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 Highlights 

• Traceability and paternity tests can adapt to low-coverage whole-genome 

sequencing data 

• Testing performance depended on sequencing error rate and genotype 

frequencies 

• Uncertainly had greater impact on false negatives than false positives 

• 0.05× coverage sufficed to guarantee greater-than-99% success during 

testing 
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ABSTRACT 

Procedures for genetic traceability of animal products and parentage testing 

mainly focus on microsatellites or SNPs panels. Nevertheless, current 

availability of high-throughput sequencing technologies must be considered as 

an appealing alternative. This research focused on the evaluation of low-

coverage whole-genome sequencing for traceability and paternity testing 

purposes, within a context of evidential statistics. Analyses were performed on a 

simulation basis and assumed individuals with 30 100-Mb/100-cM chromosome 

pairs and ~1,000,000 polymorphic SNPs per chromosome. Ten independent 

populations were simulated under recombination and mutation with effective 

populations size 100 (generations 1 to 1,000), 10,000 (generation 1,001) and 

25,000 (generation 1,002), and this last generation was retained for analytical 

purposes. Appropriate both traceability and paternity tests were developed and 

evaluated on different high-throughput sequencing scenarios accounting for  

genome coverage depth (0.01×, 0.05×, 0.1× and 0.5×), length of base-pair 

reads (100, 1,000 and 10,000 bp), and sequencing error rate (0%, 1% and 

10%). Assuming true sequencing error rates and genotypic frequencies, 0.05× 

genome coverage depth guaranteed 100% sensitivity and specificity for 

traceability and paternity tests (n = 1,000). Same results were obtained when 

sequencing error rate was arbitrarily set to 0, or the the maximum value 

assumed during simulation (i.e., 1%). In a similar way, uncertainly about 

genotypic frecuencies did not impair sensitivity under 0.05× genome coverage, 

although it reduced specificity for paternity tests up to 85.2%. These results 
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highlighted low-coverage whole-genome sequencing as a promising tool for the 

livestock and food industry with both technological and (maybe) economic 

advantages.  

  

 

Keywords: Evidential statistics, Paternity, Sequencing, Simulation, Traceability 
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1. Introduction 

 Neutral genetic markers have been widely used for both traceability 

(Arana et al., 2002; Vázquez et al., 2004) and parentage testing (Heaton et al., 

2014) in livestock populations. Traceability aims to maintain credible custody of 

identification for animals or animal products through various steps within the 

production and food chain (McKean, 2001), and is becoming more demanding 

by consumers and producers (Qian et al., 2020). On the other hand, parentage 

testing enables to identify similar inheritance patterns between related 

individuals (Jamieson, 1965), and has a deep impact on breeding programs 

(Banos et al., 2001), where a moderate proportion of misidentified progeny can 

be anticipated (Geldermann et al., 1986; Visscher et al., 2002; Weller et al., 

2004). Both approaches have relevant legal uses for animal forensic 

determinations (Kanthaswamy, 2015) or pedigree certification regarding 

livestock breed societies.  

 Genetic traceability and parentage testing rely on the fact that DNA is 

enormously variable among individuals despite the simple genetic mechanisms 

ruled by Mendel’s laws of inheritance from parents to offspring. Moreover, DNA 

is present in every cell of the organism, does not change during animal life, and 

is stable to different treatments of processed food (Dalvit et al., 2007). Current 

procedures for genetic traceability and parentage testing mainly focus on 

microsatellites or SNPs (Heaton et al., 2002), where standardized panels have 

already been defined to harmonize procedures worldwide 

(https://www.isag.us/committees.asp, accessed March 18th, 2021). 
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Nevertheless, current advances in high-throughput technologies move towards 

partial or whole-genome sequencing procedures where closed SNP panels 

would be likely to have no future for further purposes. This requires additional 

endeavors to elucidate the usefulness of sequencing data, mainly when low-

coverage approaches are considered due to economic limitations. Although Zan 

et al. (2019) suggested that very low-coverage (<0.5×) sequencing data could 

be informative enough for inferring outbred founder genotypes under an F2 

design, little is known about their applicability in commercial populations of 

livestock. 

 This research focused on three main objectives, (1) the development of 

both traceability and paternity tests for low-coverage sequencing data within the 

context of evidential inference (Bickel, 2012), (2) the validation of low-coverage 

sequencing for traceability and paternity testing in commercial livestock 

populations under full knowledge of population (i.e., allele or genotype 

frequencies) and sequencing parameters (i.e., error rates), and (3) the 

evaluation of the impact of uncertainly about population and sequencing 

parameters on traceability and paternity tests for low-coverage sequencing 

data.  

  

 

2. Materials and methods 

 Animal Care and Use Committee approval was not obtained for this 

study because analyses were performed on simulated data sets. Neither real 
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animals nor biological tissues from alive animals were involved in this research. 

 

2.1. Genome and population simulation process 

This research simulated an unspecific mammalian livestock population. We took 

as a starting point a 100-Mb/100-cM chromosome with 5,000,000 biallelic SNPs 

(one SNP each 20 base pairs and 2×10-5 cM), and the whole genome consisted 

of 30 chromosome pairs. This generated a standard 3 Gb genome (Pérez-

Enciso et al., 2015) with the same number of chromosomes as cattle and goat, 

and within the range of other livestock species such as pig (19 pairs), sheep (27 

pairs) and horse (32 pairs). The starting number of SNPs was assumed to 

guarantee more than 30,000,000 polymorphic SNPs at the end of the simulation 

process (see below), as reported by Daetwyler et al. (2014) in cattle. 

 Populations started from a founder generation with 100 individuals that 

were heterozygous throughout the whole genome. They evolved during 1,000 

non-overlapping generations under random mating and effective population size 

100. Linkage disequilibrium between adjacent loci was generated based on 

Kosambi’s mapping function (Kosambi, 1944), and a mutation rate of  2.5×10-3 

per SNP was applied until generation 980 (Meuwissen et al., 2001), switching 

the allele state from A to B, or vice versa. From generation 981 on, the mutation 

rate switched to 2.5×10-8 (Hickey and Gorjanc, 2012). Only those populations 

with 1,000,000 ± 10% (i.e., 900,000 to 1,100,000) polymorphic (MAF > 0) SNPs 

per chromosome in generation 1,000 were retained for further analyses. 

 Populations expanded to 10,000 individuals in generation 1,001 (1,000 
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sires and 9,000 dams), and 25,000 in generation 1,002. A total of 10 

independent populations were simulated. 

 

2.2. Sequencing and alignment simulation process 

 The number of reads per chromosome was defined as 

C × (100×106) / L, 

where 100×106 was the assumed chromosome length in bp, C was the 

expected genome coverage, and L was the average read length in base-pairs. 

The length of each read was sampled from a normal distribution with mean L 

and standard deviation L/10 to account for variability on DNA sequencing 

products. Moreover, each read was placed at random, both in the genome and 

chromosome phase. Following Fox et al. (2014) and Pfeiffer et al. (2018), an 

error rate between 10-5 and 10-2 was randomly assigned to each polymorphic 

SNP. The same error rate applied to both alleles. Only the number of reads for 

each allele was stored for further analyses. 

 

2.3. Evidential testing for single-individual traceability 

This research relied on evidential inference (Edwards, 1972) as a way to 

compare two competing hypotheses (i.e., models). This approach relies on the 

likelihood function as the structure that contains all evidence from the data 

relevant to the statistical model (Birnbaum, 1962), and compares hypotheses by 

calculating the ratio of their likelihood functions (Hacking, 1965). Within this 

context, an upper-than-1 likelihood ratio favors the numerator model whereas a 

                  



8 

lower-than-1 likelihood ratio suggests the superiority of the denominator model, 

although a minimum likelihood ratio of 32 (or 1/32) is typically used in the 

evidential literature (Blume, 2002; Royall, 1997), or even as high as 1,000, often 

used in genome-wide linkage studies (Morton, 1998). 

 Traceability in the livestock industry can be defined as the ability to 

identify animals or animals products through various steps within the food chain 

from the farm to the retailer (McKean, 2001). Within this context, the analysis of 

genetic polymorphisms must be viewed as a key tool to verify the match 

between two independent samples. 

 Take as a starting point a n × 2 matrix (S) to summarize sequence data 

from n polymorphic and biallelic sites of the genome. Once sorted by 

chromosome and nucleotide within the chromosome, each column stores the 

number of reads for alleles A and B, respectively. The analysis of genetic 

traceability relied on two different samples (Sp and Sq), and two competing 

hypotheses, i.e., H0: samples belong to the same individual (p = q), and H1: 

both samples belong to different individuals (p ≠ q). They can be tested through 

their likelihood ratio (Edwards, 1972) as follows, 

LR(H0, H1 | Sp, Sq ) = p( Sp, Sq | H0) / p( Sp, Sq | H1), 

where p(Sp, Sq | Hk) was the joint probability of obtaining data Sp and Sq under 

hypothesis Hk. Under the H0 hypothesis, the likelihood must expand to 

p(Sp, Sq | H0) =  Πi=1,n p(sp,i | gp,i, εi) p(sq,i | gp,i, εi) p(gp,i) 

where sp,i was the ith row of Sp, gp,i was the genotype (i.e., AA, AB or BB) of the 

pth individual for the ith polymorphic site, and εi was the sequencing error rate 
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for the ith polymorphic site (we assume homogeneous error rates among 

alleles). Given that p and q were assumed to be the same individual and the 

parametric space accounted for three genotypes (p(AA) + p(AB) + p(BB) = 1), 

the likelihood became 

p(Sp, Sq | H0) = Πi=1,n[Σα=AA,AB,BB p(sp,i | gp,i = α , εi) p(sq,i | gq,i = α , εi) p(gp,i = gq,i = 

α)] 

Now, assume a reads for allele A and b reads for allele B in sp,i. The following 

conditional probabilities can be straightforwardly calculated as binomial 

processes with trials, successes and success probability sequentially noted 

between parentheses, 

p(sp,i | gp,i = AA , εi) = Binomial(a+b, a, 1 – εi) 

p(sp,i | gp,i = AB , εi) = Binomial(a+b, a, 0.5) 

p(sp,i | gp,i = BB , εi) = Binomial(a+b, a, εi), 

Finally, the probability of each genotype depends on its frequency in the source 

population. 

 The same development can be applied to the alternative hypothesis 

where 

p(Sp, Sq | H1) = Πi=1,n p(sp,i | gp,i, εi) p(gp,i) p(sq,i | gq,i, εi) p(gq,i), 

and p and q were assumed different and unrelated individuals from the same 

population. Once accounted for all three possible genotypes, the previous 

expression expanded to 

p(Sp, Sq | H1) = Πi=1,n {[Σα=AA,AB,BB p(sp,i | gp,i = α , εi) p(gp,i = α)] 

× [Σβ=AA,AB,BB p(sq,i | gq,i = β , εi) p(gq,i = β)]}. 
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2.4. Testing for parentage 

 Parentage testing relies on the use of biological markers to identify 

similar inheritance patterns between related individuals and traces back to the 

1960s  where blood typing was used as a regular part of some cattle breeding 

programs (Stormont, 1967). As seen with most domestic species, the typical 

animal parentage case includes a dam, offspring, and one or more alleged 

sires. The identity of the dam uses to be fairly certain, whereas the true sire 

must be identified from a set of m males. Our analytical approach will rely on 

this scenario, although it can be straightforwardly generalized to test the other 

sex (i.e., dam). 

 Paternity testing relied on data samples from the offspring (So), its dam 

(Sd), and an alleged sire (Ss). The testing process started with the definition of 

the null hypothesis such as H0,j: both s and d were parents of o. Within this 

context, the joint likelihood of So, Sd and Ss was written as 

p(So, Sd, Ss | H0) = Πi=1,n{p(so,i | go,i, εi) p(go,i | gd,i, gs,i) p(sd,i | gd,i, εi) p(gd,i) 

× p(ss,i | gs,i , εi) p(gs,i)}, 

where so,i was the ith row of So, go,i was the genotype of the oth individual in the 

ith polymorphic site, and εi was the sequencing error rate for the ith polymorphic 

site (we assume homogeneous error rates among alleles). As for traceability 

tests, previous likelihood expanded to account for biallelic genetic markers, 

p(So, Sd, Ss | H0) = Πi=1,n {Σα=AA,AB,BB p(so,i | go,i = α , εi) 
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× [Σβ=AA,AB,BB Σγ=AA,AB,BB p(go,i = α | gd,i = β , gs,i = γ) p(sd,i | gd,i = β , εi) p(gd,i = β) 

× p(ss,i | gs,i = γ , εi) p(gs,1 = γ)]}, 

where p(so,i | go,i = α , εi), p(sd,i | gd,i = β , εi) and p(ss,i | gs,i = γ, εi) were binomial 

probabilities, p(gd,i = β) and p(gs,i = γ) were genotypic frequencies in the 

parental population, and p(go,i = α | gd,i = β , gs,i = γ) was the conditional 

probability of the offspring’s genotype depending on parents’ genotype (Table 

1). It is important to note that previous expression can also be applied when 

lacking of sequencing data from the dam as follows, 

p(So, Ss | H0) = Πi=1,n{p(so,i | go,i, εi) p(go,i | gs,i) p(ss,i | gs,i , εi) p(gs,i)}, 

p(So, Ss | H0) = Πi=1,n {Σα=AA,AB,BB p(so,i | go,i = α , εi) 

× [Σγ=AA,AB,BB p(go,i = α | gs,i = γ) p(ss,i | gs,i = γ , εi) p(gs,1,i = γ)]}, 

where p(go,i = α | gs,i = γ) can be obtained from Table 2. 

 On the other hand, the alternative hypothesis could be defined on the 

following rationale, H1: only d was parent of o, whereas s was unrelated to o 

and sampled from the same population. The likelihood expands to 

p(So, Sd, Ss | H1) = Πi=1,n {p(so,i | go,i, εi) p(go,i | gd,i) 

× p(sd,i | gd,i, εi) p(gd,i)} p(ss,i | gs,i , εi) p(gs,i), 

and 

p(So, Sd, Ss | H1) = Πi=1,n {Σα=AA,AB,BB p(so,i | go,i = α , εi) 

× [Σβ=AA,AB,BB p(go,i = α | gd,i = β) p(sd,i | gd,i = β , εi) p(gd,i = β)]} 

× Πi=1,n [Σγ=AA,AB,BB p(ss,i | gs,i = γ , εi) p(gs,i = γ)]. 

where p(go,i = α | gd,i = β) can be found in Table 2. As for previous hypothesis, it 

was not mandatory to account for dam sequencing data if missing, 
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p(So, Ss | H1) = Πi=1,n p(so,i | go,i, εi) p(go,i) p(ss,i | gs,i , εi) p(gs,i), 

p(So, Ss | H1) = Πi=1,n Σα=AA,AB,BB p(so,i | go,i = α , εi) p(go,i = α ) 

× Σγ=AA,AB,BB p(ss,i | gs,i = γ , εi) p(gs,i = γ). 

 

2.5. Uncertainly about population and sequencing parameters 

Single individual traceability and parentage testing were evaluated under 

different scenarios accounting for 0.01×, 0.05×, 0.1× and 0.5× depth of genome 

coverage, with 100, 1,000 and 10,000 base-pair reads. Those read lengths 

were chosen to illustrate test performance under currently available sequencing 

platforms (Besser et al., 2018). 

 As noted above, both traceability and parentage tests relied on two 

structural parameters, within-SNP sequencing error rate (εi) and genotyping 

frequencies. The first mainly depends on the sequencing method and platform 

used (Fox et al., 2014) and uses to be estimated on an across-genome basis. 

Within this context, we compared test performances under three across-SNP 

homogeneous sequencing error rates: 0%, 1% (the maximum sequencing error 

rate used for simulation of the sequencing process), and 10% (i.e., ten times 

higher than the maximum sequencing error rate used for simulation of the 

sequencing process). 

 On the other hand, genotypic frequencies could be approximated by 

using sequence data generated for traceability and paternity tests. 

Nevertheless, the number of sequenced animals could be small and contribute 

high uncertainly to estimated genotypic frequencies. To account for this 
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uncertaintly, the variance of the estimated A allele frequency (π) can be 

calculated as (Cockerham, 1969) 

V(π) = [π (1 -  π)] / 2λ 

where λ was the number of sampled individuals. We compared λ = 5, 10 and 

100, and sampled the A allele frequency (π*) for each SNP from a truncated (0 

to 1) normal distribution with mean π and variance V(π). Genotypic frequencies 

were obtained assuming Hardy-Weinberg equilibrium (Hardy, 1908).  

 

 

3. Results 

3.1. Simulated genomic data 

 After 1,000 non-overlapping generations, random mating and effective 

population size 100, we retained ten populations with 29,195,811 to 30,660,474 

polymorphic SNPs. Allele frequencies widely distributed along with the 

parametric space, as shown in Fig. 1, and a remarkable percentage of SNPs 

had minimum allele frequency (MAF) below 0.05. Although this varied among 

chromosomes, between 36.7% and 51.9% of SNPs had MAF < 0.05. All these 

10 simulated populations contributed equally to the subsequent analyses. 

 After sequencing 10,000 individuals, the maximum number of reads per 

polymorphic SNP was 3 (0.01× genome coverage), 4 (0.05×), 5 (0.1×) and 7 

(0.5×). Nevertheless, between 76.2% (0.5× genome coverage) and 99.5% 

(0.01× genome coverage) of them had a single read, as shown in Fig. 2. The 

percentage of polymorphic SNPs with two reads increased with genome 
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coverage, from 0.5% (0.01×) to 19.1% (0.5×), and a similar trend with smaller 

percentages was revealed for larger numbers of reads. Moreover, those 

percentages showed small variability across individuals, this uncertainly even 

reducing for smaller read length (Fig. 2). The same pattern was revealed when 

checking for shared SNPs among pairs of sequenced individuals. The longer 

the read length was, the wider the dispersion of the number of shared SNPs 

(Fig. 3). From the total of ~30,000,000 polymorphic SNPs, the average number 

of shared polymorphic SNPs decreased from 3,355.6 ± 4.7 (100 base-pair read 

length) to 3,093.2 ± 28.5 (10,000 base-pair read length). For SNPs with MAF ≥ 

0.05, similar trends were observed, from 1,748.4 ± 3.3 (100 base-pair read 

length) to 1,586.9 ± 17.2 (10,000 base-pair read length). Within this context, 

subsequent results were reported based on the most uncertain (i.e., increased 

variability for the number of reads and shared SNPs) and less informative (i.e., 

reduced number of shared SNPs) scenario, this accounting for sequencing by 

10,000 base-pair reads. 

 

3.2. Traceability and parentage testing 

 As anticipated, the number of shared polymorphic SNPs among two 

unrelated individuals quickly increased with genome coverage (Table 3). This 

generated a fast growth in terms of available information for traceability and 

paternity tests, as evidenced by the likelihood ratios provided in Fig. 4. 

Assuming true sequencing error rates and genotype frequencies, 100% of 

traceability tests favored the true hypothesis when genome coverage was 0.05× 

                  



15 

or deeper. The only exceptions were detected for 0.01X genome coverage, 

where 0.7% of false positives and 0.04% of false negatives were reported (Fig. 

4). The same pattern was revealed for paternity tests, they showing a 100% of 

true positive and true negatives under genome coverage 0.05X or deeper, and 

1.1% (1.0%) of false positives and 0.5% (0.6%) of false negatives under 0.01X 

of genome coverage when the dam was known (unknown).  

 In order to test for a more realistic scenario, different homogeneous 

sequencing error rates were evaluated. As shown in Fig. 5, 0.05X coverage 

sufficed to avoid false positives and negatives under both traceability and 

paternity tests when sequencing error rate was arbitrarily set to 0% or the 

maximum rate used during sequencing simulation (i.e., 1%). The only 

assumption that generated wrong results under 0.05X coverage was when the 

sequencing error rate was unrealistically assumed 10 times higher than the 

upper bound during sequencing (i.e., 10%). In this case, 1.3% (traceability test), 

24.5% (paternity test with known dam) and 22.8% (paternity test with an 

unknown dam) of false negatives were reported, whereas any test generated 

false positives. Higher genome coverage tested provided 100% of true positives 

and true negatives (results not shown), even under the assumption of 10% of 

the sequencing error rate. 

 The other parameter accounting for uncertainly during traceability and 

paternity testing was genotype frequencies. In this case, genotype frequencies 

were assumed under Hardy-Weinberg equilibrium and calculated from allele 

frequency with uncertainly as sampled from 5, 10, and 100 individuals. As 
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shown in Fig. 6, the smaller the uncertaintly for allele frequency was, the larger 

the match with results was obtained under true genotype frequencies. 

Nevertheless, 0.05× coverage sufficed to avoid both false positives and 

negatives in traceability tests, whatever the accuracy of allele frequencies. 

Paternity tests with known dam (unknown dam) revealed a similar pattern 

without false positives since 0.05× coverage, and 0.1% (0.1%), 0.6% (0.3%) 

and 10.2% (14.8%) of false negatives when the allele frequency was sampled 

with uncertainly as calculated from 100, 10 and 5 individuals. Deeper genome 

coverage provided 100% of true positives and true negatives at any uncertainly 

for allele frequency.  

 

 

4. Discussion 

 Current procedures for traceability and paternity testing rely on SNPs 

where standardized panels have already been defined to harmonize procedures 

worldwide (Heaton et al., 2002). Although their reliability and statistical power 

fulfill the purpose for which they were created (Marshall et al., 1998), they 

depend on some dozens of a few hundreds of SNP genotypes, too few to be 

reused for other purposes like genome-wide association analyses (Klein et al., 

2005; Gilly et al., 2019) or genomic evaluation (Meuwissen et al., 2001; Gorjanc 

et al., 2015, 2017). This is an important limitation because it drains the 

economic capacity of food chain industries and breed societies and precludes 

additional investments in genomic techniques. The current explosion in high-
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throughput sequencing technologies (Bansal and Boucher, 2019) opens the 

door to more sustainable science where specificity and multiple-purpose data 

are not conflicting terms. Nevertheless, a first step is required to verify that low-

coverage whole-genome sequencing data can efficiently address both 

traceability and paternity tests in order to fulfill current standards at a similar 

economic cost. 

 Theoretical approaches to test both traceability and paternity have been 

widely developed in scientific literature on the basis of complete genotypes 

(Goffaux et al., 2005; Martin et al., 2010; Marshall et al., 1998), whereas high-

throughput sequencing technologies provide a variable number of random 

samples from each polymorphic site and require genotype-calling procedures to 

reach closed genotypes (Nielsen et al., 2011). Nevertheless, genotype-calling 

approaches show little agreement when compared under low-coverage 

sequencing data (Liu et al., 2013; Vens et al., 2009; Yu and Sun, 2013), where 

heterozygous genotypes cannot be adequately called with a single read 

(Brouard et al., 2017). Within this context, we omitted genotype-calling 

approaches in our traceability and paternity tests and focused on genotype 

probabilities within the context of appropriate likelihood functions. Although 

these procedures were partially implemented in some genotype-calling 

approaches (Li et al., 2008, 2009; Martin et al., 2010), they summarized to the 

most probable genotype instead of keeping uncertainly for further analyses. We 

kept uncertainly about genotypes along the whole calculation of the likelihood 

ratio in order to avoid arbitrary decisions when available information for each 
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polymorphic site was very small in tested individuals (Fig. 2). 

 Our tests relied on the likelihood principle, a statistical proposition that 

states that all the evidence in the data relevant to the statistical model is 

contained in the likelihood function (Birnbaum, 1962). Within this context, a 

likelihood ratio must be viewed as an objective measurement of the statistical 

evidence of one model against the other (Hacking, 1965), and establishes the 

foundations for the evidential statistics (Edwards, 1972) in contrast with 

frequentist and Bayesian statistics. This inferential approach relies on two basic 

conditions that are not completely fulfilled by frequentist and Bayesian 

inferences, objectivity (i.e., the strength of evidence does not vary from one 

researcher to another) and interpretability (i.e., the strength of evidence has the 

same practical interpretation for any sample size). The first condition rules out 

Bayes factors that depend on subjective or default priors (Bickel, 2012), and the 

second rules out the frequentist p-value that forces the same type-I error 

percentage at any sample size (Bickel, 2011). By contrast, the likelihood ratio 

satisfies both of the necessary conditions for a measure of the strength of 

statistical evidence. Within this context, the likelihoods used in our testing 

approaches had the same mathematical structure than the likelihoods we could 

construct within a frequentist scenario, as well as they are proportional to the 

joint posterior distributions with flat priors we could call in the Bayesian 

framework. The essential difference relies on the test itself and the assumptions 

carried out by the researcher. Within the context of evidential statistics, there 

are not additional assumptions apart from the statistical model itself and all the 
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hypotheses have the same consideration during the analytical process. Indeed, 

paternity tests with panels of genetic markers were previously proposed by 

Marshal et al., (1998), and evidential statistics have been growing attention in 

genetics and genomics research (Strug et al., 2010; Strug, 2018). 

 The performance of both traceability and paternity tests was outstanding 

as evidenced in Figs. 4 to 6. Under the unrealistic assumption of known 

sequencing error rates and genotype frequencies, 0.01× genome coverage 

sufficed to guarantee ≥99% of true positives and true negatives under 

traceability tests. In contrast, the minimum genome coverage for paternity tests 

must increase up to 0.05× genome coverage to reach the same rate of true 

positives and negatives. Nevertheless, our current method works with low-

coverage sequencing data and less false paternity assignments than previous 

methods found in the scientific literature (Snyder-Mackler et al., 2016; Whalen 

et al., 2019). The method design for very low sequencing coverage data from 

fecal-derived DNA by Snyder-Mackler et al. (2016), which also performed 

peternity tests wit known or unknown dam, was not available to assign paternity 

below 0.17×. On the other hand, results for paternity analyses by Whalen et al. 

(2019) required greater coverage (0.4×) and larger amount of genetic markers 

(50,000) to reach 100% sensibility. 

 In order to evaluate those procedures under more realistic scenarios, 

different homogeneous error rates and accuracies for genotype frequencies  

were evaluated. In this case, the sequencing error rate had a mild impact on the 

performance of both traceability and paternity tests, and it only impaired their 
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results when an abnormally high sequencing error rate was assumed (i.e., 

10%). Indeed, results shown in Fig. 5 suggested that the assumption of a null 

sequencing error rate provided the most similar results to the ones obtained 

under true sequencing error rates, simplifying both analytical models and 

subsequent calculations. On the other hand, the impact of genotype frequencies 

was suggested as larger, where more accurate estimates were required to 

avoid false positives and negatives. 

 Statistical methodologies developed in this manuscript are ready to use 

for both the food chain industry and breed societies. In fact, they could also be 

useful for human studies. They do not need additional generalizations, as all 

required algorithms are detailed in the current manuscript. It is important to 

highlight that 0.05X genome coverage sufficed for traceability and paternity 

tests assuming null (or 1%) sequencing error rate and an accuracy for allele 

frequencies equal or higher to the ones obtained when sampling 10 individuals. 

This must be viewed as an outstanding result from technological, economic and 

scientific points of view. Moreover, the sequenceing data generated could have 

firther uses contributing more to sustainable science. The huge amount of 

information available (even under very-low coverage) can be exploited more in 

depth. Especially, with the structure of livestock species with dense family 

structures, large amounts of genomic data can accumulate across generations 

and years. This latter will open a new window of animal breeding purposes, as 

the availability of whole sequence for animal population may change the current 

animal breeding paradigm or even make a new revolution. Indeed, the 
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exploration of sequence data at massive volume may allow to make animal 

breeding selection decisions more accurate by taking benefit of massive 

genomic data (Knap et al., 2020).  Thus, additional efforts to handle this new 

source of partial genomic data may be of special relevance for the livestock 

industry (Knap et al., 2020). Evenmore, an additional investment to increase the 

sequencing coverage until 2×, which is still considered low-coverage, could 

allow to enhance animal breeding. Between the possible options are the 

estimation of biological relatedness (Lipatov et al., 2015) and the imputation of 

the whole genome with high accuracy depending on the population size (Ros-

Freixedes et al., 2020a, 2020b). This last step would be essential to implement 

whole-genome sequence data for genomic prediction and fine-mapping of 

causal variants. 

 

 

5. Conclusions 

 Very low genome coverages in livestock species were enough to 

guarantee ≥99% of true positives and true negatives for traceability testing 

(from 0.01× coverage) and parentage testing (from 0.05× coverage). Even 

when 0.05× coverage sufficed for both tests, as genome coverage increased, 

the percentage of reads per polymorphic SNPs and the certaintly of the 

estimate of its allele frequency increased, thus, reducing the errors in the tests. 

Moreover, the length of the reads affected the dispersion and number of shared 

SNPs among pairs of sequenced individuals.  
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Table 1 Conditional probability of the offspring’s genotype in a biallelic locus 

(alleles A and B) given the mother’s and the alleged father’s genotype. Each 

triad of numbers provides the probability for AA, AB and BB genotypes, 

respectively. 

 Mother’s genotype 

Father’s genotype AA AB BB 

AA 1 / 0 / 0 0.5 / 0.5 / 0 0 / 1 / 0 

AB 0.5 / 0.5 / 0 0.25 / 0.5 / 0.25 0 / 0.5 / 0.5 

BB 0 / 1 / 0 0 / 0.5 / 0.5 0 / 0 / 1 
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Table 2 Conditional probability of the offspring’s genotype in a biallelic locus 

(alleles A and B) when only one parent contributes to the paternity test. Each 

triad of numbers provides the probability for AA, AB and BB genotypes, 

respectively. 

 Parent’s genotype 

Offspring’s genotype AA AB BB 

AA  p(A)1 0.5 p(A) 0 

AB 1-p(A) 0.5 p(A) 

BB 0 0.5 [1 - p(A)] 1 - p(A) 

1p(A): allelic frequencies of A allele in parents’ generation. 
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Table 3 Mean ± SE of shared polymorphic SNPs among two unrelated 

individuals when sequenced at different genome coverages with 10,000 base-

pair read length. 

Genome coverage Polymorphic SNPs MAF1>0.05 SNPs 

0.01X 3,093.2 ± 28.5 1,586.9 ± 17.2 

0.05X 77,007.2 ± 75.0 39,887.3 ± 46.4 

0.1X 290,845.5 ± 137 151,872.8 ± 86.5 

0.5X 4,965,993.9 ± 450.0 2,589,401 ± 329.2 

1Minimum allele frequency 
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Fig. 1. Distribution of allele frequencies for the first chromosome of the first 

simulated population. 
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Fig. 2. Average distribution of polymorphic SNPs depending on the number of 

reads when sequenced at 0.01X (black), 0.05X (blue), 0.1X (red) and 0.5X 

(white) genome coverage with 10,000 base-pair read length. The whiskers 

extend to minimum and maximum estimates. 
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Fig. 3. Shared SNPs among two unrelated individuals both sequenced at 0.01X 

genome coverage with 100 (red dots), 1,000 (blue dots) and 10,000 base-pair 

read length (black dots). The X-axis accounts for SNPs with non-zero minimum 

allele frequency (MAF), whereas Y-axis accounts for SNPs with MAF>0.05.  
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Fig. 4. Distribution of 1,000 traceability tests (black dots) and paternity tests 

with known (blue dots) and unknown dam (red dots) under four different 

genome coverage, and assuming true SNP-specific sequencing error rate and 

true genotype frequencies in parental generation. Traceability tests relied on the 

likelihood ratio between the null (H0: same individual) and the alternative 

hypothesis (H1: different individuals), and compared each individual against 

itself (X-axis) and against an unrelated individual (Y-axis). Paternity tests 

evaluated whether the alleged sire was the true sire (H0) or an unrelated male 

of the population (H1), and where applied on the true sire (X-axis) and on an 

unrelated male of the population (Y-axis). 

 

 

                  



38 

Fig. 5. Distribution of 1,000 traceability tests (upper panel), paternity test with 

known dam (mid panel) and paternity test with unknown dam (lower panel) 

under 0.05X genome coverage, 10,000 base-pair read length, and assuming 

true genotype frequencies in parental generation. Tests assumed true 

sequencing error rates (black dots), null sequencing error rate (green dots), 1% 

sequencing error rate (blue dots), and 10% sequencing error rate (red dots). 

Traceability tests relied on the likelihood ratio between the null (H0: same 

individual) and the alternative hypothesis (H1: different individuals), and 

compared each individual against itself (X-axis) and against an unrelated 

individual (Y-axis). Paternity tests evaluated whether the alleged sire was the 

true sire (H0) or an unrelated male of the population (H1), and where applied on 

the true sire (X-axis) and on an unrelated male of the population (Y-axis). 
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Fig. 6. Distribution of 1,000 traceability tests (upper panel), paternity test with 

known dam (mid panel) and paternity test with unknown dam (lower panel) 

under 0.05X genome coverage, 10,000 base-pair read length, and assuming 

true sequencing error rates per SNPs. Tests assumed true genotyping 

frequencies (black dots), as well as genotyping frequencies under Hardy-

Weinberg equilibrium after sampling the allele frequency from 5 (red dots), 10 

(blue dots) and 100 individuals (green dots). Traceability tests relied on the 

likelihood ratio between the null (H0: same individual) and the alternative 

hypothesis (H1: different individuals), and compared each individual against 

itself (X-axis) and against an unrelated individual (Y-axis). Paternity tests 

evaluated whether the alleged sire was the true sire (H0) or an unrelated male 

of the population (H1), and where applied on the true sire (X-axis) and on an 

unrelated male of the population (Y-axis). 
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