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Abstract: Carbon-Fibre-Reinforced Polymers (CFRPs) have seen a steady rise in modern industrial
applications due to their high strength-to-weight ratio and corrosion resistance. However, their
potential is being hindered by delamination which is induced on them during machining operations.
This has led to the adoption of new and innovative techniques like cryogenic-assisted machining
which could potentially help reduce delamination. This study is aimed at investigating the effect of
cryogenic conditions on achieving better hole quality with reduced delamination. In this paper, the
numerical analysis of the drilling of CFRP composites is presented. Drilling tests were performed
experimentally for validation purposes. The effects of cooling conditions and their subsequent effect
on the thrust force and delamination were evaluated using ABAQUS/CAE. The numerical models
and experimental results both demonstrated a significant reduction in the delamination factor in
CFRP under cryogenic drilling conditions.

Keywords: CFRP; cryogenic drilling; delamination; hole-quality; ABAQUS/CAE

1. Introduction

Composites are having a significant influence on today’s fields of engineering and
science. This is evident from their extensive applications, ranging from their use in space
industries for the construction of intricate technologies such as cryogenic tanks to their use
in the more conceivable fields of sports and transportation. Of all such composite materials,
carbon-fibre-reinforced polymers (CFRPs) have seen a rise in popularity. This is primarily
due to their high strength-to-weight ratio. The advent of CFRPs has allowed industries to
use lighter and more robust materials without any loss in performance. Besides having a
great strength-to-weight ratio, these materials also possess a plethora of other desirable
properties such as high stiffness, low density and an excellent damping capacity. CFRPs
are also immune to corrosion; however, they are prone to failure by penetration, cracking
or delamination due to their highly anisotropic and inhomogeneous nature [1].

Drilling is widely used to produce holes on composite parts which are then assembled.
However, due to the non-homogeneous, anisotropic and highly abradant nature of CFRPs,
excessive tool wear occurs during drilling which causes fibre pullout, particle fracture
and delamination [2]. Delamination is the most common form of failure in composite
materials and is one of the main reasons why most of the materials (around 60%) are
rejected in aircraft industries [3]. Delamination decreases the fatigue strength which, in
turn, degrades the long-term performance of the composites. It also compromises the
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integrity of the composite layups which makes the composite unable to effectively transfer
load throughout its structure.

Extensive studies have been conducted by researchers to negate the effects of delami-
nation. Tsao [4] conducted drilling experiments on composite materials using a step core
drill. In this study, the effect of the feed and the diameter ratio on the thrust force were
exhaustively investigated. A decreased diameter ratio and an increased feed were found to
favour the thrust force reduction. Statistical techniques were employed to ascertain the
relationship between the cutting parameters and delamination for different varieties of
drills [5]. The delamination factor exhibited an increase, with a rise in both the cutting
speed and feed rate.

Despite numerous models available to predict delamination, the majority of them
considered the crack length alone, while a few studies conducted by Davim et al. [6] mooted
the delaminated area to predict the delamination factor. A new model developed by Joshi
et al. [7] that considers both the crack length and delaminated area seems to be valid for
different drilling environments.

Various other ideas have been provided to minimise delamination, such as changing
cutting speeds, drill bit geometries, feed rate, tool materials and tool coatings [8]. Krishnaraj
et al. [9] performed high-speed drilling operations on CFRP laminates and determined
the optimal machining parameters for minimal delamination and tool wear. A study
on drilling bio composites revealed that a higher drill point angle induced a high thrust
force [10]. Numerous techniques have been tried to reduce the damage that occurs during
the drilling of polymer matrix composites. These damage reduction techniques range from
using a backup plate at the drill exit site to the adoption of variable feed rates in which the
feed rate was substantially reduced as the drill approached the hole exit [11]. The drilling
performed on graphite/bismaleimide composite laminates with high-speed steel, carbide
and diamond tools disclosed the supremacy of diamond tools in achieving the least surface
damage and delamination [12].

Numerous literatures are available on the machining of CFRPs concerning tool wear,
the effect of drilling parameters and the variability of the machining conditions. Bhat-
tacharyya et al. [13] conducted cryogenic machining studies on Kevlar composites. The
development of high thrust forces and low tool wear were observed when machining
was done in the presence of liquid nitrogen. However, a limited amount of research is
available on cryogenic drilling. Cryogenic drilling experiments conducted on Kevlar lami-
nates demonstrated the occurrence of a high thrust force with a reduced temperature [14].
Drilling under cryogenic conditions also exhibited a great improvement in the overall
quality of the hole [15].

Simulation software such as Abaqus possesses high computing ability and is quite
easy to perform. It also allows for the numerical validation of various proposed loading
models [16]. Phapale et al. [17] conducted drilling simulations using FEM analysis software
to study the high-speed drilling mechanism of CFRPs, and an acceptable deviation of 5%
between experimental and simulation results was reported. Shan et al. [18] performed
three-dimensional numerical simulations on 2.5D carbon/carbon (C/C) composites and
further proposed a damage initiation model based on Hashin’s failure criterion and the
Shokrieh–Lessard model. About six failure modes were considered in the model to predict
the material damage and failure for different feeds. Wang et al. [19] performed 3D finite
element modelling of the CFRP drilling using Abaqus/CAE, while Kendrew et al. [20]
developed an accurate model for CFRP ripping to aid in the design and fine-tuning of the
assembly before prototyping. The main objectives of the present work are formulated as
(i) an experimental assessment of the delamination factor and thrust force under dry and
cryogenic drilling on CFRPs, (ii) numerical and analytical modelling of CFRP drilling under
the identical operating conditions using Abaqus/CAE and (iii) a comparative evaluation
of the results obtained through experiments and numerical simulation.
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2. Numerical Modelling
2.1. Drill Geometry

A 3D CAD model of the tungsten carbide drill with a diameter of 8 mm was designed
in SolidWorks with the specifications provided by the tool manufacturer. The drill had a
helix angle of 30◦. The tool geometry had to be very precise to reduce any errors and to
obtain accurate simulation results. To reduce the computational time, the drill bit was cut
by 40 mm from the lower tip. The 3D model was then imported in Abaqus and was later
assembled with the workpiece model for the simulation.

For this simulation, the tool was assumed to be a rigid and nondeformable body,
while the workpiece was modelled as a 3D deformable and rigid body. This assumption is
justified as the yield stress of tungsten carbide is considerably higher than that of the CFRP.
No material property was assigned to the drill bit as it was treated as a rigid body for the
simulation. This is shown in Figure 1.
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Figure 1. A three-dimensional model of the meshed drill bit.

2.2. Modelling Aspects

The three major aspects of modelling the simulation were the boundary conditions, the
interaction properties and the meshing. The boundary conditions were given to simulate
the experimental procedure with as much accuracy as possible. The drill was assembled in
the system in such a way that the tip of the drill was 2 mm above the workpiece centre.
The drill was made to move in the –Z direction as per the setup. The drill movement
was restricted in the X and Y directions, and it was given translational velocity as well
as rotational velocity in the –Z direction. All the boundary conditions for the drill were
assigned using the velocity boundary conditions on a singular reference point on the drill.
The total period of the entire simulation was given as 2.5 s to reduce the computational
load. Long step times generally lead to excessively long calculations and at the same time
provide erroneous outcomes and convergence issues.

Two major interactions occurred in the model: viz. 1. the interaction between the
composite workpiece layers and 2. the interaction between workpiece layers and the drill.
The cohesive elements of the composite layers of the workpiece are the main ones to show
delamination. The CSDMG parameter is used in the field output variables to see where the
nodal damage represents the scalar stiffness degradation for cohesive surfaces. A wedge
with a free structure arrangement was used for the meshing of the drill because of its
delicate geometry. The element size was given as 1 mm to have a fine mesh that does not
cause high distortions.

3. Material Modelling
3.1. Mechanical Properties

The mechanical properties of the CFRP were implemented in the simulation using the
property module in Abaqus. Table 1 provides the mechanical properties of the CFRP which
were used for the dry drilling simulation, while the properties used for the simulation of
the cryogenic-assisted CFRP drilling were obtained from the literature [21,22].

The 30 mm × 50 mm workpiece was modelled in Abaqus/CAE. The CFRP workpiece
was modelled with two fibre orientations (0◦ and 90◦) in a 21-layer setup by using the
composite layup option in Abaqus. The properties of the 3D deformable solid in the
extrusion mode were applied to the workpiece. To simulate the composite characteristics,
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cohesive elements were added to the model with the cohesive surface parameters. The
CFRP ply stack plot is shown in Figure 2.

Table 1. List of factors and levels considered for the regression analysis.

Property Value

Elastic modulus, E11 (GPa) 127
Elastic modulus, E22 = E33 (GPa) 9.1

Poisson’s ratio, ν12 = ν13 0.31
Poisson’s ratio, ν23 0.45

Shear modulus, G12 = G13 (GPa) 5.6
Shear modulus, G23 (GPa) 4

Density, ρ (kg/m3) 1600
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3.2. Modelling Aspects of CFRP

The boundary condition for the CFRP was set with the purpose of clamping the
workpiece from all directions. All movements were restricted for the workpiece using the
encastre boundary conditions on the side faces of the CFRP layers. Different interactions
were given for cryogenic and dry drilling. The cryogenic model takes the heat transfer
interaction between the drill and the workpiece into consideration as the liquid nitrogen
was sprayed on the tip of the drill and the uppermost layer of the CFRP for the entire
duration of drilling. In the simulation, this boundary condition was given by giving the
conductivity values of the CFRP in material properties. Further, the CFRP layers were
given a predefined temperature of −196 ◦C to simulate the cooling due to liquid nitrogen.
The boundary conditions and the meshed model are portrayed in Figure 3.

Reduced-integrated 8-node shell elements were used for the meshing of the CFRP
plate. Cohesive behaviour was given between the plies for the simulation. The mesh
density around the drilled hole was considered up to the element size of 0.05 mm to reduce
the computational cost and to optimise the results for a clearer picture of the delaminated
area. The element deletion criterion was activated to delete any excessively damaged
elements. This is an important step as undeleted elements cause computational errors
and problems during visualization. A finer mesh was given to the area which was facing
damage, while the ends of the workpiece were given a coarser mesh size. The mesh was a
hex element shaped to mesh with a swept structure, which allowed the mesh to be even on
both the front and backside of the workpiece. An advanced front meshing algorithm was
used as per the default setting in the software. An SC8R mesh was used during the thermal
analysis as the use of a thermal shell created problems in the convergence of the simulation.
The detailed specifications of both the workpiece and tool meshing are listed in Table 2.
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Table 2. Mesh parameters.

Mesh Parameters Workpiece Drill

No. of Elements 3264 10,545
Mesh Size 0.5 1

Element Code SC8R CD10M
Element Type Continuum Shell 3D Stress

Element Shape Hex Tet
Technique Sweep Free

Element Deletion Yes Default
Second Order Accuracy No No

Max Degradation 0.01 Default
Element Library Standard Explicit
Geometric Order Linear Quadratic

3.3. Failure Criteria

Hashin’s failure criteria were employed as the primary failure criteria as they assume
four failure modes for composite materials; viz. 1. fibre tension, 2. fibre compression, 3.
matrix tension and 4. matrix compression.

Fibre tension σ11 ≥ 0(
σ11

XT

)2
+

σ12
2 + σ13

2

S2
12

=≥ 1 f ailure < 1 no f ailure (1)

Fibre compression σ11 < 0(
σ11

Xc

)2
=≥ 1 f ailure < 1 no f ailure (2)

Matrix tension σ22 + σ33 > 0

(σ22 + σ33)
2

Y2
T

+
σ23

2 + σ22σ33

S2
23

+
σ12

2 + σ13
2

S2
12

=≥ 1 f ailure < 1 no f ailure (3)

Matrix compression σ22 + σ33 > 0

[(
Yc

2S23

)2
− 1

](
σ22 + σ33

YC

)
+

(σ22 + σ33)
2

4S2
23

+
σ23

2 + σ22σ33

S2
23

+
σ12

2 + σ13
2

S2
12

=≥ 1 f ailure < 1 no f ailure (4)

The damage evolution of the CFRP was based on the energy dissipation during
the process and is linear according to the Abaqus built-in Hashin model. The various
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modes and their corresponding failure criteria for the fibre and matrix are presented by
Equations (1)–(4). In Abaqus/CAE, the element is deleted when the damage variables
reach the value of 1 or greater under the failure modes presented in the above equations.
The value of the variables viz. DAMAGEFT (fibre tensile damage variable), DAMAGEFC
(fibre compressive damage variable), DAMAGEMT (matrix tensile damage variable) and
DAMAGEMC (matrix compressive damage variable) is checked, and if the value is greater
than the threshold, the element will be deleted according to the Hashin model subroutine
incorporated in Abaqus/Standard CAE. Hashin’s parameters are well established and
widely adopted in the industries [23].

Damage Initiation Criteria

Before machining or initiating any damage, the material property is assumed to
be linear elastic for CFRP composite laminates. Thus, the orthotropic elastic material is
modelled with the stress–strain relationship.

Γ = 1/(v12v21 − v23v32 − v13v31 − 2v21v32v13) (5)

C0
11 = E1(1− v23v32)Γ

C0
22 = E2(1− v13v31)Γ

C0
33 = E3(1− v12v21)Γ

C0
12 = E1(v21 + v31v23)Γ

C0
23 = E2(v32 + v12v31)Γ

C0
13 = E1(v31 + v21v32)Γ

C0
44 = G12

C0
55 = G23

C0
66 = G13

Once the damage initiation criterion is satisfied, the material degradation will start
taking place. The two coefficients of the damage will come into the equation (df and dm).
The coefficients will change accordingly.

d f = −1−
(

1− d f t

)(
1− d f c

)
(6)

dm = −1− (1− dmt)(1− dmc) (7)

C0
11 =

(
1− d f

)
E1(1− v23v32)Γ

C0
22 =

(
1− d f

)
(1− dm)E2(1− v13v31)Γ

C0
33 =

(
1− d f

)
(1− dm)E3(1− v12v21)Γ

C0
12 =

(
1− d f

)
(1− dm)E1(v21 + v31v23)Γ

C0
23 =

(
1− d f

)
(1− dm)E2(v32 + v12v31)Γ

C0
13 =

(
1− d f

)
(1− dm)E1(v31 + v21v32)Γ

C0
44 =

(
1− d f

)
(1− smtdmt)E1(1− smcdmc)G12

C0
55 =

(
1− d f

)
(1− smtdmt)E1(1− smcdmc)G23

C0
66 =

(
1− d f

)
(1− smtdmt)E1(1− smcdmc)G13

4. Methodology

A computer numerical controlled (CNC) vertical drilling machine (Model: SURYA
VF30, BFW—India, Bangalore, India) was used for conducting the experiments. The drill
used was an 8 mm solid carbide drill (uncoated) from Kennametal with a point angle of
130◦. Solid carbide drills have excellent thermal stability, which was of prime importance
while drilling under cryogenic conditions. After each experiment, a new drill bit was used



Polymers 2021, 13, 3995 7 of 15

to minimise errors due to tool wear. The experimental setup adopted in this research is
presented in Figure 4.
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Figure 4. Experimental setup.

The drilling procedure was performed conventionally, while the liquid nitrogen was
sprayed at the tool–workpiece interaction. This was done to maximise the utilisation of
the cryogenic fluid. The workpiece was clamped between custom-made fixtures, which
had sufficient room for the cryogenic fluid to affect a substantial area. After the workpiece
was firmly secured, holes were drilled through its entire depth. The dynamometer (Kistler
9257B) was fixed on the mild steel base and was insulated using foam to protect it from
subzero temperatures. A nozzle was used to spray the liquid nitrogen on the workpiece at
1 bar pressure and −196 ◦C. Drilling was done both in a cryogenic and dry environment.

5. Results and Discussion
5.1. Analysis of Delamination

Delamination is the most common form of damage in CFRPs. A lot of research has
been done to quantify the damage caused by delamination. Generally, delamination is
expressed by a parameter known as the delamination factor (Df). The delamination at the
exit and entry sides of the drilled hole is shown in Figures 5a and 5b, respectively.
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Traditionally, it is defined as the ratio of the largest delamination diameter to the
drilled hole diameter.

D f =
D
d

(8)
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The ratio of the delaminated circle area to the drilled hole area is also sometimes
referred to as the delamination factor.

D f =
A
a

(9)

An analytical model for assessing the delamination factor during the cryogenic drilling
of the CFRP has been developed by the authors and elaborately detailed in previously
published work [7]. This model introduces a factor that takes into account the thrust force.
It is a function of the maximum thrust force to the critical thrust force.

D f = w1
Dmax

D0
+ w2

Amax

A0
+ w3

Fmax

Fcrit
(10)

In the present work, the delamination around the holes is studied using experimental,
numerical and analytical methods. An ultrasonic C-scanner is used for assessing the
delamination under the experimental approach, while the delamination assessment under
numerical modelling is carried out by Abaqus/CAE. Later, the analytical approach makes
use of Equation (10) to assess the delamination. The delamination at the tool exit area is
primarily considered as it faces the most damage. The delamination as determined by the
experimental, analytical and numerical approaches under a dry and cryogenic environment
is presented in Table 3.

Table 3. Delamination determination by different approaches.

Speed
(m/min)

Feed
(mm/rev)

Dry Environment Cryogenic Environment

Exp. Numerical Analytical Exp. Numerical Analytical

100 0.03 2.89 2.55 1.88 2.15 2.25 2.0
100 0.06 3.01 2.65 2.11 2.19 2.4 2.28
100 0.09 3.39 3 2.4 2.24 2.52 2.35
125 0.03 2.05 2.05 1.5 2.03 2.20 1.92
125 0.06 2.88 2.25 2.04 2.12 2.25 2.03
125 0.09 2.92 2.30 2.21 2.18 2.3 2.09
150 0.03 2.05 2 1.53 1.96 2.26 1.75
150 0.06 2.91 2.55 2.08 2.05 2.32 1.94
150 0.09 3.17 3.01 2.32 2.15 2.50 2.05

It is inferred from the experiments that the cutting speed and feed rate have a consid-
erable influence on the delamination factor. The delamination factor was found to be least
at 125 m/min and 0.03 mm/rev under dry drilling conditions. A visual representation of
the delaminated holes in both dry and cryogenic conditions is presented in Table 4. It also
shows the experimental images which were obtained from the ultrasonic C-scanner.

The influence of the feed rate and cutting velocity on the delamination factors under
the dry drilling of CFRP is presented in Figure 6. The results of the other two approaches,
namely, analytical and simulation are also portrayed for comparison and validation pur-
poses. When the cutting velocity is maintained constant, the delamination factor was
found to worsen with increased feed rates. The same trend was observed under all the
different approaches investigated in the present research work. High magnitude thrust
forces developed under high feed rates cause considerable damage to the CFRP matrix.
This, in turn, increases the delamination factor [7]. With increasing cutting speed, the
delamination factor was found to decrease and beyond certain velocities, it was found
to increase again. Higher cutting speeds result in high temperatures which soften the
CFRP matrix and thus reduce delamination. However, the resistance to delamination was
decreased beyond a certain threshold temperature, which might be associated with an
increased delamination factor at higher cutting speeds (>125 m/min) [24].
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Table 4. Image of drilled holes (Experimental, FEM, Optical).

Speed
(m/min)

Feed
(mm/rev)

Dry Environment Cryogenic Environment

Exp. FEM Optical Exp. FEM Optical

100 0.09
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The delamination factor values as predicted by the numerical model were found to be
closer to the experimental values (within 15%). However, the values obtained using the
analytical model showed greater deviation from the experimental values as compared to
the numerical data. This is because Fmax

Fcrit
has less impact on the overall delamination factor

than that of Dmax
D0

[7].
The influence of the feed rate and cutting velocity on the delamination factors under

cryogenic-assisted CFRP drilling is presented in Figure 7. As observed in dry drilling, in
cryogenic drilling, the delamination factor was also found to increase with increased feed
rates at a constant cutting speed. But their values were considerably lower than that of dry
drilling. The numerical and analytical results followed the same trend of the experimental
outcomes. This can be inferred from Figure 7. A reduced delamination factor at increasing
cutting speeds and fixed feed rates is attributed to the reduction in the thrust force, which
leads to less damage induced on the CFRP [7].
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The values of the delamination factor predicted by the numerical model were very
close to the experimental values (within 15%). The values obtained using the analytical
model were relatively close to the experimental values. Under a cryogenic environment, a
higher impact is established by Fmax

Fcrit
on the delamination factor than Dmax

D0
on account of a

higher thrust force and a lower probability of crack formation in the cryogenic environ-
ment [7].

5.2. Analysis of Force

From Table 5, we can infer that the magnitude of the thrust forces under cryogenic
conditions is considerably higher. This is attributed to the induced compressive stress due
to the difference in the thermal expansion coefficients of resin and fibre under cryogenic
conditions [15]. Thus, the elastic modulus and the tensile strength of the CFRP are further
augmented.

Table 5. Experimental and numerical results of the thrust force.

Iteration
Speed

(m/min)
Feed

(mm/rev)
Cryogenic Environment Dry Environment

Exp. Numerical Exp. Numerical

1 100 0.03 186 178.4 76.9 79.64
2 100 0.06 245.4 246.9 115.9 121.05
3 100 0.09 315.4 290.9 143.4 138.2
4 125 0.03 139.4 119.7 77.7 69.38
5 125 0.06 183 193.3 113.2 109.24
6 125 0.09 213.6 203.4 145.3 139.81
7 150 0.03 129.9 119.7 80.9 73.81
8 150 0.06 149.7 163.2 118.1 122.6
9 150 0.09 183.1 210.1 145.3 139.6
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The experimental and numerical predicted thrust force for CFRP drilling in a dry
environment under different operating parameters is shown in Figure 8. The trend of
an increased thrust force with increasing feed rates at a constant cutting speed might be
associated with the reduction in the clearance angle [25]. The cutting speed has very little
effect on the thrust forces because the mechanism of cutting in composites is based on
bending fracture. Due to work hardening, high magnitude thrust forces are developed
with increasing cutting speeds in metals. However, this phenomenon is not observed
in composite laminates [26–28]. The experimental value is found to be in the range of
77–146 N for dry drilling. In addition, the numerically predicted results are found to be in
the acceptable range (within 10%) of experimental observations.
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The experimental and numerical results of the thrust force for CFRP drilling under a
cryogenic environment with varying feed rates and cutting speeds are shown in Figure 9.
The same increasing trend is observed under experimental and numerical predictions as in
the case of dry drilling. However, the observed thrust forces are higher than dry drilling.
Yet, in contrast, a decreasing trend is observed with increasing cutting speeds. This is
associated with the migration of the failure mode from bending to shear fracture due to the
reduced fibre deflection in cryogenic drilling [7]. The experimental value is found to be in
the range of 139–183 N for cryogenic conditions. The values of the thrust force predicted
by the numerical model were very close to the experimental values (within 14%).
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5.3. Surface Morphology Studies

The surface morphology of the drilled holes at a higher cutting velocity (150 m/min)
under dry and cryogenic conditions is shown in Figure 10.
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Figure 10. Scanning electron microscopic images of drilled holes with different feed rates under dry and cryogenic conditions.

In dry drilling, the matrix gets decomposed and softened due to higher cutting temper-
atures, resulting in poor surface quality. Under cryogenic conditions, better surface quality
with fewer fibre pullouts is seen. Even though the thrust force is higher under a cryogenic
environment, the surface quality deterioration is significantly less when compared with
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dry drilling. This is mainly due to the increase in fibre brittleness caused by liquid nitrogen.
Thus, the failure mode of the fibre under cryogenic drilling changes from rupture to shear
fracture. As the feed rate increases, the surface quality deteriorates. With increasing feed,
the uncut chip thickness increases, resulting in higher order cutting forces. A high magni-
tude cutting force increases the angle between the fibre orientation and cutting direction,
thus increasing the fibre pullout on the drilled surface.

6. Conclusions

An exhaustive investigation was carried out to study the effects of the cryogenic
environment on the thrust force and delamination factor during CFRP drilling. The present
study that combines the experimental, numerical and analytical modelling approaches
stands as evidence for the success of cryogenic conditions in mitigating the drilling-induced
delamination of CFRP. This study closely predicts the values of the delamination factor as
well as its variation with the changes in operating parameters. The major outcomes of the
present study are summarised and presented below:

• The thrust force obtained in cryogenic drilling is found to be much larger than that
in dry drilling. An increase in the feed rate leads to increased thrust forces; the same
trend is observed under the simulation and the experimentation as well.

• The delamination factor in cryogenic drilling is found to be much lower than that in
dry drilling. An increase in the feed rate results in an increase in the delamination
factor. This is ensured by both the experimentation and simulation results.

• The delamination factor obtained via the numerical model is in good agreement with
both the experimental and force-adjusted delamination factors for cryogenic drilling.

• Drilling in cryogenic conditions gives better results than dry drilling that is evident
from the experimental and simulation results.

The experimental, numerical and analytical modelling exhibited the supremacy of
cryogenic over the dry condition for CFRP drilling. The reduced delamination factor
will reduce the rejection rates in aerospace and other industries, which utilise CFRP for
manufacturing a wide variety of components. The present research work can be extended
by the numerical and analytical modelling of CFRP drilling under sustainable environments
such as chilled air and minimum quantity lubrication (MQL).
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Nomenclature

σij stress in i-j plane
εij strain in i-j plane
Co Coefficients
Ei Young’s modulus in i direction
Gij Shear modulus in i-j plane
νij Poisson’s ratio (for transverse strain in the j direction when stress is in the i direction)
df Damage coefficient for fibre
dm Damage coefficient of the matrix
Df Delamination factor
Sij Allowable shear strengths (i = 1, 2 or 3)
Xt and Yt Allowable tensile strengths
Xc and Yc Allowable compressive strengths
X1t Tensile strength in the longitudinal direction
X2t Tensile strength in the transverse direction
X1c Compressive strength in the longitudinal direction
X2c Compressive strength in the longitudinal direction
12S Shear strength in the longitudinal direction
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