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METHOD BASED ON QUASI VARIABLE MESH FOR SOLUTION OF
SYSTEM OF SECOND ORDER BOUNDARY VALUE PROBLEMS
WITH MIXED BOUNDARY CONDITIONS

S. NAYAK! A. KHAN? R. K. MOHANTY?, §

ABSTRACT. A new numerical method with third order accuracy is presented for the
solution of nonlinear two point boundary value problems(BVPs) with mixed boundary
conditions using quasi variable mesh. In case of uniform mesh, method becomes fourth
order. The method has been extended to vector form. Error analysis of the proposed
scheme using a model problem is discussed. Application to fourth order nonlinear bound-
ary value problem in coupled form is discussed. The proposed method is tested on two
examples of linear and nonlinear BVPs and comparison with uniform mesh method has
been made to prove the accuracy of the method.
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1. INTRODUCTION

Consider the following system of M nonlinear two point boundary value problems(BVPs)

g ® = FO (2,0 0@ @D gy O 4 @)y @y (D), (1)
subject to mixed boundary conditions

o u®(0) — afu,(0) = 4, 2)

56w (1) + 50 (1) = B 3)

where u,(®) = %u(i),um(i) = j—;u(i) and a(()i), agi),ﬁéi),ﬁii) > O,a(()i) + ozgi) > 0,

B((]i) + BY') >0, a(()i) + ﬂ(()i) > 0 for i = 1(1)M, M € Z*. We assume following conditions
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([9))which assure the existence of unique solution of the system (1) — (3). Let —oo <
1w uy) < 00 such that :

(i)f(i) (x, T RV B B LD TI C R N R VI OB ux(M)) are continuous;

A OF0 oY .
(i) 50 22 D Gy exist and are continuous;
"L af® af@

(7i1) ”z:l 90 > (0 and \W\ < C, for some positive constant C and 4, j = 1(1)M

Many authors have studied the existence of solutions of BVPs with mixed boundary
conditions([4],[10],[19]) and simultaneous efforts have been made to solve such problems.
Usmani [20] developed a finite difference method of order four to solve second order bound-
ary value problems without significant derivative. Chawla[3]developed a uniform mesh
discretization scheme at the boundary as well as interior points of the domain to solve
second order BVPs with mixed boundary conditions. Rashidinia et. al. [13] developed non
polynomial spline method of order two and four to solve second order nonlinear singular
boundary value problems. Also, more recently two parameter alternating group explicit
(TAGE) and Newton-TAGE iteration method based on variable mesh was proposed by
Mohanty et. al.[I2]to solve the nonlinear BVPs with mixed boundary conditions.
In this paper, we have developed a scheme using quasi-variable mesh to solve two point
BVPs (1) — (3). We have used quasi variable mesh as truncation error in a finite-difference
method depends upon the derivative of the variable as well as mesh size. Thus, in region
with large deviated derivatives a fine mesh distributes the truncation error uniformly and
accordingly coarse meshes are used for smooth functions[7]. We applied the method on
linear as well as nonlinear problems. Several higher order problems which can be decom-
posed into system (1) — (3) can be efficiently solved by using the proposed scheme. The
scheme discretizes the problem at the interior as well as boundary points and resultant
linear and nonlinear systems are solved by block Gauss elimination and block Newton’s
method resp. ([1],[2]). To the best of authors knowledge no such third order variable mesh
discretization scheme for solving such a system (1) — (3) is known in the literature so far.

There are six sections in this paper. In section 2, we give derivation of the scheme and in
section 3, vector convergence of the proposed scheme is provided. In section 4, we provide
its application to a fourth order BVP. Finally in section 5, two examples are considered
and numerical results are shown to prove the efficiency of the proposed methods and in
section 6, we provide concluding remarks.

2. DERIVATION OF THE SCHEME

We consider a coupled nonlinear BVP of the following type:

Upe = [flz,u(z),v(z), up(x), v(x)) (4)
Vew = g(z,u(x),v(z), up(z), ve(T)) (5)

subject to :
a5 u(0) — a{us (0) = A1, B u(1) + BV ua(1) = By (6)

alPv(0) — alPvg(0) = Ay, BPv(1) + 8P, (1) = By (7)
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where f, g are continuous in [0, 1] and Oz[()l), agl), ﬁél),ﬁlz) > 0, also oz(()l) + alz) > 0, B(()Z) +
5?) > 0, ozg) + B(()Z) > 0,7 = 1,2. Now, to derive the scheme we first discretise the
solution interval [0,1] into N subintervals using nodal points zj — zx—1 = hg, k = 1(1)N
where hj; be the mesh size and the mesh ratio be o, = h;—:l >0,k=1,23,..,.N — 1.
When o = 1, the mesh reduces to a uniform mesh i.e., hx11 = hy = h. In this paper,
o, = o as the considered mesh is quasi variable. Also, assume Uy, Vi and ug, v be the
approximate and exact solution of u(z),v(x) for the problem (4) — (7) at the grid points
xg,k =0,1,2,..., N. Then, we follow the scheme [3] and derive discretization schemes at
boundary points of the domain. Thus, for the coupled nonlinear BVP (4) — (7), we use
the following approximations and schemes to evaluate u(x) and v(z) at the end points xg
and xn:

uaﬁo = 1 0 1 ) (8)
oD m
(2)
%) A2
Vgo = —57 U0 — —7o57s (9)
0 agQ) agz)
fo = f(@o,uo0, 0, Uz, Vay), (10)
go = g(z0, U0, V0, Uzgs Vay), (11)
_ h1 h2
g =g + 5 Uy + glfo, (12)
. hy h?
'U% =19 + ?Uwo + §g07 (13)
_ 3 1 h1
Uy = Thl(ul —up) + Ve + §f07 (14)
_ 3 1 h1
Uz% = 1h (v1 —vo) + 700 + 3 90 (15)
%:f(xlvﬂévaéaﬂm%al_}x%% (16)
g%:g(fE%,U%,’U%,UI%,’UCI;%), (17)
h2 -
Uy :U0+hluxo+€1[f0+2 %] + T (h), (18)
h2
v1 = v + h1vg, + Fl (90 + 29%] + T5 (ha), (19)
(1)
B, 0
Ugy = O ﬁUNv (20)
1 1
(2)
Bo
Vg = O %va (21)
By 1
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fN:f(xNquaUNvuIvaxN)7 (22)
gN = g(xNqu7,UN7uxNava)7 (23)
_ hn—1 h 1
UN_% = UN — 2 Ug + S f ) (24)
) hyo 1 K2,
UN,% = UN — 9 Uzy T 3 gn, (25)
3 hy—
vy = T (BN N 1) F e — = (26)
3 1 hn—1
Ury_y Ahn 1 (N —vN—1) + 1y T g 9N (27)
fN l—f(-TN 1, Upn_1,Up Ly Ug 177}:1?]\,_%)’ (28)
In-_1 *g@N 1@1\/-%7@1\1—%’%]\,,1777:vN7%)a (29)
h?\/—l - r 3
un = un-1 byt — == (fx +2fy 1) + Ti(hv-), (30)
Wy, o 5
UN:UN,1+hN,11)J;N - T(9N+29N7%) +TN(hN71) (31)

Now we follow Mohanty et.al[I1] and derive the discretization scheme for (4) — (7) at the
interior points zy, k = 1(1)N — 1. The approximations used to evaluate v(x) as well as
u(zx) are as follows:

S=o0(c+1), (32)
P=o*+0-1, (33)
Q=(1+0)c?+30+1), (34)
R=0(1+0—0%), (35)

v + (02 = D — 0o

= — , (36)

Jre = [(@r, Uk, Ok, Uay, Uy ), (37)

Gk = 9(Tk, U, Vi, Uz, Uy, ) (38)

By = —vg41 + (1 + 0)}?:; —o(2+ U)vk_l7 (39)
(14 20)vpy1 — (14 0)%vp + 0?1

v =
xk+1 hkS b

Frt1 = F(Tht1, W1, Vi1, Usp sy s Vzposy)s

Gy, = Ugy, + prhefrr1 — fr-1],

(
(

Trt1 = 9(That, Wkt 1, Vit 15 Ugs ) > Vzpsy )5 (42
(
Vg, = Uy, + H2hg[Gk1 — Gr—1], p1, pe are to be determined, (
(

I = f(zr, up, vk, Ugy, Ugy, ),
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gk = f(xk‘aukavkaﬁl'ka’[)zk)? (46)
h2 _ A -

oug—1 — (1 +o)up +upp1 = TS(Pka +Qfr + Rfr_1) + T (he), (47)
h2 . _

ovg—1 — (1 +0o)vp +vpy1 = TS(P?JkH + Qg + Rgrt1) + T2 (hi). (48)

Simplifying the approximations (36), (39) — (40), (42), (44), (46) for v , we get

Bay = Vo, + éah%vzmk o), (49)
Bers = v — 5001+ 0Dz, +O(A]), (50)
Vgp_y = Ugj_y — é(l + 0)hiVazay, + O(h}), (51)
G = 1 — Go(1+ 0)vaea, G + O(RY), (52)
Bt = 1 = 51+ 0V, G + O, (53)
by = vy + [0+ 121+ 0, + O(RY), (54)
gk = gk — %U + p2(1 + 0)]hjVga0, G + O(h), where G = a?}i ; (55)

Using (52) — (53), (55) in (48), we get:

hz . 3
ovg—1 — (L +0)vg + Vg1 = TS(PQIH—I + Qgk + Rgr—1)

hi

o1+ 0)P = (0 + p2(1+0))Q + (14 0) Rlvaes, G + T} (ha). (56)

_.|_

To make the proposed equation(56) of O(h}) , the coefficients of h} is equated to zero,

_ 2
hence we get o = a(lgigm and the local truncation error becomes T3 (hy) = T} =

O(h3?). Hence, we get the following two equations:

h2 _ A -

oup—1 — (1 + o)up + upq1 = TS(Pf’“H + Qfk + Rfx—1) + O(hY), (57)
h2 R _

ovg—1 — (L +0)vg + Vg1 = TS(ng-i-l + Qdi + Rgr_1) + O(hY). (58)

e . —o(1 2 . .
Similarily, we can derive u; = %. The same truncation error for uniform mesh

becomes O(h%). Moreover, a condition required for convergence of the scheme[6] is satisfied

as the coeflicients P, @), R are positive for (\/BT_U <o< (\/ETH) Also, since Uy, V}, are the

approximate solution of (4) — (7) respectively, using (18) — (19), (30) — (31), (57) — (58) we
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get the following three point discretization scheme:

h2
Ur = Uo + U, + ¢ [fo +2f1], (59)
h?
Vi=Vo+hiVg + ra (90 + 2%]7 (60)
hZ . -
oUg-1— (L 4+ 0)U; + U1 = TS(Pfk+1+ka+Rfk—1), (61)
h? . _
oVie1 = (1 +0) Vi + Vi1 = TS(PQkJrI + Qdk + Rgr-1), (62)
2
Uy = Un-1 + hy-1Usy — == (v +2fy_1), (63)
iy
VN =Vn_1+hn_1Viy — 6_ (§N+2§N—%)' (64)
.o (1) (2) _ A As _ i
Now, further if oy’ or o™ = 0 then we use ug = “y,vo = N in (18) — (19), else if both
X A
1, (2)
are non zero then we substitute u,, = %u(iol)fh,vwo = W respectively. Similarly,
if ﬁ%l) or 552) = 0 then uy = %,UN = 5722) in (30) — (31) or else if both are non zero
h i _ Biu o BBy i he values of
then we substitute u;, = T,vm] = T us, depending on the values o

agl), a§2), B%l) and Bf) whether all or either of them or none of them are zero we solve a

N—-1x N—1lorN x NorN+1 x N +1 tri-diagonal system [29].

3. APPLICATION OF THE SCHEME

We consider a fourth order nonlinear BVP of the following type:

Ugzzr = [, u(z), up(x), gy (), Ugrr (X)), (65)

subject to boundary conditions:

oPu(0) — M, (0) = Ay, Bu(1) + 8wy (1) = By, (66)
P a0 (0) — 04D ae (0) = As, B e (1) + 8P Ugea(1) = Bo. (67)

where f is continuous in [0, 1] and aéi),agi),ﬁéi),ﬁy) > 0, a(z) + ag > 0, Béi) + 5%”

0, oz(()i) + 5(()” > 0,7 = 1,2 We decompose the problem (65) into a system of second order
BVPs

d2

Tu(e) = v(@) = fO(z,u® u®, ull) W), (68)
€T

2
@) = £l (), v(a), ual@), va(w) = £, u®,u® ), (69)

subject to accordingly modified mixed boundary condition,

o u(0) - aVua(0) = A1, B u(1) + B ua (1) = B, (70)
aéQ)v(O) —0452)1113(0) :Az,ﬁéz) (1) + 5(2) vz(1) = Ba. (71)
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Now as discussed in section 2, we get the following schemes

h? —
Ur = Uo + Us + - [Vo + 2V1 ], (72)
h? =
Vi=Vo+ Vo + o [fo + 211 ], (73)
oUp—1 — (1 + 0)Uy + Ups1 = hi(PVir1 + QVi + RVi_1), (74)
Vi1 — (14 0)Vi + Viyr = BE(Pfea + Qfs + Rfi1), k= 1()N =1, (75)
h% _ _
Uy =Un-1+hyaUsy — = (Vi +2Vy 1), (76)
Wy i, = -
Vi = Vior + haVey = == (fv +2fy ). (77)

4. CONVERGENCE ANALYSIS

For simplicity, we provide the convergence analysis for M = 2 i.e., a coupled nonlinear
BVP in case of both agl), 0452) and B;l), 552) being non zero. As when both are zero, we
get the usual Dirichlet boundary condition which has been discussed by other authors.
In case of either of them is non zero, such case can be discussed with similar arguments
discussed in this section.

It can be also said that, we use a fourth order BVP to provide the convergence analysis
as, such problems can be written as coupled BVPs. Many authors have provided con-
vergence analysis in case of higher or fourth order BVP. To name a few, Rashidinia et.
al. ([I4],[15],[16]), Sharifi et. al.([17],[18]), Usmani ([20], [21], [22],[24],[27]) and Usmani
et.al. ( [23], [25], [26]). But in the aforesaid, particular boundary conditions has been
dealt with( see Gupta [5]). Moreover, significant derivative has not been considered in the
BVP discussed. Whereas, we have used a more general boundary conditions and not only
considered significant derivatives but also nonlinear singular BVPs.

Convergence analysis of the scheme (59) — (64) at the interior points has been given
by Mohanty et. al.[I1]. Also, for BVP with mixed boundary conditions, Usmani [20] has
provided a order four convergence for the scheme. The problems considered were without
significant derivatives. Also, Rashidinia et. al. [13] has provided order four convergence
for the scheme they developed using separately derived boundary conditions. They used
quasilinearization to linearize the nonlinear terms and used second order approximations
for the significant derivatives. In all the said convergence analysis, the schemes were based
on uniform mesh. Whereas in this paper, we have provided the convergence analysis using
fourth order BVP based on quasivariable mesh and Newton’s Method has been used for
nonlinearity. Also, we provide separate discretized schemes at the interior as well exterior
points of the domain using both nodal and mid-points on the mesh.

In this section, we use the following coupled boundary value problem to verify the
accuracy of the scheme:

Uze = a(@)u(z) + f(2). (79)

subject to modified conditions:
alMu(0) — otV (0) = Ay, BVu(1) + M ug(1) = By (80)
alPv(0) — alPvg(0) = Ay, B v(1) + 8P, (1) = By (81)
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where u(a:) v(x), f(x) are continuous on [0, 1] and a(()l),al , 0 ,ﬂl > 0, a(z) + ag) > 0,
551) + ﬂ% >0, Ozé + ﬂo > 0,7 = 1,2 are real constants. Now,as discussed in section 2
we use the approximate solutions Uk, Vi, the following approximations and the schemes

as discussed in section 3:

hl h2

_ 3 h
Up, = —(Uy — Up) + Ux0+ 1Vo (83)
2 4h1
(1) A
Upy = 0 — 21, (84)
NO) e
1 1
B2, _
hU,, = (UL — Up) — Fl(vb +2V1) (85)
- hn-1 hio1 -
UN—% =Un — 9 Ugy + 3 Vi, (86)
3 1 hn_1
"oy T By O T U gl = T W (87)
By »3(1)
Usw = 1y = @ Un (88)
1 1
h2
hny-1Usgy = (Uny —Un_1) + %‘1 (Vn +2Vy_1) (89)
_ h1 B2 _
3 1
T1 — 1 —Vz —K 1
V% 4h1(V1 V())+4V0+8 0 (9>
(1)
(87 Al
Voo = %o = iy (52)
o 1
B2, _ _
hVay = (Vi = Vo) =~ (Fo + 2F3), (93)
~ hn—1 hio1 =
V1 =Vn - TVQ;N +—3 Fy, (94)
_ 3 1 hn_1 ~
re g = g V= Vi) + Ve = = P, (95)
(1)
By
Vew = iy ~ L/ (96)
1 1
B2, . _
hy-1Vey = (Vv = V_1) + Nbil (Fn +2Fy_1). (97)

where V, =~ v(z,),U, =~ u(z,),F, = a,Up + fr,r = 0, %,N % Thereafter, substitut-
ing (82) — (84), (86) — (88) and (90) — (92), (94) — (96) in (85), (89) and (93), (97) respec-
tively. We get the following equations evaluating u(z) and v(z) at the boundary points
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xo and TN
(1) 4 2 (2)
« h h hia
U[1+ =5 + 5a0l + Un(=1) + Vo [1 + 0]+ Vi(0) = W, (98)
h 3oy
h% h‘i’ aoaé ) 4 aé )amg Agzxg hlozEf)
Uo[?%*—g(axo*' ®) ) + hi( 12a§1) ) )}+U1(0)+V0(1+F)
+Vi(=1) = g, (99)
Ooonk h 4 hv—165?
Un[L+hy—1 =y + op oV FUn-a (=) + Vv =1+ 6(2)0 ]+ Va_1(0) = Tk, (100)
1
B2 13 GNB(I) B(l)a a
UN[ NflaN_ Nfl(aI + 0 ) 47 ( 0 TN a:a:N)]
2 6 T T g
hN—lB(()2) 2
By
where
Al h3A2 h4f0
U = hy—v + —s — = (102)
0 agl) 6a§2) 24
A h? A A
T A e R (e ) (103)
a6 alV TP
1 1 1
B, h%_ By hi_.f
1 _ b1 N-172  'N-1JN
BZ h?\f—l Bl fxa: Blaz
VY = hy1—5 + ——[3fn — hn1(an—35 = fax) + WA (55 + )] (105)
R g TS

Next, we define following approximation for ag+1, fr+1,k = 1(1)N — 1 in the derived equations:

h2
ag—1 = Qag — hkark + %azmkv (106)
hi
ak41 = a4+ hpy1agy + TJramk (107)

Similar, approximations can be defined for fr+i. Thus, we obtain the vector difference equation
of BVP using the approximations (106) — (107) in equation (61) — (62) at interior points i.e. for
k=1,..,.N—1:

BD[' BDP) [Usa]  [Df' D) [Us] , [AD} ADP) [Ukir] _ [} (108)
BD?' BD2| |Vi_,| " D' D2| V| T |AD® ADZ| Vi |~ |02
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where
Di'=(1+0),D? = %Q (109)
D2 = i2Qay, D% =1 + o, (110)
BDY = o, BDI2 — ’%37 (111)
BDE = W R(a, — hiay, + i “5%), BDE = o, (112)
AD}' = —1,AD}? = %P, (113)
AD?' = 12 P(ay, + hoae, + 12 “2‘;”'6 ), AD¥ = —1, (114)
ol =0, (115)
U2 = %ﬁ <fka(1 +0) 4 by frp 0 (02 = 1) + 2h2 fry, 0 (0° + 1)) k=1(1)N -1, (116)

The schemes (98) — (101), (108) evaluating u(z),v(z) at the boundary as well as interior points
can be written as the following matrix form:

LU+ = [sub diag sup) [{l'lfjkl +¥=0 (117)
Uk+1
where k = 1(1)N — 1, L is a tridiagonal matrix of order N + 1 consisting of the following:

(i) off-diagonal block elements sub with components [Ux_1, VN_l]T and

BD}’ k=1(1)N — 1;i,j = 1,2,

(#i)sup with components ADZ’j, kE=1(1)N —1;4,57 = 1,2 and [U;, V1]T and similarily

(4ii)diagonal block elements diag with components [Up, Vo]”, Dz’j, E=11)N-1,i,57=1,2

and [Uy, V|7 also

U= [UO, Ui, ..Uy, ...ﬁN]T,Where Up = Uy, Vie]*

U= ([0}, w27 wr, w27 ok, 9277, which is a constant vector,

S = [ [T, T, (T3, T3 o (13, TIT, .y (13,3 17T

0= [0,0]T,[0,0]%,...,[0,0]7]"

Let 4 = [[ug,vo]T, [u1,v1]T, [uz, va] T oo g, vi] T, - Jun, vn]T]T =2 @1 satisfy
L+ WU 4+ T2 =0, where L is defined in (117) (118)
Let €, = [Up — up, Vi — vp]T = [en,,ex,]T be the discretization error, then U — it = E =

[€0, €1, ..., en]T. Also, subtracting equation(118) from (117), we obtain the error equation as follows
LE =T, (119)

Let |ax| < K1, |az,| < Ka, |ags, | < Ks, where k = 0(1)N, K; are positive constants. Then, using
(98) — (101), (111) — (114) and for 0 < k < N, we get:

[suplles <1, (120)

[Isud]|oo < 0. (121)

Thus, again using (98) — (101), (111) — (114) and for sufficiently small hj, we can say that the
off-diagonal block elements are non zero. Hence, L is irreducible[2§].
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Let sumy o be the sum of elements of Iy, row of L, then

hl (1)+ (3+h1 (2)+h2a0)l:1

SUMypow] = o oMy (122)
hy 2 Nel (3a0—|—h1(a0 oD +a10)+h2( T+ = (50)),1 =2
SN -2
SUMyp o = 123
Tt {”“uhkam 202 | plag,, CA) 1 =468, N1 (128)

h2
- 15m+ 523+ v (U + B ) L= N

% )
SUMpow; = hn— 1[3(2) + s —L(3an — hn— 1(GNZ<1> +azy)+ (124)

PR (5 + E G =N+ 1
28{
Now,let 0 < Kpin < min(Ky, Ko, K3) < Koz, where Kpin, Kinae are positive numbers. Using
(122) — (124) and for sufficiently small hy, we can easily prove that L is Monotone[28]. Therefore,
L1 exist and L=t > 0. Hence by (119) we have,

IEI = 127N (125)

Now for sufficiently small hy and (122) — (124), we can say that:
SUMpow] > {h%KQmm’ =1 (126)
SUMyrow] Z {%ﬁKminS, l = 2,3N and k = 17 2, ceey N -1 (127)

2
thlKTVL’L'n

Jnin ] N 41 (128)

SUMrow; > {

Let Li,l_l be the (i,1)*" element of L™! | then by theory of matrices for i = 1(1)N + 1,

1
Lig ' < —— (129)
SUMyow]
Hence using (126) — (128), we have
2 —
h3 Kmm b=1
Ly ' < W 1=2,3,..,Nand k =1,2,...N — 1 (130)
o L= N AL
Now let us define,
N+1
-1 5 —1
127 = s S L LT = w7 (131)

1<i<N+1

As T3 = O(h}), Ty = O(h%_1), T = O(h3),k = 1(1)N — 1 and by (119), (125) — (131) we get,

! OU) + Ol n) —op}).  (132)

2 1
151s (00D +

- 2
Kpin mm(lngN—nhk S

Hence, the third order vector convergence of the proposed scheme (59) — (64) for BVPs of the type
(4) — (7) follows.

Theorem:
The solution of BVPs (1) — (3) be sufficiently smooth such that the required higher order deriva-
tives of u(z) exist in the solution domain. Then, the scheme (59) — (64) with sufficiently small

hi,0 <o <1 and (\/5%1) <o < (\/527“) has third order convergence.
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5. NUMERICAL ILLUSTRATION

In this section, we have solved two BVPs and present their numerical results. The numerical
results are tabulated in the Tables 1-2. The first mesh width is hy = (g‘j\,ili) ,o # 1. Therefore,the
rest of the hy ’s can be obtained as hyy1 = ohg, k = 1(1)N. The computational order of conver-
gence (COC)[{] is also given for fourth order uniform mesh method. All calculations have been
done in Matlab 07. In the following problems u’(z) means i'" derivative of u(z). We have used root
mean square errors(e,qm,s)|[11] in case of quasi-variable mesh and maximum absolute error (e,,qz)

for uniform mesh. €5, €maz, COC are defined as follows:

N
— 1 2y3
comalh) = (3 200 )
emaz (k) = og}%XN |Ux — u(xg)]
_ emaa:(k)
R )

Example 5.1 Consider the following fourth order linear BVP of the form:
u'(z) = u(z) + 12exp(x) + 8zrexp(z),0 < 2 < 1
u(0) — u'(0) = 0,u(1) +u'(1) = 10.873
u?(0) — u?(0) = —4,u*(1) +u3(1) = 54.366

with exact solution u(z) = z2e®.

TABLE 1. Example 5.1

erms emaw COC
N O(hi?) method O(h*) method
16 2.2847e-04 2.1913e-05 -
32 1.0828e-04 1.4369e-06  3.9307
64 3.8898¢-05 9.1941e-08  3.9661
128 8.9433e-06 5.4697¢-09  4.0065

Example 5.2 Consider the fourth order nonlinear BVP of the form:
ut(x) + u(r) = u(x)u®(x) + sinh(z)(2 — cosh(z))
u(0) — 2u'(0) = —2,u(1) + 2u' (1) = 4.2614
u?(0) — 2u3(0) = —2,u?(1) + 2u3(1) = 4.2614

with exact solution u(z) = sinhx.

TABLE 2. Example 5.2

e'l"ms ema:r COC
N O(h?) method O(h*) method
16 1.1115e-04 4.7092e-05 -
32 2.7478e-05 3.4495e-06 3.7710
64 1.3248e-05 2.3197e-07 3.8944

128 4.0344e-06 1.4949e-08 3.9558
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Ficure 1. Exact versus the approximate solution in third order method
for N = 64 and ¢ = 0.9 in Example 5.1
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FIGURE 2. Exact versus the approximate solution in third order method
for N = 64 and ¢ = 0.9 in Example 5.2

6. CONCLUSION

The numerical results for our method verify the fourth-order convergence in case of uniform mesh
whereas third order convergence is proved analytically in case of quasi-variable mesh. Our method
works efficiently for higher order linear and nonlinear BVPs with mixed boundary conditions,
which can be decomposed into system of second order BVPs. As an experiment, only fourth order
BVPs are considered whereas the method can be also applied for higher even order nonlinear and
linear BVPs. Also an important consequence of using quasi variable mesh is that even higher order
singularly perturbed BVPs can be solved easily.
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