
Gottfried Wilhelm Leibniz Universität Hannover
Fakultät für Elektrotechnik und Informatik

Publishing machine actionable reproducible
scholarly knowledge

A thesis submitted in fulfillment of the requirements for the degree of
Master of Science in Computer Science

BY

Anouar Ganfoud
Matriculation number: 10000755

E-mail: anouar.ganfoud@stud.uni-hannover.de

First evaluator: Prof. Dr. Sören Auer
Second evaluator: Dr. Markus Stocker

Supervisor: Dr. Markus Stocker

09 Mai 2021

www.uni-hannover.de
www.et-inf.uni-hannover.de

Declaration of Authorship

I, Anouar Ganfoud, declare that this thesis titled, ’Publishing machine actionable
reproducible scholarly knowledge’ and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a research degree
at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

Anouar Ganfoud

Signature:

Date: 09.05.2021

I

Acknowledgements

First and foremost I am extremely grateful to my supervisor, Dr. Markus Stocker
for his invaluable advice, continuous support, and patience during my master thesis.
His immense knowledge and plentiful experience have encouraged me in all the time
of my academic project and daily life. I would also like to thank the ORKG team
and especially Mohamad Yaser Jaradeh and Kheir Eddine Farfar for their technical
support on my study. I would like to thank all the members of Stencila, in particular
Nokome Bentley and Alexander Ketchakmadze. I also appreciate all the support I
received from Jose Carvalho and Marc Bria from the OJS community. It is their
kind help and support that have made my study and life a wonderful time. Finally,
I would like to express my gratitude to my parents, my two brothers, my friends and
my workmates. Without their tremendous understanding and encouragement in the
past few months, it would be impossible for me to complete my study.

II

Abstract

Scientific research faces many challenges related to the credibility of published re-
sults. In essence, there is typically not enough documentation on how experiments
are conducted and data is generated. Thus, increasing the reliability of articles
through reproducibility will improve the quality of the published scientific literature
and offers better reliable results. This thesis describes today’s problem of the re-
search literature related to non-reproducibility and unstructured data such as weak
experiments designs, errors, data dredging and under-specified methods. We suggest
a variety of solutions to resolve these problems through linking machine readability
with the reproducibility of the information in academic papers. We use therefore a
knowledge platform which provides reproducibility on one side and on the other side
another platform that ensures the machine actionability of data. Then, we build
an integration between them and test it on a selected use case article. After es-
tablishing the integration, we obtained, as a result, a reproducible article described
in machine-actionable and structured manner. Thereafter, we created a solution
that allow every reader to switch between the static and dynamic (reproducible and
machine-readable) form of the article.
This thesis discusses the benefits and limitations of these observed results and em-
phasizes the future alternatives.

Keywords: Reproducibility, Reproducible Science, Machine actionability, Repro-
ducible scholarly knowledge

III

Contents

1 Introduction 1

2 Background 5
2.1 Reproducible research . 5
2.2 FAIR Data . 6

2.2.1 Findable . 6
2.2.2 Accessible . 7
2.2.3 Interoperable . 7
2.2.4 Reusable . 7

2.3 Machine-actionable data . 7
2.4 Scholarly knowledge . 9
2.5 RM-ODP architecture . 10

2.5.1 Enterprise viewpoint . 11
2.5.2 Information Viewpoint . 11
2.5.3 Computational Viewpoint . 11
2.5.4 Engineering Viewpoint . 12
2.5.5 Technology Viewpoint . 12

3 Related Work 13
3.1 CERN Analysis Preservation . 13

3.1.1 Overview . 13
3.1.2 Concept . 13
3.1.3 Technology . 14
3.1.4 UI and functionality . 15

3.2 Whole Tale Research Environment 17
3.2.1 Overview . 17
3.2.2 Concept . 18
3.2.3 Technology . 18

IV

3.2.4 UI and Functionality . 21
3.3 Integrating eLife Magazine with Stencila 21

3.3.1 Overview . 21
3.3.2 Concept . 22
3.3.3 Technology . 22
3.3.4 UI and Functionality . 23

3.4 D4Science: an e-Infrastructure for Virtual Research Environments . . 25
3.4.1 Overview . 25
3.4.2 Concept . 25
3.4.3 Technology . 26
3.4.4 UI and Functionality . 27

4 Approach 31
4.1 Overview of the system . 31

4.1.1 Description of the used platforms 32
4.1.2 Description of the system from the ODP viewpoints 48

4.2 Description of the proposed solution 52
4.2.1 Creation of executable articles 52
4.2.2 Integration . 53

5 Application 56
5.1 Converting the paper to a reproducible form 56

5.1.1 Reproducibility with Stencila 56
5.1.2 Reproducibility with Jupyter Book 62

5.2 Integration . 68
5.2.1 Integration between ORKG and Stencila 68
5.2.2 Integration between OJS and Stencila 76

6 Discussion 86
6.1 Advantages . 86
6.2 Limitations and challenges . 87
6.3 Comparisons . 88

6.3.1 Comparing Stencila with Jupyter Book 88
6.3.2 Comparison with related work 90

6.4 Future works . 92

7 Conclusions 94

Bibliography 96

V

List of Figures

3.1 The architecture of the CERN Analysis Preservation platform [44]. 14

3.2 First part of data submission in CAP [44]. 15

3.3 Second part of data submission in CAP [44]. 16

3.4 Permissions setting for an analysis record on CAP [44]. 17

3.5 Architecture of Tale [53]. 19

3.6 Whole Tale API [53]. 20

3.7 Whole Tale Dashboard UI [53]. 21

3.8 Visualization of plots and graphics in Stencila [66]. 23

3.9 UI of the eLife static version [68]. 24

3.10 UI of the eLife dynamic version [68]. 24

3.11 The D4Science Workspace platform [79]. 27

3.12 The D4Science social networking platform [79]. 28

3.13 The D4Science data analytics platform [79]. 29

3.14 The D4Science data publishing platform [79]. 29

4.1 The main components of the system and their interactions 31

4.2 Stencila personal page of the user. 34

4.3 Stencila files management page. 35

4.4 Stencila Snapshot Button. 35

4.5 ORKG Interface of the research contribution. 38

4.6 ORKG Interface for comparison between contribution. 39

4.7 ORKG Interface of a Dataset template. 40

4.8 Visualization of a paper in the form of a graph in ORKG. 40

4.9 OJS Reader Interface [95]. 43

4.10 Dashboard interface in OJS 3.x [95]. 44

4.11 Generating plot with code chunk in Jupyter Book [97]. 46

4.12 Adding the “hide-content” tag to a cell in Jupyter Lab. 46

4.13 Adding interactivity through Binder, ThebeLab and Google Colab. 47

4.14 The Stencila-ORKG-OJS system of our study 48

5.1 The creation of a new project interface in Stencila. 57

VI

5.2 The Gentsch paper output in Stencila. 60
5.3 Output of the plot after running it in Stencila. 61
5.4 Output of the p-values table after running it in Stencila. 62
5.5 Gentsch’s paper markdown output in Anaconda Juypter Notebook GUI . . 63
5.6 Output of p-values table generated from the computation of code’s cell. . . 64
5.7 HTML files in ” build” folder generated by Jupyter Book. 66
5.8 Output of the Gentsch paper with Jupyter Book. 67
5.9 Computation of the Gentsch paper on Binder. 67
5.10 Output of the Gentsch plot with Jupyter Book. 68
5.11 ORKG package in PyCharm. 70
5.12 Gentsch’s paper presentation in ORKG. 74
5.13 Visualizing the dataset in the form of a tabular. 75
5.14 Maximum significant p-value output in ORKG. 75
5.15 Issue data in OJS. 78
5.16 Creating a submission in OJS: Policy section. 79
5.17 Creating a submission in OJS: Defining the metadata. 80
5.18 Adding a galley to a submission in OJS. 81
5.19 Index of the Gentsch journal in OJS. 82
5.20 Output of the Gentsch article in OJS. 83
5.21 Output of the computed version of Stencila in OJS. 84
5.22 Output of the machine-actionable version of ORKG in OJS. 85

VII

List of Tables

4.1 Stencila plugin list [81]. 33

6.1 Stencila Hub VS Jupyter Book. 89

VIII

Acronyms

API Application Programming Interface

CAP CERN Analysis Preservation

CSV Comma Separated Values

DOI Digital Object Identifier

FAIR Findable Accessible Interoperable Reusable

GUI Graphical User Interface

HTML HyperText Markup Language

JATS Journal Article Tag Suite

JSON JavaScript Object Notation

ODP Open Distributed Processing

OJS Open Journal Systems

ORCID Open Researcher Community ID

ORKG Open Research Knowledge Graph

VRE Virtual Research Environment

XML eXtensible Markup Language

YAML YAML Ain’t Markup Language

IX

Chapter 1

Introduction

Several researches concerning the reliability and efficiency of scientific research are
improved every day. Indeed, the innovation and prosperity known in computer sci-
ence have a remarkable impact on scientific publications. This progress of scientific
research is often summed up as, “If I have seen further, it is by standing on the
shoulders of giants” (This quote has been attributed to Sir Isaac Newton since it
appeared in a letter he wrote to fellow English scientist Robert Hooke [1]). However,
statistics demonstrate that the majority of research is not reproducible [2].

Scientists became worried by problems in some sensible experiments such as drug
development while using results of studies realized in other companies. They have
only the possibility to replicate the underpinning research, which represents about
one quarter of studies [3]. Similarly, the researchers of the German company ”Am-
gen” faces many problems with analyzing foreign data and approve it only in 11%
of “landmark” studies [4].

Thus, scientists cannot assume the credibility of the data based on the infor-
mation included in published articles. He needs to know how the author gathered
it. Otherwise, the consequences could be probably grim if an important amount of
science is not reproducible. At the outset, it is also necessary to admit that not all
scientific research are pretended or granted to develop in findings which are related
to applications for human health. Outstanding research and great ideas may also
lead to a dead-end. Researchers have to accept that because it defines simply the
nature of research. Efficiency of 100% and waste of 0% is unlikely to be obtainable.
According to an internet-based survey of 1,576 researchers in Nature, about 90% of
respondents confirm that there is either a slight or significant crisis of reproducibility
in scientific research [5]. However, considerable improvement can be achieved by
making research reproducible.

1

Chapter 1. Introduction

Moreover, the replicability of scientific experiments plays a significant role in
removing the complexity of different systems. Reproducibility will offer the possi-
bility for the scientist to replicate the results of a previous research based on the
same data as were exploited by the original author. That is, a second scientist
might need the same dataset to set up the same analysis files and develop the same
statistical approaches in order to obtain the same results. Reproducibility can be
defined as a minimum fundamental quality for a finding to be credible and informa-
tive [6]. An independent scientist should be capable to replicate an experiment for
a research project. Besides, the same outcome should be achieved under the same
circumstances. It is also important to be able to recreate the same conditions. Nev-
ertheless, it is hard to guarantee the same circumstances in practice, even in tightly
controlled experiments. “Experiment” should be understood in a large sense, includ-
ing also computational work. Hence, there is an increasing importance in assuring
and evaluating the reproducibility and clearness of the published scientific literature.

In addition to reproducibility issues, published scholarly articles remain nowa-
days mere analogues of their print relatives [7]. It becomes crucial to automatically
process scholarly knowledge which is communicated in the form of digital scholarly
documents [8]. In fact, the communicated information is usually ambiguous and
hard to reproduce [9]. However, scientists and researchers point to reproduce aca-
demic knowledge in digital as it used to be in print [10]. The discussion of all these
challenges is clearly debated in many articles related to the interdisciplinary research
[11]. The inter-linking of article contents is not machine actionable and difficult to
implement. Consequently, the automatic processing of scholarly knowledge still not
yet achieved by any publication.

Furthermore, traditional document-based scholarly communication still facing the
challenge of the digital transformation seen in the last few years in other information
rich publishing and communication services. In fact, many publications for several
services such as street maps, phone books or encyclopedia are not just digitized but
also cannot show the implementation of entirely new means of information manage-
ment and access. As far as we know, these services are distinguished from scholarly
communication and considered as completely novel approaches to information man-
agement, sharing, access, collaborative reproducing and processing.

Additionally, there are further problems related to scholarly knowledge publi-
cations. In fact, recent scientific discourse is hard to follow, due to exponential
enlargement of scientific knowledge volume [12, 13]. Nowadays, the research paper
publishing is witnessing a major reform, and individual scientists cannot manage the
huge amount of publications, which can certainly proceed to an unclear, ambiguous
and redundant research publications. Indeed, the structuring and organization of

2

the data will be more difficult when the volume of publications doesn’t stop growing.
Therefore, the volume issue can be as well considered as one of the reasons causing
the reproducibility crisis.

It becomes necessary to establish a flexible, concrete, context-sensitive and ma-
chine actionable representation of scholarly knowledge and its related framework for
knowledge processing, sharing and publishing. Indeed, this representation should be
structured, interconnected and semantically full. Knowledge graphs, for instance,
can be used as an appropriate approach for representing ambiguous information in
an organized manner. Although the big importance of the technology responsible for
the establishment of this representation, many other concepts are as well required
such as the way how the scholarly knowledge will be gathered and generated during
the entire research life cycle. Thus, it becomes required, on that side, to publish
scientific knowledge in a flexible, one-grained, semantic, and context-sensitive way,
and on the other side, to include a reproducibility approach to this representation.

In this thesis, we will suggest a solution to improve the reproducibility of ma-
chine actionable scholarly knowledge. We devise an overall framework, implement
the framework and test it by building on existing systems, e.g. Stencila [14] as a
platform for authoring and executability of the science, the Open Research Knowl-
edge Graph (ORKG) [15] as an infrastructure for the collecting, curation, processing
and publication of machine-actionable scholarly knowledge, and Open Journal Sys-
tems as a framework for the submission and publication of the academic literature.
Hence, we integrate the two aspects of machine actionability and reproducibility
through an integration of two platforms, ORKG and Stencila, respectively. We will
also prototype the impact of reproducible science on traditional online publication
platforms by integrating Stencila with the Open Journal Systems (OJS) [16]. We will
present, evaluate and discuss all these integrations and their benefits for scholarly
communication.

In this work, we tackle the following research questions:

1. How can we ensure that scholarly knowledge is reproduced and published both
in human and machine-actionable form ?

2. How to describe a scientific article in a structured human-machine-actionable
manner ?

3. How can we demonstrate that the human and machine-readable versions of the
knowledge, generated in research work, can be published ?

The remainder of this thesis is structured as follows. In Chapter 2, we describe
some basic knowledge related to our thesis. All related works are presented in the

3

Chapter 1. Introduction

Chapter 3. The details of the proposed approach are highlighted in Chapter 4 which
describes as well the components of the system used for implementing the given
solution. Chapter 5 presents the results of the implementation with discussing the
details of our proposed technical solution. The advantages and drawbacks of the
used approach, as well as the evaluation of frameworks and the future works are
presented in Chapter 6. We close this thesis with summarizing the ideas and the
obtained results in Chapter 7.

4

Chapter 2

Background

This chapter introduces the main concepts underlying this thesis, specifically repro-
ducible research, FAIR data and machine-actionability of data, scholarly knowledge
and RM-ODP architecture.

2.1 Reproducible research

Reproducible research can be defined as the availability of research data and code so
that readers are able to replicate the results as claimed in scientific articles.

The concept of reproducibility is basically applied to the scientific approach, the
pillar of Science, and especially during the formulation of a hypothesis, the collection
and analysis of the data and also while developing, executing and reporting a study.
The main goal of reproducible research is typically understood as ensuring the cor-
roboration and verification of data correctness. However, reproducible research aims
to improve transparency and credibility in the computational sciences. Computer
scientist Jon Claerbout defined reproducibility as a software framework and set of
procedures that enable the reader of a paper to discover the hole processing path
form the raw data and code to tables and plots [17]. Several scientific domains take
advantage of this approach and use it intensively in their data researches such as
clinical trials [18], computational biology [19], finance and economy [20], and epi-
demiology [21]. Furthermore, the National Science Foundation (NSF) [22] defines
reproducibility as the ability of research to duplicate the outcome of an earlier study
basing on the same materials as were used by the original author. Thus, the doc-
umentation of reproducibility imposes the sharing of analytical datasets, statistical
code, appropriate metadata and relevant software. Reproducible science aims to
avoid issues with trust for the representation of data and analyzes. However, the

5

Chapter 2. Background

definition does not indicate to what degree deviations are tolerable. According to
the NSF, reproducibility does not provide a new evidential weight that is more highly
trusted. Therefore, NSF adds a new evidence called “replicability” and defined as
“the ability of a researcher to duplicate the results of a prior study if the same proce-
dures are followed, but new data are collected” [23]. With this definition, it remains
unclear which operational criteria can create a successful replication or reproduc-
tion. In addition, this terminology is not universally adopted and can sometimes be
wrongly explained. Besides, other issues could be identified which mainly concern
the interpretation, reporting, design, analysis and corroborating studies. In fact, a
study about the use of this terminology in the scientific literature demonstrates that
there are many other similar alternative and intermingling of concepts. For instance,
the replication of some experiments in psychology reported in a study titled “Esti-
mating the reproducibility of psychological science” [24] definitely relate the term
“reproducibility” to the new studies conduct.

2.2 FAIR Data

The ”FAIR Guiding Principles for scientific data management and stewardship”
[25] were published in 2016 in ”Scientific Data” to specify the main standards for
scientific data management. The authors aim to help the science community by
providing some guidelines to enhance the Findability, Accessibility, Interoperability,
and Reuse of (digital) data. Indeed, humans are nowadays obliged to support more
and more computational systems due to the increase of the complexity, quantity and
speed of data. The principles defined by the guideline reinforce machine readability
represented in the capability of computational framework to find, access interoperate,
and reuse data without the need of any human intervention.

2.2.1 Findable

It represents the first principle described in the guideline. It consists in finding the
data in order to reuse it. In fact, the data and metadata should be easy to find
by both machines and humans. Besides, the FAIRification process requires some
necessary factors such as the machine-readable metadata which is fundamental for
automatic detection of datasets and services. The findable principle ensures that the
humans and computer systems should not take too much time to find the needed
metadata and data. Standard machine-actionable descriptive metadata enables the
detection of interesting services and datasets.

6

2.3. Machine-actionable data

2.2.2 Accessible

After finding the needed data, the second step is to determine the approach of their
accessibility which include the authentication and authorization principles. Accord-
ing to this principle, the data and metadata should be stored for the long term in
a way that machines and humans will be able to access, locally use and download
them without any difficulty thanks to the standard communication protocols.

2.2.3 Interoperable

In common cases, the data should be integrated with other data in a way that
permit the users able to interoperate it with different applications or workflows for
analysis, storage and treatment. Besides, this principle ensures the exchange, the
interpretation and the combination of the data in a (semi)automated manner with
other data sets by humans as well as computer systems.

2.2.4 Reusable

FAIR aims mainly to improve the reuse of data. Thus, the description of metadata
and data should be perfectly achieved to ensure their replication and combination
in different settings. Indeed, data and metadata are adequately good described to
enable data to be reused in future studies, offering the possibility of integration with
diverse compatible data sources. Suitable citation have to be simplified, and the
circumstances of the data adaptation should be understandable for machines and
humans.

2.3 Machine-actionable data

Machine-actionable data, or computer-readable knowledge represents the data in
a format in order to be structured and processed by a computer. The US Open
Government Act describes machine-actionable data as ”data in a format that can
be easily processed by a computer without human intervention while ensuring no
semantic meaning is lost” [26]. According to this definition, non-digital literature
such as hand-written or printed articles can be classified as not machine-actionable
due to their non-digital type. Besides, PDF files always enclose data which can be
represented in the form of tables. The data in these tables are absolutely digital but
not computer-readable due to the complexity of their access. However, a human will
not find any difficulty to read it. Thus, to make this tabular data readable by the

7

Chapter 2. Background

computer, an author should write it in a structured format such as spreadsheet or
CSV. Another example is the photos or scans of a paper which contain a non machine-
actionable data, although the same data was represented, before the printing, in a
text format such as a simple ASCII text file which can be machine-actionable and
treatable. There are two groups of machine-actionable data:

• Marked up human-readable data that is also readable by machines. Examples
of this format include HTML, RDFa and microformats.

• Machine-readable data in formats that are mainly designed for machine pro-
cessing, e.g. XML, CSV, JSON and RDF.

Machine-actionability can be defined as data digitally reachable. A digitally accessi-
ble article is a document which is online published in order to allow humans to easily
open it via computers. However, this document is not easy to extract, convert and
manipulate via simple machine programming logic if it is not computer-readable.
Machine-actionable approaches represent the cornerstone to recreate computational
environments, or to provide the hole actual computational environment that the
analysis was conducted in [27, 28]. For example, Dockerfiles and Vagrantfiles are
used as machine-readable plain text approaches for directing virtual machines to a
suitable specification [29].

A prediction, for instance, is considered machine-actionable when the user can
automatically decide if the prediction is confirmed by the data or not. Even though
computational reproducibility is nowadays becoming more and more popular as user-
friendly tools are regularly being developed, there are no current solutions that con-
vert, e.g., hypothesis tests descriptions into machine-actionable and reusable data.
Researchers will be able to access to this data to load all the information related to
analytical predictions. For instance, the metadata file should be enough to calculate
or reach without difficulty effect volumes from performed analytical tests when a fully
reproducible process is exploited and data can be reached as a piece of meta-data
file [30].

During the peer study process, an automatic evaluation of computer-actionable
hypotheses has at least two suitable procedures. Firstly, a forecast for the future
shows that scientists will be enforced to submit completely computationally repro-
ducible analysis scripts including their submissions. The computational reproducibil-
ity of the reviewed results in a manuscript must be inspected by editorial deputy or
reviewers. Machine-actionable hypothesis tests would make this inspection an issue
of executing a single function. Using R packages and machine-actionable format such
as JSON or XML permit the creation of scripts that can be automatically executed
in other languages.

8

2.4. Scholarly knowledge

However, reproducible science requires the employment of machine-actionable
techniques such as JSON descriptor. Basically, data packages are based on this
descriptor file. These descriptors could be easily treated by several tools during data
analysis. They support metadata for the accumulation of resources, and a design for
a tabular data. The machine-actionable adopts accessible and distributed language,
and has provision to include descriptions, and information concerning subscribers and
sources for each resource, which allows the connection to other existing metadata and
assure data provenance. Hence, a machine-readable file can be extensible and can
be extended to hold supplementary information as required.

Entirely new search retrieval assistance techniques could be reached thanks to
machine readability. Using Alexa or Google Now to ask about research problems in
an interactive way may be in the future possible [31].

2.4 Scholarly knowledge

A scholarly knowledge or academic discipline is a subdivision of knowledge that
taught and studied at the college or university level [32]. This knowledge is created
and published by the academic journals that are related to scientific research, and
the scholarly societies and scientific departments or universities. Scholarly knowledge
can be divided into various disciplines such as the scientific studies including math-
ematics, physics, chemistry, and earth science, and the humanities disciplines such
as philosophy, religion, art and cultural learning; and the social science knowledge
including sociology, history, economy, etc.

Peoples associated with scholarly knowledge are usually referred to as academics
or experts. They are just people whose task it is to try to discover the best and most
credible approaches of knowledge. Nowadays, everyone is able to create and publish
the knowledge on the internet without facing any problem of claim and credibility.
However, the art of detecting the best manners of knowing and separating fact and
fiction is essential for all the readers, not just academics.

In several scholarly knowledge disciplines, the perfect and most creditable ap-
proach of knowing commonly includes the adaptation of different scientific means
in some form. The application of these means is principally true for the natural
sciences such as mathematics, physics, biology, etc. Nevertheless, a lot of social
sciences and humanities like sociology, psychology, management and economics face
many problems to apply scientific methods in one manner or another.

Other scholarly knowledge disciplines like mathematics and philosophy require
a higher level of determinable reasoning as the main method of knowing. This
may include the determination of what can be rationally deduced from what it is

9

Chapter 2. Background

already known or expected. Indeed, it becomes easier to determine what the first
fundamental principles and the way of reasoning, especially with the complexities
and deficiency of language. However, in many other disciplines of humanities such
as art, history and literature, the level of reasoning and emphasis is very low, and
doesn’t require the application of scientific method. In fact, the used way of knowing
is based principally on understanding the past, the prejudices, and the structure of
the society and its parts.

In order to verify their knowledge and ensure high quality standards, academics
usually adopt the peer review, which allows them to publish their knowledge only if
it is classified credible by their peers. These peers are commonly two or three peer
reviewers which are generally neutral and anonymous to the author. For example,
Google Scholar [33] and the Web of Knowledge [34] are famous websites which con-
tain publications of articles in peer-reviewed journals. These articles are frequently
written in an academic language using technical wording, which make it hard to read
for most of the peoples, so they rely on news outlets and popular research literature to
convert these studies and translate it into simple understandable common language.
However, this translation doesn’t always lead the readers to the correct meaning
and knowledge found by academics or researchers. Therefore, sometimes ”scholarly
knowledge” is a term that push us to refer to the original scholarly publication to
get to the source of the material.

2.5 RM-ODP architecture

The Reference Model for Open Distributed Processing [35] is a standard invented
jointly by the International Organisation for Standardisation (ISO) [36] and the Inter-
national Telecommunications Union (ITU) [37]. Thanks to the exponential progress
of the computer networking, computer systems around the world become highly in-
terconnected. However, the inter-working between the systems remains poor due
to the heterogeneity in interaction models. Open distributed processing (ODP) de-
scribes systems that ensure heterogeneous distributed processing both between and
within systems via the adaptation of a standard interaction model. The aim of this
reference model (RM-ODP) is providing a coordinating framework for the standard-
ization of open distributed processing (ODP) through the creation of an architecture
which supports distribution, inter-working, interoperability and portability.

RM-ODP contains four basic elements:

• An object modelling method to system requirements

• The requirement of a system based on interconnected viewpoints specifications

10

2.5. RM-ODP architecture

• The description of a system infrastructure using distribution transparencies for
system adaptation

• A framework for evaluating system conformance

RM-ODP consists as well of four standards:

• Overview: contains scooping, justification and explanation of key concepts.

• Foundation: contains the definition of concepts and scientific framework for
standardized description of distributed processing systems.

• Architecture: contains the specification of the necessary features that certify
distributed processing as open.

• Architectural semantics: contains a definition of the modeling concepts.

RM-ODP describes a framework based on five generic and complementary view-
points from which to abstract or observe ODP systems. Each viewpoint is composed
of a list of structures, rules and concepts.

2.5.1 Enterprise viewpoint

The enterprise viewpoint [38] describes the business model and the business require-
ments. It focuses generally on the purpose, scope and policies. It covers the role of
the systems in the business as well as the human user roles and business policies. We
can describe this viewpoint using many key concepts such as purpose and targets,
domain, activity, community, actors, role, scope, contact and policy.

2.5.2 Information Viewpoint

The information viewpoint [39] is employed to describe the semantics of information
and the information processing. Various key concepts are adopted to ensure the
information viewpoint like the information objects, association, contract, and policy.

2.5.3 Computational Viewpoint

The computational viewpoint [40] is used to specify the functionality of our system
based on the interaction between the components and services that compose this
system. These components are basically described through their interfaces. Indeed,
the set of these interfaces displayed by a user, and the hidden set of other services

11

Chapter 2. Background

running in the system back-end represent the computational specification of our
system.

Several interfaces and services are used to build the computational model such as
the interface designed for the data processing, the Application Programming Inter-
faces (API) [41], or the services responsible for the actions like publish and subscribe
or request and reply.

The computational viewpoint is composed of various key concepts including com-
ponents, interactions, interface, binding, and quality of service (QoS).

2.5.4 Engineering Viewpoint

The engineering viewpoint [42] is used to define the design of distributed objects of
our ODP system. It describes the infrastructure of the distributed systems. The
engineering viewpoint is not based on the semantics of the ODP system, except
to set up its specification for distribution and distribution transparency. The RM-
ODP engineering viewpoint describes the structure of an ODP system. Several key
concepts describe the engineering viewpoint such as cluster, capsule, nucleus object
and node.

2.5.5 Technology Viewpoint

The technology viewpoint [43] focuses on the choice of technology, best practices and
the implementation of the system. It can be also considered as the provision of a
fundamental infrastructure.

Nevertheless, the selection of the technology may have several consequences. The
provision of a particular quality of service could be guaranteed through the good
choice of the technology, and based on the technology viewpoint feedback to other
features of the system architecture. Moreover, the performance costs of interactions
can be fixed thanks to the choices in the technology viewpoint. Thus, the quality of
service which can be performed by the behaviour in other viewpoints can be as well
determined through the choice in the technology viewpoint.

The technology viewpoint plays also an important role in the conformance test-
ing development. It provides the information required for the interpretation of the
observations used by a tester for the identification of the vocabulary and concepts
adopted in the other viewpoints of the system requirements. For instance, it enables
the recognition of valid interactions, in order to allow their appropriateness to be
verified against some particular object behaviour.

12

Chapter 3

Related Work

A number of research projects have approached the idea of reproducibility in scientific
literature. Most of them focus on presenting a solution for preserving and sharing
their research objects (such as data, code, documentation, notes) throughout their
research process to improve the reliability and credibility of their results.

3.1 CERN Analysis Preservation

3.1.1 Overview

CERN Analysis Preservation (CAP) [44] is a digital library service in High-Energy
Physics [45] (HEP) based on a particular disciplinary research workflow. Indeed, this
methodology aims to collect the research data analysis workflow steps and proceeding
numerical objects. The importance of this approach can be represented by the use
of the contextual knowledge needed to reproduce an analysis. Thus, CAP is defined
as a mandatory phase towards better reuse of unique research literature and as a
measure to simplify future reproducibility of results.

3.1.2 Concept

CAP implements a centralized framework which allows researchers to write directly
their analysis with the launching of a new project. This can be considered an in-
novative form of reproducible research. It differs also from traditional approaches
which usually separate between the documentation and preservation only after the
analysis has occurred. Further, scientists are able to save the record of any feature
or step of an analysis as well as relevant research aspects within their cooperation.

13

Chapter 3. Related Work

In fact, code, datasets, transitional documentation of processing steps, content
and annotations or test processes could be submitted through the tool by scientists.
CAP provides auto-completion of many elements of the analysis metadata based
on the connection to the databases of the collaborations. Scientists can keep their
implicit materials and share their data in a simple way. They will be able to also
access research literature for future application. Besides, a capture of additional
documents and analysis of the reusable data can be saved.

3.1.3 Technology

CAP is based on many recent technologies. The digital library platform Invenio
[46] represents one of these technologies that permit CAP to create a custom digital
repository solution adapted to fulfill different use cases, such as digital document
repository, multimedia archive and integrated library structure. Indeed, Invenio
supports storing JSON in its own digital repository database, then submits data
to an Elasticsearch cluster that guarantees indexing and information retrieval. In
addition to Invenio, JSON is also used as a solution to model the managed data in
the form of a JSON Schema in order to assure the compliance of captured JSON
snippets with the regular metadata specifications. A durable preservation of the
captured properties can be guaranteed thanks to the Open Archival Information
System (OAIS) [47] framework.

Figure 3.1: The architecture of the CERN Analysis Preservation platform [44].

The figure above describes the mechanism of the CAP platform which includes :

• The ”Kernel” of the Invenio framework.

14

3.1. CERN Analysis Preservation

• EOS [48]: Storage backend for running the file storage abstraction layer.

• CASTOR [49]: Connector aims to harvest finished datasets from different stor-
age systems.

• Git : permit the connectors to harvest code used to build the analysis code.

• TWiki [50]: Connectors point to establish the interaction with the documen-
tation systems.

• CMS CADI [51]: Internal collaboration frameworks used for ingesting the
information to CAP.

• CDS [52], INSPIRE : Platforms where CAP can publish some parts of its con-
firmed open data.

3.1.4 UI and functionality

The UI supplies different features and entry points to serve various users, as somehow
CAP will more easily become an essential factor of the research process.

Figure 3.2: First part of data submission in CAP [44].

15

Chapter 3. Related Work

Figure 3.2 shows the submission form which allows the researchers to submit
their content. This form represents the first part of submission that can be filled out
automatically by using data from an existing database.

Figure 3.3: Second part of data submission in CAP [44].

Figure 3.3 highlights the second part of the submission form which permits re-
searchers to input their code and data. After submitting their information, re-
searchers will be able to share their analysis internally with other collaborators.
Figure 3.4 shows the permission interface which organizes the rights of each invitee.
This feature has been considered very essential by the community because it allows
them to follow the work progress of the CAP content.

16

3.2. Whole Tale Research Environment

Figure 3.4: Permissions setting for an analysis record on CAP [44].

3.2 Whole Tale Research Environment

3.2.1 Overview

Whole Tale [53] is an open source, web-based, multi-user framework aims to simplify
reproducibility for scientists. It allows them to build, publish and execute their
tales or their executable research aspects through capturing code, data and the hole
software environment aimed to create research findings. The Whole Tale project has
been created through the community literature essentially based on groups input and
collaborations with researchers. Indeed, the Whole Tale platform is used in various
projects to train researchers for improving reproducibility as well as dealing with the
Whole Tale framework in the classroom.

17

Chapter 3. Related Work

3.2.2 Concept

Whole Tale aims to allow researchers to determine and build computational envi-
ronments in a simple way. They will be able to also control the entire conduct of
computational experiments and publish them for analysis and reproducibility [54].
Moreover, the Whole Tale platform is being developed to facilitate the use of pro-
cedures that make reproducibility of computational research better understandable.
The framework has two main goals:

• increase the transparency tolerance in a way that researchers can run each type
of computational experiments.

• improve the infrastructure of computational experiment so that scientists will
be more transparent.

The Whole Tale project maintains computational reproducibility by allowing sci-
entists to write and package code, dataset and any type of information about the
process and computational environment. Besides, this project supports the review
of computational analysis results stated in published research. Whole Tale helps
the developers and operators of research data repositories to face the challenge of
fulfilling the requirements of their communities through offering a compatibility for
new types of scholarly objects, approaches of access, and workflows for review and
verification. It implements also reproducible definition by allowing specific citation
of externally referenced data, recording the artifacts and provenance data required to
simplify comprehension, transparency, and execution of the computational workflows
and processes adopted for examination and reproducibility at the time of publication.

3.2.3 Technology

Architecture

Whole Tale is based on Tale [53] which is defined as an executable research object that
fuses code (computational methods), data (references), computational environment,
and narrative (old science story). Tales have a standards-based format complete
with metadata. The Whole Tale framework enables users to interactively create and
modify Tales and to re-execute a Tale to reproduce and investigate results as received
by the original Tale creator.

18

3.2. Whole Tale Research Environment

Figure 3.5: Architecture of Tale [53].

Figure 3.5 explains the functionality of Whole Tale which is based on:

• The data received from the contributor (DOI URL)

• A software environment to run the code and data such as Docker [55].

• Narrative which represents the code usually written in R or Python.

After receiving all the main elements needed for the process of computing, Whole
Tale will generate the data and publish it on one of the cloud environment such as
DataONE [56] or Globus [57].

Whole Tale API

The Whole Tale API enhances the Girder platform [58] by integrating Whole Tale
features such as:

19

Chapter 3. Related Work

• Tales, Instances and Images

• Downloading data from remote repositories

• Shared home and Tale work-space repositories

• Pushing Tales to remote repositories

• Access and caching of remote data

Figure 3.6: Whole Tale API [53].

The Whole Tale API supplies through Celery/Redis [59, 60] database an extensible
framework:

• Creating and administrating Tale images

• Starting Tale instances such as RStudio [61], Jupyter Notebook [62]

• Generating data from external source

Figure 3.6 highlights the functionality of the Whole Tale API based on the interaction
between the users and the Tale instances. In fact, RStudio or Jupyter define every
Tale. Narrative, data, code are saved in work-space repositories. Basically, a Tale
instance in the form of a running docker container will be mounted when the user
runs a Tale.

20

3.3. Integrating eLife Magazine with Stencila

3.2.4 UI and Functionality

Most of the features offered by Whole Tale such as starting, creating or sharing Tales
are accessible through the dashboard interface. Indeed, the Whole Tale API is based
on this interface, created through the Ember JavaScript open-source web framework
[63].

Figure 3.7: Whole Tale Dashboard UI [53].

Figure 3.7 describes the user interface of the Whole Tale dashboard. The user
can browse tales and choose and run the corresponded one depending on the require-
ments. Furthermore, a user can access to the code, data and literature of each tale.
A list of launched tales will be shown with the possibility of stopping and deleting
them.

3.3 Integrating eLife Magazine with Stencila

3.3.1 Overview

Journals have different publishing specifications. A set of standards is outlined by
stakeholders from academia and industry in order to define that research data should

21

Chapter 3. Related Work

be Findable, Accessible, Interoperable, and Reusable (FAIR) [25]. In 2018, eLife
Magazine [64] launched its first reproducibility prototype by publishing a demon-
stration of a dynamic and code-based reproducible peer-reviewed article, based on
the Stencila framework [14] and Binder [65]. This methodology allows data and
analysis to be completely reproducible by the reader and cut with the old static
representation of results based on traditional formats such as HTML or PDF.

3.3.2 Concept

The eLife-Stencila project points to be part of the larger vision to improve research
literature, all the way from writing through to publication as a reproducible, self-
contained document. This project facilitates the tasks of authors by bringing com-
putationally reproducible research papers to more authors and publishers.

Journal-ready scientific manuscript’s conception

For integrating executable article in eLife, Stencila’s article editor builds on Tex-
ture [66], an open source editor that aims to visually manipulate JATS XML [67]
documents (a standard largely adopted by researchers in their scientific journals).
Indeed, the framework enables the user to concentrate on the research without tak-
ing care of layout information, which is handled during publishing. Stencila permits
the extension of Texture with code cells during the process of the implementation
of all the used elements such as figures, references and citations in order to generate
computed, data-driven figures.

Source data and analysis spreadsheets conception

The eLife-Stencila project gives a big importance to datasets as an integral part of
the publication. They are represented as independents spreadsheet documents con-
taining structured data. Furthermore, Analysis and plots can be driven through the
referenced data from research article. Excel sheets, for instance, can hold some math-
ematical formulas and function calls to execute computations directly in a spread-
sheet.

3.3.3 Technology

A modern web technology is used to implement the Stencila user interface and run-
ning it in the browser to avoid any problem of operating system’s compatibility.
Thus, JavaScript will be used by the predefined functions accessible in Stencila to

22

3.3. Integrating eLife Magazine with Stencila

launch the execution of the platform. These features could be run directly in the
editor such as the ”ploty()” function which permits the generation of effective, in-
teractive visualizations thorough the Plotly’s JavaScript library.

Figure 3.8: Visualization of plots and graphics in Stencila [66].

The integration between Stencila and eLife requires basically a connection to R,
Python and SQL sessions in order to provide more advanced data analysis and visu-
alization capacities. A track of dependency between code cells and spreadsheet (such
as programming experience both in Stencila Sheets and Articles) will be conserved
thanks to Stencila execution engine.

3.3.4 UI and Functionality

eLife magazine uses the HTML element ”iframe” to integrate Stencila engine execu-
tion and permit users to jump between the static and dynamic version.

23

Chapter 3. Related Work

Figure 3.9: UI of the eLife static version [68].

Figure 3.9 shows the original article of eLife which doesn’t contain any executable
code. Otherwise, this interface allows the user to switch to the executable version of
the article through a hyperlink as shown in the figure above.

Figure 3.10: UI of the eLife dynamic version [68].

24

3.4. D4Science: an e-Infrastructure for Virtual Research Environments

Unlike Figure 3.9, Figure 3.10 contains a ”Run Document” button which permit
to all the code cells integrated in the article. Furthermore, each code cell can be
separately executed. A hyperlink permit switching to the original version of the
article.

3.4 D4Science: an e-Infrastructure for Virtual Re-

search Environments

3.4.1 Overview

D4Science project (DIstributed colLaboratories Infrastructure on Grid ENabled Tech-
nology 4 Science) [69] is a collaboration work of eleven participating organizations
of the European Commission’s Seventh Framework Programme for Research and
Technological Development [70]. It represents the next step of the plan started
by Geant [71], EGEE [72] and Diligent [73] projects, and which focus on building
networked, grid-based and data-centric e-Infrastructures that boost the multidisci-
plinary research by removing all the obstacles related to scalability, heterogeneity
and sustainability.

Actually, D4Science is nowadays performing an infrastructure composed of vari-
ous heterogeneous resources which can be classified as follows.

• Hardware resources: contain a set of machines behaving as computing and
storage resources providers (mostly used from the EGEE infrastructure) or
hosting environment which enable the deployment of dynamic software.

• Software resources: contain a list of software packages that support the imple-
mentation of particular functions and services such as the execution of software
instances based on functions and data resources.

3.4.2 Concept

The D4Science project is a hybrid infrastructure aimed to ensure the development
and application of Virtual Research Environments (VRE) [74] by the as-a-Service
provisioning way.

The D4Science-based Virtual Research Environments (VRE) are web-based, col-
laborative, user-friendly, community-oriented, open science enabler active environ-
ment for researchers and experts who cooperate together to attempt a study, a project
or a specific research activity. Starting from the end-user viewpoint, each Virtual

25

Chapter 3. Related Work

Research Environment can be described as a web application containing different
components and executing in a simple web browser. VRE users will able to enjoy
the facilities provided by each component. These facilities are developed after includ-
ing one or more services maintained by several providers. Besides, each VRE aims
to play the role of a gateway that organizes the access for the users. For example,
this gateway offers the access, to the datasets and services of concern for the selected
community and their activities, however, it prohibits the access for the resources
providers.

The D4Science can be represented as an IT infrastructure that enables its users
to get a comprehensive collection of data management resources offered as-a-Service.
These resources represent a set of social networking research facilities that accom-
plish the infrastructure through offering a scalable list of services that ensure the
collaboration among users. Indeed, the users or researchers will be able to share
data and news, rate and reproduce data and objects, and interact between each
other.

3.4.3 Technology

The D4Science infrastructure is implemented using the gCube software system [75].
gCube can be defined as a distributed system involving Java-based Web Services
contributing to the gCube system. Moreover, gCube permits as well the process
of large-scale scientific infrastructures. Its design enables it to maintain the entire
life-cycle of current scientific inquiry, depending on a certain emphasis on application
level specifications of data and knowledge organization. For this reason, it requires
the integration of pan-European Grid middleware (gLite) [76] for enabling shared
access to a set of exclusive computational and storage resources. Besides, gLite of-
fers as well a large set of services including the collation, presentation, annotation,
merging, transformation, search, index and description of information for diverse
interdisciplinary and international communities. Indeed, these communities choose,
distribute, and consume several infrastructural resources such as information, ser-
vices, and machines in terms of collaborative Virtual Research Environments.

Additionally, the D4Science Gateway is principally implemented through the use
of the Liferay portal technology [77]. This technology is based on a large array of UI
components in the form of portlets which are implemented to behave as access points
to the fundamental service. In addition to these portlets, a portal has been supplied
with extra software components merging it with the rest of D4Science services such
as a set of components related to AuthN and AuthZ [78], and other components
communicated with the Information System.

26

3.4. D4Science: an e-Infrastructure for Virtual Research Environments

3.4.4 UI and Functionality

The D4Science infrastructure is based on many user-interfaces that allow the user
to have access to a set of offered features. These user-interfaces can be described in
the form of platforms.

The workspace platform

Through the workspace platform UI, the VRE users have the possibility to manage
their data and get access to the data shared with other users.

Figure 3.11: The D4Science Workspace platform [79].

Figure 4.14 describes the user interface of the workspace facility which contains
a common file system with files organized in the form of folders. According to the
figure above, the D4Science infrastructure maintains an unlimited range of items
that contain huge and extensible metadata. Indeed, these are stored using an array
of storage solutions [80].

The social networking collaborative platform

In addition to the workspace user-interface, the D4Science offers as well an interface
for the social networking area. This interface is displayed on Figure 3.12 and permits
the communication between the VRE users and their VRE colleagues. In fact, it
allows them to receive every information about the accomplishments, discussions

27

Chapter 3. Related Work

and opinions. Besides, this UI is represented in the form of a social networking area
which contains posts, mentions, comments and reactions. Therefore, the researchers
can use it as a strong and flexible communication tool.

Figure 3.12: The D4Science social networking platform [79].

The data analytics platform

The data analytics platform offers the users the possibility to follow and execute their
analytical tasks. The user-interface described in Figure 3.13 shows the standalone
statistical framework named DataMiner which includes a set of ready-to-use algo-
rithms and functions. Basically, this user-interface defines the heterogeneity and the
distribution offered by the D4Science which permits the execution of complex tasks.
The DataMiner Master, shown in the figure below, is a web service points to accept
requests for running workflows and executing the processes. The execution can be
performed locally if the processes depend on local algorithms, or by integrating the
DataMiner Worker if the processes are based on distributed algorithms.

28

3.4. D4Science: an e-Infrastructure for Virtual Research Environments

Figure 3.13: The D4Science data analytics platform [79].

The publishing platform

Figure 3.14: The D4Science data publishing platform [79].

29

Chapter 3. Related Work

Figure 3.14 highlights the UI of the publishing framework. This user-interface allows
the VRE users to publish and receive notifications about the availability of particular
artifacts at various development level. It consists of a collection of artifacts including
search and browse. In fact, the D4Science data publishing user-interface ensures
the accessibility to the typologies of the shared products and the metadata of the
documents. The integration of this user-interface with other interfaces makes from
the D4Science a flexible infrastructure.

Moreover, each published item in the collection of the artifacts is designed by a
type which describes its features and enables an easier search. Additionally, every
item is characterized by an unlimited range of metadata which permits the descrip-
tion of the item, and an optional resource which outlines the current payload of the
item.

30

Chapter 4

Approach

This chapter highlights the proposed approach of this work with describing the dif-
ferent components that are used to implement this approach. Furthermore, the
proposed solution will be thoroughly explained from the five ODP viewpoints.

4.1 Overview of the system

Figure 4.1: The main components of the system and their interactions

31

Chapter 4. Approach

Figure 4.1 describes the system of the thesis by stating the three components and the
interactions between them. According to this figure, we have adopted Stencila [14]
as a framework to ensure reproducibility of the data, the Open Research Knowledge
Graph (ORKG) [15] to get a machine-actionable form of the data, and the Open
Journal System (OJS) [16] as a traditional publishing framework to submit online
our scholarly knowledge. All these platforms are describing in detail in the following
section.

4.1.1 Description of the used platforms

Stencila

Overview
Stencila is an open source framework created for researchers. It aims to improve
the research literature by enabling scientists in reproducing their publications. It
enables also the authoring of interactive, data-driven publications in visual UI [14].
Furthermore, Stencila Desktop helps researchers with limited software knowledge
skills by allowing them to use some programming languages such as Python and R
within common word process and spreadsheet user interface in order to avoid any
complexity of reproducible research.

Features
As mentioned earlier, Stencila is a platform that allows authoring, collaborating on,
and publishing executable literature [81]. The core of Stencila is based on various
open source packages, developed in several programming languages. Stencila is also
available as a Hub [82] on the web, providing thus easy entry for beginners. All Sten-
cila software is available in the Hub through an interactive browser based interface.

Technologies
Stencila offers the users a wide choice of technologies. He/she can use Stencila
from within his/her favorite programming language. These packages are in an early,
proof-of-concept state and are probably to be implemented further only as the re-
quirement arises. Besides, Stencila provides diverse packages for many languages
including JavaScript [83], Python [84], R [85], Rust [86], etc. Stencila permits the
possibility to delegate to plugins, but they are only reachable through specific func-
tions such as execute, convert, etc. For example, for installing Stencila via JavaScript
or TypeScript [87], the Stencila Node.js [88] package is available from NPM as follows.

npm install stencila

32

4.1. Overview of the system

Several plugins are used to run Stencila. They can be installed via the Stencila
CLI using the following command.

stencila plugins install <name or alias>

Table 4.1 highlights the principal plugins used at different levels of development and
served to run Stencila. However, only 90% of Stencila environment will be covered
when the user install them due to some issue of compatibility with the CLI version.

Plugin Aliases Version Coverage Primary functionality

encoda converter v0.109.2 87% Convert documents between file
formats

jesta node,
javascript,

js

v1.8.1 83% Compile, build and execute
documents that use JavaScript

rasta R v0.10.2 84% Compile, build and execute
documents that use R

pyla Python v0.3.1 87% Compile, build and execute
documents that use Python

jupita Jupyter v0.2.4 96% Execute documents that use Jupyter
kernels

dockta Docker v0.25.0 79% Build Docker images for executable
documents

nixtata Nix v0.1.2 14% Build Nix environments for executable
documents

Table 4.1: Stencila plugin list [81].

UI and functionalities of Stencila Hub
Stencila provides user accounts for individuals or for enterprises (organizations).
There are two ways of registration, either through an existing account of GitHub,
Google, ORCID, and Twitter, or through an email address and a username. After
registration, the user can log in and get access to his/her Dashboard where he/she
can personalize his/her profile and edit his/her information described in settings as
shown in Figure 4.2.

33

Chapter 4. Approach

Figure 4.2: Stencila personal page of the user.

Every registered user has the possibility to create a project under his/her pri-
vate account or under his/her organization. An organization project allows all the
associated users to work cooperatively on this project. Once the project is created,
the author can choose the theme that he/she plans to work on, then he/she can
upload files and add it to the project in order to use it within the project exe-
cutable documents. These files do not require to be downloaded because they will
be managed on Stencila servers. Further, the user can also add sources to his/her
project that are hosted in another server. They will persist on this external server,
but a versioned copy is pulled and saved in the project to guarantee reproducibility.
Once the session is computed, the files will be also pulled into this session. When
the user changes his/her code and want to push the changes to Stencila, he/she
can access to the source tab and update the local copies of his/her code files. Be-
sides, it is possible to convert the files to different formats (Microsoft Word, (.docx),
HTML(.html), JATS XML(.jats.xml), JSON(.jsonId), R Markdown(.rmd), Jupyter
Notebook(.ipynb), YAML().yaml, etc.) to implement other tasks as shown in Fig-
ure 4.3. In order to make the document executable, it is mandatory to select the file
that you want to publish it as a main file. However, every file can be automatically
picked as main file when it has the name ”ReadMe” or ”Main”. The main file can
be considered as the home page of the project which enables the users to show the

34

4.1. Overview of the system

document.

Figure 4.3: Stencila files management page.

After choosing the main file, the user can create a snapshot via the button shown
in Figure 4.4 to generate an HTML file through the converting of the main file.
Indeed, the snapshot set up a capture of the saved version by building a copy of all
the project file exactly at that particular time. Thus, after every upload or change
in the source file, a snapshot should be taken to record the new changes. At the end,
a user may have a long list of snapshots ordered sequentially.

Figure 4.4: Stencila Snapshot Button.

A preview of the executable document is ready to be shown after converting
the source files to a modifiable manuscript. Before submitting the document for
publishing, the user can download it to his/her local machine or open it and replace
any static figure in the paper with Code Chunks. The user can also share this
document by giving the generated URL to his/her collaborators. The URL is unique
and specific for each project because it contains its name. Thus, changing the name
or the title of a project will affect the URL.

35

Chapter 4. Approach

ORKG

Overview
The Open Research Knowledge Graph (ORKG) is an open source project developed
by the TIB (Technische Informationsbibliothek) organization to push researchers to
participate in the improvement of technologies and uses cases for open graphs for
research [89]. This project plays an important role in advancing scholarly commu-
nication. Indeed, ORKG allows authors to define their papers in a structured way
represented in knowledge graphs [15]. These graphs describe scholarly knowledge
included in the literature. In addition to bibliographical metadata, ORKG encloses
machine actionable representations of academic knowledge. Basically, the ORKG
project facilities the task of researchers by making the papers easier to find and
compare.

Features
ORKG represents a beneficial tool for scientists thanks to many offered features such
as:

• Research contributions can be perfectly structured: Users can overcome the
traditional description of the research contributions and use the ORKG to
describe in a structured and semantic way [90].

• Researchers can create templates that define the structure of content types:
These templates can be later adopted to describe research contributions to
avoid ambiguous semantics.

• The possibility of comparing the contributions: ORKG allows researchers to
perform a comparison between contributions concerning a particular problem.
Several examples of comparisons can be identified in computer science such as
the comparing between the best, average or worst case performance of sorting
algorithms.

• ORKG permit the visualizations of graphs: As its name mentions, ORKG
allows users to convert their articles and researcher contributions to a highly
interacted user interface in the form of a graph.

• Papers and contributions will be organized by experts: ORKG has a group
of experts called Observatories which are responsible to inspect and organize
ORKG data in a way that it respects some predefined rules and disciplines.

36

4.1. Overview of the system

• Reproducibility is improved thanks to ORKG: Scholarly knowledge and com-
parisons of different contributions encourage scientists to reuse the data easily.

Technologies
ORKG python library [91] is simple to implement and can be used by any user
even though users with limited programming knowledge. Only a basic knowledge of
python and JSON is required to get involved in the project. The ORKG package
can be used to manipulate (add, modify, consult) data from any instance of the open
research knowledge graph. Basically, the data science process requires this data to
fetch it for analysis and visualizations.

The installation of the ORKG package can be performed by cloning the repository
from GitHub or through the package installer for python pip as:

$ pip install orkg

Once the user has installed the ORKG package, he/she can import it to his/her
python code. He/she needs also to create an instance of the main class to use it:

from orkg import ORKG # import base class from package

orkg = ORKG(host="<host-address>", creds=('email', 'password'))

Users credentials are necessary to establish authentication to the user account. In-
deed, the ORKG package allows the connection to any local or remote instance of
ORKG.

Furthermore, the ORKG python package needs two principals classes:

• ORKG class which enables users to connect to an ORKG reference and contains
the output of all request in the ORKG python package.

• ORKG Response which encloses the responsible output for the ORKG API. It
encapsulates the data about the request and response from the destined API.

In addition to these two classes, ORKG package provides other components, in
particular the ORKG resources, predicates, literals and objects.

UI and functionalities
A variety of user-interfaces offer to users the opportunity to describe their research
data in a structured manner. Figure 4.5 demonstrates the structured description of a

37

Chapter 4. Approach

research contribution for enhancing osteoblastogenesis by functionalizing PCL scaf-
folds with anti-miRs. In addition to the addressed problem, the research contribution
describes the utilized materials and methods, and the acquired result.

Figure 4.5: ORKG Interface of the research contribution.

After displaying the contribution data, the user can compare it with other con-
tributions that discuss the same research problem. Figure 4.6 depicts a comparison
of the transmission potential of COVID-19 between a collection of countries such
as Italy and Iran. This comparison permit the concerned scientists to evaluate the

38

4.1. Overview of the system

different data of this virus like the date of the virus beginning, the period, the basic
reproduction number, the confidence interval, the used method, the lower confidence
limit and the upper confidence limit.

Figure 4.6: ORKG Interface for comparison between contribution.

ORKG allows users to specify the structure of the type composition to describe
research contributions. Templates are used to facilitate the organization of data by
adding, editing or deleting attributes and their allocated information. For example,
Figure 4.7 highlights the specification of the features of describing a dataset.

39

Chapter 4. Approach

Figure 4.7: ORKG Interface of a Dataset template.

Via the button ”Graph View”, the user can visualize his/her paper in the form
of a graph that describe the contributors, the research problem, the publication data
and the research contribution as shown in Figure 4.9.

Figure 4.8: Visualization of a paper in the form of a graph in ORKG.

40

4.1. Overview of the system

OJS

Overview
The open journal systems (OJS) is an open source framework aims to manage and
publish academic literature online in order to avoid expensive traditional publishing
approaches such as printing [16]. OJS is available for free download and can be
installed on a local machine or on a web server. It allows the administration and
sharing of scholarly journals in a flexible manner. This platform was first launched in
2002 as part of Public Knowledge Project’s (PKP) research project leaded by John
Willinsky at the University of British Columbia (UBC) in Vancouver, Canada [92].
The purpose of OJS inventing was firstly to help print journals to save up money by
publishing their content online. Then, this framework is used to manage the journal
process, from document submission based on review to reporting and publication.
Besides, authors will be able to make their publications freely available on several
online institutional archives and the journal will be then freely reachable to readers.

Additionally, the open journal system represents the most largely used open
source journal publishing project in existence, with more than 10,000 journals using
it worldwide [93]. This platform points to improve the scholarly and public feature
of the concerned research based on its administration systems, its highly flexible
indexing of research, and the supplied context for the study. Basically, the jour-
nal readership and its contribution to the public can be enhanced thanks to the
open access feature. Furthermore, OJS offers the possibility to add automatically
the submission of DOIs and to control the reviews and the publishing of completed
documents [94].

Actually, the administration of OJS journal is not an easy task. A user should
have enough knowledge and a respectful level of management skills to install and
configure correctly the system, and resolve the potential issues. Even though that
OJS is an open free system adopted for open access journals, charging access costs
and managing subscribers are subsidized by the OJS platform.

Features
OJS represents a comprehensive platform for the administration of the hole submis-
sion and editorial process and sharing the documents online with the readers thanks
to these features:

• The Workflow is responsive and can be configured

• The entire content can be online managed

• Possibility of installation in local machine and web server

41

Chapter 4. Approach

• Flexible user front-end with the ability to choose the theme and the design

• Academic publishing services such as Crossref, ORCiD, and DOAJ are sup-
ported

• Simple indexing and easy discoverability which makes it recommended by many
research platforms like Google Scholar

• It Supports more than 30 languages

• The registration module is enriched with several open access options

• Advanced documentation with expanded user guides and many training videos

• A favorable support and lead provided by the community

Technologies
For the implementation of the version 2.x of the open journal system, the object-
oriented framework PHP is adopted with the integration of the Smarty template
system for user interface abstraction. SQL database is also used to store the data via
abstracted database calls performed by the ADODB Database Abstraction library.
Thus, in order to install OJS on a local machine or on a local web server, these
configurations are required:

• PHP framework (the version 4.2.x or later)

• MySQL database (the version 3.23.23 or later). Otherwise, the PostgreSQL
(the version 7.1 or later) can be also used.

• Apache Server (the version 1.3.2x or later). Alternatively, the Apache 2 (the
version 2.0.4x or later) can be adopted or the Microsoft IIS 6.
However, this version of Microsoft IIS requires the installation of PHP 5.x.

• As operating systems, almost the most used OS can be adopted such as Mi-
crosoft Windows, Mac OS X, Linux, BSD, Solaris.

In addition to all these systems, many other versions or frameworks can be also used
but are not supported and may not have been already tested. Feedback from users
is always checked by the community to improve the OJS configuration and inspect
which platforms not listed above have successfully run the open journal system.

42

4.1. Overview of the system

UI and functionalities
Simple, functional and responsive user interface is offered by OJS to permit users
to easily access, configure, review and publish online their documents. Figure 4.9

Figure 4.9: OJS Reader Interface [95].

describes the user functions from the profile menu (1). The creation of a submission
or the switching between profile interfaces and languages can be done through the side
navigation bar (2). However, the top navigation bar (3) encapsulates the collapsible
menus for the “About” features. The information of the article such the linked title
for accessing to the object metadata and abstracts are described in the main content
block in the middle of the page (4). OJS 3.x allows the user to log into their editorial
systems where the reader can access to several tabs as shown in Figure 4.10. This
dashboard interface enables the user to see different information about the worked
on content via the main panel sub-menus (5). The right panel (6) contains the action
buttons that represents a schedule for publication.

Jupyter Book

During our thesis, we tested and analyzed Jupyter Book, as well as Stencila, as
a framework that ensures the reproducibility of scholarly knowledge. However, we

43

Chapter 4. Approach

Figure 4.10: Dashboard interface in OJS 3.x [95].

decided to use Stencila as a platform for our work for many reasons such as its
capability of reproducing individual values, its simple installation and configuration,
etc.

Overview
Jupyter Book is an open source platform designed for creating elegant, publication-
quality literature such as books and documents from standard computational and
data science materials such as Jupyter Notebooks and Markdown scripts [96]. It
represents a part of the Executable Book Project, which is an “international collab-
oration to build open source tools that facilitate publishing computational narratives
using the Jupyter ecosystem”. Its last version is v0.10.1 and is always being updated.
There is a big large community of Jupyter Notebook on GitHub that is daily growing
to contribute and discuss its issues.

Features
Jupyter Book aims to improve reproducible science by offering researchers and au-
thors several features:

• The possibility to write publication-quality content including plots or figures,
mathematical calculation, cross-references and citations: The user can use
either Jupyter Markdown or an advanced version of Markdown for writing
his/her publications.

• The content is written in Jupyter Notebook: The author can integrate his/her
code and outputs into the book. Jupyter Book allows also the user to write

44

4.1. Overview of the system

notebooks completely in Markdown which will be executed during the build of
the book.

• The document content can be executable and cached: Jupyter Book offers the
scientists the possibility to run their code and add the latest outputs into the
article. Besides, the user can also cache his/her results to be adopted later.

• Enabling the including of notebook outputs into the user content: The author
is able to produce the outputs of his/her code and insert them into his/her
book pages.

• Including Interactivity to the book: Integrate interactive outputs like plots and
widgets, linking to an online service such as Binder and adjust the visibility of
cells.

• Different outputs can be generated: such as websites (HTML, CSS, JavaScript),
Markdown and PDF.

• Easy way to build books: Generating books can be performed via a simple
command line which is:

jupyter-book build mybook/

Technologies
Jupyter Book is based on a collection of technologies in the Python ecosystem that
facilitates the publishing of computational literature. In fact, Jupyter Book uses
a MySt Markdown language in Markdown and Notebook for enabling authors to
write heavy, publication-quality markup in their papers. Additionally, a MyST-NB
package is required to perform the parsing and the reading of notebooks. In order
to generate outputs from the content of the book, Jupyter Book adopts as well the
Sphinx documentation tool engine. Otherwise, various Sphinx plugins and tools are
used to allow the users to add new features.

UI and functionalities
Jupyter Book permit the users to integrate computational data in their book. Fig-
ure 4.11 shows the insert of the code chunk in order to manipulate the data used to
generate the plot.

45

Chapter 4. Approach

Figure 4.11: Generating plot with code chunk in Jupyter Book [97].

Jupyter Book gives the possibility to hide some code in the book via the tag
”hide-input” to the responsible cell in Jupyter Lab as described in the figure below.

Figure 4.12: Adding the “hide-content” tag to a cell in Jupyter Lab.

46

4.1. Overview of the system

Basically, Jupyter Book is based on Jupyter Notebooks, this allows users to launch
live Jupyter sessions in the cloud and interact with the code chunk. Four platforms
are connected to Jupyter Book in order to provide interactivity as described in Fig-
ure 4.13: JupyterHub, BinderHub [65], ThebeLab [98] and Google Colab [99]. For
instance, BinderHub can be adopted to create the environment required to execute
a repository, and supplies a link that allows other users to interact with that reposi-
tory. If Jupyter Book is hosted online on GitHub, the user is able to automatically
to add buttons that establish the connection to the Jupyter Notebook executing in
a BinderHub. When the user clicks the button, it will be redirected to a live version
of the page.

In order to automatically include Binder link buttons in each page of the Jupyter
Book, it only remains to add the following configuration.

$ use_binder_button: true

Figure 4.13: Adding interactivity through Binder, ThebeLab and Google Colab.

47

Chapter 4. Approach

4.1.2 Description of the system from the ODP viewpoints

After selecting the components of our system, we choose the reference model ODP
as an architecture framework to define the structuring of our system specifications.
Figure 4.14 describes the integration between the three used platforms from the five
generic and complementary viewpoints of the ODP reference model.

Figure 4.14: The Stencila-ORKG-OJS system of our study

As stated in Figure 4.14, each ODP viewpoint of our system consists of various
key concepts described as follows.

48

4.1. Overview of the system

Enterprise viewpoint

The key concepts we used in the enterprise viewpoint of our system are:

• Purpose and targets: In RM-ODP, this concept is adopted to capture the mo-
tivation for the system. The aim of this thesis is to help researchers to publish
their publication in a machine-actionable reproducible manner under consider-
ation of the environment. This assumes analysis of the user specifications.

• Domain: In the ODP reference model, a domain covers a collection of objects,
closely related to each other. Several domains can be studied during our work
such as data science, scholarly knowledge and academic research.

• Activity: The activity is the actions performed by an enterprise. In our thesis,
”recomputing the data”, ”describing the paper in a structured way” and ”pub-
lishing the paper online” can be considered as enterprise activities related to
our approach.

• Community: As highlighted in RM-ODP, a community contains a set of in-
teracting objects whose target is to achieve an objective. They are actually
the providers of the platforms and services of a project. During our work, we
will communicate with many communities that are related to the tools and the
used platforms described previously in detail.

• Actor and Artifact: An actor is represented by an enterprise object, a human
agent or a software agent, which plays a role in the enterprise view. The user or
the consumer can be represented as a human actor. However, a web interface
or a data server can be considered as a software actor. In this case, we use the
term Artifact. The users or researchers can be defined as actors for our work.
Otherwise, the GitHub server can be considered as an artifact.

• Role: It represents the unique specification that describes the behaviors of the
objects toward the community. ”Publisher”, ”Author”, and ”Reader” represent
the main roles of our study.

• Scope: It contains the list of used roles of the system. Basically, the set of roles
that describe a business, is the scope of that business. In our Stencila-ORKG-
OJS system, we can allocate the scientific publishers, for example, as the scope
of the project.

• Contract: This concept can be represented as the defined agreement to par-
ticular behaviors of the system. The study could be informed of the system

49

Chapter 4. Approach

expectation through the contract. In our work, we will define as a contract,
the credibility of data carried out from the researchers and shared to other
researchers.

• Policy: The system should be also constrained by a set of policies that cov-
ers the obligation, prohibition, or permission rules that either force or allows
actions, as related to the aim. The publication permissions and the security
norms could be included in our system as policies. Indeed, we have to give
permissions to other researchers to get access to our project. Nevertheless,
some restrictions should be defined to protect the work.

Information Viewpoint

The key concepts we used in the information viewpoint of our system are:

• Information Objects: This concept is related to the set of objects in the in-
formation viewpoint. These objects will be required in the interaction process
of our system as well as the objects related to the enterprise viewpoint actors
and artifacts. Many information objects are adopted in our system such as the
plot and the stated p-value in the paper or more generally the paper itself.

• Association: In RM-ODP, an association describes the relationship between the
information elements. We require it in every study to determine the connections
between the objects. The association between a dynamic platform such as
Stencila and a static platform like OJS creates the data reproducibility concept
used in the two platforms.

• Contract: As mentioned in the enterprise viewpoint, a contract represents the
specific agreement to the system objects including the information objects.

• Policy: As described in the enterprise viewpoint, the policies represent the set
of constraints contained in a system’s contract. In our thesis, an example of
policy is a security requirement, which have to be established and adopted to
allocate all security, required at the suitable and the agreed levels.

Computational Viewpoint

The key concepts we used in the computational viewpoint of our system are:

• Computational Objects or Components: This concept covers the set of com-
putational objects or the objects that interact dynamically at interfaces. The

50

4.1. Overview of the system

collection of these objects is defined from the objects already described in enter-
prise and information viewpoints. The reproducible paper execution, creation,
storing, curating machine actionable description are examples of computational
objects of our system.

• Interactions: In our RM-ODP model, an interaction is defined as an activity
that includes one or many objects and their environments at a specific interface.
Our system interactions state the list of services that are provided by a single
interface, and are associated to another object with a defined linking or binding.
For example, the calculation of the p-value can be represented as an interaction
because it is an action that involves many components such as dataset, methods
of computation and methods of visualization.

• Interface: Based on the RM-ODP architecture, an interface is related to the
behavior of an aspect at a component of the aspect interactions constrained
by the circumstances for when they take place. Actually, a computational
interface represents a type of interface where the communications have the type
of interrogation (request/response) or declaration (publish/subscribe). The
code used in our study will interact with the hosting server by sending and
receiving a set of requests and responses via a dedicated interface.

• Binding: According to the RM-ODP model, a binding can be described as an
agreement between two or more object interfaces. This binding represents the
results of an agreed-upon behavior. The bindings support the used interfaces
and supply the environment where our project interactions will be computed.

• Quality of Service (QoS): This concept includes several metrics of Quality of
Service. Indeed, these metrics are required to every system computational
viewpoint. The required bandwidth, delay and reliability requirements have
been adopted in our study as a QoS metrics.

Engineering Viewpoint

The key concepts we used in the Engineering viewpoint of our system are:

• Cluster: In RM-ODP, a cluster is composed of a set of related basic engineering
objects that will always be connected to each other.

• Capsule: The capsule enclose one or more clusters. These clusters will be
managed by a cluster manager, and the capsules will be also allocated to a
capsule manager.

51

Chapter 4. Approach

• Nucleus object: It represents the extended operating system where our ODP is
implemented. In our case, we will use both Windows 10 and Linux OS (Ubuntu
20).

• Node: During our project, we have adopted a simple standard computer. It
describes the computer system that encapsulate a collection of entities (hard-
ware, software and liveware) that are designed to receive, process, manage the
amount of used data.

Technology Viewpoint

The technology viewpoint describes the services and the components provided by the
software architecture in a logical level. It involves as well the different alternatives,
and determines technological gaps. Several technologies are used during all phases of
this work such as some open source frameworks like Stencila, Jupyter Book, ORKG
and OJS, or some programming languages like Python and R, databases such as
Neo4j and PostgreSql. We will explain further all these technologies in detail in the
next chapter of this work. The installation, requirements and configuration of the
used frameworks will be as well described.

4.2 Description of the proposed solution

To face the challenges of research literature, it becomes important to ensure the re-
producibility of machine-actionable expressions of essential scholarly knowledge. We
will try to avoid the aspects of the conduct of research that contribute to irrepro-
ducible results, and follow the suitable strategies for disseminating good practice in
this area. As a proposed approach, we suggest, as the first step, to create articles that
contain static data in a dynamic way in order to permit other users to see the data
and recompute it. In a second step, we will try to integrate the computed work with
other scholarly knowledge frameworks such as the open research knowledge graph
(ORKG) and the open journal systems (OJS). Indeed, as we used Stencila for the
reproducibility part, we will use ORKG for the machine actionability part and OJS
for the traditional publication as described in Figure 4.1.

4.2.1 Creation of executable articles

During this phase, we will focus on finding a way to help scientists to openly share
results and the underlying data with other scientists. Therefore, after studying the

52

4.2. Description of the proposed solution

potential tools that supports reproducible science, we decide to test Stencila [14] and
Jupyter Book [96] as host frameworks for the computational work.

In Stencila, we create a new project, and we integrate the data of a pre-selected
paper into its sources files. The article information such as contributors, publisher,
publication data should be written in R markdown. Further, if the article has a
dataset, we can put it into a CSV file in order to allow users to separately review
it and edit it. This CSV file will be later added as a dependent file to the Stencila
project. However, the code responsible for the generation of a plot, table, p-value
or any computed item will be involved with the article Markdown text in the form
of Stencila code chunk. Thereafter, it only remains to publish the project via the
Stencila hub and allows different users to see and compute the related data.

As well as Stencila, we have tried to test the reproducibility of articles using
Jupyter Book. We have used Anaconda Navigator [100] as a desktop graphical user
interface (GUI) to launch our application before we host it online. As mentioned in
previously, Jupyter Book content should be written in Jupyter Notebook. However,
the code of the plot is written in R. This was the first challenge that we faced during
the use of Jupyter Book. Luckily, Anaconda supports the integration of R code in a
Jupyter Notebook after the including of an R kernel. We put then some code that
permits us to visualize a plot in a separate cell in the form of a code chunk as well
as another code responsible for the description of the p-values table. Thus, after
creating the article and its dependent code and data, it is still only to publish it
online via GitHub in order to offer to other users the possibility to run it.

Once we complete testing Stencila and Jupyter Book, it remains only to make
the final decision and select the suitable one between them. We chose Stencila
as our reproducible framework since it is a new platform that has some advantages
comparing to Jupyter Book, such as the possibility to reproduce the individual values.
Therefore, we will test its integration with ORKG and OJS.

4.2.2 Integration

In order to maximize the availability and the efficiency of our frameworks (Stencila,
ORKG, OJS) and avoid any issue of incompatibility or dysfunction after regular
updates, it is preferable to install all these platforms locally before we start its
integration.

Integration between Stencila and ORKG

Once we have hosted our platforms, and we have created an executable paper in Sten-
cila, we will simulate how ORKG can harvest data from Stencila projects. There-

53

Chapter 4. Approach

fore, we firstly should import the dataset related to the article into ORKG using the
python library destined for that. After importing the data, we will get an ORKG
resource ID that can be used for reading the data through the ORKG API using
R. However, we don’t need to do that since we already have the CSV file in our
Stencila project. Since the paper is published, it will be favorable to cache the data
together with the paper and avoid reading it directly from the ORKG because it is
too fragile against changes. Once we have the ORKG resource ID for the dataset, we
will create a machine-readable description of the hypothesis test. In this description,
the resource ID for the dataset will be an object and the test has the dataset as
an input. Hence, the easiest way to describe this machine-readable description is
adopting the ORKG Python library native format represented in JSON. Based on
the ORKG documentation, we can also use the ORKG terms such as resource and
predicate IDs. Each described in ORKG may have one or many contributions which
can contains a dataset as material for the article. In addition to the dataset, the
contribution can enclose one or different results. Therefore, we will create a JSON
file through the call of the required function in R/Python to which we can give the
dataset and the result and then the function creates the machine-actionable descrip-
tion of this information as a statistical hypothesis test. Thereafter, we include this
JSON file into our Stencila project. Finally, it only remains to write a Python script
that permits the adding of our paper to an ORKG instance.

Integration between Stencila and OJS

After installing OJS locally, we will be able to establish a journal and have access
to all the operational tasks from creating an author’s submission to the peer review,
the editing, publication, archiving and the indexing of the journal. Based on the
example of the integration between eLife Magazine and Stencila explained in the
related works chapter, we will try to build a similar integration between OJS and
Stencila that allows the users to jump between a static version of the paper created
in OJS and a dynamic executable version developed in Stencila. We will again select
a random paper. Firstly, we should rewrite it in OJS. Therefore, we need to create
an issue that encapsulates our paper. This issue represents the volume matriculate
and number of the journal. Thereafter, we will be able to create our submission
that contains the title of the journal, contributors and many other optional related
information such as publication date, research field, etc. Once we have created our
journal, we can change the layout of the paper to make the output of the journal
page similar to what we get in Stencila. The easiest way to do that is to download
the HTML file responsible for the paper output in Stencila and edit it by rejecting

54

4.2. Description of the proposed solution

all the dynamic items (code and data) and replace it by HTML calls for uploaded
static data. Furthermore, we will add this HTML file as a OJS galley with all the
dependent files such as a screenshot of a figure. Another galley will be needed to
establish the switch to the Stencila executable version. This galley will contain an
HTML file that encapsulates the output of Stencila in a ”HTML iframe” element
and a link that allows the jump between the static and dynamic instance. However,
Stencila won’t enable any foreign framework to load its projects without permission.
Hence, before we publish the journal, it is necessary that we configure the publication
settings of the selected paper in Stencila to give access to OJS to load it. Once all
the galleys are added, we can publish our journal, certainly after publishing the issue
that enclose it. Since, the journal is published, the user will be able to view as an
online website and then to try the integration between the two frameworks.

As described in Figure 4.1, OJS interacts as well with ORKG to allow the use of
access to the machine-actionable form of the selected paper. This integration can be
performed through the adding of a new galley.

55

Chapter 5

Application

This chapter presents the application of the proposed method on a chosen article
and describes the results of the implementation. We will start by setting up the
realization of rewriting the use case paper ”Gentsch” in a dynamic manner, then we
will cite some results of our integration between the platforms.

5.1 Converting the paper to a reproducible form

In order to test our work, we firstly should select a scientific paper and take it as a
test case article. Therefore, we decided to choose the article with the title ”Catch
crop diversity increases rhizosphere carbon input and soil microbial biomass” [101]
and integrated it in all the steps of our work. Additionally, the code and the dataset
related to the first figure of our selected paper code are kindly received from the
author Dr. Gentsch in direct communication.

5.1.1 Reproducibility with Stencila

Preparation and setting up

After creating a free user account in Stencila hub, we will be able to create a project
where we plan to host our data. The creation of a new project can be performed
via the button + New Project in the main dashboard of the user and will redirect
the user to the interface displayed in the Figure 5.1. According to this figure, the
establishment of a new project is too easy. Basically, the logged user needs only to
choose a name for his/her project and then click on the button + Create Project.
The project can be either public or private. Once the project is created, the user

56

5.1. Converting the paper to a reproducible form

will be allowed to create a new file such as Google doc or sheet or to upload his/her
code and data into this project through the interface described in the last chapter
Figure 4.3. In our case, we will upload only two files to our project which are:

• R Markdown file: it will contain some parts of the used paper [101] and the R
code to compute it.

• CSV File: it will the dataset used for the computation.

Figure 5.1: The creation of a new project interface in Stencila.

Realization

For rewriting the Gentsch paper in R Markdown, we have used the R Studio tool [61]
to facilitate writing of the script. In order to avoid redundancy, we decided to not
rewrite the complete article and select only the essential data such as title, authors,
publication data, etc.

title: >-

Catch crop diversity increases rhizosphere carbon input and soil

microbial biomass

57

Chapter 5. Application

isPartOf:

volumeNumber: '56'
isPartOf:

title: Biology and Fertility of Soils

identifiers:

- name: doi

propertyID: 'https://registry.identifiers.org/registry/doi'
value: https://doi.org/10.1007/s00374-020-01475-8

type: PropertyValue

publisher:

name: 'Springer Science and Business Media {LLC}'
type: Organization

type: Periodical

type: PublicationVolume

The R Markdown code above represents a part of our script. It describes the el-
ements of the paper in the form of objects. Essentially, the paper has a title and
volume number. The volume has as well many properties such as title, identifiers
and publisher which encapsulate also other properties like a name and value. For
example, the object isPartOf has in our case three properties which are volumeNum-
ber, isPartOf and type. The volumeNumber has 56 as value. Once we are done with
the paper information, we have generated the Figure 5.22 that describes the Net
ecosystem exchange of C between catch corp treatments. Therefore, we received the
R code from Dr. Gentsch, and we included it in our R markdown file in the form of
a chunk as follows.

chunk: Figure 1

:::

Net ecosystem exchange (NEE) of C between catch crop treatments. Bars

represent means SE; lowercase letters denote significant differences

(p < `r p`) between treatments

```r
COL <- c("Fallow" = "slategray", "Mustard" = "red3" , "Mix4" = "orchid3",

"Mix12"= "orange4")

SHP <- c("Fallow"=21,"Mustard"=22,"Mix4"=23, "Mix12"=24)

data <- read.csv2("data.csv", as.is=T)

data$cc_variant <- factor(data$cc_variant, levels = c("Fallow",

58



5.1. Converting the paper to a reproducible form

"Mustard", "Mix4", "Mix12"))

data$NEE <- as.numeric(data$NEE)

ggplot(data, aes(x= cc_variant, y=NEE, fill= cc_variant))+

geom_boxplot()+

scale_fill_manual(values = COL, guide=FALSE)+

geom_text(data= merge(df_NEE,Pos) ,

aes(y=NEE-10,x=cc_variant, label=.group))+

labs(x="Catch crop variant", y=expression("NEE (mg CO"[2]~"-

C"~m^{-2}~h^{-1}~")"), fill="")+

theme_myBW+scale_x_discrete(limits=c("Fallow", "Mustard", "Mix4",

"Mix12"))

```
:::

The code above represents only a part of the Gentsch code. We can remark that
it starts and closes with the ”:::” expression. Thereafter, the caption is stated and
then the R code enclosed between these two expressions: “‘r and “‘. As outlined in
the R code, we call the data from a CSV file and then use it to build the plot.

In the caption, we can notice that the value of p is represented in the form of R
code to allow the users to compute it. Indeed, this p-value is calculated after com-
puting the maximum p-value of all the p-values described in a table of combinations.
The code that permit the generation of this table is developed as follows.

summary table

sum.lm <- glht(lm_NEE, linfct = mcp(cc_variant = "Tukey"))

#summary(sum.lm)$test$pvalue
glht.table <- function(x)

{

pq <- summary(x)$test
mtests <- cbind(pq$coefficients, pq$sigma, pq$tstat, pq$pvalues)
colnames(mtests) <- c("Estimate", "Std Error", "z value", "p value")

return(mtests)

}

df.summary <- data.frame(glht.table(sum.lm))

abc <- subset (df.summary, p.value<0.01)

maxValue <- max(abc$p.value)
p <- round(maxValue + 5*10^(-3), 2)

59

Chapter 5. Application

Following the same approach used to compute the figure, we will offer to the user
the possibility to display or hide the table data based on this R code:

chunk:

:::

```r
df.summary$Combination <- row.names(df.summary)

df.summary2 <- df.summary[, c(5, 1, 2, 3, 4)]

df.summary2

```
:::

Since we completed the implementation of our code, it is only remains to upload
it with its related dataset to the Stencila Hub. Furthermore, we should create a
snapshot of the entire project in order to generate the HTML file of the paper.

Results

Figure 5.2: The Gentsch paper output in Stencila.

60

5.1. Converting the paper to a reproducible form

Once the HTML file is created, we can display the output of the paper by clicking
on the Run button. The Gentsch document will be shown in Figure 5.2. This figure
shows an output of the Gentsch paper on Stencila. This output highlights the title
of the paper (1), its authors (2), its publication date (3) and some part of its content
(4). In addition to these data, the output of the paper allow the users to display and
compute the plot via the buttons in (5). Indeed, the ”eye icon” button permits the
visualization and the hide of the related code. However, the ”eye icon” enables the
users to run the code and then generate the plot as an output. As well as figure, the
p-value and the table (6) can be also executed when the user click on the button.
All the executable instance of this paper can be run sequentially in one click via the
button Run Document (7). Once the user executes the code related to the figure,
the plot will be generated as shown in Figure 5.3.

Figure 5.3: Output of the plot after running it in Stencila.

61

Chapter 5. Application

Figure 5.3 demonstrates also the computation of the p-value. Basically, the task
of the execution of the p-value can not be performed before the execution of the
plot code. Indeed, the p-value script requires the computed data from the plot code.
Similarly, the table code is based also on the executed data of the last two scripts.
The output of the table will be displayed as follows.

Figure 5.4: Output of the p-values table after running it in Stencila.

Figure 5.4 confirms the features of code visualization. Every user can display the
code and its output together in one frame.

5.1.2 Reproducibility with Jupyter Book

Preparation and setting up

As well as in Stencila, we prepared the suitable environment for Jupyter Book. Ac-
tually, in order to build our book, we need a file that contains the table of contents
(”toc.yaml”), a configuration file (”config.yaml”) and a Jupyter notebooks file (”ar-
ticle.ipynb”).

Before continuing with this process, we should install the Jupyter Book python
library. This library enables the creation, build, upgrade, and the control of our
Jupyter Book. The installation can be performed through the package installer for
python pip as follows.

pip install jupyter-book

62

5.1. Converting the paper to a reproducible form

For rewriting the Gentsch paper into Jupyter Notebook, we installed Anaconda nav-
igator [100] as a desktop graphical user interface (GUI) included in Anaconda dis-
tribution. R package should be also added into this environment in order to enable
Anaconda to compute the R code of the used paper. Indeed, other developing envi-
ronments that support the building of Jupyter Books can be as well used. We can
use, for example, Pycharm [102], Spyder [103], Atom [104], etc.

Realization

We will input our paper information in the form of cells through the Anaconda
Jupyter Notebook GUI. All the static data such as title, authors, publication infor-
mation could be inserted in one Markdown cell as shown in Figure 5.5. Basically, we
can use more than one Markdown cell in a way that each section of the paper has
its own cell. However, it will be better to regroup all the text in one cell to optimize
the execution and avoid an unorganized description of the data.

Figure 5.5: Gentsch’s paper markdown output in Anaconda Juypter Notebook GUI

The figure above demonstrates the type of the cell (”markdown”) and the using
of R as a kernel to compute the code. In fact, the user has the possibility to change
the type of the selected cell via the displayed DropDown menu. However, the kernel
of the Book is related to the programming language adopted in the code of the cells.

63

Chapter 5. Application

For example, Figure 5.6 uses a code cell to execute the R code responsible for the
visualization of the displayed p-values table.

Figure 5.6: Output of p-values table generated from the computation of code’s cell.

The visualization of the R code in Figure 5.6 can be explicitly or optional per-
formed. That’s mean that the user has the choice either to show always the code
with the table or to integrate a ”show/hide” button as Stencila offers. Therefore,
the metadata of the concerned cell should be updated by adding the tag hide-input
as follows.

{

"tags": [

"hide-input",

]

}

64

5.1. Converting the paper to a reproducible form

Then the Jupyter Book will hide the cell but display the outputs as shown in Fig-
ure 5.10.

Once our paper is rewritten and our Jupyter Book library is installed, we can
build our book based on these three steps:

1. Creating the book template: It will be performed via this command :

jupyter-book create Gentsch

This created book Gentsch can be customized and added to our table of con-
tents, the configuration file, etc. After executing the command, we will get
a new directory in our used path named ”Gentsch”. In this directory, we
will have the configuration file ” config.yml” which controls the management
of Jupyter Book and offers us the possibility to set up metadata for the book
such, title, authors, DOI, and even activate interactive buttons such as a Binder
one to interact with any notebook via BinderHub (open framework for open
research). In our example, we updated the ” config.yml” file to add the URL
of the repository on GitHub and the interactive buttons. Basically, we need to
put the title of the Gentsch paper, its authors and a logo image. Additionally,
the information related to the repository such as the URL, the path to the
book and the branch should be updated. For the launch buttons, we used only
two buttons, the Binder button and the Live code button.

Book settings

title: Catch crop diversity

author: Norman Gentsch

logo: logo.png

latex:

latex_documents:

targetname: book.tex

repository:

url : https://github.com/AnouarGanfoud/Gentsch

path_to_book : MA-jupyter

branch : master #Branch of the repository

launch_buttons:

thebe : true

binderhub_url: "https://mybinder.org"

65

Chapter 5. Application

2. Generating the HTML file of the book: After creating our book, we will be able
to convert each page into HTML thanks to the jupyter-book library. Indeed,
this library permit the conversion of any ”.ipynb”, ”.md” files into HTML that
can be understood by a website. Therefore, we should run this command:

jupyter-book build Gentsch/

After executing the command above, a new directory called ” build” will be
created. This folder will contain all the used markdown and notebook files in
HTML format as shown below.

Figure 5.7: HTML files in ” build” folder generated by Jupyter Book.

3. Publishing the book online: Once we have our HTML files for each page, it is
only remains to fuse them all together as a standalone HTML file that can
be hosted online. Thus, we cloned our online repository on GitHub, and then
we copied all of our book files and folders into this newly cloned repository.
Thereafter, we establish a synchronization between the local and the remote
repositories to push the changes online.

Results

Once the GitHub pages feature is activated successfully in our repository, We will
be able to see the whole project in a book format as shown below.

66

5.1. Converting the paper to a reproducible form

Figure 5.8: Output of the Gentsch paper with Jupyter Book.

According to Figure 5.8, we can start our live execution by choosing one of the
platforms that is able to host the computation of our code. In our case, we offer the
execution on Binder, Colab and Thebe. For example, the execution via Binder will
redirect us to the following URL.

Figure 5.9: Computation of the Gentsch paper on Binder.

As we mentioned before, we can display the code explicitly with its related output,
or we can give the user the possibility to show or hide the content of the code as
shown in Figure 5.10.

67

Chapter 5. Application

Figure 5.10: Output of the Gentsch plot with Jupyter Book.

5.2 Integration

5.2.1 Integration between ORKG and Stencila

Preparation and setting up

In order to improve the performance of the system and avoid the future bugs, we
decide to install the platforms on our local machine. We will start with hosting the
Stencila hub. Therefore, we need firstly to download the stencila/hub repository from
GitHub, then install at least one of the required services such as Python (>=3.7 with

68

5.2. Integration

pip and venv packages), Node.js (version >=12 and NPM), Docker Engine, Docker
Compose (used to run the service integration tests), Minikube or Kompose.

Once we have installed the required tools of Stencila, we should run each of the
following commands in separate terminal windows:

Window 1

- make -C manager venv

- make -C manager create-devdb-sqlite

- make -C manager migrations

- make -C manager run

Window 2

- make -C broker run

Window 3

- make -C overseer run

Window 4

- make -C worker run

As well as Stencila, ORKG should be hosted. Basically, the installation of ORKG is
performed in two steps:

1. Installation of the Backend API: We need firstly to download the Backend repos-
itory from GitHub. This repository consist of a Backend API for the ORKG
based on the Java Spring Framework. It is developed in Kotlin as a proof-
of-concept and for evaluating with several alternative architecture and tech-
nologies. This Backend API can be executed standalone. However, it requires
many other services to start correctly such as Docker Engine, Docker Compose,
Neo4j and PostgreSql.

After installing these services, we should run the Docker Compose by typing

docker-compose up -d

Since we run and build the docker image, it only remains to start the API via
this command:

./gradlew bootRun

This will start a server running on http://localhost:8080.

69

Chapter 5. Application

2. Installation of the Frontend: Once we have installed the Backend API of ORKG,
we can begin with the installation of its Frontend. Therefore, we need also to
clone the repository on our local machine. Thereafter, it will be necessary if
we check that Node.js is installed (version >= 10). Then, we should go to the
Frontend repository and install the dependencies via this command:

npm install

It is also required to copy the environment file default.env to .env as follow-
ing.

cp default.env .env

Once we have completed the installation and the configuration of all the de-
pendencies, we can run our ORKG Frontend by typing:

npm run start

The ORKG local instance will be available through this URL:

http://localhost:3000/

The installation of the ORKG package in the development tool is required. In our
case, we used PyCharm [102] and installed the suitable ORKG package as demon-
strated below.

Figure 5.11: ORKG package in PyCharm.

70

5.2. Integration

Realization

After installing the two platforms, we will try to simulate how ORKG can harvest
data from Stencila projects. Therefore, we will firstly start with creating a user
account in ORKG and establish the connection with it as following.

from orkg import ORKG

orkg = ORKG(host="http://localhost:8080",

creds=('my email address', 'password'))

Indeed, we import the base class from the ORKG package, then we logged in using
our account credentials. (The credentials given above are only an example). Since
we are connected to the system, we can import our CSV dataset into ORKG. The
easiest way to do that is using the python library as following.

datasetID = orkg.resources.save_dataset(

file="/home/anouar/Downloads/pvalue.CSV",

label="Summary of p-values",

dimensions=["Combination", "Estimate",

"Std.Error", "z.value", "p.value"])

Based on the command below, we can identify the path of the CSV file in our
machine, the label and the dimensions which represent the columns of the dataset.
After saving the dataset, we need to determine its ID by using this command:

print(datasetID.content)

Once we have the ORKG resource ID for the dataset, we will start creating a machine-
readable description of the statistical hypothesis tests. The previous resource ID will
be there needed as an object of the inputted dataset. Therefore, we will use the
ORKG python lib native format JSON with the including of some ORKG terms
such resource and predicate IDs:

paper = {

"paper":{

"title":"Catch crop diversity increases rhizosphere carbon input and

soil microbial biomass",

"doi":"10.1007/s00374-020-01475-8",

"authors":[

{

"label":"Norman Gentsch",

71

Chapter 5. Application

"orcid": "0000-0003-1166-8973"

},

{

"label":"Juan Daniel Kennedy Batalla"

},

"publicationYear":2020,

"publishedIn":"Biology and Fertility of Soils",

"researchField":"R153",

}

}

The JSON code above create a paper object which includes some JSON keys and
its values to describe the Gentsch paper. In order to avoid unnecessary information,
we put it only a part of the JSON code involving title, DOI, some authors, research
field and some publication data. We can notice that most of the values are inputted
as String that contains the information or the ID. The output of this code snippet
is shown in Figure 5.12.

Furthermore, the integration between ORKG and Stencila will be only guaranteed
when we include the computed data that we used in Stencila into ORKG. Therefore,
we need to add a contribution to the Gentsch paper. This contribution has the
dataset as material, the adopted R function to generate the plot as approach, the
computed p-value and the summarized table as a result. The code below shows the
declaration of the added contribution with the name Contribution 1 :

"contributions":[

{

"name":"Contribution 1",

"values":{

"P32":[

{

"label":"Estimation of the statistical difference in

NEE of C between catch crop treatments",

"class":"Problem",

"values":{}

}

]

This contribution has as a value the key P32 which refers to the ID of the property has
research problem. This property contains the label of the research problem discussed
in the Gentsch paper, the class and a list of values. In addition to the research

72

5.2. Integration

problem, Contribution 1 encapsulates other values such as the property ”utilizes”,
described as following.

"P5047":[

{

"@id":"R70818"

}

]

Utilizes is referred in ORKG via the ID R70818 which represents the resource ID of
the dataset imported via the CSV file.

The regression function used by Dr. Gentsch to compute the plot displayed in
Figure 5.22 is described in JSON as follows.

"P2":[

{

"text":"Regression",

"datatype":"xsd:string"

}

]

Basically, the P2 key is related to the property employs in ORKG.

Finally, we have to outline the result of this contribution. Therefore, we used the
key P1 referred to the ORKG property yields :

"P1": [

{

"label": "Maximum significant p-value",

"values":

{

"P9004": [

{

"text": "0.0018",

"datatype": "xsd:string"

}]

}

},

{

"@id": "R70800"

}

]

73

Chapter 5. Application

The yields key above contains two values or two results: the computed p-value and
the table that summarizes all the p-values of the different combinations. This table
will be added in the form of a dataset imported from a CSV data. This dataset
has the resource ID R70800. However, the p-value computed after calculated the
maximum between all the possible p-values has the label Maximum significant p-
value. Indeed, this p-value will be encapsulated in the other property with the
P9004 named Specified numeric value. The object of this property is the actual
number 0.018. After completing the writing of the JSON description, we can create
a Python script that adds the paper to our ORKG instance as follows.

orkg.papers.add(paper)

Results

Once the Gentsch paper is added to the ORKG instance, we can open it either by
giving its ID in the URL or by using the search feature in ORKG. The output of our
article information will be shown as following.

Figure 5.12: Gentsch’s paper presentation in ORKG.

The figure above shows the information related to our paper (1) such as title,
authors, DOI and publication information.

74

5.2. Integration

Figure 5.12 displays as well the contribution data in the form of a grid. According
to the JSON code, Contribution 1 has three keys which are represented in three rows
in the output. For the property utilizes, we can visualize the dataset in tabular form
by clicking on the icon in front of the label.

Figure 5.13: Visualizing the dataset in the form of a tabular.

According to Figure 5.13, the data tabular is displayed in the form of a popup.
ORKG offers the user the possibility to sort the data and search for a particular
value.

For the property yields, we have two values:

• The table of all p-values represented in the form of a tabular.

• The computed p-value which calculated after selected the maximum significant
value from the table. Basically, by clicking on this value, the exact value will
be shown as follows.

Figure 5.14: Maximum significant p-value output in ORKG.

75

Chapter 5. Application

5.2.2 Integration between OJS and Stencila

Preparation and setting up

The integration between the open journal systems and Stencila requires the installa-
tion of the two frameworks. After the hosting of Stencila, it only remains to install
OJS on our local machine. Therefore, we need firstly to clone the OJS from GitHub,
then install the Docker Engine and Docker Compose services. Once we have the
OJS directory on our machine, we can open it and choose which version we want to
install. In our case, we installed the version ”3.2.0.1”:

$ cd versions/3_2_0-1/alpine/apache/php73

Furthermore, we should start the stack using this command:

$ docker-compose up

Through this command, Docker compose will pull images from the docker Hub and
do all the hard work to mount a functional OJS stack.

Furthermore, it is only still to access to the localhost URL ”http://127.0.0.1:8080”
and continue the installation process on the web interface. We need to check there
that the database connection credentials are valid and match the following info:

• Database driver: mysqli (or ”mysql” if php <7.3)

• Host: db (which represents the name of the container in the internal Docker
network)

• Username: ojs

• Password: ojsPwd

• Database name: ojs

• We have to uncheck ”Create new database” and ”Beacon”

• Upload directory: ”/var/www/files”

Now, we can use our OJS locally and create and publish submissions. However, our
data is not persistent and all the work can be deleted when the docker is stopped.
To avoid that, we should follow these three steps:

1. Stop the container via this command:

76

5.2. Integration

$ docker compose stop

2. Open the ”docker-compose.yml” configuration file and uncomment the vol-
ume lines that we want to keep it

3. Restart the container through the following command:

$ docker compose up -d

In step 2, we need to be sure that our folders exist. So, to keep persistent database,
uploads (public and private files) and our configurations, those will be the lines to
uncomment:

24: volumes:

25: - ./volumes/db:/var/lib/mysql

...

43: volumes:

44: # - /etc/localtime:/etc/localtime

45: - ./volumes/private:/srv/files

46: - ./volumes/public:/var/www/html/public

47: # - ./volumes/logs/app:/var/log/apache2

48: - ./volumes/config/ojs.config.inc.php:/var/www/html/config.inc.php

We left some lines commented, but this doesn’t affect the functionality of the
hosted OJS version. We can as well edit these volumes in a flexible way to config-
ure OJS. For example, it is possible to access and save the apache logs outside the
container, or to create a new plugin by mapping this line ”/var/www/html/plugin-
s/general/Theme”. In general, these volumes can be considered as a door to the
container and not only a way to ensure data will be persistent.

Realization

Once we have completed the installation and configuration of OJS, we can start
including the Gentsch paper as an online submission. Therefore, we need firstly to
create an issue of this submission. This issue will encapsulate a collection of articles
and should contain publication data such as a title, a volume identification and
number as following.

77

Chapter 5. Application

Figure 5.15: Issue data in OJS.

According to Figure 5.15, we can notice that the user can select, via the checkbox,
which info is allocated to the issue. This issue can enclose one or more submissions.
Indeed, the Gentsch paper will be inputted as a submission. By clicking on the
button ”New submission”, we will start the creation process by determining the
suitable policy as following.

78

5.2. Integration

Figure 5.16: Creating a submission in OJS: Policy section.

Through the policy section, the submission requirements (1) have to be admitted.
Basically, we have to agree with some concerns listed in the Figure 5.16 such as the
type of the submission file and that the submission has not been previously published,
etc. Additionally, we should specify our role in this journal by choosing between an
author and a journal manager. In our case, we are a journal manager of the Gentsch
paper, so we can select it as a role, then save and continue to be redirected to the
next step of the creation process. During this step, the user can upload a submission
file such as HTML file to use it as a layout or to skip the step and keep the default
layout of OJS. For our example, we will use the HTML file generated from Stencila
as layout and upload to the submission.

Furthermore, we will move to the third step of the submission process and define
the metadata of our journal as shown in the following figure.

79

Chapter 5. Application

Figure 5.17: Creating a submission in OJS: Defining the metadata.

As we did with the previous frameworks, we should attribute a title (1) to the
OJS journal and some optional metadata such as prefix and subtitle. In contrary to
Stencila and ORKG, OJS obliges the user to add an abstract (2) to describe briefly
the idea and aim of the journal. The authors can be also added by clicking on the
link Add Contributor. Indeed, a popup form that presents the contributor metadata
such as name, ORCID, contact, etc. will be opened. After finishing the process of all
the three previous steps, we will be able either to confirm our given metadata and
publish the submission or to go back and modify the info.

Once we published the Gentsch article in the form of a submission, we can start
to integrate it with the computed version of Stencila. Therefore, OJS offers a feature
called Galley that permit the users to allocate the journal with another different
versions like PDF, HTML, etc. In our case, we will include an HTML file as Galley.

80

5.2. Integration

This HTML file will encapsulate the Stencila output in the form of an HTML iframe
as following.

<iframe

src="https://anouar.stencila.io/gentsch2020/"

frameborder="0"

style="position: absolute; top: 80px; left: 0; width: 100%; height:

100%"

scrolling="yes"

title="Reproducible Article"

>

</iframe>

Indeed, we should give the link of our Gentsch project in Stencila using the attribute
”src” of the HTML element ”iframe” as shown in the code above.

Adding a new galley in OJS requires that the journal isn’t published. Therefore,
we have to unpublish our Gentsch journal, then access to its publication tab (1) and
select the section ”Galleys” from the navigator sidebar as shown in Figure 5.18.

Figure 5.18: Adding a galley to a submission in OJS.

Figure 5.18 displays the list of the galleys (3) related to our paper. Actually,
the user can add a new galley by clicking on the link Add Galley (2). This link will
open a popup form that enables us to choose the label, path and language of the

81

Chapter 5. Application

galley. Thereafter, we can upload a file to this galley and select its article component
(Article Text, Research Material, Dataset, etc.). Dependent files such images can be
also added to the galley. In our case we will name our galley Executable version and
allocate it only an HTML file that permit the visualization of the Stencila dynamic
version. However, we shouldn’t forget to change the Gentsch project settings in
Stencila by allowing OJS to have access to the project.

Results

After publishing our submission, we will be able to access to the output of our journal
by clicking on View website link. This link will redirect us to the published output
of our journal as displayed below.

Figure 5.19: Index of the Gentsch journal in OJS.

According to Figure 5.19, we can notice that the index web page of the OJS
journal contains four main elements which are:

• The title of the journal (1): we called Machine Reproducible Publishing in our
case.

• Issue metadata (2): such as the volume number and the publication date.

82

5.2. Integration

• The list of articles included in this issue (3): For example, the title and authors.

• The list of the project galleys (4): In our case, we include several versions of
the journal including PDF, HTML, Stencila and ORKG.

To access to the article content, we need only to click on the article title. Indeed,
the user will be redirected to the default view of the article in OJS.

Figure 5.20: Output of the Gentsch article in OJS.

83

Chapter 5. Application

Figure 5.20 describes the default view of our article. Indeed, we can identify a
part of inputted metadata such as the contributors (1), the DOI and the keywords
(2), and the abstract of the article (3). Furthermore, the galleys of the journal (4)
are also shown. The integration with the related dynamic version of Stencila can be
performed through the Stencila galley. This galley will call the computed version of
the article already build in Stencila as shown below.

Figure 5.21: Output of the computed version of Stencila in OJS.

84

5.2. Integration

Although we switch to the article’s reproducible form which is provided by Sten-
cila, we can remark that the header of our OJS journal (1) still persists as shown
in Figure 5.21. Additionally, the button Run Document (2) appears to ensure the
executability of this version which permits the computation of plots and p-values. In
this manner, we have guaranteed the integration between Stencila as a reproducible
framework for the Gentsch paper and OJS as a static traditional framework.

Moreover, the ORKG galley displayed in Figure 5.20 permits the user to access
to the machine-actionable version of the article. This version is namely described
through ORKG as shown in Figure 5.22.

Figure 5.22: Output of the machine-actionable version of ORKG in OJS.

According to Figure 5.22, we can observe the integration between the ORKG’s
machine-actionable form represented by the article metadata (2) and its contribution
(3) and the OJS framework described through the header (1).

85

Chapter 6

Discussion

In this chapter, we discuss our work by listing the benefits, limitations and the
challenges we faced. We also compare our work to other related works, and suggest
some future research directions.

6.1 Advantages

We used several frameworks for publishing machine actionable reproducible scholarly
knowledge. Indeed, we used Stencila and Jupyter Book as reproducible computing
environments, ORKG as infrastructure for machine-actionable scholarly knowledge
and OJS as traditional publication platform. We discovered Stencila as a new open
source platform for creating executable documents. Indeed, we think that Stencila
will have a leading role in scholarly communication and its infrastructure. It helped
us in quickly understanding the concept of computationally reproducible papers.
Additionally, using Stencila was very easy, and didn’t require specific foreknowledge.
However, since Stencila is a young and maturing system, we did occasionally rely on
its community for help. Their small team was always extremely helpful. Thanks to
Stencila, we have managed to provide a new dynamic version of our use case paper
[101]. The first author was very satisfied with the results and suggested he may
consider using this approach for a future paper before it is published.

In addition to Stencila, we tested Jupyter Book as an alternative solution for
publishing a reproducible paper. In fact, Jupyter Book improved the reproducibility
of our article by allowing us to establish the connection with different online services
like Binder, Google Colab and Thebe.

Furthermore, the use of Stencila and Jupyter Book drove us to learn several
additional technologies ranging from Python libraries and Jupyter Notebook to R

86

6.2. Limitations and challenges

and the Markdown language.
With the integration of Stencila, ORKG and OJS we test how far can we go with

the reproducibility of machine actionable scholarly knowledge. Indeed, involving
ORKG in our work permits us to understand how can we gather data from other
projects and publish it in a structured manner.

Moreover, the Stencila and OJS integration includes new developments by offering
us the possibility to convert, execute and preview our executable research article
offline. This integration allows us to build a package that makes it simpler and
quicker for the scientists to preview the article in their local environment, before
sending the completed project to Stencila Hub for future submission to a journal.

To summarize, this work helps us to discover new frameworks and technologies
and to improve the reproducibility by ensuring transparency, verification and knowl-
edge transfer among researchers [105].

6.2 Limitations and challenges

In the previous section of this thesis, we explained the advantages that we gained
in adopting several knowledge frameworks to improve the publishing of machine
actionable reproducible research as a main aspect in the conduction of scholarly
knowledge. However, several issues arise when we decide to include reproducibility
in our work in practice. As we mentioned before, Stencila represents a new framework
and is rapidly but still in development. Indeed, many features were inoperable such
as the cross-reference or the export of the figures in the local machine. Many Python
and R libraries were not supported by Stencila such as ”pandas” and ”multcomp”,
among others. Fortunately, all these issues are immediately fixed by the Stencila
community after our request.

Besides, the Stencila Hub was not always stable due to the frequent updates, and
sometimes we couldn’t create a snapshot and upload the new changes. This drove
us consider hosting the Stencila Hub. However, as described in the previous chapter,
the installation was complicated, and we couldn’t have a full functional version due
to many missing dependencies in the GitHub repository.

In addition, we faced also some challenges during the installation of OJS and
ORKG. Basically, many classes, properties and resources such as ”Research Field”
and ”Specified numeric value” are not added during the hosting of ORKG. Therefore,
we contacted the ORKG team and configured the required vocabulary manually
through Python scripts.

There is no doubt that the installation of OJS was the easiest comparing to the
other platforms. Nevertheless, there was a problem of data persistence and all our

87

Chapter 6. Discussion

saved work is always deleted when we restart the docker compose tool. This issue was
fixed after receiving supports from the OJS community. Moreover, the integration
between the OJS and Stencila was not effortless. The output of the dynamic version
generated by Stencila in our OJS journal is blocked in every used web browser.
Indeed, our test article is created locally and Stencila refuses every web browser to
display a localhost page if another site has embedded it. Therefore, we should host
our OJS on an online server, then we submit our journal there in order to enable to
integrate with OJS.

Reproducible research is difficult to implement since scientists are typically re-
luctant to share their data and code. In many cases, a scientist does not find good
conditions to check if their project is reproducible and ready for use for other re-
searchers. Actually, some Journals have strict restrictions, such as the disabling of
some features like the search and the index of available data. The researchers will
then be blocked to reproduce the published materials [106].

Finally, we stress that even though completed reproducible science supports by
the finding of bugs and misconduct, it does not assure the accuracy of the results of a
study. However, it allows us in detecting potential errors or bad use of computational
approaches.

6.3 Comparisons

6.3.1 Comparing Stencila with Jupyter Book

Stencila and Jupyter Book are two open source projects that aim to build research
articles, computational notebooks, or sophisticated interactive documents. In our
work, we focus more on testing the features of Stencila. Indeed, there exist only few
works that focus on improving science reproducibility with Stencila. Therefore, we
tried to test and evaluate this platform and compare it with Jupyter Book. Based
on several criteria, we have decided to establish a comparison between the Stencila
Hub and Jupyter Book as explained in Table 6.1. According to this table, we can
conclude that Stencila represents the best option for beginners thanks to its use
and simple configuration, and namely its reproducibility of the individual values in
sentences (the p-value example of our work). Nevertheless, it will be recommended
to adopt Jupyter Book when the researcher wants to integrate more graphic features
to his/her document and try the interactivity of his/her data in different servers.
Moreover, Stencila is a young project, and we cannot expect all features offered by
Jupyter Book. However, Stencila is improving fast.

88

6.3. Comparisons

Criteria

Framework
Stencila Hub Jupyter Book

Version model Open Source, Free (for lim-
ited features)

Open source, Free

Setup and configura-
tion

Simple: through the web
interface of the hub, and
it doesn’t require any other
configuration

Complicated: The creation
and the publication of
the book is performed
via the CLI or terminal.
Further configurations
could be done by editing
”(config.yml)”).

Publishing the project Simple: via the web GUI,
and after the generation of an
HTML file

Complicated: via CLI, it
is performed in two steps:
building the book (genera-
tion of the HTML locally),
then publishing the book on
a server.

Hosting Possible. However, some fea-
tures still missing in the local
version

Possible

Supported technolo-
gies

Markdown, Python, R and
Julia

Jupyter Notebook (Python,
R, etc.), Markdown

Interactivity with other
servers

Online with its own Hub Possible: Binder Hub,
Jupyter Lab, Google Colab
and Thebe Lab

Velocity Fast (<5 seconds to show the
plot in our paper)

Slower than Stencila (de-
pending on running server)

Features Missing features like Interac-
tivity, saving images, etc.

It offers more features than
Stencila Hub.

Stability Occasional instability Stable

Integration with other
project

Some online journals such
eLife and PLOS are inte-
grated

Used by many projects [107]
such as MalariaGEN [108],
TensorDiffEq [109], etc.

Documentation Poor Very large documentation
with interactive examples

Table 6.1: Stencila Hub VS Jupyter Book.

89

Chapter 6. Discussion

6.3.2 Comparison with related work

Comparing with Stencila-eLife Integration

During our work, we have tried to integrate our test case paper with Stencila. We
adopted Open Journal Systems as a framework for submitting and publishing our test
case article online. Actually, this integration is based on the collaboration project
between Stencila and eLife Magazine. Stencila and eLife plan to bring reproducible
research for more authors and reduce the barriers to the authoring and sharing of
reproducible scholarly knowledge. After evaluating the article with the title ”Repli-
cation Study: Transcriptional amplification in tumor cells with elevated c-Myc” [68]
which represents the only reproducible article of eLife, we can conclude that the
authors used an HTML iframe to integrate the computed Stencila output into the
eLife journal. Indeed, we have also adopted the same technique in our integration.
However, we didn’t style our article using CSS style-sheet as they did, and we only
copied the HTML file from Stencila and pasted it in OJS. We have focused more on
the functionality than on design and style. Comparing the two works, we can notice
that both of them offer the user to switch between the version using a button or link
on the top of the page. Furthermore, eLife offers users the possibility to download
the article in many formats such as executable, article as PDF and figures as PDF.
In our work, we only provide authors the possibility to generate a PDF file from
the article. The download of the executable version is not possible. Moreover, the
source code of the paper is accessible in the eLife version. In fact, the user will be
redirected to the snapshot page of the project in Stencila. Nevertheless, we avoid
allowing authors access to this page in order to prevent misconduct of data because
of the instability of the Stencila platform. Moreover, the required code for computing
the data is already accessible in the journal, so it won’t be necessary to share another
code snippets for other researchers.

In terms of technologies, the two works employed almost the same technologies.
The eLife-Stencila integration applied Markdown for creating the formatted text and
R for computing the data of plots and tables. They include CSS also for styling the
output of the article. Similarly, we employed as well Markdown and R for writing
our article, but we didn’t involve styling with CSS due to the time constraints.

We conclude that the two works have more similarities than differences. Basically,
the integration between Stencila and OJS is based on the eLife-Stencila project, and
we tried to imitate the experience in a different platform. We have partially succeeded
to establish this approach in terms of functionality and efficiency. However, some
work remains to be done, especially related to the design and the usability of the
page.

90

6.3. Comparisons

Comparison with the CAP project

Besides the eLife-Stencila integration which can be compared to our OJS-Stencila
implementation, we can as well evaluate the integration between ORKG and Stencila
to some related works such as the CERN Analysis Preservation (CAP) project.

Both, ORKG and CAP aim to improve reproducibility by harvesting data from
other projects. The service offered by CAP permits various users to manipulate
several entry points and functionalities in order to make the research process easier.
Thus, CAP’s users can submit their content through a submission form similar to the
OJS form. Moreover, the input of journal metadata can also be automatically per-
formed via a machine-readable description in the form of a flexible JSON schemata,
identical to our integration between Stencila and ORKG. Figure 3.3 describes the
form that contains the links to code, data and physics information. Comparing
this interface to the ORKG contribution interface shown in Figure 5.12, we can no-
tice many similarities in terms of data visualization and organization. Indeed, the
researchers in ORKG can visualize the metadata related to their documents by click-
ing on the data resource link. However, CAP generates the data automatically after
include it as described in the figure.

Furthermore, CAP allows authors to give the permissions to their submissions.
In other words, they will be able to control the privacy of their publications via a
specific form displayed in Figure 3.4. In our work, we have faced also the issue of
privacy of submissions. Stencila affords users the opportunity to share their projects
with other collaborators or to keep them private. Additionally, the submitter in OJS
can invite users to view his/her submission. Basically, he/she can as well manage
the roles of these users by allocating a list of permissions for each role. Regarding
adopted technologies, CAP supports JSON Schema in order to allow the reuse of
analysis data and materials in an automated concept. Besides, the authors of the
CAP project plan to integrate Jupyter Notebook as a programming language targets
to provide and facilitate modern research approaches like reproducibility of scholarly
knowledge. In addition to JSON and Jupyter Notebook, we have adopted several
technologies in our work. Indeed, the project Stencila-ORKG was based on JSON,
R and Markdown. Otherwise, Jupyter Notebook was involved in the building of our
test case paper via Jupyter Book. In contrast to our integration, CAP uses existing
collaboration tools such as GitLab and GitHub to attach the inputted code, and
then permits the authors to follow the repository changes of the work.

We conclude that the CAP project has many common points with our work,
represented essentially in the implementation of a web interface for researchers in
order to preserve their materials and reproduce it in the future. Hence, the two
projects differs partially in the methodology but shares together the same purpose.

91

Chapter 6. Discussion

6.4 Future works

Future investigations are necessary to validate the conclusions that can be drawn
from this study. For example, the integration between ORKG and Stencila drove
us to think about including the visualization of code in the ORKG research con-
tributions. This could be considered by the ORKG team in order to improve the
description of research contributions traditionally defined in scholarly papers. In our
case, it would be more descriptive if we could include the R and Python scripts used
for the computation of the plot and the table to the contribution metadata. As a re-
sult, users would be able to see how the results are computed as well as how Stencila
displays the code snippets of some data. Therefore, we will have a full harvesting of
materials provided by ORKG that can help us to better describe our integration with
other platforms like Stencila or Open Journal Systems. However, it remains unclear
if it is possible to compute also the used code in ORKG. This will represent a big
challenge for the ORKG team, but it can take this framework many steps ahead in
the world of reproducibility.

Looking forward, further attempts could prove quite beneficial to this literature.
Indeed, the integration between Stencila and Google Docs [110] give us the idea
to think about another integration of ORKG with the two frameworks. We can
replace the CSV file hosted in Stencila Hub, and permit the description of our project
dataset with an online CSV file created via Google Docs and hosted in Google Drive.
Furthermore, the integration between Stencila and Google Docs will allow us to
execute and embed reproducible figures inside Google Docs. This computation could
be later visualized by ORKG thanks to its modern description of data. This may
constitute the objective of future work such as an integration between Stencila and
LATEX environments. Imagine enabling citing executable code of different projects in
our LATEX paper! The data and code in LATEX could be shown and hidden according
to user requirements. Moreover, users would be able to execute code and visualize
their plots and tables and offer the possibility to other users to run as well the data
and view how is it computed. All these potential integrations between Stencila and
previous discussed environments will launch a revolution in the scholarly knowledge
area by affording modern scientific best-practices for reproducible science through
allowing users of all technical levels to concentrate more on data analysis and on
authoring manuscripts, instead of software engineering.

In addition, including OpenAI GPT-3 [111] features in reproducibility might
prove an important area for future research. This technology can be defined as a
third-generation, sophisticated language model that adopt deep learning methods to
generate human-like papers [112]. The implication of this technology for computing

92

6.4. Future works

a paper text can be very beneficial for researchers and helps them, for example,
to identify hate speech and classify text as sexist or racist [113]. In particular, the
computation of hate texts uses the ETHOS dataset [114] which is based on comments
located in YouTube and Reddit. The ETHOS YouTube data is accumulated via a
particular platform called ”Hatebusters” [115]. This platform gathers comments from
YouTube and allocate a ”hate” score to them based on a support vector machine
process. The data related to Reddit is accumulated from the Public Reddit Data
Repository [116]. Based on these mechanisms, we can conclude that GPT-3 is a
machine learning technique that adopts deep learning to produce texts similar to
texts written by humans. Nevertheless, researchers still frustrated with reproducing
the results of a machine learning research. The fact that attaching a source code to
go along with a research paper helps a lot in controlling the credibility of a machine
learning approach and creating on top of it. However, this still not a requirement for
machine learning conferences. Thus, a lot of students and scientists who use these
papers struggle with reproducing their results. The integration between machine
learning technique such as GPT-3 and a framework that supports reproducibility like
Stencila may encourage some researchers to include reproducibility in their machine
learning projects.

93

Chapter 7

Conclusions

This thesis suggests that researchers can publish their academic works in a structured
and reproducible manner to ensure that they can repeat the same analysis multiple
times with the same results, at any point in that process [117] with the best possible
machine support, since scholarly knowledge is machine actionable.

We integrated various frameworks with complementary goals and functionalities.
Specifically, we have used Stencila and Jupyter Book for providing reproducibility
and repeatability of data, ORKG for describing scholarly knowledge in machine ac-
tionable form, and finally OJS for publishing articles in a traditional manner and
linking the various digital artefacts (static, dynamic, and machine actionable expres-
sions of scholarly work). The adoption of these frameworks permits us to make the
use of scholarly knowledge easier for scientists.

The production of (parts of) an academic article in a dynamic manner was the first
corner stone of this study. This has encouraged us to describe the considered paper
in a structured manner by integrating the data computed in Stencila in ORKG. This
description will facilitate the task of finding and comparing the paper. Furthermore,
our study focuses on publishing online articles in a reproducible way. Therefore, OJS
was employed as an online intelligent host for the article. This host offers readers
the possibility to convert the article to a dynamic instance by calling all the required
resources from Stencila.

In summary, the measures we have described in this thesis represent the base of
efficient and feasible steps toward reconstructing machine actionability and repro-
ducibility of scholarly knowledge. Most of them have demonstrated efficiency, and
are good adopted, evaluated and improved. Actually, these approaches are not an
exhaustive list, it exists many other original and advancing studies for making aca-
demic research techniques more adequate and reliable [118]. Providing a solution to

94

an issue does not maintain its validity, and can be changeable depending on cultural
criteria and incentives can incite further behavioural changes that are hard to pre-
dict. Indeed, some approaches may be useless and even destructive to the efficiency
and reliability of science, even if theoretically they seem reasonable.

Nowadays, the domain of meta-science is increasing very quickly, with more than
2,000 relevant academic publications collected every year [119]. The majority of this
literature establishes the evaluation of our study and the description of alternative
solutions. What was previously defined as assumed may be discussed, such as the
integration between the frameworks; for example, the provided data and code to
compute in an article may sometimes be not 100% correct and could be falsified
by researchers in order to only show the desired results. Suggested solutions may
also produce other challenges; for instance, as long as the reproducibility process
represents an indication for increasing the trust level of scientific studies, there is
always doubt about which research merit to be reproduced and what would be the
best reproducibility strategies. Furthermore, a current simulation indicates that
reproducibility alone may not be enough to avoid incorrect results [120].

Basically, these warnings don’t represent an excuse for inactivity. Reproducible
science processes are at the core of research and essential to the scientific approach.
How perfect to accomplish exact and effective knowledge aggregation is a scientific
question; the most adequate suggestions will be recognized by a mix of excellent
hypothesizing and dumb luck, by repetitive evaluation of the efficiency of every
modification, and by a winnowing of several opportunities to the largely determined
few.

95

Bibliography

[1] James G. Leyburn. “On the Shoulders of Giants: A Shandean Postscript. By Robert K.
Merton. Foreword by Catherine Drinker Bowen. New York: The Free Press, 1965. 290 pp.
5.95”. In: Social Forces 44.4 (June 1966), pp. 603–604. issn: 0037-7732. doi: 10.1093/sf/
44.4.603-a. eprint: https://academic.oup.com/sf/article-pdf/44/4/603/6507927/
44-4-603a.pdf. url: https://doi.org/10.1093/sf/44.4.603-a.

[2] John P. A. Ioannidis. “Why Most Published Research Findings Are False”. In: PLOS
Medicine 2.8 (Aug. 2005), null. doi: 10 . 1371 / journal . pmed . 0020124. url: https :

//doi.org/10.1371/journal.pmed.0020124.

[3] Florian Prinz, Thomas Schlange, and Khusru Asadullah. “Believe it or not: how much can
we rely on published data on potential drug targets?” In: Nature Reviews Drug Discovery
10.9 (Sept. 2011), pp. 712–712. issn: 1474-1784. doi: 10.1038/nrd3439-c1. url: https:
//doi.org/10.1038/nrd3439-c1.

[4] C. Glenn Begley and Lee M. Ellis. “Raise standards for preclinical cancer research”. In:
Nature 483.7391 (Mar. 2012), pp. 531–533. issn: 1476-4687. doi: 10.1038/483531a. url:
https://doi.org/10.1038/483531a.

[5] Monya Baker. “1, 500 scientists lift the lid on reproducibility”. In: Nature 533.7604 (May
2016), pp. 452–454. doi: 10.1038/533452a. url: https://doi.org/10.1038/533452a.

[6] Gema Rodrıguez-Pérez, Gregorio Robles, and Jesús M. González-Barahona. “Reproducibil-
ity and credibility in empirical software engineering: A case study based on a systematic
literature review of the use of the SZZ algorithm”. In: Information and Software Technol-
ogy 99 (July 2018), pp. 164–176. doi: 10.1016/j.infsof.2018.03.009. url: https:
//doi.org/10.1016/j.infsof.2018.03.009.

[7] H. V. D. Sompel and C. Lagoze. “All aboard: toward a machine-friendly scholarly commu-
nication system”. In: The Fourth Paradigm. 2009.

[8] Mohamad Yaser Jaradeh et al. “Open Research Knowledge Graph: Next Generation In-
frastructure for Semantic Scholarly Knowledge”. In: Proceedings of the 10th International
Conference on Knowledge Capture. K-CAP ’19. Marina Del Rey, CA, USA: Association for
Computing Machinery, 2019, pp. 243–246. isbn: 9781450370080. doi: 10.1145/3360901.
3364435. url: https://doi.org/10.1145/3360901.3364435.

[9] Mohamad Yaser Jaradeh et al. “Open Research Knowledge Graph: Towards Machine Ac-
tionability in Scholarly Communication”. In: (Jan. 2019).

96

https://doi.org/10.1093/sf/44.4.603-a
https://doi.org/10.1093/sf/44.4.603-a
https://academic.oup.com/sf/article-pdf/44/4/603/6507927/44-4-603a.pdf
https://academic.oup.com/sf/article-pdf/44/4/603/6507927/44-4-603a.pdf
https://doi.org/10.1093/sf/44.4.603-a
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1038/nrd3439-c1
https://doi.org/10.1038/nrd3439-c1
https://doi.org/10.1038/nrd3439-c1
https://doi.org/10.1038/483531a
https://doi.org/10.1038/483531a
https://doi.org/10.1038/533452a
https://doi.org/10.1038/533452a
https://doi.org/10.1016/j.infsof.2018.03.009
https://doi.org/10.1016/j.infsof.2018.03.009
https://doi.org/10.1016/j.infsof.2018.03.009
https://doi.org/10.1145/3360901.3364435
https://doi.org/10.1145/3360901.3364435
https://doi.org/10.1145/3360901.3364435

Bibliography

[10] Jeroen Bosman et al. “The Scholarly Commons - principles and practices to guide research
communication”. In: (Sept. 2017). doi: 10.31219/osf.io/6c2xt. url: https://doi.org/
10.31219/osf.io/6c2xt.

[11] Hugo Alrøe and Egon Noe. “Second-Order Science of Interdisciplinary Research A Poly-
ocular Framework for Wicked Problems”. In: Constructivist Foundations 10 (Nov. 2014),
pp. 65–95.

[12] Lutz Bornmann and Rüdiger Mutz. “Growth rates of modern science: A bibliometric analysis
based on the number of publications and cited references”. In: Journal of the Association
for Information Science and Technology 66.11 (Apr. 2015), pp. 2215–2222. doi: 10.1002/
asi.23329. url: https://doi.org/10.1002/asi.23329.

[13] Arif E. Jinha. “Article 50 million: an estimate of the number of scholarly articles in exis-
tence”. In: Learned Publishing 23.3 (July 2010), pp. 258–263. doi: 10.1087/20100308. url:
https://doi.org/10.1087/20100308.

[14] Stencila. https://stenci.la/. Accessed: 2021-05-09.

[15] Mohamad Yaser Jaradeh et al. “Open Research Knowledge Graph: Next Generation In-
frastructure for Semantic Scholarly Knowledge”. In: Proceedings of the 10th International
Conference on Knowledge Capture. K-CAP ’19. Marina Del Rey, CA, USA: Association for
Computing Machinery, 2019, pp. 243–246. isbn: 9781450370080. doi: 10.1145/3360901.
3364435. url: https://doi.org/10.1145/3360901.3364435.

[16] John Willinsky. “Open Journal Systems”. In: Library Hi Tech 23.4 (Jan. 2005). Ed. by Scott
P. Muir and Mark Leggott, pp. 504–519. issn: 0737-8831. doi: 10.1108/07378830510636300.
url: https://doi.org/10.1108/07378830510636300.

[17] Jon F. Claerbout and Martin Karrenbach. “Electronic documents give reproducible research
a new meaning”. In: SEG Technical Program Expanded Abstracts 1992. 1992, pp. 601–604.
doi: 10.1190/1.1822162. url: https://app.dimensions.ai/details/publication/
pub.1098913318.

[18] Bernard Lo. “Sharing Clinical Trial Data: Maximizing Benefits, Minimizing Risk”. In: JAMA
313.8 (Feb. 2015), pp. 793–794. issn: 0098-7484. doi: 10.1001/jama.2015.292. eprint:
https://jamanetwork.com/journals/jama/articlepdf/2091787/jvp150006.pdf. url:
https://doi.org/10.1001/jama.2015.292.

[19] Enis Afgan et al. “The Galaxy platform for accessible, reproducible and collaborative biomed-
ical analyses: 2016 update”. In: Nucleic Acids Research 44.W1 (May 2016), W3–W10. issn:
0305-1048. doi: 10.1093/nar/gkw343. eprint: https://academic.oup.com/nar/article-
pdf/44/W1/W3/7633114/gkw343.pdf. url: https://doi.org/10.1093/nar/gkw343.

[20] John Ioannidis and Chris Doucouliagos. “WHAT’S TO KNOW ABOUT THE CREDIBIL-
ITY OF EMPIRICAL ECONOMICS?” eng. In: Journal of economic surveys 27.5 (2013),
pp. 997–1004. issn: 0950-0804.

[21] Roger D. Peng, Francesca Dominici, and Scott L. Zeger. “Reproducible Epidemiologic Re-
search”. In: American Journal of Epidemiology 163.9 (Mar. 2006), pp. 783–789. issn: 0002-
9262. doi: 10.1093/aje/kwj093. eprint: https://academic.oup.com/aje/article-
pdf/163/9/783/254266/kwj093.pdf. url: https://doi.org/10.1093/aje/kwj093.

97

https://doi.org/10.31219/osf.io/6c2xt
https://doi.org/10.31219/osf.io/6c2xt
https://doi.org/10.31219/osf.io/6c2xt
https://doi.org/10.1002/asi.23329
https://doi.org/10.1002/asi.23329
https://doi.org/10.1002/asi.23329
https://doi.org/10.1087/20100308
https://doi.org/10.1087/20100308
https://stenci.la/
https://doi.org/10.1145/3360901.3364435
https://doi.org/10.1145/3360901.3364435
https://doi.org/10.1145/3360901.3364435
https://doi.org/10.1108/07378830510636300
https://doi.org/10.1108/07378830510636300
https://doi.org/10.1190/1.1822162
https://app.dimensions.ai/details/publication/pub.1098913318
https://app.dimensions.ai/details/publication/pub.1098913318
https://doi.org/10.1001/jama.2015.292
https://jamanetwork.com/journals/jama/articlepdf/2091787/jvp150006.pdf
https://doi.org/10.1001/jama.2015.292
https://doi.org/10.1093/nar/gkw343
https://academic.oup.com/nar/article-pdf/44/W1/W3/7633114/gkw343.pdf
https://academic.oup.com/nar/article-pdf/44/W1/W3/7633114/gkw343.pdf
https://doi.org/10.1093/nar/gkw343
https://doi.org/10.1093/aje/kwj093
https://academic.oup.com/aje/article-pdf/163/9/783/254266/kwj093.pdf
https://academic.oup.com/aje/article-pdf/163/9/783/254266/kwj093.pdf
https://doi.org/10.1093/aje/kwj093

Bibliography

[22] National Science Foundation. https://www.nsf.gov/about/visit/.

[23] Steven N. Goodman, Daniele Fanelli, and John P. A. Ioannidis. “What does research repro-
ducibility mean?” In: Science Translational Medicine 8.341 (2016), 341ps12–341ps12. doi:
10.1126/scitranslmed.aaf5027.

[24] . “Estimating the reproducibility of psychological science”. In: Science 349.6251 (2015).
issn: 0036-8075. doi: 10.1126/science.aac4716. eprint: https://science.sciencemag.
org/content/349/6251/aac4716.full.pdf. url: https://science.sciencemag.org/
content/349/6251/aac4716.

[25] Mark D. Wilkinson et al. “The FAIR Guiding Principles for scientific data management
and stewardship”. In: Scientific Data 3.1 (Mar. 2016), p. 160018. issn: 2052-4463. doi:
10.1038/sdata.2016.18. url: https://doi.org/10.1038/sdata.2016.18.

[26] Pardo A. Hendler J. “A Primer on Machine Readability for Online Documents and Data”. In:
2019. url: https://www.data.gov/developers/blog/primer-machine-readability-
online-documents-and-data.

[27] Joel T. Dudley and Atul J. Butte. “In silico research in the era of cloud computing”. In:
Nature Biotechnology 28.11 (Nov. 2010), pp. 1181–1185. issn: 1546-1696. doi: 10.1038/
nbt1110-1181. url: https://doi.org/10.1038/nbt1110-1181.

[28] B. Howe. “Virtual Appliances, Cloud Computing, and Reproducible Research”. In: Com-
puting in Science Engineering 14.4 (2012), pp. 36–41. doi: 10.1109/MCSE.2012.62.

[29] Ben Marwick. “Computational Reproducibility in Archaeological Research: Basic Principles
and a Case Study of Their Implementation”. In: Journal of Archaeological Method and
Theory 24.2 (June 2017), pp. 424–450. doi: 10.1007/s10816-015-9272-9. url: https:
//doi.org/10.1007/s10816-015-9272-9.

[30] DeBruine Lisa M. Lakens D. “Improving Transparency, Falsifiability, and Rigour by Making
Hypothesis Tests Machine Readable”. In: 2020. doi: 10.31234/osf.io/5xcda. url: https:
//psyarxiv.com/5xcda/.

[31] Sören Auer and Sanjeet Mann. “Towards an Open Research Knowledge Graph”. In: The
Serials Librarian 76.1-4 (2019), pp. 35–41. doi: 10.1080/0361526X.2019.1540272. eprint:
https://doi.org/10.1080/0361526X.2019.1540272. url: https://doi.org/10.1080/
0361526X.2019.1540272.

[32] Academic discipline. https://en.wikipedia.org/wiki/Academic_discipline.

[33] Google Scholar. https://scholar.google.com/.

[34] The Web of Knowledge. http://login.webofknowledge.com/.

[35] Peter F. Linington et al. Building Enterprise Systems with ODP. Chapman and Hall/CRC,
Sept. 2011. doi: 10.1201/b11151. url: https://doi.org/10.1201/b11151.

[36] Jan Küenzl et al. “International Organization for Standardization (ISO)”. In: International
Encyclopedia of Civil Society. Springer US, 2010, pp. 890–891. doi: 10.1007/978-0-387-
93996-4_826. url: https://doi.org/10.1007/978-0-387-93996-4_826.

[37] “International Telecommunication Union”. In: International Organization 20.3 (1966), pp. 650–
651. doi: 10.1017/S0020818300012911.

98

https://www.nsf.gov/about/visit/
https://doi.org/10.1126/scitranslmed.aaf5027
https://doi.org/10.1126/science.aac4716
https://science.sciencemag.org/content/349/6251/aac4716.full.pdf
https://science.sciencemag.org/content/349/6251/aac4716.full.pdf
https://science.sciencemag.org/content/349/6251/aac4716
https://science.sciencemag.org/content/349/6251/aac4716
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://www.data.gov/developers/blog/primer-machine-readability-online-documents-and-data
https://www.data.gov/developers/blog/primer-machine-readability-online-documents-and-data
https://doi.org/10.1038/nbt1110-1181
https://doi.org/10.1038/nbt1110-1181
https://doi.org/10.1038/nbt1110-1181
https://doi.org/10.1109/MCSE.2012.62
https://doi.org/10.1007/s10816-015-9272-9
https://doi.org/10.1007/s10816-015-9272-9
https://doi.org/10.1007/s10816-015-9272-9
https://doi.org/10.31234/osf.io/5xcda
https://psyarxiv.com/5xcda/
https://psyarxiv.com/5xcda/
https://doi.org/10.1080/0361526X.2019.1540272
https://doi.org/10.1080/0361526X.2019.1540272
https://doi.org/10.1080/0361526X.2019.1540272
https://doi.org/10.1080/0361526X.2019.1540272
https://en.wikipedia.org/wiki/Academic_discipline
https://scholar.google.com/
http://login.webofknowledge.com/
https://doi.org/10.1201/b11151
https://doi.org/10.1201/b11151
https://doi.org/10.1007/978-0-387-93996-4_826
https://doi.org/10.1007/978-0-387-93996-4_826
https://doi.org/10.1007/978-0-387-93996-4_826
https://doi.org/10.1017/S0020818300012911

Bibliography

[38] M.W.A. Steen and J. Derrick. “ODP enterprise viewpoint specification”. In: Computer Stan-
dards & Interfaces 22.3 (Aug. 2000), pp. 165–189. doi: 10.1016/s0920-5489(00)00031-3.
url: https://doi.org/10.1016/s0920-5489(00)00031-3.

[39] Francisco Durán, Manuel Roldán, and Antonio Vallecillo. “Using Maude to write and execute
ODP information viewpoint specifications”. In: Computer Standards & Interfaces 27.6 (June
2005), pp. 597–620. doi: 10.1016/j.csi.2004.10.008. url: https://doi.org/10.1016/
j.csi.2004.10.008.

[40] R. Romero and A. Vallecillo. “Formalizing ODP computational viewpoint specifications in
Maude”. In: Proceedings. Eighth IEEE International Enterprise Distributed Object Com-
puting Conference, 2004. EDOC 2004. IEEE. doi: 10.1109/edoc.2004.1342517. url:
https://doi.org/10.1109/edoc.2004.1342517.

[41] “Application Programming Interface (API)”. In: Encyclopedia of Biometrics. Springer US,
2009, pp. 41–41. doi: 10.1007/978-0-387-73003-5_858. url: https://doi.org/10.
1007/978-0-387-73003-5_858.

[42] Hai-Quan Nguyen and Quan. NguyenHai. “Modeling the Engineering Viewpoint of ODP
systems with MODERN”. In: 2005.

[43] Kerry Raymond. “Reference Model of Open Distributed Processing (RM-ODP): Introduc-
tion”. In: Open Distributed Processing. Springer US, 1995, pp. 3–14. doi: 10.1007/978-0-
387-34882-7_1. url: https://doi.org/10.1007/978-0-387-34882-7_1.

[44] Xiaoli Chen et al. “CERN Analysis Preservation: A Novel Digital Library Service to Enable
Reusable and Reproducible Research”. In: Research and Advanced Technology for Digital Li-
braries. Ed. by Norbert Fuhr et al. Cham: Springer International Publishing, 2016, pp. 347–
356. isbn: 978-3-319-43997-6.

[45] Donald H. Perkins. Introduction to High Energy Physics. 4th ed. Cambridge University
Press, 2000. doi: 10.1017/CBO9780511809040.

[46] J. Kuncar, L. Nielsen, and T. Simko. “Invenio v2.0: A Pythonic Framework for Large-Scale
Digital Libraries”. In: 2014.

[47] Brian F. Lavoie. “The Open Archival Information System Reference Model: Introductory
Guide”. In: 33.2 (2004), pp. 68–81. doi: doi : 10 . 1515 / MFIR . 2004 . 68. url: https :

//doi.org/10.1515/MFIR.2004.68.

[48] AJ Peters, EA Sindrilaru, and G Adde. “EOS as the present and future solution for data
storage at CERN”. In: Journal of Physics: Conference Series 664.4 (Dec. 2015), p. 042042.
doi: 10.1088/1742- 6596/664/4/042042. url: https://doi.org/10.1088/1742-

6596/664/4/042042.

[49] E. Cano et al. “The new CERN tape software - getting ready for total performance”. In: J.
Phys. Conf. Ser. 664.4 (2015), p. 042007. doi: 10.1088/1742-6596/664/4/042007.

[50] Peter L. Jones and Nils Høimyr. “TWiki a Collaboration Tool for the LHC”. In: WikiSym
’11. Mountain View, California: Association for Computing Machinery, 2011, pp. 207–208.
isbn: 9781450309097. doi: 10.1145/2038558.2038596. url: https://doi.org/10.1145/
2038558.2038596.

99

https://doi.org/10.1016/s0920-5489(00)00031-3
https://doi.org/10.1016/s0920-5489(00)00031-3
https://doi.org/10.1016/j.csi.2004.10.008
https://doi.org/10.1016/j.csi.2004.10.008
https://doi.org/10.1016/j.csi.2004.10.008
https://doi.org/10.1109/edoc.2004.1342517
https://doi.org/10.1109/edoc.2004.1342517
https://doi.org/10.1007/978-0-387-73003-5_858
https://doi.org/10.1007/978-0-387-73003-5_858
https://doi.org/10.1007/978-0-387-73003-5_858
https://doi.org/10.1007/978-0-387-34882-7_1
https://doi.org/10.1007/978-0-387-34882-7_1
https://doi.org/10.1007/978-0-387-34882-7_1
https://doi.org/10.1017/CBO9780511809040
https://doi.org/doi:10.1515/MFIR.2004.68
https://doi.org/10.1515/MFIR.2004.68
https://doi.org/10.1515/MFIR.2004.68
https://doi.org/10.1088/1742-6596/664/4/042042
https://doi.org/10.1088/1742-6596/664/4/042042
https://doi.org/10.1088/1742-6596/664/4/042042
https://doi.org/10.1088/1742-6596/664/4/042007
https://doi.org/10.1145/2038558.2038596
https://doi.org/10.1145/2038558.2038596
https://doi.org/10.1145/2038558.2038596

Bibliography

[51] The CMS Collaboration, S Chatrchyan, and G Hmayakyan. “The CMS experiment at the
CERN LHC”. In: Journal of Instrumentation 3.08 (Aug. 2008), S08004–S08004. doi: 10.
1088/1748-0221/3/08/s08004. url: https://doi.org/10.1088/1748-0221/3/08/
s08004.

[52] Martin Vesely et al. “CERN document server: Document management system for grey lit-
erature in a networked environment”. In: Publishing Research Quarterly 20.1 (Mar. 2004),
pp. 77–83. issn: 1936-4792. doi: 10.1007/BF02910863. url: https://doi.org/10.1007/
BF02910863.

[53] Bertram Ludäscher et al. “Capturing the ”Whole Tale” of Computational Research: Repro-
ducibility in Computing Environments”. In: (Oct. 2016).

[54] Adam Brinckman et al. “Computing environments for reproducibility: Capturing the “Whole
Tale””. In: Future Generation Computer Systems 94 (2019), pp. 854–867. issn: 0167-739X.
doi: https : / / doi . org / 10 . 1016 / j . future . 2017 . 12 . 029. url: https : / / www .

sciencedirect.com/science/article/pii/S0167739X17310695.

[55] René Peinl, Florian Holzschuher, and Florian Pfitzer. “Docker Cluster Management for the
Cloud - Survey Results and Own Solution”. In: Journal of Grid Computing 14.2 (June
2016), pp. 265–282. issn: 1572-9184. doi: 10.1007/s10723-016-9366-y. url: https:
//doi.org/10.1007/s10723-016-9366-y.

[56] Yang Cao et al. “DataONE: A Data Federation with Provenance Support”. In: IPAW 2016.
McLean, VA, USA: Springer-Verlag, 2016, pp. 230–234. isbn: 9783319405926.

[57] Rachana Ananthakrishnan et al. “Globus Platform Services for Data Publication”. In:
PEARC ’18. Pittsburgh, PA, USA: Association for Computing Machinery, 2018. isbn:
9781450364461. doi: 10.1145/3219104.3219127. url: https://doi.org/10.1145/

3219104.3219127.

[58] Girder, 2017. https://girder.readthedocs.io/en/latest/. Accessed: 2017-03-01.

[59] First Steps with Celery, 2018-2019. https://docs.celeryproject.org/en/stable/

getting-started/first-steps-with-celery.html. Accessed: 2021-05-07.

[60] Using Redis, 2018-2019. https : / / docs . celeryproject . org / en / stable / getting -

started/brokers/redis.html. Accessed: 2021-05-07.

[61] RStudio Team. RStudio: Integrated Development Environment for R. RStudio, Inc. Boston,
MA, 2015. url: http://www.rstudio.com/.

[62] Jupyter Notebook, 2015. https://jupyter- notebook.readthedocs.io/en/stable/.
Accessed: 2021-05-09.

[63] EmberJS. https://emberjs.com/. Accessed: 2017-03-01.

[64] eLife Magazine. https://elifesciences.org/. Accessed: 2017-03-01.

[65] Binder. https://mybinder.org/. Accessed: 2021-05-08.

[66] Michael Aufreiter, Alkesandra Pawlik, and Nokome Bentley. “Stencila – an office suite for
reproducible research”. In: eLife Magazine 2.3 (July 2018), p. 120450. issn: 2050-084X.
url: https://elifesciences.org/labs/c496b8bb/stencila-an-office-suite-for-
reproducible-research.

100

https://doi.org/10.1088/1748-0221/3/08/s08004
https://doi.org/10.1088/1748-0221/3/08/s08004
https://doi.org/10.1088/1748-0221/3/08/s08004
https://doi.org/10.1088/1748-0221/3/08/s08004
https://doi.org/10.1007/BF02910863
https://doi.org/10.1007/BF02910863
https://doi.org/10.1007/BF02910863
https://doi.org/https://doi.org/10.1016/j.future.2017.12.029
https://www.sciencedirect.com/science/article/pii/S0167739X17310695
https://www.sciencedirect.com/science/article/pii/S0167739X17310695
https://doi.org/10.1007/s10723-016-9366-y
https://doi.org/10.1007/s10723-016-9366-y
https://doi.org/10.1007/s10723-016-9366-y
https://doi.org/10.1145/3219104.3219127
https://doi.org/10.1145/3219104.3219127
https://doi.org/10.1145/3219104.3219127
https://girder.readthedocs.io/en/latest/
https://docs.celeryproject.org/en/stable/getting-started/first-steps-with-celery.html
https://docs.celeryproject.org/en/stable/getting-started/first-steps-with-celery.html
https://docs.celeryproject.org/en/stable/getting-started/brokers/redis.html
https://docs.celeryproject.org/en/stable/getting-started/brokers/redis.html
http://www.rstudio.com/
https://jupyter-notebook.readthedocs.io/en/stable/
https://emberjs.com/
https://elifesciences.org/
https://mybinder.org/
https://elifesciences.org/labs/c496b8bb/stencila-an-office-suite-for-reproducible-research
https://elifesciences.org/labs/c496b8bb/stencila-an-office-suite-for-reproducible-research

Bibliography

[67] Journal Article Tag Suite. http://jats.nlm.nih.gov/1.2/. Accessed: 2021-05-03.

[68] “Replication study: Transcriptional amplification in tumor cells with elevated c-Myc”. En-
glish (US). In: eLife 7 (Jan. 2018). Publisher Copyright: © Lewis et al. Copyright: Copyright
2018 Elsevier B.V., All rights reserved. issn: 2050-084X. doi: 10.7554/eLife.30274.

[69] D4Science Infrastructure. https://www.d4science.org/. Accessed: 2021-05-09.

[70] Framework Programmes for Research and Technological Development. https://en.wikipedia.
org/wiki/Framework_Programmes_for_Research_and_Technological_Development.
Accessed: 2021-05-01.

[71] Geant Project. https://geant3plus.archive.geant.net/Pages/home.html. Accessed:
2021-05-06.

[72] Enabling Grids for E-SciencE (EGEE). https://eu-egee-org.web.cern.ch/index.html.
Accessed: 2021-05-06.

[73] Diligent. https://diligent.com/. Accessed: 2021-05-06.

[74] Leonardo Candela, Donatella Castelli, and Pasquale Pagano. “Virtual Research Environ-
ments: An Overview and a Research Agenda”. In: Data Science Journal 12.0 (2013), GRDI75–
GRDI81. doi: 10.2481/dsj.grdi-013. url: https://doi.org/10.2481/dsj.grdi-013.

[75] Leonardo Candela, Donatella Castelli, and Pasquale Pagano. gCube v1.0: A Software System
for Hybrid Data Infrastructures. Jan. 2008.

[76] pan-European Grid middleware (gLite). https://glite.web.cern.ch/glite/. Accessed:
2021-05-01.

[77] Liferay portal technology. https://www.liferay.com/. Accessed: 2021-05-02.

[78] Tyler Phillips et al. “AuthN-AuthZ: Integrated, User-Friendly and Privacy-Preserving Au-
thentication and Authorization”. In: 2020 Second IEEE International Conference on Trust,
Privacy and Security in Intelligent Systems and Applications (TPS-ISA). 2020, pp. 189–198.
doi: 10.1109/TPS-ISA50397.2020.00034.

[79] Massimiliano Assante et al. “Enacting open science by D4Science”. In: Future Generation
Computer Systems 101 (May 2019). doi: 10.1016/j.future.2019.05.063.

[80] Massimiliano Assante et al. “The gCube system: Delivering Virtual Research Environments
as-a-Service”. In: Future Generation Computer Systems 95 (June 2019), pp. 445–453. doi:
10.1016/j.future.2018.10.035. url: https://doi.org/10.1016/j.future.2018.10.
035.

[81] Stencila Community. Stencila. Version v0.34.3. Dec. 2020. url: https://openbase.com/
js/stencila/documentation.

[82] Stencila Hub. https://hub.stenci.la/. Accessed: 2021-05-09.

[83] JavaScript. https://www.javascript.com/. Accessed: 2021-05-09.

[84] Python. https://www.python.org/. Accessed: 2021-05-09.

[85] R Project. https://www.r-project.org/. Accessed: 2021-05-09.

[86] Rust. https://www.rust-lang.org/. Accessed: 2021-05-09.

101

http://jats.nlm.nih.gov/1.2/
https://doi.org/10.7554/eLife.30274
https://www.d4science.org/
https://en.wikipedia.org/wiki/Framework_Programmes_for_Research_and_Technological_Development
https://en.wikipedia.org/wiki/Framework_Programmes_for_Research_and_Technological_Development
https://geant3plus.archive.geant.net/Pages/home.html
https://eu-egee-org.web.cern.ch/index.html
https://diligent.com/
https://doi.org/10.2481/dsj.grdi-013
https://doi.org/10.2481/dsj.grdi-013
https://glite.web.cern.ch/glite/
https://www.liferay.com/
https://doi.org/10.1109/TPS-ISA50397.2020.00034
https://doi.org/10.1016/j.future.2019.05.063
https://doi.org/10.1016/j.future.2018.10.035
https://doi.org/10.1016/j.future.2018.10.035
https://doi.org/10.1016/j.future.2018.10.035
https://openbase.com/js/stencila/documentation
https://openbase.com/js/stencila/documentation
https://hub.stenci.la/
https://www.javascript.com/
https://www.python.org/
https://www.r-project.org/
https://www.rust-lang.org/

Bibliography

[87] TypeScript. https://www.typescriptlang.org/docs/handbook/project-references.
html. Accessed: 2021-05-09.

[88] Node.js. https://nodejs.org/en/docs/. Accessed: 2021-05-09.

[89] ORKG Team. “Welcome to ORKG’s python package documentation!” In: Read the Docs,
2020. url: https://orkg.readthedocs.io/en/latest/index.html.

[90] ORKG Team. “ORKG Documentation”. In: Technische Informationsbibliothek (TIB), 2020.
url: https://projects.tib.eu/orkg/documentation/.

[91] ORKG Python Package. https://orkg.readthedocs.io/en/latest/introduction.

html. Accessed: 2021-05-04.

[92] Brian Edgar and John Willinsky. “A Survey of the Scholarly Journals Using Open Journal
Systems”. In: OJS p̊a dansk 1 (Sept. 2010). doi: 10.7146/ojssb.v1i1.2707.

[93] PKP Community. “Open Journal Systems”. In: Public Knowledge Project (PKP), 2021.
url: https://pkp.sfu.ca/ojs/.

[94] OJS Team. “OJS Documentation”. In: Public Knowledge Project (PKP), 2020. url: https:
//docs.pkp.sfu.ca/ojs-2-technical-reference/en/about_open_journal_systems.

[95] OJS Team. “Open journal systems user guide”. In: Open journal systems (OJS), 2021. url:
https://openjournalsystems.com/ojs-3-user-guide/.

[96] Executable Books Community. Jupyter Book. Version v0.10. Feb. 2020. doi: 10.5281/

zenodo.4539666. url: https://doi.org/10.5281/zenodo.4539666.

[97] Saba Haddad et al. “Iron-regulatory proteins secure iron availability in cardiomyocytes to
prevent heart failure”. In: European Heart Journal 38.5 (Aug. 2016), pp. 362–372. issn:
0195-668X. doi: 10.1093/eurheartj/ehw333. eprint: https://academic.oup.com/

eurheartj/article-pdf/38/5/362/10372887/ehw333.pdf. url: https://doi.org/10.
1093/eurheartj/ehw333.

[98] ThebeLab. https://thebe.readthedocs.io/en/latest/. Accessed: 2021-05-07.

[99] Google Colab. https://colab.research.google.com/notebooks/intro.ipynb. Accessed:
2021-05-07.

[100] Anaconda Software Distribution. Version Vers. 2-2.4.0. 2020. url: https://docs.anaconda.
com/.

[101] Norman Gentsch et al. “Catch crop diversity increases rhizosphere carbon input and soil
microbial biomass”. In: Biology and Fertility of Soils 56.7 (Oct. 2020), pp. 943–957. issn:
1432-0789. doi: 10.1007/s00374-020-01475-8. url: https://doi.org/10.1007/s00374-
020-01475-8.

[102] JetBrains Community. PyCharm: The Python IDE for Professional Developers. JetBrains,
s.r.o. Czech Republic, Kavč́ı Hory Office Park, Na Hřebenech II 1718/10 Praha 4 - Nusle -
140 00, 2021. url: https://www.jetbrains.com/pycharm/.

[103] Spyder IDE. https://www.spyder-ide.org/. Accessed: 2021-05-01.

[104] Atom IDE. https://atom.io/. Accessed: 2021-05-01.

102

https://www.typescriptlang.org/docs/handbook/project-references.html
https://www.typescriptlang.org/docs/handbook/project-references.html
https://nodejs.org/en/docs/
https://orkg.readthedocs.io/en/latest/index.html
https://projects.tib.eu/orkg/documentation/
https://orkg.readthedocs.io/en/latest/introduction.html
https://orkg.readthedocs.io/en/latest/introduction.html
https://doi.org/10.7146/ojssb.v1i1.2707
https://pkp.sfu.ca/ojs/
https://docs.pkp.sfu.ca/ojs-2-technical-reference/en/about_open_journal_systems
https://docs.pkp.sfu.ca/ojs-2-technical-reference/en/about_open_journal_systems
https://openjournalsystems.com/ojs-3-user-guide/
https://doi.org/10.5281/zenodo.4539666
https://doi.org/10.5281/zenodo.4539666
https://doi.org/10.5281/zenodo.4539666
https://doi.org/10.1093/eurheartj/ehw333
https://academic.oup.com/eurheartj/article-pdf/38/5/362/10372887/ehw333.pdf
https://academic.oup.com/eurheartj/article-pdf/38/5/362/10372887/ehw333.pdf
https://doi.org/10.1093/eurheartj/ehw333
https://doi.org/10.1093/eurheartj/ehw333
https://thebe.readthedocs.io/en/latest/
https://colab.research.google.com/notebooks/intro.ipynb
https://docs.anaconda.com/
https://docs.anaconda.com/
https://doi.org/10.1007/s00374-020-01475-8
https://doi.org/10.1007/s00374-020-01475-8
https://doi.org/10.1007/s00374-020-01475-8
https://www.jetbrains.com/pycharm/
https://www.spyder-ide.org/
https://atom.io/

Bibliography

[105] Francesco Russo, Dario Righelli, and Claudia Angelini. “Advantages and Limits in the Adop-
tion of Reproducible Research and R-Tools for the Analysis of Omic Data”. In: Computa-
tional Intelligence Methods for Bioinformatics and Biostatistics. Ed. by Claudia Angelini,
Paola MV Rancoita, and Stefano Rovetta. Cham: Springer International Publishing, 2016,
pp. 245–258. isbn: 978-3-319-44332-4.

[106] Roger D. Peng. “Reproducible research in computational science”. eng. In: Science (New
York, N.Y.) 334.6060 (Dec. 2011). 334/6060/1226[PII], pp. 1226–1227. issn: 1095-9203. doi:
10.1126/science.1213847. url: https://doi.org/10.1126/science.1213847.

[107] Gallery of Jupyter Books. https://executablebooks.org/en/latest/gallery.html.
Accessed: 2021-05-01.

[108] MalariaGen Book. https://malariagen.github.io/vector-data/landing-page.html.
Accessed: 2021-05-01.

[109] TensorDiffEq Book. https://docs.tensordiffeq.io/. Accessed: 2021-05-01.

[110] Cindy Judd et al. “Google Docs: A Review”. In: Against the Grain 20 (Jan. 2009), pp. 14–
17. doi: 10.7771/2380-176X.2736.

[111] Tom B. Brown et al. “Language Models are Few-Shot Learners”. In: (2020). arXiv: 2005.
14165 [cs.CL].

[112] Luciano Floridi and Massimo Chiriatti. “GPT-3: Its Nature, Scope, Limits, and Conse-
quences”. In: Minds and Machines 30 (), pp. 1–14. doi: 10.1007/s11023-020-09548-1.

[113] Ke-Li Chiu and Rohan Alexander. Detecting Hate Speech with GPT-3. Mar. 2021.

[114] Ioannis Mollas et al. ETHOS: an Online Hate Speech Detection Dataset. arXiv: 2006.08328.

[115] Antonios Anagnostou, Ioannis Mollas, and Grigorios Tsoumakas. “Hatebusters: A Web Ap-
plication for Actively Reporting YouTube Hate Speech”. In: Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI-18. International
Joint Conferences on Artificial Intelligence Organization, July 2018, pp. 5796–5798. doi:
10.24963/ijcai.2018/841. url: https://doi.org/10.24963/ijcai.2018/841.

[116] Jason Baumgartner et al. “The Pushshift Reddit Dataset”. In: Proceedings of the Inter-
national AAAI Conference on Web and Social Media 14.1 (May 2020), pp. 830–839. url:
https://ojs.aaai.org/index.php/ICWSM/article/view/7347.

[117] Jesse M. Alston and Jessica A. Rick. “A Beginner’s Guide to Conducting Reproducible
Research”. In: The Bulletin of the Ecological Society of America (Jan. 2021). doi: 10.1002/
bes2.1801. url: https://doi.org/10.1002/bes2.1801.

[118] John P. A. Ioannidis. “How to Make More Published Research True”. In: PLoS Medicine
11.10 (Oct. 2014), e1001747. doi: 10.1371/journal.pmed.1001747. url: https://doi.
org/10.1371/journal.pmed.1001747.

[119] John P. A. Ioannidis et al. “Meta-research: Evaluation and Improvement of Research Meth-
ods and Practices”. In: PLOS Biology 13.10 (Oct. 2015), e1002264. doi: 10.1371/journal.
pbio.1002264. url: https://doi.org/10.1371/journal.pbio.1002264.

[120] Paul E. Smaldino and Richard McElreath. “The natural selection of bad science”. In: Royal
Society Open Science 3.9 (Sept. 2016), p. 160384. doi: 10.1098/rsos.160384. url: https:
//doi.org/10.1098/rsos.160384.

103

https://doi.org/10.1126/science.1213847
https://doi.org/10.1126/science.1213847
https://executablebooks.org/en/latest/gallery.html
https://malariagen.github.io/vector-data/landing-page.html
https://docs.tensordiffeq.io/
https://doi.org/10.7771/2380-176X.2736
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1007/s11023-020-09548-1
https://arxiv.org/abs/2006.08328
https://doi.org/10.24963/ijcai.2018/841
https://doi.org/10.24963/ijcai.2018/841
https://ojs.aaai.org/index.php/ICWSM/article/view/7347
https://doi.org/10.1002/bes2.1801
https://doi.org/10.1002/bes2.1801
https://doi.org/10.1002/bes2.1801
https://doi.org/10.1371/journal.pmed.1001747
https://doi.org/10.1371/journal.pmed.1001747
https://doi.org/10.1371/journal.pmed.1001747
https://doi.org/10.1371/journal.pbio.1002264
https://doi.org/10.1371/journal.pbio.1002264
https://doi.org/10.1371/journal.pbio.1002264
https://doi.org/10.1098/rsos.160384
https://doi.org/10.1098/rsos.160384
https://doi.org/10.1098/rsos.160384

	Introduction
	Background
	Reproducible research
	FAIR Data
	Findable
	Accessible
	Interoperable
	Reusable

	Machine-actionable data
	Scholarly knowledge
	RM-ODP architecture
	Enterprise viewpoint
	Information Viewpoint
	Computational Viewpoint
	Engineering Viewpoint
	Technology Viewpoint

	Related Work
	CERN Analysis Preservation
	Overview
	Concept
	Technology
	UI and functionality

	Whole Tale Research Environment
	Overview
	Concept
	Technology
	UI and Functionality

	Integrating eLife Magazine with Stencila
	Overview
	Concept
	Technology
	UI and Functionality

	D4Science: an e-Infrastructure for Virtual Research Environments
	Overview
	Concept
	Technology
	UI and Functionality

	Approach
	Overview of the system
	Description of the used platforms
	Description of the system from the ODP viewpoints

	Description of the proposed solution
	Creation of executable articles
	Integration

	Application
	Converting the paper to a reproducible form
	Reproducibility with Stencila
	Reproducibility with Jupyter Book

	Integration
	Integration between ORKG and Stencila
	Integration between OJS and Stencila

	Discussion
	Advantages
	Limitations and challenges
	Comparisons
	Comparing Stencila with Jupyter Book
	Comparison with related work

	Future works

	Conclusions
	Bibliography

