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Bubble model

1. Introduction

Maximum Cardinality Cut: A cut of a graph G = (V(G), E(G)) is a partition of V(G) into two subsets S,S where S =
V(G)\ S. The cut-set of (S, S) is the set of edges of G having exactly one endpoint in S. The maximum cardinality cut problem
(MaxCur) is to find a cut with a maximum size cut-set, of a given graph.

MAxCut remains NP-hard when restricted to the following graph classes: chordal graphs, undirected path graphs, split
graphs, tripartite graphs, co-bipartite graphs [2], unit disk graphs [7] and total graphs [15]. On the positive side, it was
shown that MAXCUT can be solved in polynomial-time in planar graphs [16], in line graphs [15], in graphs with bounded
clique-width [12], and the class of graphs factorable to bounded treewidth graphs [2]. None of these results applies to
proper interval graphs. As for the parameterized complexity of the problem in general graphs, MAXCUT when parameterized
by the clique-width of the input graph is not in FPT unless the Exponential Time Hypothesis (ETH) collapses [12].
Maximum Cardinality Cut in Proper Interval Graphs: Polynomial-time algorithms for some subclasses of proper interval
graphs (also known as indifference graphs) are proposed in [1] and in [11], for split indifference graphs and co-bipartite
chain graphs (a.k.a. co-chain graphs), respectively. A polynomial-time algorithm for proper interval graphs is proposed in
[3]. However, as pointed out in [1] this algorithm contains a flaw and may return sub-optimal solutions. A polynomial-time
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algorithm for proper interval graphs was also proposed by the authors of this work [5]. However, this algorithm too, is
flawed as explained in detail in [18]. Consequently, the question of whether MAXCUT can be solved in polynomial time for
proper interval graphs is open.

Bubble Model and Clique-width: In [17] the authors introduce the bubble model of proper interval graphs which is a
partition of the vertices into a rectangular array of bubbles. Recently the bubble model is generalized to mixed unit interval
graphs and a sub-exponential exact algorithm is given for this graph class [18].

Proper interval graphs have unbounded clique-width. Specifically, the authors of [14] show that the clique-width of a

specific interval graph I,  whose bubble model has n rows and n columns is at least n. On the other hand, the clique-width
of a mixed unit interval graph (and therefore of a unit interval graph) is upper bounded by the number of rows and also
by the number of columns of its bubble model (up to a small constant term) [17,18]. An upper bound of Q(n®) is proven
in [19] for I, ,-free proper interval graphs. The work [20] considers proper interval graphs with specific bubble models and
presents an efficient algorithm to compute the clique-width of proper interval graphs of this type.
Our Contribution: In this work we consider the parameterized complexity of MAXCuT when the parameter is the width
of a clique-width decomposition of the input graph, having certain properties. Since, as mentioned before, the problem is
unlikely to be in FPT in general [12], in order to find FPT algorithms, we confine ourselves to clique-width decompositions
having certain properties. The bubble model of proper interval graphs and the extended bubble model of mixed unit interval
graphs lead to such clique-width decompositions for these families of graphs.

We introduce new parameters of clique-width decompositions. Specifically, we define a («, B, §)-clique-width decompo-
sition of a graph as a clique-width decomposition in which at each step the following invariant is preserved: after discarding
at most § labels, a) every label consists of at most S sets of twin vertices, and b) all the labels together induce a graph with
independence number at most «.

We present FPT algorithms for MAxCut when parameterized by the width of the decomposition in which these pa-
rameters are bounded by a constant. Since mixed unit interval graphs have decompositions in which these parameters are
bounded by constants and the width of these decompositions are equal (up to a small constant term) to the number of
non-empty rows in a column, this result implies an FPT algorithm for MAXCuT in mixed unit interval graphs when the
parameter is the number of non-empty rows in a column of the bubble model. This parameter is in turn equal to (again, up
to a small constant term) to the clique size of the corresponding twin-free graph [17,18].

In Section 3 we introduce the notion of bubble partitions. We characterize bubble partitions by two parameters, namely
their independence number « and their width. This notion generalizes the two dimensional bubble model of proper interval
and mixed unit interval graphs. The parts of the bubble partition of a mixed unit interval graph correspond to the columns
of its two dimensional bubble model. Since every column in the bubble model is a clique, a mixed unit interval graph has
a bubble partition with independence number 1. Moreover, such a partition can be found in polynomial time [17,18]. We
show in Theorem 4 that for every fixed « there is an algorithm that computes a maximum cardinality cut of a graph G
given with an a-bubble partition, (i.e., a bubble partition with independence number «). This algorithm runs in FPT time
when the parameter is the width of the bubble decomposition. This implies an FPT algorithm for mixed unit interval graphs
where the parameter is the number of non-empty bubbles in a column of its two dimensional bubble model.

In Section 4, we extend the scope of this FPT algorithm to a wider domain. In Theorem 6, we show that the XP
algorithm for MAXCuT when parameterized by clique-width presented in [12] runs in FPT time when parameterized by the
smallest width of an («, g, §)-clique-width decomposition, denoted by cwg, g,5(G) plus 8. We also show (in Lemma 1) that
a bubble partition with independence number « can be used to find an (2«, 1, 1)-clique-width decomposition of similar
width. Therefore, in some sense, the main result of Section 4 generalizes the main result of Section 3. This result implies
that a mixed unit interval graph has a clique-width decomposition in which at every step, discarding the vertices labeled
zero, the graph has independence number two and every label consists of a set of twins. In our terminology, this is a
(2,1, 1)-clique-width decomposition implying that the result applies to mixed unit interval graphs.

Denoting by BW, the class of graphs having a bubble partition with independence number o, we present structural
results relating BW; to the classes of interval, mixed unit interval, chordal, co-bipartite and split graphs.

We conclude in Section 5 with several open questions about FPT algorithms for MAXCUT and related parameters intro-
duced in this paper, both in general and in specific graph classes.

2. Preliminaries

Graph notations and terms: Given a simple graph (i.e., with no loops or parallel edges) G = (V(G), E(G)) and a vertex v of
G, N¢(v) denotes the set of neighbors of v in G. Two adjacent (resp. non-adjacent) vertices u, v of G are twins (resp. false
twins) if Ng(u) \ {v} = N¢(v) \ {u}. For a graph G and U C V(G), we denote by G[U] the subgraph of G induced by U, and

G\U def G[V (G)\ U]. For a singleton {x} and a set Y, Y+xd§f YU{x}and Y —xdéf Y \ {x}. We use [n] =[1..n] to denote the
set of positive integers less than or equal to n. A vertex set U C V(G) is a clique (resp. independent set) (of G) if every pair
of vertices in U is adjacent (resp. non-adjacent). We denote by «(G) the maximum size of an independent set of a graph
G. We refer the reader to [8] for general notation and terminology regarding graphs.

Some graph classes: A graph is chordal if it does not contain holes, i.e., induced cycles of four or more vertices. It is known
that a graph G is chordal if and only if it is the vertex-intersection graph of subtrees of a tree, i.e., there exists a tree T and
subtrees T, ..., T, of it such that v; and v; are adjacent in G if and only if T; and T; have a common vertex [13]. A graph
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G is interval if it is the intersection graph of intervals on a straight line. The subtree intersection characterization of chordal
graphs implies that interval graphs are chordal. An interval graph is proper (resp. unit) if it has an interval representation
such that no interval properly contains another (resp. every interval has unit length). It is known that the class of proper
interval graphs is equivalent to the class of unit interval graphs [4]. However, if one is allowed to use a mixture of open and
closed unit intervals in the representation, richer families of graphs are obtained. This can be easily demonstrated by the
set {[0, 1], (1,2),[2, 3], [1, 2]} of unit intervals that represent a claw which is not a proper interval graph. The most general
such family is the family of mixed unit interval graphs of the intersection graphs of unit intervals where each interval can be
open, closed, or open at one end and closed at the other.

Cuts: We denote a cut of a graph G by one of the subsets of the partition. E(S, S) denotes the cut-set of S, i.e. the set of

the edges of G with exactly one endpoint in S, and cs(S) def |E(S, §)| is termed the cut size of S. A maximum cut of G is

one having the biggest cut size among all cuts of G. We refer to this size as the maximum cut size of G. Clearly, S and S are
dual; we thus can replace S by S and S by S everywhere. In particular, E(S, S) = E(S, S), and ¢s(S) = cs(S).
Parameterized Complexity: A parameterized problem is a decision problem each instance of which is a pair (I, k) where k
is a number that is termed the parameter of the instance. An algorithm that decides a parameterized problem IT is an FPT
(resp. XP) algorithm if its running time is bounded by f(k) - |I|° (resp. f(k)-|I|8%) for some computable functions f, g and
some constant c. The class FPT (resp. XP) is the class of all parameterized problems for which an FPT (resp. XP) algorithm
exists. Clearly, FPT CXP. A parameterized problem that is in FPT is termed fixed-parameter tractable. The notation O* is
used to omit polynomial factors. For instance, for an FPT algorithm of time complexity O(f (k) - |I|°) for some constant c,
we omit the polynomial factor of |I|° and say that the time complexity of the algorithm is O*(f(k)). We refer the reader
to [10,6] for basic background on parameterized complexity.

Bubble models: A 2-dimensional bubbles model B for a finite non-empty set A is a 2-dimensional arrangement of bubbles
{Bi,j | jelkl,ie [rj]} for some positive integers k,rq, ..., 1, such that B is a near-partition of A. That is, A=UB and the
sets B; j are pairwise disjoint, allowing for the possibility of B; ; = for arbitrarily many pairs i, j. For an element a € A we
denote by i(a) and j(a) the unique indices such that a € Bj(), jq). Given a bubble model B, the graph G(B) has UB as its
vertex set. Two vertices u, v are adjacent (in G(B)) if and only if j(u) = j(v) or, j(u) = j(v)+1 and i(u) < i(v). We say that
BB is a bubble model for G(13). Observe that every bubble B € B is a set of twins. A compact representation for a bubble model
is an array of columns each of which contains a list of non-empty bubbles given by their row numbers and their vertices.

Theorem 1. [17] A graph is proper interval if and only if it has a bubble model. Moreover, a compact representation of a bubble model
for a proper interval graph can be computed in linear time.

Recently the bubble model is extended to a model for mixed unit interval graphs [18]. An extended bubble model
corresponds to a bubble model of a proper interval graph. In this model the bubbles are arranged in a rectangular grid.
At every point of the grid, instead of one bubble there are four bubbles B,-l,jv Bﬁj, Bﬁj, B;‘_j termed quadrants where i and
j are the row and column numbers, respectively. Every quadrant contains interval of one type (open at both ends, closed
at both ends, and so on). Let G be a mixed-unit interval graph given with an extended bubble model. Consider the bubble
model obtained by combining every set of quadrants into a bubble. Let G’ be the unit interval graph defined by this bubble
model. Two vertices u, v are adjacent in G if and only if they are either adjacent in G’ or they are in adjacent columns and
same row (j(u) = j(v)+ 1 and i(u) =i(v)) and they belong to the appropriate quadrants, i.e., u is in one of the left-closed
quadrants and v is in one of the right-closed quadrants. In other words, G’ is the intersection graph of the same set of unit
intervals except that all endpoints are open.

Theorem 2. [18] A graph is mixed unit interval if and only if it has an extended bubble model. Moreover, a compact representation of
an extended bubble model for a mixed unit interval graph can be computed in linear time.

We denote by p(G) the maximum number of non-empty bubbles in a column of the bubble model (resp. extended
bubble model) B of a proper (resp. mixed unit) interval graph G.

In this work, we use the term bubble as a maximal set of twins and extend the scope of this definition to general
graphs, not restricted to proper interval or mixed unit interval graphs. Whenever an ambiguity arises, we use the adjective
2-dimensional for the bubble model of a proper interval graph.

Clique-width: The clique-width of a graph G is the minimum number of labels needed to construct G by using the following
four operations defined on vertex-labeled graphs:

1. The operation ¢(v) returns a graph with one vertex v labeled ¢.

2. The disjoint union G U G’ of two vertex-disjoint labeled graphs G and G’ is the graph (V(G) U V(G’), E(G) U E(G")) and
every vertex in V(G) U V (G’) preserves its original label.

3. The graph 7; j(G) is obtained from the graph G by connecting all the vertices labeled i with all the vertices labeled j.

4. The graph p;_, j(G) is obtained from the graph G by replacing all labels i with j.
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Fig. 1. The cut S contains a vertices of U and c vertices of N(U). The number of edges of G[N(U)] separated by S is x. Then the number of edges of
G[N[U]] separated by S is a-d +b-c+ x. The cut S’ on the right side is obtained from S by adding ¢ vertices of U. The number of edges of G[N[U]]
separated by S is (@a+4¢) -d+ (b — £) - ¢ +x. Then c¢s(S’) — cs(S) = £(d — ¢).

A clique-width decomposition of a graph is a rooted binary tree that represents an expression involving the above four

operations. The graph G; corresponding to a node t of T is the value of the expression represented by the subtree of T
rooted at t. Let £L(T) be the set of labels used by T. The width w(T) of a decomposition T is the number |L£(T)| of labels
it uses. The clique-width cw(G) of an (unlabeled) graph G is the smallest width of an expression whose value is G (with
some labeling function). For a label ¢ € £, we denote by V, the set of vertices labeled ¢ and by V. the set of vertices of
G labeled ¢. We denote by V; the partition {V¢ | €€ L(T)} of V(Gy).
Decomposition by clique separators: The concept of decomposition by clique separators is introduced by Tarjan [21]. If G
is a connected graph and K a clique of G such that G \ K is disconnected with connected components V1, V;,..., V} then
we decompose G into k subgraphs G[K U G1], G[K U G2], ..., G[K U G,]. By continuing recursively for every subgraph until
a subgraph does not contain a clique separator, we obtain a decomposition of G. This decomposition can be modeled by a
tree T where an internal node of T represents a clique of G and the leaves of T represent subgraphs of G termed atoms
that do not contain clique separators. Given any graph, such a decomposition can be found in polynomial-time.

3. Bubble partitions

Following the definition of 2-dimensional bubble representations of proper interval graphs, we term bubble a maximal
set of twins. Given a graph G, we denote by G~ the graph obtained by contracting every bubble of G to a single vertex.
Two bubbles of G are adjacent (resp. non-adjacent) if the corresponding vertices in G~ are adjacent (resp. non-adjacent).

A bubble partition of a graph G is a partition V = {Vq,...V} of V(G) such that every V; € V is a union of bubbles
and the graph obtained from G by contracting every set V; to a single vertex is a tree T()’). Note that a bubble partition
V={V1,...,Vy} of G corresponds to a partition YV~ = {Vl_, e, Vk_} of V(G™).

A bubble partition always exists, since {V} is a partition whose contraction results in a (trivial) tree. The independence
number (V) of a bubble partition V' is max {«(V;) | Vi € V}, and the width w(V) of V is max{|Vi_| |Vie V}, the largest
number of bubbles in a set of V. A bubble partition V with «¢()) <« is termed an «-bubble partition. The «-bubble width
bwg (G) of G is the smallest width of an «-bubble partition (and oo if no such partition exists).

Given a cut S, a set U of (false or true) twin vertices and an integer £ € [—|SN U], |S\ U|] we denote by S(U, ¢) the cut
obtained by adding ¢ vertices of U to S if £ > 0 and by removing |£| vertices of U from S otherwise.

Observation 1. Let U be an independent set of pairwise (false) twin vertices of a graph G, and S a cut of G. Then
cs(S(U,2)) —cs(S)y=¢£-5(U,S)

where §(U, S) def IN(U) \ S| — |[N(U) N S| is the marginal contribution of U to S (see Fig. 1).

Given two adjacent bubbles B, B’ and a cut S of a graph G, we denote by S(B, B/, £) the cut obtained from S by adding
to it ¢ vertices of B\ S and removing from it ¢ vertices of B'N S, provided that £ <min{|B\ S|, |B’N S|}. Note that B U B’
is a clique. Since the number of edges of E[S, S] in this clique is not affected by this operation, applying Observation 1
twice, we get the following.

Observation 2.
cs(S(B, B, £)) —cs(S) =L - (8(B,S) —8(B’,S)) = —(cs(S(B’, B, £)) — cs(S)).
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Fig. 2. A tight cut S and a set U of bubbles. The white parts of the bubbles depict the set of vertices in S and the black parts depict the set of vertices
not in S. The set Z is the set of bubbles of U crossed by S. The corresponding configuration is y (S, U) = (Z,s, U~) where S contains five positive integers
each of which corresponds to a bubble in Z and denotes the number of vertices of S in the corresponding bubble (i.e., the size of the white part of the
bubble). The last part of the configuration, i.e., U~ is the set of white bubbles on the right side, i.e., the set of bubbles of that are completely contained

in S.

Two sets A and B are crossing (or A crosses B and vice versa) if their intersection is non-empty and none of them is a
subset of the other. A cut S of a graph G is tight if the set of bubbles of G crossed by S corresponds to an independent set
of G~. Note that (since a singleton cannot be crossed) if G is twin-free then every cut is of G is tight.

Theorem 3. Every graph has a maximum cut that is also tight.

Proof. Suppose that the statement does not hold. Let S be a maximum cut of G that is not tight, such that the number
of bubbles that S crosses is smallest possible. Then S crosses at least two adjacent bubbles B, B’ of G. We recall that each
bubble consists of twin vertices. Therefore, BU B’ is a clique of G. By Observation 2, at least one of ¢s(S(B, B, £)) — cs(S)
and cs(S(B’, B, £)) —cs(S) is non-negative for every feasible £ > 0. In the sequel we assume that cs(S(B, B/, £)) > c¢s(S) with
the other case being symmetric. Let £ = min{\B \S|, |B/ N S| } and note that £ > 0. Then S(B, B/, £) is a maximum cut that
does not cross at least one of B and B’. Since the intersection of S with other bubbles is not affected, the number of bubbles
that S crosses is reduced by one, contradicting the way S is chosen. O

Consult Fig. 2 for this definition. Let U be a union of bubbles. A configuration of U for some tight cut S is an encoding
y(S,U) of UNS, defined as follows. y (S, U) is a triple (Z, s, U~) where Z is a (possibly empty) independent set of G[U]~
that indicates the set of bubbles of U that S crosses, s is a vector of (non-negative) integers indexed by the elements of Z
and U~ is a subset of U~ \ Z. For a bubble B € U corresponding to a vertex of Z, the number sg € [|B| — 1] indicates the
number of vertices of B in S. The set U~ € U~ \ Z indicates the set of bubbles that are completely in S. Therefore, in the
sequel we denote SN U also as y (S, U), interchangeably. We also denote I'(U) = {y(S, U)|Sis tight}.

(\uj) < |U_|a(G[U]_)+1

The first entry of ¥ (S, U) can be chosen in at most Z,-SQ(G[U],) different ways. The second entry

can be chosen in at most |U|*CUI7) different ways, and the last entry can be chosen in at most 2/U”| ways. Therefore,

Theorem 4. Given a bubble partition V' of a graph G, a maximum cut of G can be computed in time O* <\ V(G)[V) 4W(V)).

Proof. Consider the tree T = T(V) of the bubble partition V with an arbitrarily chosen root r. We denote by C(t) the set
of children of a node t in T, and V; € V is the set of V from the contraction of which t is obtained. Let T; be the subtree
of T induced by t and all of its descendants. Accordingly, G; denotes the subgraph of G induced by all the vertices of G
represented by the nodes of T;. We process the nodes of T from the bottom to the top and compute a set of best cuts of G,
namely one cut for each possible configuration of V;. We terminate after the root r is processed, and choose a configuration
in I'(V;) leading to a maximum cut of G.

24



A. Boyac, T. Ekim and M. Shalom Theoretical Computer Science 898 (2022) 20-29

For a node t of T and a configuration y € I'(V;), we denote by OPT;(y) the maximum size of a (tight) cut S; of G;
such that y encodes S; NVy, ie.,

OPT(p) =max {cs(Sp) | y(Se. V) =7}

By Theorem 3, the maximum cut size of G is maxycr,) OPTr(y). In the sequel we show how to compute the values
OPT(y) from the values O PTy (y’) of the children t’ of t.

Let S; be a tight cut of G, and for t’ € C(t), let Sy denote the cut induced by S; on Gy. Denote by E; ¢ (St, S¢) the set of
edges between V; and V/ that are separated by S, i.e. E¢¢(St, S) = E(G) N ((S¢ N Vi) x (S¢N V) U(Se NVp) x (S¢ NVp)).
Since the vertices of V; are adjacent (in G¢) only to vertices of Uycc(r) V', we have

cs(S)=cs(Se NV + > (|Ece(Se. So)| +es(Sp)) .
t’'eC(t)

We fix a node t of T and a configuration y € I'(V;). By definition, we have

OPT¢(y) =max §cs(S: N Ve) + Z (|Ec.e(Se. So)| +¢es(Se)) | ¥ (Se. Vo) =7
t'eC(t)

=cs(7)+max{ Y ([Eee(St. S| +s(5¢)) |y (S, V) =7
t'eC(t)
We now observe that the terms of the summation corresponding to two children t} and t}, of t depend only on the cuts St;
and St/z induced by S; and on S; NV, which is fixed. Therefore, the individual terms can be maximized independently, i.e.,

OPT (7)) =cs(7)+ > max{|Eee(St. S0 +cs(Se) |y (Se. V) =7}. (1)
t'eC(t)

For every t' € C(t) we partition the set of cuts according to the configurations of t’ to get
max yEt v (St, St)| +¢cs(Sp)) = _max max _ (|E¢e(Se, S|+ ¢s(Sp))

v (S, Ve) y'eT(Vy) y(St, Ve

=7
y(Se,Vy)=y’

= max max _ (|Eqe (7, 7)) +cs(S))

y'el(Vy) y(St,Vo)=y
y(St.Vy)=y'

— max |Et,ﬂ(;7,;7’)|+y(smva>)< es(S) | = max. (|Ert'()/ 7|+ 0PTu (")
t

7/ef(Vy) 7 prer(
Y (Se.Vi)=y’

and substitute in (1)

OPT(P)=cs(7)+ Y max )(!Et,t/(J?,)?’)l+OPTv(J7’)).
t'eC(t)

Clearly, E; ¢/(y, y’) can be computed in time O(|E(G)|) and O PT¢(y) can be computed in time

o | 3 irwar| s [ 3 wepeorsglte
t'eC(t) t'eC(t)

For every node t, we compute |['(V;)| = O*(|V(G)[2V) 2wy values O PT. Therefore, the running time of the algorithm
is O (V@)™ 4%0).
Denoting by BW,, the class of graphs G such that bw, (G) < oo, we formulate the following corollary of Theorem 4.

Corollary 1. For every a > 0, there is an FPT algorithm for MaxCurt for BW,, when parameterized by bw,, (G) provided that a bubble
partition V of width bwg (G) can be found in time O*(f (bwy (G))) for some computable function f.

Recall that p(G) denotes the maximum number of non-empty bubbles in a column of the 2-dimensional bubble model
B of a proper (or mixed unit) interval graph G.
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Corollary 2. There is an FPT algorithm for MAXCUT in mixed unit interval graphs when parameterized by p(G). Moreover, bw1(G) <
p(G) whenever G is a mixed unit interval graph.

Proof. Let G be a mixed unit interval graph. The 2-dimensional bubble-representation B of G can be computed in polyno-
mial time [18]. Let V; be a column of B, ie. V; =, Ui, B{ ;, and consider the partition V = {V; | j € [k]}. Every set
VjeV is a clique and also a union of bubbles. Moreover, the graph obtained from the contraction of every V; to a single
vertex is a path. Therefore, V is a bubble partition with «(V) =1 and w(V) = p(G). By Theorem 4, there is an algorithm
for MAXCUT that runs in time O* (|V(G)|*4"))) = 0* (4P©). O

We conclude this section by relating BW; to some known graph classes. By the proof of Corollary 2, BW; contains the
class of mixed unit interval graphs. It is easy to see that BW; contains also the classes of split graphs and co-bipartite
graphs. Therefore, we have the following.

Observation 3. SplitU Co-Bipartite U MixedUnitinterval C BW1.

Clearly, G € BW; if and only if G has a bubble partition where each set is a clique. At first glance, such a bubble partition
seems to be a special case of decomposition by clique separators. A result of Dirac [9] implies that a graph is chordal if
and only if it has a decomposition by clique separators the atoms of which are cliques. Given these facts it is natural to
investigate the relationship between the class BW; and the class of chordal graphs.

Theorem 5. BW; crosses both classes of chordal and interval graphs.

Proof. Since every clique is both chordal, interval and BW1, the intersection of these classes is non-empty. Moreover, a C4
(being co-bipartite) is in BW; but not chordal. It is now sufficient to show that there is an interval graph which is not BW;.

Consider the graph G on 8 vertices obtained by adding a universal vertex v to a path P on 7 vertices v, ..., vy where
the vertices are numbered according to their order on P. It is trivial to construct an interval representation for G. We claim
that G ¢ BW;. Assume for a contradiction that G € BWq, and let V = {Vq, V4, ..., Vx} be a bubble partition of G such that
a(Vi)y=1for i =0,...,k, ie, every V; is a clique. Note that each bubble consists of a single vertex as G is twin-free.
Assume without loss of generality that vo € V. Then, the node 0 of T(V) corresponding to Vg is adjacent to every other
node. In other words, T(V) is a star with center 0 and leaves 1, ..., k. Since every V; is a clique, Vo contains at most two
vertices of P (in addition to vg). Then P\ Vo has at least 5 vertices and at most two connected components, implying that
P\ Vg has a connected component with at least three vertices. This yields two adjacent nodes in T()), contradicting that
T(V) is a star with center 0. O

4. Clique-width decompositions

It is shown in [12] that a) MAaXCut problem can be solved in polynomial time for graphs with bounded clique-width, and
b) an FPT algorithm for MAXCuT when parameterized by the clique-width of the input graph is impossible under the ETH.
In this section, we consider clique-width decompositions with special properties, and the behavior of the MaxCur algo-
rithm under such decompositions. We show that these decompositions in some sense extend bubble partitions. Specifically,
we construct a clique-width decomposition the width of which is a constant factor away of the width of a given bubble
partition.

We start with properties of clique-width decompositions that we will assume without loss of generality. Let r be the
root of a clique-width decomposition T of G (i.e., G, = G), t be a node of T with parent t’.

e If t' is a union node then G, is an induced subgraph of G. Indeed, if this is not the case, there are pairs of sets
V¢ e, Vi g such that the vertices of V¢, and V; , are adjacent in G but not adjacent in G;. Then, we can insert an 7, ¢
node between t and t’ for every such pair ¢, £’. This modification does not affect the width of the decomposition.

o If two vertices u, v are twins in G and u € V(G;), then v € V(G;). Moreover, u and v have the same label ¢ in G;. If
this is not the case, we can remove from T the node ¢/(v) (and every parent node with one child), and replace the
expression £(u) by the expression 1y ,(¢£(u) U £(v)). Therefore,

e V(Gy), V¢ are non-crossing sets, and for every t and ¢, V; is a partition of V(G;) each set of which does not cross
bubbles.

o u,v e V(G;) are twins in G if and only if they are twins in G; and they have the same label in G;.

e If a cut S is tight then the cut S; that S induces on G; is tight.

A clique-width decomposition T is an («, 8, §)-clique-width decomposition if for every node t of T, there exists a set
L C L(T) of at most § labels such that
o the independence number of G[UML[ Vt.¢] is at most o, and

e the number of bubbles ‘VE[’ of V¢ is at most B8 whenever ¢ ¢ L;.
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We now analyze the running time of the algorithm in [12] that solves MaXCuT when provided with an («, B8, §)-clique-
width decomposition T of the input graph G. The algorithm presented in [12] is based on the following observation. For
every graph G; and every label ¢ the vertices of V;, are identical with respect to vertices not in G¢, i.e., every vertex of
G\ G; is either adjacent to every vertex of V; , or not adjacent to any of them. Therefore, two cuts S and S’ of G that differ
only on the vertices of G; and |SN V¢ ¢| = |S'N V| for every label £ have the same number of edges in V; x V;. For every
node ¢t of T and every vector s € N"(I) such that 0 <s; < |V; | for every ¢ € £(T) the algorithm computes the maximum
cut size among all cuts S such that |S N VM} = s¢. The running time of the algorithm is dominated by the computation at
union nodes in which, in order to compute the result for a vector s’ of a parent node t’, the algorithm considers all the
vectors of s of one of the children and for each such vector, the vector s’ —s for the other child. Since the number of vectors
s is bounded by n"(™ it follows that the running time of the algorithm is n@™ (™),

We now improve this upper bound using the above observations. Let S be a tight maximum cut of G. Then the cut S;
that S induces on G; is also tight, for every node t of T. Therefore, it suffices to consider only cuts that are tight in G;.
More precisely, it is sufficient to compute the results only for vectors that result from a tight cut.

To guess a tight cut S; we first guess an independent set Z of G[UieéL: V] in one of the at most (8 - (w(T) — 8))*!
ways. Then, for every bubble B that intersects Z, we guess the number of vertices in S; N B. This can be done in at most
|V (Gy)|* different ways. For every bubble that is a) not labeled with a label from L¢, and b) does not intersect Z we guess
whether or not it is contained in S;. This can be done in at most 22" W= ways. Finally, we guess the number of vertices
of St N V¢ ¢ for every label ¢ € L;. This can be done in at most [V(Gp)|® ways. We conclude that the number of vectors s to
consider is at most

(B - (W(T) =NV (Gp)|* 28- D=1y (Gp)|> = OV (G)|*F (B - w(T))C@ 28wy,

Let cwy g5(G) be the smallest width of an (a, B, §)-clique-width decomposition of G (and oo if no such decom-
position exists). We conclude that for every two constants «,§ > 0 the running time of the algorithm is O*((8 -
CWo g 5(G))OM B cwa ps(G)y

Theorem 6. The MAXCuUT problem when parameterized by cwg, g,.s(G) + B is in FPT for every two constants o, § > 0.

We now note that bubbles can be computed efficiently using, for instance, modular decomposition. As already observed,
clique-width decompositions can be modified so that twins appear together all the way in the decomposition. Moreover,
such a modification does not affect the width of the decomposition. Therefore, for any given clique-width decomposition,
the modified algorithm performs at least as good as the original algorithm presented in [12]. When the graph is twin-free
or it contains only a small number of twins, both algorithms coincide and their performance depends only on the given
clique-width decomposition.

By definition, we have cw(G) < cwy g,s(G) < cwg, g,5(G) + B. The inequality being in the “wrong” direction, it does not
allow to deduce an FPT algorithm for MAXCuT when parameterized by the clique-width of the graph, what would contradict
the impossibility result of [12]. Furthermore, this impossibility result forbids the existence of a computable function f such
that cwy g,s(G) + B < f(cw(G)) for every graph G. On the positive size, our result implies an FPT algorithm when the
parameter is the clique-width exists for every graph class that admits such a function. Indeed, assume that some graph
class C admits such a function fy s for two constants «, . Then, by Theorem 6, there is an algorithm that solves the
problem in time O*(g(cwq,,5(G) + B) € O*(g(f(cw(G)))) for every G eC.

We now present the following lemma which implies that Theorem 6 in fact extends Theorem 4.

Lemma 1. Given a bubble partition V of a graph G, one can find an 2a()V), 1, 1))-clique-width decomposition of G of width 2w (V) +
1 in polynomial time. In particular,

CW2q,1,1(G) < 2bwy (G) + 1.

Proof. We present an algorithm to construct a (2o(V), 1, 1))-clique-width decomposition from a given a bubble decom-
position V. In this proof we refer to the constructed clique-width decomposition and its parts as expressions. Therefore,
whenever trees and nodes are mentioned they refer to the bubble decomposition tree and its nodes. We process the tree
of the bubble decomposition V in a bottom-up manner and for every node of the bubble decomposition we construct a
clique-width decomposition of the subgraph of G induced by the vertices of the subtree rooted at that node. During this
processing, we use a new set of labels for the bubbles of the current node (one label per bubble) and process one child
node at a time. For every child we construct the edges connecting it to its parent node and labeled all its vertices with
a special label 0 that is never used to construct edges. This leads to a clique-decomposition that uses at most 2w (V) + 1
labels and the independence number of which is at most twice the independence number of V.

We now proceed with notation used in the formal description of the process. Let T = T (V) rooted at an arbitrary node
r,a =a(V), w=w(V). For every node t of T, let G; be the subgraph of G induced by the set of vertices that are in the
subtree of T rooted at t. Let £L={l1,...,ly}, L = {6/1 A E(,V} two disjoint label sets. For every node t of T, we construct
an expression that satisfies the following conditions:
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it uses only labels from £ U £’ U {0},
its value is G; labeled with labels from £ U {0},

‘Vt_.l’ =1 for every label £ € LU L’ (in other words, for every label except the special label 0), and
a(Ge \ Vi0) <2a.

These conditions imply that the expression for G; (and in particular for G = G,) is an (2«, 1, 1) clique-width decomposition
of G of width at most |[£U L' U{0}| =2w + 1.

Let B(k,¢) be the expression 1y ¢ i_1£(1)) whose value is a k-clique with every vertex labeled by ¢. For a set X o
(k, £) be th i . f‘lé(') h lue is a k-cli ith labeled by ¢ f

pairs of labels, we denote by nx a path consisting of nodes 7, ,, one for every pair (¢,¢') € X. If X C A x B for two disjoint
sets A, B we denote by px a path of p;_,; nodes, one for every pair (i, j) € X. Note that 7; j operations are commutative
and the operations pj_,j, py_.j are commutative if {i,i’} N {j, j'} =@, i.e. the above definitions are non-ambiguous. In
particular, we denote by p;_,, the operation of relabeling all nodes labeled ¢; with ¢} for every i € [w] and by py_.o the
operation of relabeling all nodes labeled ¢; with 0 for every i € [w].

We now describe the construction of the expression for the node t. If t is a leaf of T the graph G; is the subgraph of
G induced by the vertices of V;. We have a(V;) <« and }V[| <w, i.e. V; is a union of at most w bubbles. Let k; be the
number of vertices in bubble i. Let E; be the edge set of G[V, ]. Then the value of g, (Uie[w] B(ki, £;)) is G; and it satisfies
all the conditions above.

If t is an internal node of T with children ty,...,tg, let eq,..., e, be the expressions for G¢,..., G, each of which
satisfies the conditions. We first construct an expression for G[V,] in the same way as it is done for a leaf. Then we iterate
over all the children of t and for every child t, of t we

relabel all the labels £ of G, by L',
take the disjoint union with Gty

add the edges between V; and V¢, and
relabel all the labels £’ by 0.

Again, it is an easy task to check that all the conditions above are satisfied.

We finish our proof by giving a formal description of the expression corresponding to an internal node t. For k' € [0, k]
we construct an expression e; whose value is the subgraph of G, induced by the vertices V; and all the vertices in the
subtrees of tq, ..., ty where vertices of V; are labeled with labels from £ and the rest are labeled 0. Then, the expression
e;( is an expression for G;. The expression e6 is nE[(Uie[W] B(ki, £;)) where k; is the number of vertices in bubble i of V;.
For k' € [k], let Epy € £ x L' be such that (i.j') € Ey if and only if there is an edge between vertices labeled i in V; and
vertices labeled j in Vy,. Then e, = oz 0(nE, (€j_; U pcrr(e))). O

Combining Lemma 1 with Corollary 2 we get the following corollary.

Corollary 3. A (2, 1, 1)-clique-width decomposition of width 2p(G) + 1 can be computed in polynomial-time whenever G is a mixed
unit interval graph.

We note that result in Corollary 3 is not optimal. Using the nested neighborhood structure of the adjacent columns, one
can construct a (2, 1, 1)-clique-width decomposition of width p(G) + 1 of an interval graph or mixed-unit interval graph
[17,18].

5. Conclusion and future work

Discussion of the results: In this work, we introduced bubble partitions of graphs and new parameters for clique-width
decompositions that we denote by «, 8 and §. Our results imply that the existing XP algorithm for MAXCUT parameterized
by clique-width presented in [12] can be modified to run in FPT time for the parameter cw(c, 8,8) + B for every two
constants o, . We have shown that bubble partitions with bounded width and independence number can be used to find a
clique-width decomposition with bounded values of «, 8 and §. It is known that for mixed unit interval graphs such bubble
partitions can be found in polynomial time [17,18].

Our results make use of the concept of tight cuts. We show that tight cuts have the following property: any set of distinct
representatives of the sets of twins that are crossed by such a cut constitutes an independent set. Moreover, every graph
has a maximum cut that is also tight. Since a singleton cannot be crossed, the above mentioned independent set is empty
whenever the graph is twin-free. For the same reason, i.e., since a cut cannot cross a singleton, the part of our algorithm
that guesses an independent set can be modified to discard vertices without twins. In other words, the modified algorithm
will exhaustively search independent sets of non-singleton bubbles. In the extreme case where the graph is twin-free, there
is no need to guess an independent set because the only relevant independent set is the empty set.

Possible Extensions and Open Problems: Our work can be extended in the following directions. The dynamic programming
algorithm for bubble partitions can be extended to cases where the partition induces a graph with small tree-width instead
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of a tree. One can extend the “look-ahead” for bubbles, to structures that can be decomposed into a small number of
modules. One can study the time complexity of constructing a bubble partition V having particular «(V), bw()) parameters.
Such a study may also be confined to specific graph classes. It would be also interesting to use such partitions when dealing
with problems other than MaxCur.

A bubble partition with independence number 1 for unit interval graphs and mixed unit interval graphs easily follows
from [17] and [18]. The complexity of computing bw, (G) in general, or for specific graph classes is a research problem that
was out of the scope of this work.

It is known that an FPT algorithm for MAXCuT when parameterized by clique-width is unlikely for general graphs [12].
The existence of such an algorithm for proper interval graphs is an open question. Though, our algorithm is such one for
a subclass of proper interval graphs. Namely, this is the family of graphs {G|G* =Ipm,n §m} whose two dimensional
bubble model has more columns than rows and does not contain empty bubbles. Indeed, if G~ = I, ;, and n <m, we have
p(G) =n < cw(G) where the last inequality is by [14].

There seems to be a close relation between bubble partitions with independence number 1 and decomposition by clique
separators whose atoms are cliques. The latter is known to coincide with the class of chordal graphs. On the other hand,
we have shown that the former class neither includes nor is included in the class of chordal graphs. The characterization of
chordal graphs (and interval graphs) that admit a bubble partition with independence number 1 is an interesting research
question too.
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