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Abstract: The exploration of multiplexed bacterial virulence factors is a major problem in the
early stages of Escherichia coli infection therapy. Traditional methods for detecting Escherichia coli
(E. coli), such as serological experiments, immunoassays, polymerase chain reaction, and isothermal
microcalorimetry have some drawbacks. As a result, detecting E. coli in a timely, cost-effective, and
sensitive manner is critical for various areas of human safety and health. Intelligent devices based on
nanotechnology are paving the way for fast and early detection of E. coli at the point of care. Due
to their specific optical, magnetic, and electrical capabilities, nanostructures can play an important
role in bacterial sensors. Another one of the applications involved use of nanomaterials in fighting
microbial infections, including E. coli mediated infections. Various types of nanomaterials, either
used directly as an antibacterial agent such as metallic nanoparticles (NPs) (silver, gold, zinc, etc.), or
as a nanocarrier to deliver and target the antibiotic to the E. coli and its infected area. Among different
types, polymeric NPs, lipidic nanocarriers, metallic nanocarriers, nanomicelles, nanoemulsion/
nanosuspension, dendrimers, graphene, etc. proved to be effective vehicles to deliver the drug in a
controlled fashion at the targeted site with lower off-site drug leakage and side effects.

Keywords: Escherichia coli; nanotechnology; infection; diagnosis; treatment

1. Introduction

Escherichia coli (E. coli) is a gram-negative bacteria and causative agent of many in-
fectious diseases in humans. Many bacterial infections such as urinary tract infections,
bloodstream infections, pneumonia, surgical site infections [1–3], bacterial sepsis [4,5], and
neonatal bacterial meningitis are mainly produced by E. coli [6].
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The Gram-negative bacteria are characterized by their cell envelopes, which are
composed of a thin peptidoglycan cell wall sandwiched between an inner cytoplasmic cell
membrane and a bacterial outer membrane (OM) [7,8]. The OM is an additional protection
layer that prevents several substances from entering the bacterium. Nevertheless, OM
comprises channels named porins, which allow access to numerous molecules such as
drugs [9]. The OM of Gram-negative bacteria is the leading cause of resistance for a
wide range of antibiotics such as β-lactams, quinolones, and other antibiotics [10]. Most
antibiotics must pass through OM for effective targeting [11]. Hydrophobic molecules can
penetrate through the diffusion pathway; in contrast, hydrophilic antibiotics, including β-
lactams can pass via porins. Any variation in the OM by Gram-negative bacteria, including
mutations in porins, can cause resistance [12].

The use of antibiotics is an efficient, prevailing, and the utmost method for treating E.
coli infections. However, huge numbers of drug-resistance strains have appeared due to
antibiotics misuse in the last 50 years [13,14]. Furthermore, the inappropriate and overuse
of antimicrobial agents has increased pathogens and humans’ resistance [15]. Numerous
antibacterial agents such as ampicillin, cotrimoxazole, azithromycin, and gentamicin for
E. coli therapy have been revealed to stimulate the Shiga toxin release from E. coli [16].
In addition, the antibodies treatment is an effective method for deactivating the virulence
factors and toxins from E. coli [17]. Still, the specificity of antibodies is a major challenge for
treating E. coli infections using antibodies [18]. Vaccine therapy using inactivated E. coli has
been used to robust the immune responses in humans. However, the short duration of the
vaccine producing immunity against bacterial infections is a major drawback for treating E.
coli [19]. Despite this, antibiotics-based therapy is still the main strategy against bacterial
infections. There is a need to discover new antibacterial agents with new mechanisms to
combat resistant bacterial strains [20].

Conventional methods have been used for the diagnosis of E. coli infections for several
years, including enzyme-linked immune sorbent assay (ELISA) and polymerase chain reaction
(PCR) [21]. The non-culturing approaches are conducted by staining the urine sample for the
detection of bacterial infections, but these approaches are time-consuming with less precision
value [22]. Meanwhile, the culturing method is one of the oldest techniques for detecting
infectious bacteria. Few drawbacks accompany this method, e.g., preparation of individual
culture medium to detect each microorganism in the sample for optimal growth [23]. PCR-
based methods have been utilized for the identification and diagnosis of bacterial infections [24].
A multiplex PCR test has been established to recognize E. coli producing bacterial infections [25].
ELISA is also one of the molecular techniques widely used to detect bacterial components in
the sample [26]. Nevertheless, the prolonged incubation period, extensive sample cleaning,
and purification of biomolecules are major disadvantages of these methods [27,28]. To tackle
limitations related to the approaches mentioned above, nanotechnology is a quick, efficient
and versatile solution for treating and detecting bacterial infections [29]. Recently, numerous
NPs, such as silver NPs, zinc oxide NPs, and cationic surfactant NPs, have been used for
bacterial infection treatment [30–32]. The antibacterial potential of silver NPs generally depends
on the particle size, shape and surface modification [33–36]. The loading of antibacterial
moiety into the silver NPs also enhances its antimicrobial activity [37,38]. Zinc oxide is a
multifunctional inorganic material that has been used widely in optoelectronic devices, textiles,
cosmeceuticals, and most importantly, as an antibacterial agent [39]. The cationic surface
NPs are positively charged and can kill bacteria by disrupting bacterial cell wall/membrane,
generating free radicals [40,41].

Nanotechnology-based approaches such as gold NPs, silver NPs, magnetic NPs,
and quantum dots (QDs) reveal selective target-binding characteristics [42–57]. These
characteristics make them ideal candidates for the diagnosis and biosensing of E. coli
infections [58–63]. The binding to specific ligands such as antibodies and enzymes for
detecting bacterial infections is due to the surface properties of NPs. This boosts the
specificity of the nanosensor being developed [64]. The entrapment of NPs into nanosensors
also enhances the rapid detecting ability of the portable device. NPs, portable devices,
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nanotubes, nanowires, and nanomechanical devices are typical examples of functional
probes for the detection and disinfection of pathogens and other contaminants in different
mediums [65–67].

2. Detection of E. coli Infection

Specific and accurate identification of bacteria is a critical component of early illness
diagnosis and surveillance, and it has the ability to avert outbreaks and the spread of
devastating epidemics. It is also vital to quickly confirm the presence of these bacteria
at low concentrations to prevent these diseases. As previously stated in the introduction,
traditional approaches for detecting E. coli have significant disadvantages that restrict their
implementation in real-world situations [68–70].

2.1. Nanotechnology Approaches for E. coli Detection

Early diagnosis of specific species of bacteria has numerous medical, environmental,
and food safety uses [71]. NPs have shown exceptional abilities against various infections
and are being exploited to build new devices and technology to help with this public health
problem [72,73]. Since zoonosis is an existing thread, the focus is not confined to human
diseases but also includes those that affect animals. For example, Stringer et al. developed
an optical biosensor for the identification of respiratory syndrome and porcine reproductive
virus, utilizing QDs and gold NPs [74]. For the diagnosis of viral and bacterial clinical
infections, biosensors and nano-biosensors have been widely used. These tools are practical
(smartphone-based nano-biosensor and POC ability) and rapid, and they are regarded as
novel technologies that provide a replacement to the drawbacks of traditional investigative
techniques. In this review, we discuss different nanomaterials (Gold NPs, Ag NPs, Carbon
NPs, QDs, etc.) for effective detection of E. coli in wastewater, food, and the human body.
Different nanomaterials used in the detection of E. coli are summarized in Table 1.

Table 1. Summary of different nanomaterials in the detection of E. coli.

Nanostructure Type Key Feature Ref.

Au NPs

Labeled gold NPs A perfect Detect of E. coli 500 CFU mL−1 in 1 mL
of sample [75]

DNA-gold NPs Detection of bacteria with low concentration of 2
× 103 CFU mL−1 [76]

Protein-gold NPs No cross-reactivity for Gram-negative pathogens [77]

gold@MoS2–PANI nanocomposite 10 CFU mL−1 for LOD in just 30 min [78]

Peptide-gold NPs LOD and LOQ for E. coli measurement was 2 and
6 CFU mL−1, respectively [79]

Protein-gold NPs
A perfect LOD of 4 × 103 CFU mL−1, reusable

potential, and wide-range analysis of 2 × 104–2 ×
107 CFU mL−1 for E. coli detection

[80]

Ag NPs

Ag-gold alloy nanohole arrays Label-free detection, wide-range analysis of
103–108 CFU mL−1 and LOD of 59 CFU mL−1 [81]

Polymer-Ag NPs Wide range analysis of 0.001–100 ng mL−1 and
10–107 CFU mL−1 [82]

QDs

Mannose-ZnTe QDs Good selectivity and a perfect linearity range of
1.0 × 105–1.0 × 108 CFU mL−1 toward E. coli [83]

CdS QDs@MOF Suitable linear range of 10–108 CFU mL−1, LOD
of 3 CFU mL−1 and S/N of 3 [84]

carboxylated graphene QD Detection of pathogen in drinking water in low
concentrations of E. coli (103–106 CFU mL−1) [85]

Carbon nanomaterials

Carbon dot/ZnO/PANI Perfect selectivity and good LOD of 1.3 × 10−18 M
E. coli in water [86]

SWCNTs
Detect the presence of specific bacteria based on
metabolic fingerprint and differentiate among

other pathogens
[87]

Aptamer-BC-Ni NPs
Selective detection of E. coli with a LOD of 10 CFU

mL−1 and wide range detection of 100–105 CFU
mL−1 in juice, water, and fecal

[88]

POE-SWCNTs Multiplexed detection and a LOD of 102 CFU
mL−1 within 2 min [84]
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Table 1. Cont.

Nanostructure Type Key Feature Ref.

carboxylated graphene QD Detection of pathogen in drinking water in low
concentrations of E. coli (103–106 CFU mL−1) [85]

Carbon nanomaterials

Carbon dot/ZnO/PANI Perfect selectivity and good LOD of 1.3 × 10−18 M
E. coli in water [86]

SWCNTs
Detect the presence of specific bacteria based on
metabolic fingerprint and differentiate among

other pathogens
[87]

Aptamer-BC-Ni NPs
Selective detection of E. coli with a LOD of 10 CFU

mL−1 and wide range detection of 100–105 CFU
mL−1 in juice, water, and fecal

[88]

POE-SWCNTs Multiplexed detection and a LOD of 102 CFU
mL−1 within 2 min [84]

MOF

Tb-BTC Wide Detection range of 1.3 × 102–1.3 × 108 CFU
mL−1 and LOD of 3 CFU mL−1 [89]

Cu3(BTC)2-PANI High sensitivity, LOD of 2 CFU mL−1, and short
answer time of 2 min [90]

Silica NPs
SNP-RB Wide detection range of 10–105 CFU mL−1 and

LOD of 8 CFU mL−1 [91]

DNA-HSMs Wide detection range of 1 × 10−10–1 × 10−5 µM
with R2 of 0.982 and LOD of 1.95 × 10−15 µM [92]

Magnetic NPs

Antibody-MNBs
No need for pre-enrichment, LOD of 104.45 CFU

mL−1 that equal to 1400 bacterial 25 µL and
response time less than 60 min

[93]

Antibody-Fe3O4
An LOD of 7.4 × 104 and 8.0 × 105 CFU ml−1 in

pure culture and ground beef samples [94]

Fe3O4@ gold No need for pre-enrichment and LOD of <1 log
CFU mL−1 [95]

ZnO NPs

Antibody-piezoelectric ZnO Wide linear detection of 103–107 CFU mL−1 and
LOD of 103 CFU mL−1 [96]

DNA-ZnO Nanorod An LOD of 1.0 × 102 CFU mL−1 for target ssDNA
of E. coli [97]

2.1.1. Gold NPs

Due to its versatility in dimension and arrangement, such as circular, diamond, crys-
talline, triangular, and spiral geometries, gold NPs have been extensively used in E. coli
recognition. In comparison to native Au, gold NPs have distinct physical, chemical, and
electrical properties [98]. In this light, Li et al. developed a procedure for detecting the E.
coli O157:H7 bacteria by using gold NP labelling, antibody affinity binding, and inductively
coupled plasma mass spectrometry (ICPMS) [75]. The technique was capable of detecting
as few as 500 E. coli O157:H7 cells in 1 mL of sample or 500 CFU mL−1 using the signal
amplification ability of Au NPs and the perfect sensitivity of ICPMS. The assay had good
specificity for E. coli O157:H7 in tests with non-pathogenic E. coli (DH5r, TCC35218, and
ATCC25922). Each experiment took 40 min to complete. Demonstration of this assay for E.
coli O157:H7 suggests its potential for detecting a variety of bacterial pathogens.

In another study, Wang et al. reported a quartz crystal microbalance (QCM) biosensor
for E. coli O157:H7 DNA identification using nanogold modification and mass amplifi-
cation [76]. 1,6-Hexanedithiol was applied to the Au surface of QCM and subsequently
self-assembled to form a thiolated interface, enabling Au NPs anchoring inside the device.
Thiolated single-stranded DNA (ssDNA) probes targeted the E. coli O157:H7 eaeA gene
connected to the NP-modified electrode surface through the Au-SH binding. The outer
nanogold was used as a mass amplifier to boost the signal, and the biotin-avidin system
was used to bond with the target DNA. This biosensor identified target DNA correspond-
ing to 2 × 103 CFU mL−1 E. coli O157:H7, indicating that developing an appropriate and
sensitive QCM biosensor for harmful bacteria diagnosis based on specific DNA analysis
is feasible. In order to attract more attention, this DNA biosensor should be combined
with some micro- and nano-fabrication techniques to realize more promising and practical
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applications, and more attention should be focused on the further improvement of the
sensitivity and the shortening of analysis time.

Based on the interaction between bacterial cells and the viruses that infect them
(phages), Peng et al. provided a straightforward technique for identifying a range of
bacterial species [77]. As phages are less expensive and more stable to storage and testing
conditions than antibodies, they have previously been examined for bacterial identifica-
tion [99]. This group modified phage M13 to express a receptor-binding protein from a
phage that normally identifies the bacteria they want to kill. Thiolation of the altered
phages enables Au NPs to attach to them, causing them to assemble on the phages and
operate as a signal amplifier, resulting in an apparent colour change due to changes in
surface plasmon resonance characteristics. Two strains of E. coli, the human infections Pseu-
domonas aeruginosa and Vibrio cholerae, and two strains of the plant pathogen Xanthomonas
campestris were all detected. There was no cross-reactivity among the Gram-negative bacte-
rial species examined in this assay, which detected about 100 cells. The assay takes less than
60 min to complete and is resistant to various media, including seawater and human serum.
This strategy combines highly evolved biological materials with the optical properties
of gold NPs to achieve the simple, sensitive, and specific detection of bacterial species.
A schematic representation for chimeric phages and processes of pathogen detection is
given in Figure 1.

Figure 1. Schematic representation for chimeric phages and detection of pathogens (A) Gray: M13
phage, blue: foreign receptor-binding protein and yellow: thiolated phage by EDC chemistry (B) Blue
rectangle: bacteria-infected medium, red: Au NPs and colour change (purple): attachment of Au NPs
and thiolated phage. Reprinted from Ref. [77].

Using the Au@MoS2–PANI nanocomposite, Raj et al. created a label-free and extremely
sensitive biosensor based on electrochemical measurement [78]. The Au@MoS2–PANI
nanocomposite greatly improved the conductivity of the glassy carbon electrode, and a
self-assembled monolayer of mercaptopropionic acid on the Au NPs surface was used for
the covalent adsorption of antibodies to reduce non-specific bacterial pathogen binding on
the electrode surface. The biosensor demonstrated great sensitivity and selectivity, with a
LOD of 10 CFU mL−1, and identified E. coli in less than 30 min. In addition, the proposed
biosensor showed a high linear detection range and practical use in urine samples, and
electrode regeneration experiments. The suggested electrochemical biosensor for E. coli is
shown in Figure 2.

Figure 2. The suggested electrochemical biosensor (Au@MoS2–PANI nanocomposite) for E. coli detection; The biosensor
was fabricated on the glassy carbon electrode surface and characterized by conducting the CV, DPV, and EIS techniques
in 5 mM of [Fe(CN)6]3-/4- that contained 0.1 M of KCl solution. Abbreviation: bovine serum albumin (BSA), Anti-E. coli
antibody (Ab), mercaptopropionic acid (MPA), glassy carbon electrode (GCE). Reprinted from Ref. [78].
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Ropero-Vega et al. described a bioinformatic architecture of a peptide based on TIR
protein, an Intimin membrane protein receptor found in E. coli [79]. This peptide (called
PEPTIR1.0) was employed as a detecting element in the biosensor (based on gold NPs mod-
ified screen-printed electrodes) for the identification of E. coli (Figure 3). The biosensor’s
LOD and LOQ were 2 and 6 CFU mL−1, respectively. Furthermore, the system’s selectiv-
ity in detecting the pathogen in the presence of other bacteria, including Staphylococcus
aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa), was statistically significant.
This means this new PEPTIR-1.0-based biosensor can be used in the rapid, sensitive, and se-
lective detection of E. coli in aqueous matrices. Pao et al. investigated carbohydrate-protein
interactions and developed a label-free nanosensor to recognize E. coli using surface-
modified Au NPs and solid-liquid contact electrification [80]. The designed TENS had a
reusable potential and could identify E. coli in a wide range of concentrations of 2 × 104–
2 × 107 CFU mL−1, with a LOD of 4 × 103 CFU mL−1. The current work highlights the
bright prospect of TENS as a new prototype of sensing technology for the label-free and
rapid analysis of carbohydrate-protein interactions, as well as other pathogenic microor-
ganisms. Figure 3 shows the biosensor’s construction and E. coli detection procedure.
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Figure 3. The biosensor’s construction and E. coli detection are depicted in this diagram. In the SWV and EIS curves, the
electrochemical behaviour of the unaltered (SPE) electrode in step 1 (left) is schematically illustrated by black lines (right).
SPE/ gold NPs (step 2 in left, red lines in SWV and EIS), SPE/ gold NPs /PEP (step 3 in left, blue lines in SWV and EIS),
and SPE/ gold NPs /PEP/EC are the electrode’s expected responses (step 4 in left, rose lines in SWV and EIS). Reprinted
from Ref. [79].

2.1.2. Silver NPs

Plasmonic nanosensors use the electromagnetic field localization of noble metal NPs
to identify biological substances with great sensitivity. Due to their unusual optical features,
nanocomposites and nanoalloys of two plasmonic metals have received much attention
in recent years [100]. For example, silver-gold alloy nanohole arrays (-NHA) for the
ultra-sensitive plasmonic label-free identification of E. coli were described by Hwang
et al. [81]. Compared to monometallic gold or silver, the fully miscible silver-gold alloy
had a dramatically different dielectric function in the near-infrared wavelength range. The
-NHA had a significantly higher refractive index sensitivity of 387 nm RIU−1 than silver or
silver mono-metallic nanohole arrays, which is around 40% higher. Furthermore, the -NHA
provided exceptionally durable material stability against corrosion and oxidation over a
one-month observation period. The ultra-sensitive -NHA enables label-free identification
of E. coli at concentrations ranging from 103 to 108 CFU mL−1, with a LOD of 59 CFU mL−1.
This alloy plasmonic material provides a new outlook for widely applicable biosensing
and bio-medical applications.

In another study, for the construction of a new biosensor, a polymer-metal method was
also used. Imran et al. developed a sensitive electrochemical nanobiosensor using positively
charged chitosan stabilized silver NPs (Chi-silver NPs) for the identification of negatively
charged lipopolysaccharide (LPS) or E. coli [82]. In the presence of both LPS and E. coli, glassy
carbon electrodes treated with Chi-silver NPs increased its signal. Identification was achieved
over a wide concentration range of 0.001–100 ng mL−1 and 10–107 CFU mL−1 (many orders of
magnitude). At very low concentrations, the nanosensors could reliably detect LPS and E. coli.
Chi-AgNPs have potential as low-cost, sensitive nanobiosensors for Gram-negative bacteria,
due to strong electrostatic interaction with LPS present in their outer membranes.
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2.1.3. QDs

As a result of their high light emission capabilities and flexibility to be modified with
a range of functional groups to identify diverse analytes, QDs have recently demonstrated
to be invaluable tools for biosensing applications. To take advantage of this, Wu et al.
developed a new fluorescent probe based on ZnTe QDs modified with mannose (MAN)
for detecting E. coli [83]. According to the measurements, the produced QDs had high
selectivity against E. coli and good linearity in the range of 1.0 × 105–1.0×108 CFU mL−1.
At pH 7.0, 25 ◦C, and a 20-min incubation duration, the optimal fluorescence intensity for
identifying E. coli was observed. E. coli has a LOD of 4.6 × 104 CFU mL−1 under optimal
conditions. The quenching was discussed to be a static quenching procedure, which was
proved by the quenching efficiency of QDs, which decreased as the temperature increased.

Zhong et al. also synthesized a zeolitic imidazolate framework-8 (ZIF-8), loaded with
CdS QDs (core-shell CdS@ZIF-8) for the identification of O157:H7 and then used as a signal
enhancer tag [84]. In the following, core-shell NPs were coated with polyethyleneimine
(PEI) and modified with anti-E. coli O157:H7 antibody for specific recognition of E. coli.
The detection range of the nanosensor was 10–108 CFU mL−1 and LOD of 3 CFU mL−1

(Signal/noise = 3). Interestingly, the sensitivity of CdS@ZIF-8 for the detection of E. coli
was 16 times greater than CdS QDs.

Bruce et al. used a biosensing test that emphasized monitoring changes in fluorescence
intensity to examine the application of conjugated carboxylated graphene CGQDs to
identify E. coli [85]. Cecropin P1, a naturally occurring antibacterial peptide that aids in
the adhesion of CGQDs to E. coli cells, was conjugated to CGQDs. The findings could be
useful in instances where rapid, consistent detection of bacteria in liquids, such as drinking
water, is required, especially considering the low range of E. coli concentrations (103 to
106 CFU mL−1) within which two biosensing tests have been proven to perform together.
These findings have the potential to be used in situations where rapid, reliable detection of
bacteria in liquids, such as drinking water, is required. A schematic representation for a
fluorescent-assisted nanosensor array, based on graphene QDs attached cecropin P1 for
identifying pathogens is given in Figure 4.

Figure 4. Fluorescent-assisted nanosensor array based on graphene QDs attached cecropin P1 for identification of pathogens.
Reprinted from Ref. [85].

2.1.4. Carbon Nanomaterials

Carbon nanomaterials have been used to make electrochemical biosensors in recent
years due to their unique mix of intrinsic features, such as high conductance, durability, and
bioactivity, making them a suitable candidate for bio-sensing material [86]. For example,
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by polymerizing aniline (PANI) in the presence of carbon dot and zinc oxide nanorod, a
conductive nanocomposite electrode, CDs/ZnO/PANI, was successfully produced for the
identification of E. coli [101]. The electrical conductivity of CD/ZnO/PANI was shown to
boost E. coli detection capability. The proposed electrochemical biosensor showed good
selectivity, detecting E. coli O157:H7 in water samples with LOD of 1.3 × 1018 M.

Nibler et al. developed a set of near-infrared (NIR) fluorescence nanosensors based on
single-walled carbon nanotubes (SWCNTs) and utilized them for remote fingerprinting of
clinically important bacteria [87]. Based on their metabolic fingerprint, this multiplexed
sensor array was able to identify the presence of bacteria and differentiate the majority
on a species level. Even closely related significant pathogens (S. aureus and Staphylococcus
epidermidis) isolated from various human illnesses may be differentiated. This type of mul-
tiplexing with NIR fluorescent nanosensors enables remote detection and differentiation
of important pathogens and the potential for smart surfaces. A schematic diagram for
identifying pathogens by this method is given in Figure 5, showing that a SWCNTs-based
nanosensor, in the presence of pathogens, produces a specific fluorescence signal and a
PEG based-hydrogel, with 8 fluorescent sensors remotely observed in NIR. Additionally,
the growth of pathogens on the hydrogel sensor changes the sensor array fingerprint and
can discriminate different infections.

Figure 5. A schematic diagram for identification of pathogens. (1) SWCNTs-based nanosensor in
the presence of pathogens produce a specific fluorescence signal, (2) PEG based-hydrogel with 8
fluorescent sensors remotely observed in NIR, (3) Growth of pathogens on hydrogel sensor change
sensor array fingerprint and can discriminate different infections, (4) Multimodal nanosensors can
specify for detection and discriminate different pathogens. Reprinted from Ref. [87].

Kaur et al. reported the invention of a label-free impedimetric aptasensor for specific
and accurate identification of E. coli O157:H7, using a nanostructured platform made of
boron-carbon nanorods coated with nickel NPs (BC-Ni) [88]. The electrochemical aptasen-
sor was shown to identify E. coli O157:H7 preferentially in water, juice, and faeces samples
with a LOD of 10 CFU mL−1 and a dynamic detection range of 100 to 105 CFU mL−1.

Lee et al. developed a continuous flow multijunction biosensor for detecting E. coli K12
and S. aureus at the same time [84]. Gold-plated tungsten wires coated with polyethyleneimine,
and single-walled carbon nanotubes were used to make junction biosensors. Streptavidin and
biotinylated antibodies specific to E. coli K12 and S. aureus were used to functionalize each
junction. Compared to the stationary sensor, the constructed junction sensor linked with the
fluidic channel showed improved electric signal outputs for identifying E. coli K12. In the
sensing range of 102–105 CFU mL−1, a linear regression was seen for both the E. coli and S.
aureus functionalized array sensors. Within 2 min, multiplexed identification of bacteria at
sensing levels as low as 102 CFU mL−1 was obtained for E. coli K12 and S. aureus.

2.1.5. Metal-Organic Frameworks (MOFs)

Metal-organic frameworks (MOFs) are chemical types that combine metal ions or
clusters with organic ligands to produce one, two, or three-dimensional architectures.
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They are a type of coordination polymer that has the unique property of being porous.
MOFs are considered a suitable medium for the construction of biosensors for various
analytes found in the environment [89]. In this light, Gupta et al. reported employing a
water-dispersible terbium MOF to identify E. coli (Tb-BTC; BTC, 1,3,5-benzenetricarboxylic
acid) [102]. Tb-BTC was bio-interfaced with anti-E. coli antibodies before being tested as
an E. coli biosensor. The biosensor can identify analytes with concentrations ranging from
1.3× 102 to 1.3× 108 CFU mL−1, with a detection limit of 3 CFU mL−1, and has a detection
time of 5 min and a total analysis time of 20–25 min.

The design of a Cu-MOF based electrochemical biosensor for the very selective detection of
E. coli bacteria was reported by Gupta et al. [90]. Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylic
acid) was combined with polyaniline (PANI) to create a MOF-based electrochemically active
platform. Cu3(BTC)2-PANI thin films were bio-interfaced with anti-E. coli antibodies and used
as a biosensing electrode on an indium-tin-oxide (ITO) substrate. The sensor described above,
which used the electrochemical impedance spectroscopy (EIS) signal measuring methodology,
had great sensitivity for detecting very low E. coli (2 CFU mL−1) concentrations in a fast
reaction time (2 min) and was also sensitive in the presence of other non-specific bacteria.
This new MOF/PANI based detection platform for E. coli has shown improved performance
compared to many of the previously reported electrochemical biosensors.

2.1.6. Silica NPs

To examine and unravel biological processes and related mechanisms, accurate, low-
toxicity, and real-time biochemical tests are necessary. Sensors and probes made of silicon
nanomaterials have the ability to meet the above-mentioned criteria [103]. To test this
feature, Jenie et al. described the production of fluorescent silica NPs (SNP-RB) from natural
amorphous silica and evaluated their efficacy as an E. coli biosensor [91]. The presence of
Rhodamine B in the silica matrix was confirmed by Fourier Infrared (FTIR). The SNP-RB
exhibited an irregular structure architecture with a particle diameter of approximately
20–30 nm, according to TEM evaluation. The highest fluorescence spectrum of SNP-RB was
obtained at 580 nm, which was then used to test the fluorescent NPs’ detection accuracy
against E. coli. The detecting approach was based on SNP-fluorescence-quenching RB’s
mechanism, which gave a linear E. coli concentration range of 10–105 CFU mL−1 with a
LOD of 8 CFU mL−1. After only 15 min of incubation with E. coli, SNP-RB showed a quick
response time. The biosensor’s specificity was tested, revealing that the SNP-RB only gave
a quenching response to live E. coli bacteria. When compared to traditional 3-day bacterial
experiments (such as ELISA, PCR and culturing method), the adoption of SNP-RB as a
sensing platform lowered response time dramatically, while also providing good analytical
performance in terms of selectivity and sensitivity.

Yuhana et al. developed a new label-free electrochemical DNA biosensor for detecting
E. coli bacteria in environmental water samples. The aminated DNA probe was mounted
on 3-aminopropyltriethoxysilane-functionalized hollow silica microspheres (HSMs) and
placed onto a screen-printed electrode (SPE) carbon paste with integrated gold NPs [92].
The biosensor’s selectivity and specificity were improved. Without a redox mediator,
the label-free E. coli DNA sensor had a dynamic linear response range of 1 × 10−10 M to
1 × 10−5 M (R2 = 0.982), with a LOD of 1.95 × 10−15 M. The designed DNA biosensor
had a sensibility that was equivalent to non-complementary and single-base mismatched
DNA. At 4 ◦C and pH 7, the DNA biosensor showed a steady response after 21 days of
storage. Over three regeneration and rehybridization cycles, the DNA biosensor response
was regenerated. The schematic procedure for label-free detection of E. coli by DNA
attached-hollow silica NPs was depicted in Figure 6.
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Figure 6. Schematic procedure for label free detection of E. coli by DNA attached-hollow silica NPs. Reprinted from Ref. [92].

2.1.7. Magnetic NPs

Magnetic NPs have been widely utilized in biosensing for pathogen identification,
mainly for the immunomagnetic separation of bacteria from a sample, or as labels to
improve the biosensor’s responsiveness [94,104]. Wang et al. developed an impedance im-
munosensor based on magnetic nanobeads and screen-printed interdigitated electrodes for
the fast detection of E. coli O157:H7 [93]. Anti-E. coli antibody-coated magnetic nanobeads
were combined with an E. coli sample and used to extract and concentrate the bacteria.
The substance was immersed in a redox probe solution and placed on an interdigitated
electrode that had been screen-printed. The impedance was examined after a magnetic field
concentrated the cells on the electrode’s surface. Without pre-enrichment, the impedance
immunosensor could identify E. coli O157:H7 at a concentration of 1400 bacterial cells in
a volume of 25 L in less than 1 h. Between 104 and 107 CFU mL−1, a linear relationship
between bacteria concentration and impedance value was observed. Despite the presence
of a redox probe during impedance measurement, analysis of the equivalent circuit model
revealed that the impedance shift was predominantly caused by two factors: double-layer
capacitance and resistance owing to electrode surface roughness. The magnetic field and
impedance were simulated using COMSOL Multiphysics software. The architecture illus-
tration of antibody-covered nanobeads and the low concentration detection of E. coli using
a magnetic field procedure is given in Figure 7.

Figure 7. Architecture illustration of antibody-covered nanobeads and low concentration detect of E.
coli using a magnetic field procedure. Reprinted from Ref. [93].
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Varshney et al. developed and tested an impedance biosensor based on an interdig-
itated array microelectrode (IDAM) combined with magnetic NP–antibody conjugates
(MNAC) for the quick and precise identification of E. coli O157:H7 in ground beef speci-
mens [94]. Biotin-labelled polyclonal goat anti-E. coli antibodies were immobilized onto
streptavidin-coated magnetic NPs, which were utilized to extract and concentrate E. coli
O157:H7 from ground beef samples. In the presence of 0.1 M mannitol solution, the
magnitude of impedance and phase angle were evaluated over a frequency range of 10
Hz–1 MHz. The biosensor’s lowest LOD for E. coli O157:H7 in pure culture and ground
beef samples were 7.4 × 104 and 8.0 × 105 CFU mL−1, respectively. By concentrating
bacterial cells linked to MNAC in the active layer of IDAM above the surface of electrodes
with the help of a magnetic field, the sensitivities of the impedance biosensor were in-
creased by 35%. According to equivalent circuit analysis, the impedance shift caused by
the presence of E. coli O157:H7 on the surface of IDAM was caused by bulk resistance
and double-layer capacitance. This impedance biosensor did not use surface immobiliza-
tion methods, redox probes, or sample incubation. From sampling to testing, the entire
detection time was 35 min.

In an interesting paper, Lee et al. combined two features of localized surface plasmon
resonance and target separation of immunomagnetic NPs for the low-concentration de-
tection of O157:H7 in lettuce [95]. Immunomagnetic NPs were synthesized based on core
Fe3O4 (10 nm) and shell of Au. Then, core-shell multifunctional immunomagnetic NPs was
modified with anti-E. coli O157:H7 antibodies for simultaneous identification and isolation
of O157:H7. The nanosensor could detect bacteria in the lettuce matrix with a LOD of 1 log
CFU mL−1 and no-enrichment procedure. The method, which requires no pre-enrichment,
provides an alternative to conventional microbiological detection methods and can be used
as a rapid screening tool for many food samples.

2.1.8. ZnO NPs

Pathogenic bacteria must be detected in various disciplines, including food safety,
environmental water analysis, and clinical diagnostics. Despite the fact that fast and specific
procedures based on the quick and simple binding of recognition elements and targets have
been developed, the sensitive identification of bacterial pathogens has been limited due to
their low targets. As ZnO NPs have a large binding capacity, they can provide additional
reactive sites to bind with bacterial targets, improving detection sensitivity significantly [96].
Chawich et al. created a regenerable bulk acoustic wave (BAW) biosensor for the quick,
label-free, and specific detection of E. coli in a liquid medium [105]. The biosensor’s
architecture consists of a GaAs membrane with a thin piezoelectric ZnO layer on its top
surface. BAWs can be generated by lateral field stimulation using a pair of electrodes
placed on the ZnO layer. Alkanethiol self-assembled monolayers and antibodies against E.
coli were fictionalized on the membrane’s back surface. The immobilization of antibodies
was studied as a function of antibody suspension concentration, pH, and incubation period
in order to maximize bacterial immunocapture. Detection tests in various conditions for
bacterial suspensions ranging from 103–108 CFU mL−1 were used to assess the biosensor’s
performance. For suspensions ranging from 103–107 CFU mL−1, a linear relationship
between the frequency response and the logarithm of E. coli concentration was observed,
with the biosensor’s LOD estimated to be 103 CFU mL−1. The biosensor capability for
the desired operation in complicated biological media is demonstrated by the 5-fold
regeneration and high selectivity towards E. coli identified at 104 CFU mL−1 in a suspension
coloured with Bacillus subtilis at 106 CFU mL−1. The schematic construction of a ZnO/GaAs
BAW nanosensor for identification of E. coli is depicted in Figure 8.
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Figure 8. Schematic construction of ZnO/GaAs BAW nanosensor for identification of E. coli. Reprinted from Ref. [105].

Tian et al. developed a label-free nanosensor based on the light-addressable poten-
tiometric sensor (LAPS) and ssDNA-ZnO nanorod arrays (NRAs) [97]. The recognition
element for specific detection of E. coli O157:H7 DNA was constructed by attachment
of ssDNA on the surface of LAPS. The developed nanosensor was added to a solution
of E. coli ssDNA molecules until the hybridization procedure of target DNA and probe
was completed. The findings show that different signal variations can be observed and
recorded in order to identify E. coli ssDNA. The target ssDNA had a LOD of 1.0 × 102 CFU
mL−1 for E. coli O157:H7 detection in solution. All the results demonstrate that this DNA
biosensor, based on the electrostatic detection of ssDNA, provides a novel approach for
the sensitive and effective detection of bacterial DNA, which has promising prospects and
potential applications in the quality control of food and water. A schematic diagram of
the nanosensor arrangement built up from ZnO nanorods arrays, probe ssDNA, and silica
layer for detecting E. coli is shown in Figure 9.

Figure 9. Schematic diagram of the nanosensor arrangement, built up from ZnO nanorods arrays,
probe ssDNA, and silica layer for detection of E. coli. Reprinted from Ref. [97].
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3. Nanomaterials for Treatment of E. coli Infections

In the 21st century, NPs have emerged as the most innovative system for drug delivery
and therapeutic purposes. Different nanomaterials were used to prepare NPs according to
their unique characteristics, such as controlled drug release, site-specific targeting, lower
side-effects and toxicities, and higher therapeutic efficiency. Meanwhile, bacterial infections
are suitably treated with these NPs with promising outcomes. Figure 10 shows different
types of NPs which are utilized for the drug delivery and treatment of E. coli infection.

Figure 10. Different types of nanomaterials used to inhibit E. coli.

3.1. Polymeric Nanocarriers

Polymeric nanocarriers have a leading biomedical role in drug delivery and therapeutics.
Various polymeric NPs were devised to target E. coli bacteria and to retard bacterial “plank-
tonic” and “biofilm” growth [106]. Polymeric nanocarriers enable the controlled release of
antibiotic drugs over a longer time, larger blood circulation time, and the ability to penetrate
physiological barriers to reach the target infected tissue [106,107]. Several natural (chitosan,
albumin, gelatin, etc.) and synthetic materials (poly lactic-co-glycolic acid (PLGA), polylactic
acid (PLA), polyethyleneimine (PEI), polycaprolactone (PCL), etc.) are utilized to construct
polymeric nanocarriers [107].

In a recent attempt, nettle essential oil was encapsulated inside chitosan NPs to assess
its antibacterial activity [107]. The nanoformulation was prepared through the emulsion-
ionic gelation method. Nettle oil encapsulation within the chitosan NPs improves its
solubility and controls its rapid volatility. The formed NPs had a good oil retention rate,
which conformed to FTIR and XRD data. Therefore, the antioxidant and antibacterial
effects of the nettle oil-loaded chitosan NPs were promising, thus paving the way for
its use as a future non-toxic therapy. The DPPH free radical scavenging assay revealed
higher antioxidant activity in the encapsulated oil than the free oil. Similarly, in-vitro
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antibacterial assay showed that encapsulated oil has increased inhibition halo (3.95 cm)
against E.coli [107].

Similarly, cranberry proanthocyanidin chitosan nanocomposites were prepared with-
out using any cross-linker. Instead, ratio adjustment of the proanthocyanin and chitosan
modulate hydrogen binding were used [108]. The nanoformulation has shown extensive
agglutination action against extra-intestinal E. coli bacteria and retarded invasion of gut
epithelial cells by the E. coli in a dose-dependent manner [108].

Further, the intrinsic anti-bacterial property of chitosan was enhanced through its
mannosylation via reductive amination reaction, and NPs were prepared through ionic
gelation [109]. Mannose-modified chitosan NPs demonstrated specific interaction with
resistant E. coli bacterial membranes and improved antibiofilm properties as compared to
plain chitosan NPs. The modified chitosan NPs are of special interest in combating E. coli as-
sociated multidrug resistance. The anti-bacterial activity was assessed through antibiofilm
assay, time-kill activity, and polystyrene adherence. Findings indicated greater inhibition
and biofilm disruption of E. coli and other gram-positive bacteria, thus emphasizing its role
against multidrug-resistant, biofilm-forming bacteria in resistant infections. [109].

Apart from natural polymers, charged synthetic polymers were also used against bac-
terial infections. In one such attempt, a photosensitizer, Chlorin e6 (Ce6) was encapsulated
inside charge-conversion polymeric (poly(PEG-co-β-amino ester) nanocarriers for targeting
E. coli bacteria in urinary tract infections [110]. The Ce6 was released from the nanocarrier
at the targeted infection site, and Ce6, under photodynamic therapy, generated reactive
oxygen species to kill the bacteria. Surface charge conversion of the polymeric nanocar-
riers in the weakly acidic environment of urinary tract infection additionally facilitated
recognition and bacterial interaction. Ce6-loaded polymeric nanocarriers exhibited higher
antibacterial activity against E. coli and efficiently treated a mouse cystitis model under
photodynamic therapy [110].

Further, dual antibacterial and antiparasitic multifunctional PLGA NPs were syn-
thesized with coloaded caffeic acid phenethyl and juglone drugs [111]. The combined
rationale was to combat bacterial drug resistance and to achieve controlled release of the
drug. The combined synergistic actions of the drugs inside the PLGA NPs were profoundly
greater to inhibit E. coli (MIC: 12.5 µg/mL) and Leishmania (lower IC50 value), proving the
efficacy of the nanoformulation [111].

Another innovation is developing a novel antibacterial polymer, cationic acrylate
copolymeric polyvidone with double active centres and then complexed with iodine [112].
Further, their NPs were synthesized, which exhibited enhanced anti-bacterial activity
against E. coli and S. aureus. The formed NPs endured antibacterial properties to the
dyes, inks, and different coatings. It was found that the NPs have long-term anti-bacterial
properties with 99% efficacy at a concentration of 40 µg/mL [112].

PCL is another polymer with wide applications in nanomedicine. In a study, chlorhexidine-
loaded PCL nanospheres were prepared and coated on the urinary catheters for anti-bacterial
action against uropathogens, including E. coli. The total amount of chlorhexidine loaded on
the coated catheter was around 4.55 mg. The NP-coated catheter was immersed in artificial
urine containing microorganisms. Drug release was exceeded up to 2 weeks, with satisfactory
inhibition of bacterial growth and proliferation into the catheter up to 14 days [113]. This
innovation aided the urinary catheter with long-term anti-bacterial action and protected it in
the urinary environment.

3.2. Lipidic Nanocarriers

Lipids are a basic component of the cell membrane, hence, lipid-based nanovesicles
mimic natural components and easily transfer the drug molecule inside the cell. This prop-
erty allows lipid-based nanovesicles to specifically target bacterial cells.

Nanostructured lipidic carriers (NLCs) are lipidic carriers made up of lipids, surfac-
tants, and co-surfactants, with a higher capacity to load drugs. For instance, ceftriaxone-
loaded NLCs were prepared using the double emulsion solvent evaporation method for
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bactericidal action against E. coli [114]. Ceftriaxone has a bactericidal action; however, it
is linked with several side effects. Therefore, ceftriaxone loaded NLCs were prepared to
accommodate a low dose of the drug, while maintaining its anti-bacterial activity. For the
said purpose, Haftyzer-Van Krevelen’s method was employed to adjust the ratios of NLCs
components to produce optimal sized NLCs. It was noticed that the prepared ceftriaxone-
loaded NLCs could kill E. coli even in a dose that was half of the free drug dose [114].

Solid lipidic nanocarriers (SLNs) are another versatile lipidic nanocarrier with long-
term stability. A novel class of SLNs was developed using propylene glycol monopalmitate
and glyceryl monostearate lipidic mixtures. Carvacrol was loaded as a drug with >98%
encapsulation efficiency. Carvacrol-loaded SLNs demonstrated higher anti-bacterial effects
against E. coli O157:H7 strains, thus proving their role in delivering lipophilic drugs for
biomedical applications and prospective role in treating E. coli infections [115].

Liposomes are a bi-layered vesicular system with biocompatible, biodegradable, and
non-toxic nature, and can encapsulate all types of drugs from hydrophilic to hydropho-
bic. In a recent attempt, endolysin BSP16Lys containing cationic DPPC liposomes were
prepared to act against antibiotic-resistant gram-negative bacteria [116]. Endolysins can
degrade bacterial cell wall peptidoglycan but cannot penetrate the outer membrane of
gram-negative bacteria. Therefore, cationic liposomes can deliver these endolysins safely
across the outer membranes of E. coli. BSP16Lys-liposome have reduced about 1.6-log
colony-forming units (CFU)/mL of the viable E. coli, demonstrating the potential of these
liposomes against resistant E. coli infections [116]. Likewise, several other lipidic structures
are efficiently combating E. coli led infections. Furthermore, antimicrobial lipid, dioctade-
cyldimethyammonium bromide (DODAB), was used to form lipidic bi-layered systems
and entrap antimicrobial peptide, gramicidin [117]. Gramidine loaded DODAB lipidic
formulations have broadened the anti-bacterial spectrum and efficiently killed E. coli with
no toxicity against eukaryotic cells [117].

For enhanced coverage against bacterial infections, a combination of different types
of nanocarriers or materials is employed. For instance, ceftriaxone-loaded polymer-lipid
hybrid NPs were prepared using the self-assembly method [118]. Chitosan was used as a
polymer and glycerol monostearate as a lipidic material. The hybrid polymer-lipid NPs
have sustained release characteristics and an effective mortality rate against E. coli [118].

Similarly, chitosan-coated nanostructured lipidic carriers (NLCs) were developed to
combat E. coli infection and biofilm formation on catheters [119]. E. coli biofilms were
grown on the catheters and treated with chitosan-NLCs. The biofilms were collected after
24 h of treatment with chitosan-NLCs. Results indicated that the chitosan-NLCs hybrid
system considerably inhibited the viability of biofilms at all ages and could control the
growth of both young and mature E. coli biofilms on the catheters [119].

3.3. Metallic Nanocarriers

Different metallic nanocarriers, such as iron (Fe), silver (Ag), gold, zinc (Zn), etc., have
shown promising roles as antibacterial and antibiotic drug delivery carriers.

Iron oxide NPs are of particular importance in metallic NPs. For instance, iron
oxide NPs with biocompatible oleic acid coating were synthesized in the size of 10.64 nm
to combat E. coli infection [120]. The synergistic effect of both iron oxide NPs and the
encapsulated antibiotic drug produced increase H+ conductance with lower flux with
detrimental antibiotic action against antibiotic-resistant strains of E. coli, i.e., ampicillin-
resistant E. coli DH5α-Puc 18 and kanamycin-resistant E. coli Parg-25. Thus, iron-oxide-oleic
acid NPs have the potential to be used as a strong anti-bacterial agent against antibiotic-
resistant organisms in the future [120].

Magnetite is one of the forms of iron oxide. Magnetite NPs were prepared by the
green, surfactant-free electrochemical method [57]. In this study, the sole benefits of nano-
magnetite had been investigated with no other agent or drug. Nano-magnetite had shown
potent antibacterial action against E. coli with a minimum inhibitory concentration (MIC)
of 2.8 µg/mL. The MIC is about 100 times lesser than the human toxic, confirming the low
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toxicity potential. The only dose above 100 µg/mL for the 2 weeks produced damage to
the kidney and the liver. Thus, it demonstrated that nano-magnetite itself could be used to
treat infections with a wide therapeutic window [57].

Zinc is an important micro-ingredient for normal body function with natural anti-
bacterial activity. In a study, zinc oxide (ZnO) NPs were synthesized through green,
eco-friendly, and economical methods using 4 plant extracts: Beta vulgaris, Brassica oleracea,
Cinnamomum verum, and Cinnamomum tamala. In-vitro characterization demonstrated
suitable size and morphology. Moreover, ZnO NPs proved their anti-bacterial activity
against E. coli and S. aureus [52].

Ag is a well-known antimicrobial agent. In the recent past, various studies reported the
efficacy of Ag NPs [121,122]. In one of these studies, a Ag NPs led anti-bacterial mechanism
was investigated [121]. Prepared Ag NPs interacted with E. coli and demonstrated a 100%
inhibition ratio with two stepped inhibition and sterilization process against E. coli. The
whole inhibition-sterilization process was analysed through growth curves, FTIR, SEM,
and MDA concentrations [121].

Magnetic nanocomposites consisting of BaFe12O19/xCoFe2O4 were fabricated using
the sol–gel method [123]. In-vitro characterization techniques such as scanning electron
microscopy (SEM), X-ray diffractometer (XRD), and vibrating magnetometer (VSM) con-
firmed magnetic and structural properties. Anti-bacterial activity against several fungal
and bacterial strains, including E. coli was found promising and thus, proving their efficacy
as an antimicrobial agent [123].

3.4. Other Nanocarriers

Niosomes are a vesicular system prepared from non-ionic surfactant and a stabilizer.
Due to their peculiar nature, niosomes have a wide window to encapsulate various types
of drug moieties. In a recent study, simvastatin-loaded niosomal gel was prepared for the
activity against E. coli and S. aureus. Suitable-sized niosomes are formed from appropriate
ratios of span 80, drug, and cholesterol. Prepared niosomes have good stability and good
antibacterial activity [124].

Nanoemulsion is a versatile liquid system containing two immiscible liquids with the
help of an emulsifier. Liquid dosage forms have importance in killing microorganisms.
In an effort, ε-polylysine and D-limonene nanoemulsion was formulated using Tween-80
as a surfactant. Both components have shown greater synergistic effect against bacteria,
including E. coli, S. aureus, Bacillus subtilis, etc. [125].

Likewise, thyme oil and sodium caseinate-based neutral self-assembled nanoemulsion
was prepared for antimicrobial action [126]. Encapsulated thyme oil exhibited 28 times
more efficacy in combating E. coli O157:H7 and S. aureus in the tryptic soy broth and
milk than free thyme oil. Thus, the nanoemulsion can be used as a preservative and treat
infections [126].

Dendrimers are highly branched, symmetric, nanosized molecules used for drug de-
livery, diagnostics, and therapeutic purposes. Researchers developed bioinspired peptide
Trp-terminated dendrimers as an effective treatment of E. coli infection. Trp-terminated den-
drimers have demonstrated splendid activity against extended-spectrum beta-lactamases
(ESBL)-producing and multidrug resistance (MDR) isolates of E. coli. The peptide-based
dendrimers were found to be stable in plasma over a longer period with minimal hemolysis
and low genotoxicity [127]. A summary of different types of nanocarriers for the E. coli
inhibition is compiled in Table 2 and illustrated in Figure 11.
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Table 2. Different types of nanocarriers for mediating anti-bacterial action against E. coli.

No. Nanocarriers Drug Size (nm) Action Ref.

A.

Polymeric nanocarriers
1. Chitosan nanocarrier Nettle oil 208.3–369.4 Inhibit E. coli (zone of inhibition: 4.11–3.95 cm) [107]

2. Chitosan nanocomposites Cranberry proanthocyanin 122.8 to 618.7 Agglutination and inhibition of E. coli to invade
epithelial cells [108]

3. Mannosylated chitosan —— 180 ± 5 MIC 17.91 µg/mL against E. coli, treatment of
acute cystitis in mice [109]

4. Surface charge conversion nanocarrier Chlorin e6 (Ce6) 80.9 to 181.8 Inhibit resistant E. coli strain and other bacteria,
antibiofilm [110]

5. Multifunctional PLGA NPs Caffeic acid phenethyl and
juglone 151 to 196 Synergistic effect in eliminating E. coli, S. aureus,

and leishmania [111]

6. Cationic acrylate copolyvidone NPs Iodine ~200 Inhibit E. coli (99% efficiency) and S. aureus [112]
7. PCL NPs Chlorhexidine 152 ± 37 Prevent E. coli growth and proliferation [113]

B.

Lipidic nanocarriers
1. NLCs Ceftriaxone 86 Inhibit E. coli [114]
2. SLNs Carvacrol 14.9–25.3 Inhibit E. coli and S. aureus [115]

3. DPPC liposomes BSP16Lys endolysin 303 Reduced E. coli CFU/mL [116]
4. DODAB lipidic vesicle/disk Gramicidin 61–247 Kill E. coli [117]

5. Rhamnosomes nanovesicles Nisin 209 ± 4 Activity against E. coli, Listeria monocytogenes, S.
aureus, and P. aeruginosa biofilms [128]

C.

Metallic NPs

1. Iron oxide NPs —— 10.64 ± 4.73 Retard growth of E. coli antibiotic-resistant
strains [120]

2. Magnetite NPs —— 19 MIC 2.8 µg/mL against E. coli, biocompatible to
organs [57]

3. ZnO NPs Plant extracts 20–47 Activity against E. coli and S. aureus [52]
4. Ag NPs —— 30 E. coli inhibition and sterilization [121]
5. Ag NPs —— 8 ± 4 E. coli inhibition [122]

D.

Magnetic nanoparticles

BaFe12O19/xCoFe2O4 —— 71–91
Suitable saturation magnetization and magnetic
coercivity. Effective against bacterial (E. coli) and

fungal strains
[123]

E.

Hybrid nanoparticles
1. Polymer-lipid (chitosan-glycerol monostearate)

NPs Ceftriaxone 188–720 Higher mortality rate of E. coli [118]

2. Chitosan coated nanostructured lipidic carriers
(NLCs) —— 292.9 ± 2.5 Inhibit E. coli biofilm formation on catheter [119]

F. Niosomal gel Simvastatin 168 Inhibit E. coli and S. aureus [124]

G.

Nanoemulsion

1. ε-polylysine nanoemulsion D-limonene 12.21–15.65 Strong synergistic action against E. coli, Bacillus
subtilis, S. aureus etc. [125]

2. Sodium caseinate based self-assembled
nanoemulsion Thyme oil 90–200 Antibacterial activity against E. coli and S. aureus [126]

H. Bioinspired peptide-based dendrimers —— ——
Activity against clinical isolates of

antibiotic-resistant ESBL-producing and MDR
isolates of E. coli

[127]
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Figure 11. Schematic representation of the current analytical methods and POC devices applied to detect E. coli Reprinted
from ref. [129].

4. Point of Care (POC) Devices for Clinical Applications

Pathogens, and all diseases associated with them, are a significant concern world-
wide [129]. Diagnostic tests have been suggested to prolong the effectiveness of current
antimicrobials; culture and other conventional diagnostics are hindered in their practi-
cality as they are time- and labour-intensive to perform. POC testing is performed near
where the patient is being treated and can provide timely results that allow evidence-based
clinical interventions to be made (Figure 11) [130]. For example, a portable multiplexed
bar-chart SpinChip (MB-SpinChip) integrated with NP-mediated magnetic aptasensors was
developed for visual, quantitative instrument-free detection of multiple pathogens. This
versatile multiplexed SpinChip combines aptamer-specific recognition and NP-catalysed
pressure amplification to achieve a sample-to-answer output for sensitive point-of-care
testing (POCT). This user-friendly MB-SpinChip allows visual, quantitative detection of
multiple pathogens simultaneously with high sensitivity, but without utilizing any special-
ized instruments. Using this MB-SpinChip, three major foodborne pathogens, including
Salmonella enterica, Escherichia coli, and Listeria monocytogenes, were specifically quanti-
fied in apple juice with limits of detection of about 10 CFU/mL [131]. In another study,
a smartphone-based nanosensor was developed to detect zika virus (ZIKV) infection. In
this light, a nanomotor-based bead-motion cell phone (NBC) system was developed for the
immunological detection of ZIKV. The presence of a virus in a testing sample results in the
accumulation of platinum (Pt)-nanomotors on the surface of beads, causing their motion
in H2O2 solution. Then, the virus concentration is detected in correlation with the change
in beads motion. The developed NBC system could detect ZIKV in samples with virus
concentrations as low as 1 particle/µL. The NBC platform technology has the potential to
be used in the development of point-of-care diagnostics for pathogen detection and disease
management in developed and developing countries [132]. Of course, new simulation
and machine learning approaches can help better optimize these devices [133–135]. The
schematic representation of the current analytical methods and POC devices applied for
the detection of E. coli are shown in Figure 11.

5. Regulatory Landscape of Nanotechnology in Biomedical Applications

The safety assessment of medical devices containing or deriving from nanotechnology
is carried out by the US-FDA’s Centre for Devices and Radiological Health (CDRH), housing
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a Nanotechnology Regulatory Science Research Programme that is based on three pillars:
physicochemical characterization methods, in vitro and in vivo models, and (toxicological)
risk assessment [136,137]. The types of devices that incorporate nanotechnology include
antimicrobial, dental, orthopaedic, neurological, and combination devices and in vitro
diagnostic tools. They use various nanomaterials, including silver, zirconia, titanium
and titanium dioxide, iron oxides, polymers, gold, graphene etc. Safety assessment of
such medical devices should encompass the determination of the rate and magnitude
of the nanomaterials into the body for which fit-for-the-purpose in vitro tests would be
desirable [138]. Moreover, advanced toxicological risk assessment approaches should
support the understanding that the release and patient exposure results in adverse health
impacts. It is important to know whether NPs affect the accuracy and/or reliability of
standard biocompatibility or toxicity test assays, such as cytotoxicity and genotoxicity.
Because of the vast number of sizes, shapes, and chemistry of nanomaterials, there is
the need for the development of in vitro models (2D, 3D, organ on a chip, organoids)
and in silico models in order to predict human responses and improve in vitro to in vivo
extrapolations [137].

6. Conclusions

NPs have been shown to have considerable potential in the development of bacte-
rial sensing devices. Bacterial sensing can be conducted in a lab setting by evaluating
physiological fluids, or in vivo by tracking bacteria in real-time within the body. In a
label-free methodology, NPs can act as both a detection element and a reporter when the
surface is coupled with a specific recognition element. Integrating artificial intelligence,
a sub-type of machine learning with nanotechnology, is paving the way for advancements
in microbe detection systems and is working closely toward the human dream of having a
sensor that fully fits all of the aforementioned criteria. Even though several biosensors for
detecting food-borne diseases have been created, researchers continue to face difficulties
in fabricating biosensors for the accurate and reliable assessment of microorganisms in
real food samples. In short, a variety of nanocarriers have shown promising efficiency in
delivering antibiotic to the E. coli infected area and inhibiting E. coli at a much lower dose.
Moreover, some of the nanomaterials have antibacterial action and produced synergistic
action along with antibiotics to combat E. coli.
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