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Abstract 

The digital representation of physical assets and process steps by digital twins is key to address pressuring 
challenges like adaptive manufacturing or customised production. Recent breakthroughs in the field of 
digital twins and Edge-based AI already enable digital optimization of individual process steps. However, 
high-value goods typically include multiple step process chains including a broad range from generative and 
additive processes over several steps of material removal up to assembly. Therefore, a digital twin over the 
holistic process chain is necessary. While even the set-up of representative twins for a single step is already 
challenging, a concept for monitoring of the interaction and overall quality control of holistic process chains 
does not exist yet. The paper introduces a machine-learning method based on probabilistic Bayesian 
networks to monitor the »digital twin quality« of coupled digital twins which includes several sub-instances 
of digital twins. The approach identifies the contribution of each instance to the overall prediction quality. 
Furthermore, it is possible to give a range-estimation for the prediction accuracy of the individual sub-
instances. It is therefore possible to identify the most influential sub-instances of digital twins as well as their 
individual prediction quality. With the help of this information, the quality of the digital twin can be 
improved by considering individual sub-instances in a targeted manner. Finally, a preview emphasises the 
potential benefits of the quantum computing technology when dealing with parallel computation of large-
scale inference models. 
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1. Introduction 

In manufacturing, production processes generally consist of various production steps. The aim of each single 
step is to perform an ideal processing after specification of a certain target geometry. Naturally, the practical 
implementation of a step does not conform the theoretical ideal and shows deviations from the target shape. 
An important issue is how these deviations of a specific step transmit and affect the quality of succeeding 
dependent steps within the production chain, including interdependencies between multiple steps [1]. The 
same applies for digital twins, digital representatives providing all relevant information via a uniform 
interface, of single production steps: A model of such a specific subsystem is subject to individual 
uncertainties. Furthermore, the digital coupling of sub-models causes additional uncertainties, which are 
often non-transparent. To enable a qualitative digital twin over the holistic process chain, it is therefore of 
great importance to identify the quality of each sub-instance of the holistic digital twin as well as the degree 
of dependencies between coupled sub-instances. With the help of this information, the strength of the impact 
that single sub-models have on the holistic digital twin’s quality can be estimated. For a probabilistic 
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modelling of the quality of single determining factors and their dependencies on each other, Bayesian 
networks have proved as an appropriate methodology to reproduce such characteristics of a system [2]. 
Individual factors can be evaluated by the probability of positive outcomes, e.g. holding a tolerance value as 
to the target geometry, whereas the impacts on dependent factors are represented by conditional probabilities 
[3]. 

After providing an overview of various applications, we classify Bayesian network into the context of 
manufacturing and refer to some related approaches with Bayesian network in this field of application. A 
technical chapter then introduces the concept of Bayesian networks in more detail and shows how they can 
identify and estimate the degree of dependencies. Afterwards, we apply this methodology to a real-world 
manufacturing setup. We use a single digital twin of a milling process in order to access available real 
machining data for demonstration purposes, which is directly transmissible to the aspired field of multi-step 
process interdependencies. Finally, we briefly introduce the concept of quantum computing and depict the 
potential benefits of this computing technology when working with large-scale Bayesian networks. 

2. Related work 

Bayesian networks, initially introduced by [3] in 1988, have a broad range of applications in various fields 
of research as well as industrial settings in the context of modelling uncertainty, risk analysis, decision-
making processes and error detection [1,4] covering amongst others the application fields of medicine and 
healthcare [4] as well as finance [5], supply chain management [6] and predictive maintenance [7]. 
Furthermore, the usage of Bayesian networks has a significant benefit over other Machine learning methods 
in relation to the required database since this methodology does not explicitly require massively large-scale 
datasets and can extract accurate and meaningful statements based on limited data [4]. In manufacturing, it 
is highly challenging to detect the causes of deviations due to heterogeneous data structures and impacts. 
Particularly this problem is well resolvable using Bayesian networks. 

In this context, Bayesian networks are used as a data analytics tool to reduce system faults as they proofed 
to predict which components of anonymised measurements in manufacturing datasets will fail at the final 
stage of the production process [8]. Another use case of this methodology is the improvement of quality 
consistency in assembly processes where the key is to construct a raw network structure that shows the causal 
relationships and influence factors on quality consistency, exemplary demonstrated for a diesel engine 
production line [9]. Aside, [10] considers a general quantification of uncertainty in manufacturing processes 
focussing on the caused energy consumption as a key factor of sustainability performance. In [11] the 
technique of inverse inference in manufacturing process chains is demonstrated using a Bayesian network 
to adjust process configurations in order to achieve certain desired properties, also known as inverse analysis. 

In recent times, methods of Bayesian optimization are used in manufacturing background to regulate black 
box models and to proceed hyperparameter optimization [12,13]. Here we strongly want to distinguish the 
approach of using Bayesian networks from these considerations. 

3. Methodology of Bayesian networks for quality monitoring of digital twins 

A Bayesian network is a directed acyclic graph whose nodes represent the influencing factors as random 
variables and whose edges model the dependencies between the factors, directing from the decisive to the 
dependent factor. The independent variables of the system hold a probability distribution each which indicate 
the likelihood of different possible status. The dependent nodes are equipped with conditional probability 
tables in case of using discrete variables. When dealing with continuous variables, the nodes are mostly 
assumed as normal random variables. To model connections between multiple nodes, the parameters of the 
Gaussian distribution representing a child node are dependent on the value of its parents [3]. Since our 
considerations focus on the strength of influence estimation of certain factors based on different pre-defined 
status, we motivate the usage of discrete nodes. Of course, if we would focus on representing the very 
physical process of a specific application with a Bayesian network, the required discretisation of factors 
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having a continuous domain causes approximation errors. Here we want to clarify that this specific task 
differs from the paper’s intention of depicting a quality monitoring framework to handle multiple related 
digital twins, which may represent different physical processes. 

In the application of coupled digital twins, Figure 1 gives an example with various sub-instances of the 
holistic twin showing probabilities of holding a tolerance value, which influences the quality of the combined 
modelling. For simplification, the variables are assumed to be binary with the probability of 𝑷𝑷(+) to fulfil 
a given tolerance criteria for the modelling quality and a probability of 𝑷𝑷(−) to violate this criteria. As an 
example, a deviation from a target position with respect to a certain axis can be considered. 

 

 

 

 

 

3.1 Why using Bayesian networks 

For the tasks of influence evaluation, deviation analysis and quality improvement of specific machining 
processes various statistical and ML-based approaches have been proposed. These methods mostly focus on 
regression and classification models [14], fault tree analysis [15] as well as design of experiment techniques 
[16]. Often, an advanced adjustment to the considered physical process is required to set up empirical 
formulas. Bayesian networks allow to make statements on dependencies, strengths of influences and quality 
without the need of such investigations and enable a comparison between multiple manufacturing processes, 
which possibly are subject to different physical processes. For such purposes, Bayesian networks especially 
can cope with highly transient as well as non-linear processes and offer to 

- Lean on a limited basis of information, 
- Work with uncertain or incomplete data, 
- Evaluate the inherent structure of influences, 
- Rate the certainty. 

Bayesian networks can be build up in three different manners. One way is to use expert knowledge only to 
construct the network structure, i.e. the dependencies between factors, and define its parameters, namely the 
(conditional) probabilities of each node. Another approach is to deploy pure datasets without any additional 
information and learn the network structure as well as the parameters by applying estimation procedures. In 
between these two ways there is also a hybrid approach using both data and knowledge, which will arise as 
the appropriate strategy for this paper’s application scenario presented in section 4. 

3.2 Structure and parameter learning 

If the dependencies of the process properties are not specified by domain knowledge, the network structure 
is learnable either via constraint- or score-based methods. The first set of algorithms use conditional 
independence test to find the dependencies whereas the score-based approaches produce a series of candidate 

Figure 1: Exemplary Bayesian network for coupled digital twins 
considering multiple process layers 
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networks and rank them with correspondent scores [3,17]. Besides, there are hybrid methods like the widely 
used hill climbing algorithms. 

Since the structural dependencies are already defined in the application setup of coupled digital twins (from 
sub-instances of the holistic twin to coupled models), the key focus is on how to evaluate the degree of these 
dependencies and to estimate the overall prediction quality. Formally speaking, a Bayesian network with 
nodes 𝓧𝓧 = {𝑿𝑿𝟏𝟏, … ,𝑿𝑿𝒎𝒎} reflects a unique joint probability distribution 𝓟𝓟(𝓧𝓧) given by the product of all 
conditional probability tables 

𝒫𝒫(𝒳𝒳) =  �𝒫𝒫�𝑋𝑋𝑖𝑖�Pa(𝑋𝑋𝑖𝑖)�
𝑚𝑚

𝑖𝑖=1

 (1) 

where Pa(𝑿𝑿𝒊𝒊) depicts the parent nodes of 𝑿𝑿𝒊𝒊, i.e. the variables 𝑿𝑿𝒊𝒊 is dependent on. The conditional 
probabilities are represented as parameters 𝜽𝜽𝒊𝒊𝒊𝒊𝒊𝒊 = 𝓟𝓟(𝑿𝑿𝒊𝒊 = 𝒌𝒌|Pa(𝑿𝑿𝒊𝒊) = 𝒋𝒋),𝟏𝟏 ≤ 𝒌𝒌 ≤ 𝒔𝒔𝒊𝒊,𝟏𝟏 ≤ 𝒋𝒋 ≤ 𝒑𝒑𝒊𝒊 with 𝒔𝒔𝒊𝒊 
specifying the number of states of 𝑿𝑿𝒊𝒊 and 𝒑𝒑𝒊𝒊 the one of its parent nodes. Given a dataset (set of 𝒏𝒏 ∈ ℕ 
samples) 𝓓𝓓 = {𝑫𝑫𝟏𝟏, … ,𝑫𝑫𝒏𝒏}, we are searching the parameters 𝜽𝜽 = {𝜽𝜽𝐢𝐢𝐢𝐢𝐢𝐢} of the network’s conditional 
probabilities such that samples taken from the Bayesian network with parameters 𝜽𝜽 match the data 𝓓𝓓 best.  

The typical principle is to perform maximum likelihood estimation (MLE), i.e. to search for the parameters 
𝜽𝜽 which have most likely produced the dataset 𝓓𝓓. A commonly used learning method, which is based on 
MLE, is the expectation maximization (EM) algorithm. This approach can also cope with incomplete data 
and iteratively proceeds an expectation- and a maximisation step until convergence. Starting with an initial 
estimate 𝜽𝜽𝟎𝟎 (e.g. a uniform distribution), the former completes the dataset based on the current estimate 
whereas the latter re-estimates the parameters 𝜽𝜽𝒕𝒕 → 𝜽𝜽𝒕𝒕+𝟏𝟏 via MLE. 

3.3 Inference and strength of influence 

After having learned the parameters 𝜃𝜃, the Bayesian network offers a compact representation of the 
conditional probabilities for all influence factors. With the help of the network as a probabilistic reasoning 
system, the change of each factor’s likelihood can be observed if the values of some variables are given. 
Proceeding inference estimates the updated likelihoods of all dependent characteristics, for instance the 
quality of the combined modelling in Figure 1. For our consideration of studying the effect that various sub-
instances exert on the holistic quality, causal and inter-causal types of inference can be applied. 

Inference enables an approach to measure the strength of influence for each node in the Bayesian network 
based on the conditional probability distributions. In principle, the strength of influence a parent node 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝 ∈
𝒳𝒳 exerts on a child node 𝑋𝑋𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝒳𝒳 is specified by the change in probabilities of 𝑋𝑋𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖 in case of given 
evidence for 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝 compared to the case of no evidence for the parent. In doing so, we assume 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝 to adopt 
each possible status individually and measure the particular change in the child’s probabilities using a 
Euclidean distance for probability distributions. Each of these distances is weighted by the likelihood of 
𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝 to assume the respective status. The strength of influence a parent node 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝 has on a child 𝑋𝑋𝑐𝑐ℎ𝑖𝑖𝑙𝑙𝑑𝑑 thus 
calculates as 

𝐼𝐼𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝(𝑋𝑋𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖) =  
1
√2

⋅ � 𝒫𝒫(

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝

𝑗𝑗=1

𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑗𝑗) �� ��𝒫𝒫(𝑋𝑋𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖�𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑗𝑗��
𝑖𝑖
− [𝒫𝒫(𝑋𝑋𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖)]𝑖𝑖�

2
𝑠𝑠𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖=1

 (2) 

where 𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝 denotes the number of status the factor 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝 can adapt and 𝑠𝑠𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖 the number of status for 𝑋𝑋𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖, 
respectively. With [𝒫𝒫(⋅)]𝑖𝑖 indicating the 𝑖𝑖-th component of a discrete probability distribution, the square 
root term represents the Euclidean distance of 𝒫𝒫(𝑋𝑋𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖) and 𝒫𝒫(𝑋𝑋𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖�𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝�. Furthermore, a normalisation 
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factor in (2) ensures 𝐼𝐼𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝(𝑋𝑋𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖) ∈ [0,1]. Higher values of 𝐼𝐼𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝(𝑋𝑋𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖) indicate stronger influences of 
parent nodes on their children. 

4. Practical application 

For the evaluation of the presented method, the data of a digital twin of a 3-axis milling operation is used as 
an example. The generation of these digital twins is described in detail in [18] and provides the data basis 
for the following method. These digital twins contain all relevant meta and process data acquired during the 
machining process. The process data includes all measurement and control signals of the machine tool and 
any additional sensor information that can be determined via additional measurement technology. 
Specifically, these are the nominal/actual positions, the drive currents, and the nominal/actual speed 
information of the axes and spindles. All this information is linked to the meta information (tool data, 
technology data, material data and machine data) [19]. These provide the basis for subsequently integrating 
technological calculation models (tool engagement models, kinematic models, surface location error models 
etc.) and thereby generating a digital twin across the complete process chain. In this way, all location- and 
time-discrete technological information of the tool-workpiece interaction can be calculated and its effect on 
the produced component can be determined. With the help of Bayesian networks, the factors influencing the 
position deviations (∆𝒙𝒙, ∆𝒚𝒚,∆𝒛𝒛) of the TCP are to be determined as a function of the axis-specific jerk (𝒋𝒋𝒙𝒙, 
𝒋𝒋𝒚𝒚, 𝒋𝒋𝒛𝒛), the spindle load (𝑳𝑳𝑺𝑺), the axis-specific drive currents (𝑰𝑰𝒙𝒙, 𝑰𝑰𝒚𝒚, 𝑰𝑰𝒛𝒛) and the cutting forces according to 
the Kienzle cutting force model 

𝐹𝐹𝑐𝑐(𝜑𝜑) = 𝑘𝑘𝑐𝑐1,1𝑏𝑏ℎ(𝜑𝜑)
1−𝑚𝑚𝑐𝑐 (3) 

for the respective milling operations [20]. To determine the cutting forces 𝑭𝑭𝒄𝒄(𝝋𝝋), in addition to the cutting 
force constants (𝒌𝒌𝒄𝒄𝟏𝟏.𝟏𝟏 ,𝒎𝒎𝒄𝒄), the tool engagement parameters (𝒃𝒃, 𝒉𝒉𝝋𝝋) must also be determined, which cannot 
be derived from the pure axis position data of the machine. For this purpose, a material removal simulation 
(based on a multi-dexel model) based on the actual position of the TCP must be used to determine the time- 
and location-discrete entry angle 𝝋𝝋𝒊𝒊𝒊𝒊 and exit angle 𝝋𝝋𝒐𝒐𝒐𝒐𝒐𝒐 together with the chip width of the undeformed 
chip 𝒃𝒃. For the subsequent calculation of the mean undeformed chip thickness 𝒉𝒉𝒎𝒎 from 

ℎ𝑚𝑚 =
1
𝜑𝜑𝑐𝑐

⋅ � ℎ(𝜑𝜑)𝑑𝑑𝑑𝑑
𝜑𝜑𝑜𝑜𝑜𝑜𝑜𝑜

𝜑𝜑𝑖𝑖𝑖𝑖
=

1
𝜑𝜑𝑐𝑐

⋅ 𝑓𝑓𝑧𝑧 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠 𝜅𝜅 (𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑𝑖𝑖𝑖𝑖 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑𝑜𝑜𝑜𝑜𝑜𝑜), (4) 

the tooth feed 𝒇𝒇𝒛𝒛 must also be calculated. Using the time stamp of the individual tool positions, the feed per 
tooth 𝒇𝒇𝒛𝒛, can be calculated by numerically differentiating the actual positions in 𝒙𝒙-, 𝒚𝒚- and 𝒛𝒛-directions and 
using the corresponding actual spindle speed. The calculation of the mean cutting forces 𝑭𝑭�𝒄𝒄 is specified in 
[21]. 

As test machine, a WEMAS VZ-1250 Quick with a HEIDENHAIN TNC620 control was selected. An 
aerospace component was manufactured on this test machine, for which four successive manufacturing steps 
are described here as examples (see Figure 2). For all manufacturing steps, the relevant process data is 
measured with a sampling rate of 2 ms. The exact process for acquiring process data is described in [18]. In 
the first process step (face milling operation – T25), the raw material is face milled, for which the feed 
movement mainly takes place in the x-direction. In the following processing step (drilling operation – T26), 
a drilling operation takes place, where the main feed movement is in the z-direction. In the subsequent 
contour milling (contour milling operation - T27) and finishing (end milling operation – T28), no main feed 
movement direction can be identified, which is why the determination of the factors influencing the position 
deviations is particularly relevant for these machining operations. 
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Machine: WEMAS VZ-1250 Quick T25: Face milling operation T26: Drilling operation 

   
Finished part after four process steps T28: End milling Operation T27: Contour milling Ooperation 

Figure 2: Application scenario using the example of a milling operation 

4.1 Network structure and data preparation 

Based on expert knowledge, the structure of the Bayesian network is constructed of three layers. The upper 
layer contains the jerk values of the x-, y- and z-axis and the mean cutting force. It is intended to evaluate 
the influence of these values on the total positional deviation and the axial deviations. Since preliminary 
computations show the axial deviations are influential dominated mainly by the jerk on the same axis, these 
axial deviations are equipped with only a single parent node in order to simplify the network structure. 
Differences in the strength of influence with respect to the axial jerks are considered on the total deviation. 
The same procedure applies for the positional deviations in the second layer whose influence on the nominal 
amperages in the bottom layer are examined. To also include a more global approach of estimating influence, 
the spindle load is included into the bottom layer and is seen as a consequence of the positional axial 
deviations. Figure 3 summarises the structure of the constructed Bayesian network. Alongside, other network 
structures may be considered and compared against each other. 

For each part process the recorded data of the presented factors are assembled in a csv-file. A record of factor 
values belonging to a certain instant of time produce a sample for the parameter learning, i.e. we use each 
instant of time as an observation. Due to all the factors are on hand as continuous variables, a pre-processing 
is required to discretise the data. We subdivide the individual factors into three classes. The smallest 10% of 
values are classified as »small« whereas the largest 10% of values are considered as »large«. The remaining 
part is squeezed in the group »medium«. This choice is motivated on the one hand to ensure that each 
combination of the variables’ discrete values holds sufficient data records and on the other hand to depict 
the effects of lighting particular small respectively large measurements of certain influential variables. The 
nominal amperage streams of data 𝜄𝜄𝑛𝑛𝑛𝑛𝑛𝑛 are primarily smoothed via a running average and centred 
corresponding to 

𝜄𝜄 = �ι𝑛𝑛𝑛𝑛𝑛𝑛 − 𝜄𝜄𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒� (5) 

Figure 3: Structure of the Bayesian network 
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where furthermore only the absolute amperage values are considered due to the applied discretisation 
criterion. The latter also deploys on the jerk values. The cutting force is sampled in lower frequency than 
other measures. Hence, the interim values are interpolated using cubic 𝐶𝐶2-splines. 

4.2 Learning process and influence evaluation 

To handle the Bayesian networks, we use the R-package »bnlearn« as well as the software »GeNIe«. The 
parameters of the network are learned with the EM-algorithm, which in our case corresponds to the MLE-
method using an initial estimate since the considered machining process provides a complete and extensive 
dataset. Having learned the parameters in the form of the conditional probability tables, we examine the 
strengths of influence for each node (parent-child-relation) as described in section 3. Figure 4 illustrates 
the strength of influence calculation by considering changes in the child’s probabilities, if evidence on the 
parent is added, and the comparison of multiple influential variables on a common child node. 

An approach to present such single-edge influences combined with the network structure is to watch the 
strengths of influence as weights to the edges. Thus, we get a global comparison of all degrees of influence 
and at the same time as local contrasts in relation to a certain node and its parents. To illustrate how to 
evaluate the dominating influence factors of a specific measure, we exemplary consider the effects of the 
axial jerks and the cutting force on the total deviation and furthermore the influence of the axial deviations 
on the spindle load. 

4.3 Process characteristics and results of influence analysis 

The holistic application is analysed by a group of experts and the characteristics of each single operation 
(T25 - T28) are exposed for a comparison with and justification of the findings of the presented approach. 
The face milling operation (T25) is characterised by uniform motion, which leads to small differences in the 
influence strengths of axial jerks. Slight influences of the jerk of the z-axis result from the approach 
movements, whereby the approach movement was realised at high speeds (rapid traverse). The axis 
determining the feed direction compensates for the main influence on the workload of the spindle. The face 
milling operation exhibits the x-axis whereas the drilling operation (T26) shows the z-axis as the determining 
one. Furthermore, T26 does not show noteworthy changes in velocity. Together with the just punctual 
processing of the drilling operation, this results in few influence of the axial jerks on the total deviation. In 
contrast, we see in the contour milling operation (T27) and end milling operation (T28) comparatively rapid 
changes in machining velocity and direction, which strengthen the influence of the cutting force. Although 
the end milling operation (T28) holds smaller forces compared to the contour milling operation (T27), but 
particularly high axis speeds (finishing operation). Both the contour and end milling process exhibit the x-
y-plane as the cutting plane that therefore provides the feed force direction. Hence, the deviations of the 
corresponding axes should represent the most important influence factors. The same applies for the nominal 
amperages. 

The appertaining strengths of influences for the factors deviation, calculated using (2) with the presented 
approach, are depicted in Figures 5 and 6. 

Figure 4: Visualisation of the influence evaluation using (2) and comparison for multiple influencing factors of a 
common depended variable to identify the dominating factor 
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Figure 5 predicates few differences in the influence strengths for the face milling operation (T25) and drilling 
operation (T26), which confirms the smooth and regular movement characteristics of both processes. Due to 
the small-area processing in the drilling operation (T26), the influence strengths of the factors in this 
operation are particularly small. In contrast, we recognise a significant influence of the cutting force during 
the contour milling operation (T27) and end milling operation (T28) due to permanent changes in machining 
velocity and direction. Because of these characteristics, the comparison of the jerks is especially interesting. 
Thereby, the influence of the jerks of the x- and z-axis dominate the jerk of the y-axis. It has to be considered 
that the z-direction is considerably influenced by rapid traverse return strokes which do not influence the 
surface quality. Therefore, we conclude for this application, the greater the speeds, the more dominant the 
influence of the process-related factors (i.e. the cutting forces) are. 

Considering Figure 6, the face milling operation (T25) and drilling operation (T26) reflect that the highest 
estimated influence strengths on the spindle load belong to the axes corresponding to the feed direction. For 
contour milling operation (T27) and end milling operation (T28) we can identify the deviations of the x- and 
y-axis as the mainly impacting factors of the workload. With regard to the nominal amperages, the deviations 
of the x-axis affect the amperages most for the face milling operation (T25), whereas the contour milling 
operation (T27) and end milling operation (T28) point out the x- and y-axes as the dominating influencing 
factors, which covers the assessments by the group of experts. 

5. Quantum computing and Bayesian networks 

Both forward and inverse inference require a high computational effort in Bayesian networks including a 
large number of nodes. A method to handle such large-scale networks as well as to consider multiple 
structuring approaches in parallel consists in the technology of quantum computing, which is based on the 
usage of quantum bits (so called »qubits«). One decisive principle of qubits is superposition, i.e. the 
capability of qubits to be in the »classical« states of a bit 0 and 1 simultaneously. This characteristic forms 
the basis to represent the nodes together with their parameters as qubits. The superposition states of a qubit 
|𝝍𝝍〉 are denoted as |𝝍𝝍〉 = 𝜶𝜶|𝟎𝟎〉 + 𝜷𝜷|𝟏𝟏〉, where in quantum computing the classical basis states 0 and 1 are 
represented in Dirac notation. The complex coefficients 𝜶𝜶 and 𝜷𝜷 specify the probabilities of the qubits to 

Figure 6: Strength of influence evaluation for axial jerks and Kienzle cutting force on the total deviation Δtotal for each 
process step individually 

Figure 5: Strength of influence evaluation for axial deviations on the workload of the spindle LS 
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segue into a basis state when being measured with 𝓟𝓟(|𝝍𝝍〉 = |𝟎𝟎〉) = |𝜶𝜶|𝟐𝟐 and 𝓟𝓟(|𝝍𝝍〉 = |𝟏𝟏〉) = |𝜷𝜷|𝟐𝟐 at what 
the coefficients of a superposition have to hold |𝜶𝜶|𝟐𝟐 = |𝜷𝜷|𝟐𝟐 = 𝟏𝟏. 

To model a Bayesian network as a quantum circuit, each node is assigned to one or multiple qubits, 
depending on the number of discrete states the corresponding variable can be in. More precisely, ⌈log𝟐𝟐(𝒏𝒏)⌉ 
qubits are required to map the 𝒏𝒏 different discrete states of a random variable. The encoding of the 
probabilities to the parameters is done via rotational gates 𝑹𝑹𝒚𝒚(𝚽𝚽) (for nodes that are not dependent on other 
factors) and 𝒎𝒎-times controlled rotational gates 𝑪𝑪𝒎𝒎𝑹𝑹𝒚𝒚(𝚽𝚽) [22]. The rotation angles 𝚽𝚽 are determined by 
the parameters of the respective node in the Bayesian network. The second important principle of quantum 
computing, entanglement, enables to set the dependencies between multiple factors. The corresponding 
qubits are entangled via the controlled rotational gates, where 𝒎𝒎 corresponds to the number of parent nodes. 
The assembling of the Bayesian network is sometimes also referred to as qsample encoding [23]. 

Since in the presented milling process each node holds three states, two qubit are required to encode a factor. 
Once the network is encoded, we can set evidence via resetting of qubits (analogous to the procedure of 
Figure 4) and entangle them with ancillary qubits to encode the changed probability distribution of the child 
node. Then, the change in probabilities is measured via a swap test, which is a procedure of determining how 
much the states of two quantum registers differ. As the probability distributions are now directly encoded in 
particular quantum states, the swap test delivers the strengths of influence estimations via (2). The swap test 
provides a measurement parameter that is positively correlated to the actual distance. Such parameters are 
calculated as the inner product between normalised vectors, which consist in the qubits’ superposition states. 

In Figure 7, the parameter encoding in two qubits is shown for a 3-state node. Furthermore, the adequate 
swap test takes two quantum registers of two qubits each and delivers the result by measuring an ancillary 
register of corresponding size. To demonstrate the merely capability of the presented quantum algorithm, 
we implemented this approach on the IBM quantum systems including a quantum simulator with low error 
rates as well as real quantum hardware. We exemplary evaluated the setup of Figure 6 on the spindle load 
by the quantum simulator. As an extract, the results for the contour milling (T27) are included in Figure 7, 
also showing the x- and y-axis as the dominating influence factors. 

Besides the advantage in storage, quantum computing offers a potentially quadratically improved runtime 
performance over conventional computing methods when it comes to inference, which is a subroutine to 
estimate the strengths of influence. This advantage is gained using a quantum version of rejection sampling 
as an approximative inference algorithm. The quantum method and its quadratic speedup is thereby based 
on the technique of amplitude amplification: Starting with a superposition of all possible solutions, the 
probability amplitude of the correct solution is reinforced gradually with a simultaneous decrease of the 
other amplitudes. At the end of this procedure, the true solution is given with very high probability. 

6. Conclusion and Outlook 

This article described how the characteristics of machining processes can be represented as Bayesian 
networks. After having formalised the measurement to evaluate strengths of influence, we demonstrated the 
applicability of this approach using a digital twin of a milling operation. In order to utilise available real data 
of a machining process, we focussed the practical application on a single digital twin, but the presented 

Figure 7: Parameter encoding for a node via rotation angles (a) and measurement of changes in probabilities via swap 
test (b) as two essential blocks of the quantum circuit, the results for influence estimation on spindle load for T27 (c) 
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methodology is directly transmissible to the context of coupled digital twins. The results of the presented 
approach reflected, on the one hand, the findings on the characteristics of the considered machining process, 
which underlines the applicability in a correct manner. On the other hand, additional evidence like an 
increased influence of the process-related factors at higher speeds was obtained. Moreover, the functionality 
of Bayesian networks and influence estimation is integrated in the context of quantum computing and the 
consequent potential advantages are depicted. Our current and future research directions are to develop an 
application to a holistic process chain and domains of different interrelated manufacturing processes along 
the value chain, and to develop broader quantum circuits capable of covering more complex application 
scenarios by combining Bayesian network construction and influence estimation in a single quantum 
algorithm. 
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