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Abstract. Recent advances in statistical and machine learn-
ing have opened the possibility of forecasting the behaviour
of chaotic systems using recurrent neural networks. In this
article we investigate the applicability of such a framework
to geophysical flows, known to involve multiple scales in
length, time and energy and to feature intermittency. We
show that both multiscale dynamics and intermittency intro-
duce severe limitations to the applicability of recurrent neu-
ral networks, both for short-term forecasts as well as for the
reconstruction of the underlying attractor. We suggest that
possible strategies to overcome such limitations should be
based on separating the smooth large-scale dynamics from
the intermittent/small-scale features. We test these ideas on
global sea-level pressure data for the past 40 years, a proxy of
the atmospheric circulation dynamics. Better short- and long-
term forecasts of sea-level pressure data can be obtained with
an optimal choice of spatial coarse graining and time filter-
ing.

1 Introduction

The advent of high-performance computing has paved the
way for advanced analyses of high-dimensional datasets (Jor-
dan and Mitchell, 2015; LeCun et al., 2015). Those successes
have naturally raised the question of whether it is possible
to learn the behaviour of a dynamical system without re-

solving or even without knowing the underlying evolution
equations. Such an interest is motivated on the one hand by
the fact that many complex systems still miss a universally
accepted state equation – e.g. brain dynamics (Bassett and
Sporns, 2017) and macro-economical and financial systems
(Quinlan et al., 2019) – and, on the other, by the need to
reduce the complexity of the dynamical evolution of the sys-
tems for which the underlying equations are known – e.g. on
geophysical and turbulent flows (Wang et al., 2017). Evolu-
tion equations are difficult to solve for large systems such as
geophysical flows, so that approximations and parameteriza-
tions are needed for meteorological and climatological ap-
plications (Buchanan, 2019). These difficulties are enhanced
by those encountered in the modelling of phase transitions
that lead to cloud formation and convection, which are ma-
jor sources of uncertainty in climate modelling (Bony et al.,
2015). Machine learning techniques capable of learning geo-
physical flow dynamics would help improve those approxi-
mations and avoid running costly simulations resolving ex-
plicitly all spatial/temporal scales.

Recently, several efforts have been made to apply ma-
chine learning to the prediction of geophysical data (Wu
et al., 2018), to learn parameterizations of subgrid processes
in climate models (Krasnopolsky et al., 2005; Krasnopol-
sky and Fox-Rabinovitz, 2006; Rasp et al., 2018; Gentine
et al., 2018; Brenowitz and Bretherton, 2018, 2019; Yuval
and O’Gorman, 2020; Gettelman et al., 2021; Krasnopolsky
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et al., 2013), to forecast (Liu et al., 2015; Grover et al., 2015;
Haupt et al., 2018; Weyn et al., 2019) and nowcast (i.e. ex-
tremely short-term forecasting) weather variables (Xingjian
et al., 2015; Shi et al., 2017; Sprenger et al., 2017), and
to quantify the uncertainty of deterministic weather predic-
tion (Scher and Messori, 2018). One of the greatest chal-
lenges is to replace equations of climate models with neu-
ral networks capable of producing reliable long- and short-
term forecasts of meteorological variables. A first great step
in this direction was the use of echo state networks (ESNs,
Jaeger, 2001), a particular case of recurrent neural networks
(RNNs), to forecast the behaviour of chaotic systems, such
as the Lorenz (1963) and Kuramoto–Sivashinsky dynam-
ics (Hyman and Nicolaenko, 1986). It was shown that ESN
predictions of both systems attain performances comparable
to those obtained with the exact equations (Pathak et al.,
2017, 2018). Good performances were obtained adopting
regularized ESNs in the short-term prediction of multidi-
mensional chaotic time series, both from simulated and real
data (Xu et al., 2018). This success motivated several follow-
up studies with a focus on meteorological and climate data.
These are based on the idea of feeding various statistical
learning algorithms with data issued from dynamical sys-
tems of different complexity in order to study short-term pre-
dictability and capability of machine learning to reproduce
long-term features of the input data dynamics. Recent ex-
amples include equation-informed moment matching for the
Lorenz 1996 model (Lorenz, 1996; Schneider et al., 2017),
multi-layer perceptrons to reanalysis data (Scher, 2018), or
convolutional neural networks to simplified climate simula-
tion models (Dueben and Bauer, 2018; Scher and Messori,
2019). All these learning algorithms were capable of provid-
ing some short-term predictability but failed at obtaining a
long-term behaviour coherent with the input data.

The motivation for this study came from the evidence that
a straightforward application of ESNs to high-dimensional
geophysical data does not yield the same result quality ob-
tained by Pathak et al. (2018) for the Lorenz 1963 and
Kuramoto–Sivashinsky models. Here we will investigate the
causes of this behaviour. Indeed, previous results (Scher,
2018; Dueben and Bauer, 2018; Scher and Messori, 2019)
suggest that simulations of large-scale climate fields through
deep-learning algorithms are not as straightforward as those
of the chaotic systems considered by Pathak et al. (2018). We
identify two main mechanisms responsible for these limita-
tions: (i) the non-trivial interactions with small-scale motions
carrying energy at large scales and (ii) the intermittent na-
ture of the dynamics. Intermittency triggers large fluctuations
of observables of the motion in time and space (Schertzer
et al., 1997) and can result in non-smooth trajectories within
the flow, leading to local unpredictability and increasing the
number of degrees of freedom needed to describe the dynam-
ics (Paladin and Vulpiani, 1987).

By applying ESNs to multiscale and intermittent sys-
tems, we investigate how scale separation improves ESN

predictions. Our goal is to reproduce a surrogate of the
large-scale dynamics of global sea-level pressure fields, a
proxy of the atmospheric circulation. We begin by analysing
three different dynamical systems: we simulate the effects of
small scales by artificially introducing small-scale dynam-
ics in the Lorenz 1963 equations (Lorenz, 1963) via additive
noise, in the spirit of recent deep-learning studies with add-
on stochastic components (Mukhin et al., 2015; Seleznev
et al., 2019). We investigate the Pomeau–Manneville equa-
tions (Manneville, 1980) stochastically perturbed with addi-
tive noise to have an example of intermittent behaviour. We
then analyse the performances of ESNs in the Lorenz 1996
system (Lorenz, 1996). The dynamics of this system is meant
to mimic that of the atmospheric circulation, featuring both
large-scale and small-scale variables with an intermittent be-
haviour. For all of those systems as well as for the sea-level
pressure data, we show how the performances of ESNs in
predicting the behaviour of the system deteriorate rapidly
when small-scale dynamics feedback to large scales is impor-
tant. The idea of using a moving average for scale separation
is already established for meteorological variables (Eskridge
et al., 1997). We choose the ESN framework following the
results of Pathak et al. (2017, 2018) and an established lit-
erature about its ability to forecast chaotic time series and
its stability to noise. For example, Shi and Han (2007) and
Li et al. (2012) analyse and compare the predictive perfor-
mances of simple and improved ESNs on simulated and ob-
served 1D chaotic time series. We aim at understanding this
sensitivity in a deeper way while assessing the possibility of
reducing its impact on prediction through simple noise re-
duction methods.

The remainder of this article is organized as follows: in
Sect. 2, we give an overview of the ESN method (Sect. 2.1),
and then we introduce the metrics used to evaluate ESN per-
formance (Sect. 2.2) and the moving-average filter used to
improve ESN performance (Sect. 2.3). Section 3 presents the
results for each analysed system. First we show the results for
the perturbed Lorenz 1963 equations, then for the Pomeau–
Manneville intermittent map, and then for the Lorenz 1996
equations. Finally, we discuss the improvement in short-
term prediction and the long-term attractor reconstruction
obtained with the moving-average filter. We conclude by test-
ing these ideas on atmospheric circulation data.

2 Methods

Reservoir computing is a variant of recurrent neural networks
(RNNs) in which the input signal is connected to a fixed,
randomly assigned dynamical system called a reservoir (Hin-
aut, 2013). The principle of reservoir computing first consists
of projecting the input signal to a high-dimensional space
in order to obtain a non-linear representation of the signal
and then in performing a new projection between the high-
dimensional space and the output units, usually via linear
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regression or ridge regression. In our study, we use ESN, a
particular case of RNN where the output and the input have
the same dynamical form. In an ESN, neuron layers are re-
placed by a sparsely connected network (the reservoir), with
randomly assigned fixed weights. We harvest reservoir states
via a non-linear transform of the driving input and compute
the output weights to create reservoir-to-output connections.
The code is given in the Appendix, and it shows the parame-
ters used for the computations.

We now briefly describe the ESN implementation. Vec-
tors will be denoted in bold and matrices in upper case.
Let x(t) be the K-dimensional observable consisting of t =
1,2, . . .,T time iterations, originating from a dynamical sys-
tem, and r(t) be the N -dimensional reservoir state; then,

r(t + dt)= tanh(Wr(t)+Winx(t)), (1)

where W is the adjacency matrix of the reservoir: its dimen-
sions areN×N , andN is the number of neurons in the reser-
voir. In ESNs, the neuron layers of classic deep neural net-
works are replaced by a single layer consisting of a sparsely
connected random network, with coefficients uniformly dis-
tributed in [−0.5;0.5]. TheN×K-dimensional matrix Win is
the weight matrix of the connections between the input layer
and the reservoir, and the coefficients are randomly sampled,
as for W. The output of the network at time step t + dt is

Woutr(t + dt)= y(t + dt), (2)

where y(t+dt) is the ESN prediction, and Wout with dimen-
sionsK×N is the weight matrix of the connections between
the reservoir neurons and the output layer. We estimate Wout
via a ridge regression (Hastie et al., 2015):

Wout = ytrainr
T
[rrT − λI ]−1, (3)

with λ= 10−8 and ytrain ≡ {y(t) : (0< t < Ttrain)} as train-
ing datasets. Note that we have investigated different values
of λ spanning 10−8 < λ < 10−2 on the Lorenz 1963 exam-
ple and found little improvement only when the network size
was large, with λ partially preventing overfitting. Values of
λ < 10−8 have not been investigated because they are too
close to or below the numerical precision. In the prediction
phase we have a recurrent relationship:

r(t + dt)= tanh(Wr(t)+WinWoutr(t)). (4)

2.1 ESN performance indicators

In this paper, we use three different indicators of performance
of the ESN: a statistical distributional test to measure how the
distributions of observables derived from ESN match those
of the target data, a predictability horizon test and the initial
forecast error. They are described below.

2.1.1 Statistical distributional test

As a first diagnostic of the performances of ESNs, we aim
at assessing whether the marginal distribution of the forecast
values for a given dynamical system is significantly different
from the invariant distribution of the system itself. To this
purpose, we conduct a χ2 test (Cochran, 1952), designed as
follows. Let U be a system observable, linked to the original
variables of the systems via a function ζ , a function mapping
between two spaces, such that u(t)= ζ(x(t)) with support
RU and probability density function fU (u), and let u(t) be
a sample trajectory from U . Note that u(t) does not corre-
spond to x(t); it is constructed using the observable output
of the dynamical system. Let now f̂U (u) be an approxima-
tion of fU (u), namely the histogram of u over i = 1, . . .,M
bins. Note that, if u spans the entire phase space, f̂U (u) is the
numerical approximation of the Sinai–Ruelle–Bowen mea-
sure of the dynamical system (Eckmann and Ruelle, 1985;
Young, 2002). Let now V be the variable generated by the
ESN forecasting, with support RV = RU , v(t) the forecast
sample, gV(v) its probability density function and ĝV(v) the
histogram of the forecast sample. Formally, RU and RV are
Banach spaces, whose dimension depends on the choice of
the function ζ . For example, we will use as ζ s one of the
variables of the system or the sum of all the variables. We
test the null hypothesis that the marginal distribution of the
forecast sample is the same as the invariant distribution of the
system against the alternative hypothesis that the two distri-
butions are significantly different.

H0 : fU (u)= gV(v) for every u ∈ RU
H1 : fU (u) 6= gV(v) for any u ∈ RU

Under H0, f̂U (u) is the expected value for ĝV(v), which im-
plies that observed differences (ĝV(v)− f̂U (u)) are due to
random errors and are then independent and identically dis-
tributed Gaussian random variables. Statistical theory shows
that, given that H0 is true, the test statistics

6 =

M∑
i=1

(ĝiV(v)− f̂
i
U (u))

2

f̂ iU (u)
(5)

is distributed as a χ2 random variable with M degrees of
freedom, χ2(M). Then, to test the null hypothesis at the level
α, the observed value of the test statistics 6 is compared to
the critical value corresponding to the 1−α quantile of the
χ2 distribution, 6c = χ

2
1−α(M): if 6 >6c, the null hypoth-

esis must be rejected in favour of the specified alternative.
Since we are evaluating the proximity between distributions,
the Kullback–Leibler (KL) divergence could be considered a
more natural measure. However, we decide to rely on the χ2

test because of its feasibility while maintaining some equiv-
alence to KL. In fact, both the KL and χ2 are non-symmetric
statistical divergences, an ideal property when measuring a
proximity to a reference probability distribution (Karagrig-
oriou, 2012). It has been known for a long time (Berkson
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et al., 1980) that statistical estimation based on minimum χ2

is equivalent to most other objective functions, including the
maximum likelihood and, thus, the minimum KL. In fact, the
KL divergence is linked to maximum likelihood both in an
estimation and in a testing setting. In point estimation, maxi-
mum likelihood parameter estimates minimize the KL diver-
gence from the chosen statistical model; in hypothesis test-
ing, the KL divergence can be used to quantify the loss of
power of likelihood ratio tests in case of model misspecifica-
tion (Eguchi and Copas, 2006). On the other hand, in contrast
to the KL, the χ2 divergence has the advantage of converging
to a known distribution under the null hypothesis, indepen-
dently of the parametric form of the reference distribution.

In our setup, we encounter two limitations in using the
standard χ2 test. First, problems may arise when f̂U (u),
i.e. the sample distribution does not span the entire sup-
port of the invariant distribution of the system. We observe
this in a relatively small number of cases; since aggregat-
ing the bins would introduce unwanted complications, we
decide to discard the pathological cases, controlling the ef-
fect empirically as described below. Moreover, even pro-
ducing relatively large samples, we are not able to actually
observe the invariant distribution of the considered system,
which would require much longer simulations. As a con-
sequence, we would observe excessive rejection rates when
testing samples generated under H0.

We decide to control these two effects by using a Monte
Carlo approach. To this purpose, we generate 105 samples
u(t)= ζ(x(t)) under the null hypothesis, and we compute
the test statistic for each one according to Eq. (5). Then, we
use the (1−α) quantile of the empirical distribution of 6 –
instead of the theoretical χ2(M) – to determine the critical
threshold 6c. As a last remark, we notice that we are mak-
ing inferences in repeated test settings, as the performance
of the ESN is tested 105 times. Performing a high number of
independent tests at a chosen level α increases the observed
rejection rate: in fact, even if the samples are drawn under
H0, extreme events become more likely, resulting in an in-
creased probability of erroneously rejecting the null hypoth-
esis. To limit this effect, we apply the Bonferroni correction
(Bonferroni, 1936), testing each one of the m= 105 avail-
able samples at the level α′ = α

m
, with α = 0.05. Averaging

the test results over several sample pairs u(t), v(t), we ob-
tain a rejection rate of 0< φ < 1 that we use to measure the
adherence of an ESN trajectory v(t) to trajectories obtained
via the equations. If φ = 0, almost all the ESN trajectories
can shadow original trajectories; if φ = 1, none of the ESN
trajectories resemble those of the systems of equations.

2.1.2 Predictability horizon

As a measure of the predictability horizon of the ESN fore-
cast compared to the equations, we use the absolute predic-

tion error (APE),

APE(t)= |u(t)− v(t)|, (6)

and we define the predictability horizon τs as the first time
that APE exceeds a certain threshold s:

τs = inf{t,APE(t) > s}. (7)

Indeed, APE can equivalently be written as 1tu̇. We link
s to the average separation of observations in the observable
u and we fix

s =
1

T − 1

T−1∑
t=2
[u(t)− u(t − 1)].

We have tested the sensitivity of results against the exact def-
inition of s. We interpret τs as a natural measure of the Lya-
punov time ϑ , namely the time it takes for an ensemble of
trajectories of a dynamical system to diverge (Faranda et al.,
2012; Panichi and Turchetti, 2018).

2.1.3 Initial forecast error

The initial error is given by η = APE(t = 1), for the first time
step after the initial condition at t = 0. We expect η to reduce
as the training time increases.

2.2 Moving-average filter

Equipped with these indicators, we analyse two sets of simu-
lations performed with and without smoothing, which was
implemented using a moving-average filter. The moving-
average operation is the integral of u(t) between t and t−w,
where w is the window size of the moving average. The sim-
ple moving-average filter can be seen as a non-parametric
time series smoother (see e.g. Brockwell and Davis, 2016,
chapter 1.5). It can be applied to smooth out (relatively) high
frequencies in a time series, both to de-noise the observa-
tions of a process and to estimate trend-cycle components, if
present. Moving averaging consists, in practice, in replacing
the trajectory x(t) by a value x(f )(t), obtained by averaging
the previousw observations. If the time dimension is discrete
(like in the Pomeau–Manneville system), it is defined as

x(f )(t)=
1
w

w−1∑
i=0

x(t − i), (8)

while for continuous time systems (like the Lorenz 1963 sys-
tem), the sum is formally replaced by an integral:

x(f )(t)=
1
w

t+w∫
t

x(ς)dς. (9)

We can define the residuals as

δx(t)= x(f )(t)− x(t). (10)
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In practice, the computation always refers to the discrete time
case, as continuous time systems are also sampled at finite
time steps. Since echo state networks are known to be sen-
sitive to noise (see e.g. Shi and Han, 2007), we exploit the
simple moving-average filter to smooth out high-frequency
noise and assess the results for different smoothing windows
w. We find that the choice of the moving-average window
w must respect two conditions: it should be large enough to
smooth out the noise but smaller than the characteristic time
τ of the large-scale fluctuations of the system. For chaotic
systems, τ can be derived knowing the rate of exponential
divergence of the trajectories, a quantity linked to the Lya-
punov exponents (Wolf et al., 1985), and τ is known as the
Lyapunov time.

We also note that we can express explicitly the original
variables x(t) as a function of the filtered variables x(f )(t)

as

x(t)= w(x(f )(t)− x(f )(t − 1))+ x(t −w). (11)

We will test this formula for stochastically perturbed sys-
tems to evaluate the error introduced by the use of residuals
δx.

2.3 Testing ESN on filtered dynamics

Here we describe the algorithm used to test ESN perfor-
mance on filtered dynamics.

1. Simulate the reference trajectory x(t) using the equa-
tions of the dynamical systems and standardize x(t) by
subtracting the mean and dividing by its standard devi-
ation.

2. Perform the moving-average filter to obtain x(f )(t).

3. Extract from x(f )(t) a training set x
(f )

train(t)≡ {x(t) :

(0< t < Ttrain)}.

4. Train the ESN on the x
(f )

train(t) dataset.

5. Obtain the ESN forecast y(f )(t) for Ttrain < t < T . Note
that the relation between y(t) and x(t) is given in
Eqs. (1)–(2).

6. Add residuals (Eq. 10) to the y(f )(t) sample as y(t)=

y(f )(t)+ δx, where δx is randomly sampled from the
δx

(f )

train(t).

7. Compute the observables v(t)= ζ(y(t)) and u(t)=

ζ(x(Ttrain < t < T ). Note that x(Ttrain < t < T ) is the
ensemble of true values of the original dynamical sys-
tem.

8. Using u(t) and v(t), compute the metrics φ, τ and η and
evaluate the forecasts.

As an alternative to step 6, one can also use Eq. (11) and
obtain

v(t)' w(v(f )(t)− v(f )(t − 1))+ v(t −w), (12)

which does not require the use of residuals δx(t). Here
v(f )(t)= ζ(y(f )(t))). The latter equation is only approxi-
mate because of the moving-average filter.

3 Results

The systems we analyse are the Lorenz 1963 attrac-
tor (Lorenz, 1963) with the classical parameters, dis-
cretized with an Euler scheme and dt = 0.001, the Pomeau–
Manneville intermittent map (Manneville, 1980), the Lorenz
1996 equations (Lorenz, 1996) and the NCEP sea-level pres-
sure data (Saha et al., 2014).

3.1 Lorenz 1963 equations

The Lorenz system is a simplified model of Rayleigh–Benard
convection, derived by Edward Northon Lorenz (Lorenz,
1963). It is an autonomous continuous dynamical system
with three variables {x,y,z} parameterizing respectively the
convective motion, the horizontal temperature gradient and
the vertical temperature gradient. It is written as

dx
dt
= σ(y− x)+ εξx(t),

dy
dt
=−xz+ %x− y+ εξy(t),

dz
dt
= xy− bz+ εξz(t), (13)

where σ , % and b are three parameters, σ mimicking the
Prandtl number, % the reduced Rayleigh number and b the
geometry of convection cells. The Lorenz model is usually
defined using Eq. (13), with σ = 10, % = 28 and b = 8/3. A
deterministic trajectory of the system is shown in Fig. 1a.
It has been obtained by numerically integrating the Lorenz
equations with an Euler scheme (dt = 0.001). We are aware
that an advanced time stepper (e.g. Runge–Kutta) would pro-
vide better accuracy. However, when considering daily or 6-
hourly data, as commonly done in climate sciences and anal-
yses, we hardly are in the case of a smooth time stepper. We
therefore stick to the Euler method for similarity to the cli-
mate data used in the last section of the paper. The system is
perturbed via additive noise: ξx(t),ξy(t) and ξz(t) are inde-
pendent and identically distributed (i.i.d.) random variables
all drawn from a Gaussian distribution. The initial conditions
are randomly selected within a long trajectory of 5× 106 it-
erations. First, we study the dependence of the ESN on the
training length in the deterministic system (ε = 0, Fig. 1b–
d). We analyse the behaviour of the rejection rate φ (panel
b), the predictability horizon τs (panel c) and the initial er-
ror η (panel d) as a function of the training sample size. Our
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analysis suggests that t ∼ 102 is a minimum sufficient choice
for the training window. We compare this time to the typical
timescales of the motion of the systems, determined via the
maximum Lyapunov exponent λ. For the Lorenz 1963 sys-
tem, λ= 0.9, so that the Lyapunov time ϑ ≈O

(
1
λ

)
≈ 1.1.

From the previous analysis we should train the network at
least for t > 100ϑ . For the other systems analysed in this
article, we take this condition as a lower boundary for the
training times.

To exemplify the effectiveness of the moving-average filter
in improving the machine learning performances, in Fig. 2
we show 10 ESN trajectories obtained without (black) and
with (red) a moving-average window w = 0.01 and compare
them to the reference trajectory (blue) obtained with ε = 0.1.
The value ofw = 10dt = 0.01 respects the conditionw� ϑ .
Indeed, the APE averaged over the two groups of trajecto-
ries (Fig. 2b) shows an evident gain in accuracy (a factor
of ∼ 10) when the moving-average procedure is applied. We
now study in a more systematic way the dependence of the
ESN performance on noise intensity ε, network size N and
for three different averaging windows w = 0, w = 0.01, and
w = 0.05. We produce, for each combination, 100 ESN fore-
casts. Figure 3 shows φ (a), log(τs=1) (b) and log(η) (c) com-
puted setting the u≡ x variable of the Lorenz 1963 system
(results qualitatively do not depend on the chosen variable).
In each panel from left to right the moving-average window
is increasing; upper sub-panels are obtained using the exact
expression in Eq. (12) and lower panels using the residuals in
Eq. (10). For increasing noise intensity and for small reser-
voir sizes, the performances without moving averages (left
sub-panels) rapidly get worse. The moving-average smooth-
ing with w = 0.01 (central sub-panels) improves the perfor-
mance for log(τs=1) (b) and log(η) (c), except when the noise
is too large (ε = 1). Hereafter we denote with log the natu-
ral logarithm. When the moving-average window is too large
(right panels), the performances of φ decrease. This failure
can be attributed to the fact that residuals δx (Eq. 10) are of
the same order of magnitude of the ESN-predicted fields for
large ε. Indeed, if we use the formula provided in Eq. (12)
as an alternative to step 6, we can evaluate the error intro-
duced in the residuals. The results shown in Fig. 3 suggest
that residuals can be used without problems when the noise is
small compared with the dynamics. When ε is close to 1, the
residuals overlay the deterministic dynamics and ESN fore-
casts are poor. In this case, the exact formulation in Eq. (12)
appears much better.

3.2 Pomeau–Manneville intermittent map

Several dynamical systems, including the Earth’s climate,
display intermittency; i.e. the time series of a variable issued
by the system can experience sudden chaotic fluctuations as
well as a predictable behaviour where the observables have
small fluctuations. In atmospheric dynamics, such behaviour

is observed in the switching between zonal and meridional
phases of the mid-latitude dynamics if a time series of the
wind speed at one location is observed: when a cyclonic
structure passes through the area, the wind has high values
and large fluctuations, and when an anticyclonic structure is
present, the wind is low and fluctuations are smaller (Weeks
et al., 1997; Faranda et al., 2016). It is then of practical inter-
est to study the performance of ESNs in Pomeau–Manneville
predictions as they are a first prototypical example of the in-
termittent behaviour found in climate data.

In particular, the Pomeau–Manneville (Manneville, 1980)
map is probably the simplest example of intermittent be-
haviour, produced by a 1D discrete deterministic map given
by

xt+1 =mod(xt + x1+a
t ,1)+ εξ(t), (14)

where 0< a < 1 is a parameter. We use a = 0.91 in this
study and a trajectory consisting of 5× 105 iterations. The
system is perturbed via additive noise ξ(t) drawn from a
Gaussian distribution, and initial conditions are randomly
drawn from a long trajectory, as for the Lorenz 1963 sys-
tem. It is well known that Pomeau–Manneville systems ex-
hibit sub-exponential separation of nearby trajectories, and
then the Lyapunov exponent is λ= 0. However, one can de-
fine a Lyapunov exponent for the non-ergodic phase of the
dynamics and extract a characteristic timescale (Korabel and
Barkai, 2009). From this latter reference, we can derive a
value λ' 0.2 for a = 0.91, implying w < τ ' 5. For the
Pomeau–Manneville map, we set u(t)≡ x(t). We find that
the best matches between ESNs and equations in terms of
the φ indicator are obtained for w = 3.

Results for the Pomeau–Manneville map are shown in
Fig. 4. We first observe that the ESN forecast of the intermit-
tent dynamics of the Pomeau–Manneville map is much more
challenging than for the Lorenz system as a consequence of
the deterministic intermittent behaviour of this system. For
the simulations performed with w = 0, the ESN cannot sim-
ulate an intermittent behaviour, for all noise intensities and
reservoir sizes. This is reflected in the behaviour of the in-
dicators. In the deterministic limit, the ESN fails to repro-
duce the invariant density in 80 % of the cases (φ ' 0.8). We
can therefore speculate that there is an intrinsic problem in
reproducing intermittency driven by the deterministic chaos.
For intermediate noise intensities, φ > 0.9 (Fig. 4a). The pre-
dictability horizon log(τs=0.5) for the short-term forecast is
small (Fig. 4d) and the initial error large (Fig. 4g). It ap-
pears that in smaller networks, the ESN keeps better track
of the initial conditions, so that the ensemble shows smaller
divergences log(τs=0.5). The moving-average procedure with
w = 3 partially improves the performances (Fig. 4b, c, e, f, h,
i), and it enables ESNs to simulate an intermittent behaviour
(Fig. 5). Performances are again better when using the exact
formula in Eq. (12) (Fig. 4b, e, h) than using the residuals δx
(Fig. 4c, f, i). Figure 5a shows the intermittent behaviour of
the data generated with the ESN trained on moving-average
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Figure 1. (a) Lorenz 1963 attractor obtained with an Euler scheme with dt = 0.001, σ = 10, r = 28 and b = 8/3. Panels (b)–(d) show the
performance indicator as a function of the training time. (b) The rejection rate φ of the invariant density test for the x variable; (c) the
first time t such that APE> 1; (d) the initial error η. The error bar represents the average and the standard deviation of the mean over 100
realizations.

data of the Pomeau–Manneville system (red) and compared
to the target time series (blue). ESN simulations do not re-
produce the intermittency in the average of the target sig-
nal, which shifts from x ∼ 0 in the non-intermittent phase
to 0.2< x < 1 in the intermittent phase. ESN simulations
only show some second-order intermittency in the fluctua-
tions while keeping a constant average. Figure 5b displays
the power spectra showing in both cases a power law decay,
which is typical of turbulent phenomena. Although the in-
termittent behaviour is captured, this realization of an ESN
shows that the values are concentrated around x = 0.5 for the
ESN prediction, whereas the non-intermittent phase peaks
around x = 0 for the target data.

3.3 The Lorenz 1996 system

Before running the ESN algorithm on actual climate data,
we test our idea in a more sophisticated, and yet still ide-
alized, model of atmospheric dynamics, namely the Lorenz
1996 equations (Lorenz, 1996). This model explicitly sepa-
rates two scales and therefore will provide a good test for our
ESN algorithm. The Lorenz 1996 system consists of a lattice
of large-scale resolved variables X, coupled to small-scale

variables Y , whose dynamics can be intermittent. The model
is defined via two sets of equations:

dXi
dt
=Xi−1(Xi+1−Xi−2)−Xi +F −

hc

b

J∑
j=1

Yj,i, (15)

dYj,i
dt
= cbYj+1,i(Yj−1,i −Yj+2,i)− cYj,i +

hc

b
Xi, (16)

where i = 1, . . ., I and j = 1,2, . . .,J denote respectively the
number of large-scale X and small-scale Y variables. Large-
scale variables are meant to represent the meanders of the
jet stream driving the weather at mid latitudes. The first term
on the right-hand side represents advection, the second dif-
fusion, while F mimics an external forcing. The system is
controlled via the parameters b and c (the timescale of the
fast variables compared to the small variables) and via h (the
coupling between large and small scales). From now on, we
fix I = 30, J = 5 and F = b = 10 as these parameters are
typically used to explore the behaviour of the system (Frank
et al., 2014). We integrate the equations with an Euler scheme
(dt = 10−3) from the initial conditions Yj,i =Xi = F , where
only one mode is perturbed as Xi=1 = F + ε and Yj,i=1 =
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Figure 2. (a) Trajectories predicted using ESN on the Lorenz 1963 attractor for the variable x. The attractor is perturbed with Gaussian noise
with variance ε = 0.1. The target trajectory is shown in blue. Ten trajectories obtained without a moving average (black) show an earlier
divergence compared to 10 trajectories where the moving average is performed with a window size of w = 10dt = 0.01 (red). Panel (b)
shows the evolution of the log(APE) averaged over the trajectories for the cases with w = 0.01 (red) and w = 0 (black). The trajectories are
all obtained after training the ESN for the same training set consisting of a trajectory of 105 time steps. Each trajectory consists of 104 time
steps.

F+ε2. Here ε = 10−3. We discard about 2×103 iterations to
reach a stationary state on the attractor, and we retain 5×104

iterations. When c and h vary, different interactions between
large and small scales can be achieved. A few examples of
simulations of the first mode X1 and Y1 are given in Fig. 6.
Figure 6a, c show simulations obtained for h= 1 by varying
c: the larger c, the more intermittent the behaviour of the fast
scales. Figure 6b, d show simulations obtained for different
coupling h at fixed c = 10: when h= 0, there is no small-
scale dynamics.

For the Lorenz 1996 model, we do not need to apply a
moving-average filter to the data, as we can train the ESN on
the large-scale variables only. Indeed, we can explore what
happens to the ESN performances if we turn on and off in-
termittency and/or the small- to large-scale coupling, without
introducing any additional noise term. Moreover, we can also
learn the Lorenz 1996 dynamics on the X variables only or
learn the dynamics on both X and Y variables. The purpose
of this analysis is to assess whether the ESNs are capable of
learning the dynamics of the large-scale variables X alone

and how this capability is influenced by the coupling and
the intermittency of the small-scale variables Y . Using the
same simulations presented in Fig. 6, we train the ESN on the
first 2.5× 104 iterations, and then perform, changing the ini-
tial conditions to 100 different ESN predictions for 2.5×104

more iterations. We apply our performance indicators not to
the entire I -dimensional X variable (X1, . . .,XI ), as the χ2

test becomes intractable in high dimensions, but rather to the
average of the large-scale variables X. Consistently with our
notation, it means that u(t)≡

∑I
i=1Xi(t). The behaviour of

each variable Xi is similar, so the average is representative
of the collective behaviour. The rate of failure φ is very high
(not shown) because even when the dynamics is well cap-
tured by the ESN in terms of characteristic timescales and
spatial scales, the predicted variables are not scaled and cen-
tred like those of the original systems. For the following anal-
ysis, we therefore replace φ with the χ2 distance 6 (Eq. 5).
The use of6 allows for better highlighting of the differences
in the ESN performance with respect to the chosen param-
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Figure 3. Lorenz 1963 analysis for increasing noise intensity ε (x axes) and number of neurons N (y axes). The colour scale represents φ
the rate of failure of the χ2 test (size α = 0.05) (a); the logarithm of predictability horizon log(τs=1) (b); the logarithm of initial error log(η)
(c). These diagnostics have been computed on the observable u(t)≡ x(t). All the values are averages over 30 realizations. Left-hand-side
sub-panels refer to results without moving averages, central sub-panels with averaging window w = 0.01, and right-hand-side panels with
averaging window w = 0.03. Upper sub-panels are obtained using the exact expression in Eq. (12) and lower sub-panels using the residuals
in Eq. (10). The trajectories are all obtained after training the ESN for 105 time steps. Each trajectory consists of 104 time steps.

eters. The same considerations also apply to the analysis of
the sea-level pressure data reported in the next paragraph.

Results of the ESN simulations for the Lorenz 1996 sys-
tem are reported in Fig. 7. In Fig. 7a, c, e, ESN predictions
are obtained by varying c at fixed h= 1 and in Fig. 7b, d, f
by varying h at fixed c = 10. The continuous lines refer to
results obtained by feeding the ESN with only the X vari-
ables, dotted lines with both X and Y . For the χ2 distance 6
(Fig. 7a, b), performances show a large dependence on both
intermittency c and coupling h. First of all, we remark that
learning both X and Y variables leads to higher distances 6,

except for the non-intermittent case, c = 1. For c > 1, the dy-
namics learnt on both X and Y never settles on a stationary
state resembling that of the Lorenz 1996 model. When c > 1
and only the dynamics of the X variables is learnt, the de-
pendence on N when h is varied is non-monotonic, and bet-
ter performances are achieved for 800<N < 1200. For this
range, the dynamics settles on stationary states whose spatio-
temporal evolution resembles that of the Lorenz 1996 model,
although the variability of timescales and spatial scales is dif-
ferent from the target. An example is provided in Fig. 8 for
N = 800. This figure shows an average example of the per-
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Figure 4. Analysis of the Pomeau–Manneville system for increasing noise intensity ε (x axes) and number of neuronsN (y axes). The colour
scale represents φ the rate of failure of the χ2 test (size α = 0.05) (a–c); the logarithm of the predictability horizon log(τs=0.5) (d–f); the
logarithm of initial error log(η) (g–i). These diagnostics have been computed on the observable u(t)≡ x(t). All the values are averages over
30 realizations. Panels (a), (d), and (g) refer to results without moving averages, (b), (c), (e), (f), (h), and (i) with averaging window w = 3,
(c), (f), and (i). Panels (b), (e), and (h) are obtained using the exact expression in Eq. (12) and (c), (f), and (i) using the residuals δx in
Eq. (10). The trajectories are all obtained after training the ESN for 105 time steps. Each trajectory consists of 104 time steps.

formances of ESNs in reproducing the Lorenz 1996 system
when the fit succeeds. For comparison, we refer to the re-
sults by Vlachas et al. (2020), which show that better fits
of the Lorenz 1996 dynamics can be obtained using back-
propagation algorithms.

Let us now analyse the two indicators of short-term fore-
casts. Figure 7c, d display the predictability horizon τs with
s = 1. The best performances are achieved for the non-
intermittent case c = 1 and learning both X and Y . When
only X is learnt, we again get better performances in terms
of τs for rather small network sizes. The performances for
c > 1 are better when only X variables are learnt. The good
performances of ESNs in learning only the large-scale vari-
ables X are even more surprising when looking at initial er-
ror η (Fig. 7), which is 1 order of magnitude smaller when X
and Y are learnt. Despite this advantage in the initial condi-
tions, the ESN performances on (X,Y ) are better only when
the dynamics of Y is non-intermittent. We find clear indica-

tions that large intermittency (c = 25) and strong small- to
large-scale variables coupling (h= 1) worsen the ESN per-
formances, supporting the claims made for the Lorenz 1963
and Pomeau–Manneville systems.

3.4 The NCEP sea-level pressure data

We now test the effectiveness of the moving-average proce-
dure in learning the behaviour of multiscale and intermittent
systems on climate data issued by reanalysis projects. We
use data from the National Centers for Environmental Pre-
diction (NCEP) version 2 (Saha et al., 2014) with a horizon-
tal resolution of 2.5◦. We adopt the global 6-hourly sea-level
pressure (SLP) field from 1979 as the meteorological vari-
able proxy for the atmospheric circulation. It traces cyclones
(anticyclones) with minima (maxima) of the SLP fields. The
major modes of variability affecting mid-latitude weather are
often defined in terms of the empirical orthogonal functions
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Figure 5. Pomeau–Manneville ESN simulation (red) showing an intermittent behaviour and compared to the target trajectory (blue). The
ESN trajectory is obtained after training the ESN for 105 time steps using the moving-average time series with w = 3. It consists of 104 time
steps. Cases w = 0 are not shown as trajectories always diverge. Evolution of trajectories in time (a) and Fourier power spectra (b).

Figure 6. Lorenz 1996 simulations for the large-scale variable X1 (a, b) and small-scale variable Y1,1 (c, d). Panels (a, c) show simulations
varying c at fixed h= 1. The larger the c, the more intermittent the behaviour of the fast scales. Panels (b, d) show simulations varying the
coupling h for fixed c = 10. When h= 0, there is no small-scale dynamics. y axes are in arbitrary units, and time series are shifted for better
visibility.
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Figure 7. Lorenz 1996 ESN prediction performance for u(t)≡
∑I
i=1Xi(t). (a, b) χ2 distance 6; (c, d) the predictability horizon τs with

s = 1. (e, f) The initial error η in hPa. In (a, c, e) ESN predictions are made varying c at fixed h= 1. In (b, d, f) ESN predictions are made
varying h at fixed c = 10. Continuous lines show ESN prediction performance made considering X variables only, dotted lines considering
both X and Y variables.

(EOFs) of SLP and a wealth of other atmospheric features
(Hurrell, 1995; Moore et al., 2013), ranging from teleconnec-
tion patterns to storm track activity to atmospheric blocking,
and can be diagnosed from the SLP field.

The training dataset consists therefore of a gridded time
series SLP(t) consisting of ∼ 14600 time realizations of
the pressure field over a grid of spatial size 72 longi-
tudes× 73 latitudes. Our observable u(t)≡ 〈SLP(t)〉lon,lat,
where brackets indicate the spatial average. In addition to
the time moving-average filter, we also investigate the ef-
fect of spatial coarse graining of the SLP fields by a factor

c and perform the learning on the reduced fields. We use the
nearest neighbour approximation, which consists of taking
from the original dataset the closest value to the coarse grid.
Compared with methods based on averaging or dimension
reduction techniques such as EOFs, the nearest neighbour
approach has the advantage of not removing the extremes
(except if the extreme is not in one of the closest grid points)
and preserve cyclonic and anticyclonic structures. For c = 2
we obtain a horizontal resolution of 5◦ and for c = 4 a res-
olution of 10◦. For c = 4 the information on the SLP field
close to the poles is lost. However, in the remainder of the
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Figure 8. Example of (a) target Lorenz 1996 spatio-temporal evolution of large-scale variables X for c = 1,h= 1 and (b) ESN prediction
realized with N = 800 neurons. Note that the colours are not on the same scale for the two panels.

geographical domain, the coarse-grained fields still capture
the positions of cyclonic and anticyclonic structures. Indeed,
as shown in Faranda et al. (2017), this coarse-grained field
still preserves the dynamical properties of the original one.
There is therefore a certain amount of redundant information
on the original 2.5◦ horizontal-resolution SLP fields.

The dependence of the quality of the prediction for the
sea-level pressure NCEPv2 data on the coarse-graining fac-
tor c and on the moving-average window size w is shown
in Fig. 9. We show the results obtained using the residuals
(Eq. 10) as the exact method is not straightforwardly adapt-
able to systems with both spatial and temporal components.
Figure 9a–c show the distance from the invariant density us-
ing the χ2 distance 6. Here it is clear that by increasing w,
we get better forecasts with smaller network sizesN . A large
difference for the predictability expressed as predictability
horizon τs , s = 1.5 hPa (Fig. 9d–f) emerges when SLP fields
are coarse-grained. We gain up to 10 h in the predictability
horizon with respect to the forecasts performed on the orig-
inal fields (c = 0). This gain is also reflected by the initial
error η (Fig. 9g–i). Note also that 6 blow-up for larger N is
related to the long-time instability of the ESN. The blow only
affects global indicator 6 and not τs and η, which are com-
puted as short-term properties. From the combination of all
the indicators, after a visual inspection, we can identify the
best set of parameters:w = 12 h,N = 200 and c = 4. Indeed,

this is the case such that with the smallest network we get al-
most the minimal χ2 distance T , the highest predictability
(32 h) and one of the lowest initial errors. We also note that,
for c = 0 (panels c and i), the fit always diverges for small
network sizes.

We compare in detail the results obtained for two 10-year
predictions with w = 0 h and w = 12 h atN = 200 and c = 4
fixed. At the beginning of the forecast time (Supplement
Video 1), the target field (panel a) is close to both that ob-
tained with w = 0 h (panel b) and w = 12 h (panel c). When
looking at a very late time (Supplement Video 2), of course
we do not expect to see agreement among the three datasets.
Indeed, we are well beyond the predictability horizon. How-
ever, we note that the dynamics for the run with w = 0 h is
steady: positions of cyclones and anticyclones barely evolve
with time. Instead, the run with w = 12 h shows a richer dy-
namical evolution with generation and annihilation of cy-
clones. A similar effect can be observed in the ESN predic-
tion of the Lorenz 1996 system shown in Fig. 8b where the
quasi-horizontal patterns indicate less spatial mobility than
the original system (Fig. 8a).

In order to assess the performances of the two ESNs
with and without moving averages in a more quantitative
way, we present the probability density functions for u(t)≡
〈SLP(t)〉lon,lat in Fig. 10a. The distribution obtained for the
moving average w = 12 h matches better than the run w =
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Figure 9. Dependence of the quality of the results for the prediction of the sea-level pressure NCEPv2 data on the coarse-graining factor
c and on the moving-average window size w. The observable used is u(t)≡ 〈SLP(t)〉lon,lat. (a–c) χ2 distance log(6); (d–f) predictability
horizon (in hours) τs , s = 1.5 hPa; (g–i) logarithm of initial error η. Different coarse-graining factors c are shown with different colours. (a,
d, g) w = 0, (b, e, h) w = 12 h, (c, f, i) w = 24 h.

0 h that of the target data. Figure 10b–d show the Fourier
power spectra for the target data, with the typical decay of
a turbulent climate signal. The non-filtered ESN simulation
W = 0 shows a spectrum with very low energy for high fre-
quency and an absence of the daily cycle (no peak at value
100). The simulation with w = 12 h also shows a lower en-
ergy for weekly or monthly timescales, but it is the correct
peak for the daily cycle and the right energy at subdaily
timescales. Therefore, the spectral analysis also shows a real
improvement in using moving-average data.

4 Discussion

We have analysed the performances of ESNs in reproduc-
ing both the short- and long-term dynamics of observables
of geophysical flows. The motivation for this study came
from the evidence that a straightforward application of ESNs
to high-dimensional geophysical data (such as the 6-hourly
global gridded sea-level pressure data) does not yield the
same result quality obtained by Pathak et al. (2018) for the
Lorenz 1963 and Kuramoto–Sivashinsky models. Here we

have investigated the causes of this behaviour and identi-
fied two main bottlenecks: (i) intermittency and (ii) the pres-
ence of multiple dynamical scales, which both appear in geo-
physical data. In order to illustrate this effect, we have first
analysed two low-dimensional systems, namely the Lorenz
(1963) and Manneville (1980) equation. To mimic multiple
dynamical scales, we have added noise terms to the dynam-
ics. The performances of ESNs in predicting rapidly drop
when the systems are perturbed with noise. Filtering the
noise allows us to partially recover predictability. It also en-
ables us to simulate some qualitative intermittent behaviour
in the Pomeau–Manneville dynamics. This feature could be
explored by changing the degree of intermittency in the
Pomeau–Manneville map as well as performing parameter
tuning in ESNs. This is left for future work. Our study also
suggests that deterministic ESNs with a smooth, continuous
activation function cannot be expected to produce trajecto-
ries that look spiking/stochastic/rapidly changing. Most pre-
vious studies on ESNs (e.g. Pathak et al., 2018) were han-
dling relatively smooth signals and not such rapidly changing
signals. Although it does not come as a surprise that utilizing
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Figure 10. (a) Probability density function and (b) Fourier power spectra for u(t)≡ 〈SLP(t)〉lon,lat for the target NCEPv2 SLP data (blue),
an ESN with c = 4 and w = 0 h (red), and an ESN with c = 4 and w = 12 h (black).

the ESN on the time-averaged dynamics and then adding a
stochastic residual improve performance, the main insights
are the intricate dependence of the ESN performance on the
noise structure and the fact that, even for a non-smooth sig-
nal, ESNs with hyperbolic tangent functions can be used to
study systems that have intermittent or multiscale dynam-
ics. Here we have used a simple moving-average filter and
shown that a careful choice of the moving-average window
can enhance predictability. As an intermediate step between
the low-dimensional models and the application to the sea-
level pressure data, we have analysed the ESN performances
on the Lorenz (1996) system. This system was introduced
to mimic the behaviour of the atmospheric jet at mid lati-
tudes and features a lattice of large-scale variables, each con-
nected to small-scale variables. Both the coupling between
large and small scales and intermittency can be tuned in the
model, giving rise to a plethora of behaviours. For the Lorenz
1996 model, we did not apply a moving-average filter to the
data, as we can train the ESN on the large-scale variables

only. Our computations have shown that, whenever the small
scales are intermittent or the coupling is strong, learning the
dynamics of the coarse-grained variable is more effective,
both in terms of computation time and performances. The
results also apply to geophysical datasets: here we analysed
the atmospheric circulation, represented by sea-level pres-
sure fields. Again we have shown that both a spatial coarse
graining and a time moving-average filter improve the ESN
performances.

Our results may appear rather counterintuitive, as the
weather and climate modelling communities are moving to-
wards extending simulations of physical processes to small
scales. As an example, we cite the use of highly resolved
convection-permitting simulations (Fosser et al., 2015) as
well as the use of stochastic (and therefore non-smooth)
parameterizations in weather models (Weisheimer et al.,
2014). We have, however, a few heuristic arguments for why
the coarse-gaining and filtering operations should improve
the ESN performances. First, the moving-average operation
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helps both in smoothing the signal and providing the ESN
with wider temporal information. In some sense, this is rem-
iniscent of the embedding procedure (Cao, 1997), where the
signal behaviour is reconstructed by providing not only in-
formation on the previous time step, but also on previous
times depending on the complexity. The filtering procedure
can also be motivated by the fact that the active degrees of
freedom for the sea-level pressure data are limited. This has
been confirmed by Faranda et al. (2017) by coarse graining
these data and showing that the active degrees of freedom
are independent of the resolution in the same range explored
in this study. Therefore, including small scales in the learn-
ing of sea-level pressure data does not provide additional in-
formation on the dynamics and push towards overfitting and
saturating the ESN with redundant information. The latter
consideration also places some caveats on the generality of
our results: we believe that this procedure is not beneficial
whenever a clear separation of scales is not achievable, e.g.
in non-confined 3D turbulence. Moreover, in this study, three
sources of stochasticity were present: (i) in the random ma-
trices and reservoir, (ii) in the perturbed initial conditions
and (iii) in the ESN simulations when using moving-average-
filtered data with sampled δx components. The first one is in-
herent to the model definition. The perturbations of the start-
ing conditions allow characterization of the sensitivity of our
ESN approach to the initial conditions. The stochasticity in-
duced by the additive noise δx provides a distributional fore-
cast at each time t . Although this latter noise can be useful
for simulating multiple trajectories and evaluating their long-
term behaviour, in practice, i.e. in the case where an ESN
would be used operationally to generate forecasts, one might
not want to employ a stochastic formulation with an additive
noise but rather the explicit and deterministic formulation in
Eq. (12). This exemplifies the interest of our ESN approach
for possible distinction between forecasts and long-term sim-
ulations and therefore makes it flexible to adapt to the case
of interest.

Our results, obtained using ESNs, should also be distin-
guished from those obtained using other RNN approaches.
Vlachas et al. (2020) and Levine et al. (2021) suggest that,
although ESNs have the capability for memory, they of-
ten struggle to represent it when compared to fully trained
RNNs. This essentially defeats the purpose of ESNs, as they
are supposed to learn memory. In particular, it will be in-
teresting to test whether all experiments reported here could
be repeated with a simple artificial neural network, Gaus-
sian process regression, random feature map, or other data-
driven function approximator that does not have the dynam-
ical structure of RNNs/ESNs (Cheng et al., 2008; Gottwald
and Reich, 2021). In future work, it will be interesting to use
other learning architectures and other methods of separat-
ing large- from small-scale components (Wold et al., 1987;
Froyland et al., 2014; Kwasniok, 1996). Finally, our results
give a more formal framework for applications of machine
learning techniques to geophysical data. Deep-learning ap-
proaches have proven useful in performing learning at dif-
ferent timescales and spatial scales whenever each layer is
specialized in learning some specific features of the dynam-
ics (Bolton and Zanna, 2019; Gentine et al., 2018). Indeed,
several difficulties encountered in the application of machine
learning to climate data could be overcome if the appropriate
framework is used, but this requires a critical understanding
of the limitations of the learning techniques.
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Appendix A: Numerical code

We report here the MATLAB code used for the computa-
tion of the echo state network. This code is adapted from
the original code available here: https://mantas.info/code/
simple_esn/ (last access: 28 August 2021).

A1 ESN training

function [Win, W, Wout]=ESN_training(data,Nres)

%This function train the Echo State network using the data provided.

%INPUTS:
%data: a matrix of the input data to train, arranged as space X time

%Nres: the number of neurons N to be used in the training

%OUTPUTS:
%Win: the input weight matrix which consists of random weights

%W: the network of neurons
%Wout: the output weights, they are adjusted to match the next iterations

inSize = size(data,1);
trainLen= size(data,2);
Win = (rand(Nres,1+inSize)-0.5) .* 1;
W = rand(Nres,Nres)-0.5;
% normalizing and setting spectral radius

opt.disp = 0;
rhoW = abs(eigs(W,1,'LM',opt));
W = W .* ( 1.25 /rhoW);
% memory allocation
X = zeros(1+inSize+Nres,trainLen-1);
Yt = data(:,2:end)';
x = zeros(Nres,1);
for t = 1:trainLen-1
u = data(:,t);
x = tanh( Win*[1;u] + W*x );
X(:,t) = [1;u;x];
end
reg = 1e-8; % regularization coefficient
Wout = ((X*X' + reg*eye(1+inSize+Nres)) \ (X*Yt))';

end
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A2 ESN prediction

function [Y_pred]=ESN_prediction(data,Win, W, Wout)

% This function returns the recurrent Echo State Network prediction

%INPUT:
%data: the full data matrix of the data to predict in the form (space*time)

%Win: input weights
%W: neurons matrix
%Wout: output weights
%OUTPUT:
%Y_pred: the ESN prediction
Y_pred = zeros(size(data,1),size(data,2) );

x = zeros(size(W,1),1);
u=data(:,1);
for t = 1:size(data,2)
x = tanh( Win*[1;u] + W*x );
y = Wout*[1;u;x];
Y_pred(:,t) = y;
u = y;
end
end
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Code and data availability. The numerical code used in this article
is provided in Appendix A (https://mantas.info/code/simple_esn/,
last access: 28 August 2021, Lukoševičius, 2021).

Supplement. The videos in the Supplement show the compari-
son between the sea-level pressure target field (a) from the NCEP
database versus Echo State Network forecasts (b, c) obtained vary-
ing filters length w. Video 1 shows the forecasts immediately af-
ter the training, Video 2 the foreacsts 24 000 h after the train-
ing. The supplement related to this article is available online
at: https://doi.org/10.5194/npg-28-423-2021-supplement.
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