees, and so on)

and edges are formed between them if they are in an event together. We define some graph-

based score functions r(u, v) to measure the similarity between nodes u and v. A larger

r(u, v) indicates a higher likelihood for linking the nodes. Here we examine an array of such

107

Meetup.com

score functions [87]: Common Neighbors, Jaccard Index, Adamic/Adar, Preferen-

tial Attachment, and Katzβ. Since these scores are evaluated in a pair-wise manner, we

resort to some aggregation methods to obtain the scores between a group g and an individual

v. Formally, we have rF (g, v) = F (r(u, v)),∀u ∈ g, for F ∈ {sum,max,min,mean}.

Homogeneous Network Embedding-based Link Prediction We adopt a random walk

based model - Node2Vec [54] and a recent GNN based model - Deep Graph Infomax

(DGI) [150], to learn node representations on homogeneous networks consisting of indi-

viduals. We aggregate individual-individual cosine-similarities to obtain group-individual

similarities.

Heterogeneous Network Embedding-based Link Prediction The proposed group link

prediction can be cast as link prediction on heterogeneous networks with mixed nodes of in-

dividuals and groups. We adopt metapath2vec [30] and HERec [132] for the task. metap-

ath2vec utilizes meta-path based random walks and skip-gram [96], to generate nodal repre-

sentations. We apply this method with “individual-group-individual” meta-path and use dot

product as similarity measure. HERec leverages fusion functions and matrix factorization

to integrate multiple embeddings w.r.t different meta-paths. We use the recommendation

ratings given by the method for link prediction.

Dynamic Network Embedding-based Link Prediction We can construct dynamic

networks of individuals utilizing event timestamps. In specific, we use CTDNE [105] and

HTNE [183] to learn time-respecting nodal representations. CTDNE uses random walks in

time-ascending order to learn temporal embeddings; while HTNE combines the Hawkes pro-

cess [60] and the attention mechanism [5] to learn embeddings via neighborhood formation.

With the embeddings at each time step, we use an aggregation approach as in the static

case, to predict the links between individuals and groups.

Matrix Factorization Methods Our datasets can also be converted to matrices X ∈

R|G| × RN , with the rows representing individuals and the columns representing groups (or

equivalently events). If an individual v was part of a group g, then the entry Xv,g would

be one, otherwise zero. This setup resembles the user-item rating matrix widely adopted in

the context of recommender system [79]. By matrix factorization (MF), an individual v is

associated with a vector pv ∈ Rd and a group g is associated with a vector qg ∈ Rd in some

108

d-dimensional latent space, such that Xv,g = pT
v qg. To factorize X, we adopt two methods -

non-negative matrix factorization (NMF) [19 , 43] and singular value decomposition (SVD)

[55]. We can thus define the score function as r(g, v) = pT
v qg.

Neural Network Methods Aforementioned link prediction techniques (graph topology-

based, embedding-based or MF-based) rank the candidates according to certain score func-

tions r(g, v). In contrast, our proposed model and the following Neural Network based

models (except set2vec BPR) can provide a probability distribution for the links. In specific,

we propose the following baseline Neural Network models for comparison:

One-hot MLP The first model combines Multi-layer Perceptron (MLP) with one-hot

encoding (one-hot MLP). The input of the model is the one-hot encoded vector of the ob-

served participant(s), gob,i in member-recommendation or vob,i in group-recommendation, and

the output is a probability distribution for the unobserved participant(s), vunob,i in member-

recommendation or gunob,i in group-recommendation. This is essentially a multivariate logis-

tic regression, where whether an individual would join an event is determined by a Binomial

distribution given by the output probabilities. To learn the model, the cross entropy loss is

minimized using mini-batch gradient descent.

Set2vec MLP Set2vec is proposed by [151] for encoding a set of elements. The set

encoding is essentially a weighted sum of the individual encodings of the set members. We use

set2vec to encode a group as a single vector xs = ∑k
i=1 αixi, where the weights α1, α2, ..., αk

and the individual encoding vectors {xi, i = 1, 2, ..., k} are learned by coupling set2vec with

a downstream MLP classifier. The output of the classifier is a probability distribution, like

in the one-hot MLP model.

Set2vec BPR We can also replace the cross entropy loss with the Bayesian Personalized

Ranking (BPR) loss [119], leading to the set2vec-BPR model. BPR is proposed by [119] as

a ranking framework for item recommendation. We use BPR to learn the embedding xv

for any individual v and the embedding xg for any group g. We can then define the score

function as r(g, v) = xg
T xv, which measures the similarity between the two embeddings.

109

(a) Recommend an individual for a group. (b) Recommend a group for an individual.

Figure6.3. Prediction Illustration. The one-hot encoding of the observed
group member(s) is fed to the decoder. z0 is sampled multiple times, generat-
ing a multiplicity of outputs, which are averaged to obtain the final conditional
probability. (a) For member-recommendation, we predict the one most proba-
ble member. (b) For group-recommendation, we find a group that best aligns
with the probability distribution.

LSTM Long Short-Term Memory (LSTM) [61] is efficient for modeling sequence re-

lated problems. We compare our model with an LSTM-based model which takes in a se-

quence of embedding vectors {xti ,xti+1 , · · · ,xti+j} of the observed member-lists at time-steps

{ti, ti+1, · · · , ti+j}, and outputs a conditional probability P (v|xti ,xti+1 , ...,xti+j), v ∈ G con-

ditioning on all the observations in the window [ti, ti+j). However, this model only predicts

an individual rather than a group, therefore we only apply it to member-recommendation.

Specifically, we use the output probability to rank the candidates at time ti+j given the

current observed members and the members of the previous events.

6.4.3 Experimental Setup

Model details For the proposed CVAE/CVAEH, the encoder and the decoder consist

of two fully-connected (FC) layers, with the hidden dimension (hd) in {128, 256, 512, 1024}.

We also tune the dimension of z, zd in {32, 64, 128, 256}. In addition, for CVAEH, we use

different window sizes, ts in {2, 4, 8} for calculating hi. To learn the model, we minimize the

loss in Eq. 6.3 using mini-batch gradient descent, with the batch size = 64 and the learning

rate, lr in {0.0001, 0.001, 0.01}.

Prediction process In Fig. 6.3a , we illustrate the prediction process for member-

recommendation. For each gob, we sample z0 ∼ N (0, I) m times, generating a se-

ries of conditional probabilities Pi(v|gob), i = 1, 2, ...,m. The final conditional probability

110

used for prediction is the sample mean of these m conditional probabilities, P (v|gob) =
1
m

∑m
i=1 Pi(v|gob), v ∈ G. We then rank the individuals v by P (v|gob).

In Fig. 6.3b , we illustrate the prediction process for group-recommendation. We take

out an individual vob from an event and regard the rest of the member-list as unobserved gunob.

Similarly, for each vob, we sample z0 ∼ N (0, I) m times, and calculate the sample mean of

these m conditional probabilities, P (g|vob) = 1
m

∑m
i=1 Pi(g|vob), g ⊆ G\{vob}. However, we do

not scan over all the possible g as there are exponential number of possible groups. Instead,

we denote the true gunob as a positive sample, gpos = gunob, and randomly sample a set of 200

negative samples Sneg = {gneg,i|vob /∈ gneg,i, i = 1, 2, ..., 200} from the training set. We then

rank g ∈ {gpos} ∪ Sneg by the average probability
∑

v∈g
P (v|vob)
|g| . Note, here the numerator

prefers a group that contains individuals with high P (v|vob); while the denominator penalizes

a group that includes too many irrelevant individuals. Overall, this score measures to what

extent a group g aligns with the conditional probability P (g|vob).

Performance metric As performance metrics, we use hit rate@m (Hit@m) and mean

reciprocal rank@m (MRR@m). For each query, if the target is among the top-m recommen-

dations, we have a hit and record the reciprocal of the rank at which the target is retrieved.

When averaged across queries, we obtain Hit@m and MRR@m, with the former indicating

how good the model is at finding the target and the later indicating how high the model

ranks the target.

For member-recommendation, during validation and testing, for each sample, we

hold out the last member vi,k from a group gi of size k, rendering vunob = vi,k and gob =

{vi,1, · · · , vi,k−1}. If the true vunob is among the top m predictions, we then register a hit

for the Hit@m score. We perform parameter tuning over the validation set and select the

optimal parameters based on the mean Hit@10 rate. The results discussed in the next section

are obtained using the optimal hyper-parameters as, Enron-CVAE: zd = 256, hd = 512, lr =

0.0001; HT09-CVAEH: zd = 128, hd = 1024, ts = 2, lr = 0.0001; SFHH-CVAEH: zd =

128, hd = 1024, ts = 2, lr = 0.0001; Meetup-NYC-CVAE: zd = 32, hd = 1024, lr = 0.001;

Meetup-CA-CVAE: zd = 256, hd = 128, lr = 0.001.

For group-recommendation, we similarly hold out the last member of each sam-

ple gi in the validation set and the test set, which leads to vob = vi,k, gpos = gunob =

111

{vi,1, vi,2, · · · , vi,k−1}, and Sneg = {gneg,i|vi,k /∈ gneg,i, i = 1, 2, ..., 200}. If gpos is among the top

m highest ranking groups in {gpos}∪Sneg, we register a hit for the Hit@m rate. We perform

hyper-parameter tuning over the validation set using the mean Hit@10 rate, and obtain

the optimal hyper-parameters as, Enron-CVAE: zd = 256, hd = 1024, lr = 0.01; HT09-

CVAEH: zd = 32, hd = 128, ts = 2, lr = 0.0001; SFHH-CVAEH: zd = 64, hd = 1024, ts =

2, lr = 0.0001; Meetup-NYC-CVAE: zd = 64, hd = 1024, lr = 0.01; Meetup-CA-CVAE:

zd = 32, hd = 256, lr = 0.01.

Setup for baseline methods For fair comparison, we also perform hyper-parameter tun-

ing for the baseline methods on the same validation set. For the embedding-based meth-

ods, we test different embedding dimensions in {64, 128, 256, 512}. For the neural net-

work models, we also tune the hidden dimension in {128, 256, 512, 1024}, learning rate in

{0.0001, 0.001, 0.01} and the batch size in {32, 64}. For set2vec MLP and LSTM, we test

time-step in {5, 10, 15} and {2, 4, 8, 16, 32}, respectively. To convert r(u, v) to r(g, v), we

try aggregation in {sum,mean,max,min}. For the hyper-parameters not mentioned here,

we adopt the same values as suggested in the original papers publishing the methods. We

use Hit@10 rate for determining the optimal hyper-parameters. The optimal models are

compared with CVAE/CVAEH on the same test set.

Hyper-parameter tuning For CVAE and CVAEH model, the encoder and the decoder

are both consist of two fully-connected (FC) layers. We tune the hidden dimension (hd) in

{128, 256, 512, 1024}, the dimension (zd) of the latent vector z in {32, 64, 128, 256}, and the

learning rate (lr) in {1e−4, 1e−3, 1e−2}. For CVAEH, we also tune the window size (ts) for

hi in {2, 4, 8}. For the member-recommendation task, we have the optimal hyper-parameters

as, Enron-CVAE: zd = 256, hd = 512, lr = 1e− 4; HT09-CVAEH: zd = 128, hd = 1024, ts =

2, lr = 1e−4; SFHH-CVAEH: zd = 128, hd = 1024, ts = 2, lr = 1e−4; Meetup-NYC-CVAE:

zd = 32, hd = 1024, lr = 1e − 3; Meetup-CA-CVAE: zd = 256, hd = 128, lr = 1e − 3. For

the group-recommendation task, we have the optimal hyper-parameters as, Enron-CVAE:

zd = 256, hd = 1024, lr = 1e − 2; HT09-CVAEH: zd = 32, hd = 128, ts = 2, lr = 1e − 4;

SFHH-CVAEH: zd = 64, hd = 1024, ts = 2, lr = 1e− 4; Meetup-NYC-CVAE: zd = 64, hd =

1024, lr = 1e− 2; Meetup-CA-CVAE: zd = 32, hd = 256, lr = 1e− 2.

112

For one-hot mlp and set2vec mlp, we tune hidden dimension in {128, 256, 512, 1024} and

learning rate in {1e − 4, 1e − 3, 1e − 2, 1e − 1}. We also try different embedding dimension

in {32, 64, 128, 256} for set2vec mlp. For set2vec BPR, we tune embedding dimension in

{128, 256, 512}, time-step (LSTM-encoder) in {5, 10, 15}, and learning rate in {1e− 4, 1e−

3, 1e− 2}. For the above models, we use a batch size of 64. For LSTM, we tune time-step in

{2, 4, 8, 16, 32} and hidden dimension in {128, 256, 512}. We use a batch size of 32, a learning

rate of 1.0, a dropout of 0.5 and a 2 layer LSTM architecture. For the Node2Vec model,

we tune the embedding dimension in {32, 64, 128}, p and q in {0.1, 0.5, 1.0}. For Node2Vec,

Common Neighbor, Jaccard Index, Adar and Preferential Attachment, we try aggregation in

{sum,mean,max,min}. For Katzβ, we tune l in {1, 2, 3, 4, 5} and β in {1e− 4, 1e− 3, 1e−

2, 1e−1}. For NMF and SVD, we tune the latent dimension in {32, 64, 128, 256}. For NMF,

we also tune α in {0.0, 0.1, 1.0, 10.0} and l1 ration in {0.1, 0.5, 0.9}.

6.4.4 Results

Table6.2. Member recommendation hit rates. The highest and the second
highest hit rates are bold.

Model Enron HT09 SFHH Meetup-NYC Meetup-CA
Hit@10 Hit@20 Hit@10 Hit@20 Hit@10 Hit@20 Hit@10 Hit@20 Hit@10 Hit@20

Common Neighbors 0.349 0.433 0.075 0.108 0.027 0.186 0.309 0.393 0.359 0.461
Jaccard Index 0.412 0.522 0.057 0.100 0.129 0.302 0.282 0.360 0.320 0.432
Adamic/Adar 0.366 0.453 0.067 0.111 0.033 0.189 0.317 0.384 0.367 0.474
Preferential Attachment 0.036 0.046 0.075 0.111 0.039 0.401 0.015 0.047 0.004 0.011
Katz β 0.446 0.561 0.124 0.148 0.165 0.314 0.318 0.409 0.387 0.483
Node2Vec 0.188 0.345 0.140 0.232 0.000 0.000 0.070 0.178 0.076 0.206
CTDNE 0.390 0.526 0.154 0.240 0.275 0.290 0.170 0.274 0.193 0.291
HTNE 0.130 0.222 0.412 0.496 0.168 0.222 0.041 0.063 0.071 0.132
metapath2vec 0.277 0.442 0.350 0.588 0.027 0.153 0.107 0.231 0.150 0.275
HERec 0.036 0.074 0.412 0.507 0.192 0.216 0.004 0.010 0.015 0.031
NMF 0.257 0.350 0.466 0.561 0.308 0.356 0.112 0.187 0.124 0.228
SVD 0.278 0.393 0.555 0.677 0.177 0.254 0.126 0.208 0.159 0.266
one-hot MLP 0.462 0.536 0.553 0.712 0.371 0.440 0.326 0.392 0.339 0.428
set2vec MLP 0.434 0.514 0.561 0.617 0.207 0.296 0.261 0.336 0.312 0.381
set2vec BPR 0.374 0.494 0.501 0.590 0.069 0.111 0.173 0.258 0.214 0.316
LSTM 0.438 0.522 0.503 0.621 0.269 0.323 0.253 0.315 0.301 0.385
DGI 0.275 0.368 0.051 0.213 0.051 0.141 0.193 0.258 0.200 0.281
CVAE 0.521 0.601 0.615 0.728 0.428 0.500 0.341 0.406 0.400 0.455
CVAEH 0.485 0.578 0.709 0.806 0.509 0.560 0.275 0.345 0.267 0.331

113

Table6.3. Member recommendation mean reciprocal ranks (MRR). The high-
est and the second highest MRR scores are bold.

Model Enron HT09 SFHH Meetup-NYC Meetup-CA
Mrr@10 Mrr@20 Mrr@10 Mrr@20 Mrr@10 Mrr@20 Mrr@10 Mrr@20 Mrr@10 Mrr@20

Common Neighbors 0.186 0.192 0.022 0.024 0.026 0.032 0.161 0.167 0.208 0.215
Jaccard Index 0.210 0.218 0.012 0.015 0.070 0.081 0.127 0.132 0.157 0.165
Adamic/Adar 0.200 0.206 0.036 0.039 0.006 0.017 0.167 0.172 0.213 0.220
Preferential Attachment 0.022 0.023 0.042 0.044 0.005 0.028 0.002 0.005 0.001 0.001
Katz β 0.238 0.246 0.108 0.110 0.043 0.053 0.166 0.173 0.218 0.225
Node2Vec 0.033 0.044 0.025 0.032 0.000 0.000 0.009 0.017 0.010 0.019
CTDNE 0.107 0.117 0.024 0.030 0.126 0.127 0.041 0.048 0.065 0.071
HTNE 0.032 0.039 0.085 0.0916 0.034 0.037 0.007 0.008 0.015 0.019
metapath2vec 0.068 0.079 0.082 0.100 0.007 0.016 0.020 0.028 0.041 0.049
HERec 0.009 0.012 0.091 0.101 0.026 0.032 0.001 0.001 0.023 0.026
NMF 0.102 0.108 0.410 0.416 0.144 0.147 0.037 0.039 0.026 0.028
SVD 0.114 0.121 0.214 0.222 0.045 0.050 0.027 0.029 0.032 0.034
one-hot MLP 0.276 0.281 0.456 0.461 0.208 0.211 0.193 0.198 0.210 0.215
set2vec MLP 0.277 0.283 0.470 0.474 0.096 0.102 0.137 0.142 0.171 0.176
set2vec BPR 0.098 0.106 0.172 0.179 0.010 0.013 0.047 0.053 0.056 0.063
LSTM 0.262 0.267 0.393 0.401 0.080 0.084 0.135 0.140 0.177 0.182
DGI 0.111 0.119 0.018 0.022 0.012 0.019 0.039 0.039 0.087 0.092
CVAE 0.304 0.311 0.387 0.397 0.260 0.266 0.213 0.218 0.222 0.227
CVAEH 0.311 0.317 0.535 0.542 0.275 0.278 0.154 0.159 0.148 0.152

Member recommendation In Table 6.2 and 6.3 , we show the hit rates and MRR scores

respectively, for the member recommendation task, using the various models over the five

datasets. The methods are arranged in row clusters based on their approaches. Our proposed

methods, CVAE and CVAEH are in the last row cluster. For every method, the results

are obtained using the optimal hyper-parameters. For the graph topology-based and the

embedding-based methods, the results are shown for the best aggregation function among

sum, min, max, and mean. For easy comparison, we highlight the highest and the second

highest scores.

Hit rates can indicate the models’ ability to include the target in the top candidate list.

From Table 6.2 , we can see that our models perform significantly better than the competing

methods in hit rates. Specifically, for the HT09 and SFHH datasets, our CVAEH model’s

performance is around 20% better than the best competing method in both Hit@10 and

Hit@20 metrics. For other datasets, our models’ performance is generally 4% to 8% better

over the best of the competing methods. Only for the Hit@20 rate for the Meetup-NYC and

the Meetup-CA datasets, our method came in a close second and fourth position, out of the

17 competing methods.

114

Table6.4. Group recommendation hit rates. The highest and the second
highest hit rates are bold.

Model Enron HT09 SFHH Meetup-NYC Meetup-CA
Hit@10 Hit@20 Hit@10 Hit@20 Hit@10 Hit@20 Hit@10 Hit@20 Hit@10 Hit@20

Common Neighbors 0.318 0.422 0.054 0.084 0.009 0.030 0.123 0.200 0.159 0.358
Jaccard Index 0.531 0.603 0.264 0.380 0.204 0.231 0.215 0.300 0.332 0.487
Adamic/Adar 0.202 0.357 0.054 0.092 0.015 0.027 0.179 0.242 0.224 0.379
Preferential Attachment 0.078 0.129 0.008 0.038 0.009 0.045 0.099 0.141 0.043 0.095
Katz β 0.150 0.307 0.016 0.046 0.021 0.051 0.267 0.352 0.336 0.478
Node2Vec 0.469 0.565 0.067 0.089 0.024 0.039 0.184 0.271 0.362 0.509
CTDNE 0.641 0.719 0.194 0.358 0.195 0.195 0.294 0.379 0.293 0.440
HTNE 0.698 0.775 0.318 0.412 0.006 0.021 0.222 0.314 0.345 0.517
metapath2vec 0.562 0.734 0.515 0.574 0.497 0.572 0.410 0.500 0.418 0.608
HERec 0.141 0.231 0.089 0.092 0.063 0.120 0.209 0.272 0.142 0.228
NMF 0.579 0.820 0.429 0.482 0.222 0.311 0.233 0.332 0.293 0.461
SVD 0.700 0.782 0.434 0.520 0.269 0.362 0.258 0.357 0.315 0.470
one-hot MLP 0.751 0.826 0.488 0.536 0.042 0.120 0.278 0.372 0.284 0.517
set2vec MLP 0.737 0.837 0.474 0.531 0.030 0.072 0.274 0.352 0.306 0.448
set2vec BPR 0.727 0.818 0.488 0.585 0.153 0.344 0.274 0.368 0.323 0.500
DGI 0.643 0.739 0.173 0.280 0.290 0.437 0.200 0.242 0.203 0.336
CVAE 0.757 0.835 0.501 0.571 0.066 0.093 0.287 0.381 0.332 0.522
CVAEH 0.706 0.796 0.768 0.873 0.512 0.743 0.220 0.332 0.181 0.349

MRR scores can indicate how high the models rank the target in the candidate list.

From Table 6.3 , we can see that for all datasets, the highest MRR scores are achieved by

either CVAE or CVAEH. In particular, for the HT09 and SFHH datasets, our CVAEH

model outperforms the competing models by ∼ 14% and ∼ 32%, respectively. For the other

datasets, our method is better than the best competing method by at least ∼ 10%, except

for Meetup-CA (∼ 1% to 2%).

Combining the two metrics, we can see that our method not only predicts the target mem-

bers more accurately, but also ranks them higher than the competing methods. Moreover,

our methods show consistently great performance over the different datasets, as opposed to

that, for example, the Katz β method varies from comparable to ours in Meetup-NYC and

Meetup-CA to significantly poorer in HT09 and SFHH. This is likely because our model does

not explicitly rely on the network topology. Our method is also better than the dynamic

network embedding methods (CTDNE and HTNE) and heterogeneous network embedding

methods (metapath2vec and HERec), as our method combines the advantages of both ap-

proaches, incorporating the dynamic and heterogeneous characteristics of the data.

115

Table6.5. Group recommendation mean reciprocal ranks (MRR). The highest
and the second highest MRR scores are bold.

Model Enron HT09 SFHH Meetup-NYC Meetup-CA
Mrr@10 Mrr@20 Mrr@10 Mrr@20 Mrr@10 Mrr@20 Mrr@10 Mrr@20 Mrr@10 Mrr@20

Common Neighbors 0.135 0.143 0.020 0.022 0.005 0.006 0.052 0.057 0.071 0.083
Jaccard Index 0.264 0.269 0.114 0.122 0.066 0.069 0.132 0.138 0.196 0.208
Adamic/Adar 0.062 0.073 0.013 0.015 0.007 0.009 0.077 0.081 0.084 0.094
Preferential Attachment 0.019 0.023 0.003 0.005 0.000 0.000 0.005 0.007 0.011 0.014
Katz β 0.050 0.061 0.005 0.007 0.010 0.012 0.109 0.115 0.162 0.171
Node2Vec 0.184 0.191 0.015 0.017 0.013 0.014 0.089 0.095 0.179 0.188
CTDNE 0.320 0.326 0.069 0.081 0.115 0.115 0.160 0.166 0.125 0.135
HTNE 0.360 0.366 0.176 0.182 0.001 0.002 0.100 0.106 0.123 0.134
metapath2vec 0.298 0.310 0.347 0.351 0.296 0.301 0.242 0.249 0.192 0.205
HERec 0.069 0.075 0.024 0.025 0.025 0.029 0.124 0.130 0.062 0.069
NMF 0.317 0.330 0.411 0.421 0.184 0.188 0.145 0.152 0.120 0.131
SVD 0.430 0.438 0.382 0.387 0.164 0.178 0.146 0.155 0.141 0.149
one-hot MLP 0.467 0.472 0.392 0.395 0.017 0.022 0.153 0.160 0.103 0.120
set2vec MLP 0.457 0.464 0.393 0.397 0.010 0.013 0.167 0.172 0.115 0.125
set2vec BPR 0.419 0.425 0.379 0.386 0.111 0.127 0.154 0.160 0.143 0.155
DGI 0.403 0.409 0.027 0.034 0.095 0.096 0.125 0.128 0.077 0.086
CVAE 0.472 0.478 0.403 0.407 0.025 0.026 0.161 0.168 0.132 0.145
CVAEH 0.389 0.395 0.537 0.545 0.258 0.275 0.124 0.132 0.073 0.085

Group recommendation In Table 6.4 and 6.5 , we show the hit rates and MRR scores for

the group recommendation task, using different methods over the five datasets. Identical to

the member recommendation, we show the results of the best hyper-parameters and the best

aggregation function (for the graph topology-based and the embedding-based methods).

The results suggest that our CVAEH model outperforms the other models for the HT09

dataset, in both hit rates and MRR scores, leading the runner up by ∼ 50% and ∼ 30%,

respectively. For the SFHH dataset, CVAEH achieves the highest hit rates and the second

highest MRR scores. For the Enron dataset, our CVAE model outperforms the competing

baselines except for Hit@20 in a close second position. For the Meetup-NYC and Meetup-CA

datasets, our methods score the second or third highest hit rates and MRR. Notice that the

static methods like metapath2vec and Jaccard Index perform very well in the Meetup-NYC

and Meetup-CA datasets. This is not surprising, as in these datasets, who joins an event

with whom is very static, given that the users on meetup.com do not frequently change

their interest groups, and per the platform policy, all the events are exclusively joined by

the members of the same interest group. In contrast, for the other datasets where group

membership is constantly changing, our models are better.

116

0 2 4 6 8 10 12 14 16 18
time difference

0.0

0.5

1.0

au
to

co
rr

el
at

io
n

enron

(a) Enron

0 2 4 6 8 10 12 14 16 18
time difference

0.0

0.5

1.0

au
to

co
rr

el
at

io
n

ht09

(b) HT09

0 2 4 6 8 10 12 14 16 18
time difference

0.0

0.5

1.0

au
to

co
rr

el
at

io
n

sfhh

(c) SFHH

0 2 4 6 8 10 12 14 16 18
time difference

0.0

0.5

1.0

au
to

co
rr

el
at

io
n

nyc

(d) Meetup-nyc

Figure6.4. Correlograms for the samples in the datasets. The horizontal axis
is the time difference; the vertical bars (light blue) are the autocorrelations;
the correlation bands (dark blue) indicate the 90% confidence interval. Note,
as the correlograms for Meetup-NYC and Meetup-CA are very similar, we only
show the one for Meetup-NYC. The plots suggest that the samples in HT09
and SFHH are correlated in ∼ 2 steps; while the samples in the other datasets
are time independent.

Comparison between CVAE and CVAEH Notice that in Table 6.2 - 6.5 , CVAEH out-

performs CVAE in HT09 and SFHH; whereas we observe the opposite in the other datasets.

This is because the samples (member-list) in these two datasets are correlated in time, while

those in the others are not. As the CVAEH model uses the history vector hi to take account of

the temporal effect, it performs better when the data are time-correlated. Conversely, if the

data are time-independent, the history vector hi may introduce noise, making the CVAEH

model less effective than the CVAE model. In Fig. 6.4 , we plot the correlograms for the

datasets. The horizontal axis is the time difference (window size); the vertical bars are the

autocorrelations; the correlation bands indicate the 90% confidence interval. The plots (the

middle two) suggest that the samples in HT09 and SFHH are correlated in ∼ 2 steps; while

117

Figure6.5. Case study: Ernon email member composition. The color bars
indicate the percent composition of critical members (”influencers”) grouped
by job titles.

the samples in the other datasets are time independent. In fact, the optimal performance is

achieved using a window size of 2 to calculate the history vector hi for CVAEH.

Case study: Enron email member composition In this experiment we investigate why

particular individuals may be included in an email thread, based upon their relationship with

other individuals also receiving the email. Given that an individual vob is in a group gi, is

there a way to auto-detect the key members that lead to the inclusion of vob in an email? Our

modeling framework is well suited for this task. Recall that in group-recommendation, our

model provides a probability P (v|vob), v ∈ G. We therefore consider the group gi and identify

a group of ”influencers” {v|P (v|vob) ≥ c, v ∈ gi}, where c is a threshold. In particular, we

apply this analysis to the Enron dataset and examine the relationship between vob’s job title

and the influenecers’ job title [78]. Here we use a threshold c = 0.1.

In Fig. 6.5 , we plot a bar chart showing the composition of the influencers for vob

(vertical axis) based on her job titles. The horizontal axis indicates the percent composition

of influencers’ job titles. Moving up the hierarchy, the blue bars shorten, indicating that

regular employees are less likely to influence the higher level management people. A similar

trend can be observed for the director/manager (purple bars). Conversely, the yellow bars

118

lengthen, indicating that presidents become more and more important to the people on the

top. We also see that regular employees primarily join a conversation because their coworkers

or managers are in it. The green bars are long for all roles, suggesting that vice presidents

are generally influential. If vob is a president, she would primarily join a group involving

other management people. Lastly, we can see that a CEO is in an email mainly because

the presidents or vice presidents are in it. Overall, our model reveals that the individual-

influencer relationship obeys the hierarchical structure of the company.

Model reproducibility. We make our datasets and code available at https://github.com/

daDiz/cvae-glp .

6.5 Chapter Summary

In this work, we proposed a new problem - group link prediction. Unlike the traditional

link prediction which predicts the link between two individuals, our task was to predict

the link between an individual and a group. We decompose the problem into member-

recommendation and group-recommendation tasks. To solve these two tasks, we proposed

a CVAE model and a CVAEH model that takes account of the historical events. The

models learned a conditional probability distribution over the unobserved members given

the observed ones. We compared our model with a series of competing methods over five

real-world datasets. Our CVAEH model shows superior performance for the datasets where

the group organizations are correlated in time; while our CVAE model are better in the other

cases.

119

https://github.com/daDiz/cvae-glp
https://github.com/daDiz/cvae-glp

7. Conclusions and future work

In this thesis, we studied the interplay between network topology and event sequence. We

divided the problems under consideration into two tracks - given a network, predicting events,

and given events, predicting the network. On the first track, we performed two tasks: in

Chapter 3 , we predicted future events occurring on the nodes of a known network, based

on historical events on the same network, using a composite LSTM model with a second-

order statistic loss; in Chapter 4 , we detected the source(s) of a propagation process on

a network, given multiple snapshots of the network states, using a neural network model

built on spatial-temporal graph convolution. The second track also included two tasks: in

Chapter 5 , we revealed the influence network among a group of Twitter users, based on a time

series of their tweets, using the Hawkes Binomial Topic Model (HBTM); in Chapter 6 , we

studied the link formation process in a heterogeneous network, and predicted links between a

group of nodes and an individual node, from their previous connections, using a conditional

variational autoencoder (CVAE) based model. In the respective chapters, we evaluated our

models against a series of state-of-the-art baselines, over synthetic and real-world datasets,

and the results proved the superiority of our models.

We see several potential directions for future work. For the composite LSTM in Chapter

3 , we can leverage the technique introduced in the neural Hawkes process [95], to incorporate

the continuous timestamps, such that the model not only predicts where, but also when the

next event occurs. We like to extend the source detection model in Chapter 4 , so that it

can recover the entire process, a task that is intuitively more difficult than predicting just

the source(s). For the Hawkes Binomial Topic Model in Chapter 5 , we like to construct an

evolving influence network using the tweets by government officials prior to and during the

pandemic, to find out how bi-partisan cooperation shifts during national emergencies. Last

but not least, for group link prediction in Chapter 6 , we like to explore other options for

encoding the historical events, for example, combining CVAE with RNN [18].

120

REFERENCES

[1] Mohammad Al Hasan and Mohammed J Zaki. “A survey of link prediction in social
networks”. In: Social network data analytics. 2011, pp. 243–275.

[2] Réka Albert and Albert-László Barabási. “Statistical mechanics of complex networks”.
In: Rev. Mod. Phys. 74 (1 Jan. 2002), pp. 47–97.

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein GAN”. In: arXiv e-
prints, arXiv:1701.07875 (Jan. 2017), arXiv:1701.07875. arXiv: 1701.07875 [stat.ML] .

[4] D.M. Auerbach et al. “Cluster of Cases of the Acquired Immune Deficiency Syndrome.
Patients Linked by Sexual Contact”. In: Journal of Urology 132.2 (1984), pp. 421–421.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine Translation
by Jointly Learning to Align and Translate”. In: ICLR. 2015.

[6] Baruch Barzel and Albert-László Barabási. “Network link prediction by global silencing
of indirect correlations”. In: Nature Biotechnology 31.8 (2013), pp. 720–725. doi: 10.
1038/nbt.2601 .

[7] Y. Bengio, P. Simard, and P. Frasconi. “Learning long-term dependencies with gradient
descent is difficult”. In: IEEE Transactions on Neural Networks 5.2 (Mar. 1994), pp. 157–
166. issn: 1045-9227. doi: 10.1109/72.279181 .

[8] Ranran Bian et al. “Network Embedding and Change Modeling in Dynamic Heteroge-
neous Networks”. In: SIGIR’19. Paris, France: Association for Computing Machinery,
2019, pp. 861–864. isbn: 9781450361729. doi: 10.1145/3331184.3331273 . url: https:
//doi.org/10.1145/3331184.3331273 .

[9] Niklas Boers et al. “Complex networks reveal global pattern of extreme-rainfall telecon-
nections”. In: Nature 566.7744 (2019), pp. 373–377. doi: 10.1038/s41586-018-0872-x .
url: https://doi.org/10.1038/s41586-018-0872-x .

[10] Aleksandar Bojchevski and Stephan Günnemann. “Deep Gaussian Embedding of Graphs:
Unsupervised Inductive Learning via Ranking”. In: ICLR ’18. 2018.

[11] Joan Bruna et al. “Spectral Networks and Locally Connected Networks on Graphs”.
In: arXiv e-prints, arXiv:1312.6203 (Dec. 2013), arXiv:1312.6203. arXiv: 1312 . 6203
[cs.LG] .

[12] Cody Buntain, Erin McGrath, and Brandon Behlendorf. “Sampling social media: Sup-
porting information retrieval from microblog data resellers with text, network, and spa-
tial analysis”. In: Proc. of the Hawaii Intl. Conf. on System Sciences. 2018.

121

https://arxiv.org/abs/1701.07875
https://doi.org/10.1038/nbt.2601
https://doi.org/10.1038/nbt.2601
https://doi.org/10.1109/72.279181
https://doi.org/10.1145/3331184.3331273
https://doi.org/10.1145/3331184.3331273
https://doi.org/10.1145/3331184.3331273
https://doi.org/10.1038/s41586-018-0872-x
https://doi.org/10.1038/s41586-018-0872-x
https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1312.6203

[13] Meeyoung Cha et al. “Measuring User Influence in Twitter: The Million Follower Fal-
lacy”. In: Fourth International AAAI Conference on Weblogs and Social Media. May
2010. url: http://aaai.org/ocs/index.php/ICWSM/ICWSM10/paper/view/1538/0 .

[14] H. Chen, X. Li, and Z. Huang. “Link prediction approach to collaborative filtering”. In:
JCDL ’05. June 2005, pp. 141–142.

[15] Yicheng Cheng, Murat Dundar, and George Mohler. “A coupled ETAS-I 2 GMM point
process with applications to seismic fault detection”. In: Ann. Appl. Stat. 12.3 (Sept.
2018), pp. 1853–1870. doi: 10.1214/18-AOAS1134 . url: https://doi.org/10.1214/18-
AOAS1134 .

[16] Matteo Chinazzi, Jessica T. Davis, et al. “The effect of travel restrictions on the spread of
the 2019 novel coronavirus (COVID-19) outbreak”. In: Science 368.6489 (2020), pp. 395–
400. issn: 0036-8075.

[17] Kyunghyun Cho et al. “Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation”. In: CoRR abs/1406.1078 (2014). arXiv: 1406.1078 .
url: http://arxiv.org/abs/1406.1078 .

[18] Junyoung Chung et al. “A Recurrent Latent Variable Model for Sequential Data”. In:
Advances in Neural Information Processing Systems. Vol. 28. Curran Associates, Inc.,
2015.

[19] Andrzej Cichocki and Anh Huy Phan. “Fast Local Algorithms for Large Scale Nonnega-
tive Matrix and Tensor Factorizations”. In: IEICE Trans. Fundam. Electron. Commun.
Comput. Sci. 92-A (2009), pp. 708–721.

[20] Matteo et al Cinelli. “The covid-19 social media infodemic”. In: arXiv:2003.05004 (2020).

[21] Jesper Dall and Michael Christensen. “Random geometric graphs”. In: Phys. Rev. E 66
(1 July 2002), p. 016121.

[22] Vachik S. Dave et al. “Neural-Brane: Neural Bayesian Personalized Ranking for At-
tributed Network Embedding”. In: Data Science and Engineering (2018).

[23] Eric H. Davidson et al. “A Genomic Regulatory Network for Development”. In: Science
295.5560 (2002), pp. 1669–1678. issn: 0036-8075. doi: 10.1126/science.1069883 .

[24] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convolutional Neural
Networks on Graphs with Fast Localized Spectral Filtering”. In: Advances in Neural
Information Processing Systems. Vol. 29. 2016, pp. 3844–3852.

122

http://aaai.org/ocs/index.php/ICWSM/ICWSM10/paper/view/1538/0
https://doi.org/10.1214/18-AOAS1134
https://doi.org/10.1214/18-AOAS1134
https://doi.org/10.1214/18-AOAS1134
https://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
https://doi.org/10.1126/science.1069883

[25] Luca Dell’Anna. “Solvable delay model for epidemic spreading: the case of Covid-19 in
Italy”. In: medRxiv (2020).

[26] Philip M. Dixon. “Ripley’s K Function”. In: Wiley StatsRef: Statistics Reference Online.
2014. isbn: 9781118445112. doi: 10.1002/9781118445112.stat07751 . eprint: https://
onlinelibrary.wiley.com/doi/pdf/10.1002/9781118445112.stat07751 . url: https ://
onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat07751 .

[27] Benjamin Doerr, Mahmoud Fouz, and Tobias Friedrich. “Why Rumors Spread so Quickly
in Social Networks”. In: Commun. ACM 55.6 (June 2012), pp. 70–75. issn: 0001-0782.

[28] Carl Doersch. Tutorial on Variational Autoencoders. 2021. arXiv: 1606.05908 [stat.ML] .

[29] W. Dong, W. Zhang, and C. W. Tan. “Rooting out the rumor culprit from suspects”.
In: 2013 IEEE International Symposium on Information Theory. 2013, pp. 2671–2675.

[30] Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. “Metapath2vec: Scalable Rep-
resentation Learning for Heterogeneous Networks”. In: KDD ’17. 2017.

[31] Pauline van den Driessche. “Reproduction numbers of infectious disease models”. In:
Infectious Disease Modelling 2.3 (2017), pp. 288–303.

[32] Nan Du et al. “Dirichlet-hawkes processes with applications to clustering continuous-
time document streams”. In: Proceedings of the 21th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. ACM. 2015, pp. 219–228.

[33] Nan Du et al. “Recurrent Marked Temporal Point Processes: Embedding Event History
to Vector”. In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’16. San Francisco, California, USA, 2016,
pp. 1555–1564. isbn: 978-1-4503-4232-2. doi: 10 .1145/2939672 .2939875 . url: http :
//doi.acm.org/10.1145/2939672.2939875 .

[34] Nan Du et al. “Scalable Influence Estimation in Continuous-Time Diffusion Networks”.
In: Advances in Neural Information Processing Systems 26. Ed. by C. J. C. Burges et al.
2013, pp. 3147–3155.

[35] Nan Du et al. “Uncover Topic-Sensitive Information Diffusion Networks”. In: AISTATS.
2013.

[36] Christopher L. DuBois et al. “netdata: A Collection of Network Data”. In: (2003).

[37] Hridoy Sankar Dutta et al. “HawkesEye: Detecting Fake Retweeters using Hawkes Pro-
cess and Topic Modeling”. In: IEEE Transactions on Information Forensics and Security
(2020).

123

https://doi.org/10.1002/9781118445112.stat07751
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118445112.stat07751
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118445112.stat07751
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat07751
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat07751
https://arxiv.org/abs/1606.05908
https://doi.org/10.1145/2939672.2939875
http://doi.acm.org/10.1145/2939672.2939875
http://doi.acm.org/10.1145/2939672.2939875

[38] Michael Eichler, Rainer Dahlhaus, and Johannes Dueck. “Graphical Modeling for Mul-
tivariate Hawkes Processes with Nonparametric Link Functions”. In: Journal of Time
Series Analysis 38.2 (2017), pp. 225–242. doi: https://doi.org/10.1111/jtsa.12213 .

[39] Mehrdad Farajtabar et al. “Coevolve: A joint point process model for information diffu-
sion and network evolution”. In: The Journal of Machine Learning Research 18.1 (2017),
pp. 1305–1353.

[40] Mehrdad Farajtabar et al. “Shaping Social Activity by Incentivizing Users”. In: CoRR
abs/1408.0406 (2014). arXiv: 1408.0406 . url: http://arxiv.org/abs/1408.0406 .

[41] Katayoun Farrahi, Rémi Emonet, and Manuel Cebrian. “Epidemic contact tracing via
communication traces”. In: PloS one 9.5 (May 2014), e95133–e95133.

[42] Wei Feng and Jianyong Wang. “Incorporating Heterogeneous Information for Personal-
ized Tag Recommendation in Social Tagging Systems”. In: KDD ’12. 2012.

[43] C. Févotte and J. Idier. “Algorithms for Nonnegative Matrix Factorization with the
�-Divergence”. In: Neural Computation 23.9 (2011), pp. 2421–2456.

[44] Vincenzo Fioriti and Marta Chinnici. “Predicting the sources of an outbreak with a
spectral technique”. In: Appl. Math. Sci. 8.135 (2014), pp. 6775–6782.

[45] John Frank and Charles Kingman. Poisson processes. 1993.

[46] Mathieu G’enois and Alain Barrat. “Can co-location be used as a proxy for face-to-face
contacts?” In: EPJ Data Science 7.1 (May 2018), p. 11.

[47] Timothy S. Gardner et al. “Inferring Genetic Networks and Identifying Compound Mode
of Action via Expression Profiling”. In: Science 301.5629 (2003), pp. 102–105. issn: 0036-
8075. doi: 10.1126/science.1081900 .

[48] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and Harnessing
Adversarial Examples”. In: arXiv e-prints, arXiv:1412.6572 (Dec. 2014), arXiv:1412.6572.
arXiv: 1412.6572 [stat.ML] .

[49] Ian J. Goodfellow et al. “Generative Adversarial Nets”. In: Proceedings of the 27th Inter-
national Conference on Neural Information Processing Systems - Volume 2. NIPS’14.
Montreal, Canada, 2014, pp. 2672–2680. url: http://dl .acm.org/citation.cfm?id=
2969033.2969125 .

[50] Alex Graves. “Generating Sequences With Recurrent Neural Networks”. In: arXiv (2013).
arXiv: 1308.0850 .

124

https://doi.org/https://doi.org/10.1111/jtsa.12213
https://arxiv.org/abs/1408.0406
http://arxiv.org/abs/1408.0406
https://doi.org/10.1126/science.1081900
https://arxiv.org/abs/1412.6572
http://dl.acm.org/citation.cfm?id=2969033.2969125
http://dl.acm.org/citation.cfm?id=2969033.2969125
https://arxiv.org/abs/1308.0850

[51] Alex Graves and Navdeep Jaitly. “Towards End-to-end Speech Recognition with Recur-
rent Neural Networks”. In: Proceedings of the 31st International Conference on Inter-
national Conference on Machine Learning - Volume 32. ICML’14. Beijing, China, 2014,
pp. II-1764–II-1772. url: http://dl.acm.org/citation.cfm?id=3044805.3045089 .

[52] Karol Gregor et al. “DRAW: A Recurrent Neural Network For Image Generation”. In:
CoRR abs/1502.04623 (2015). arXiv: 1502.04623 . url: http://arxiv.org/abs/1502.
04623 .

[53] Aditya Grover and Jure Leskovec. “Node2Vec: Scalable Feature Learning for Networks”.
In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’16. San Francisco, California, USA, 2016, pp. 855–
864. isbn: 978-1-4503-4232-2. doi: 10.1145/2939672.2939754 . url: http://doi.acm.org/
10.1145/2939672.2939754 .

[54] Aditya Grover and Jure Leskovec. “node2vec: Scalable Feature Learning for Networks”.
In: KDD ’16. 2016.

[55] N. Halko, P. G. Martinsson, and J. A. Tropp. “Finding Structure with Randomness:
Probabilistic Algorithms for Constructing Approximate Matrix Decompositions”. In:
SIAM Rev. 53.2 (May 2011), pp. 217–288. issn: 0036-1445.

[56] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive Representation Learning on
Large Graphs”. In: NIPS ’17. 2017.

[57] William L. Hamilton, Rex Ying, and Jure Leskovec. “Representation Learning on Graphs:
Methods and Applications”. In: IEEE Data Engineering Bulletin (2017).

[58] David K. Hammond, Pierre Vandergheynst, and Rémi Gribonval. “Wavelets on graphs
via spectral graph theory”. In: Applied and Computational Harmonic Analysis 30.2
(2011), pp. 129–150. issn: 1063-5203. doi: https://doi.org/10.1016/j.acha.2010.04.005 .
url: http://www.sciencedirect.com/science/article/pii/S1063520310000552 .

[59] Mohammad Al Hasan et al. “Link prediction using supervised learning”. In: In Proc. of
SDM 06 workshop on Link Analysis, Counterterrorism and Security. 2006.

[60] Alan G. Hawkes. “Spectra of Some Self-Exciting and Mutually Exciting Point Pro-
cesses”. In: Biometrika 58.1 (1971), pp. 83–90. issn: 00063444. url: http://www.jstor.
org/stable/2334319 .

[61] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural Com-
putation 9 (1997), pp. 1735–1780.

125

http://dl.acm.org/citation.cfm?id=3044805.3045089
https://arxiv.org/abs/1502.04623
http://arxiv.org/abs/1502.04623
http://arxiv.org/abs/1502.04623
https://doi.org/10.1145/2939672.2939754
http://doi.acm.org/10.1145/2939672.2939754
http://doi.acm.org/10.1145/2939672.2939754
https://doi.org/https://doi.org/10.1016/j.acha.2010.04.005
http://www.sciencedirect.com/science/article/pii/S1063520310000552
http://www.jstor.org/stable/2334319
http://www.jstor.org/stable/2334319

[62] Petter Holme and Jari Saramäki. “Temporal networks”. In: Physics Reports 519.3 (Oct.
2012), pp. 97–125. issn: 0370-1573. doi: 10.1016/j.physrep.2012.03.001 . url: http:
//dx.doi.org/10.1016/j.physrep.2012.03.001 .

[63] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward net-
works are universal approximators”. In: Neural Networks 2.5 (1989), pp. 359–366.

[64] Lorenzo Isella et al. “What’s in a Crowd? Analysis of Face-to-Face Behavioral Networks”.
In: Journal of Theoretical Biology 271.1 (2011), pp. 166–180.

[65] Oleg Ivanov, Michael Figurnov, and Dmitry Vetrov. “Variational Autoencoder with
Arbitrary Conditioning”. In: ICLR ’19. 2019.

[66] Vicnesh Jahmunah, Vidya K. Sudarshan, et al. “Future IoT tools for COVID-19 contact
tracing and prediction: A review of the state-of-the-science”. In: International Journal
of Imaging Systems and Technology 31.2 (2021), pp. 455–471.

[67] J. Jiang et al. “Identifying Propagation Sources in Networks: State-of-the-Art and Com-
parative Studies”. In: IEEE Communications Surveys Tutorials 19.1 (2017), pp. 465–
481.

[68] Brian Karrer and M. E. J. Newman. “Message passing approach for general epidemic
models”. In: Phys. Rev. E 82 (1 July 2010), p. 016101.

[69] W. O. Kermack and A. G. McKendrick. “A Contribution to the Mathematical Theory
of Epidemics”. In: Proceedings of the Royal Society of London. Series A, Containing
Papers of a Mathematical and Physical Character 115.772 (1927), pp. 700–721.

[70] B. Killworth and H. Bernard. “Informant accuracy in social network data”. In: Human
Organization 35 (1976), pp. 269–286.

[71] Minkyoung Kim, Dean Paini, and Raja Jurdak. “Real-world diffusion dynamics based
on point process approaches: A review”. In: Artificial Intelligence Review 53.1 (2020),
pp. 321–350.

[72] Diederik P Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In: ICLR
’14. 2014.

[73] Durk P Kingma et al. “Semi-supervised Learning with Deep Generative Models”. In:
Advances in Neural Information Processing Systems. Vol. 27. 2014.

[74] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph Convo-
lutional Networks”. In: ICLR. 2017.

126

https://doi.org/10.1016/j.physrep.2012.03.001
http://dx.doi.org/10.1016/j.physrep.2012.03.001
http://dx.doi.org/10.1016/j.physrep.2012.03.001

[75] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph Convo-
lutional Networks”. In: International Conference on Learning Representations (ICLR).
2017.

[76] Istvan Z. Kiss, Gergely Röst, and Zsolt Vizi. “Generalization of Pairwise Models to non-
Markovian Epidemics on Networks”. In: Phys. Rev. Lett. 115 (7 Aug. 2015), p. 078701.

[77] Istvan Z Kiss, Joel C Miller, and Peter Simon. (Book) Mathematics of epidemics on
networks: from exact to approximate models. Springer, 2017.

[78] Bryan Klimt and Yiming Yang. “The Enron Corpus: A New Dataset for Email Classifi-
cation Research”. In: Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes
in Computer Science) 3201 (Sept. 2004), pp. 217–226.

[79] Yehuda Koren, Robert Bell, and Chris Volinsky. “Matrix Factorization Techniques for
Recommender Systems”. In: Computer 42.8 (Aug. 2009), pp. 30–37. issn: 0018-9162.

[80] Haewoon Kwak et al. “What is Twitter, a social network or a news media?” In: Proceed-
ings of the 19th international conference on World wide web. ACM. 2010, pp. 591–600.
isbn: 9781605587998.

[81] Eric Lai et al. Topic Time Series Analysis of Microblogs. Tech. rep. DTIC Document,
2014.

[82] Ni Lao and William W. Cohen. “Relational retrieval using a combination of path-
constrained random walks”. In: Machine Learning 81 (2010), pp. 53–67.

[83] Y. Lecun et al. “Gradient-based learning applied to document recognition”. In: Proceed-
ings of the IEEE 86.11 (Nov. 1998), pp. 2278–2324. issn: 0018-9219. doi: 10.1109/5.
726791 .

[84] Chengwei Lei and Jianhua Ruan. “A novel link prediction algorithm for reconstructing
protein–protein interaction networks by topological similarity”. In: Bioinformatics 29.3
(Dec. 2012), pp. 355–364.

[85] Erik A. Lewis and George O. Mohler. “RESEARCH ARTICLE A Nonparametric EM
algorithm for Multiscale Hawkes Processes”. In: 2011.

[86] Jundong Li et al. “Attributed Network Embedding for Learning in a Dynamic Environ-
ment”. In: CIKM ’17. 2017.

[87] David Liben-Nowell and Jon Kleinberg. “The Link Prediction Problem for Social Net-
works”. In: CIKM ’03. 2003.

127

https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791

[88] Xingjie Liu et al. “Exploring Personal Impact for Group Recommendation”. In: CIKM
’12. 2012.

[89] Andrey Y. Lokhov et al. “Inferring the origin of an epidemic with a dynamic message-
passing algorithm”. In: Phys. Rev. E 90 (1 July 2014), p. 012801.

[90] Linyuan Lü and Tao Zhou. “Link prediction in complex networks: A survey”. In: Physica
A: statistical mechanics and its applications 390.6 (2011), pp. 1150–1170.

[91] Dixin Luo et al. “Multi-task Multi-dimensional Hawkes Processes for Modeling Event Se-
quences”. In: Proceedings of the 24th International Conference on Artificial Intelligence.
IJCAI’15. Buenos Aires, Argentina, 2015, pp. 3685–3691. isbn: 978-1-57735-738-4. url:
http://dl.acm.org/citation.cfm?id=2832747.2832763 .

[92] W. Luo, W. P. Tay, and M. Leng. “Identifying Infection Sources and Regions in Large
Networks”. In: IEEE Transactions on Signal Processing 61.11 (2013), pp. 2850–2865.

[93] Yao Ma et al. “Streaming Graph Neural Networks”. In: CoRR abs/1810.10627 (2018).
arXiv: 1810.10627 . url: http://arxiv.org/abs/1810.10627 .

[94] David Marsan and Olivier Lengliné. “Extending Earthquakes’ Reach Through Cascad-
ing”. In: Science 319.5866 (2008), pp. 1076–1079. issn: 0036-8075. doi: 10.1126/science.
1148783 . eprint: http://science.sciencemag.org/content/319/5866/1076.full.pdf . url:
http://science.sciencemag.org/content/319/5866/1076 .

[95] H. Mei and J. Eisner. “The Neural Hawkes Process: A Neurally Self-Modulating Mul-
tivariate Point Process”. In: CoRR abs/1612.09328 (2016). arXiv: 1612 . 09328 . url:
http://arxiv.org/abs/1612.09328 .

[96] Tomas Mikolov et al. “Distributed Representations of Words and Phrases and their
Compositionality”. In: NIPS ’13. 2013.

[97] Joel C. Miller and Tony Ting. “EoN (Epidemics on Networks): a fast, flexible Python
package for simulation, analytic approximation, and analysis of epidemics on networks”.
In: Journal of Open Source Software 4.44 (2019), p. 1731.

[98] Lawrence Mitchell and Michael E. Cates. “Hawkes process as a model of social interac-
tions: a view on video dynamics”. In: Journal of Physics A Mathematical General 43,
045101 (Jan. 2010), p. 045101. doi: 10.1088/1751-8113/43/4/045101 . arXiv: 0907.3864
[physics.soc-ph] .

[99] G. O. Mohler et al. “Self-Exciting Point Process Modeling of Crime”. In: Journal of the
American Statistical Association 106.493 (2011), pp. 100–108. doi: 10.1198/jasa.2011.
ap09546 . eprint: https://doi.org/10.1198/jasa.2011.ap09546 .

128

http://dl.acm.org/citation.cfm?id=2832747.2832763
https://arxiv.org/abs/1810.10627
http://arxiv.org/abs/1810.10627
https://doi.org/10.1126/science.1148783
https://doi.org/10.1126/science.1148783
http://science.sciencemag.org/content/319/5866/1076.full.pdf
http://science.sciencemag.org/content/319/5866/1076
https://arxiv.org/abs/1612.09328
http://arxiv.org/abs/1612.09328
https://doi.org/10.1088/1751-8113/43/4/045101
https://arxiv.org/abs/0907.3864
https://arxiv.org/abs/0907.3864
https://doi.org/10.1198/jasa.2011.ap09546
https://doi.org/10.1198/jasa.2011.ap09546
https://doi.org/10.1198/jasa.2011.ap09546

[100] George Mohler et al. “Hawkes binomial topic model with applications to coupled conflict-
Twitter data”. In: DOI: 10.13140/RG.2.2.13638.83527 (2016).

[101] GO Mohler et al. “Self-exciting point process modeling of crime”. In: Journal of the
American Statistical Association 106.493 (2011), pp. 100–108.

[102] M. E. J. Newman. “Coauthorship networks and patterns of scientific collaboration”. In:
Proceedings of the National Academy of Sciences 101.suppl 1 (2004), pp. 5200–5205.

[103] M. E. J. Newman. Networks: an introduction. 2010.

[104] M. E. J. Newman, D. J. Watts, and S. H. Strogatz. “Random graph models of so-
cial networks”. In: Proceedings of the National Academy of Sciences 99.suppl 1 (2002),
pp. 2566–2572.

[105] Giang Hoang Nguyen et al. “Continuous-Time Dynamic Network Embeddings”. In:
WWW ’18. 2018.

[106] Ornulf Borgan Odd Aalen and Hakon Gjessing. Survival and event history analysis: a
process point of view. 2008.

[107] Yosihiko Ogata. “On Lewis’ simulation method for point processes”. In: IEEE Trans.
Information Theory 27 (1981), pp. 23–30.

[108] Yosihiko Ogata. “Space-Time Point-Process Models for Earthquake Occurrences”. In:
Annals of the Institute of Statistical Mathematics 50.2 (1998), pp. 379–402. url: https:
//EconPapers.repec.org/RePEc:spr:aistmt:v:50:y:1998:i:2:p:379-402 .

[109] Aäron van den Oord et al. “WaveNet: A Generative Model for Raw Audio”. In: CoRR
abs/1609.03499 (2016). arXiv: 1609.03499 . url: http://arxiv.org/abs/1609.03499 .

[110] Openreview. https://openreview.net/forum?id=xQnvyc6r3LL . 2021.

[111] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the Difficulty of Training
Recurrent Neural Networks”. In: Proceedings of the 30th International Conference on
International Conference on Machine Learning - Volume 28. ICML’13. Atlanta, GA,
USA, 2013, pp. III-1310–III-1318. url: http://dl.acm.org/citation.cfm?id=3042817.
3043083 .

[112] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “DeepWalk: Online Learning of Social
Representations”. In: KDD ’14. 2014.

129

https://EconPapers.repec.org/RePEc:spr:aistmt:v:50:y:1998:i:2:p:379-402
https://EconPapers.repec.org/RePEc:spr:aistmt:v:50:y:1998:i:2:p:379-402
https://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
https://openreview.net/forum?id=xQnvyc6r3LL
http://dl.acm.org/citation.cfm?id=3042817.3043083
http://dl.acm.org/citation.cfm?id=3042817.3043083

[113] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “DeepWalk: Online Learning of Social
Representations”. In: Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. KDD ’14. New York, New York, USA, 2014,
pp. 701–710. isbn: 978-1-4503-2956-9. doi: 10.1145/2623330.2623732 . url: http://doi.
acm.org/10.1145/2623330.2623732 .

[114] T. N. Pham et al. “A general graph-based model for recommendation in event-based
social networks”. In: ICDE ’15. 2015, pp. 567–578.

[115] Andreas Plesch et al. “Community Fault Model (CFM) for Southern California.” In:
Bulletin of the Seismological Society of America 97(6) (2007).

[116] B. A. Prakash, J. Vreeken, and C. Faloutsos. “Spotting Culprits in Epidemics: How
Many and Which Ones?” In: 2012 IEEE 12th International Conference on Data Mining.
2012, pp. 11–20.

[117] B. Aditya Prakash, Jilles Vreeken, and Christos Faloutsos. “Efficiently spotting the
starting points of an epidemic in a large graph”. In: Knowl. Inf. Syst. 38.1 (2014),
pp. 35–59.

[118] Juan A. Recio-Garcia et al. “Personality Aware Recommendations to Groups”. In: Rec-
Sys ’09. 2009.

[119] Steffen Rendle et al. “BPR: Bayesian Personalized Ranking from Implicit Feedback”.
In: UAI ’09. 2009.

[120] B. D. Ripley. “The Second-Order Analysis of Stationary Point Processes”. In: Journal
of Applied Probability 13.2 (1976), pp. 255–266. issn: 00219002. url: http://www.jstor.
org/stable/3212829 .

[121] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Neurocomputing:
Foundations of Research”. In: ed. by James A. Anderson and Edward Rosenfeld. Cam-
bridge, MA, USA, 1988. Chap. Learning Representations by Back-propagating Errors,
pp. 696–699. isbn: 0-262-01097-6.

[122] Marcel Salathé et al. “A high-resolution human contact network for infectious dis-
ease transmission”. In: Proceedings of the National Academy of Sciences 107.51 (2010),
pp. 22020–22025.

[123] SCEDC. Southern California Earthquake Center. Caltech.Dataset. 2013. doi: 10.7909/
C3WD3xH1 . url: https://service.scedc.caltech.edu/eq-catalogs/ .

130

https://doi.org/10.1145/2623330.2623732
http://doi.acm.org/10.1145/2623330.2623732
http://doi.acm.org/10.1145/2623330.2623732
http://www.jstor.org/stable/3212829
http://www.jstor.org/stable/3212829
https://doi.org/10.7909/C3WD3xH1
https://doi.org/10.7909/C3WD3xH1
https://service.scedc.caltech.edu/eq-catalogs/

[124] Hao Sha, Mohammad Al Hasan, and George Mohler. “Learning network event sequences
using long short-term memory and second-order statistic loss”. In: Statistical Analysis
and Data Mining: The ASA Data Science Journal 14.1 (2021), pp. 61–73. doi: https:
//doi.org/10.1002/sam.11489 .

[125] Hao Sha et al. “Dynamic topic modeling of the COVID-19 Twitter narrative among
U.S. governors and cabinet executives”. In: arXiv e-prints (Apr. 2020).

[126] Chintan Shah et al. “Finding Patient Zero: Learning Contagion Source with Graph
Neural Networks”. In: (2020).

[127] Devavrat Shah and Tauhid Zaman. “Detecting Sources of Computer Viruses in Net-
works: Theory and Experiment”. In: SIGMETRICS Perform. Eval. Rev. 38.1 (June
2010), pp. 203–214.

[128] Devavrat Shah and Tauhid Zaman. “Rumors in a Network: Who’s the Culprit?” In:
IEEE Trans. Inf. Theory 57.8 (Aug. 2011), pp. 5163–5181.

[129] Zhesi Shen et al. “Reconstructing propagation networks with natural diversity and iden-
tifying hidden sources”. In: Nature Communications 5.1 (2014), p. 4323. doi: 10.1038/
ncomms5323 .

[130] N. Sherborne et al. “Mean-field models for non-Markovian epidemics on networks: from
edge-based compartmental to pairwise models”. In: Journal of Mathematical Biology
76.3 (2018), pp. 755–778.

[131] C. Shi et al. “A survey of heterogeneous information network analysis”. In: IEEE Trans-
actions on Knowledge and Data Engineering 29.1 (2017), pp. 17–37.

[132] C. Shi et al. “Heterogeneous Information Network Embedding for Recommendation”.
In: IEEE Transactions on Knowledge and Data Engineering 31.2 (2019), pp. 357–370.

[133] M. B. Short et al. “Gang rivalry dynamics via coupled point process networks”. In:
Discrete & Continuous Dynamical Systems - B 19.1531-3492_2014_5_1459 (2014),
p. 1459. issn: 1531-3492.

[134] Hava T. Siegelmann and Eduardo D. Sontag. “Turing computability with neural nets”.
In: Applied Mathematics Letters 4.6 (1991), pp. 77–80. issn: 0893-9659.

[135] Aleksandr Simma and Michael I Jordan. “Modeling events with cascades of Poisson
processes”. In: arXiv preprint arXiv:1203.3516 (2012).

[136] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. “Learning Structured Output Represen-
tation using Deep Conditional Generative Models”. In: NIPS ’15. 2015.

131

https://doi.org/https://doi.org/10.1002/sam.11489
https://doi.org/https://doi.org/10.1002/sam.11489
https://doi.org/10.1038/ncomms5323
https://doi.org/10.1038/ncomms5323

[137] Joshua M. Stuart et al. “A Gene-Coexpression Network for Global Discovery of Con-
served Genetic Modules”. In: Science 302.5643 (2003), pp. 249–255. doi: 10 . 1126 /
science.1087447 .

[138] Xiaoyuan Su and Taghi M. Khoshgoftaar. “A Survey of Collaborative Filtering Tech-
niques”. In: Adv. in Artif. Intell. 2009 (Jan. 2009).

[139] Yizhou Sun and Jiawei Han. Mining Heterogeneous Information Networks: Principles
and Methodologies. Morgan Claypool Publishers, 2012.

[140] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. “Sequence to Sequence Learning with
Neural Networks”. In: CoRR abs/1409.3215 (2014). arXiv: 1409 .3215 . url: http ://
arxiv.org/abs/1409.3215 .

[141] Xi Tan, Vinayak Rao, and Jennifer Neville. “The Indian Buffet Hawkes Process to Model
Evolving Latent Influences.” In: UAI. 2018, pp. 795–804.

[142] Jian Tang et al. “LINE: Large-Scale Information Network Embedding”. In: WWW ’15.
2015.

[143] Xiaolu Tang, Changcheng Wu, et al. “On the origin and continuing evolution of SARS-
CoV-2”. In: National Science Review 7.6 (Mar. 2020), pp. 1012–1023.

[144] Mike Thelwall and Saheeda Thelwall. “Covid-19 Tweeting in English: Gender Differ-
ences”. In: aarXiv:2003.11090 (2020).

[145] Mike Thelwall and Saheeda Thelwall. “Retweeting for COVID-19: Consensus building,
information sharing, dissent, and lockdown life”. In: arXiv:2004.02793 (2020).

[146] Marc Timme. “Revealing Network Connectivity from Response Dynamics”. In: Phys.
Rev. Lett. 98 (22 May 2007), p. 224101. doi: 10.1103/PhysRevLett.98.224101 . url:
https://link.aps.org/doi/10.1103/PhysRevLett.98.224101 .

[147] Lauren Tindale et al. “Transmission interval estimates suggest pre-symptomatic spread
of COVID-19”. In: (2020).

[148] Alejandro Veen and Frederic P Schoenberg. “Estimation of space–time branching pro-
cess models in seismology using an em–type algorithm”. In: Journal of the American
Statistical Association 103.482 (2008), pp. 614–624.

[149] Theresa A. Velden, Asif-ul Haque, and Carl J. Lagoze. “A New Approach to Analyz-
ing Patterns of Collaboration in Co-authorship Networks - Mesoscopic Analysis and
Interpretation”. In: arXiv e-prints (2009).

132

https://doi.org/10.1126/science.1087447
https://doi.org/10.1126/science.1087447
https://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
https://doi.org/10.1103/PhysRevLett.98.224101
https://link.aps.org/doi/10.1103/PhysRevLett.98.224101

[150] Petar Veličković et al. “Deep Graph Infomax”. In: ICLR ’19. 2019.

[151] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. “Order Matters: Sequence to se-
quence for sets”. In: ICLR ’15. 2015.

[152] Wen-Xu Wang et al. “Predicting Catastrophes in Nonlinear Dynamical Systems by
Compressive Sensing”. In: Phys. Rev. Lett. 106 (15 Apr. 2011), p. 154101.

[153] Y. Wang et al. “Modeling the Propagation of Worms in Networks: A Survey”. In: IEEE
Communications Surveys Tutorials 16.2 (2014), pp. 942–960. doi: 10.1109/SURV.2013.
100913.00195 .

[154] Zhaoxu Wang et al. “Rumor Source Detection with Multiple Observations: Fundamental
Limits and Algorithms”. In: SIGMETRICS ’14. 2014, pp. 1–13.

[155] Zheng Wang et al. “Multiple Source Detection without Knowing the Underlying Prop-
agation Model”. In: AAAI’17. 2017, pp. 217–223.

[156] P. J. Werbos. “Backpropagation through time: what it does and how to do it”. In:
Proceedings of the IEEE 78.10 (1990), pp. 1550–1560.

[157] Shuai Xiao et al. “Modeling The Intensity Function Of Point Process Via Recurrent
Neural Networks”. In: AAAI. 2017.

[158] Shuai Xiao et al. “Wasserstein Learning of Deep Generative Point Process Models”. In:
CoRR abs/1705.08051 (2017). arXiv: 1705.08051 . url: http://arxiv.org/abs/1705.
08051 .

[159] Ze Xiao and Yue Deng. “Graph embedding-based novel protein interaction prediction
via higher-order graph convolutional network”. In: PLOS ONE 15.9 (Sept. 2020), pp. 1–
18. doi: 10.1371/journal.pone.0238915 .

[160] Hongteng Xu, Mehrdad Farajtabar, and Hongyuan Zha. “Learning Granger Causality
for Hawkes Processes”. In: CoRR abs/1602.04511 (2016). arXiv: 1602.04511 . url: http:
//arxiv.org/abs/1602.04511 .

[161] Hongteng Xu, Mehrdad Farajtabar, and Hongyuan Zha. “Learning granger causality for
hawkes processes”. In: International Conference on Machine Learning. 2016, pp. 1717–
1726.

[162] Hongteng Xu and Hongyuan Zha. “A dirichlet mixture model of hawkes processes
for event sequence clustering”. In: Advances in Neural Info. Processing Systems. 2017,
pp. 1354–1363.

133

https://doi.org/10.1109/SURV.2013.100913.00195
https://doi.org/10.1109/SURV.2013.100913.00195
https://arxiv.org/abs/1705.08051
http://arxiv.org/abs/1705.08051
http://arxiv.org/abs/1705.08051
https://doi.org/10.1371/journal.pone.0238915
https://arxiv.org/abs/1602.04511
http://arxiv.org/abs/1602.04511
http://arxiv.org/abs/1602.04511

[163] Hongteng Xu and Hongyuan Zha. “THAP: A Matlab Toolkit for Learning with Hawkes
Processes”. In: arXiv e-prints, arXiv:1708.09252 (Aug. 2017), arXiv:1708.09252. arXiv:
1708.09252 [stat.ML] .

[164] Paiheng Xu, Mark Dredze, and David A Broniatowski. “The Twitter Social Mobility
Index: Measuring Social Distancing Practices from Geolocated Tweets”. In: arXiv (2020).
eprint: 2004.02397 .

[165] Sijie Yan, Yuanjun Xiong, and Dahua Lin. “Spatial Temporal Graph Convolutional
Networks for Skeleton-Based Action Recognition”. In: AAAI’18 (2018).

[166] Y. Yan et al. “A Survey on Smart Grid Communication Infrastructures: Motivations,
Requirements and Challenges”. In: IEEE Communications Surveys Tutorials 15.1 (2013),
pp. 5–20. doi: 10.1109/SURV.2012.021312.00034 .

[167] Zhijun Yao et al. “A review of structural and functional brain networks: small world
and atlas”. In: Brain Informatics 2.1 (2015), pp. 45–52. doi: 10.1007/s40708-015-0009-z .
url: https://doi.org/10.1007/s40708-015-0009-z .

[168] Fulian Yin et al. “COVID-19 information propagation dynamics in the Chinese Sina-
microblog”. In: Math. Biosciences and Eng. 17.3 (2020), p. 2676.

[169] Rex Ying et al. “Graph Convolutional Neural Networks for Web-Scale Recommender
Systems”. In: KDD ’18. 2018.

[170] Bing Yu, Haoteng Yin, and Zhanxing Zhu. “Spatio-temporal Graph Convolutional Net-
works: A Deep Learning Framework for Traffic Forecasting”. In: Proceedings of the 27th
International Joint Conference on Artificial Intelligence (IJCAI). 2018.

[171] Daokun Zhang et al. “Network representation learning: A survey”. In: IEEE transactions
on Big Data (2018).

[172] Wei Zhang, Jianyong Wang, and Wei Feng. “Combining latent factor model with loca-
tion features for event-based group recommendation”. In: KDD. 2013, pp. 910–918.

[173] Qingyuan Zhao et al. “SEISMIC: A Self-Exciting Point Process Model for Predicting
Tweet Popularity”. In: CoRR abs/1506.02594 (2015). arXiv: 1506.02594 .

[174] Qingyuan Zhao et al. “Seismic: A self-exciting point process model for predicting tweet
popularity”. In: Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM. 2015, pp. 1513–1522.

[175] Jie Zhou et al. Graph Neural Networks: A Review of Methods and Applications. 2019.
arXiv: 1812.08434 .

134

https://arxiv.org/abs/1708.09252
2004.02397
https://doi.org/10.1109/SURV.2012.021312.00034
https://doi.org/10.1007/s40708-015-0009-z
https://doi.org/10.1007/s40708-015-0009-z
https://arxiv.org/abs/1506.02594
https://arxiv.org/abs/1812.08434

[176] K. Zhou, H. Zha, and L. Song. “Learning Triggering Kernels for Multi-dimensional
Hawkes Processes”. In: Proceedings of the 30th International Conference on International
Conference on Machine Learning - Volume 28. Atlanta, GA, USA, 2013, pp. III-1301–
III-1309.

[177] Ke Zhou, Hongyuan Zha, and Le Song. “Learning Social Infectivity in Sparse Low-rank
Networks Using Multi-dimensional Hawkes Processes”. In: Proceedings of the Sixteenth
International Conference on Artificial Intelligence and Statistics. 2013, pp. 641–649.

[178] L. Zhou et al. “Dynamic Network Embedding by Modelling Triadic Closure Process”.
In: AAAI. 2018.

[179] L. Zhou et al. “Dynamic Network Embedding by Modelling Triadic Closure Process”.
In: AAAI. 2018.

[180] K. Zhu and L. Ying. “Information Source Detection in the SIR Model: A Sample-Path-
Based Approach”. In: IEEE/ACM Transactions on Networking 24.1 (2016), pp. 408–
421.

[181] L. Zhu et al. “Scalable Temporal Latent Space Inference for Link Prediction in Dynamic
Social Networks”. In: IEEE Transactions on Knowledge and Data Engineering 28.10
(Oct. 2016), pp. 2765–2777. issn: 1041-4347. doi: 10.1109/TKDE.2016.2591009 .

[182] Linhong Zhu, Greg Ver Steeg, and Aram Galstyan. “Scalable Link Prediction in Dy-
namic Networks via Non-Negative Matrix Factorization”. In: IEEE Transactions on
Knowledge and Data Engineering 2016 (2016).

[183] Yuan Zuo et al. “Embedding Temporal Network via Neighborhood Formation”. In: KDD
’18. 2018.

135

https://doi.org/10.1109/TKDE.2016.2591009

VITA

Hao Sha received his BS in Physics from University of Illinois at Urbana-Champaign in

December, 2013. He then received a MS in Physics from Indiana University Purdue Univer-

sity Indianapolis in December, 2016. He joined the Department of Computer and Informa-

tion Science of Indiana University Purdue University Indianapolis in August, 2018 to pursue

his Ph.D. degree in computer science under the supervision of Dr. George Mohler and Dr.

Mohammad Al Hasan. His research focused on statistical and deep learning approaches to

solving problems in time series prediction, networks, natural language processing, computer

vision, and recommender systems.

136

PUBLICATIONS

H. Sha, M. Al Hasan, G. Mohler. Group Link Prediction Using Conditional Variational

Autoencoder. Accepted at the International AAAI Conference on Web and Social Media

(ICWSM 2021).

H. Sha, M. Al Hasan, P. J. Brantingham, and G. Mohler. Dynamic topic modeling of the

COVID-19 Twitter narrative among U.S. governors and cabinet executives. 5th International

Workshop on Social Sensing (SocialSens 2020).

Sha, H, Al Hasan, M, Mohler, G. Learning network event sequences using long short‐term

memory and second‐order statistic loss. Stat Anal Data Min: The ASA Data Sci Journal.

2021; 14: 61– 73.

H. Sha, M. A. Hasan, J. Carter and G. Mohler, Interpretable Hawkes Process Spatial

Crime Forecasting with TV-Regularization, 2020 IEEE International Conference on Big Data

(Big Data), 2020, pp. 3228-3236, doi: 10.1109/BigData50022.2020.9377984.

J. Wong, H. Sha, M. A. Hasan, G. Mohler, S. Becker and C. Wiltse, Automated Corn Ear

Height Prediction Using Video-Based Deep Learning, 2020 IEEE International Conference

on Big Data (Big Data), 2020, pp. 2371-2374, doi: 10.1109/BigData50022.2020.9378115.

A. Stanhope, H. Sha, D. Barman, M. A. Hasan and G. Mohler, Group Link Prediction,

2019 IEEE International Conference on Big Data (Big Data), 2019, pp. 3045-3052, doi:

10.1109/BigData47090.2019.9006261.

A. Baas, F. Hung, H. Sha, M. A. Hasan and G. Mohler, Predicting Virality on Networks

Using Local Graphlet Frequency Distribution, 2018 IEEE International Conference on Big

Data (Big Data), 2018, pp. 2475-2482, doi: 10.1109/BigData.2018.8622605.

137

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Given networks, predict future events
	Given networks, predict sources of events
	Given events, infer networks
	Given events, predict group links
	Contribution
	Organization

	BACKGROUND
	Networks
	Hawkes Processes
	Recurrent Neural Networks
	Variational Autoencoder
	Graph Convolutional Networks

	LEARNING NETWORK EVENT SEQUENCES USING LONG SHORT-TERM MEMORY AND SECOND-ORDER STATISTIC LOSS
	Introduction
	Background
	Hawkes Process
	Long Short-term Memory Architecture
	Second-order Statistics of Sequential Events

	Related Works
	Methods
	Problem Description
	Model Formulation
	Training Protocol

	Experiment
	Data Description
	Competing Methods
	Hyper-parameter Tuning and Sensitivity
	Model Convergence
	Results

	Chapter Summary

	SOURCE DETECTION ON NETWORKS USING SPATIAL TEMPORAL GRAPH CONVOLUTIONAL NETWORKS
	Introduction
	Background
	Epidemic Models
	STGCN

	Methodologies
	Related works
	Experiments
	Experiments with standard S(E)IR simulations
	Experiments with delay SIR simulations
	Sliding windows
	Case study: real COVID-19 case data
	Impact of graph and simulation related factors
	Training without pre-knowledge of epidemics

	Discussion
	Chapter Summary

	DYNAMIC TOPIC MODELING OF THE COVID-19 TWITTER NARRATIVE AMONG U.S. GOVERNORS AND CABINET EXECUTIVES
	Introduction
	Hawkes Binomial Topic Model
	Related work

	Data
	Results
	Risk, treatment and testing sub-topics

	Chapter Summary

	GROUP LINK PREDICTION USING CONDITIONAL VARIATIONAL AUTOENCODER
	Introduction
	Method
	Problem Description
	Preliminaries
	Member-recommendation
	Group-recommendation

	Related works
	Experimental Results
	Data Description
	Baseline Methods
	Experimental Setup
	Results

	Chapter Summary

	Conclusions and future work
	REFERENCES
	VITA
	PUBLICATIONS

