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Abstract 26 

Multiparental advanced generation inter-cross (MAGIC) populations are valuable 27 

crop resources with a wide array of research uses including genetic mapping of 28 

complex traits, management of genetic resources and breeding of new varieties. 29 

Multiple founders are crossed to create a rich mosaic of highly recombined founder 30 

genomes in the MAGIC recombinant inbred lines (RILs). Many variations of MAGIC 31 

population designs exist; however, a large proportion of the currently available 32 

populations have been created empirically and based on similar designs. In our 33 

evaluations of five MAGIC populations, we found that the choice of designs has a 34 

large impact on the recombination landscape in the RILs. The most popular design 35 

used in many MAGIC populations has been shown to have a bias in recombinant 36 

haplotypes and low level of unique recombinant haplotypes, and therefore is not 37 

recommended. To address this problem and provide a remedy for the future, we 38 

have developed the “magicdesign” R package for creating and testing any MAGIC 39 

population design via simulation. A Shiny app version of the package is available as 40 

well. Our “magicdesign” package provides a unifying tool and a framework for 41 

creativity and innovation in MAGIC population designs. For example, using this 42 

package, we demonstrate that MAGIC population designs can be found which are 43 

very effective in creating haplotype diversity without the requirement for very large 44 

crossing programs. Further, we show that interspersing cycles of crossing with 45 

cycles of selfing is effective in increasing haplotype diversity. These approaches are 46 

applicable in species which are hard to cross or in which resources are limited. 47 

Keywords: Multiparental advanced generation inter-cross (MAGIC), Multiparental 48 

population (MPP), Population design, Quantitative genetics, Genetic diversity 49 
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Introduction 50 

 The multiparental advanced generation inter-cross (MAGIC) population was 51 

initially proposed in crops by Mackay and Powell (2007) as a highly recombined 52 

population derived from multiple founders. The MAGIC term is largely relevant in 53 

plants, however the concept was derived from the mapping approach using 54 

genetically heterogeneous stock in mice (Mott et al.  2000) and is very close to the 55 

Collaborative Cross (CC) population in mice (Churchill et al. 2004). The first MAGIC 56 

population was produced using 19 founders in Arabidopsis thaliana (Kover et al. 57 

2009). The MAGIC pedigree described by Cavanagh et al. (2008) has served as a 58 

foundation for the design of many MAGIC populations in subsequent years. Briefly, 59 

the MAGIC pedigree shows a single funnel going from 8 founders to a recombinant 60 

inbred line (RIL). Starting with 8 founders labelled as A to H, two-way crosses are 61 

made as (A × B), (C × D), (E × F) and (G × H). Next, four-way crosses are made as 62 

((A × B) × (C × D)) and ((E × F) × (G × H)). Lastly, eight-way crosses are made as 63 

(((A × B) × (C × D)) × ((E × F) × (G × H))) followed by several generations of selfing. 64 

Using this crossing scheme, the end of the funnel is a RIL with its genome 65 

composed of contributions from all 8 founders. Alternatively, a MAGIC population 66 

design may involve multiple funnels like the elite wheat MAGIC population by 67 

Mackay et al. (2014). Regardless of the designs, MAGIC RILs have diverse 68 

recombination landscape and rich mosaics of founder genomes (Scott et al. 2020). 69 

 Over the years, MAGIC populations have been used in various studies with 70 

great success. MAGIC populations are popular choices in mapping quantitative trait 71 

loci (QTLs) due to their high mapping power and resolution (Valdar et al. 2006), for 72 

examples resistance QTLs in bread wheat (Stadlmeier et al. 2019), cold tolerance 73 

QTLs in maize (Yi et al. 2020) and high-throughput phenotype QTLs in rice (Ogawa 74 
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et al. 2021). In addition to single trait analyses, multivariate analyses (multi-trait or 75 

multi-environment) have been demonstrated in MAGIC populations (Scutari et al. 76 

2014, Verbyla et al. 2014). Diouf et al. (2020) used a tomato MAGIC population to 77 

dissect the underlying genetic-by-environment (G × E) and plasticity for climate 78 

adaptation traits. Aside from QTL mapping, MAGIC populations are valuable 79 

resources for genomic selection owing to their properties of highly recombined 80 

genomes and large population size (Scott et al. 2021). Following that, there are 81 

opportunities for using MAGIC RILs in breeding new varieties (Bandillo et al. 2013, Li 82 

et al. 2013). With large numbers of founders, MAGIC populations also provide a 83 

dynamic asset for the management of genetic resources (Thépot et al. 2015) and 84 

may be used to improve our understanding of crop adaptation (Scott et al. 2021). 85 

Given their longevity with a broad array of uses, MAGIC populations are an 86 

invaluable community resource for creative and impactful research. 87 

 Considering the importance of MAGIC populations in crop research, several 88 

previous studies have explored their designs. Ladejobi et al. (2016) investigated a 89 

genetic diversity-based approach in founder selection and compared the distributions 90 

of recombinant haplotypes within small interval for several MAGIC population 91 

designs. Zheng et al. (2018) calculated recombination densities in several MPP 92 

designs and showed that higher recombination densities can be achieved by 93 

increasing the number of crossing generations. Similar work in mice also showed 94 

that additional crossing and maintenance generations increase the number of 95 

recombinations in RILs (Valdar et al. 2006). Other simulation studies that compared 96 

several MPP designs suggest that MAGIC-like populations are better for generating 97 

high number of recombinations, and smaller non-recombining genomic bin region 98 

(Rockman and Kruglyak 2008, Klasen et al. 2012). The development of MAGIC 99 
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populations has been summarized recently in reviews by Huang et al. (2015), 100 

Arrones et al. (2020) and Scott et al. (2020). 101 

 Many of the past works have resulted in software for simulating and 102 

identifying recombinations, as well as calculating QTL mapping power and 103 

resolution. However, there is none dedicated for the design and test of novel MAGIC 104 

crossing schemes. The “GA” R package and GeneDrop software (Ladejobi et al. 105 

2016) can be used to calculate founder genetic diversity and simulate 106 

recombinations, but neither is capable of producing a MAGIC pedigree. The RABBIT 107 

software (Zheng et al. 2015), similar to its counterparts HAPPY (Mott 2008), 108 

“mpMap” R package (Huang et al. 2011), and “qtl2” R package (Broman 2019), can 109 

be used to determine founder genotypes and thus identify recombination breakpoints 110 

in MAGIC, but it still does not create a MAGIC pedigree. Given that MAGIC has 111 

applications beyond QTL mapping, it would be beneficial to explore novel crossing 112 

schemes that require minimum effort to construct populations suited for wide array of 113 

uses. 114 

Here, we have sought to understand the relationship between MAGIC 115 

population designs and population recombination landscape. We selected and 116 

analyzed five MAGIC populations with publicly available marker genotypes for the 117 

founders and RILs, genetic map positions and pedigrees. The selected populations 118 

comprise the UK wheat 8-founder (Mackay et al. 2014), German wheat 8-founder 119 

(Sannemann et al. 2018), cowpea 8-founder (Huynh et al. 2018), tomato 8-founder 120 

(Pascual et al. 2015) and UK wheat 16-founder (Scott et al. 2021) MAGIC 121 

populations. These MAGIC populations were created from different designs. We 122 

contrasted the observed recombinant haplotypes to expected (simulated) 123 

recombinant haplotypes in each population. A comparable cross-population analysis 124 
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can be challenging due to many variables like genome sizes, marker genotyping 125 

platforms and numbers of founders. Fortunately, there are two elite wheat 8-founder 126 

MAGIC populations (Mackay et al. 2014, Sannemann et al. 2018) that were 127 

genotyped with the same 90k SNP array (Wang et al. 2015), which allowed us to 128 

directly compare the two populations in greater depth. We found that the 129 

recombination landscape varies across designs and that this variation is consistent 130 

across species. 131 

Following our results, we have created the “magicdesign” package in R (R 132 

Core Team 2021) for the purpose of creating and testing different MAGIC population 133 

designs. Three major steps are involved in the package pipeline: design creation, 134 

population simulation and comparative analysis. Users can create a design by either 135 

specifying input variables or providing a custom pedigree. Once a design is created, 136 

“magicdesign” converts it into a crossing scheme from the founders to final RILs and 137 

simulates a population based on the crossing scheme. After multiple iterations of 138 

simulation, distributions of recombinant haplotypes and founder genomes are 139 

summarized. Results from one or more designs can be combined and compared 140 

visually in plots. In addition, “magicdesign” produces a pedigree in both text and plot 141 

formats that can be used as a guide to support crossing work in practice. Aside from 142 

the described roles, “magicdesign” serves as a tool to advance the use of MAGIC in 143 

future multiparental populations. 144 

 145 
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Materials and Methods 146 

Evaluation of MAGIC population designs 147 

We surveyed all available MAGIC populations that have been published to 148 

date (including pre-prints) and identified five populations with publicly available 149 

marker data. These five MAGIC populations include wheat with 8 UK elite founders 150 

(Mackay et al. 2014), wheat with 8 German elite founders (Sannemann et al. 2018), 151 

cowpea with 8 founders (Huynh et al. 2018), tomato with 8 founders (Pascual et al. 152 

2015) and wheat with 16 UK diverse founders (Scott et al. 2021). These populations 153 

are referred to as wheat-UK8, wheat-DE8, cowpea, tomato and wheat-UK16, 154 

respectively (Table 1). These datasets were chosen because the marker data for the 155 

founders and recombinant inbred lines (RILs), genetic map positions, and pedigree 156 

are publicly available. The wheat-UK16 population is an exception as it has founder 157 

dosages to compensate for the lack of genetic map positions. Links to the source 158 

datasets are listed in the Data Availability section. Other publicly available datasets 159 

like the wheat with 8 German founders (Stadlmeier et al. 2018), wheat with 8 160 

Australian founders (Shah et al. 2019), rice with 8 founders (Raghavan et al. 2017), 161 

maize with 9 founders (Dell’Acqua et al. 2015) and Arabidopsis with 19 founders 162 

(Kover et al. 2009) are excluded because at least one component of the data needed 163 

for our purpose is not present. 164 

All five chosen MAGIC populations vary in numbers of RILs and marker 165 

density (Table 1). The original wheat-UK8 dataset is made of 643 RILs and 18,599 166 

markers while the original wheat-DE8 dataset is made of 910 RILs and 7,579 167 

markers. To maintain a fair comparison between these two populations, we kept only 168 

5,138 markers that are common between wheat-UK8 and wheat-DE8. In wheat-DE8, 169 
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missing data were previously imputed to numerical mean (twice the allele 170 

frequency). These imputed marker data cannot be used in “qtl2” (Broman et al. 171 

2019) for calculating founder genotype probabilities, so we reverted the imputed 172 

marker data by converting any non-integer marker data to missing. The cowpea 173 

dataset is made of 305 RILs and 32,114 markers after removing 16 markers in the 174 

original dataset where the marker data is missing in at least one founder. The tomato 175 

dataset is made of 238 RILs and 1,345 markers. The wheat-UK16 dataset is made of 176 

504 RILs and 1,065,178 markers. 177 

Identification of recombinant haplotypes in MAGIC populations 178 

 To identify recombinant haplotypes, the biallelic marker data in the RILs need 179 

to be converted into founder genotypes. For each dataset except wheat-UK16, we 180 

determined the founder genotypes in each RIL using the “qtl2” package (Broman et 181 

al. 2019) in R (R Core Team 2021). We first calculated the founder genotype 182 

probabilities using calc.genoprob function with error probability of 0.01 (1%) and 183 

Haldane map function. Next, we inferred the founder genotypes from the 184 

probabilities using maxmarg function with minimum probability of 0.5001. We chose 185 

a slightly higher threshold than the previously used minimum probability of 0.5 by 186 

Gardner et al. (2016). Since the genotype probabilities for all founders at each RIL’s 187 

marker sum to 1, the threshold of 0.5001 eliminates the risk of the maxmarg function 188 

picking a founder genotype at random when there are two or more with the same 189 

probability above the threshold. For the wheat-UK16 dataset, the founder genotype 190 

dosages are readily available. These founder genotype dosages were calculated 191 

from STITCH (Davies et al. 2016), which is a different software but uses the same 192 

underlying hidden Markov model (HMM) as “qtl2”. We inferred the founder 193 
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genotypes in the wheat-UK16 dataset using an equivalent threshold of 1 because 194 

the estimated genotype dosages sum to 2. Markers without any founder genotype 195 

probabilities above the threshold were set to missing. 196 

 Using the inferred founder genotypes in each dataset, we identified the 197 

recombinant haplotypes at each breakpoint. The recombinant haplotype is a 198 

combination of flanking founder genotypes at each breakpoint. For example, 1_5 is 199 

the recombinant haplotype at a breakpoint where the two flanking founder genotypes 200 

are founder 1 and 5. For a population with 𝑛 founders, there are 𝑛 𝑛 individual 201 

recombinant haplotypes. Therefore, in an 8-founder MAGIC population, there are 56 202 

individual recombinant haplotypes (1_2, 1_3, …, 8_6, 8_7). In order to summarize 203 

the results, we summed the counts of each individual recombinant haplotype in 204 

every RIL, and averaging the counts across all RILs to obtain the mean counts of 205 

individual recombinant haplotypes. 206 

 As a control, we simulated a similar MAGIC population based on the original 207 

pedigree for each dataset and calculated the true counts of recombinant haplotypes. 208 

We first derived an approximated crossing scheme from the pedigree. Since the 209 

information on replicates is not always present in the pedigree, we assumed that no 210 

replicates and considered all funnels to be independent. Next, we used the 211 

“AlphaSimR” package (Gaynor et al. 2021) in R (R Core Team 2021) to simulate the 212 

MAGIC populations for a total of 100 iterations. “AlphaSimR” is a package designed 213 

for simulating plant and animal breeding programs, and we used a fraction of its 214 

functionality to simulate crosses and recombinations. In order to keep track of 215 

founder genotypes, we expanded each marker into 𝑛 1 markers with the same 216 

exact genetic map position to prevent recombination among these markers. Using 217 

𝑛 4 founders as example, the founders are coded as 000, 100, 010 and 001 218 

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/advance-article/doi/10.1093/g3journal/jkab295/6354367 by guest on 01 Septem

ber 2021



10 
 

across the three expanded markers. This expanded marker system tracked the true 219 

founder genotypes from the start to the end of simulation, and therefore allowed us 220 

to calculate the true counts of recombinant haplotypes using the same method 221 

described in the previous paragraph. In all datasets except for wheat-UK16, we used 222 

the same genetic map positions as the actual datasets. In wheat-UK16, we used 223 

equally-spaced markers at 0.5 cM since the genetic map positions were not available 224 

for this dataset. 225 

 We included an additional control using a hybrid approach of actual and 226 

simulated datasets. Specifically, we converted the founder genotypes in simulated 227 

RILs into biallelic marker data and inferred the founder genotypes using the same 228 

procedures as we did in the actual datasets. This approach was applied to all four 229 

MAGIC datasets except wheat-UK16. The counts of recombinant haplotypes 230 

identified from this approach provide an upper limit to the inferred number of founder 231 

genotypes using “qtl2” (Broman et al. 2019). There is a caveat, however, that since 232 

our simulation is based on an approximated crossing scheme, the outcomes of this 233 

approach may not precisely represent the upper limit. 234 

Determination of unique or identical recombinant haplotypes 235 

 Following the identified recombinant haplotypes in wheat-UK8 and wheat-236 

DE8, we classified these recombinant haplotypes into unique or identical groups 237 

based on their positional overlaps within an interval. Recombinant haplotypes of the 238 

same founder pairs are considered identical if they fall within the same interval, 239 

otherwise unique if they do not overlap. The intervals are arranged in non-240 

overlapping bins of approximately 1 or 10 cM from the start to end of a chromosome. 241 

Identical recombinant haplotypes exist due to replications of cross progeny in the 242 
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MAGIC population. While this classification cannot distinguish between identical and 243 

independent recombinant haplotypes within the interval, the probability of 244 

independent recombinant haplotypes is low and assumed equal between wheat-UK8 245 

and wheat-DE8. Therefore, the results from this comparison can elucidate the effect 246 

of MAGIC population designs on the proportions of unique against identical 247 

recombinant haplotypes. 248 

Minimum probability in calling founder genotypes 249 

 The minimum probability used in calling founder genotypes determines the 250 

power in identifying the correct founder genotypes in the RILs. We selected 10 251 

thresholds ranging from 0.1 to 1.0 with an increment of 0.1. We applied each 252 

threshold to the maxmarg function in “qtl2” (Broman et al. 2019) in simulated 253 

populations based on wheat-UK8 and wheat-DE8. These simulated populations are 254 

similar to the previously described hybrid approach where the simulated founder 255 

genotypes in RILs are converted to biallelic markers prior to calculating genotype 256 

probabilities. For each threshold, we computed the proportions of correct, incorrect 257 

or missing founder genotypes by comparing the inferred to true founder genotypes. 258 

The ideal threshold should have a high proportion of correct founder genotypes with 259 

low proportions of incorrect and missing founder genotypes. 260 

Marker density in MAGIC population 261 

 We used the proportion of recombinant haplotype recovered (PRHR) to 262 

quantify the recombinations in MAGIC population that is captured in the marker data. 263 

We calculated the empirical PRHR in all five datasets as the counts of recombinant 264 

haplotypes in the actual dataset divided by the counts in the simulated dataset. 265 

Since the marker density is not constant along the genomes in actual datasets, we 266 
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sought to determine a clearer relationship between PRHR and marker density via 267 

simulation. We simulated a single chromosome of 200 cM with 8 founders crossed 268 

using the same design as wheat-UK8. The founder alleles were simulated based on 269 

the correlations among founders in wheat-UK8 using the rmvbin function in “bindata” 270 

package (Leisch et al. 2021) in R (R Core Team 2021). We simulated a total of 4,000 271 

markers that are equally spaced at 0.05 cM. To test lower marker densities, we 272 

thinned the same simulated marker data to 0.10, 0.20, 0.40, 0.80, 1.60, 3.20, 6.40, 273 

12.80 cM respectively. For each marker density, we inferred the founder genotypes 274 

in the RILs using “qtl2” (Broman et al. 2019) at a probability threshold of 0.5001 and 275 

calculated the counts of recombinant haplotypes. Lastly, we obtained the PRHR by 276 

taking the counts of recombinant haplotypes for each marker density divided by the 277 

true counts. 278 

Results 279 

Classifications of MAGIC population designs 280 

Variations in the MAGIC population designs can be described by the number 281 

of founders and the crossing scheme (Figure 1A). It is convenient to first consider 282 

two classes of designs based on the number of founders: power of two (P2) and 283 

non-power of two (NP2). As the names suggest, the P2 class has 𝑛 2  founders for 284 

any 𝑖 1 whereas the NP2 class has 𝑛 2  and 𝑛 2 founders. P2 designs are 285 

generally easier to implement in practice because the numbers of individuals in a 286 

funnel are halved in every crossing generation. For either P2 or NP2 classes, the 287 

crossing scheme can be structured, unstructured and semi-structured (Figure 1A). A 288 

structured design involves strictly defined crosses among the founders and 289 

intermediates such that the crossing scheme can be further classified into full, partial 290 
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balanced, partial unbalanced or basic designs. These designs are elaborated further 291 

in subsequent paragraphs. On the other hand, an unstructured design involves 292 

random crosses among the founders and intermediates, while a semi-structured 293 

design is a combination of structured and unstructured designs. Additional features 294 

of a structured design include: (1) precise tracing of the ancestry of each RIL back to 295 

its progenitors, (2) number of crossing generations is equal to 𝑙𝑜𝑔 𝑛 rounded up to 296 

the nearest integer. These features may not hold true in unstructured or semi-297 

structured designs. 298 

Within a structured design, there are two primary types based on the number 299 

of funnels: full and partial (Figure 1A). A full P2 design has 𝑛! 2⁄  funnels while a 300 

partial P2 design has one or more funnels but less than 𝑛! 2⁄  funnels. The 301 

numerator is the total number of permutations of 1 to 𝑛 founders, and the 302 

denominator is the total number of equivalent permutations by the MAGIC definition. 303 

Directions of crosses are disregarded in defining a funnel. The denominator can be 304 

described as  2 ∏ 2 ⁄   for 𝑖 0. In an example with four founders, 1234, 305 

1243, 2134, 2143, 3412, 3421, 4312 and 4321 are all equivalent funnels. For 306 

simplicity, ((1 × 2) × (3 × 4)) is written as 1234. Full and partial types exist in NP2 307 

designs although the number of funnels in a full design cannot be generalized 308 

similarly (Table S1). From a practical perspective, a full P2 design is achievable for 309 

four or eight founders but not for 16 or more founders as the number of required 310 

funnels becomes unmanageable. 311 

Within a partial design, the funnels can be chosen in either a balanced or an 312 

unbalanced way (Figure 1A). A balanced design has an equal number of founders 313 

among the funnels and equal frequency of founder pairs at each crossing 314 
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generation. In a four-founder MAGIC design, 1234, 1324 and 1423 form a set of 315 

three balanced funnels. First, each founder occurs thrice in the set of funnels. 316 

Second, each founder is paired once with another founder in the two-way crosses, 317 

and twice in the four-way crosses. For example, founder 1 meets founder 2 once in 318 

the two-way cross (first funnel) and twice in the four-way cross (second and third 319 

funnels). Coincidentally, since 𝑛 4 and 𝑛! 2⁄ 4! 2⁄ 3, the set of three 320 

balanced funnels is equivalent to a full design for four founders. Unlike the partial 321 

balanced design where the number of funnels is restricted to set rules, the partial 322 

unbalanced design is formed by funnels chosen randomly. Differences between 323 

balanced and unbalanced designs are explored in a later section. Additionally, we 324 

coin the special case of partial unbalanced design with one funnel as a basic design. 325 

Examples of all of the designs are shown in Figure S1. 326 

Based on our survey of 48 MAGIC populations in 15 crop species that have 327 

been described in either published or pre-print literature to date, there are 39 P2 and 328 

9 NP2 designs (Figure 1B and Table S2). The numbers of founders range from four 329 

to 60, with 4 and 8 founders as the predominant numbers. Despite the ease of 330 

handling required for crosses based on a full design with 4 founders, all 10 of the 331 

populations were created using a basic design. Of the 26 MAGIC populations with 8 332 

founders, there are 16 basic designs, nine partial designs and one semi-structured 333 

design. The popularity of the basic design can be ascribed to Cavanagh et al. 334 

(2008), who provided an illustrated pedigree of a basic design. We refrained from 335 

classifying the partial designs into balanced and unbalanced designs due to the lack 336 

of pedigree information in many MAGIC populations. Regardless of the number of 337 

founders, there has not been any MAGIC population created with a full design. There 338 

are several 8-founder populations that came close to a full design. The bread wheat 339 
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MAGIC population by Mackay et al. (2014) had 210 out of 315 required funnels for a 340 

full design. The maize MAGIC population by Dell’Acqua et al. (2015) had mixed 341 

funnels from pooling different four-way individuals and had to introduce an additional 342 

founder due to a failed two-way cross. The three bread wheat MAGIC populations by 343 

Shah et al. (2019) came closest to a full design with 311 to 313 funnels. 344 

Empirical evaluation of two bread wheat MAGIC populations 345 

Our evaluation on two bread wheat MAGIC populations derived from distinct 346 

sets of 8 elite founders shows that the distributions of recombinant haplotypes differ 347 

for each MAGIC design (Figure 2 and Figure S2). We used the wheat-UK8 and 348 

wheat-DE8 populations, in which wheat-UK8 is an example of a partial design while 349 

wheat-DE8 is an example of a basic design (Table S2). To maintain our cross-350 

population comparison as fair as possible, we reduced the original wheat-UK8 and 351 

wheat-DE8 datasets to smaller subsets with common markers (Figure 2), although 352 

the same analysis was performed on the original datasets too (Figure S2). The 353 

subsets include all 643 RILs in wheat-UK8 and 910 RILs in wheat-DE8, and 5,138 354 

common markers arranged in the same genetic map positions as Gardner et al. 355 

(2016). This genetic map is chosen over the original genetic map in the wheat 90k 356 

array (Wang et al. 2014) because of higher map quality. 357 

The distribution of all recombinant haplotypes is less skewed in wheat-UK8 358 

than in wheat-DE8 (Figure 2). In wheat-UK8, none of the recombinant haplotype 359 

appears more frequently than others (Figure 2A). In any given RIL, there are 0.879 ± 360 

0.227 (mean ± standard deviation) individual recombinant haplotypes. In wheat-DE8, 361 

eight recombinant haplotypes appear about twice as frequently as the others (Figure 362 

2B). There are 1.910 ± 0.313 of these eight recombinant haplotypes (1_2, 2_1, 3_4, 363 
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4_3, 5_6, 6_5, 7_8 and 8_7) instead of 0.845 ± 0.150 of the other recombinant 364 

haplotypes. In addition, the mean count of recombinant haplotype is approximately 365 

normally distributed in wheat-UK8 (Figure 2C) but is skewed to the right in wheat-366 

DE8 (Figure 2D). The eight skewed recombinant haplotypes match with all of the 367 

founder pairs in two-way crosses in wheat-DE8. This is not a coincidence because 368 

two-way crosses have the largest founder genomes to recombine. With every 369 

generation of crosses, the founder genomes are halved and so there are fewer 370 

recombinations between any two founders. Examples of the detrimental 371 

consequences of the skew in recombinant haplotypes are: (1) reduction in QTL 372 

mapping power and resolution when the pairs of founders with higher skew carry the 373 

same haplotypes surrounding the causative QTL, (2) limited novel haplotypes for 374 

breeding use. 375 

While wheat-UK8 has a slightly lower number of recombinant haplotypes per 376 

RIL than wheat-DE8 in both reduced (Table 2) and full (Table S3 and S4) datasets, 377 

the proportion of unique recombinant haplotypes is higher in wheat-UK8 than in 378 

wheat-DE8 (Figure 3 and Figure S3). Due to the imprecision of inferred 379 

recombination breakpoints, we defined recombinant haplotypes with breakpoints 380 

within any non-overlapping intervals as identical. We chose the intervals to be 1 cM 381 

and 10 cM wide. With the interval width set to 1 cM, there are 17,786 distinct 382 

recombinant haplotypes distributed among 643 RILs in wheat-UK8, which is 383 

equivalent to 27.66 distinct recombinant haplotypes per RIL. Similarly, there are 384 

17,643 distinct recombinant haplotypes distributed among 910 RILs in wheat-DE8, 385 

which is equivalent to 19.39 distinct recombinant haplotypes per RIL. When the 386 

interval is set to 10 cM, the counts and proportions of unique recombinant 387 

haplotypes decrease and the differences between wheat-UK8 and wheat-DE8 holds 388 
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(Figure S3). There are many practical implications of having more unique 389 

recombinant haplotypes: (1) increased mapping power and resolution, (2) increased 390 

options of novel haplotypes for breeding, and (3) minimized redundancy of the same 391 

recombinant haplotypes. For any pair of founders that share a haplotype carrying 392 

linked QTLs, all recombinations between the two founders within the region are non-393 

informative. Such haplotype can be broken down by recombinations between other 394 

pairs of founders, which is achievable by having more unique recombinant 395 

haplotypes. This is useful to avoid mapping ghost QTLs For example, a previously 396 

identified AOP2/AOP3 locus in Arabidopsis (Atwell et al. 2010, Kerwin et al. 2011) 397 

was recently re-mapped to two other linked loci, NDX1 and GA1 (Sasaki et al. 2021). 398 

Empirical evaluation of three other MAGIC populations 399 

While not directly comparable, the relationship between MAGIC population 400 

designs and the distributions of recombinant haplotypes in three other datasets 401 

remains consistent. Similar to wheat-DE8, the cowpea and tomato MAGIC 402 

populations were created from a basic design and thus have a skewed distribution of 403 

recombinant haplotypes (Figure 4). The recombinant haplotypes from two-way 404 

founder pairs are higher than the other recombinant haplotypes. In cowpea, the two-405 

way recombinant haplotypes are 0.936 ± 0.171 (mean ± standard deviation) per RIL 406 

while the other recombinant haplotypes are 0.384 ± 0.123 per RIL. In tomato, the 407 

two-way recombinant haplotypes are 0.907 ± 0.095 per RIL and the other 408 

recombinant haplotypes are 0.416 ± 0.116 per RIL. On the other hand, wheat-UK16 409 

was created from a partial balanced design and does not have any skew in its 410 

distribution of recombinant haplotypes (Figure S4). The recombinant haplotypes are 411 

0.878 ± 0.102 per RIL.  412 
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Minimum probability for calling founder genotype 413 

The minimum probability for calling founder genotype is important for the 414 

identification of recombinant haplotypes, and our simulation results suggest that the 415 

range of 0.4 to 0.6 gives a good balance of correct, incorrect and missing founder 416 

genotype calls (Figure 5A and 5B). This range is in accordance to the threshold of 417 

0.5 used in Gardner et al. (2016). The results are similar between simulated wheat-418 

UK8 and wheat-DE8 populations, so only results from the simulated wheat-UK8 419 

population are elaborated here. At a minimum probability of 0.4, the correct, incorrect 420 

and missing founder calls are 69%, 16% and 15% of the total markers, respectively. 421 

At a minimum probability of 0.5, the rates are 64%, 11% and 25%. At a minimum 422 

probability of 0.6, the rates are 58%, 6% and 36%. As the minimum probability 423 

increases, the rates of correct and incorrect founder calls decrease while the missing 424 

rate increases. In order to avoid the issue of having two or more founder probabilities 425 

above the threshold, the minimum probability can be set to 0.5 or higher. Since the 426 

simulations are based on the available diversity among the wheat-UK8 and wheat-427 

DE8 founders, the appropriate range of minimum probability for calling founder 428 

genotype may vary in other populations. 429 

Marker density in MAGIC population  430 

In all five analyzed datasets, the proportion of recombinant haplotypes 431 

recovered (PRHR) is higher in populations genotyped at higher marker density 432 

(Table 1). PRHR is computed by taking the number of recombinant haplotypes in 433 

actual dataset divided by the true number of recombinant haplotypes in simulated 434 

dataset. Therefore, high PRHR ensures that fine-scale recombinations are captured 435 

and increases QTL mapping resolution. In wheat-UK8 and wheat-DE8 with an 436 
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average marker distance of 1.024 cM, the PRHR is approximately one-third (Figure 437 

2). Even though the tomato population is genotyped at a lower marker density with 438 

an average marker distance of 1.603 cM, the PRHR is higher than in the two wheat 439 

populations (Figure 4B). This is likely because the markers on the wheat D-genome 440 

are generally sparse due to its low diversity (Akhunov et al. 2010). The cowpea 441 

population is genotyped at a high marker density with an average marker distance of 442 

0.030 cM, in which the PRHR is approximately two-thirds (Figure 4A). Lastly, wheat-443 

UK16 is genotyped at the highest marker density of all analyzed datasets with an 444 

average marker distance of 0.005 cM, and it has the highest PRHR of almost 80% 445 

(Figure S4). Marker density is an important factor in identifying fine-scale 446 

recombination breakpoints in MAGIC populations. 447 

Under ideal conditions, where the markers are evenly spaced, a marker 448 

distance of 0.20 cM or less between two adjacent markers is sufficient to achieve a 449 

PRHR of at least 90% (Figure 5C). We tested recombinant haplotype recovery rates 450 

for markers that are evenly spaced across 0.05, 0.10, 0.20, 0.40, 0.80, 1.60, 3.20, 451 

6.40 and 12.80 cM. At the smallest tested distance of 0.05 cM, approximately 97% of 452 

the true recombinant haplotypes can be recovered. As the distance increases, the 453 

recovery rate decreases. At the largest tested distance of 12.80 cM, approximately 454 

11% of the true recombinant haplotypes can be recovered. These results are more 455 

optimistic than the actual results (Table 1). In practice, more markers are required to 456 

achieve the same recovery rate for any given marker density because markers are 457 

not evenly distributed across the whole genome. In addition, the discrepancy 458 

between simulated and actual results can also be attributed to marker quality. For 459 

example, the markers on the wheat D-genomes are generally sparser than on the 460 

others. 461 
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magicdesign: a tool to create and test MAGIC population designs 462 

 Given that MAGIC population construction requires a lot of time and effort, 463 

and that design choices can impact population attributes, there is a need for a “free 464 

trial” before committing to create a MAGIC population. Here, we introduce an R 465 

package called “magicdesign”, which is specifically made for creating and testing 466 

various MAGIC population designs via simulation. Alternatively, we also provide a 467 

user-friendly Shiny app version called “magicdesignee” which implements the 468 

“magicdesign” R package in its back-end. Therefore, minimal R knowledge is 469 

required for users to use “magicdesignee”. 470 

 Briefly, the “magicdesign” package workflow can be described as: (1) design 471 

creation, (2) population simulation, and (3) comparative analysis. In the design 472 

creation step, the package creates a crossing scheme that spans from the founders 473 

to the final RILs based on user inputs. In the population simulation step, the package 474 

simulates a MAGIC RIL population constructed from the crossing scheme, and 475 

repeats over multiple iterations. At this point, the first two steps may be repeated for 476 

other MAGIC population designs. Finally, in the comparative analysis step, the 477 

package extracts information from previously tested designs and summarizes the 478 

results illustratively. Additional details on each step are described in subsequent 479 

sections. 480 

Design creation 481 

 In a structured design, the design creation step takes various user inputs to 482 

create a crossing scheme. The major inputs include number of founders, number of 483 

funnels or funnel sets, and a balanced design indicator. Based on how these inputs 484 

are specified, one of the structured designs (Full, Partial Balanced, Partial 485 
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Unbalanced, Basic) as shown in Figure 1A is created. As defined previously, a 486 

balanced design has an equal number of founders among the funnels and equal 487 

frequency of founder pairs at each crossing generation. This design creation step 488 

works for either power of 2 (P2) or non-power of 2 (NP2) number of founders. 489 

Currently, the allowed range of number of founders is any integer between 3 and 490 

128. The allowed number of funnels or funnel sets varies according to the number of 491 

founders and the balanced design indicator, and the full list is provided in Table S1.  492 

 Finding a balanced design requires more computation power than finding an 493 

unbalanced design. This is because the balanced design requires many funnel 494 

permutations to be evaluated while the unbalanced design randomly sample the 495 

required number of funnel permutations. To reduce the computational burden, we 496 

have identified alternative methods that are less computationally intensive. In the 497 

case of 8 founders, we have searched through all 3157 possible combinations and 498 

identified 720 partial balanced funnel sets. There are 7 funnels to make a minimum 499 

partial balanced funnel set and any of the 315 funnels from a full design can be 500 

chosen to fill each of the 7 funnels in a funnel set. Furthermore, each of the partial 501 

balanced funnel set can be combined with another non-overlapping partial balanced 502 

funnel set to form a larger partial balanced funnel set. In the case of 16 founders, the 503 

number of possible combinations is very large and so we opted for a different 504 

approach. To start, we obtained the 15 funnels from Scott et al. (2021), which is a 505 

partial balanced set for 16 founders. We searched through all 315 possible 506 

permutations of eight- and sixteen-way crosses in these funnels and identified 7,776 507 

partial balanced funnel sets. More partial balanced funnel sets could be found by 508 

searching through all 31515 possible permutations of four-way crosses, however, that 509 

was beyond our available computational capacity. Unlike the case of 8 founders, 510 
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these funnel sets do overlap and thus cannot be combined to form a larger set. 511 

Instead, by randomly swapping the founders from a starting partial balanced funnel 512 

set, a non-overlapping partial balanced funnel set can be created and merged to 513 

form a larger set. For other numbers of founders between 4 and 16, the balanced 514 

design is created based on a nested incomplete block design (NIBD) generated 515 

using the “blocksdesign” package (Edmondson 2020; Edmondson 2021). A MAGIC 516 

funnel is analogous to a NIBD as the founders in two-way crosses (experimental 517 

block of two plots) are nested within four-way crosses, founders in four-way crosses 518 

are nested within eight-way crosses, and so on. Currently, a balanced design in 519 

“magicdesign” is limited to 16 or less founders as there is not yet an efficient method 520 

for larger number of founders. 521 

 In addition, “magicdesign” provides options to further modify the MAGIC 522 

population design by specifying the number of replicates, number of selfing 523 

generations, and an additional crossing indicator. The number of replicates 524 

determines how many seeds from a cross are retained. This can help to increase the 525 

haplotype diversity in the MAGIC population when the seeds are not genetically 526 

identical. In the case of inbred founders, replicates of two-ways individuals are all 527 

identical but not replicates of four-ways (or higher) individuals. The number of selfing 528 

generations determine how many generations of selfing are required after each 529 

cross. Typically, the selfing step is only applied after the last crossing generation as 530 

a way to reduce heterozygosity in the RILs. However, selfing prior to that may be 531 

beneficial in increasing recombinant haplotypes. Lastly, the additional crossing 532 

indicator allows for an extra crossing generation to further increase recombinant 533 

haplotypes. This is similar to the approach taken by Stadlmeier et al. (2018) and 534 

Shah et al. (2019). 535 
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 Alternatively, any MAGIC population design that is not available directly in 536 

“magicdesign” can be created by supplying a complete pedigree. The only 537 

requirement for the pedigree is that it must detail all crosses involved from the 538 

founders to the final RILs. This option provides a greater flexibility to accommodate 539 

for semi-structured or unstructured designs. Furthermore, it is also possible to modify 540 

a design created from “magicdesign” and provide the pedigree of the modified 541 

design. 542 

Population simulation 543 

 Once a MAGIC population design is created, “magicdesign” simulates a 544 

population based on the design and other user inputs. The major inputs include 545 

distance between markers, chromosome genetic lengths, number of simulations and 546 

recombinant haplotype interval size. The simulation step will create evenly-spaced 547 

markers based on the distance between markers and chromosome genetic lengths. 548 

All founders are considered unique and so each of these markers is used to encode 549 

for the founder genotypes. The desired number of simulations is selected. In 550 

addition, the recombinant haplotype interval size determines the distance between 551 

two markers to look for recombinant haplotypes. 552 

Comparative analysis 553 

 After simulating one or more designs, the final step is to compare the design 554 

qualities in terms of recombinant haplotype proportions and distribution of founder 555 

genomes in the RILs. In general, a good MAGIC population design should yield 556 

consistently higher recombinant haplotype proportions as well as an even distribution 557 

of founder genomes compared to other designs. 558 
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To demonstrate comparative analysis with “magicdesign”, the five designs in 559 

Table 3 are used as examples. These designs are all applied to a fictitious species 560 

with five chromosomes of 1.0, 1.5, 2.0, 2.5, 3.0 Morgans (M) length. All five designs 561 

are created based on a MAGIC population of 8 founders. Design 1 is a full design 562 

and so it has all 315 funnels. Design 2 and 4 are both partial balanced design with 563 

one funnel set (7 funnels), and the only difference between them is that the four-way 564 

individuals in design 4 are selfed once before making eight-way crosses. Design 3 is 565 

similar to design 2 except it is a partial unbalanced design with 7 funnels.  Lastly, 566 

design 5 is a basic design with 1 funnel inspired by the design used in Stadlmeier et 567 

al. (2018). The numbers of replicates are varied for each design to achieve similar 568 

final RIL population size close to 1,000. Aside from design 1 which has the highest 569 

number of crosses, the other designs have fairly similar numbers of crosses. Design 570 

1, 2 and 3 require 7 generations from founders to RILs, while design 4 and 5 require 571 

8 generations because of the additional selfing and crossing generation respectively. 572 

First, we investigated the designs’ effects on recombinant haplotypes within a 573 

5 cM interval. In term of total recombinant haplotypes, a good design should have 574 

high mean with low variance. High mean implies a reduction in linkage disequilibrium 575 

(LD) and thus improves QTL mapping resolution (Ladejobi et al. 2016) as well as 576 

prediction of marker effects in genomic prediction (GP). Low variance ensures that 577 

the proportion of recombinant haplotypes in the created MAGIC population remains 578 

close to the simulated mean and minimizes the risk of constructing a poorly 579 

recombined MAGIC population. For design 1 to 5 respectively, the means are 0.167, 580 

0.167, 0.169, 0.186 and 0.202 while the variances are 0.000158, 0.000244, 581 

0.000293, 0.000452 and 0.003000 (Figure 6A). The means are similar in design 1, 2 582 

and 3, slightly higher in design 4 and highest in design 5. However, the variances are 583 
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lowest in design 1, similar in design 2 and 3, slightly larger in design 4, and 584 

substantially larger in design 5.  585 

In any RIL derived from an 8-founder MAGIC population, there are 56 distinct 586 

recombinant haplotypes and a good design should have high mean with low 587 

variance. Mean number of unique recombinant haplotypes that approaches the 588 

theoretical maximum of 𝑛 𝑛 is important for maximizing QTL mapping resolution 589 

and generating novel haplotypes for breeding new varieties. In a population of 590 

MAGIC RILs with high proportion of recombinant haplotypes but low number of 591 

unique recombinant haplotypes, the QTL mapping resolution can be poor when the 592 

recombinant haplotypes are largely composed of pairs of founders carrying the same 593 

causative QTL haplotype. Low variance is beneficial for the same reason as 594 

explained in previous paragraph. The means for the number of unique recombinant 595 

haplotypes are 52.20, 49.93, 50.29, 47.81 and 34.51 for design 1 to 5 respectively 596 

while the variances are 3.31, 4.29, 4.21, 4.68 and 34.78 for design 1 to 5 597 

respectively (Figure 6B). The means are highest in design 1, similar in design 2 and 598 

3, slightly lower in design 4 and lowest in design 5. The variances follow a similar but 599 

reverse trend as the means except for design 5 where the variance is over seven 600 

times greater. Equivalently, the coefficients of variation (CVs) are 0.035, 0.041, 601 

0.041, 0.045 and 0.171 for design 1 to 5 respectively. That for design 5 is 602 

approximately four times that for the other designs. 603 

The distributions of individual recombinant haplotype should be consistent 604 

across all recombinant haplotypes with minimal variability across simulations in a 605 

good design. This metric offers an in-depth view of individual recombinant 606 

haplotypes by combining the two previously described metrics. Here, we can identify 607 

the individual recombinant haplotypes that deviate from the others, which can be a 608 
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cause of concern relating to poor QTL mapping resolution and lack of novel 609 

recombinant haplotypes for breeding uses. With the exception of design 5, all other 610 

designs have similar distributions of individual recombinant haplotype (Figure 6C and 611 

Table S5). Similar to wheat-DE8 (Figure 2B), cowpea and tomato (Figure 4), design 612 

5 has more two-ways recombinant haplotypes than other recombinant haplotypes. 613 

Furthermore, the spreads of two-ways recombinant haplotypes in design 5 are much 614 

higher than the others, which imply low consistency. 615 

Similar to the previous criterion, the proportions of founder genomes should 616 

be consistent across all founders with low variability across simulations in a good 617 

design. This is an important metric that highlights the disparity in founder genome 618 

distribution. Multiple uses of MAGIC populations are compromised when the 619 

disparity is large, for instance, rare QTLs may drop out, GP training model and 620 

breeding options become skewed, and valuable diversity is lost in a genetic resource 621 

management program. With 8 founders, the expected proportion of each founder 622 

genome in a population is 0.125. The proportions are within 0.01 of expectation for 623 

all designs except for design 5, which has 5 out of 8 proportions exceeding the range 624 

(Figure 7A). On the other hand, the variances are lowest in design 1, slightly higher 625 

in design 2, 3 and 4, and highest in design 5 (Figure 7A). 626 

In any single chromosome, a RIL can carry tracts of 1 to 8 unique founder 627 

genomes and it is generally better to have more unique founder genomes. This 628 

metric is similar to the first metric showing the total recombinant haplotypes where 629 

higher number of unique founder genome suggests more recombinations. In 630 

addition, this metric highlights the relationship between genetic length and the 631 

number of unique founder genomes, which demonstrates the advantages of MAGIC 632 

in species with many genetically long chromosomes. In the shortest chromosome 633 
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(chromosome 1), design 1, 2 and 3 frequently produce 3 unique founders, while 634 

design 4 and 5 frequently produce 4 unique founders (Figure 7B). In the longest 635 

chromosome (chromosome 5), design 1, 2, 3 and 4 frequently produce 6 unique 636 

founders while design 5 frequently produces 7 unique founders (Figure 7B). 637 

Lastly, a good design should have short non-recombinant segments, which 638 

can be achieved by increasing the number of crossing generations from the founders 639 

to the RILs. Short non-recombinant segments imply higher QTL mapping resolution 640 

and possibly better marker effect prediction in GP. Across all chromosomes, design 641 

5 has the most short non-recombinant segments, followed by design 4, and design 642 

1, 2 and 3 being undiscernible (Figure 7C). 643 

Of all the five designs considered here, each has its own advantages and 644 

disadvantages. Design 1, 2 and 3 are highly similar except that design 1 tends to 645 

show smaller variability than the other two at the cost of more crossing work 646 

required. Design 4 is slightly better than the first three in most occasions, although it 647 

is slightly more variable and requires one additional generation. Design 5 is generally 648 

poor and should be avoided if possible, although the additional crossing generation 649 

helps in increasing the number of unique founders and reducing non-recombinant 650 

segment lengths. Of all designs considered, design 4 appears to be the best option if 651 

the additional generation is acceptable, otherwise either design 2 or 3 is a good 652 

alternative. Across all the metrics used for comparisons in “magicdesign”, there is no 653 

observable difference between design 2 (balanced) and 3 (unbalanced). 654 

 655 
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Discussion 656 

 Ease of design appears as a major factor in driving the design choices in 657 

currently available MAGIC populations. These MAGIC populations are predominantly 658 

made of 4 or 8 founders crossed using a basic design (Figure 1B). There are several 659 

possible explanations to the choice popularity. First, P2 designs are easier to handle 660 

than NP2 designs since the individuals in every funnel are halved at every crossing 661 

generation. Besides, 4 and 8 founders are effectively the lowest numbers of founders 662 

available in P2 designs, and higher numbers of founders require more generations of 663 

crossing and may increase the design complexity. Of all the explored designs, the 664 

basic design likely requires the least amount of effort in population construction. The 665 

only other option that may rival a basic design is the unstructured design with 666 

random mating, which often relies on segregation of male sterility loci. Unfortunately, 667 

this system is not always readily available in every species and may restrict the 668 

founder choices. 669 

 Choice of MAGIC population design plays a critical role in determining the 670 

recombination landscape in the RILs. In the comparison between wheat-UK8 and 671 

wheat-DE8, we identified a bias in individual recombinant haplotypes in the basic 672 

design but not the partial design (Figure 2). The bias resulted in more two-way 673 

recombinant haplotypes than other recombinant haplotypes. The bias might be 674 

exacerbated if the pairs of founders in two-ways are genetically more similar than 675 

others, which can happen if the founders stratify into two or more groups. It is 676 

possible to avoid pairing the founders of the same groups in two-ways if the grouping 677 

is known. For example, Pascual et al. (2015) made the two-way crosses by crossing 678 

tomato founders with large fruits to founders with small fruits, and Ogawa et al. 679 

(2018) followed similarly by crossing indica rice founders to japonica rice founders. 680 
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This countermeasure is only possible if the numbers of founders are equal between 681 

groups, but not if the founders cannot be subdivided equally like the barley 682 

(Sannemann et al. 2015), cowpea (Huynh et al. 2018) and wheat (Stadlmeier et al. 683 

2018) MAGIC populations. Besides, the stratification may be incomplete due to other 684 

traits that are not considered, for example, flowering time and nutrition qualities in 685 

tomatoes. 686 

 In addition to the bias, the basic design also resulted in a lower proportion of 687 

unique recombinant haplotypes than the partial design (Figure 3). Since a basic 688 

design always has less funnels than any other designs, high replication of cross 689 

progeny is required to bring the number of RILs up. In general, replicates reduce the 690 

amount of crossing work required in prior generation by keeping more than one 691 

progeny from a single cross to advance. The recombination landscape in these 692 

replicated individuals is non-independent because any prior recombinations are 693 

passed down from their parents. The detriments from replication can be minimized 694 

by replicating in earlier generations as subsequent crosses will reduce the non-695 

independence among replicates. In a MAGIC population with 8 inbred founders, the 696 

earliest meaningful replication would be the four-way individuals. However, replicates 697 

prior to the final crosses do increase the amount of downstream crossing work, and 698 

so it is important to consider the trade-offs between available work resources and 699 

uniqueness of recombinant haplotypes. 700 

 High marker density is needed to capture the highly recombined genomes of 701 

MAGIC RILs. We used the proportion of recombinant haplotypes recovered (PRHR) 702 

as a measure of how well the markers capture recombinant haplotypes. PRHRs in 703 

the five analyzed datasets correlate well with the marker density. Even with the high 704 

marker density in wheat-UK16, the PRHR is only 0.799 (Table 1), which suggests 705 
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that one-fifth of the recombinant haplotypes is still missing. Some explanations 706 

include the sparser marker density in the D-genomes, uneven marker density along 707 

the genomes and segregation distortions of the founder genomes. To generalize the 708 

relationship between marker density and recombinant haplotypes further, our 709 

simulation results showed that marker distance of 0.80 cM or less is sufficient to 710 

recover over three-quarters of the recombinant haplotypes. Despite the results from 711 

actual datasets being less optimistic than the results from simulation, the importance 712 

of high marker density in MAGIC populations still holds.  713 

 Given that the advantages and disadvantages of different MAGIC population 714 

designs are largely unexplored, the “magicdesign” package serves as an important 715 

tool to create and test different designs. Specifically, “magicdesign” provides the 716 

opportunity to evaluate the options before committing to years of effort in 717 

constructing MAGIC populations. In our examples, an additional selfing generation 718 

offers a simple path to improvement (Figure 6 and 7), especially in inbreeding 719 

species. When used in combination with speed breeding (Watson et al. 2018), the 720 

additional time due to selfing can be minimized. In addition, “magicdesign” also acts 721 

as a bridging tool for researchers who are new to MAGIC populations by providing a 722 

starting point to creating a MAGIC population. The opportunity to create and test 723 

different designs will encourage innovation in MAGIC population designs rather than 724 

relying on previously used designs. 725 

 While the initial version of “magicdesign” package involves simulations with 726 

relatively simple parameters, we intend to expand the package scopes to cover 727 

broader biological aspects that are relevant to MAGIC. For example, the 728 

recombination landscape is generally perceived to be uneven (Petes 2001) and it will 729 

be useful to consider recombination hot and cold spots. Gene density varies along 730 
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the genome and may need to be accounted for in MAGIC simulation, although non-731 

coding and unannotated regions cannot be discounted too given their biological 732 

importance (Jiang 2015). Founder diversity was previously shown to be important in 733 

MAGIC population design (Ladejobi et al. 2016). Currently, this feature is not 734 

available in “magicdesign” and will be considered as a priority for subsequent 735 

versions. Overall, “magicdesign” is a valuable resource for unifying the process of 736 

creating and testing MAGIC population designs, and providing the flexibility for 737 

additional features to be included in future updates as the package grows with users’ 738 

feedback and research demands. 739 

Data Availability 740 

The MAGIC datasets used in this work were sourced from 741 

www.niab.com/research/agricultural-crop-research/resources/niab-magic-population-742 

resources (wheat-UK8), doi.org/10.1186/s12864-018-4915-3 (wheat-DE8), 743 

doi.org/10.1111/tpj.13827 (cowpea), doi.org/10.1111/pbi.12282 (tomato) and 744 

mtweb.cs.ucl.ac.uk/mus/www/MAGICdiverse/ (wheat-UK16). Links to source 745 

datasets without DOI have been archived at web.archive.org on April 13, 2021. 746 

 The “magicdesign” package and its installation instructions are available for 747 

download at github.com/cjyang-sruc/magicdesign. Detailed instructions are available 748 

at cjyang-sruc.github.io/magicdesign_vignette. The Shiny app “magicdesignee” can 749 

be found at magicdesign.shinyapps.io/magicdesignee/. R scripts used in all analyses 750 

can be found at cjyang-sruc.github.io/files/magicdesign_analysis.R.  751 

 752 
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Figures and Tables 898 

Figure 1. Classifications of MAGIC population designs. 899 

[A] Flowchart of classifying MAGIC population designs based on their crossing 900 

schemes. [B] Distribution of MAGIC population designs in all 48 surveyed 901 

populations. 902 

 903 

Figure 2. Distributions of recombinant haplotypes in two wheat MAGIC 904 

populations. 905 

[A] Plot shows mean count of each recombinant haplotype in a single RIL in wheat-906 

UK8. The boxplot shows mean count from true founder genotypes (100 simulated 907 

iterations). The red and blue points show mean count from inferred founder 908 

genotypes. [B] Plot shows mean count of each recombinant haplotype in a single 909 

RIL in wheat-DE8. [C] Histogram of the mean count in wheat-UK8. [D] Histogram of 910 

the mean count in wheat-DE8. 911 

 912 

Figure 3. Distributions of unique and identical recombinant haplotypes in two 913 

wheat MAGIC populations. 914 

Recombinant haplotypes are considered identical if they are of the same founder 915 

pairs and present in the same 1 cM interval, otherwise unique. [A] Counts of the 916 

number of identical recombinant haplotypes in wheat-UK8. The left most point is the 917 

count of unique recombinant haplotypes. [B] Counts of the number of identical 918 

recombinant haplotypes in wheat-DE8. [C] Proportions of unique and non-unique 919 

(identical) recombinant haplotypes in wheat-UK8 and wheat-DE8. 920 

 921 

Figure 4. Distributions of recombinant haplotypes in cowpea and tomato 922 

MAGIC populations. 923 

[A] Plot shows mean count of each recombinant haplotype in a single RIL in cowpea. 924 

The boxplot shows mean count from true founder genotypes (100 simulated 925 

iterations). The red and blue points show mean count from inferred founder 926 

genotypes. [B] Plot shows mean count of each recombinant haplotype in a single 927 

RIL in tomato. 928 

 929 
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Figure 5. Ideal threshold for inferring founder genotypes and marker density in 930 

MAGIC population. 931 

[A] Proportions of correct, incorrect and missing founder genotypes inferred at 932 

different minimum probability (minprob) in simulated wheat-UK8 population. [B] 933 

Proportions of correct, incorrect and missing founder genotypes inferred at different 934 

minprob in simulated wheat-DE8 population. [C] Proportions of recombinant 935 

haplotypes recovered (PRHR) at different marker density along a simulated 936 

chromosome of 200 cM. The marker density is adjusted by having markers equally 937 

spaced at 0.05, 0.10, 0.20, 0.40, 0.80, 1.60, 3.20, 6.40 and 12.80 cM apart. 938 

 939 

Figure 6. Distributions of recombinant haplotypes in five MAGIC population 940 

designs. 941 

Recombinant haplotypes are evaluated within a 5 cM interval over 100 iterations of 942 

simulation. [A] Proportions of total recombinant haplotypes. [B] Number of unique 943 

recombinant haplotypes. [C] Proportions of six chosen recombinant haplotypes. 944 

Complete results are available in Table S5. 945 

 946 

Figure 7. Distributions of founder genomes in five MAGIC population designs. 947 

Founder genomes are evaluated from 100 iterations of simulation. [A] Proportions of 948 

each founder genome in the MAGIC RILs. [B] Proportions of the MAGIC RILs 949 

carrying tracts of 1 to 8 unique founder genomes in each chromosome. [C] Mean 950 

count of non-recombinant segment length in each RIL’s chromosome.   951 
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Table 1. Summary of five analyzed MAGIC populations.  952 

The wheat-UK8 and wheat-DE8 datasets have been reduced to share the same 953 

markers and maps for comparison. The proportion of recombinant haplotypes 954 

recovered (PRHR) is calculated as number of recombinant haplotypes in actual 955 

dataset divided by number of recombinant haplotypes in simulated dataset. PRHR is 956 

shown as mean ± standard deviation. 957 

dataset n 
genome 

(cM) 
marker

distance 
(cM/marker)

PRHR reference 

wheat-UK8 8 5,262 5,138 1.024 0.296 ± 0.094 Mackay et al. (2014) 

wheat-DE8 8 5,262 5,138 1.024 0.331 ± 0.058
Sannemann et al. 
(2018) 

cowpea 8 979 32,114 0.030 0.674 ± 0.207 Huynh et al. (2018) 

tomato 8 2,156 1,345 1.603 0.410 ± 0.106 Pascual et al. (2015) 

wheat-UK16 16 5,262 1,065,178 0.005 0.799 ± 0.092 Scott et al. (2021) 
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Table 2. Number of informative recombinations in wheat-UK8 and wheat-DE8. 959 

The number of informative recombinations (NR) is calculated for both simulated and 960 

actual wheat-UK8 and wheat-DE8 datasets. Note: recombinant inbred line (RIL), 961 

Morgan (M). 962 

Chr 

NR/RIL NR/RIL/M 

wheat-UK8 wheat-DE8 wheat-UK8 wheat-DE8 

sim actual sim actual sim actual sim actual 

1A 7.21 1.91 7.21 2.35 3.13 0.83 3.13 1.02 

1B 11.77 3.57 11.76 4.31 3.44 1.04 3.44 1.26 

1D 3.74 0.68 3.73 0.99 2.92 0.53 2.92 0.78 

2A 8.37 3.67 8.37 3.17 3.32 1.45 3.32 1.26 

2B 12.43 2.63 12.43 3.61 3.34 0.71 3.34 0.97 

2D 4.97 1.69 4.96 1.42 2.71 0.92 2.71 0.77 

3A 10.21 4.50 10.19 4.16 3.37 1.48 3.36 1.37 

3B 9.89 3.35 9.90 4.18 3.51 1.19 3.51 1.48 

3D 4.45 0.61 4.44 0.45 2.29 0.32 2.28 0.23 

4A 6.95 2.51 6.96 2.11 3.30 1.19 3.30 1.00 

4B 7.55 2.21 7.58 2.23 3.40 0.99 3.41 1.01 

4D 2.95 0.51 2.96 0.43 2.75 0.47 2.75 0.40 

5A 10.23 4.15 10.23 4.47 3.26 1.32 3.26 1.43 

5B 10.97 2.59 10.96 3.25 3.53 0.83 3.53 1.05 

5D 4.76 1.33 4.75 1.52 2.39 0.67 2.39 0.76 

6A 9.70 3.38 9.68 4.48 3.48 1.21 3.47 1.61 

6B 8.85 1.97 8.84 2.46 3.40 0.76 3.40 0.95 

6D 3.92 0.43 3.93 1.14 1.82 0.20 1.83 0.53 

7A 13.53 4.21 13.50 5.07 3.53 1.10 3.52 1.32 

7B 9.28 2.64 9.27 2.97 3.23 0.92 3.23 1.03 

7D 4.40 0.74 4.40 1.05 2.36 0.40 2.35 0.56 

All 166.10 49.24 166.05 55.84 3.16 0.94 3.16 1.06 
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Table 3. Five MAGIC population designs tested in magicdesign. 964 

The numbers of replicates, selfing generations and crosses are listed separately for 965 

each generation. For example, in design 1, the eight-way individuals are replicated 966 

three times and then selfed for four generations. The total number of crosses is 967 

shown in parentheses. 968 

 Design 1 Design 2 Design 3 Design 4 Design 5

Founders 8 8 8 8 8

Type Full 
Partial 

balanced
Partial 

unbalanced
Partial 

balanced 
Basic

Replicates 1, 1, 3 1, 9, 15 1, 9, 15 1, 9, 15 1, 4, 4, 15

Selfing 0, 0, 4 0, 0, 4 0, 0, 4 0, 1, 4 0, 0, 0, 4

Crosses 
28, 210, 315 

(553) 
28, 14, 63 

(105)
19, 13, 63 

(95)
28, 14, 63 

(105) 
4, 2, 4, 64 

(74)

Generations 7 7 7 8 8

RIL 945 945 945 945 960

Funnel 315 7 7 7 1

 969 
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