

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

C o m p o s i n g d i v e r s e p o l i c i e s f o r

l o n g - h o r i z o n ta s k s

Da n i e l A n g e l ov A n g e l ov

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Perception, Action and Behaviour

School of Informatics

University of Edinburgh

2020

L ay S u m m a r y

Humans interact and solve different manipulation and planning tasks using a

variety of strategies and naturally adapt to the situation at hand. We alter the manner

of execution as we transition from one part of the task to another — e.g. from reaching

and pulling a book, to sliding it out and carefully regrasping it in place.

In contrast, when solving such long horizon tasks in the robotics domain, it is

common to represent this multistage process using identical building blocks, albeit in

a hierarchical fashion.

We argue that homogeneity is a limiting factor when solving diverse tasks. In

the first part of the thesis we show how we can embrace representational diversity

of the type of controllers — learned by trial and error, using observations or even

hand-crafted strategies — to solve long horizon tasks. We rely on demonstrators to

show the desired goal, which allows us to learn a way to compare how well the

current state matches the desired one. This gives us the ability to sequence the diverse

controllers.

In the second part we are interested in understanding what does a learned policy

pay attention to. We abstract the human demonstration into this model, and use cause

and effect strategy to manipulate what the model sees and track the changes in the

output.

Finally, we conclude by looking into how having a ‘physical dialogue‘ when

demonstrating a task can improve the robustness of the controller. When the robot’s

internal strategy coincides with the demonstration, it can in real time nudge into a

region where it’s more uncertain. This also provides a way to highlight regions of the

task that are crucial for completing it successfully.

ii

A b s t r a c t

Humans utilise a large diversity of control and reasoning methods to solve

different robot manipulation and motion planning tasks. This diversity should be

reflected in the strategies used by robots in the same domains. In current practice

involving sequential decision making over long horizons, even when the formulation

is a hierarchical one, it is common for all elements of this hierarchy to adopt the

same representation. For instance, the overall policy might be a switching model

over Markov Decision Processes (MDPs) or local feedback control laws. This may

not be well suited to a variety of naturally observed behaviours. For instance, when

picking up a book from a crowded shelf, we naturally switch between goal-directed

reaching, tactile regrasping, sliding the book until it is comfortably off an edge and

then once again goal-directed pick and place. It is rare that a single representational

form adequately captures this diversity, even in such a seemingly simple task.

When the robot must learn or adapt policies from experience, this poses significant

challenges. The mis-match between the representational choices and the diversity of

task types can result in a significant (sometimes exponential) increase in complexity

with respect to time, observation and state-space dimensionality and other attributes.

These and other factors can make the learning of such tasks in a “tabula rasa” setting

extremely difficult. However, if we were willing to adopt a multi-representational

framing of the problem, and allow for some of these constituent modules to be

learned in different ways (some from expert demonstration, some by trial and error,

and perhaps some being controllers designed from first principles in model-based

formulations) then the problem becomes much more tractable. The core hypothesis we

explore is that it is possible to devise such learning methods, and that they significantly

outperform conventional alternatives on robotic manipulation tasks of interest.

iii

In the first part of this thesis, we present a framework for sequentially composing

diverse policies facilitating the solution of long-horizon tasks. We rely on demon-

strations to provide a quick, not necessarily expert and optimal, way to convey the

desired outcome. We model the similarity to demonstrated states in a Goal Scoring

Estimator model. We show in a real robot experiment the benefits of diverse policies

relying on their own strong inductive biases to efficiently solve different aspects of the

task, through sequencing by the Goal Scoring Estimator model.

Next, we demonstrate how we can elicit policy structure through causal analysis

and task structure through more efficient demonstrations involving interventions. This

allows us to alter the manner of execution of a particular policy to match a desired

learned user specification. Building a surrogate model of the demonstrator gives us

the ability to causally reason about different aspects of the policy and which parts

of that policy are salient. We can observe how intervening in the world by placing

additional symbols impacts the validity of the original plan.

Finally, observing that ‘static’ imitation learning datasets can be limiting if we are

aiming to create more robust policies, we present the Learning from Inverse Intervention

framework. This allows the robot to simultaneously learn a policy while interacting

with the demonstrator. In this interaction, the robot intervenes when there is little

information gain and pushes the demonstrator to explore more informative areas

even as the demonstration is being performed in real-time. This interaction brings the

added benefit of drawing out information about the importance of different regions

of the task. We verify the salience by visually inspecting samples from a generative

model and by crafting plans that test these hypothetical areas.

These methods give us the ability to use demonstrations of a task, to build policies

for salient targets, to alter their manner of execution and inspect to understand the

causal structure, and to sequence them to solve novel tasks.

iv

“The purpose of abstraction is not to be vague,

but to create a new semantic level in which one can be absolutely precise.”

— Edsger Dijkstra

Ac k n o w l e d g m e n t s

It is commonly said that the PhD period is some of the most creative, stressful

and rewarding. The people around me, physically and spiritually, have had a big

impact on my ability to enjoy and grow during this time.

First and foremost, I want to thank my supervisor Subramanian Ramamoorthy.

He not only provided the ability to explore the academic world, but also truly grow

as a researcher.

I thank my family for their unwavering support and in their constant belief that

being a good person is of utmost importance.

I want to thank all the people in the lab, with whom I have spend countless days

and nights — the RAD group has been a truly supportive space — as they have had a

dramatic multiplier effect on the creativity and intellectual stimulation. I am grateful

for the lunch time conversations, which have always raised more questions than have

answered.

Specifically, I want to thank Svet, Yordan, Alex, Manny, who during the InSpace

days made sure I was not lost in the sea of knowledge and helped me steer the ship

of research towards new land.

This work was supported by the Engineering and Physical Sciences Research

Council, as part of the CDT in Robotics and Autonomous Systems at Heriot-Watt

University and The University of Edinburgh under Grant reference EP/L016834/1.

v

D e c l a r at i o n

I declare that this thesis was composed by myself, that the work contained herein

is my own except where explicitly stated otherwise in the text, and that this work

has not been submitted for any other degree or professional qualification except as

specified.

Daniel Angelov Angelov

P u b l i c at i o n s

The following publications have been composed during the course of this doctorate:

D. Angelov, Y. Hristov, S. Ramamoorthy. From demonstrations to task-space specific-

ations. Using causal analysis to extract rule parameterization from demonstrations.

Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS), Vol. 34(45), 2020. [7]

D. Angelov, Y. Hristov, M. Burke, S. Ramamoorthy. Composing Diverse Policies for

Temporally Extended Tasks. IEEE Robotics and Automation Letters (RA-L), Vol. 5(2),

2020. [4]

D. Angelov, Y. Hristov, S. Ramamoorthy. DynoPlan: Combining Motion Planning

and Deep Neural Network based Controllers for Safe HRL. In Proc. Multidisciplinary

Conference on Reinforcement Learning and Decision Making (RLDM), 2019. [5]

D. Angelov, Y. Hristov, S. Ramamoorthy. Using Causal Analysis to Learn Specifications

from Task Demonstrations. In Proc. International Conference on Autonomous Agents and

Multiagent Systems (AAMAS), 2019. [6]

D. Angelov, S. Ramamoorthy. Learning from Demonstration of Trajectory Preferences

through Causal Modeling and Inference. Robotics: Science and Systems Workshop on

Causal Imitation in Robotics (R:SS CIR), 2018. [8]

——————————–

D. Angelov, S. Ramamoorthy. LfII: Learning from Inverse Intervention during Demon-

strations, 2021.

vii

To my family.

C o n t e n t s

1 I n t r o d u c t i o n 1

1.1 Preface . 1

1.1.1 Skills Composition . 3

1.1.2 Choosing Sequences from Library 5

1.1.3 Skills Elicitation . 6

1.1.4 Policy decomposition . 6

1.2 Problem Statement . 7

1.3 Thesis Overview . 8

1.3.1 Composing Diverse Policies . 8

1.3.2 Structure Elicitation . 10

1.4 Major Contributions . 12

2 Ba c k g r o u n d 13

2.1 Imitation Learning for Robotics . 14

2.1.1 Learning from Demonstration . 14

2.1.2 Applications . 16

2.2 Causal Modelling . 17

2.2.1 Causal Analysis . 17

2.2.2 Causality in robotics . 21

2.3 Policy Composition . 22

2.3.1 Flat Policy Composition . 22

2.3.2 Hierarchical Control and Long Horizon Tasks 23

2.3.3 Policy Diversity . 25

2.4 Data Assessment . 25

2.4.1 Dataset curation . 27

2.4.2 Exploration, Active learning . 29

2.4.3 Data Augmentation and Synthetic Data 29

ix

C o n t e n t s x

3 S e q u e n t i a l ly C o m p o s i n g D i v e r s e Po l i c i e s 31

3.1 Introduction . 32

3.2 Related Work . 34

3.3 Method . 36

3.3.1 Goal Score Evaluation . 37

3.3.2 Controller Selection . 39

3.3.3 Controller Dynamics Modelling 39

3.4 Experimental Setup . 40

3.4.1 Simulated MDP . 40

3.4.2 Gear Assembly . 41

3.5 Experimental Results . 42

3.5.1 Simulated MDP . 43

3.5.2 Gear Assembly . 45

3.6 Limitations of Sequentially Composing Policies 48

3.7 Conclusion . 49

4 C au s a l A na ly s i s o n Po l i c y S t r u c t u r e 51

4.1 Introduction . 52

4.2 Related Work . 54

4.2.1 Learning from Demonstration . 54

4.2.2 Causality and State Representation 55

4.2.3 Constrained Optimization . 56

4.3 Problem Formulation . 57

4.4 Specification Model . 58

4.5 Causal Modeling . 60

4.5.1 Specification Model Differences 60

4.5.2 Symbol Influence on Specification Models 61

4.6 Parameterization of Specifications . 62

4.7 Experimental Setup . 63

4.7.1 Dataset . 63

4.7.2 Evaluation . 65

4.8 Results . 66

4.8.1 Model Accuracy . 66

4.8.2 Trajectory Backpropagation . 67

C o n t e n t s xi

4.8.3 Causal Analysis . 68

4.8.4 Parameterization of Task-Space Specifications 71

4.9 Limitations of Policy and Task Structure 73

4.10 Conclusion . 73

5 L f I I : L e a r n i n g f r o m I n v e r s e I n t e r v e n t i o n 75

5.1 Introduction . 76

5.2 Related work . 78

5.2.1 Salience Identification . 78

5.2.2 Demonstration Strategies . 79

5.3 Problem Formulation . 79

5.3.1 Diverse trajectory demonstration 80

5.3.2 State salience . 82

5.4 Experimental Setup . 83

5.5 Results . 87

5.6 Limitations of LfII . 93

5.7 Conclusion . 93

6 C o n c l u s i o n 94

6.1 Key Ideas . 94

6.1.1 Sequentially composing policies 95

6.1.2 Policy and Task Structure . 95

6.2 Future Work . 96

6.2.1 Structure embedding and transfer 96

6.2.2 Temporal memory tasks . 97

6.3 Concluding Remarks . 97

B i b l i o g r a p h y 99

L i s t o f F i g u r e s

Figure 1 Example tasks of the Tesla wiring harness. Images adapted

from [29]. 3

Figure 2 Composing controllers allows stable movement between any

two points covered by such controllers. 4

Figure 3 The hierarchical controller uses demonstrations as well as the

estimated future states under the different policies to choose

the best next controller. 9

Figure 4 Using demonstrators that generate solutions to similar tasks,

we can create a specification that differentiates between them

and allows to interpolate between the solution of the resulting

policies. 10

Figure 5 Transformations between the recorded medium and the em-

bodiment of the demonstration or imitation. Inspired from [9]. 15

Figure 6 A small graphical model containing two variables - X and Y. . . 17

Figure 7 Two different Structural Causal Model (SCM). In the first one,

the label is given to a parson, who creates the alternative repres-

entation. In the latter model, the intention of the human gener-

ates both the label and the image representation. For particular

set of functions f , g, h and noise variables NX, MX, MY the two

models would produce equivalent distributions of samples,

but are naturally different from an intervention perspective.

Adapted from [115]. 18

xii

L i s t o f F i g u r e s xiii

Figure 8 A - an ideal controller in the obstacle-free space. B - the sequen-

tial composition of the controllers, where the goal point of each

controller is within the attraction space of the following one. C

- Sequencing multiple controllers within the free-space of the

problem in cells, where each cell has a single active controller.

Adapted from [26]. 23

Figure 9 The state trajectory in the Markov Decision Process (MDP) is

repented as a sequence of states visited through time. By in-

creasing the abstractions of the action — compressing to larger

continuous transitions, less decisions need to be made by the

agent to reach a desired state. Adapted from [139] 24

Figure 10 Assembly characterization by a graph. 26

Figure 11 Propagation of the initial node distributions as part of the

variability of the assembly. 26

Figure 12 Data diversity between nature and the captured subset in our

datasets. 27

Figure 13 Robot setup for the gear assembly task. The robot needs to pick

up a gear by leveraging the surface of the table, slide it up to

an edge, grasp and move it in a collision free manner to the

other hand, before inserting the gear onto the base plate. 32

L i s t o f F i g u r e s xiv

Figure 14 Demonstrations were performed by using an HTC Vive control-

ler that directly teleoperates the end-effector of the PR2 robot

at 20 Hz. In the Gear Assembly Task, our controller library

includes motion planning (MP) primitives (operating on joint

angles) for picking up or moving and a convolutional neural

network (CNN) for inserting the gear (operating on images).

The MP primitives produce a trajectory for executing a task.

The CNN policy takes a latent representation of the image state

and generates a distribution over the target joint angles of the

robot. The Forward Dynamics models use a VAE representation

alongside an st+1 dynamics prediction network that uses the

same decoder. The Goal Score Estimator network takes in an

image and produces a distribution over how well this image

maps to a particular point in the demonstrations. 38

Figure 15 The 19-state MDP problem. The action space of the MDP is to

move “left” or “right”. The goal of the MDP problem is to reach

past state 19 and obtain the +1 reward, which is equivalent to a

termination state 20. 40

Figure 16 MDP solution. At timestep 0, a rollout of the 5 controllers is per-

formed with the dynamics model. The expected resulting state

is marked using vertical bars. The best performing controller is

used within the environment to obtain the next state - the red

line at state 5 and planning step 1. This process is iterated until

a desired state is reached. 42

Figure 17 Sensitivity to noise in the dynamics model and the Goal Score

Estimator for a world of size 100. The heatmap illustrates the

number of controllers that were used in order to reach the target

with a lower number - top left - being optimal. The number of

controllers varies between the optimal 8 and 72. 43

L i s t o f F i g u r e s xv

Figure 18 Images (a-c) illustrate key frames of the pick up policy that

involves making physical contact with the gear, sliding it along

the table surface to an edge and grasping it firmly in the new

position. (d) A visual overlay of 3 random pickup attempts. The

difference in grasp position relative to the gear is comparable

to the inner diameter and is a byproduct of the stochasticity

in the sliding and grasping action. This does not hinder the

performance of the Convolutional Neural Network (CNN) in

the full task. 44

Figure 19 The execution of a neural network policy for inserting the gear

on the peg. 46

Figure 20 The goal score metric calculated during the execution of a

random trial. During the first two motion planning controllers,

the model is monotonically increasing the goal metric. The

stochasticity of the neural network policy leads to oscillating

scores. Using different input streams, the prediction accuracy

could be altered — the scene head camera does not see the fine

details of the movement which the forearm cameras do, leading

to a closer to goal score. The peaks in the forearm cameras are

associated with states where the peg is extremely close to the

gear hole, highlighting that proximity. Example snapshots from

different views can be seen in Figure 21. 47

Figure 21 Snapshots of the input from different cameras on the PR2

robot demonstrate a moment, where the head camera cannot

differentiate how well the task is performed, the left camera

is optimistic from its perspective, while the right accurately

evaluates the performance as sub-optimal, leading to the goal

scoring network predicting a decreased value. 48

Figure 22 Example setup - the demonstrated task is to return the pepper

shaker to its original location—next to the salt shaker. Deciding

which objects to avoid when performing the task can be seen as

conditioning on the user specifications, implicitly given during

a demonstration phase. 53

L i s t o f F i g u r e s xvi

Figure 23 (1) Demonstrations that satisfy the user task specification main-

tain a distance from fragile objects (i.e. a wine glass), or fail

to satisfy the specification by moving over sharp items. (2) An

environment can have multiple clusters of valid trajectories in

the latent space, conditioned on user type. (3) The validity of

trajectories can be represented as a causal model. Whether a

trajectory is part of a cluster v is conditioned on the specific

path zθ , the environment zI , and the specification s. (4) The

minimum radius from the object centre - Tmin, which would

change the validity of a trajectory. 54

Figure 24 Left: Specification model architecture. The environmental im-

age I, I ∈ R100×100×3, is passed through an Encoder-Decoder

Convolutional Network, with a 16− 8− 4 3x3 convolutions,

followed by fully connected layer, to create a compressed rep-

resentation ZI , ZI ∈ R15. It is passed along with the trajectory

parameterization Zθ , Zθ ∈ R2 through a 3-layer fully connec-

ted classifier network that checks the validity of the trajectory

Cs(z) with respect to the spec. s. Right: The environment, com-

pressed to zI , is composed of objects (o1, .., oK). A trajectory T

is parameterized by zθ , which alongside the factors zI and user

specification s are part of the specification model. 58

Figure 25 Items used for the generation of the training (green) and test

(red) scenes. 63

Figure 26 Sample images used to represent example scenes. pinit and p f

are as defined in Section 4.3. Blue blobs represent potential

obstacles in the scene, which some user types might want to

avoid, and are only drawn for illustrative purposes. 64

Figure 27 An additional task of moving the the drill to the work space of

the other robot. 66

L i s t o f F i g u r e s xvii

Figure 28 The accuracy of the different models with respect to the number

of trajectories used within a scene. The lines indicate the mean

accuracy with 10 different seed randomizations of the data. As

the number of trajectories per scene increases, the performance

of all models improves, but especially with a lower number of

trajectories, our full model shows the biggest gains. 67

Figure 29 Sampling of the latent trajectory space — Zθ — of the preference

model with different specifications. It can be observed how for

the same region in the latent trajectory space — e.g. bottom

right — the different user types have different validity values

for the same trajectory — e.g. normal vs. careful user types

around the cutlery and glass. 68

Figure 30 An initial trajectory (seen in dark blue) is used as a base solution

to the task for difference scenes — rows 1, 2, 3. Furthermore,

the parametrisation zθ for each initial trajectory is continuously

updated so that it better abides by the semantics of the different

user specifications — columns a,b,c. It can be seen that as

the gradient steps in Zθ are taken, the resulting intermediate

trajectories are shifted to accommodate the preference of the

model until the final trajectory (light blue) is reached. Color

change from dark to light blue designates progressive gradient

steps. 69

Figure 31 The transition of the threshold distance (Tmin + Tobject−k) for

different number of positive and negative examples. We can

see the impact of increasing the number of trajectories when

we want to find an optimally maximum/minimum distance

around an object. 72

L i s t o f F i g u r e s xviii

Figure 32 The forward pass to obtain new demonstrations follows the

black and green arrows - the expert is demonstrating the task,

interrupted by the intervention strategy to augment the demon-

stration. The resulting trajectories are then stored and used to

update the robot policy, which is key to determining where

interventions are applied. As an offline “backward” pass (black

and red arrows), the problem structure is identified by creating

a problem graph and assessing the salience of the different

nodes. This is done by (1) creating trajectories that avoid par-

ticular nodes in the graph or (2) using the expert to help assess

the value of the node from a sampled reconstructed image. . . 77

Figure 33 G1 represents the initially connected graph after node genera-

tion. G2 is an example of an attempt to decrease the number of

edges connecting the nodes, to surface the underlying structure

of the problem. There is an intervention between the edge con-

necting v1 and v2, making the next possible action transition

the agent to v3 and beyond. 81

Figure 34 Tabletop inspection task. The robot needs to visit in a sequence

the red base, green gear, blue peg and finally, the purple small

gear. The blue ray-projecting camera illustrates the perspective

from which the network observes the scene. In the second robot

experiment, the parts are moving on the tabletop surface. . . . 85

Figure 35 Important clusters after trajectory generation through sampling

and those after point Visual Q&A. The blue regions are pro-

posed nodes, red are true areas of interest. 89

Figure 36 The 22 trajectories used for the task - we can observe that

when using interventions, the state space coverage increases

and would provide better representation. 90

Figure 37 Reconstructed images based on the center of clusters with

different radii. This shows a static no intervention scene. 91

Figure 38 Reconstructed images based on the center of clusters with

different radii. In the static Learning from Inverse Interven-

tion (LfII) case, there is a clear separation between the salient

regions and in-between nodes after the first 25% of nodes. In

the dynamic scene this assumption is less strong, but useful to

identify salient nodes. 92

L i s t o f Ta b l e s

Table 1 Performance of the control policy with different structure of

the Neural Network (NN) head. We evalute on the Gear Insert

task and how it would impact the full task performance. We

can select the small network, as the performance remains the

same with lower inference and training cost. 45

Table 2 Table of successful trials for different policies. MP - Motion

Planning, DMP - Dynamic Motion Primitive, CNN - Convo-

lutional Neural Network. The CNN policy has a maximum

of 50 steps to reach the goal. The symbol ‘*’ indicates policies

terminated early due to safety concerns of the shielding policy. 46

Table 3 The success rate of perturbing a non valid trajectory into a valid

one under different user specifications. 70

xix

L i s t o f Ta b l e s xx

Table 4 The respective distributions of validity p(v|X = x, S = s) with

different user types depending on the intervention performed

for a random trajectory to be valid under the user specification.

The first column shows the mean distribution over the inform-

ation obtained over the observations. The cells in bold indicate

significant change with respect to the no intervention column.

Those cells highlight a change, which is interpreted as a causal

link between the intervened symbol and the user type. 70

Table 5 The object threshold distances found from demonstrations of

different participants. The values in brackets indicate the radius

when optimizing for the minimal LT vs the maximum. 71

Table 6 The residual blocks have the following ResNet-like structure. . 86

Table 7 The ResBlocks from 6 are joined to form the Encoder and Decoder. 86

Table 8 Performance of different policies starting from uniformly sampled

locations within the corresponding region. The value indicates

what part of these trajectories reaches the region goal. The re-

gions are selected as follows - starting locations until goal 0 -

region 0, between goals 0 and 1 - region 1, etc. 88

Table 9 IoU of the clusters in regards to the ground truth regions of

interest after only 12 trajectories. Region 0 illustrates that with

good randomization of the starting location, the IoU improves

in all methods. To sustain this improvement, we need active

intervention during the demonstration (conditional random

and LfII). 88

L i s t o f Ta b l e s xxi

Table 10 The robustness of the policy is evaluated by performing per-

turbations in the action space with freq 0.1, with a magnitude

twice as large as that used during training, in a direction tan-

gential to the target. In the table below we observe the minimum

distance from the different parts, under different policies, and

the standard deviation in brackets, across 10 runs. We can see

that using the LfII we improve both the minimum distance to

the parts and the variance with which those are reached. The

scores for Part 1 are similar, as the random initialisation helps

to generalize. 90

Ac r o n y m s

AI Artificial Intelligence

BC Behavioral Cloning

BO Bayesian Optimization

CNN Convolutional Neural Network

DMP Dynamic Movement Primitive

DRL Deep Reinforcement Learning

GAN Generative Adversarial Network

GMM Gaussian Mixture Model

HRL Hierarchical Reinforcement Learning

IRL Inverse Reinforcement Learning

KL Kullback—Leibler

LfD Learning from Demonstration

LfII Learning from Inverse Intervention

LQR Linear Quadratic Controller

MDN Mixture Density Network

MDP Markov Decision Process

MPC Model Predictive Control

NN Neural Network

RL Reinforcement Learning

SCM Structural Causal Model

VAE Variational Autoencoder

xxii

1

I n t r o d u c t i o n

1.1 P r e f a c e

Robotics has been strongly marching into several of the Industry 4.0 technologies

[128]. The advancement of sensory capabilities as well as the need for more flexible

robotics drives the introduction of learning processes within the industry. As the

business needs have expanded beyond the structured and engineered ‘pick and place’

tasks, the techniques to support a changing supply of parts with a greater degree of

variability have been rapidly developing.

As industrial based tasks such as assemblies or chemical processes move towards

wider customization and ‘lean’ manufacturing with tight delivery deadlines (the prime

effect [99]), this naturally increases the diversity of processes involved. These processes

can be hand-engineered, removing slack from the critical path, or some parts slowly

shifting to learning based methods — learn exhaustively once, quickly fine-tune per

task. In this transition period, we are left with an open question on “How does one

combine the diversity of control strategies?”

Sequencing policies requires innovation, as relying on the current strategies of

Reinforcement Learning (RL) or Model Predictive Control (MPC) framework enforces

unneeded homogeneity in the controller strategies, which is exactly what is desired to

be avoided. A controller is a policy, a hand-specified or learned strategy that takes

in observations of the world and produces a control signal that when executed by

the agent, changes the world in a desired fashion. These methods usually attempt

to capture the complexity or the dynamics of the task into a specific model, for all

parts of the task. This approach, however, does not provide the desired application

1

1.1 P r e f a c e 2

diversity. We instead show the ability to quickly generate novel hierarchical controllers,

relying on multiple heterogeneous systems, for new tasks learning from just a few

demonstrations. Further, we examine the underlying learned policy to gain more fine

grained properties for both the hierarchy and the structure of the policy itself.

In current engineered processes, the main methods for automation vary according

to the human-robot ratio of in the workforce. At one end of the spectrum, we have

Henry Ford’s vision of the assembly line, where rope-and-pulleys are used to move the

car along different worker stations. This simple solution allowed for the time needed

to produce a car to be cut in half compared to bringing parts by a horse carriage.

At the other end, completely automated pipelines — “lights out” manufacturing —

complete their product with zero human intervention. Bemusingly, an example of

such manufacturing is the production of integrated circuits and robots themselves

[94, 110].

However, the above examples are specialized in domains that require little work

on diverse or challenging engineering tasks. A parallel development in automation is

targeting the collaborative aspect of work — with human and robot workers jointly

performing some operation. This relatively recent advancement works by positioning

the two close by and delegating the responsibility for doing the “tricky” for robots

tasks to the human worker and saving time on the assembly line by having the robot

prioritize easily automatable tasks.

More challenging tasks, such as manipulating wire and flexible materials, are still

considered outside the scope of the capabilities of even modern robotics targeting

industrial applications.

As an example, let us take one of the latest Tesla patent applications — Figure 1.

Being a company without the burden and constraint of an established manufacturing

process, they are perceived to be taking an exploratory approach that aims to change

both the standard manufacturing processes and the product itself to ease production.

The figure shows a wiring harness of a car, which is designed to be rigidified to make

it manipulable by robots. Even with such changes, the process of connecting the power

bars requires significant sensing and manipulation capabilities (1b) — the bars need

to be aligned both in position and orientation, delicate and small spacers inserted

in-between, and bolts slotted in and tightened to a particular torque level. Some of

1.1 P r e f a c e 3

(a) Full body semi-flexible wiring. (b) Bolt fastened connectors.

Figure 1: Example tasks of the Tesla wiring harness. Images adapted from [29].

these sub-tasks have natural solutions in the current process automation pipelines

through standard motion planning or engineering processes; others that deal with

flexible materials or unconstrained insertion require more innovative methods. The

flexibility allows for the shape to alter in a continuous fashion within boundaries

defined by the material, forcing the robot to sense the particular shape and react

accordingly. Each of these contingencies needs to be evaluated and programmed

individually, forcing the robot to reason online.

1.1.1 Skills Composition

These types of tasks highlight the diversity of skills, and by proxy controllers,

that needs to be executed in sequence to complete these relatively straightforward

for a human operator to demonstrate tasks. From a research perspective, each of

those previously highlighted skills has been viewed in isolation, yet solving the task

holistically has been reliant on a single process structure. This rigidity sidesteps some

of the advantages where a solution is developed, e.g. in a simulation, using a (learned)

physics model or completely data-driven. As a result, introducing a new model of a

product by creating a modification of either a piece or step of the process may make

all the skill acquired for the current task obsolete.

What is required is a flexible method that makes the process of sequencing skills

from different domains easy, with just a few demonstrations. It should naturally be

robust to disturbances and auto-correct what skill needs to be used from a library of

available high-level actions.

1.1 P r e f a c e 4

Figure 2: Composing controllers allows stable movement between any two points covered by
such controllers.

Inspiration for the outlined solution comes from the concept of covering the state

space of a task with controllers and navigating between different points within by

sequencing them as in [26]. The controllers represent a particular small problem sub-

task — a short-horizon skill and can be activated in a particular case — a subset of the

task-space we call an initiation region. This initiation region governs where the current

skill is contextually useful to be executed and is associated with the corresponding

performance metrics. Additionally, a skill is associated with a flag that can terminate it

— a useful signal to highlight that the skill has been completely executed and another

decision about what to do next can be initiated. Composition is assumed to be the

sequential application of one function and policy after another.

The diversity of skills allows for them to work on a variety of input sensor

streams - from camera and depth information, state representations, to proprioception.

These modalities are aligned with different output spaces - from poses to joint angles

and work at different horizons and frame-rates. Not surprisingly, they also provide

a different set of guarantees, which can be necessary for operation within certain

domains [103].

As a competing alternative, the algorithm designer has to choose a particular

representation, on top of which the skills can be developed for the particular problem.

1.1 P r e f a c e 5

For robotics it is common to rely on RGB-D (video camera and depth information)

in cases that require precise and contextual information and control the robot end-

effectors in Cartesian space. It is a resource intensive process that requires careful

mapping. On the other end of the spectrum, when quick decisions are important,

a high frame-rate camera can be used to torque control the joints of the robot. The

current frameworks lack an intuitive way to combine the variability to styles different

problems require.

1.1.2 Choosing Sequences from Library

In the proposed work, the compositionality comes from sequencing these skills

through overlapping regions of initiation and area of operation. For instance, in the

bolt inserting task, the controller can be activated when the context makes sense -

the robot is holding a bolt and a connector is visible. The skill should not necessarily

be conditioned on the number of connectors, their alignment, or whether they have

spacers.

Finding the right sequence of controllers relies upon a task policy. It can be

obtained by using expert demonstrations. This allows for a quick and intuitive method

to provide instructions about the task and the goal itself. Rather than relying upon the

recreation of reward associated with different steps along the trajectory, like Inverse

Reinforcement Learning (IRL), or directly learning to replicate the behaviour as in

Learning from Demonstration (LfD), we can learn a more straightforward representa-

tion. It provides an assessment of how far along the current state is in regards to the

demonstrations of the task.

Combining this ability with a dynamics model of each controller, which can

estimate what the sequence of future states for a given policy would be, we can

evaluate the futures in a hypothetical selection of each possible controller. Intuitively,

we can then select the skill that forces the world to be closest to solving the task. This

provides a method that uses demonstrations to guide the skill selection process for

solving long-horizon tasks.

1.1 P r e f a c e 6

1.1.3 Skills Elicitation

If we have demonstrations of the task, what else can we do? So far, we have relied

on knowing what the substructure of the task is by the explicit annotations of the

different skills used. However, whilst observing the full demonstration, if we perform

varying interventions either in the resulting model input or during the demonstrations

themselves, we can begin to understand the underlying structure of the problem.

One strategy would involve performing interventions in the environment of the

task, and through causal analysis extracting the causal strength of the change. By

using this type of augmentation, we can extract the items or symbols within the world

that the expert is paying attention to during the demonstration. Symbols are assumed

to be an instances or a visual instantiation of a particular object. For instance, the

trajectory of how the bolts are inserted may be dependant on whether parallel tasks

— such as connecting the battery — are performed, which may alter the degree of

caution with which the task is done. Through such modifications of the environment,

we can learn to differentiate between the states or preferences of the expert.

Moreover, we can begin to decompose the demonstrations to a set of rules that

represent the internal state of the expert — e.g. “Stay away by at least X from the

battery”. By parameterizing these symbolic rules, we can use them as part of the latter

task optimization procedure and as a result, create much more natural behaviour. This

capability also increases the potential diversity of policies in the skills library.

1.1.4 Policy decomposition

Previously, we were assessing the policy in a static, off-policy fashion after

completely fine-tuning the controllers and applying them to varying situations to

extract the embedded information.

An alternative strategy to decompose the policy would be to look at interven-

tions during training of the demonstration itself. This has the increased benefit of

incrementally gaining insight into the policy alongside its increased performance.

Current methods for blending expert and robot control do this sequentially — the

robot executes a policy, with the human providing clarification actions when the robot

1.2 P r o b l e m S tat e m e n t 7

is uncertain, overlaying the correct action after the fact, or alternatively, the human

expert having the capability to intervene within the robot policy (and provide better

actions). But much more information can be obtained about the salience of different

regions of the task space by both performing interactive interventions and allowing

the robot to elicit information by augmenting the demonstration in real-time (rather

than the human augmenting the robot policy).

The interactivity allows for the physical dialogue between the robot and the expert

to extract information in real-time and to avoid the hard task of post-factum annotating

trajectories. The augmentation of the trajectories allows for the “curious” robot to

avoid repetitions in parts of the environment with enough data support, and move

the demonstrator in a more robot-informative situation. This means that reaching a

particular level of performance or robustness would need fewer demonstrations. This

communication is performed by the robot nudging or moving to an internally desired

area of the state space.

These methods for composition and skill elicitation would allow for machine

learning policies to be learned in a data-efficient way, alter the policy to follow a

different expert specification, and be part of a much longer task.

1.2 P r o b l e m S tat e m e n t

In this thesis we consider the problem of sequencing diverse policies to solve long-

horizon tasks and how can we decompose the tasks into sub-tasks. To perform this,

we look at embedding different priors in the control model: (1) expert demonstrations

- these provide a reasonable, close to an optimal demonstration of the task and convey

the expected outcome, (2) causal analysis - building a Structural Causal Model (SCM)

or intervening in the demonstration provide a method to better extract the underlying

structure of the task and what is required for its completion.

We are tackling the questions:

• Given a library of diverse controllers, their dynamic models and expert demon-

strations, how can we sequence them into a plan to solve temporally extended

tasks?

1.3 Th e s i s O v e r v i e w 8

• Assuming demonstrations of the low-level policies, can we create a surrogate

model to evaluate the causal link between different symbols or objects in the

environment, thus decomposing the policies, and the demonstrators’ used spe-

cifications for the task? Can we interpolate between different specifications or

map them to a rule-based system?

• Can we partition and extract more information about the structure of the task

from interactions during demonstrations? Can this be a method to also obtain

more diverse, data efficient demonstrations given robots and humans have

comfort spaces with subconscious task and specification related preferences?

1.3 Th e s i s O v e r v i e w

The thesis is split into distinct parts studying the composition of diverse policies

and the different methods of finding task structure. The first represents the need for

finding methods to combine policies of different nature - deliberate motion planning

or reactive neural network policies into a single hierarchical controller. In the second

part, we will expand on some of the common issues with hierarchical control en-

countered previously around decomposing the structure of a task and subsequent

policy refinement.

1.3.1 Composing Diverse Policies

Tasks that have changing dynamics can be represented as hybrid systems and

usually implemented as a hierarchical controller with the critical points initiating a

change of controllers. A model-free approach would, in turn, be responsible for learn-

ing either the underlying policies, how to sequence them or both. This would mean

that the resulting system is represented with the same paradigm, as the underlying

controllers - e.g. a neural network, a decision tree, a program.

This restriction limits the type of problems that can simultaneously be tackled

due to the constraints each structure exhibits on the system - in terms of control,

input state space, control loop frequency, how the boundaries of the controllers are

estimated.

1.3 Th e s i s O v e r v i e w 9

Figure 3: The hierarchical controller uses demonstrations as well as the estimated future states
under the different policies to choose the best next controller.

Using demonstrations, we can bias a hierarchical controller (Figure 3) about the

progress represented with the current state of the task. As a result, if each of the

sub-controllers can predict the future state of the system conditioned on its execution,

we can transform the sequence learning problem into a planning one, whilst being

agnostic to the underlying controllers.

In particular, we learn a Goal Score Estimator model that approximates the

progress of an observational state towards the desired configuration. With a low

number of varying length demonstrations, it maps the state space to a scalar value in

the range [0..1], where 0 is a state close the beginning of demonstrations, 1 - towards

the desired/end world state. We rely on the versatility of direct demonstrations to

provide the information to learn this estimator. Even though the demonstrations are

not temporally aligned, the flexibility of a Mixture Density Network (MDN) can learn

the variability in the demonstrations.

This allows using a diverse set of controllers that work within the same system

by incorporating a dynamics model. Those sub-policies can be tuned and work on a

variety of state spaces and can form a library of controllers to be used across different

long-horizon tasks.

We evaluate this architecture on a base Markov Decision Process (MDP) problem to

show optimality in the compositionality of our system for tasks exhibiting a variety of

time-scale dependant and skill diverse problems. We test its robustness to noise in the

dynamics and Goal Score Estimator models and show the low sensitivity to varying

1.3 Th e s i s O v e r v i e w 10

conditions. Finally, we show that it performs better than any individual method in the

gear assembly task performed on the PR2 robot.

1.3.2 Structure Elicitation

1.3.2.1 Policy sub-structure

Common everyday tasks exhibit natural variations of their execution, which is

often due to a small change in the specifications under which users perform them.

We can learn a generative model of the different user behaviours, where the latent

space samples represent a world configuration with the desired solution. This gives

the capability to find solutions to unseen problems by dynamically reevaluating a

proposed initial guess and backpropagating the desired configuration through the

differentiable specifications model. With each iteration or step in the latent space, the

solution converges closer to a possible configuration under the specifications for the

generative model.

Figure 4: Using demonstrators that generate solutions to similar tasks, we can create a specific-
ation that differentiates between them and allows to interpolate between the solution
of the resulting policies.

This allows an initial set of policies to be expanded to include a wider variance

in the styles with which a task is solved. Further, we can interpolate between those

policies and allow for the hierarchical controller to augment the final solution.

Additionally, through the generative model we can find which symbols have an

impact on the user’s specifications. We perform causal analysis by intervening in the

1.3 Th e s i s O v e r v i e w 11

surrogate model of the user, allowing us to carry out an exhaustive search. By relaxing

our assumptions and gaining knowledge about the symbols and their location in the

environment we can learn to differentiate between specifications and what symbols

are impacting each one of them.

Further, we can use constraint optimization to parameterise the interaction

between the symbols and the proposed solution trajectory and as a result learn

basic safety envelopes under which motion planning can be performed.

1.3.2.2 Task sub-structure

Sharing different skills between humans, especially focused on tactile control, are

generally transferred through demonstrations. It is not well known which aspect of

the structure of the demonstration is crucial and it is common to describe the action or

require more information in a Q&A session, or alternatively to participate and nudge

during a possible demonstration.

We want to emulate this type of inquisitive behaviour in a robot agent, in which

it is an active participant in the demonstration. This differs from passively observing

or optimizing a policy post-hoc using additional labels. By being an active participant,

the learner can perturb and see if the motion is being counteracted or not by the

expert. This type of information gathering can explain if the resulting trajectory is a

variant — an additional degree of freedom — of a known sub-policy, or is actively

deteriorating the expert performance — it informs about the salience of the current

region.

We bring active learning to LfD with Learning from Inverse Intervention (LfII),

where during a demonstration, the learner compares historically the alignment

between the internal agent policy and the current demonstration to trigger an inter-

vention that moves the agent in a different part of the state space that can be more

novel. This iterative process allows to augment the demonstrations and make them

more informative.

This type of intervention can also be used to elicit the structure of the task. By

perturbing the policy to avoid a sub-region of the task space, we can evaluate the

salience by determining if the resulting trajectory has solved the task. If the task is

successfully completed, the avoided region is not important and vice-versa.

1.4 M a j o r C o n t r i b u t i o n s 12

Alternatively, we can query a generative model and ask the demonstrator to

evaluate the salience of the highlighted state. By iterating over a set of trajectory states,

we can use this Visual Q&A strategy to decompose it into important sub-regions.

1.4 M a j o r C o n t r i b u t i o n s

• A strategy for composing diverse policies from a set in a pre-existing library to

solve long-horizon tasks. Converting a learning problem into a planning/sequen-

cing one by using expert demonstrations to learn a Goal Scoring Estimator. This

improves tractability and robustness by fusing well established methods with

learning based ones shown in a PR2 gear assembly problem. [Chapter 3]

• Using causal analysis to gain insight into the specifications users follow when

completing different tasks in relation to known symbols in the world. Further,

the ability to find clusters of possible solutions and to interpolate trajectories

across different specifications in a tabletop trajectory generation task. [Chapter 4]

• LfII: an imitation learning strategy that augments the demonstrations in real-

time and forces a higher diversity in the obtained data. It adds the ability to

decompose the policy structure by evaluating the salience of different parts of

the task space by either intervening in the policy to avoid a region of the space

or using Visual Q&A to query the expert directly. [Chapter 5]

2

Ba c k g r o u n d

The big shift in applying universal approximator functions to learning based

problems, especially after 2013, builds on top of a period defined by handcrafting

features to perform subsequent tasks. Even though these features could be learned

from data, e.g. Histogram of Gradients (HoG) [38], Scale-invariant Feature Transform

(SIFT) [97] they were a product of careful selection.

The machine learning boom that followed is mainly defined by the abundance

of well-labeled data [20, 42, 93, 96], increasing computational power [68] and ever-

increasing and diverse methods of applying these universal approximator functions

[85, 91, 116, 135, 140, 141].

But, as suggested by the “no free lunch” theorem, we have been approaching

the limits of these general approaches. The new wave of improvements will come

from looking back into embedding some form of stronger bias to escape this local

minimum.

The improvements within this thesis are relying on two fundamental inductive

priors:

1. Expert Demonstrations - Learning from Demonstration provides an unmatched

method that shows the goal, method, and manner of execution to complete

particular tasks. It is also extremely well suited for robotics and tasks of varying

complexity.

2. Causal Modelling - Fundamentally, the world we live in exhibits a causal

structure, which combined with the robot’s ability to interact within the same

world, gives a strong prior about the relationship between observations, actions,

and future states.

13

2.1 I m i tat i o n L e a r n i n g f o r R o b o t i c s 14

We will be discussing those on a fundamental level here and will be providing a

cohesive targeted summary as part of each chapter.

Alongside demonstrations and causal analysis, we believe that having an under-

standing of current methods for composition and data assessment to be necessary,

which can also be found at the end of the chapter.

2.1 I m i tat i o n L e a r n i n g f o r R o b o t i c s

2.1.1 Learning from Demonstration

LfD is a paradigm that gives the ability for robots/agents to learn a particular

skill. This is based on the assumption that the observation of an expert performing

the task gives the necessary information to extract a corresponding robot controller.

Contrasting the previous methods that rely on decomposing the problem and writing

explicitly a controller or program to do the task; or providing a reward structure and

iterating a policy until it reaches the desired performance. The big advantage of LfD is

that the demonstrator does not need to be an expert in robot programming, rather,

they need to be sufficiently familiar with the task.

Let us look back into the Tesla wiring harness example. A factory floor worker

needs only to provide examples of the sequence and manner in which the harness

needs to be connected, without explicitly programming. This is preferred, as it is

hard in most situations for the domain experts to completely explain and articulate

thoroughly most of the variability and reasoning for actions (especially ones made

by "their gut feeling") [28]. In cases where the performance is sub-par, in a learning

situation, more demonstrations can be provided to allow the algorithm to generalize

better (more on generalization and how much data is needed in Section 2.4). This is

different than copy and replay of the original demonstrations, rather it is creating a

policy that replicated the observed behavior.

This is in stark contrast to the current process where software experts are on the

factory floor, directly optimizing the robotic processes to achieve better amortization

of the robot. In this setting, the engineer needs to reason about all of the variations

2.1 I m i tat i o n L e a r n i n g f o r R o b o t i c s 15

and sub-tasks that the robot needs to perform and how they are linked to the general

structure.

In its foundation, LfD is the problem of learning a mapping between the states

and desired demonstrated actions. However, there exists a difference between how

this mapping is used when there is a mismatch between the recorded mapping or the

embodiment mapping — Figure 5. When performing demonstrations we come across

exactly the correspondence problem [9, 105].

Embodiment Mapping

R
ec

or
d

M
ap

pi
ng

g R
(z

,
a)

I(
z,

a)

I(z, a) gE(z, a)

Teleoperation Sensors on Teacher

Shadowing External Observation

Demonstration Imitation

Figure 5: Transformations between the recorded medium and the embodiment of the demon-
stration or imitation. Inspired from [9].

Even though robots and humans perform work in a correspondingly similar

environment and aligned physical capabilities, there still exists a non-identity mapping

in some cases. However, there are two broad cases where this equivalence can hold —

perceptual and physical equivalence.

2.1.1.1 Physical equivalence

When performing a task, humans, and robots may share the underlying physical

platform. For instance, in the case of teleoperation or shadowing, the demonstrator

can use the same hardware to complete the task but rely on identical or different

perception streams. This physical equivalence makes the task of action generation

much easier, as the direct actions are provided during the demonstration. Additionally,

the robot agent may be equipped with additional sensors, such as depth or thermal

cameras, potentially easing the perception task.

2.1 I m i tat i o n L e a r n i n g f o r R o b o t i c s 16

We rely on this equivalence for Chapter 3, where we use HTC Vive controllers to

remotely teleoperate the PR2 robot, demonstrating a task, but relying on our vision to

obtain task context. During the demonstration, proprioceptive and visual information

from the robot was temporally aligned.

Similarly, Chapter 4 relies on kinesthetic teaching [123], where the expert is

physically moving the robot joints as part of the demonstration. One significant

difference is that the resulting visual data is different from the expected run-time

distribution (see section. 2.4).

2.1.1.2 Perceptual equivalence

Similarly, in cases where the expert receives information in the same manner as

the robot platform, through teleoperation or by instrumenting sensors on the teacher,

there exists the ability to build up the right latent representation of the task. The

closer these mappings are to an identity transformation, the easier it is to learn a

representative policy. However, in the case of perceptual equivalence, it may not

necessarily be straightforward to replicate the action results. In the case of the wire

harness assembly, the human demonstrator motion around obstacles is constrained

by the redundancy of the human body. As the kinematic chain and operational space

may differ, the obtained demonstrations can have replication issues.

2.1.2 Applications

The ease with which demonstrations can provide an example of the task needed

to be completed, without having to explicitly specify a goal, makes them an ideal

candidate for specifying new tasks. The concept of non-experts modifying the behavior

of an agent is shown in [60], where a robot policy is learned to play robot football

(soccer), [18] — drive a car. This Behavioral Cloning (BC) has been extended to even

more dynamic contexts, with a much narrowly distributed expert skill set, such as

acrobatic drone flying [1], or in case of [89] — learning the representative hierarchical

policy.

2.2 C au s a l M o d e l l i n g 17

However, demonstrations can also be used to learn safe policies under the super-

vision [74], or as part of an auxiliary task of learning mappings for the perception and

kinematic differences [9].

On a fundamental level, the demonstrations are providing an implicit representa-

tion of the goal of the task. Looking through the lens of IRL, we can invert the problem

of learning a policy to learning a reward function, which can be later on used in an RL

optimization setting [10, 109]. This two-step process allows us to learn more general

policies, even beyond the expert performance [22].

2.2 C au s a l M o d e l l i n g

One of the methods for embedding inductive bias in machine learning is to rely

on causal analysis to extract a cause-effect relationship between the different parts of

the demonstration. Here will discuss how interventions and counterfactuals work, as

well as examples of how they have been used in the machine learning and robotics

domains.

2.2.1 Causal Analysis

X Y

Figure 6: A small graphical model containing two variables - X and Y.

Let us being by considering a small Graphical Model as shown in Figure 6. We

can model this relationship as follows

X := NX (1)

Y := f (X, NY) (2)

where X and Y are nodes in the graph, NX and NY are independent and identically

distributed (iid) noise variables. f denotes a connecting function that represents how

two variables are related. It can range from a simple linear function - Y = θX + NY to

2.2 C au s a l M o d e l l i n g 18

complex non-linear ones that increase the dimensionality of the resulting variable. We

can then apply simple mathematical rearrangement and invert the dependency on a

function g for X — X := g(Y, NX); Y := NY.

Figure 7: Two different Structural Causal Model (SCM). In the first one, the label is given to a
parson, who creates the alternative representation. In the latter model, the intention
of the human generates both the label and the image representation. For particular set
of functions f , g, h and noise variables NX , MX , MY the two models would produce
equivalent distributions of samples, but are naturally different from an intervention
perspective. Adapted from [115].

Figure 7 are examples of SCM for a case where samples from the MNIST dataset

is generated [113, 115]. It indicates both the relationship between the variables and

also the direction of influence. In model (i) we have that both the class label Y and the

noise sample NX are independent (Y ⊥⊥ NX) — the exact style of the letter written

is not related to the class of the letter. In this setting, we assume we have a human

which when given a class produces with best effort an image representing the class.

We can compute the observational distribution PX,Y from PY, PNX , and f , that is we can

learn the mapping from x to y without intervening in the system, better than chance.

In this SCM there are two possible interventions we can perform and produce

the corresponding interventional distribution. We can intervene on X by changing the

image, but it does not affect the class label, the human writer, or the data in the dataset.

Mathematically, any changes on X will have no impact on Y, because of Y := NY.

However, intervening on Y has the impact of changing what the writer observes

as a task, and as a result — the image produced. This is because X := f (Y, NX) and

X is dependent on the variable Y. This is the reason why in the graph, there exists

directionality in the connection between X and Y, i.e. there is an arrow linking the

nodes.

2.2 C au s a l M o d e l l i n g 19

In model (ii) we also model the writer’s intention for a class and the resulting

image. We can apply Reichenbach’s common cause principle, which states that in the

case where we have two statistically dependent variables X, Y (X 6⊥⊥ Y), there exists a

third variable that is a confounder - Z, which causally influences both. Or in some

special cases, it can coincide with either one of the other variables. What is even more

important is that in the resulting graph, the two variables X and Y are shielded, such

that if we condition on Z, they become independent (X ⊥⊥ Y|Z).

If we choose suitable functions and noise variables, the resulting observational

distribution PX,Y can match the distribution in model (i). If we intervene on X, we have

the same result as in model (i) — no change is observed. However, if we intervene on

Y, we would not affect the image! This is different than in the first case for model (i),

as the image generation function is independent of Y in model (ii).

In SCM, dependencies are generated by functions that compute variables from

other variables. Rather than thinking of them as mathematical equations, it is better

to assume they are computational programs, indicating that mathematical rearrange-

ments may not hold true due to the causal structure of the graph.

More generally, when we think of causal modeling, we understand the process of

drawing conclusions based on a causal model.

Formally, for the above example we can say that there exists an SCM C defined as

C := (S, PN). S is a collection of d structural assignments in the form of:

Xj := f j(PAj, Nj), j = 1, ..., d (3)

where PAj is the parent of (nodes that influence/directly cause) Xj, PAj =

{X1, ..., Xd}\{Xj} and PN is a joint distribution of the independent noise variable for

each node.

We can calculate a distribution over the variables X, which we refer to as the

entailed distribution or PC
X.

2.2 C au s a l M o d e l l i n g 20

2.2.1.1 Interventions

Now that we have the basis for working with a SCM, let’s assume we intervene

and change the probability of a particular variable Xk. We would then expect the

distribution of the SCM to also change. It is equivalent to changing the graph, such

that now Xk is dependent on the new intervention distribution. So, even if it was

previously influenced by other variables, now it would be separated by modifying C

and would change the entailed distribution.

We can write it as modifying the assignment for Xk as:

Xk = f̃ (P̃Ak, Ñk) (4)

Alternatively, we can also set f̃ to be a point mass of a particular value a. Thus

we can call the entailed distribution of the new SCM and intervention distribution and

annotate it as:

PC̃
X := PC;do(Xk=: f̃ (P̃Ak ,Ñk))

X (5)

The intervention distribution in the modified graph is updated by setting the dis-

tribution of Xk to the new modified assignment. If we choose f̃ (P̃Ak, Ñk) 6= f (PAk, Nk)

we would expect that there will be a shift in distributions PC̃
Xj
6= PC

Xj
if Xj is causally

influenced by Xk.

2.2.1.2 Counterfactuals

Using counterfactuals for reasoning1 can be considered as the process of condi-

tioning the noise variables on particular observations and performing an intervention

to measure the resulting distribution. In essence, it allows us to answer questions in

the form “In this situation x, if I had done Y, what would the outcome of Z be?”.

We can condition on some value of the nodes X = x as follows:

CX=x := (S, PC|X=x
N) (6)

1 It is commonplace to use counterfactual reasoning in causal inference, but is debated around the ability
to articulate the full graph or to limit the effects of the conditioning on the rest of the graph [106].

2.2 C au s a l M o d e l l i n g 21

where the joint probability distribution of the original gets projected on the distribution

when X = X, PC|X=x
N := PN|X=x, so the new noise variables no longer need to be i.i.d.

and can be estimated from X = x and the definitions of X. And in this new graph

(with conditioned noise variables), we can further perform the intervention action to

estimate the probability of Z and note it as:

PC|X=x; do(Y=y)
Z (7)

2.2.2 Causality in robotics

Causal analysis is an especially important tool in decision making for financial

and medical regulations and institutions. It is particularly hard to evaluate in those

domains, as performing interventions need to have an observation of both the entitled

and interventional distributions, meaning part of the population is influenced by some

aspect, and the rest - not. This raises a lot of ethical questions, as a critical part of the

decisions can be done only from observational data (for more see Chapter 2.4). The

gold standard in those domains, when possible, is to perform double-blind placebo-

controlled randomized trials. This is to avoid spurious causal relationships that are an

artefact of information leak regarding the arm of the trial or statistical correlations in

the data that are not part of the same causal graph (or have a common base parent,

beyond the scope of the experiment). The latter is a significant issue if the reason for

the investigation is the formation of the graph itself, where the lack of scientific and

common knowledge is unable to articulate fulling the domain of the problem.

Having an active participant in the world (i.e. the robot platform or surrogate

model) allows us to simplify the hard task of performing these interventions and

measuring the resulting distributions.

The ability to decompose the world representations into the different axis of

variations [30, 69] allows us to build a latent space2 that can be mapped into nodes

from an SCM. As a result, the different hypotheses can be used to evaluate the machine

learning model and the relationship of the task to the representations within the

environment. We explore this further in Chapter 4.

2 non-linear neural network dimensionality reduction

2.3 Po l i c y C o m p o s i t i o n 22

Using observational causal analysis can still be useful to provide proxy variables

that can be used to incorporate static knowledge within the domain of the problem

[44, 120]. This provides a unique ability to shape the inference of the system by both

relationships extracted from data and those provided by an expert.

But the interactions with the expert should not be unidirectional, and the ability

to create a surrogate model of the system, which can be linked to symbolic representa-

tions of the world is useful to provide a causal meta-analysis and explanation of the

network’s actions [65] and further in Section 4.5.

As part of an RL framework, counterfactuals can be used to alleviate one of the

big issues surrounding sparse reward, which is credit assignment [51]. This ability of

the system to compare the reward distributions when the agent has the hindsight of a

different action distribution can be beneficial to narrow the reward states. Similarly,

these counterfactuals can be used to reason about intent in dynamical environments

[19].

We further look into this ability to both query the system using interventions

and obtain a better understanding of its working as part of Chapter 4. But also in a

counterfactual setting to obtain salience of different regions of the space by having a

robot manipulate a demonstration as part of Chapter 5.

2.3 Po l i c y C o m p o s i t i o n

In Section 2.1 we have seen one way to generate appropriate policies that solve

a particular task. However, it is of interest to solve problems beyond short horizon

skill-based ones and shift to more multi-stage, longer assignments. That in itself

requires the ability to compose, or chain, multiple skill-based policies.

2.3.1 Flat Policy Composition

Before we continue to a hierarchical composition, we need to highlight that the

idea of splitting the state space and having regional controllers was first introduced as

part of the optimal control framework [26]. Sequentially composing policies was used

as a tool to create simple regional controllers that are tuned and maintain stability and

2.3 Po l i c y C o m p o s i t i o n 23

Figure 8: A - an ideal controller in the obstacle-free space. B - the sequential composition of
the controllers, where the goal point of each controller is within the attraction space
of the following one. C - Sequencing multiple controllers within the free-space of the
problem in cells, where each cell has a single active controller. Adapted from [26].

controllability within the domain of operation. By having such overlapping regional

controllers, the state of the system can be moved within the operational domains —

Figure 8.

This is also used by Tedrake et al. [142] as LQR-Trees to allow stable locomotion

by splitting the domain of operation into the above-highlighted tree structure using

Linear Quadratic Controller (LQR) controllers.

The advantage of these splits is that the linearization that occurs as part of the

controller is an adequate approximation of the local domain and can be independently

optimized.

2.3.2 Hierarchical Control and Long Horizon Tasks

Temporal abstraction, or the notion that an agent can use not only low-level

actions but also hierarchically abstracted actions, has been a long part of the additional

inductive bias given to a learning agent [45, 48, 75, 90]. More on how inductive bias is

integrated as part of the data used for learning in Section 2.4.

These abstractions have been balanced between using a set of known control

strategies or learning the underlying hierarchy. The latter case can be best described

as the options [117, 139] in the RL framework.

Similarly, learning Hierarchical Reinforcement Learning (HRL) policies are a

method of balancing the exponentially growing state representations, such that de-

2.3 Po l i c y C o m p o s i t i o n 24

Figure 9: The state trajectory in the MDP is repented as a sequence of states visited through
time. By increasing the abstractions of the action — compressing to larger continuous
transitions, less decisions need to be made by the agent to reach a desired state.
Adapted from [139]

cisions are not required at every step in a semi-Markov decision process [13]. This

is done by invoking their own temporally extended activities and relying on the

termination criteria to bring back control. We describe our method of sequencing the

policies in Chapter 3, where rather than relying on the Bellman update equation to

learn this sequencing, we are using expert demonstrations to provide a natural timing

to activate the policies.

This balance of using experts as a warm start of policies is especially relevant

to long-horizon tasks [61]. The demonstrations can be used to produce an initial

distribution that can be learned in a supervised fashion, and subsequently fine-tuned

for performance in an RL optimization loop.

We can also look at the work of Andrychowicz et al. [3] as an intervention strategy

to the goal of the problem, such that rather than relying on an external demonstration,

the mistakes that the policy makes can be used as hindsight into what the target value

should have been.

On a macro level, long-horizon tasks have been well understood in the planning

domain. Similar attempts for learning actions within a policy have also shown im-

provements in performance where replays of the system are possible [63]. In our work,

described in Chapter 3 we use MPC alongside a heuristic to plan in a multi-policy

setting.

Of course, to provide a mixture of policies in a problem context, we need to be

able to verify the domain of stable operations of each one of them. This is necessary as

2.4 Data A s s e s s m e n t 25

a precaution to ensure the trustworthiness of the overall system performance, where

unlike the reward structure in RL, we want to define hard constraints that should not

be violated. This problem can be naturally looked as a Bayesian Optimization (BO) of

providing adversarial counterexamples [56] or as out-of-distribution detection [151].

As improvements in HRL have allowed for options to be learned in an end-to-end

fashion, there has been a rising question of what would be considered a good option. In

[64] it has been viewed as an additional cost to an option to increases interpretability.

Or in the case around Chapter 5, we believe that having a salient target for each option

is a method to split the trajectory into meaningful temporal abstractions.

2.3.3 Policy Diversity

Both flat and hierarchical policies can be represented in diverse ways. Especially

for controllers that require rich manipulation, there have been a variety of strategies

dedicated to pushing and pulling [53, 102, 103], dynamic nonprehensile controllability

and planning [101], automatic synthesis [98], caging [119].

For policies requiring the robot to exert force or follow a longer trajectory, plain

Dynamic Movement Primitive (DMP) [76, 127], or deep DMP [54] have been used.

When we have a dataset obtained from LfD that uses discrete actions, we can

partition the space and convert the problem to a classification one with Neural

Network (NN) [79], Bayesian Networks [77], Gaussian Mixture Model (GMM) [32, 145].

This is applicable to high dimentional video inputs as demonstrated by [49, 95, 154]

by using Convolutional Neural Network (CNN) and Variational Autoencoder (VAE).

2.4 Data A s s e s s m e n t

At its foundation, machine learning has decreased the cost and time of making an

inference, or a decision. Previously, the situation would be passed to a committee or

an expert, who would in turn use the accumulated experience to provide an adequate

interpretation of the case and as a result - a decision. The learning of the process and

experience, that the human has, are trying to model the general variability of the

representation of the data. Let us take, for example, the highlighted case in Figure 1b

2.4 Data A s s e s s m e n t 26

Part 1 Part 2

Orientation Colour Finish Stamping Machine

Assembly

Figure 10: Assembly characterization by a graph.

and the task of visually inspecting the correctness of the assembly. The observations

within the images can come from a graphical model that captures the possible modeled

aspects (nodes). The image of the assembly comes from parts (Figure 10), which in

respect are defined by attributes such as orientation, color, finish, etc.

When we investigate each of these attributes in more detail, we begin to un-

derstand that each of them in respect comes from a distribution, defined by the

manufacturing process. They can come in several colors, there is some assumed

orientation, and additional parameters defining the finish.

As a result, we are left with the finding that through our observation of the

phenomena, we capture a subset of that natural variation — Figure 12. Our aim is to

record as best as we can this variation in our dataset. Through the process of removing

duplicates and collating samples, we produce an ever decreased subset of the original

Part 1 Part 2

Orientation Colour Finish Stamping Machine

Assembly

Figure 11: Propagation of the initial node distributions as part of the variability of the assembly.

2.4 Data A s s e s s m e n t 27

data. Further, we would then split into training, testing, and evaluation parts - with

the hope that we can independently model the natural variation within the data, as

well as capture independent samples that can be used to evaluate the performance

during and after training.

In the neural networks optimization process it is common to use loss functions

such as ones based on Kullback—Leibler (KL) divergence, where there exists an

optimization incentive to prefer unbiased, balanced data.

Natural Distribution

Observed Distribution

Dataset Distribution

Tr
ain

Evalu
ate

Test

Figure 12: Data diversity between nature and the captured subset in our datasets.

2.4.1 Dataset curation

The process of creating a targeted dataset is described as part of one of the most

popular datasets - ImageNet [42]. There are significant logistics and licensing issues

around surfacing the needed images, as well as providing multi-layer verification

of the created labels. Those parts have been since then the core IP of several data-

acquisition companies — LabelBox, Hive, Cloudfactory, hCaptcha — highlighting the

significant need for these services.

Regardless of all of the precautions around the original ImageNet labeling and

data distributions, datasets should not be considered static pieces of information.

2.4 Data A s s e s s m e n t 28

Rather, as an iterative process, arising to service a desired machine learning model

needs. Beyond the original use as a benchmark, subsequent work on reassessing the

labels [16, 122] has shown that there can be significant issues with the aggregated

distributed labeling process. In the case of policy learning [35] — bias, lack of gen-

eralization ability, and out of distribution samples make static dataset collection an

unreasonable assumption.

On further investigation, it has been shown the widely spread bias associated

with the data by portraying a predominantly western-centric view of the world. This

has led to expansions of OpenImages [14, 93] to version 6, as well as crowdsourced

suggestions to classes and NeurIPS Inclusive Images Challenge that aims to stress test

image classifiers across new geographic distributions.

From a robotics perspective, the demonstrations collected for a particular task can

exhibit similar issues. However, there are further special types of considerations that

have to be taken into account. The physical manifestation of the environment, plays

only a part of the data collection pipeline, with additional axis of variation across the

demonstrated trajectory itself, task sequence, the interaction of the trajectory with

the environment, or the manner of execution of the trajectory. Those include implicit

biases — e.g. is the demonstration quick or slow, smooth or jittery, and explicit ones

— e.g. this is how to perform ‘task X’, and other task related specifications, that the

machine learning system has to work with. From an optimization perspective, both

types are created equal, but should be treated differently.

While in static datasets, one strategy of overcoming biases is on collecting new

images to diversify the distribution, the demonstration related data can have addition-

ally other methods. Adding new trajectories can be much more time consuming, than

images, but the agent interacting with the demonstrator is a modality not available in

the first case. A strategy, further expanded in Chapter 5, provides an unsupervised

way to augment the data collection process through disturbing the teacher in parts of

the demonstration, where the internal agent model is aligned well.

In essence, iterations on the data attempt to expand the dataset distribution to

better match the global world observed distribution. However, if we have a large or

dynamic dataset, how do we select data that is informative?

2.4 Data A s s e s s m e n t 29

2.4.2 Exploration, Active learning

When we have a process from which we can sample data, and ask an oracle to

evaluate this data against some criteria, what would be a good way to select where to

sample next?

The learning algorithm has a number of possible strategies to use to optimize its

performance. It can draw samples from the least performing class, cases where the

margin between classes is minimal, or rely on entropy to obtain a diverse set [12, 131].

The different query strategies can be optimized to minimize multiple metrics, such

as expected error reduction — attempting to reduce the generalization error, model

change — maximizing the model parameter shift, uncertainty/variance reduction —

sample that has the highest uncertainty or would decrease the variance of the model,

or through selecting diverse sub-spaces [39, 40]. We will revisit this concept that not all

data is created the same, in Chapter 5. There we illustrate that if the learner takes an

active approach to the data collection regime, we can improve the overall performance

of the system.

This process of active learning has also been applied for batched CNN networks,

where the above heuristic does not perform optimally [129, 133], with the key insight

being that a subset of points needs to be evaluated together, rather on a point per point

basis. This idea of reformulating the heuristic on which is the next sample can also be

viewed as an Deep Reinforcement Learning (DRL) - [47] or even as a meta-learning

problem [36], where we would rely on a second level optimization process to learn

this heuristic.

Another option in the generative domain is using a Generative Adversarial

Network (GAN) network to synthesise training data for the active learning algorithm

[158], which differs from the usual scenario of using the existing pool of unlabelled

data.

2.4.3 Data Augmentation and Synthetic Data

All of these strategies so far have the aim of expanding the dataset such that it

supports the biggest sub-domain from the observable distribution.

2.4 Data A s s e s s m e n t 30

Another heuristic-driven approach would be data-augmentation. This is the

process of augmenting the input data with a known function set to produce a sample

that has reasonable expectations to come from the observed distribution. In the

image case, this can be simple manipulations that vary the brightness, contrast,

blurriness that have been shown to improve the performance and generalization of

the learning algorithm [153]. These manipulations can be applied equally efficiently

in the unsupervised case as regularizers [149].

Finally, in cases where producing data is limiting, or the process can be virtually

modeled, synthetic data can be produced that can exhaustively cover the space of

variations. This can be seen in safety-critical applications, where failures have a

high cost, or in situations with a long-tailed distribution, where having a passive

observational approach has limited ability to generate the required diversity.

These types of data approaches are standard for classification or regression-based

tasks. However, what would the alternative be for robot control tasks? How many

demonstrations/samples of a task are enough? How do we diversify them such

that the constructed task latent space matches the natural task distribution? These

questions, alongside how to create informative demonstrations for the robot learning

agent, will be discussed in Chapters 4 and 5.

3

S e q u e n t i a l ly C o m p o s i n g

D i v e r s e Po l i c i e s

In the introductory Tesla wiring harness example, we saw that solving long-

horizon tasks requires having a set of tuned controllers for the different aspects of

the task (e.g. aligning studs, placing spacers and bolts). Hierarchical motion planning

can rely on the discontinuous switches between different local dynamics to build

approximate models and to facilitate the design of local, region-specific controllers.

However, it becomes combinatorially challenging to implement such a pipeline for

complex temporally extended tasks, especially when the sub-controllers work on

different information streams, time scales, and action spaces. In this chapter, we

introduce a method that can automatically compose diverse policies comprising motion

planning trajectories, dynamic motion primitives, and neural network controllers.

We introduce a global Goal Scoring Estimator that uses local, per-motion primitive

dynamics models and corresponding activation state-space sets to sequence diverse

policies in a locally optimal fashion. We use expert demonstrations to convert what

is typically viewed as a gradient-based learning process into a planning process

without explicitly specifying pre- and post-conditions. We first illustrate the proposed

framework using an MDP benchmark to showcase robustness to action and model

dynamics mismatch, and then with a particularly complex physical gear assembly task,

solved on a PR2 robot. We show that the proposed approach successfully discovers

the optimal sequence of controllers and solves both tasks efficiently.

31

3.1 I n t r o d u c t i o n 32

(a) Gear Pick Up (b) Move Gear (c) Gear Insertion

Figure 13: Robot setup for the gear assembly task. The robot needs to pick up a gear by
leveraging the surface of the table, slide it up to an edge, grasp and move it in a
collision free manner to the other hand, before inserting the gear onto the base
plate.

3.1 I n t r o d u c t i o n

For robots to work in the wild, they need to be able to perform a variety of

consecutive tasks that might require vastly different skills. Each individual skill

could be partitioned and optimized outside of this complex system and is potentially

constructed using several diverse methods, control strategies or sensor domains, such

as motion planning approaches for reaching, contact-aware grasping, picking and

placing, or through the use of end-to-end neural network-based controllers.

In many practical applications, we wish to combine a diversity of such controllers

to solve complex tasks. This typically requires that controllers share a common domain

representation and a notion of progress to sequence these. For instance, the problem

of assembly, as shown in Figure 13, can be partitioned by first picking up a mechanical

part, then using motion planning and trajectory control to move this in close proximity

to an assembly, before the subsequent use of a variety of wiggle policies to fit the parts

together, as shown by [86]. Alternatively, the policy could be trained in an end-to-end

fashion with a neural network, but one may find this difficult for extended tasks

with sparse rewards, such as in Figure 13. In the interest of sample efficiency and

tractability, such end-to-end learning could be warm-started by using samples from a

motion planner, which provides information on how to bring the two pieces together

and concentrates effort on learning an alignment policy, as in [144]. Additionally,

the completion of these independent sub-tasks can be viewed as a global metric of

progress.

3.1 I n t r o d u c t i o n 33

We propose a hybrid hierarchical control strategy that allows for the use of diverse

sets of sub-controllers, consisting of commonly used goal-directed motion planning

techniques, other strategies such as wiggle, slide, and push-against [103] that are so

elegantly used in human manipulation, as well as deep neural network-based policies

that are represented very differently from their sampling-based motion planning

counterparts.

Thus, we tackle a key challenge associated with existing motion primitive schedul-

ing approaches, which typically assume that a common representation is used by all

sub-controllers. We make use of the fact that controllers tend to have a dynamic model

of the active part of their state space — either an analytical or a learned model, and

further estimate how close each state is to complete the overall task using a novel

Goal Scoring Estimator. This allows the hierarchical controller to model the outcome

of using any of the available sub-controllers and then determine which of these would

bring the world state closest to achieving the desired solution — in the spirit of model

predictive control.

As in the work of [26] on sequencing funnels and [142] on LQR-Trees, the sched-

uled controllers for sub-regions of the state space can be optimized in our framework,

allowing for compositional task completion, but importantly, also for additional

diversity of the controller set.

Value function approximation techniques used in the reinforcement learning

community [83] can be considered similar to the proposed progress estimator, but

only model the expected reward and require the actions to be in the same state space.

We attempt to remedy this oversight, by allowing for a diversity of action and state

spaces, and by modeling global progress at a local controller level.

This chapter makes the following contributions:

• We use a Goal Score Estimator to sequence a set of policies to solve a task. This

estimator is trained using expert demonstrations to evaluate the current and

future state of the plan and helps to transform the hierarchical learning problem

into a planning problem.

3.2 R e l at e d Wo r k 34

• We provide a method for composing diverse policies that work with different

input information, or decompose the action in either joint or end-effector space

and work at different operational frequencies to solve a high-level task.

We first evaluate the use of the controller dynamics and the goal metric to compose

policies in a hybrid controller on an MDP benchmark problem to evaluate robustness

to action and model dynamics noise. Next, we apply this approach to a physical gear

assembly task performed by the PR2 robot, making use of both motion planning and

visual neural network policies (Figure. 13).

3.2 R e l at e d Wo r k

Robotics

Compositionality is a key paradigm for robot control, which methods of com-

posing controllers of a single type like [25, 26, 142] aim to exploit. These techniques

rely on partitioning a state space into smaller overlapping operating regions and

tuning sub-controllers (feedback or LQR) for operation in these regions. Unfortunately,

these methods often fail to consider the fact that different tasks may require different

controller sequences, and the scheduling of control laws in work on compositionality

is often underemphasized. Inspired by this capability and the funnels framework

[102]1 this work provides a MPC [53] framework for compositional sequencing where

controllers can be of different types and operate using different state spaces.

The ability to act on different state-spaces and action sets is particularly important,

as the sub-policies required to complete a temporally extended task can be highly

variable. For example, sub-problems such as grasping and pushing have been ad-

dressed and investigated at least since the 1980s, and these could be encapsulated into

operation as motion primitives [103]. Using a diverse set of policies allows for the

selection of controllers that best fit the working domain - for example [98] highlights

that compliance may be needed when movement and sensing reach the perception

noise boundary, [101] advocate using non-prehensile grasps for manipulation of ob-

jects and [119] explore manipulation strategies that allow for caging of objects, such

that these can be re-grasped stably in a subsequent stage. Alternatively these motion

1 Regions of robustness arising from the dynamics and control applied in a sub-region of the control space.

3.2 R e l at e d Wo r k 35

planning strategies can be formulated using stable nonlinear attractor systems as in

DMPs [76, 127] or as DeepDMPs [54]. We aim to create a hybrid control framework

that allows the use of these diverse motion planning controllers, alongside neural

network policies to solve long-sequence tasks.

Learning from Demonstration

To expedite the learning process, it is common to provide demonstrated example

solution trajectories to a problem. Methods like Behaviour Cloning (BC) allow for

simple visuomotor policies to be learned end-to-end [18], or to be extended to learn

safe policies [74], extract preferences [6] or to learn mappings for the perception and

kinematic differences [9]. Alternatively, they can be used to calculate the relative

value of each state through inverse reinforcement learning and to create a hierarchical

formulation for control [89]. As explained in [35], there are limitations to BC in terms of

the number of demonstrations, generalization, and the challenge of modeling complex

scenarios as discussed in Chapter 2. However, we use these full task demonstrations

as a means for estimating the distance to the desired goal state, which is arguably

a simpler task than learning an entire policy. Additionally, by allowing different

controller representations, we do not need to re-represent one control law in alternative

approximate forms.

Reinforcement Learning

In the RL literature, the concept of options has parallels to our work, as each

policy can be viewed as a controller with the initiation set as its domain. Our method

lies between learning policies over options as in [13], and computing solutions using

learning from demonstration by inverse reinforcement learning [10].

The options framework [117, 139] provides a formal means to work with hier-

archically structured sequences of decisions made by a set of RL controllers. Temporal

abstractions have been extensively investigated [45, 48, 75, 90, 139], and it is clear that

hierarchical structure helps to simplify control, allows an observer to disambiguate

the different states of the agent, and encapsulates a control policy and termination

of the policy within a subset of the state space of the problem. This split in the state

space allows us to verify the individual controller within the domain of operation [2,

56], deliberate about the cost of an option and increases interpretability [64]. Our work

3.3 M e t h o d 36

can be viewed as using a planner as a hierarchical policy in the options framework,

which is made possible through the incorporation of a goal-scoring progress function

learned from demonstration.

Similarly, [63] showed how planning can be incorporated into action selection

when future states can be evaluated. Our method borrows this view of temporally

abstracting trajectories and extends it by applying a dynamics model for each of

the options, allowing an agent to assess its states and incorporate foresight [3] in its

actions.

The work of [104] highlights that including a dense reward indeed increases the

overall performance of the agent. Instead of using a predetermined dense function,

we learn a Goal Scoring estimator from the demonstrations. As shown in [144] naively

tuning and shaping a reward function may result in sub-optimal solutions using base

actions. Furthermore, our planner selects an already learned controller and thus avoids

converging to sub-optimal behaviors.

As highlighted in [138], there are limits to the use of RL in robotics. By leveraging

strategies from both RL and control communities, this work aims to increase the scope

of problems that can be tackled in robotics.

3.3 M e t h o d

Our framework defines a hierarchical controller over the set of pre-existing

controllers. Each policy uses its dynamic model to propagate the current state to a

future state conditioned on its control law. The Goal Scoring Estimator, learned over

expert demonstrations, evaluates those future states and selects a controller that brings

the system closest to the desired configuration.

Formally, assume the existence of a learned set of controllers C = {c1, c2, ..., cN}

including those learnt from experience in previously solved problems. Using notation

similar to the RL options framework [139], each controller cω is independently defined

by a control law πω(s) → a, s ∈ Sω, action a ∈ Aω, a working domain Iω, Iω ⊆ Sω

where the controller can be started, and a termination criterion βω. We rely on a

forward dynamics model st+1 ∼ Dω(st, at), which is a stochastic mapping, and a

3.3 M e t h o d 37

learned per-task Goal Scoring metric g ∼ GKj(st), 0 ≤ g ≤ 1, that estimates the

progress of the state st with respect to a desired world configuration. We assume

GKj to change monotonically through the demonstrated trajectories. The different

controllers can work on different state spaces S = {S1,S2, ..,SN} as long as there

exists a space S∗, such that Si ⊆ S∗. This means there exists a higher or equal order

state space, which maps the controller space of operation to regions of S∗.

This work constructs a hybrid hierarchical controller πΩ(ωt|st) that can choose

the next controller cωt that needs to be executed to bring a learned latent state st

to some desired s f inal . It uses the forward dynamics model Dω in an n-step MPC

look-ahead, using a Goal Scoring metric GK that evaluates how close st+n is to s f inal ,

without taking into account the cost of transitioning in-between.

As shown in Figure 14, in this work, we use a VAE to learn a latent state st from

image observations. We assume that each controller in the library has an associated

forward dynamics model, trained to predict the next latent state, st+1. This provides

us with an implicit mapping between states and allows us to render an image of

an expected scene for each controller that is applied. This scene prediction is then

used by the goal score metric to evaluate the effect of choosing each controller

and to select the most appropriate controller to be used at a given time step. In

effect, this means that controllers act on the appropriate state components, but the

underlying state representation used for controller selection is conditioned on image

observations. Conditioning on images is feasible, as the robot head camera provides

an overhead view of the entire workspace. While it may be possible to learn a shared

state representation or mapping between states, this can be challenging (e.g. mapping

from joint angles to images is extremely hard), while learning to predict the next latent

state is a much easier task. Each of the framework components is described below.

3.3.1 Goal Score Evaluation

The key component of the proposed framework is the ability to evaluate how

well a particular state s maps to parts of a demonstrated expert trajectory. This allows

us to estimate the temporal distance of that state to the end of the demonstration

(see Figure 14). In a similar manner to [130], who use adjacency of frames as positive

3.3 M e t h o d 38

Figure 14: Demonstrations were performed by using an HTC Vive controller that directly
teleoperates the end-effector of the PR2 robot at 20 Hz. In the Gear Assembly Task,
our controller library includes motion planning (MP) primitives (operating on joint
angles) for picking up or moving and a convolutional neural network (CNN) for
inserting the gear (operating on images). The MP primitives produce a trajectory for
executing a task. The CNN policy takes a latent representation of the image state
and generates a distribution over the target joint angles of the robot. The Forward
Dynamics models use a VAE representation alongside an st+1 dynamics prediction
network that uses the same decoder. The Goal Score Estimator network takes in an
image and produces a distribution over how well this image maps to a particular
point in the demonstrations.

and negative examples, we leverage the temporal sequence of the demonstration as a

measure of task completeness.

We capture demonstrations of the global task (in its entirety) to use as weak

supervision for learning a Goal Scoring Estimator network that allows us to map

a state to a progress estimation value g ∼ G(st) for a given task. To build the Goal

Scoring models, we use a convolutional network head with a MDN tail to encode the

different goal representations based on image observations. The network predicts a

distribution over the proximity of the current state to the desired goal state.

The first observation of a demonstration can be viewed as score 0 – far away from

the goal state, whereas the final observation as score 1.0 – a target representation of the

world. Even though there may not be a one-to-one mapping between the values within

several demonstrations, we rely on the variability in their lengths being encoded

within the different modes of the MDN of the Goal Scoring Model.

3.3 M e t h o d 39

3.3.2 Controller Selection

At a particular point at state st, st ∈ S∗ when cω is active, we can compute the

goodness of following the current controller given these conditions up to a particular

time horizon. The action given by the policy is at = πω(ŝt), ŝ ∈ Sω, and following the

dynamics model we can write that:

st+1 = Dω(st, at) = Dω(st, πω(ŝt)). (8)

As the dynamics model is conditioned on the controller cω, we can simplify to

st+1 = Dω(st). Chaining this for n steps into the future we obtain

st+n = Dω ◦ Dω ◦ · · · ◦ Dω(st) = Dn
ω(st). (9)

We can evaluate this future state as gt+n = G ◦ Dn
ω(st). as G provides an expected

utility of the terminal sate of the current process. Thus, the hierarchical controller over

controllers can be sequentially optimized by maximizing the expected utility by an

adaptation of the Bellman equation,

πΩ(ωt|st) = arg max
ω

(E [1Iω
(st) · G ◦ Dn

ω(st)]) (10)

This chooses the controller that is within the operation domain for the current

state and delivers the largest goal score estimate after n steps. After choosing and

evaluating the optimal πΩ with respect to the above criterion, another controller can

be selected at the next time step, with repetition until the goal is reached.

3.3.3 Controller Dynamics Modelling

The dynamics of each controller is modeled individually only within its opera-

tional domain. This simplifies the complexity the dynamics model has to learn and

thus requires less data. Here, we learn a neural dynamics model for each controller

that predicts the latent state configuration st+1 from st, as in [62]. The architecture,

shown in Figure 14, is based on a VAE encoding but includes an additional dynamics

3.4 E x p e r i m e n ta l S e t u p 40

network, which predicts the next latent state if a given controller were applied. The

same decoder is used to force the two representations not to diverge.

A diverse dynamics network can be used as a prior for each controller [46] and

the execution of the controllers themselves can be used to build an individual model

using the image state space if it is not provided internally.

3.4 E x p e r i m e n ta l S e t u p

We perform two sets of experiments to investigate the efficacy of the structured

hierarchical policy by performing MPC future predictions at each step on a simulated

MDP problem and on a much more complex physical gear assembly task on the PR2

robot.

3.4.1 Simulated MDP

Figure 15: The 19-state MDP problem. The action space of the MDP is to move “left” or “right”.
The goal of the MDP problem is to reach past state 19 and obtain the +1 reward,
which is equivalent to a termination state 20.

In the first experiment, we use the standard 19-state random walk task as defined

in [66] and shown in Figure 15 to illustrate concepts in a simple sequential decision

making task. The goal of the agent is to reach past the 19th state and obtain the +1

reward. The action space of the agent is to go “left” or “right”, moving the agent to an

increasing or decreasing state. There also exist 5 controllers defined as in Section 3.3,

with the following policies: (1-3) policies that go “right” with a different termination

probabilities β = {0.9, 0.5, 0.2}; (4) random action; (5) policy with action to go “’left”

with β = 0.5. We assume that there exists a noisy dynamics model Dω and the goal

evaluation model GMDP, which has the probability of falsely predicting the current

state or its value of 0.2.

3.4 E x p e r i m e n ta l S e t u p 41

Further, we expand the MDP to be of size 100 and evaluate how sensitive the

performance of the model is in regards to noise in the Goal Scoring Evaluator and in

each of the dynamics models.

3.4.2 Gear Assembly

In this task, the PR2 robot needs to assemble the first part of the Siemens Chal-

lenge2, which involves grasping a compound gear from a table, and placing it on a

peg module held in the other hand of the robot. We record expert demonstrations of

the task being performed and assume access to a set of controllers that (1) picks up

the gear from the table; (2) moves the left PR2 arm in proximity to the other arm; (3)

inserts the gear on the peg module.

The agent receives the robot’s joint state space, as well as images from the

head camera and are used as needed by the corresponding controllers. In the whole

sequence during demonstration, the data is collected with the aim of learning a Goal

Scoring Metric from the images. It aims to use the GSM to solve the demonstrated

task with the pre-existing set of skill library.

Policy (1, 2) rely exclusively on scripted path planning techniques and work using

discrete time steps, while (3) is learned entirely with a neural network. Controllers (1,

2) share a common state space of the robot’s joint angles, whereas (3) works directly

on the visual pixel input from the robot’s head camera.

The visual neural policy, shown in Figure 14, performs imitation learning by

using behavior cloning of the 50 teleoperated demonstrations. This is trained until

convergence or 100 epochs using different encoder heads - small convolutional net-

work, ResNet-50, -101. The expert-illustrated trajectories were performed using an

HTC Vive controller teleoperating the PR2 robot and the process took less than 1h

wall time. We use a BC loss, augmented with the VAE loss to train our policy models,

optimizer was Adam with α = 0.001 and weight decay of 1e−6. The action generation

part of the network is an MDN that predicts a distribution of the next time step joint

angles θ, which are set as the internal PID targets for the robot 7-DOF arm.

2 The challenge is at https://new.siemens.com/us/en/company/fairs-event

https://new.siemens.com/us/en/company/fairs-events/robot-learning.html

3.5 E x p e r i m e n ta l R e s u lt s 42

The dynamics model for each controller is learned independently and is repres-

ented with a Forward Dynamics MDP, learned from forward rollouts of the policy

network. The Goal Score estimator is learned on an additional 5 rollouts of the full gear

assembly task and operates on the latent space of the particular policy. Throughout all

of the experiments we use the Adam optimizer with a weight decay rate of 1e−6, batch

size of 120, train for 200 epoch and the MDN uses 24 Gaussian mixtures. We show the

performance of this model with several video streams from different cameras on the

robot (head, left, and right forearm cameras).

Additionally, we compare the performance of the scripted Motion Planning

method (using RRT Connect [92]), Dynamic Motion Primitives (learned from the MPs),

and the Visual Neural Policy on each subtask, as well as using the full sequence under

the different controllers as a baseline.

Planning steps

S
ta

te

0 1 2 3 4

20

10

 0

c1

c1

c1

c1
 Controller 1
 Controller 2
 Controller 3
 Controller 4
 Controller 5

Figure 16: MDP solution. At timestep 0, a rollout of the 5 controllers is performed with the
dynamics model. The expected resulting state is marked using vertical bars. The
best performing controller is used within the environment to obtain the next state -
the red line at state 5 and planning step 1. This process is iterated until a desired
state is reached.

3.5 E x p e r i m e n ta l R e s u lt s

We demonstrate the viability of composing diverse policies by using the controller

dynamics as a method for choosing a satisfactory policy. The dynamics can be learned

independently of the task and can be used to solve a downstream task.

3.5 E x p e r i m e n ta l R e s u lt s 43

3.5.1 Simulated MDP

This problem illustrates the feasibility of using our architecture as a planning

method. Figure 16 shows that the agent reaches the optimal state in just 4 planning

steps, where each planning step is a rollout of a controller. The predicted state under

the specified time horizon is illustrated at each step for the different controller options.

This naturally suggests the use of the policy π1 that outperforms the alternatives (π1

reaches state 6, π2 - state 4, π2 - state 3, π3 - state 1, π4 - state 1, π5 - state 0). Even

though the predicted state differs from the true rollout of the policy, it allows the

hierarchical controller to use the controller that would progress the state the furthest.

The execution of some controllers (i.e. c5 in planning steps 1, 2, 3) reverts the state

of the world to a less desirable one. By using the forward dynamics, we can avoid

sampling these undesirable controllers.

0 0.5 1

Goal Score Estimation noise

0

0.5

1

D
y
n
a
m
ic
s
M
o
d
el

n
o
is
e

10

20

30

40

50

60

70

#
o
f
co
n
tr
o
ll
er
s

Figure 17: Sensitivity to noise in the dynamics model and the Goal Score Estimator for a world
of size 100. The heatmap illustrates the number of controllers that were used in
order to reach the target with a lower number - top left - being optimal. The number
of controllers varies between the optimal 8 and 72.

To investigate the robustness and convergence properties of our method, we

introduce noise within the system, while expanding the MDP to be of size 100 and

maintaining the same 5 controllers as above. We can see in Figure. 17 how the number

of controllers required to reach the target location varies at different noise levels.

When we observe low amounts of noise, the performance remains stable and requires

activating any of these controllers a total of fewer than 20 times (top-left part of the

heatmap). The expected optimal number of controller activations based on policy 1

3.5 E x p e r i m e n ta l R e s u lt s 44

(a) Contact gear (b) Slide along table

(c) Re-grasp stably (d) Grasp variability

Figure 18: Images (a-c) illustrate key frames of the pick up policy that involves making physical
contact with the gear, sliding it along the table surface to an edge and grasping it
firmly in the new position. (d) A visual overlay of 3 random pickup attempts. The
difference in grasp position relative to the gear is comparable to the inner diameter
and is a byproduct of the stochasticity in the sliding and grasping action. This does
not hinder the performance of the CNN in the full task.

is 12 (black region of the heatmap). As the noise in both the dynamics model and

the Goal Score Estimation increases, we observe a degradation and the selection of

more sub-optimal controllers. The model is more sensitive to noise in the Goal Score

Estimator than when the dynamics of the controllers make errors in their predictions.

Despite this, the method converges to the optimal state.

It is interesting to note that the method uses close to or the optimal number of

controller activations in cases where multiple policies would drive the world in a

progressive state, highlighting that the goal score metric is capable of choosing longer

horizon controllers due to the MPC look ahead.

3.5 E x p e r i m e n ta l R e s u lt s 45

3.5.2 Gear Assembly

We build the library of controllers for the task - picking up a gear (Figure 18),

moving it close to the base of the assembly, and inserting the gear on the base

plate (Figure. 19). A motion planning control method was used to perform different

tasks. Those demonstrations were used to build the DMP model, using the ROS-DMP

module, which is based on [76]. The CNN policy was trained using 50 teleoperated

demonstrations 3 covering a wide variety of initialization cases for each specific task.

We did not observe any task performance changes between the small Convolutional

or the ResNet-50,-101 head, and therefore relied on the simple architecture as seen in

Table 1. Other tasks may benefit from deeper or more complex models (such as [147,

155, 156]), but integration within the method would remain the same.

Table 1: Performance of the control policy with different structure of the NN head. We evalute
on the Gear Insert task and how it would impact the full task performance. We can
select the small network, as the performance remains the same with lower inference
and training cost.

Gear Insert Full Task

ResNet-50 10/10 10/10

ResNet-101 10/10 10/10

Small Conv 10/10 10/10

The input image has a size of 128x128 pixels. We observe that the NN policy does

not require a sophisticated feature extractor to create necess50ary features for the

task. The final network used 5 convolutional layers of 4x4 filters, stride 1, with batch

normalization and leaky ReLU activations.

Table 2 shows the performance of the different controllers on different tasks. The

MP and DMP models exhibit stable performance in contact-based tasks, but fail where

the initial conditions differ — in Figure 18 we can see the variability that the pickup

controller exhibits in terms of the location of the grasp on the gear, which leads to

failures in attempting to insert this onto the base assembly. The issue comes from

the tolerances of the fit as using an MP and a sequence of trajectory points does not

compensate for any inaccuracies incurred during the previous stages of the process

3 Interestingly, additional “what-if” (it’s tilted, flipped, not visible, etc.) singular training examples were
detrimental to the performance of the model. In order to incorporate that part of the state space, a full
set of overlapping and interpolating examples need to be provided. This is also supported by the data
discussion in Chapter 2.

3.5 E x p e r i m e n ta l R e s u lt s 46

Table 2: Table of successful trials for different policies. MP - Motion Planning, DMP - Dynamic
Motion Primitive, CNN - Convolutional Neural Network. The CNN policy has a
maximum of 50 steps to reach the goal. The symbol ‘*’ indicates policies terminated
early due to safety concerns of the shielding policy.

Control Method Pick Up Gear Move Gear Insert Full Task

MP 10/10 10/10 1/10 1/10

DMP 10/10 10/10 1/10 1/10

CNN * 10/10 10/10 *

MP & CNN (Our) 10/10 10/10 10/10 10/10

or manual positioning. Precise insertion is known to fail outside of a very small

convergence basin when using MP controllers - we obtain similar (bad) performance

similar to [100, 144].

As a baseline, we compare against optimally sequencing the MP and DMP control

strategies, which can be seen under the “Full Task” performance. Due to the low

performance on a part of the task, the overall success rate is limited.

Figure 19: The execution of a neural network policy for inserting the gear on the peg.

In contrast, the natural variability of the grasp is part of the training set of the

CNN model and successfully inserts the gear even with a high variance of initial

locations (Figure. 19). As the visual CNN policy is not dependant on the absolute

position of either the grasped location or the position of the base assembly, it performs

corrective/feedback actions for the policy to succeed. However, the CNN performance

on the pickup task could not be evaluated, as the prescribed controller actions were

jerky and violated safety constraints (pre-defined velocity and position limits).

This illustrates that the combination of MP for picking up the gear and moving it

closer to the assembly and CNN to insert the gear, selected using our method allows

for the full task to be successfully solved optimally 10 out of the 10 attempts. This

3.5 E x p e r i m e n ta l R e s u lt s 47

(a) Head Camera

(b) Left Forearm

(c) Right Forearm

Figure 20: The goal score metric calculated during the execution of a random trial. During
the first two motion planning controllers, the model is monotonically increasing
the goal metric. The stochasticity of the neural network policy leads to oscillating
scores. Using different input streams, the prediction accuracy could be altered —
the scene head camera does not see the fine details of the movement which the
forearm cameras do, leading to a closer to goal score. The peaks in the forearm
cameras are associated with states where the peg is extremely close to the gear hole,
highlighting that proximity. Example snapshots from different views can be seen in
Figure 21.

3.6 L i m i tat i o n s o f S e q u e n t i a l ly C o m p o s i n g Po l i c i e s 48

(a) Head Camera (b) Left Forearm (c) Right Forearm

Figure 21: Snapshots of the input from different cameras on the PR2 robot demonstrate a
moment, where the head camera cannot differentiate how well the task is performed,
the left camera is optimistic from its perspective, while the right accurately evaluates
the performance as sub-optimal, leading to the goal scoring network predicting a
decreased value.

shows the advantage of using a diverse set of controllers, allowing each one to be

tuned to the domain of operation.

The Goal Score Estimator model is trained on only 5 full task demonstrations.

We empirically choose n = 10 for the n step MPC look ahead as our planning horizon.

Figure 20 illustrates the Goal Score estimation for a previously unseen demonstration

from camera streams with different viewpoints. The score for the different controllers

can clearly be used to sequence the policies. This is shown by the fact that the score

follows a monotonically increasing value with regards to the average score for the

individual controller domain.

3.6 L i m i tat i o n s o f S e q u e n t i a l ly C o m p o s i n g Po l i c i e s

There are a few assumptions in regards to the ability to sequentially compose

the policies. On a fundamental level, there is a presumption about the existence of a

policy library with attached dynamics models. The problem is framed as the ability to

rapidly redeploy the system by demonstrating an alternative configuration that can be

formulated through this set of known policies. Especially for learned dynamics, there

is a known limitation where for the predictions to follow the expected latent trajectory,

the seed location needs to be within the domain of operation of the learned policy.

In the definition of the hierarchical policy, a greedy n-step MDP is chosen to

propagate each policy and select the best performing one. This is sufficient for the

demonstrated temporally extended tasks, but is susceptible to the same issues as

3.7 C o n c l u s i o n 49

potential fields by finding local minima. The current architecture as defined by Eq.10

doesn’t have the capabilities of re-planning beyond the natural state localisation within

the different policies. Additionally, the planning is not taking into account any adjacent

constraints that can be imposed such as temporal or spatial constraints. For instance,

if multiple policies can transition from a seed state to a target state, the one taking

less time will be preferred, regardless of any additional constraints like distance to

humans or fragile objects. This can be potentially alleviated by altering the selection

function by prioritizing externally defined measures. More examples of altering a

policy conditioned on specifications is examined in Chapter 4.

Additionally, the greedy selection process works on a static world representation.

In essence, the internal MDP is stateless. This leads to the process lacking the ability

for the top-level hierarchical function to execute repetitive tasks. A representative task

that illustrates this failure is playing the piano — the visual state representation (e.g.

which keys are pressed) is not informative about the current state of the MDP or the

world (a melody has multiple repeating sequences). More advanced methods for joint

policy optimization and state construction can be found in Chapter 5.

3.7 C o n c l u s i o n

We introduce a method for composing diverse policies with varied representa-

tions, including Motion Planning, Dynamic Motion Primitives, and Convolutional

Neural Networks. This allows for the solution of combinatorially complex and tempor-

ally extended tasks requiring multiple steps, without needing to pre-define controller

sequences or design high-level state machines. We sequence tasks by using a Goal Scor-

ing Model trained by expert demonstrations providing a weak supervisory signal. The

Goal Scoring Estimator model provides a controller invariant prediction of progress

towards a goal, which can be used with shared latent space across sub-controllers.

This work has also introduced different methods that allow for a model-based or a

model-free way to create a dynamics model, which can be used to analytically plan

the next best option within a model predictive control framework.

But what is the best strategy to build up the controller library? One of the

limitations of this work is that we assumed a parallel task to provide the needed

3.7 C o n c l u s i o n 50

diversity, but we are also interested in building it. In Chapter 5 we take a step towards

being able to intelligently partition tasks into sub-problems and in Chapter 4 to

alter already already existing policies and decompose them into rules around known

symbols.

4

C au s a l A na ly s i s o n Po l i c y

S t r u c t u r e

In this chapter we focus on eliciting structure within the policy — what does it

(and the human demonstrator) pay attention to, can we alter this salience by focusing

on alternative demonstrations, or parameterize this difference?

Learning models of user behavior is an important problem that is broadly ap-

plicable across many application domains requiring human-robot interaction. This

chapter shows that it is possible to learn generative models for distinct user behavioral

types, extracted from human demonstrations, by enforcing the clustering of preferred

task solutions within the latent space of a high capacity neural model. We use these

models to differentiate between user types and to find cases with overlapping solu-

tions. Moreover, we can alter an initially guessed solution to satisfy the preferences

that constitute a particular user type by backpropagating through the learned differ-

entiable models. An advantage of structuring generative models in this way is that we

can extract causal relationships between symbols that might form part of the user’s

specification of the task, as manifested in the demonstrations. We further parameterize

these specifications through constraint optimization in order to find a safety envelope

under which motion planning can be performed. We show that the proposed method

is capable of correctly distinguishing between three user types, who differ in degrees

of cautiousness in their motion while performing the task of moving objects with a

kinesthetically driven robot in a tabletop environment.

51

4.1 I n t r o d u c t i o n 52

4.1 I n t r o d u c t i o n

As we move from robots dedicated to a restricted set of pre-programmed tasks

to being capable of more general-purpose behavior, there is a need for easy re-

programmability of these robots. A promising approach to such easy re-programming

is Learning from Demonstration, i.e., by enabling the robot to learn from and reproduce

behaviors shown to it by a human expert — Figure 22.

This paradigm lets us get away from having to handcraft rules and allows the

robot to learn by itself, including modeling the specifications the teacher might have

used during the demonstration. Often such innate preferences are not explicitly

articulated, typically being in the form of biases resulting from experience with other

potentially unrelated tasks sharing parallel environmental corpora — Figure 23.1. The

ability to notice, understand, and reason causally about these ‘deviations’, whilst still

learning to perform the demonstrated task is of significant interest.

Similarly, other methods for Learning from Demonstration as discussed by [9] and

[152] in the Reinforcement Learning domain are focused on finding a general mapping

from observed state to action, thus modeling the system or attempting to capture the

high-level user intentions within a plan. The resulting policies are not generally used

as generative models. As highlighted by [138] one of the fundamental challenges with

robotics is the ability to reason about the environment, beyond a state-action mapping.

Thus, when receiving a positive demonstration, we should aim to understand

the causal reasons differentiating it from a non-preferential one, rather than merely

mimicking the particular trajectory. When people demonstrate a movement associated

with a concept, they rarely mean to refer to one singleton trajectory alone. Instead,

that instance is typically an element of a set of trajectories sharing particular features.

So, we want to find groups of trajectories with similar characteristics that may be

represented as clusters in a suitable space. We are interested in learning these clusters

so that subsequent new trajectories can be classified according to whether they are

good representatives of the class of intended feasible behaviors. Further, we want to

distill these specifications into a set of parameterized rules and find a safety envelope

that can represent the learned model. For instance, one such rule may be “The robot

4.1 I n t r o d u c t i o n 53

Figure 22: Example setup - the demonstrated task is to return the pepper shaker to its original
location—next to the salt shaker. Deciding which objects to avoid when performing
the task can be seen as conditioning on the user specifications, implicitly given
during a demonstration phase.

should not get closer than Tmin away from an object”. These rules would generalize to

unseen world configurations, as they are dependent on object characteristics.

It is often the case that in problems that exhibit great flexibility in possible

solutions, different experts may generate solutions that are part of different clusters

— Figure 23.2. In cases where we naively attempt to perform statistical analysis, we

may end up collapsing to a single mode or merging the modes in a manner that

doesn’t entirely reflect the underlying semantics (e.g., averaging trajectories for going

left/right around an object).

When we talk about task specification, we understand the high-level descriptions

of a task-based trajectory and its desired behavior/interaction with a cluttered envir-

onment and its symbolic representation through causal analysis. For instance learning

the manner, by which the robot end-effector may move above or around objects in

the scene. The specifications, as learned by the network, are the observed regularities

in human behavior. These rules are then parameterized by performing constrained

optimization based on the demonstrations or samples from the learned model.

We present a method for introspecting in the latent space of a model which allows

us to relax some of the assumptions illustrated above and more concretely to:

4.2 R e l at e d Wo r k 54

zθ

v

szI

1 2 3

Tmin
Object
center

4

Figure 23: (1) Demonstrations that satisfy the user task specification maintain a distance from
fragile objects (i.e. a wine glass), or fail to satisfy the specification by moving over
sharp items. (2) An environment can have multiple clusters of valid trajectories
in the latent space, conditioned on user type. (3) The validity of trajectories can
be represented as a causal model. Whether a trajectory is part of a cluster v is
conditioned on the specific path zθ , the environment zI , and the specification s. (4)
The minimum radius from the object centre - Tmin, which would change the validity
of a trajectory.

• find varied solutions to a task by sampling a learned generative model, condi-

tioned on a particular user specification.

• backpropagate through the model to change an initially guessed solution towards

an optimal one with respect to the user specification of the task.

• counterfactually reason about the underlying feature preferences implicit in the

demonstration, given key environmental features, and to build a causal model

describing this.

• find a safety envelope of parameters to sets of rules representing the specific-

ations through constraint optimization that allows their future use in motion

planning.

4.2 R e l at e d Wo r k

4.2.1 Learning from Demonstration

Learning from demonstration involves a variety of different methods for approx-

imating the policy. In some related work, the state space is partitioned and the problem

is viewed as one of classification. This allows for the environment state to be in direct

control of the robot and to command its discrete actions - using Neural Networks

[79], Bayesian Networks [77], or Gaussian Mixture Models [32]. Alternatively, it can be

4.2 R e l at e d Wo r k 55

used to classify the current step in a high-level plan [145] and execute predetermined

low-level control.

In cases where a continuous action space is preferred, regressing from the ob-

servation space can be achieved by methods such as Locally Weighted Regression

[34].

It has been long advocated that reasoning as part of planning is dependent on

reasoning about objects, their geometric manifestations, and semantics [138]. This is

based on the view that structure within the demonstration should be exploited to

better ground symbols between modalities and to the plan.

One way to learn such latent structure can be in the form of a reward function

obtained from IRL as described in Brown and Niekum [21], Ng, Russell et al. [109]

and Zhifei and Meng Joo [157]. However, it is not always clear that the underlying

true reward, in the sense of being the unique reward an expert may have used, is

reconstructable or even if it can be sufficiently approximated. Combining multiple

demonstrations to blend the desired expert response [148] may not recreate an expec-

ted output with divergent multi-clustered demonstrations, which we are interested

in the current work. Alternatively, solutions that are based on composing smaller

policies to mitigate the search for the hierarchical decomposition of the demonstration

through direct learning of a goal-scoring metric [4] or through pair-wise ranking [57].

Preference-based reinforcement learning (PbRL) [152], offers methods whose focus is

on learning from non-numeric rewards, directly from the guidance of a demonstrator.

Such methods are particularly useful for problems in high-dimensional domains, e.g.

robotics [73, 80, 81], where a concise numeric reward (unless highly shaped) might

not be able to correctly capture the semantic subtleties and variations contained in the

expert’s demonstration. Thus, in the context of PbRL, the method we propose learns a

user specification model using user-guided exploration and trajectory preferences as a

feedback mechanism, using definitions from Wirth et al. [152].

4.2.2 Causality and State Representation

The variability of environmental factors makes it hard to build systems relying

only on correlation data statistics for specifying their state space. Methods that rely

4.2 R e l at e d Wo r k 56

on causality [65, 113], and learning the cause and effect structure [120], are much

better suited to supporting the reasoning capabilities required for transfer of core

knowledge between situations. Interacting with the environment allows robots to

perform manipulations that can convey new information to update the observational

distribution or change their surrounding, and in effect perform interventions within

the world. Counterfactual analysis helps in a multi-agent situation with assignment of

credit [51]. It shows that marginalizing an agent’s actions in a multi-agent environment

through counterfactuals allows learning a better representative Q-function. In this

work, we similarly employ a causal view of the world where we capture the expert

preference in the model and evaluate it against a different set of environments, which

is prohibitive if we used human subjects.

Learning sufficient state features is an open challenge for LfD Argall et al. [9].

The problem of learning disentangled representations aims at generating a good

composition of the latent space, separating the different modes of variation within the

data. Promising improvements in disentangling of the latent space with few a priori

assumptions, by manipulating the Kullback - Leibler divergence loss of a variational

auto-encoder [30, 69]. Denton and Birodkar [43] shows how the modes of variation for

content and temporal structure should be separated and can be extracted to improve

the quality of the next frame video prediction task if the temporal information is

added as a learning constraint. While the disentangled representations may not

directly correspond to the factors defining action choices, Johnson et al. [82] adds a

factor graph and composes latent graphical models with neural network observation

likelihoods.

The ability to manipulate the latent space and separate variability as well as

obtain an explanation about behavior is also of interest to the interpretable machine

learning field [44].

4.2.3 Constrained Optimization

The ability to find an optimal solution under a set of constraints has been well

studied, e.g., in [15, 27]. [108] is one representative and state of the art method for

propositional satisfiability (SAT). These methods have a history of being applied to

4.3 P r o b l e m F o r m u l at i o n 57

robotics problems for high-level planning, motion planning [55] and stability analysis

[88].

In this chapter, we use these methods to efficiently navigate the search space whilst

adhering to a set of non-linear constraints. With the development of increasingly more

mature libraries for constrained optimization and SAT solving, such as [111], whose

CP-SAT solver is based on [132], we can efficiently rewrite the set of specifications as

parametrized channeling rules activated under different conditions, which partition

the state space of the problem. As a result, we can optimize their respective parameters

from the demonstrations.

4.3 P r o b l e m F o r m u l at i o n

In this work, we assume that the human expert and robotic agent share multiple

static tabletop environments where both the expert and the agent can fully observe the

world and can interact with an object being manipulated. The agent can extract RGB

images of static scenes and can also be kinesthetically driven while a demonstration

is performed. The task at hand is to move an object held by the agent from an initial

position pinit to a final position p f on the table, while abiding by certain user-specific

constraints. Both pinit and p f ∈ RP. The user constraints are determined by the

demonstrator’s type s, where s ∈ S = {s1, . . . , sn} for n user types.

Let D = {{x1, v1}, . . . , {xN , vN}} be a set of N expert demonstrations, where

xi = {I, trs
i }, I ∈ RM is an RGB image of the tabletop scene, trs

i is the trajectory and vi

is a binary label denoting the validity of the trajectory with respect to the user type s.

Each trajectory trs
i is a sequence of points {p0, . . . , pTi}, where p0 = pinit and pTi = p f .

The length of the sequences is not constrained—i.e. T is not necessarily the same for

different trajectories.

The learning task is to project each I ∈ RM into ZI ∈ RK, by an encoder ZI = E(I),

and trs
i ∈ RPTi into Z` ∈ RL, by Bèzier curve reparameterization, Zθ = Bz(trs

i), with

significantly reduced dimensionality K � M, L � PTi. Both ZI and Zθ are used in

order to predict the validity v̂i, v̂i = Cs(ZI , Zθ) of the trajectory trs
i with respect to

the user type s. With an optimally-performing agent, v̂i ≡ vi. For more details see

Figure 24.

4.4 S p e c i f i c at i o n M o d e l 58

In order to alter an initial trajectory, we can find the partial derivative of the

model with respect to the trajectory parameters with the model conditioned on a

specific user type s,

∆ =
∂Cs(z|v̂ = 1)

∂zθ

We can take a gradient step ∆ and re-evaluate. Upon achieving a satisfactory outcome,

we can re-project zθ back to a robot-executable trajectory trs = Bz−1(zθ).

The main feature we want in our model is for the latent space to be structured

in a way that would allow us to distinguish between trajectories conforming (or not)

to the user specifications. In turn, this generates good trajectories. We further need

the model to maintain certain kinds of variability in order to allow us to estimate

the causal link between the symbols within the world and the validity of a trajectory,

given a specification.

Zθ

EɸI Dψ Î

ZI

Cs
Bztr

...

zθ zI s

v

T I

o1 oK

Figure 24: Left: Specification model architecture. The environmental image I, I ∈ R100×100×3, is
passed through an Encoder-Decoder Convolutional Network, with a 16− 8− 4 3x3

convolutions, followed by fully connected layer, to create a compressed representa-
tion ZI , ZI ∈ R15. It is passed along with the trajectory parameterization Zθ , Zθ ∈ R2

through a 3-layer fully connected classifier network that checks the validity of the
trajectory Cs(z) with respect to the spec. s. Right: The environment, compressed to
zI , is composed of objects (o1, .., oK). A trajectory T is parameterized by zθ , which
alongside the factors zI and user specification s are part of the specification model.

4.4 S p e c i f i c at i o n M o d e l

We use the Deep Variational Auto-Encoder Framework [85] as a base architecture.

The full model consists of a convolutional encoder network qφ, parametrized by φ, a

4.4 S p e c i f i c at i o n M o d e l 59

deconvolutional decoder network pψ, parametrized by ψ, and a classifier network C,

comprised of a set of fully-connected layers. The encoder network is used to compress

the world representation I to a latent space ZI , disjoint from the parameterization of

the trajectories Zθ . The full latent space is modeled as the concatenation of the world

space and trajectory space Z = ZI ∪ Zθ as seen in Figure 24.

min
ψ,φ,C
L(ψ, φ; I,zI , zθ , v) = (11)

− αEEφ(zI |I)(logDψ(I|zI))

+ βDKL(Eφ(zI |I)||Dψ(zI))

− [v log(C(z)) + (1− v) log(1− C(z))]

Parameters — α, β — are added to the terms of the overall loss function — see

Equation 11 — so that their importance during learning can be investigated in an

ablation study. The values for the three coefficients were empirically chosen in a

manner such that none of the separate loss terms overwhelms the gradient updates

while optimizing L.

To better shape the latent space and to coerce the encoder to be more efficient,

the Kullback-Leibler divergence loss term is scaled by a β parameter, as in Higgins

et al. [69]. By tuning its value we can ensure that the distribution of the latent

projections in ZI do not diverge from a prior isotropic normal distribution and

thus influence the amount of disentanglement achieved in the latent space. A fully

disentangled latent space has factorized latent dimensions — i.e. each latent dimension

encodes a single data-generative factor of variation. It is assumed that the factors are

independent of each other. For example, one dimension would be responsible for

encoding the X position of an object in the scene, another for the Y position, third for

the color, etc. Higgins et al. [71] and Chen et al. [31] argue that such low-dimensional

disentangled representations, learned from high-dimensional sensory input, can be a

better foundation for performing separate tasks - trajectory classification in our case.

Moreover, we additionally add a binary cross-entropy loss (last term in the loss

function) associated with the ability of the full latent space Z to predict whether a

4.5 C au s a l M o d e l i n g 60

trajectory trs associated a world I satisfies the semantics of the user type s - v̂. We

hypothesize that backpropagating the classification error signal through ZI would

additionally enforce the encoder network to not only learn factorized latent represent-

ations that ease reconstruction, but also trajectory classification. The full loss can be

seen in Equation 11.

4.5 C au s a l M o d e l i n g

Naturally, our causal understanding of the environment can only be examined

through the limited set of symbols, O, that we can comprehend about the world. In

this part, we work under the assumption that an object detector is available for these

objects (as the focus of this work is on elucidating the effect of these objects on the

trajectories rather than on the lower level computer vision task of object detection per

se). Given this, we can construct specific world configurations to test a causal model

and use the above-learned specification model as a surrogate to inspect the validity

of proposed trajectories. We assume that by understanding the minimum number

of required demonstrations per scene, we can learn a model that reflects the expert

decisions.

If we perform a search in the latent space zθ , we can find boundaries of trajectory

validity. We can intervene and counterfactually alter parameters of the environment

and specifications and see the changes in the trajectory boundaries. By looking at the

difference of boundaries in cases where we can test for associational reasoning, we

can causally infer whether

• the different specifications show alternate valid trajectories

• a particular user type reacts to the existence of a specific symbol within the

world.

4.5.1 Specification Model Differences

We are interested in establishing the causal relationship (further described in

Chapter.2.2) within the specification model as shown on Figure 24. We define our Struc-

4.5 C au s a l M o d e l i n g 61

tural Causal Model (SCM), following the notation of Peters, Janzing and Scholkopf

[115] as

C := (S, PN), S = {Xj := fj(PAj, Nj)}

where nodes X = {Zθ , ZI , S, V} and PAj = {X1, X2, ..Xn}\{Xj}. Given some

observation x, we can define a counterfactual SCM CX=x := (S, PC|X=x
N), where

PC|X=x
N := PN|X=x

We cannot logistically perform counterfactuals using the data and humans, but

by relying on the learned models to have encapsulated the expert representations, we

can perform the causal analysis on those surrogate models.

We can choose a particular user specification s ∼ p(S), s 6= sx and use the

specification model to confirm that the different specification models behave differently

given a set of trajectories and scenes, i.e. the causal link s→ v exists by showing:

E

[
PC|X = x

v

]
6= E

[
PC|X = x; do(S := s)

v

]
(12)

We expect different user types to generate a different number of valid trajectories

for a given scene. Thus, by intervening on the user type specification we anticipate

the distribution of valid trajectories to be altered, signifying a causal link between the

validity of a trajectory within a scene to a specification.

4.5.2 Symbol Influence on Specification Models

We want to measure the response of the specification models of intervening in

the scene and placing additional symbols within the world. We use the symbol types

O = {o1, .., ok} as described in Section. 4.7.1. To accomplish this, for each symbol

within the set we augment the scene I, part of the observation x with symbol o, such

that Inew = I ∪ o. We do not have the ability to realistically remove objects from the

scene, for this reason, our augmentation involves adding such objects, which can be

4.6 Pa r a m e t e r i z at i o n o f S p e c i f i c at i o n s 62

interpreted as applying an additional overlay of the object on the image. If we observe

that the entailed distributions of PC|X=x;do(ZI :=zInew)
v changes i.e.

E

[
PC|X = x

v

]
6= E

[
PC|X = x; do(ZI := zInew)

v

]
(13)

then the introduced object o has a causal effect upon the validity of trajectories

conditioned upon the task specification sx.

We investigate the intervention of all symbol types permutated with all task-space

specifications to build an understanding of the relationship between the manner of

execution and the influence of the symbols on it.

4.6 Pa r a m e t e r i z at i o n o f S p e c i f i c at i o n s

This part of the work aims to provide a closed system that decomposes demonstra-

tions into a set of parametrized rules. We have shown methods for ways to construct a

model that encapsulates such specifications, using causal analysis to extract symbols

that influence the demonstrations. Further, relying on these outputs, we use constraint

optimization to find optimal parameters for a set of predefined rules representing the

specifications.

We rely on the CP-SAT solver in Or-tools, [111], and formulate a set of rules that

can be understood as corresponding to a point in the trajectory being in collision with

an object, being in a region of influence of an object or in free-space. We formally

define this in the following manner:

f (pi) =



in f , if pi ≤ Tmin

||pi − pobj−k||2, if pi ≤ Tmin + Tobject−k for any object k

0, otherwise.

(14)

We would have a penalty constraint that ∑i f (pi) < Fmax for any trajectory

tr = {p1, p2, ..., pTi}, where Fmax is chosen as the attention buffer for the demonstrator.

We are interested in providing a maximum or minimum safety envelope for the

4.7 E x p e r i m e n ta l S e t u p 63

trajectory and would, thus maximize/minimize LT = ∑k Tobject−k + Tmin. We can

observe how the requirements for positive or negative change with the different safety

target.

For each point in a trajectory, we add a set of constraints representing the different

channels as seen under Equation 14. The sum of penalties for each trajectory is added

as a constraint conditioned on the validity of the trajectory. We would then find a

feasible or optimal solution for the parameters - Tmin, Tobject−1, ..., Tobject−K under the

minimum/maximum cost function.

4.7 E x p e r i m e n ta l S e t u p

4.7.1 Dataset

Figure 25: Items used for the generation of the training (green) and test (red) scenes.

The environment chosen for the experiment consists of a top-down view of a

tabletop on which a collection of items, O={utensils, plates, bowls, glasses} - Figure 25,

usually found in a kitchen environment, have been randomly distributed. The task

that the demonstrator has to accomplish is to kinesthetically move a robotic arm gently

holding a pepper shaker from one end on the table to the other (pinit =bottom left,

p f =top right) by demonstrating a trajectory, whilst following their human preferences

around the set of objects — see Figure 26. The demonstrators are split into user types

S, S = {care f ul, normal, aggressive} based on the trajectory interaction with the

environment. The semantics behind the types are as follows: the careful user tries to

4.7 E x p e r i m e n ta l S e t u p 64

avoid going near any objects while carrying the pepper shaker, the normal user tries to

avoid only cups, and the aggressive user avoids nothing and tries to finish the task by

taking the shortest path from pinit to p f .

Agent Input The agent observes the tabletop world and the user demonstrations

in the form of 100x100 pixel RGB images I, I ∈ R100×100×3. The demonstrator — see

Figure 22 — is assigned one of the types in S, has to produce a number of possible

trajectories, some that satisfy the semantics of their type and some that break it

— Figure 23.1. As specified in Section 4.3, each trajectory trs is a sequence if points

{p0, . . . , pT}, where p0 = pinit and pTi = p f . Each point pj, j ∈ {0, . . . , T} represents the

3D position of the agent’s end effector with respect to a predefined origin. However,

all kinesthetic demonstrations are performed in a 2D (XY) plane above the table,

meaning that the third coordinate of each point pj carries no information (P = 2).

An efficient way to describe the trajectories is by using a Bèzier curve representation

— see Mortenson [107]. The parameterization of a single trajectory becomes the 2D

location of the central control point parametrized by θ, together with pinit and p f .

However, the initial and final points for each trajectory are the same and we can omit

them. Thus, with respect to the formulations in Section 4.3 L = 2 and Zθ ∈ R2.

pinit

pf

.

pinit

pf.

pinit

pf

pinit

pf

.
.

.

.
.

.
Figure 26: Sample images used to represent example scenes. pinit and p f are as defined in

Section 4.3. Blue blobs represent potential obstacles in the scene, which some user
types might want to avoid, and are only drawn for illustrative purposes.

4.7 E x p e r i m e n ta l S e t u p 65

In total, for each user type s ∈ S, 20 scenes are used for training, with 10

trajectories per scene. The relationship between the number of trajectories per scene

and the model’s performance is explored in Section 4.8. For evaluation purposes

additional 20 scenes are generated, using a set of new items that have not been seen

before — see Figure 25.

4.7.2 Evaluation

We evaluate the performance of the model by its ability to correctly predict

the validity of a trajectory with a particular specification. We perform an ablation

study with the full model (α 6= 0, β 6= 0), AE model (α 6= 0, β = 0), and classifier

(α = 0, β = 0). We investigate how the performance of the model over unseen

trajectories varies with a different number of trajectories used for training per scene.

We randomize the data used for training 10 times and report the mean.

As a baseline we use an IRL model rs(p, I), such that the policy π producing a

trajectory trs that is optimal w.r.t.:

arg max
trs

N

∑
i=0

rs(pi, I)

Additionally, we test the ability of the learned model to alter an initially suggested

trajectory to a valid representative of the user specification. We assess this on the test

set with completely novel objects by taking 30 gradient steps and marking the validity

of the resulting trajectory.

We perform a causal analysis of the model with respect to the different user

specifications and evaluate the difference in their expected behavior. Additionally,

we intervene by augmenting the images to include specific symbols and evaluate

the difference of the expectation of their entailed distribution. This highlights how

different specifications react differently to certain symbols.

We conclude by finding optimal maximum and minimum parameters for a set of

rules that the motion controller can use to plan with varying levels of safety vs travel

time. We perform constrain optimization on the task of moving a drill on a workbench

robot assembly area as shown in Figure 27 and report results in Section 4.8.4. We

4.8 R e s u lt s 66

Figure 27: An additional task of moving the the drill to the work space of the other robot.

obtain demonstrations in a representative simulated 2D environment, such that the

demonstrated trajectories no longer need to adhere to the Bèzier representation.

The aim is to find the rule parameterization based on Equation 14, such that this

representation can, later on, be used for motion planning optimization as an additional

cost. We would aim to extract the limits of the parameters to create an envelope of

possible costs and not a bound of the geometric models that represent the objects.

4.8 R e s u lt s

In this section we show how modeling the specifications of a human demon-

strator’s trajectories, in a table-top manipulation scenario within a neural network

model, can be later used to infer causal links through a set of known features about

the environment.

4.8.1 Model Accuracy

We show the accuracy of the specification model in Figure 28 and on our website1.

Changing the number of trajectories shown within a scene has the highest influence on

the performance going from 72%[67.3− 77.5] for a single trajectory to 99%[97.8− 99.8]

1 Website on https://sites.google.com/view/learnspecifications

https://sites.google.com/view/learnspecifications
https://sites.google.com/view/learnspecifications

4.8 R e s u lt s 67

2 when using 9 trajectories. The results illustrate that the models benefit from having

an auto-encoder component to represent the latent space. However, the solutions

asymptotically approach perfect behavior as the number of trajectories per scene

increases. Interestingly, the IRL baseline shows the need for much more information

in order to create an appropriate policy.

If we look into the latent space of the trajectory — Figure 29 — we can see that the

trajectory preferences have clustered and there exists an overlap between the different

model specifications. It also illustrates what the models’ specifications can show about

the validity of the trajectory.

Figure 28: The accuracy of the different models with respect to the number of trajectories
used within a scene. The lines indicate the mean accuracy with 10 different seed
randomizations of the data. As the number of trajectories per scene increases,
the performance of all models improves, but especially with a lower number of
trajectories, our full model shows the biggest gains.

4.8.2 Trajectory Backpropagation

We can use the learned specification model and perturb an initially suggested

trajectory to suit the different user types by backpropagating through it and taking

gradient steps within the trajectory latent space.

2 The numbers in brackets indicate the first and third quartile.

4.8 R e s u lt s 68

(a) Careful (b) Normal (c) Aggressive

Figure 29: Sampling of the latent trajectory space — Zθ — of the preference model with
different specifications. It can be observed how for the same region in the latent
trajectory space — e.g. bottom right — the different user types have different
validity values for the same trajectory — e.g. normal vs. careful user types around
the cutlery and glass.

Based on the unseen object test scenes, the models were evaluated under the

different specifications and the results can be found in Table 3. Individual trajectory

movements can be seen in Figure 30.

The first row of Figure 30 shows that the careful user type steering away from

both the cup and bowl/cutlery, whereas in the normal user type, the model prefers to

stay as far away from the cup as possible, ignoring the bowl. The model conditioned

on the aggressive user type does not alter its preference of the trajectory, regardless of

its passing through objects. The second row illustrates a situation, where the careful

model shifts the trajectory to give more room to the cutlery, in contrast to the normal

case. The final row highlights a situation, where the resulting trajectories vastly differ

depending on the conditioning of the specification model.

4.8.3 Causal Analysis

In Table 4 we can see the mean of the entailed distribution depending on the type

of intervention performed. The results of Equation 12 can be seen in the first column

4.8 R e s u lt s 69

(a) Careful (b) Normal (c) Aggressive

Figure 30: An initial trajectory (seen in dark blue) is used as a base solution to the task for
difference scenes — rows 1, 2, 3. Furthermore, the parametrisation zθ for each
initial trajectory is continuously updated so that it better abides by the semantics
of the different user specifications — columns a,b,c. It can be seen that as the
gradient steps in Zθ are taken, the resulting intermediate trajectories are shifted
to accommodate the preference of the model until the final trajectory (light blue)
is reached. Color change from dark to light blue designates progressive gradient
steps.

4.8 R e s u lt s 70

Table 3: The success rate of perturbing a non valid trajectory into a valid one under different
user specifications.

User Types Success rate

Careful 75%
Normal 95%

Aggressive 100%

under “No intervention”. It shows the expected likelihood E[p(v|X = x, S = s)] of the

validity of a trajectory given a set of observations with different user specifications.

Conditioning on the different types of user specifications, we can see that the validity

increases (from 0.43 to 1.0), meaning a higher number of possible solutions can be

identified. The variety of solutions can be seen in Figure 29. This naturally follows

the human assumption about the possible ways to solve a task with different degrees

of carefulness. In the case of the final user type, all of the proposed trajectories have

successfully solved the problem.

In the subsequent columns on Table 4 we can see the mean probability of validity

for when we intervene in the world and position randomly a symbol of a different

type within the scene. By comparing the value with the ones in the first column (as

discussed above), we can assess the inequality in Equation 13.

Table 4: The respective distributions of validity p(v|X = x, S = s) with different user types
depending on the intervention performed for a random trajectory to be valid under the
user specification. The first column shows the mean distribution over the information
obtained over the observations. The cells in bold indicate significant change with
respect to the no intervention column. Those cells highlight a change, which is
interpreted as a causal link between the intervened symbol and the user type.

User Types No Intervention Bowl Plate Cutlery Glass

Safe 0.43 0.27 0.28 0.31 0.30
Normal 0.62 0.62 0.63 0.62 0.48

Aggressive 1.00 1.00 1.00 1.00 1.00

In the case of a safe user specification, adding a symbol of any type decreases

the probability of choosing a valid trajectory (from 0.43 down to 0.27). This indicates

that the model reacts under the internalized specification to reject previously valid

trajectories that interact with the intervened object.

4.8 R e s u lt s 71

For the normal user type, significant changes are observed only when we intro-

duce a glass within the scene. This means it doesn’t alter its behavior with respect to

any of the other symbols.

In the last case, the aggressive user type doesn’t reject any of the randomly

proposed trajectories, and that behavior doesn’t change with the intervention. It

suggests the specification model, in that case, is not reacting to the scene distribution.

Based on these observations, we can postulate that the specification model has

internalized rules such as “If I want to be careful, I need to steer away from any objects on

the table” or “To find a normal solution, look out for glass-like objects.”.

This type of causal analysis allows us to introspect on the model preference and

gives us an understanding of the decision-making capabilities of the model.

4.8.4 Parameterization of Task-Space Specifications

Based on the demonstrated trajectories, we can find parameterization of the

rules specified in Equation 14 for a world with 2 distinct objects. We can observe the

resulting parameters for object distance for 3 different participants in Table 5. We are

measuring the distances in pixel units, and as the camera is orthogonal to the surface,

they can be transformed into real-world distances.

Table 5: The object threshold distances found from demonstrations of different participants.
The values in brackets indicate the radius when optimizing for the minimal LT vs the
maximum.

Tmin Tmin + Tobject−1 Tmin + Tobject−2

User 1 (36) 59 (37) 135 (37) 159

User 2 (37) 45 (38) 145 (38) 145

User 3 (48) 52 (49) 152 (49) 152

In Figure 31 we can observe the progression of these threshold distances when we

alter the number of valid and invalid examples. This allows us to better choose where

the future focus should be when obtaining demonstrations for alternative tasks. If we

look at Figure 31a-31b to increase the confidence that we have found a maximum safety

boundary, we need to counter-intuitively provide more positive examples. Whereas

if we are interested in the minimum safety envelope, Figure 31c-31d illustrates that

4.8 R e s u lt s 72

0 1 2 3 4 5 6 7 8 9 10

Negative examples

0
1
2
3
4
5
6
7
8
9

10

P
o
si
ti
v
e
ex

a
m
p
le
s

140

150

160

170

180

190

200

T
h
re
sh

o
ld

d
is
ta
n
ce

(a) Object 1 (Max)

0 1 2 3 4 5 6 7 8 9 10

Negative examples

0
1
2
3
4
5
6
7
8
9

10

P
o
si
ti
v
e
ex

a
m
p
le
s

160

165

170

175

180

185

190

195

200

T
h
re
sh

o
ld

d
is
ta
n
ce

(b) Object 2 (Max)

0 1 2 3 4 5 6 7 8 9 10

Negative examples

0
1
2
3
4
5
6
7
8
9

10

P
o
si
ti
v
e
ex

a
m
p
le
s

5

10

15

20

25

30

35

T
h
re
sh

o
ld

d
is
ta
n
ce

(c) Object 1 (Min)

0 1 2 3 4 5 6 7 8 9 10

Negative examples

0
1
2
3
4
5
6
7
8
9

10

P
o
si
ti
v
e
ex

a
m
p
le
s

5

10

15

20

25

30

35

T
h
re
sh

o
ld

d
is
ta
n
ce

(d) Object 2 (Min)

Figure 31: The transition of the threshold distance (Tmin + Tobject−k) for different number of
positive and negative examples. We can see the impact of increasing the number
of trajectories when we want to find an optimally maximum/minimum distance
around an object.

we need to give invalid trajectories. Thus, the true underlying object distance will lie

between the observed maximum and minimum boundaries.

The resulting boundaries around the symbols do not necessarily represent the

object boundaries, but the expert representation of the min/max expected distance

of interaction around them. Combining the rules in Equation 14 and the values in

Table 5 allows us to create an additional cost map that can be used to perform motion

planning in the scene following the user expectations. Combining this with the causal

analysis gives us the ability to incorporate only the required symbols within the

planning framework.

4.9 L i m i tat i o n s o f Po l i c y a n d Ta s k S t r u c t u r e 73

4.9 L i m i tat i o n s o f Po l i c y a n d Ta s k S t r u c t u r e

Performing the causal analysis on the surrogate model creates some limitations

around complex behaviours, where the surrogate model is non-trivial. There is an

assumption around the representation of both the world configuration (image to VAE

latent space) and the trajectory (list of points to Bézier fit).

Further constraint is in regards to symbol knowledge - to perform augmentation

of the input of the surrogate model, we rely on knowledge about the symbols, and in

the current configuration the symbols have no co-occurrence restrictions. If they did,

it would imply there is a common confounder and the SCM would be insufficient.

When we perform rule parameterization, it relies not only on knowledge about

the symbols, but having a correct prior about their composition — a good fit can

occur when the programmatic representation of the specification matches the internal

human model. This representation needs to be handcrafted. A possible extension

would be to use symbolic AI and symbol manipulation to jointly parameterize and

find the rules themselves [114].

Extracting these symbols and performing policy optimization is further explored

in Chapter 5, where we relax the assumption of symbol knowledge with the inductive

property that salient trajectory states are associated with symbols. We use this to build

up a list of salient regions.

4.10 C o n c l u s i o n

Learning behavioral types is essential for completing interactive human-robot

tasks. It helps avoid nuisance and promotes better foresight into human actions and

plans. Being able to decompose those user types into interpretable and reusable

models is of high importance.

In this chapter, we demonstrate how to construct and use a generative model

to differentiate between behavioral types, derived from expert demonstrations. We

show how performance changes with the number of trajectories illustrated in a scene.

Additionally, by using the same learned model, it is possible to change any solution to

4.10 C o n c l u s i o n 74

satisfy the preference of a particular user type, by taking gradient steps in the latent

space of the obtained model.

Performing causal analysis allows for the extraction of causal links between

the occurrence of specific symbols within the scene and the expected validity of a

trajectory. The models exhibit different behaviors with regard to the different symbols

within the scene leading to correctly inferring the underlying specifications that the

humans were using during the demonstrations.

Further, by assuming an underlying set of specifications that users follow, it

is possible to find the safety envelope boundaries for the objects within the scene.

Additionally, we investigate what type of demonstrations would help move the

minimum/maximum side of this boundary toward the optimum.

This chapter concludes by showing a method that converts demonstrations into

a set of functions that represent the underlying specifications. Those are specifically

linked to objects within the world and are causally discarded for uninteresting objects.

This can increase the diversity of policies that can be composed to solve long

horizon tasks. The next Chapter will look at how interventions can be performed

during the demonstration, and how those can help make the policies more robust and

highlight any salient parts of the task area.

5

L f I I : L e a r n i n g f r o m I n v e r s e

I n t e r v e n t i o n

In this chapter we look at how a ‘physical’ dialogue between the expert demon-

strator and the agent can help the learner with the core structure of the problem and

remove possible variations of the task.

LfD facilitates sample-efficient learning of task structure that would have been

difficult to induce automatically. This is typically a supervised or semi-supervised

learning process. The robustness of the resulting policy is highly dependent on the

variability of the demonstrations which the learning agent receives. With temporally

extended tasks, it is likely that variability may be limited around hard-to-execute seg-

ments or specific sub-goals, especially if the demonstrator is used to acting habitually

in certain ways. In this chapter we propose augmenting LfD with interventions initiated

by the robot learner (LfII). Thus, the robot would query the human demonstrator about

the underlying structure of the problem by intervening (in time and space) where

it believes the demonstration could be modified while preserving the underlying

‘concepts’.

This is a form of data augmentation — as discussed in Chapter 2 — enabling the

essential variability in the demonstrations to be captured, towards achieving improved

robustness of the resulting controller to perturbations. We demonstrate this first in

a 2D navigation example and then with a robot control task involving a Panda arm

performing table-top manipulation. We show that this process helps identify salience

regions where intervention usefully augments the original data set.

75

5.1 I n t r o d u c t i o n 76

5.1 I n t r o d u c t i o n

The main benefit of robot learning is the enhanced adaptability enabling applic-

ability in a broader range of domains and environments compared to predefined

controllers. However, this is crucially dependent on the learning system being exposed

to sufficient variations while training, in order for the models to acquire all essen-

tial aspects of the underlying ‘concepts’. Robot learning researchers have typically

succeeded through careful thought around ways to achieve suitable diversity, e.g.,

to changes in visual appearance and shape of objects, articulation, and movement

trajectories.

Learning from Demonstration [11, 126] is an effective mechanism by which

one is able to obtain examples of the execution of a task respecting such allowable

variations. In this paradigm, the expert provides data through e.g. kinesthetic teaching,

teleoperation, or illustration. However, the problem remains for the robot to infer what

the underlying concepts are, and crucially what are the allowable variations in the

spatio-temporal data associated with a specific task. When we require high levels of

reliability in the final learned models, e.g., in some industrial or medical applications,

we must think carefully about the coverage achieved within the dataset and the extent

to which the long tail of the data distribution has been captured to facilitate eventual

inference [17, 52, 146]. A compounding factor is that within demonstrations of realistic

robot tasks, there is often a significant degree of self-similarity and redundancy, due

to the nature of the task or even the comfort spaces of the demonstrator.

We aim to tackle these challenges by allowing the robot to intervene during

the demonstration, querying about the underlying structure of the problem with a

system overview shown in Figure 32. As a result, the robot pushes the expert to

visit potential regions where their policy may perform worse. This intervention is

equivalent to the robot asking the question: “Is this variation task-relevant or can I safely

alter your demonstration in this way?”. Assessed from an active learning perspective,

additional data points in regions where the policy is already in accordance with the

concepts implicit in the demonstrations would not contribute substantially to better

generalization. In our proposed approach, the intervention is performed online at data

collection time, in contrast to methods like Dagger [121]. Our approach differs from

5.1 I n t r o d u c t i o n 77

Figure 32: The forward pass to obtain new demonstrations follows the black and green arrows
- the expert is demonstrating the task, interrupted by the intervention strategy to
augment the demonstration. The resulting trajectories are then stored and used to
update the robot policy, which is key to determining where interventions are applied.
As an offline “backward” pass (black and red arrows), the problem structure is
identified by creating a problem graph and assessing the salience of the different
nodes. This is done by (1) creating trajectories that avoid particular nodes in the
graph or (2) using the expert to help assess the value of the node from a sampled
reconstructed image.

the one described by Spencer et al. [136] in that the initiative is taken by the robot -

rather than the human telling a robot (which acts as a passive receiver of information),

here the robot actively modifies trajectories at demonstration time to ask if a certain

variation is valid under the implied concept.

This is especially relevant to long-horizon tasks, as the demonstration trajectory

is bound to be visiting a sequence of important sub-goal areas. Typically, all sub-

goals after the first one will have a limited initiation set, often overlapping with the

termination of the previous one as shown by Angelov et al. [4] and Dautenhahn and

Nehaniv [41]. This could lead to fragile control policies, as the data may not be diverse

around these points, implying that even a small disturbance could push the robot state

outside the support of the data. This provides additional information in regards to

how vital it is to visit particular areas of the state space for successful task execution. If

the robot intervenes and moves away from an area, but is brought back by the expert,

it gives useful information about the salience of that region.

In this chapter we make the following contributions:

• We propose Learning from Inverse Intervention (LfII) during demonstration,

which diversifies the demonstrations obtained from the expert. This is an online

data augmentation approach based on performing targeted interventions to elicit

information from the human expert. This method is agnostic to the underlying

robot or state space.

5.2 R e l at e d w o r k 78

• We demonstrate increased robustness of the resulting policies, due to wider

coverage of the distribution of states.

• We show the identification of salient locations, in both a state-based and vision-

based setting.

We evaluate the proposed approach first in a navigation task that requires visiting

a sequence of states with full observability of the state. Next, we demonstrate this

method applied to a robotics inspection task in a static and dynamic environment,

with the observable state space corresponding to a camera view on the robot. We

demonstrate greater robustness to random perturbations, and also that we can identify

salient locations and generate corresponding images.

5.2 R e l at e d w o r k

5.2.1 Salience Identification

In situations with multiple or ambiguous goals, a good strategy to clarify the

objective is to query the human expert. The work of Tellex et al. [143] provides a

method where a robot in a failed state of the task graph, can ask a human participant

to provide help or insight into the problem to aid the solution. In our work, the

algorithm initiates visual queries for the human to confirm the salience of a particular

state.

An alternative method for evaluating salience is through partitioning a large

task into sub-problems as with options [50, 70, 139] to construct a hierarchical policy.

The termination states of options relate to task structure. A method to identify these

sub-problems is through frequency analysis or “bottleneck” states as described by

Stolle and Precup [137]. However, these methods are often limited to discrete tasks

with plentiful data. In our work, we build on both these approaches and extend

them to a continuous state space, sparse-data setting (i.e. limited number of rollouts),

where the trajectories are generated from human demonstrations. While the previous

methods use passive observations, we can counter-factually assess if visiting particular

parts of the state space is necessary for solving the task.

5.3 P r o b l e m F o r m u l at i o n 79

This is similar to evaluating salience in demonstrations through mapping them

back to a reward structure using IRL [21], confidence based methods [33], through

key-frame detection [78], or relying on Semi-MDP graphs as constraints [67]. In our

case, we use counterfactual trajectory and image generation to assess importance.

5.2.2 Demonstration Strategies

Data from imitation learning is typically used in a supervised learning setting to

create an initial/prior policy, such as in Kim et al. [84] and Kober, Bagnell and Peters

[87]. Or relying on simulation as a proxy to ask humans for performance evaluation

[134]. This can be further optimized by alternative reinforcement learning strategies.

Methods for augmenting the rollouts of the agent with human help, such as

Dagger [121] and GAIL [72] are typically offline. Here, distribution matching is

performed as an augmentation of the data. Similar to our method, Spencer et al.

[136] uses interventions online, altering the robot trajectories. An advantage of our

method is that the robot performs an intervention on the human online, during the

demonstration, in effect holding a kinesthetic discussion about the structure of the

problem.

The way that the agent chooses when to intervene in this dialogue is similar to

the work on curiosity, e.g., episodic curiosity - based on errors in observations [124],

or by following errors in the dynamics predictions [23]. In the current chapter, the

agent’s drive for exploration comes from the alignment of the internal policy to the

current demonstration that is being obtained — in other words — the new trajectory

not being sufficiently informative.

5.3 P r o b l e m F o r m u l at i o n

When people demonstrate tasks to each other, the semantics would not always be

clear without the benefit of clarification questions [118]. When teaching sensorimotor

skills, this takes the form of kinesthetic nudges. Our main goal is to embody this

behavior in robot learning.

5.3 P r o b l e m F o r m u l at i o n 80

Thus, in contrast to the robot merely exploring on its own, starting from an initial

trajectory, or the human user providing verbal labeling of trajectories or piece-wise an-

notations post-hoc, in our model the robot proposes deviations to the demonstrations

in response to which the human expert either corrects (hence providing information

about the need for specificity) or ignores that variation from which the robot infers

redundancy in task specification.

In technical terms, this means that we compare the expert demonstration against

the current robot policy using cosine similarity. The robot policy is updated after

each demonstration to encode the newly learned information.

To assess saliency, we use the nodes constructed by the algorithm above with

additional robot rollouts (which are chosen to avoid regions of the space similar to the

interventions during the demonstration) or through Visual Q&A (directly asking the

expert for clarification of the state). This is how the human expert provides feedback

during*the demonstration process.

To compare this paradigm against alternatives, we have chosen examples that

are similar to prior work, e.g. D. Precup et al. [137] count-based bottleneck state

detection - represented in our baselines as intervention type ‘none’ and ‘random_eps’

(dependent on the original policy) to the proposed methods - ‘conditional_random’,

‘conditional_lfii’.

Then, going beyond the scenarios of static scenes, we adopt the example from

Burke, Hristov and Ramamoorthy [24], showing that our approach can cope with a

dynamic scene. This example is chosen to be simple enough to clearly bring out where

count-based methods would be ineffective and how our proposed approach fares.

5.3.1 Diverse trajectory demonstration

Consider the MDP setting wherein the learning agent models the environment

through nodes in a graph, with actions causing transitions between them. In another

variation, a group of observational states would map to nodes in that graph.

In the first part of our work, we are interested in using trajectories from a task

to infer the underlying variability of robot states that map to the different nodes in

5.3 P r o b l e m F o r m u l at i o n 81

this graph. Intervention is used to expand the scope of observations for a node. As

we construct the graph through different roll-outs, obtained from the trajectories, we

should note that each node needs to contain states from each trajectory. This builds up

the underlying representation of the task, which may not be necessarily identifiable in

the domain of vision-based robot control.

As part of task learning, we incrementally construct the graph, G = (V, E), where

V is the set of vertices or nodes and E ⊆ {{x, y}|(x, y) ∈ V2 ∧ x 6= y} is the set of

edges or transition between nodes. In the beginning, the graph is fully connected. As

learning proceeds, we aim to reduce the edges to highlight critical nodes.

The set of nodes V = {v1, v2, ...} is initialized from at least 2 demonstration

trajectories, D = {demo1, demo2, ...}, where demoi is a sequence of observations demoi =

{oi
1, oi

2, ...}. Both v and o are in Rd, which is the underlying dimensionality of the

observations. We set v1 such that it is a hyper-sphere containing at least one observation

from each demonstration oi, oj, When we receive another demonstration - demoi

coming from the expert policy Π, we use Welzl’s algorithm [150] to recompute the

hyper-sphere parameters (center and radius), such that each of the nodes in V now

also contains observations from the new trajectory.

Figure 33: G1 represents the initially connected graph after node generation. G2 is an example
of an attempt to decrease the number of edges connecting the nodes, to surface the
underlying structure of the problem. There is an intervention between the edge
connecting v1 and v2, making the next possible action transition the agent to v3 and
beyond.

When we obtain demonstrations (from Π), we aim to get high diversity of obser-

vations, especially in locations where our model policy π generates actions misaligned

to the demonstrations. In order to do so, we compare the running average of the

last k steps in terms of how well the policy matches the current demonstration

∆π = 1
k ∑i

j=i−k cos(π(oj), Π(oj)). If the demonstration aligns well with the robot policy,

∆π < er, we perform an intervention of magnitude M (chosen empirically) and dir-

ection V̂I , storing those locations in DI . This intervention is performed during the

demonstration by creating a low gain attractor point at the intervened location, whilst

5.3 P r o b l e m F o r m u l at i o n 82

the robot is impedance controlled to follow the human guidance [112]. This is sum-

marised in Algorithm 1 along with the auxiliary task of creating the task salience

graph.

The exploration of the agent is modulated by changing er - increasing it would

trigger more exploratory behavior. An expansion along the lines of ε−greedy methods

would therefore be p(1− ε) ∗ er + p(ε) ∗ 1. The intervention V̂I can be in a random

direction (’conditional random’) or orthogonal to the current policy vectors (’conditional

lfii’). An advantage of our method is choosing the right location along the trajectory to

perform the intervention, rather than performing it based on some noise variable.

Algorithm 1: Learning from intervening during demonstration
Input: Robot - robot, exploration const - er, k, M, total number of

demonstrations - N
Output: Dataset - D, Control Policy - ß

1 add a set of initial demonstrations D← {demo1, demo2, ..., demon};
2 init nodes v = compute_nodes(D);
3 compute control policy π f romD;
4 for next demoi, i ∈ [n, N] do
5 DI = {};
6 for step p in demoi do
7 ∆π = 1

k ∑
p
j=p−k cos(π(oj), Π(oj));

8 if ∆π <= er then
9 // demonstration aligns well with robot understanding; let’s

intervene;
10 VI ← π(oi)× random_vector // not collinear to π(oi);
11 V̂I = M ∗ VI

|VI | ;

12 robot.execute(V̂I).duration(k);
13 append demoi{p, ..., p + k} to DI

14 update v with demoi;
15 append demoi to D;
16 update policy π from D \ DI ;
17 return D, π, v;

5.3.2 State salience

The diverse set of trajectories obtained above gives nodes in the graph that are

representative of different locations within the state space. Identifying sub-cliques

in the graph would highlight those nodes that connect these subgroups, thus are

important for traversing the graph. We aim to uncover these salient nodes with the

5.4 E x p e r i m e n ta l S e t u p 83

expert in the loop. We present two methods to tackle this node exclusion problem, using

either a static query or a dynamic plan within the environment.

• Option 1: Through augmented trajectory — We generate a trajectory within the

latent representation of the planning policy to exclude clusters to be intervened

on (see Figure 33) by minimizing the deviation from the policy itself - external

effort. We then ask the human to judge the success of the policy;

• Option 2: Through visual Q&A — Relying on a generative model of the state

space allows us to ask the question “Is going through this node [image/sequence

of images] necessary to complete the task?”. This is especially useful in situations

where we need to avoid failures. We provide samples that are exponentially

distributed from the center of the node to evaluate salience.

5.4 E x p e r i m e n ta l S e t u p

In this section, we apply LfII during demonstrations in two distinct cases. In

the first one, we examine the situation where the observation/state space is simply

structured, such as Euclidean space, as is common in robot navigation. In the second

case, we consider observations from higher-dimensional space, e.g. camera video

stream, with the ‘state’ being built from the latent representation of a machine learning

algorithm.

Structured Space In this first experiment, we have a robot perform a 2D nav-

igation task, loosely inspired by the room traversal problem in [139] and converted

to a continuous domain. The objective is to visit locations loc, such that (locx =

x, locy = cos(x) = sin(x) for x ∈ [0..4π]), which repeat every 2π, for a total of 4 points

(red targets on Figure 35). To succeed in reaching a location, the agent needs to be

within εrange = 0.2 from the target location. The agent begins at (locx = 0, locy =

uni f orm(−π/2, π/2)). We perform the demonstrations either through the keyboard

(total of 8 directional actions) or through an expert policy Π, which navigated in a

direction towards the next unvisited location with directional noise of 0.1rad and a

step magnitude of 0.1. For the control policy, learned by the agent, we used a Gaussian

Process with RBF kernel with scale 1.

5.4 E x p e r i m e n ta l S e t u p 84

The agent has access to its location - ’loc‘ and has the ability to perform an

action that would change the location by delta - the traversed distance in x and y.

It has to learn the policy for traversing the space whilst visiting the above specified

locations, as well as extracting regions of the space that are considered salient whilst

being demonstrated the task. Perfect performance would be achieved by completely

extracting the target locations.

We investigate obtaining demonstrations under 4 settings — (1) none - the demon-

strations are obtained and used to learn the control policy, (2) random_eps - we

perform an intervention with probability ε = 0.05 in a random direction with the

same magnitude as the expert steps, (3) conditional_random - we use the condition

defined in Section 5.3.1 to perform a random intervention (as 2), (4) conditional_l f ii -

when the condition is triggered, we perform an exploratory intervention, orthogonal

to the currently learned control strategy. This explores trajectory augmentation op-

tions including offline methods (1), greedy exploration (2), and ways to perform the

intervention (3, 4).

We evaluate how well the resulting nodes match the ground truth area of interest,

with good overlap suggesting that it is a viable method to locate salient locations

within the state space. Those can be identified within the trajectory for the construction

and evaluation of the policy.

Further, we employ the two options to evaluate whether the particular nodes

are salient or not. For Option 1 we construct a trajectory using the learned dynamics

model of the task and sample intervention locations and orientation of the applied

force maximizing the distance from the center of the node. We rollout the trajectory

in the world and evaluate if (1) the resulting path crosses through the intervention

node (as defined by center and radius) and (2) if it has succeeded in solving the task.

If both conditions are valid, we argue that that particular node is not salient, as it was

not needed for solving the task. Alternatively, we collect the resulting nodes.

For Option 2, we substitute the human evaluation with an expert evaluation

policy that samples from the node using the following limited exponential strategy.

func sample_limitedExp(c, r):
v = unit_vector(Uniform(-pi, pi), dims=|c|)
do: dist = ExpDistribution(scale= r) until dist < r
return c + dist * v

5.4 E x p e r i m e n ta l S e t u p 85

The policy averages the samples and assesses if they are within the region of

interest for the task. Upon success, the node is kept as salient.

Figure 34: Tabletop inspection task. The robot needs to visit in a sequence the red base, green
gear, blue peg and finally, the purple small gear. The blue ray-projecting camera
illustrates the perspective from which the network observes the scene. In the second
robot experiment, the parts are moving on the tabletop surface.

Learned Space The last experiment is based on an inspection task (defined in [24]),

where the Panda robot is sequentially inspecting different parts of a gear assembly.

This is implemented in Coppeliasim, as shown in Figure 34. The latent space for

the algorithm is learned from the visual observations of the robot. This is achieved

through a Res-Net style VAE network with additional perceptual loss. The generative

part of the network aimed to produce sharp images, which can be used in visual

Q&A. That would allow the expert to “answer” questions about the salience of the

different nodes. The demonstrations were either not augmented, or were in the form

of perturbations as described above.

The agent receives as input high dimensional image information and performs

an action resulting in the 3D offset and motion of the robot arm. The goal of the agent

is to learn a policy that solves the demonstrated task robustly and uncovers salient

areas of the task, later reconstructed from visual inspection from the latent space of

the model.

The VAE neural network is fully convolutional based on 7 Res-Net style blocks

(see Table 6 in the encoder and decoder (see Table. 7)that take the 256× 256 RGB

image to create a 512-dimensional latent space following a Gaussian distribution. The

first two trajectories were collected and used to initially train the network over 100

epochs with linear loss decay. Subsequently, after each new trajectory, the network was

5.4 E x p e r i m e n ta l S e t u p 86

fine-tuned with all available data up to that point. The full loss used was a combination

of the reconstruction loss, β-weighted KL-Divergence loss, and perceptual feature loss.

The β value was set to 0.1 and the perceptual loss was calculated using the mean

L2 difference between the features of the original image and the reconstructed on a

pre-trained on ImageNet VGG19 network.

Residual Down Residual Up

out = ReLu(skip + aug) out = ReLu(skip + aug)

BatchNorm2D(c=cout) BatchNorm2D(c=cout)
Conv2D (k=3, p=1, c=cout) Conv2D (k=3, p=1, c=cout)
AvgPool2D(scale=2) Upsample(scale_factor = scale,

mode = "nearest")
ReLu() ReLu()
BatchNorm2D(c=cin//2) BatchNorm2D(c=cin//2)
aug = Conv2D (k=3, p=1, c=cin) aug = Conv2D (k=3, p=1, c=cin)

Conv2D (k=3, p=1, c) Conv2D (k=3, p=1, c)
skip = AvgPool2D(scale=2) skip = Upsample(scale_factor = scale,

mode = "nearest")

Table 6: The residual blocks have the following ResNet-like structure.

Encoder Decoder

Output Image [256, 256, 3]
logvar = Conv2D(2048, 512) Conv2D(32, 3)
µ=Conv2D(2048, 512) ResUp(64, 32)
ResDown(1024, 2048) ResUp(128, 64)
ResDown(512, 1024) ResUp(256, 128)
ResDown(256, 512) ResUp(512, 256)
ResDown(128, 256) ResUp(1024, 512)
ResDown(64, 128) ResUp(2048, 1024)
ResDown(3, 64) ResUp(512, 2048)

Input Image [256, 256, 3] Latent Input [512, 1, 1]

Table 7: The ResBlocks from 6 are joined to form the Encoder and Decoder.

The resulting latent space was used to train the dynamics and action policy.

Similar to the above case, they are Gaussian Processes with RBF kernels. They were

trained on those parts of the data that do not include any interventions. The action

policy generates 3D offsets of the robot end-effector. These policies are retrained after

each update of the latent space.

5.5 R e s u lt s 87

We investigate the robustness of the resulting policies to action perturbation.

We actively perturb with ε = 0.1 and a displacement of ×2 the magnitude used in

interventions during the learning process. We measure the minimum distance (and

standard deviation) of the resulting trajectory to the target locations of the different

parts of the task over 10 runs.

Finally, we evaluate the salience of the nodes through visual Q&A with a human

expert. The inspection task primes the policy that particular locations in the state space

need to be visited. As a result, given that all trajectories need to pass through these

particular nodes, we perform an inspection on the ordered list of nodes by volume

starting from the smallest.

To increase the complexity of the representation learning task, we augment the

world, by making the assembly parts that need to be inspected move on the tabletop

surface. This would force the latent space of the neural network to represent a finer

level of discrimination between different states.

5.5 R e s u lt s

Structured Space The first experiment involved a 2D navigational task. We evalu-

ated the performance of the model conditioned on the different types of data that are

obtained with the varying intervention strategies.

We separate the work-space of the policy into 4 regions. Table 8 shows the success

of different policies. A fully robust policy under coverage driven verification can reach

the target from all possible starting locations with a score of 1. We see that for Region

0, where the initiation set of all of the policies is larger, the performance of the models

is higher than for other regions. In the current instance, after 12 demonstrations, the

policy with no interventions performs best. This is possibly due to a better distribution

of the initial location. For the following regions, we observe that having a targeted

intervention increases the performance of the control policy. This highlights that higher

variability in demonstrated trajectories increases the region of operation of the policy.

Thus, it is harder for perturbations to push the policy outside the region of support.

5.5 R e s u lt s 88

Table 8: Performance of different policies starting from uniformly sampled locations within
the corresponding region. The value indicates what part of these trajectories reaches
the region goal. The regions are selected as follows - starting locations until goal 0 -
region 0, between goals 0 and 1 - region 1, etc.

Intervention type Region 0 Region 1 Region 2 Region 3

none 0.55 0.20 0.38 0.37

random_eps 0.54 0.27 0.35 0.42

conditional random 0.38 0.28 0.34 0.41

conditional LfII 0.46 0.64 0.42 0.49

The increased variability of trajectories should also have the effect of better

encapsulating salient nodes from the samples. We evaluate this by calculating the IoU

between the best matching node and the ground truth regions. Table 9 shows how

well the node creation algorithm matches the target areas. We observe that greater

variability methods have a better overlap value. Usually, those methods overestimate

the region rather than giving a partition.

Table 9: IoU of the clusters in regards to the ground truth regions of interest after only
12 trajectories. Region 0 illustrates that with good randomization of the starting
location, the IoU improves in all methods. To sustain this improvement, we need
active intervention during the demonstration (conditional random and LfII).

Intervention type Region 0 Region 1 Region 2 Region 3

none 0.45 0.05 0.10 0.08

random_eps 0.53 0.06 0.09 0.10

conditional random 0.45 0.23 0.27 0.21

conditional LfII 0.55 0.85 0.71 0.46

To evaluate the true salience of the nodes, we test two options - (1) intervening

in a trajectory to create one that avoids particular nodes, (2) performing visual Q&A

with a human expert.

We sample points along the trajectory, alongside a vector of intervention for 1e5

cases, selecting those with the largest distance from the node. These are then the nodes

to be avoided. If a trajectory succeeds despite avoiding the node, then that node is

considered not salient.

Figure 35a shows the resulting salient nodes, showing a ∼ 90% decreases in the

number of possible salient nodes. A few larger areas were unavoidable and remained

5.5 R e s u lt s 89

positive, despite not being relevant to the task. This shows a more proactive control

strategy could have been used.

In the case of Visual Q&A, Figure 35b, the nodes were successfully cleared up,

with only those overlapping substantially with the true areas of interest remaining.

This shows that the method is capable of correctly identifying salient locations without

overburdening the human expert.

(a) Trajectory Intervention

(b) Visual Q&A

Figure 35: Important clusters after trajectory generation through sampling and those after
point Visual Q&A. The blue regions are proposed nodes, red are true areas of
interest.

Learned Space For this experiment, the Panda robot needs to sequentially inspect

parts of an assembly on a tabletop. During the demonstrations, a set of 3 different

intervention strategies was used, producing a total of 22 trajectories. The first two

trajectories were used to initialize the nodes in the MDP graph and to train the latent

space and control models.

The difference in trajectories can be seen in Figure 36.

5.5 R e s u lt s 90

0.800.850.900.951.001.051.101.15
0.4

0.2
0.0

0.2
0.4

0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

(a) No intervention

0.8 0.9 1.0 1.1 1.2 0.6
0.4

0.2
0.0

0.2
0.4

0.8

0.9

1.0

1.1

1.2

(b) Conditional random

0.8 0.9 1.0
1.1

1.2
0.4

0.2
0.0

0.2
0.4

0.8

0.9

1.0

1.1

1.2

(c) Conditional LfII

Figure 36: The 22 trajectories used for the task - we can observe that when using interventions,
the state space coverage increases and would provide better representation.

Through having greater variability in the trajectories, we assess their resistance

to external disturbances. We simulate this by adding an action disturbance. The

results after these trajectories can be seen in Table 10. The minimum distance between

the trajectory and the part is measured across 10 different rollouts. For part 1 the

performance of the methods is similar. As earlier, the initiation set expands and better

covers the state space. For part 2,3,4 not only does the LfII strategy generate trajectories

much closer to the target, but also the variance of these trajectories is lower. This

suggests that better constructed latent space due to the larger variance of images

makes it easier for the control policy to choose correct actions.

Table 10: The robustness of the policy is evaluated by performing perturbations in the action
space with freq 0.1, with a magnitude twice as large as that used during training,
in a direction tangential to the target. In the table below we observe the minimum
distance from the different parts, under different policies, and the standard deviation
in brackets, across 10 runs. We can see that using the LfII we improve both the
minimum distance to the parts and the variance with which those are reached. The
scores for Part 1 are similar, as the random initialisation helps to generalize.

Part 1 Part 2 Part 3 Part 4

none 0.151 (0.096) 0.143 (0.074) 0.237 (0.161) 0.299 (0.258)

conditional random 0.134 (0.114) 0.058 (0.028) 0.118 (0.103) 0.093 (0.182)

conditional LfII 0.158 (0.092) 0.039 (0.022) 0.065 (0.041) 0.033 (0.043)

In the case of the learned latent space, we need a generative model to visually

recreate points within it. Figure 38 shows a variety of samples from different locations.

It shows annotated samples from the visual Q&A with a human about the salience of

different states. A base assumption that allows for the nodes to be annotated relatively

quickly (200 images for under 5 minutes) is that smaller nodes, through which all of

the trajectories pass, are inherently salient. Thus, ordering the nodes speeds up the

5.5 R e s u lt s 91

process. In the case of conditional LfII based interventions in a static environment, as

the volume of states that the node covers increases, the probability of the node being

salient decreases. However, this does not hold for the case where it is dynamic or no

interventions are performed, as the majority of nodes have limited volume.

Figure 38b shows correctly identified salient locations with a dynamic scene.

Increasing the complexity by adding moving objects, which are a target for the

algorithm, still allows us to extract salient locations within the latent space.

In both cases, this method allows trajectories in the latent space of the problem to

be clustered and salient points for the structure of the task to be identified. Future

extension of this work would use the current node representation to better guide

the directions of the intervention to jointly optimize the exploration and structure

identification.

(a) No Intervention - static scene

Figure 37: Reconstructed images based on the center of clusters with different radii. This
shows a static no intervention scene.

5.5 R e s u lt s 92

(a) Conditional LfII - static scene

(b) Conditional LfII - dynamic scene

Figure 38: Reconstructed images based on the center of clusters with different radii. In the
static LfII case, there is a clear separation between the salient regions and in-between
nodes after the first 25% of nodes. In the dynamic scene this assumption is less
strong, but useful to identify salient nodes.

5.6 L i m i tat i o n s o f L f I I 93

5.6 L i m i tat i o n s o f L f I I

In the process of finding task structure, there is an inherent limit on the type

and scale of the intervention. It needs to balance (1) policy exploration, and (2)

human willingness to work with the system. Larger interventions would improve the

exploration but would be spending ‘emotional will’ on working with a system that

is resisting the demonstration. This can be better balanced in case the latent space is

better explored independently through standard RL techniques around violation of

expectations.

In the current exploration strategy, only the policy performance is taken into

account, and an improvement to the solution would jointly perform the exploration

and intervention generation from the potential MDP graph.

5.7 C o n c l u s i o n

We present a method for Learning from Inverse Intervention (LfII), in which a

robot augments the expert demonstrations by intervening in search for less explored

states. We show that this method is particularly well suited to sequential tasks where

demonstrations might have had limited variability. In the process of altering the

trajectory, the robot obtains useful information about the underlying structure of the

problem. As a result, the learned policies have increased robustness and larger safe

sets of operation. Similarly, using intervention strategies or through a form of visual

Q&A, we evaluate areas of the state space for salience.

6

C o n c l u s i o n

6.1 K e y I d e a s

With the transformation towards autonomous on-demand manufacturing, there

is a need for a system that bridges the gap between rigid engineered solutions and

versatile learning-based adaptations.

Some of the requirements this imposes is around fast adaptation that solves

multi-step processes. This dissertation has presented methods that combine Learning

from Demonstration — a tool to define and specify the required task, with hierarchical

hybrid control strategies, permitting the use of diverse policies for robot control. It

shows that this approach provides a flexible method to tackle long-horizon tasks.

Further, it illustrates that examining the control strategy and the demonstrations

themselves provide innate information about the structure of the problem. Creating a

generative surrogate model of the control policy gives the ability to perform causal

analysis. This provides the ability to extract agent interactions with symbols in the

world by hypothesising different configurations. Furthermore, static demonstrations,

especially of long-horizon tasks, are prone to following a single mode/manner within

the data. This work shows that allowing the robot to interact with the expert during

the demonstration can provide increased robustness and highlight possible salient

parts of the task.

94

6.1 K e y I d e a s 95

6.1.1 Sequentially composing policies

The temporal abstraction of the control strategy through a hierarchical structure

is a common method to decrease the length of the actions an agent needs to make to

provide some useful ‘work’.

Formulating the task learning process as an RL problem is not always feasible

with high-powered or -valued platforms. Additionally, it usually enforces the lower

level policies to be represented in the same paradigm as the whole system. This work

uses a library of diverse controllers, with a few demonstrations as a guide on the right

sequence to complete the task.

The combination of a dynamics model with an estimator provides a powerful way

to evaluate how well each controller would progress the current state towards the goal

of the task. Independently each policy is not constrained on the type of input/output

space and provides the needed flexibility. In return, this allows for the hierarchical

policy to be represented analytically based on future state estimation.

The framework shows robustness to noise in the dynamic models, as well as the

Goal Score Estimator models. It is demonstrated on a real-world problem of a gear

assembly task with the PR2 robot.

6.1.2 Policy and Task Structure

Increasing the diversity of policies has the advantage of allowing the possible

variations of how to complete a task with the method above to expand. The variation

of policies can be seen as a slight alteration of the specifications of the demonstrators.

Using causal analysis one can identify that the specifications can differ causally

in regards to known symbols. This is possible by learning a surrogate model, which

can be investigated through evaluating counterfactual scenarios. Additionally, it is

feasible to learn a parameterization of these interactions in simple scenarios. The

generative surrogate model has further advantages that allow a proposed policy to

be interpolated between different specifications — e.g. making a ‘delicate’ trajectory

faster, as well as finding multiple bundles of possible solutions.

6.2 F u t u r e Wo r k 96

This post-data collection analysis is useful to gain insight into the structure of

the policy itself. However, when the robot interacts with the demonstrator, as in the

case of LfII, the augmented trajectories are informative in regards to finding a better

approximation of the true task policy. The robot can intervene in situations where

the demonstration is not informative, pushing the data collection process to regions

that can better differentiate between the overparameterized policies [37]. During

this process, the agent can build an MDP of possible salient locations for the task

— natural sub-problem transitions. To confirm these salience clusters, the robot can

either perform a trajectory that attempts to complete the task by excluding a particular

region of the task space or alternatively, by using the generative model to create a

visual representation of the state and obtain an answer through Visual Q&A with the

expert.

6.2 F u t u r e Wo r k

6.2.1 Structure embedding and transfer

One of the fundamental problems in Artificial Intelligence (AI) is around the

embedding of structure or priors within the system. In the current work, there is a

strict separation between the prior knowledge in the form of a causal graph and the

demonstration bias.

However, a powerful system for demonstrations would come through embedding

common statistical similarities — “common sense reasoning” — that can be extended

and transferred to new situations.

It is common knowledge that e.g. people in high visibility vests behave in a

structurally different model than ones without, albeit sharing some common plans. Or

similarly that a Philip’s head screw would behave comparably to a slot screw or even

a Torx one. The commonality in one level of the knowledge hierarchy should provide

a prior to its common higher and lower levels. The existence of a set of screws on a

plate would be sufficient to (1) bias the possible activation policies, given the robot

is holding a screwdriver. Also (2) in the case of interactive learning that it provides

6.3 C o n c l u d i n g R e m a r k s 97

little information gain to intervene on the demonstration to “poke” the metal plate on

which the screws are mounted.

The development of the CycL knowledge base [59] has shown that pure symbol

manipulation is insufficient to capture the full representation of a domain.

This combination of symbolic planning and manipulation or additional natural

language instructions do not share a common representation with causal models or

a neural detection pipeline. To reach the next step of performance, there need to be

improvements in the addition of such reasoning capabilities to improve the overall

system safety and ability to work under uncertainty.

6.2.2 Temporal memory tasks

Sequential compositionality is a powerful tool that allows for independent al-

gorithms to be sequenced to solve a wider-reaching task. Working beyond the scope of

each individual policy requires a general structure that implicitly or explicitly embeds

the historic actions in the current state of the world.

To increase the classes of problems that the current method can be applied to,

there needs to be a memory mechanism that stores the temporal sequence of actions

that have been executed. Embedding a Neural Turing Machine [58] can be used to

store and retrieve past actions, and Graph Neural Networks [125] to reason with

additional constraints of time and dynamics for the future execution plan.

6.3 C o n c l u d i n g R e m a r k s

In conclusion, this dissertation presents work on embedding different forms of

inductive biases to solve temporally extended tasks and elicit additional structure

within the task execution.

First, it focused on sequential policy composition in a hierarchical framework by

relying on expert demonstrations. This increased the diversity of possible policies

used to solve a real-world assembly problem.

6.3 C o n c l u d i n g R e m a r k s 98

Further, the demonstrator’s specifications can be extracted by performing causal

analysis on a learned surrogate model, allowing for increasing the policy variation

by interpolation. It also highlights that these specifications can be parameterized in

relation to the detected symbols.

Lastly, this work shows that interventions between the demonstrator and the agent

in the form of a “physical dialogue” increase the overall performance and robustness of

the system. It presents two methods for investigating the salience of regions within

the task — through intervening during the demonstration or by using the generative

model in visual Q&A.

B i b l i o g r a p h y

[1] Pieter Abbeel, Adam Coates and Andrew Y Ng. ‘Autonomous helicopter

aerobatics through apprenticeship learning’. In: The International Journal of

Robotics Research 29.13 (2010), pp. 1608–1639.

[2] P. Andonov, A. Savchenko, P. Rumschinski, S. Streif and R. Findeisen. ‘Control-

ler Verification and Parametrization Subject to Quantitative and Qualitative

Requirements’. In: IFAC-PapersOnLine 48.8 (2015), pp. 1174 –1179.

[3] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,

Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel and Wojciech Zaremba.

‘Hindsight experience replay’. In: Advances in Neural Information Processing

Systems. 2017, pp. 5048–5058.

[4] Daniel Angelov, Yordan Hristov, Michael Burke and Subramanian Ramamoorthy.

‘Composing Diverse Policies for Temporally Extended Tasks’. In: IEEE Robotics

and Automation Letters 5.2 (2020), pp. 2658–2665.

[5] Daniel Angelov, Yordan Hristov and Subramanian Ramamoorthy. ‘DynoPlan:

Combining Motion Planning and Deep Neural Network based Controllers for

Safe HRL’. In: The Multi-disciplinary Conference on Reinforcement Learning and

Decision Making (RLDM) (2019).

[6] Daniel Angelov, Yordan Hristov and Subramanian Ramamoorthy. ‘Using

Causal Analysis to Learn Specifications from Task Demonstrations’. In: Proceed-

ings of the 18th International Conference on Autonomous Agents and MultiAgent

Systems. AAMAS ’19. Montreal QC, Canada: International Foundation for

Autonomous Agents and Multiagent Systems, 2019, pp. 1341–1349. isbn: 978-1-

4503-6309-9. url: http://dl.acm.org/citation.cfm?id=3306127.3331841.

99

http://dl.acm.org/citation.cfm?id=3306127.3331841

B i b l i o g r a p h y 100

[7] Daniel Angelov, Yordan Hristov and Subramanian Ramamoorthy. ‘From demon-

strations to task-space specifications. Using causal analysis to extract rule

parameterization from demonstrations’. In: Autonomous Agents and Multi-Agent

Systems 34.45 (2020). doi: 10.1007/s10458-020-09471-w.

[8] Daniel Angelov and Subramanian Ramamoorthy. ‘Learning from demonstra-

tion of trajectory preferences through causal modeling and inference’. In:

Robotics: Science and Systems Workshop on Causal Imitation in Robotics (CIR 2018).

Pittsburgh, Pennsylvania, 2018.

[9] Brenna D. Argall, Sonia Chernova, Manuela Veloso and Brett Browning. ‘A

survey of robot learning from demonstration’. In: Robotics and Autonomous

Systems 57.5 (2009), pp. 469 –483. issn: 0921-8890.

[10] Saurabh Arora and Prashant Doshi. ‘A survey of inverse reinforcement learning:

Challenges, methods and progress’. In: arXiv preprint arXiv:1806.06877 (2018).

[11] Christopher G Atkeson and Stefan Schaal. ‘Robot learning from demonstration’.

In: International Conference on Machine Learning. Vol. 97. Citeseer. 1997, pp. 12–

20.

[12] Jason Baldridge and Miles Osborne. ‘Active learning and the total cost of

annotation’. In: Proceedings of the 2004 Conference on Empirical Methods in Natural

Language Processing. 2004, pp. 9–16.

[13] Andrew G Barto and Sridhar Mahadevan. ‘Recent advances in hierarchical

reinforcement learning’. In: Discrete event dynamic systems 13.1-2 (2003), pp. 41–

77.

[14] Rodrigo Benenson, Stefan Popov and Vittorio Ferrari. ‘Large-scale interactive

object segmentation with human annotators’. In: CVPR. 2019.

[15] Dimitri P Bertsekas. Constrained optimization and Lagrange multiplier methods.

Academic press, 2014.

[16] Lucas Beyer, Olivier J. Henaff, Alexander Kolesnikov, Xiaohua Zhai and Aaron

van den Oord. ‘Are we done with ImageNet?’ In: arXiv preprint arXiv:2002.05709

(2020).

https://doi.org/10.1007/s10458-020-09471-w

B i b l i o g r a p h y 101

[17] Arjun Nitin Bhagoji, Daniel Cullina, Chawin Sitawarin and Prateek Mittal.

‘Enhancing robustness of machine learning systems via data transformations’.

In: 2018 52nd Annual Conference on Information Sciences and Systems (CISS). IEEE.

2018, pp. 1–5.

[18] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,

Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller,

Jiakai Zhang et al. ‘End to end learning for self-driving cars’. In: arXiv preprint

arXiv:1604.07316 (2016).

[19] Alejandro Bordallo, Fabio Previtali, Nantas Nardelli and Subramanian Ramamoorthy.

‘Counterfactual reasoning about intent for interactive navigation in dynamic en-

vironments’. In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International

Conference on. IEEE. 2015, pp. 2943–2950.

[20] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang and Wojciech Zaremba. ‘Openai gym’. In: arXiv preprint

arXiv:1606.01540 (2016).

[21] Daniel S. Brown and Scott Niekum. Machine Teaching for Inverse Reinforcement

Learning: Algorithms and Applications. 2018. arXiv: 1805.07687 [cs.LG].

[22] Daniel Brown, Wonjoon Goo, Prabhat Nagarajan and Scott Niekum. ‘Extrapol-

ating Beyond Suboptimal Demonstrations via Inverse Reinforcement Learning

from Observations’. In: International Conference on Machine Learning. 2019.

[23] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell

and Alexei A Efros. ‘Large-scale study of curiosity-driven learning’. In: arXiv

preprint arXiv:1808.04355 (2018).

[24] Michael Burke, Yordan Hristov and Subramanian Ramamoorthy. ‘Hybrid

system identification using switching density networks’. In: Conference on Robot

Learning (CoRL). 2019.

[25] Michael Burke, Svetlin Penkov and Subramanian Ramamoorthy. ‘From Ex-

planation to Synthesis: Compositional Program Induction for Learning From

Demonstration’. In: Robotics: Science and Systems (R:SS) (2019).

https://arxiv.org/abs/1805.07687

B i b l i o g r a p h y 102

[26] Robert R Burridge, Alfred A Rizzi and Daniel E Koditschek. ‘Sequential com-

position of dynamically dexterous robot behaviors’. In: The International Journal

of Robotics Research 18.6 (1999), pp. 534–555.

[27] Richard H Byrd, Peihuang Lu, Jorge Nocedal and Ciyou Zhu. ‘A limited

memory algorithm for bound constrained optimization’. In: SIAM Journal on

Scientific Computing 16.5 (1995), pp. 1190–1208.

[28] Daniel Cabrera, Jonathan F Thomas, Jeffrey L Wiswell, James M Walston, Joel

R Anderson, Erik P Hess and M Fernanda Bellolio. ‘Accuracy of ‘my gut

feeling:’comparing system 1 to system 2 decision-making for acuity prediction,

disposition and diagnosis in an academic emergency department’. In: Western

Journal of Emergency Medicine 16.5 (2015), p. 653.

[29] Satyan Chandra, In Jae Chung, Adnan Esmail, Matthew Blum and Rishabh

Bhandari. Wiring system architecture. US Patent App. 16/231,314. 2019.

[30] T. Q. Chen, X. Li, R. Grosse and D. Duvenaud. ‘Isolating Sources of Disen-

tanglement in Variational Autoencoders’. In: ArXiv e-prints (Feb. 2018). arXiv:

1802.04942 [cs.LG].

[31] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever and Pieter

Abbeel. ‘Infogan: Interpretable representation learning by information maxim-

izing generative adversarial nets’. In: Advances in neural information processing

systems. 2016, pp. 2172–2180.

[32] Sonia Chernova and Manuela Veloso. ‘Confidence-based Policy Learning from

Demonstration Using Gaussian Mixture Models’. In: Proceedings of the 6th

International Joint Conference on Autonomous Agents and Multiagent Systems.

AAMAS ’07. Honolulu, Hawaii: ACM, 2007, 233:1–233:8. isbn: 978-81-904262-7-

5.

[33] Sonia Chernova and Manuela Veloso. ‘Confidence-based policy learning from

demonstration using gaussian mixture models’. In: Proceedings of the 6th in-

ternational joint conference on Autonomous agents and multiagent systems. 2007,

pp. 1–8.

[34] William S Cleveland and Clive Loader. ‘Smoothing by local regression: Prin-

ciples and methods’. In: Statistical theory and computational aspects of smoothing.

Springer, 1996, pp. 10–49.

https://arxiv.org/abs/1802.04942

B i b l i o g r a p h y 103

[35] Felipe Codevilla, Eder Santana, Antonio M López and Adrien Gaidon. ‘Explor-

ing the Limitations of Behavior Cloning for Autonomous Driving’. In: arXiv

preprint arXiv:1904.08980 (2019).

[36] Gabriella Contardo, Ludovic Denoyer and Thierry Artières. ‘A meta-learning

approach to one-step active learning’. In: arXiv preprint arXiv:1706.08334 (2017).

[37] Alexander D’Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak

Alipanahi, Alex Beutel, Christina Chen, Jonathan Deaton, Jacob Eisenstein,

Matthew D Hoffman et al. ‘Underspecification Presents Challenges for Credib-

ility in Modern Machine Learning’. In: arXiv preprint arXiv:2011.03395 (2020).

[38] Navneet Dalal and Bill Triggs. ‘Histograms of oriented gradients for human

detection’. In: 2005 IEEE computer society conference on computer vision and pattern

recognition (CVPR’05). Vol. 1. IEEE. 2005, pp. 886–893.

[39] Shubhomoy Das, Md Rakibul Islam, Nitthilan Kannappan Jayakodi and Janard-

han Rao Doppa. ‘Active Anomaly Detection via Ensembles: Insights, Al-

gorithms, and Interpretability’. In: arXiv:1901.08930 (2019).

[40] Shubhomoy Das, Weng-Keen Wong, Thomas Dietterich, Alan Fern and Andrew

Emmott. ‘Discovering Anomalies by Incorporating Feedback from an Expert’.

In: ACM Trans. Knowl. Discov. Data 14.4 (June 2020). issn: 1556-4681. doi:

10.1145/3396608. url: https://doi.org/10.1145/3396608.

[41] Kerstin Dautenhahn and Chrystopher L Nehaniv. ‘Sensory-motor primitives

as a basis for imitation: Linking perception to action and biology to robotics’.

In: MA: MIT Press (2002).

[42] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei. ‘ImageNet: A Large-

Scale Hierarchical Image Database’. In: CVPR09. 2009.

[43] E. Denton and V. Birodkar. ‘Unsupervised Learning of Disentangled Rep-

resentations from Video’. In: ArXiv e-prints (May 2017). arXiv: 1705.10915

[cs.LG].

[44] F. Doshi-Velez and B. Kim. ‘Towards A Rigorous Science of Interpretable

Machine Learning’. In: ArXiv e-prints (Feb. 2017). arXiv: 1702.08608 [stat.ML].

[45] Gary L Drescher. ‘Made-up minds: a constructivist approach to artificial intelli-

gence’. PhD thesis. Massachusetts Institute of Technology, 1989.

https://doi.org/10.1145/3396608
https://doi.org/10.1145/3396608
https://arxiv.org/abs/1705.10915
https://arxiv.org/abs/1705.10915
https://arxiv.org/abs/1702.08608

B i b l i o g r a p h y 104

[46] Yilun Du and Karthik Narasimhan. ‘Task-Agnostic Dynamics Priors for Deep

Reinforcement Learning’. In: arXiv preprint arXiv:1905.04819 (2019).

[47] Meng Fang, Yuan Li and Trevor Cohn. ‘Learning how to active learn: A deep

reinforcement learning approach’. In: arXiv preprint arXiv:1708.02383 (2017).

[48] Richard E Fikes, Peter E Hart and Nils J Nilsson. ‘Learning and executing

generalized robot plans’. In: Artificial intelligence 3 (1972), pp. 251–288.

[49] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine and Pieter

Abbeel. ‘Learning Visual Feature Spaces for Robotic Manipulation with Deep

Spatial Autoencoders’. In: IEEE International Conference on Robotics and Automa-

tion (ICRA) (2016).

[50] Carlos Florensa, Yan Duan and Pieter Abbeel. ‘Stochastic neural networks for

hierarchical reinforcement learning’. In: arXiv preprint arXiv:1704.03012 (2017).

[51] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli and

Shimon Whiteson. Counterfactual Multi-Agent Policy Gradients. 2017. arXiv:

1705.08926 [cs.AI].

[52] Lex Fridman, Daniel E Brown, Michael Glazer, William Angell, Spencer Dodd,

Benedikt Jenik, Jack Terwilliger, Aleksandr Patsekin, Julia Kindelsberger, Li

Ding et al. ‘MIT advanced vehicle technology study: Large-scale naturalistic

driving study of driver behavior and interaction with automation’. In: IEEE

Access 7 (2019), pp. 102021–102038.

[53] Carlos E Garcia, David M Prett and Manfred Morari. ‘Model predictive control:

theory and practice—a survey’. In: Automatica 25.3 (1989), pp. 335–348.

[54] Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum and Marc G

Bellemare. ‘DeepMDP: Learning Continuous Latent Space Models for Repres-

entation Learning’. In: arXiv preprint arXiv:1906.02736 (2019).

[55] Malik Ghallab, Dana Nau and Paolo Traverso. Automated Planning: theory and

practice. Elsevier, 2004.

[56] Shromona Ghosh, Felix Berkenkamp, Gireeja Ranade, Shaz Qadeer and Ashish

Kapoor. ‘Verifying Controllers Against Adversarial Examples with Bayesian

Optimization’. In: CoRR abs/1802.08678 (2018). arXiv: 1802.08678.

https://arxiv.org/abs/1705.08926
https://arxiv.org/abs/1802.08678

B i b l i o g r a p h y 105

[57] Matthew Gombolay, Reed Jensen, Jessica Stigile, Sung-Hyun Son and Julie

Shah. ‘Apprenticeship scheduling: Learning to schedule from human experts’.

In: AAAI Press/International Joint Conferences on Artificial Intelligence. 2016.

[58] Alex Graves, Greg Wayne and Ivo Danihelka. ‘Neural turing machines’. In:

arXiv preprint arXiv:1410.5401 (2014).

[59] Russell Greiner and Douglas B Lenat. ‘A Representation Language Language.’

In: AAAI. Vol. 1. 1980, pp. 165–169.

[60] Daniel H Grollman and Odest Chadwicke Jenkins. ‘Dogged learning for robots’.

In: Proceedings 2007 IEEE International Conference on Robotics and Automation.

IEEE. 2007, pp. 2483–2488.

[61] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine and Karol Haus-

man. Relay Policy Learning: Solving Long-Horizon Tasks via Imitation and Reinforce-

ment Learning. 2019. arXiv: 1910.11956 [cs.LG].

[62] David Ha and Jurgen Schmidhuber. ‘World Models’. In: arXiv preprint arXiv:1803.10122

(2018).

[63] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha,

Honglak Lee and James Davidson. ‘Learning latent dynamics for planning

from pixels’. In: arXiv preprint arXiv:1811.04551 (2018).

[64] Jean Harb, Pierre-Luc Bacon, Martin Klissarov and Doina Precup. ‘When

waiting is not an option: Learning options with a deliberation cost’. In: Thirty-

Second AAAI Conference on Artificial Intelligence. 2018.

[65] M. Harradon, J. Druce and B. Ruttenberg. ‘Causal Learning and Explanation of

Deep Neural Networks via Autoencoded Activations’. In: ArXiv e-prints (Feb.

2018). arXiv: 1802.00541 [cs.AI].

[66] Anna Harutyunyan, Peter Vrancx, Pierre-Luc Bacon, Doina Precup and Ann

Nowe. ‘Learning with options that terminate off-policy’. In: Thirty-Second AAAI

Conference on Artificial Intelligence. 2018.

[67] B. Hayes and B. Scassellati. ‘Discovering task constraints through observation

and active learning’. In: 2014 IEEE/RSJ International Conference on Intelligent

Robots and Systems. 2014, pp. 4442–4449.

https://arxiv.org/abs/1910.11956
https://arxiv.org/abs/1802.00541

B i b l i o g r a p h y 106

[68] Danny Hernandez and Tom B Brown. ‘Measuring the Algorithmic Efficiency

of Neural Networks’. In: arXiv preprint arXiv:2005.04305 (2020).

[69] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed

and A. Lerchner. ‘beta-vae: Learning basic visual concepts with a constrained

variational framework’. In: (2016).

[70] Irina Higgins, Nicolas Sonnerat, Loic Matthey, Arka Pal, Christopher P Burgess,

Matko Bosnjak, Murray Shanahan, Matthew Botvinick, Demis Hassabis and Al-

exander Lerchner. ‘Scan: Learning hierarchical compositional visual concepts’.

In: arXiv preprint arXiv:1707.03389 (2017).

[71] Irina Higgins, Nicolas Sonnerat, Loic Matthey, Arka Pal, Christopher P Bur-

gess, Matko Bosnjak, Murray Shanahan, Matthew Botvinick, Demis Hassabis

and Alexander Lerchner. ‘SCAN: Learning Hierarchical Compositional Visual

Concepts’. In: (2018).

[72] Jonathan Ho and Stefano Ermon. ‘Generative adversarial imitation learning’.

In: Advances in neural information processing systems. 2016, pp. 4565–4573.

[73] Yordan Hristov, Daniel Angelov, Michael Burke, Alex Lascarides and Sub-

ramanian Ramamoorthy. ‘Disentangled Relational Representations for Explain-

ing and Learning from Demonstration’. In: Conference on Robot Learning (CoRL).

2019.

[74] Jessie Huang, Fa Wu, Doina Precup and Yang Cai. ‘Learning safe policies with

expert guidance’. In: Advances in Neural Information Processing Systems. 2018,

pp. 9105–9114.

[75] Glenn A Iba. ‘A heuristic approach to the discovery of macro-operators’. In:

Machine Learning 3.4 (1989), pp. 285–317.

[76] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor and Stefan

Schaal. ‘Dynamical movement primitives: learning attractor models for motor

behaviors’. In: Neural computation 25.2 (2013), pp. 328–373.

[77] T. Inamura. ‘Acquisition of probabilistic behavior decision model based on the

interactive teaching method’. In: Proc. 9th Int’l Conf. on Advanced Robotics (1999),

pp. 523–528. url: https://ci.nii.ac.jp/naid/20000105704/en/.

https://ci.nii.ac.jp/naid/20000105704/en/

B i b l i o g r a p h y 107

[78] Inigo Iturrate, Esben Ostergaard, Martin Rytter and Thiusius Savarimuthu.

‘Learning and correcting robot trajectory keypoints from a single demonstra-

tion’. In: Apr. 2017, pp. 52–59. doi: 10.1109/ICCAR.2017.7942660.

[79] Maja J Matari’c. ‘Sensory-Motor Primitives as a Basis for Imitation: Linking

Perception to Action and Biology to Robotics’. In: MIT Press, Cambridge, MA,

USA (Nov. 1999).

[80] Ashesh Jain, Shikhar Sharma, Thorsten Joachims and Ashutosh Saxena. ‘Learn-

ing preferences for manipulation tasks from online coactive feedback’. In: The

International Journal of Robotics Research 34.10 (2015), pp. 1296–1313.

[81] Ashesh Jain, Brian Wojcik, Thorsten Joachims and Ashutosh Saxena. ‘Learning

trajectory preferences for manipulators via iterative improvement’. In: Advances

in neural information processing systems. 2013, pp. 575–583.

[82] M. J. Johnson, D. Duvenaud, A. B. Wiltschko, S. R. Datta and R. P. Adams.

‘Composing graphical models with neural networks for structured represent-

ations and fast inference’. In: ArXiv e-prints (Mar. 2016). arXiv: 1603.06277

[stat.ML].

[83] Leslie Pack Kaelbling, Michael L Littman and Andrew W Moore. ‘Reinforce-

ment learning: A survey’. In: Journal of artificial intelligence research 4 (1996),

pp. 237–285.

[84] H Jin Kim, Michael I Jordan, Shankar Sastry and Andrew Y Ng. ‘Autonomous

helicopter flight via reinforcement learning’. In: Advances in neural information

processing systems. 2004, pp. 799–806.

[85] D. P Kingma and M. Welling. ‘Auto-Encoding Variational Bayes’. In: ArXiv

e-prints (Dec. 2013). arXiv: 1312.6114 [stat.ML].

[86] Ross A Knepper, Todd Layton, John Romanishin and Daniela Rus. ‘Ikeabot:

An autonomous multi-robot coordinated furniture assembly system’. In: 2013

IEEE International Conference on Robotics and Automation. IEEE. 2013.

[87] Jens Kober, J Andrew Bagnell and Jan Peters. ‘Reinforcement learning in

robotics: A survey’. In: The International Journal of Robotics Research 32.11 (2013),

pp. 1238–1274.

https://doi.org/10.1109/ICCAR.2017.7942660
https://arxiv.org/abs/1603.06277
https://arxiv.org/abs/1603.06277
https://arxiv.org/abs/1312.6114

B i b l i o g r a p h y 108

[88] Kai Henning Koch, Katja Mombaur and Philippe Soueres. ‘Optimization-based

walking generation for humanoid robot’. In: IFAC Proceedings Volumes 45.22

(2012), pp. 498–504.

[89] J Zico Kolter, Pieter Abbeel and Andrew Y Ng. ‘Hierarchical apprenticeship

learning with application to quadruped locomotion’. In: Advances in Neural

Information Processing Systems. 2008, pp. 769–776.

[90] Richard E Korf. Learning to solve problems by searching for macro-operators. Tech.

rep. Carnegie-Mellon University, Pittsburgh, Dept of Computer Science, 1983.

[91] Alex Krizhevsky, Ilya Sutskever and Geoffrey E Hinton. ‘Imagenet classification

with deep convolutional neural networks’. In: Advances in neural information

processing systems. 2012, pp. 1097–1105.

[92] James J Kuffner and Steven M LaValle. ‘RRT-connect: An efficient approach to

single-query path planning’. In: Proceedings 2000 ICRA. Millennium Conference.

IEEE International Conference on Robotics and Automation. Symposia Proceedings

(Cat. No. 00CH37065). Vol. 2. IEEE. 2000, pp. 995–1001.

[93] Alina Kuznetsova et al. ‘The Open Images Dataset V4: Unified image classi-

fication, object detection, and visual relationship detection at scale’. In: IJCV

(2020).

[94] Noah K Lee. ‘Total Automation: The Possibility of Lights-Out Manufacturing

in the Near Future’. In: Missouri S&T’s Peer to Peer 2.1 (2018), p. 4.

[95] S. Levine, C. Finn, T. Darrell and P. Abbeel. ‘End-to-End Training of Deep

Visuomotor Policies’. In: ArXiv e-prints (Apr. 2015). arXiv: 1504.00702.

[96] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár and C Lawrence Zitnick. ‘Microsoft coco: Common

objects in context’. In: European conference on computer vision. Springer. 2014,

pp. 740–755.

[97] David G Lowe. ‘Distinctive image features from scale-invariant keypoints’. In:

International journal of computer vision 60.2 (2004), pp. 91–110.

[98] Tomas Lozano-Perez, Matthew T. Mason and Russell H. Taylor. ‘Automatic

Synthesis of Fine-Motion Strategies for Robots’. In: The International Journal of

Robotics Research 3.1 (1984), pp. 3–24.

https://arxiv.org/abs/1504.00702

B i b l i o g r a p h y 109

[99] Wunderman Commerce Ltd. The Amazon Prime Effect - Setting a new standard for

customer loyalty. 2018.

[100] Jianlan Luo, Eugen Solowjow, Chengtao Wen, Juan Aparicio Ojea, Alice M.

Agogino, Aviv Tamar and Pieter Abbeel. Reinforcement Learning on Variable

Impedance Controller for High-Precision Robotic Assembly. 2019. arXiv: 1903.01066

[cs.RO].

[101] Kevin M. Lynch and Matthew T. Mason. ‘Dynamic Nonprehensile Manipula-

tion: Controllability, Planning, and Experiments’. In: The International Journal of

Robotics Research 18.1 (1999), pp. 64–92.

[102] Matthew T. Mason. ‘Mechanics and Planning of Manipulator Pushing Opera-

tions’. In: The International Journal of Robotics Research 5.3 (1986), pp. 53–71. doi:

10.1177/027836498600500303.

[103] Matthew Thomas Mason. ‘Manipulator grasping and pushing operations’. In:

(1982).

[104] Maja J Mataric. ‘Reward functions for accelerated learning’. In: Machine Learning

Proceedings 1994. Elsevier, 1994, pp. 181–189.

[105] Yasser Mohammad and Toyoaki Nishida. ‘Tackling the Correspondence Prob-

lem’. In: Active Media Technology. Ed. by Tetsuya Yoshida, Gang Kou, Andrzej

Skowron, Jiannong Cao, Hakim Hacid and Ning Zhong. Cham: Springer Inter-

national Publishing, 2013, pp. 84–95.

[106] Stephen L Morgan and Christopher Winship. Counterfactuals and causal inference.

Cambridge University Press, 2015.

[107] Michael E Mortenson. Mathematics for computer graphics applications. Industrial

Press Inc., 1999.

[108] Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang and

Sharad Malik. ‘Chaff: Engineering an efficient SAT solver’. In: Proceedings of the

38th annual Design Automation Conference. ACM. 2001, pp. 530–535.

[109] Andrew Y Ng, Stuart J Russell et al. ‘Algorithms for inverse reinforcement

learning.’ In: International Conference on Machine Learning. 2000, pp. 663–670.

[110] Christopher Null and Brian Caulfield. Fade To Black The 1980s Vision of "lights-

out" Manufacturing, Where Robots Do All the Work, Is a Dream No More. 2003.

https://arxiv.org/abs/1903.01066
https://arxiv.org/abs/1903.01066
https://doi.org/10.1177/027836498600500303

B i b l i o g r a p h y 110

[111] Vincent Furnon Nikolaj van Omme Laurent Perron. or-tools user’s manual. Tech.

rep. Google, 2014.

[112] Christian Ott. Cartesian Impedance Control of Redundant and Flexible-Joint Robots.

1st ed. Springer Publishing Company, Incorporated, 2008. isbn: 3540692533.

[113] Judea Pearl. Causality: Models, Reasoning and Inference. 2nd. New York, NY, USA:

Cambridge University Press, 2009. isbn: 052189560X, 9780521895606.

[114] Svetlin Penkov and Subramanian Ramamoorthy. ‘Program Induction to Inter-

pret Transition Systems’. In: (2017).

[115] J. Peters, D. Janzing and B. Scholkopf. Elements of Causal Inference: Foundations

and Learning Algorithms. Cambridge, MA, USA: MIT Press, 2017.

[116] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le and Jeff Dean. ‘Efficient

Neural Architecture Search via Parameters Sharing’. In: International Conference

on Machine Learning. 2018, pp. 4095–4104.

[117] Doina Precup. ‘Eligibility traces for off-policy policy evaluation’. In: CS Depart-

ment Faculty Publication Series (2000).

[118] Matthew Purver, Jonathan Ginzburg and Patrick Healey. ‘On the means for

clarification in dialogue’. In: Current and new directions in discourse and dialogue.

Springer, 2003, pp. 235–255.

[119] Alberto Rodriguez, Matthew T Mason and Steve Ferry. ‘From caging to grasp-

ing’. In: The International Journal of Robotics Research 31.7 (2012), pp. 886–900.

doi: 10.1177/0278364912442972.

[120] M. Rojas-Carulla, M. Baroni and D. Lopez-Paz. ‘Causal Discovery Using Proxy

Variables’. In: ArXiv preprint (Feb. 2017). arXiv: 1702.07306 [stat.ML].

[121] Stéphane Ross, Geoffrey Gordon and Drew Bagnell. ‘A reduction of imitation

learning and structured prediction to no-regret online learning’. In: Proceedings

of the fourteenth international conference on artificial intelligence and statistics. 2011,

pp. 627–635.

[122] Olga Russakovsky et al. ‘ImageNet Large Scale Visual Recognition Challenge’.

In: International Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252. doi:

10.1007/s11263-015-0816-y.

https://doi.org/10.1177/0278364912442972
https://arxiv.org/abs/1702.07306
https://doi.org/10.1007/s11263-015-0816-y

B i b l i o g r a p h y 111

[123] Eric L Sauser, Brenna D Argall, Giorgio Metta and Aude G Billard. ‘Iterative

learning of grasp adaptation through human corrections’. In: Robotics and

Autonomous Systems 60.1 (2012), pp. 55–71.

[124] Nikolay Savinov, Anton Raichuk, Raphaël Marinier, Damien Vincent, Marc

Pollefeys, Timothy Lillicrap and Sylvain Gelly. ‘Episodic curiosity through

reachability’. In: arXiv preprint arXiv:1810.02274 (2018).

[125] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner and

Gabriele Monfardini. ‘The graph neural network model’. In: IEEE Transactions

on Neural Networks 20.1 (2008), pp. 61–80.

[126] Stefan Schaal. ‘Learning from Demonstration’. In: Proceedings of the 9th Inter-

national Conference on Neural Information Processing Systems. Denver, Colorado:

MIT Press, 1996, pp. 1040–1046.

[127] Stefan Schaal. ‘Dynamic movement primitives-a framework for motor control

in humans and humanoid robotics’. In: Adaptive motion of animals and machines.

Springer, 2006, pp. 261–280.

[128] K Schwab. ‘The fourth industrial revolution by Klaus Schwab’. In: Translated by

KJ Song, Mega-study Corporation, Seoul (2016).

[129] Ozan Sener and Silvio Savarese. ‘Active learning for convolutional neural

networks: A core-set approach’. In: arXiv preprint arXiv:1708.00489 (2017).

[130] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan

Schaal, Sergey Levine and Google Brain. ‘Time-contrastive networks: Self-

supervised learning from video’. In: 2018 IEEE International Conference on

Robotics and Automation (ICRA). IEEE. 2018, pp. 1134–1141.

[131] Burr Settles. Active learning literature survey. Tech. rep. University of Wisconsin-

Madison Department of Computer Sciences, 2009.

[132] Paul Shaw, Vincent Furnon and Bruno De Backer. ‘A constraint programming

toolkit for local search’. In: Optimization Software Class Libraries. Springer, 2003,

pp. 219–261.

[133] Yanyao Shen, Hyokun Yun, Zachary C Lipton, Yakov Kronrod and Animashree

Anandkumar. ‘Deep active learning for named entity recognition’. In: arXiv

preprint arXiv:1707.05928 (2017).

B i b l i o g r a p h y 112

[134] Elaine Schaertl Short, Adam Allevato and Andrea L Thomaz. ‘SAIL: simulation-

informed active in-the-wild learning’. In: 2019 14th ACM/IEEE International

Conference on Human-Robot Interaction (HRI). IEEE. 2019, pp. 468–477.

[135] Karen Simonyan and Andrew Zisserman. ‘Very Deep Convolutional Networks

for Large-Scale Image Recognition’. In: International Conference on Learning

Representations. 2015.

[136] Jonathan Spencer, Sanjiban Choudhury, Matthew Barnes, Matthew Schmittle,

Mung Chiang, Peter Ramadge and Siddhartha Srinivasa. ‘Learning from Inter-

ventions’. In: Proceedings of the Robotics Science and Systems Conference (2020).

[137] Martin Stolle and Doina Precup. ‘Learning Options in Reinforcement Learning’.

In: Abstraction, Reformulation, and Approximation. Ed. by Sven Koenig and Robert

C. Holte. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 212–223.

isbn: 978-3-540-45622-3.

[138] Niko Sunderhauf, Oliver Brock, Walter Scheirer, Raia Hadsell, Dieter Fox, Jur-

gen Leitner, Ben Upcroft, Pieter Abbeel, Wolfram Burgard, Michael Milford et

al. ‘The limits and potentials of deep learning for robotics’. In: The International

Journal of Robotics Research 37.4-5 (2018), pp. 405–420.

[139] Richard S Sutton, Doina Precup and Satinder Singh. ‘Between MDPs and semi-

MDPs: A framework for temporal abstraction in reinforcement learning’. In:

Artificial intelligence 112.1-2 (1999), pp. 181–211.

[140] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke and Alexander A Alemi.

‘Inception-v4, inception-ResNet and the impact of residual connections on learn-

ing’. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence.

2017, pp. 4278–4284.

[141] Mingxing Tan and Quoc Le. ‘EfficientNet: Rethinking Model Scaling for Con-

volutional Neural Networks’. In: International Conference on Machine Learning.

2019, pp. 6105–6114.

[142] Russ Tedrake, Ian R. Manchester, Mark Tobenkin and John W. Roberts. ‘LQR-

trees: Feedback Motion Planning via Sums-of-Squares Verification’. In: The

International Journal of Robotics Research 29.8 (2010), pp. 1038–1052.

B i b l i o g r a p h y 113

[143] Stefanie Tellex, Ross Knepper, Adrian Li, Daniela Rus and Nicholas Roy.

‘Asking for help using inverse semantics’. In: Robotics: Science and Systems

Foundation (2014).

[144] Garrett Thomas, Melissa Chien, Aviv Tamar, Juan Aparicio Ojea and Pieter

Abbeel. ‘Learning Robotic Assembly from CAD’. In: 2018 IEEE International

Conference on Robotics and Automation (ICRA) (2018).

[145] A. Thomaz and C. Breazeal. ‘Tutelage and socially guided robot learning’. In:

2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

(IEEE Cat. No.04CH37566) 4 (2004), 3475–3480 vol.4.

[146] Frederik Träuble, Elliot Creager, Niki Kilbertus, Anirudh Goyal, Francesco

Locatello, Bernhard Schölkopf and Stefan Bauer. ‘Is Independence all you

need? On the Generalization of Representations Learned from Correlated Data’.

In: arXiv preprint arXiv:2006.07886 (2020).

[147] Mel Vecerik, Oleg Sushkov, David Barker, Thomas Rothorl, Todd Hester and

Jon Scholz. ‘A practical approach to insertion with variable socket position

using deep reinforcement learning’. In: 2019 International Conference on Robotics

and Automation (ICRA). IEEE. 2019, pp. 754–760.

[148] Najdan Vukoviundefined, Marko Mitiundefined and Zoran Miljkoviundefined.

‘Trajectory Learning and Reproduction for Differential Drive Mobile Robots

Based on GMM/HMM and Dynamic Time Warping Using Learning from

Demonstration Framework’. In: Eng. Appl. Artif. Intell. 45.C (Oct. 2015), pp. 388–

404. issn: 0952-1976. doi: 10.1016/j.engappai.2015.07.002. url: https:

//doi.org/10.1016/j.engappai.2015.07.002.

[149] Baiyang Wang and Diego Klabjan. ‘Regularization for unsupervised deep

neural nets’. In: Proceedings of the Thirty-First AAAI Conference on Artificial

Intelligence. 2017, pp. 2681–2681.

[150] Emo Welzl. ‘Smallest enclosing disks (balls and ellipsoids)’. In: New Results and

New Trends in Computer Science. 1991.

[151] Jim Winkens, Rudy Bunel, Abhijit Guha Roy, Robert Stanforth, Vivek Natarajan,

Joseph R Ledsam, Patricia MacWilliams, Pushmeet Kohli, Alan Karthikesalingam,

Simon Kohl et al. ‘Contrastive training for improved out-of-distribution detec-

tion’. In: arXiv preprint arXiv:2007.05566 (2020).

https://doi.org/10.1016/j.engappai.2015.07.002
https://doi.org/10.1016/j.engappai.2015.07.002
https://doi.org/10.1016/j.engappai.2015.07.002

B i b l i o g r a p h y 114

[152] Christian Wirth, Riad Akrour, Gerhard Neumann and Johannes Furnkranz. ‘A

survey of preference-based reinforcement learning methods’. In: The Journal of

Machine Learning Research 18.1 (2017), pp. 4945–4990.

[153] Yan Xu, Ran Jia, Lili Mou, Ge Li, Yunchuan Chen, Yangyang Lu and Zhi Jin.

Improved Relation Classification by Deep Recurrent Neural Networks with Data

Augmentation. 2016. arXiv: 1601.03651 [cs.CL].

[154] T. Yu, C. Finn, A. Xie, S. Dasari, T. Zhang, P. Abbeel and S. Levine. ‘One-Shot

Imitation from Observing Humans via Domain-Adaptive Meta-Learning’. In:

ArXiv e-prints (Feb. 2018). arXiv: 1802.01557.

[155] Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang, Pieter

Abbeel and Sergey Levine. ‘One-shot imitation from observing humans via

domain-adaptive meta-learning’. In: arXiv preprint arXiv:1802.01557 (2018).

[156] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez and Thomas Funk-

houser. ‘TossingBot: Learning to Throw Arbitrary Objects with Residual Phys-

ics’. In: Robotics: Science and Systems (2019).

[157] Shao Zhifei and Er Meng Joo. ‘A survey of inverse reinforcement learning

techniques’. In: International Journal of Intelligent Computing and Cybernetics 5.3

(2012), pp. 293–311.

[158] Jia-Jie Zhu and José Bento. ‘Generative adversarial active learning’. In: arXiv

preprint arXiv:1702.07956 (2017).

https://arxiv.org/abs/1601.03651
https://arxiv.org/abs/1802.01557

	LaySummary
	Abstract
	Acknowledgements
	Declaration
	Publications
	Dedication
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Preface
	1.1.1 Skills Composition
	1.1.2 Choosing Sequences from Library
	1.1.3 Skills Elicitation
	1.1.4 Policy decomposition

	1.2 Problem Statement
	1.3 Thesis Overview
	1.3.1 Composing Diverse Policies
	1.3.2 Structure Elicitation

	1.4 Major Contributions

	2 Background
	2.1 Imitation Learning for Robotics
	2.1.1 Learning from Demonstration
	2.1.2 Applications

	2.2 Causal Modelling
	2.2.1 Causal Analysis
	2.2.2 Causality in robotics

	2.3 Policy Composition
	2.3.1 Flat Policy Composition
	2.3.2 Hierarchical Control and Long Horizon Tasks
	2.3.3 Policy Diversity

	2.4 Data Assessment
	2.4.1 Dataset curation
	2.4.2 Exploration, Active learning
	2.4.3 Data Augmentation and Synthetic Data

	3 Sequentially Composing Diverse Policies
	3.1 Introduction
	3.2 Related Work
	3.3 Method
	3.3.1 Goal Score Evaluation
	3.3.2 Controller Selection
	3.3.3 Controller Dynamics Modelling

	3.4 Experimental Setup
	3.4.1 Simulated MDP
	3.4.2 Gear Assembly

	3.5 Experimental Results
	3.5.1 Simulated MDP
	3.5.2 Gear Assembly

	3.6 Limitations of Sequentially Composing Policies
	3.7 Conclusion

	4 Causal Analysis on Policy Structure
	4.1 Introduction
	4.2 Related Work
	4.2.1 Learning from Demonstration
	4.2.2 Causality and State Representation
	4.2.3 Constrained Optimization

	4.3 Problem Formulation
	4.4 Specification Model
	4.5 Causal Modeling
	4.5.1 Specification Model Differences
	4.5.2 Symbol Influence on Specification Models

	4.6 Parameterization of Specifications
	4.7 Experimental Setup
	4.7.1 Dataset
	4.7.2 Evaluation

	4.8 Results
	4.8.1 Model Accuracy
	4.8.2 Trajectory Backpropagation
	4.8.3 Causal Analysis
	4.8.4 Parameterization of Task-Space Specifications

	4.9 Limitations of Policy and Task Structure
	4.10 Conclusion

	5 LfII: Learning from Inverse Intervention
	5.1 Introduction
	5.2 Related work
	5.2.1 Salience Identification
	5.2.2 Demonstration Strategies

	5.3 Problem Formulation
	5.3.1 Diverse trajectory demonstration
	5.3.2 State salience

	5.4 Experimental Setup
	5.5 Results
	5.6 Limitations of LfII
	5.7 Conclusion

	6 Conclusion
	6.1 Key Ideas
	6.1.1 Sequentially composing policies
	6.1.2 Policy and Task Structure

	6.2 Future Work
	6.2.1 Structure embedding and transfer
	6.2.2 Temporal memory tasks

	6.3 Concluding Remarks

	 Bibliography

