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Policy formulation and implementation is a multi-dimensional process, which requires a

common platform to build communication between all sides involved. The growing avail-

ability of data along with the development of information and communication technology

solutions (ICTs) supports this process by providing virtual platforms to design and evaluate

policies. This thesis seeks to develop systems for policy-making with an emphasis on explor-

ing and identifying the interacting causes that shape health. Our computational methods are

primarily applied to the cause of obesity. In particular, we identify the relationships between

fast-food outlets and schools at a national level, whereas it was previously done at a city-

level. This thesis goes beyond the development of virtual platforms, by also contributing to

newer approaches to analyze their output. Specifically, we develop interactive visualizations

to help decision-makers in finding key patterns from large simulations of complex systems.

Overall, this work has a few limitations. Despite the wealth and scale of data used in our

study, it neither captures every single aspect that drives population health, nor does it track

them with high temporal and spatial accuracy. Future work should explore the application

of our model as a test platform for possible interventions, for instance through usability

studies with policy-makers and an extended cost-benefit analysis of simulation results.



NORTHERN ILLINOIS UNIVERSITY
DE KALB, ILLINOIS

DECEMBER 2017

ANALYZING, SIMULATING, AND

VISUALIZING COMPLEX SOCIAL SYSTEMS

BY

M. BANIUKIEWICZ
c© 2017 M. Baniukiewicz

A THESIS SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

Thesis Director:
Dr. Philippe J. Giabbanelli



ACKNOWLEDGEMENTS

This work has been created thanks to the support and motivation of many individuals. I

would like to express my gratitude to all of the people involved in the creation of this thesis.

Most of all, I am highly indebted to my advisor, Prof. Philippe J. Giabbanelli, who guided

me throughout my research and studies. I thank him for being a source of endless support,

inspiration, and motivation. His advices and boundless knowledge allowed me to transform

from a student to a professional researcher. I could not have imagined my education and

exploration of carrier possibilities without him as my mentor.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Nicholas

Karonis and Prof. Michael Papka for their interest in my research and precious suggestions

regarding the topic of my research. Special thanks to Prof. Jose J. Padilla, whose insight

helped my to put my research in the right perspective.

I would also like to thank my friends and colleagues at the Northern Illinois University,

Eric Lavin, Venkata Sai Sriram Pillutla, and Marcus Nguyen, for many inspiring conversa-

tions, which made my stay and study more enjoyable.

This thesis was supported by the College of Liberal Arts & Sciences and the Department

of Computer Science at Northern Illinois University. Research reported in this thesis was

also supported by the Global Obesity Prevention Center (GOPC) at Johns Hopkins, and

the Eunice Kennedy Shriver National Institute of Child Health and Human Development

(NICHD) and the Office of The Director, National Institutes of Health (OD) under award

number U54HD070725. The content is solely the responsibility of authors and does not

necessarily represent the official views of the National Institute of Health. This work used

resources of the Center for Research Computing and Data at Northern Illinois University.



DEDICATION

To my mother, my greatest teacher of compassion, love and fearlessness.

To my father, without whom none of my success would be possible.

To my sister for being a guiding light to follow.



“Our greatest weakness lies in giving up.
The most certain way to succeed is always to
try just one more time.”

— THOMAS A. EDISON



TABLE OF CONTENTS

Page

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter

1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Computer science and simulation research goals . . . . . . . . . . . . . . . 3

1.2.2 Public health and obesity research goals . . . . . . . . . . . . . . . . . . . . . 4

1.3 Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Aim 1: Analyzing the relationship between the fast-food environment
and schools at the national scale . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Aim 2: Anticipating the consequences of public health interventions
on exposure to fast-food outlet. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.4 Aim 3: Visualizing the output of discrete simulations with replica-
tions and multiple time steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 The societal importance of obesity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Determinants of obesity and conceptual frameworks . . . . . . . . . . . . . . . . . . 17

2.2.1 Role of environmental factors in determining people’s health . . . . . . 20

2.2.2 Importance of socioeconomic status . . . . . . . . . . . . . . . . . . . . . . . . 23



vi

Chapter Page

2.2.3 Regulatory environment and new interventions . . . . . . . . . . . . . . . . 28

2.3 Measuring the access to fast-food outlets. . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 Principles of graph theory and spatial separation indices . . . . . . . . . 33

2.3.3 Application of graph theory to clustering patterns . . . . . . . . . . . . . . 35

2.3.4 Beyond graph theory: performing nation-wide analyses . . . . . . . . . . 39

3 Understanding a nation: using large-scale network analysis to capture the fast-
food landscape in England. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Assembling a dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Step 1: Dividing England into Local Authority Districts (LADs) . . . 47

3.2.3 Step 2: Finding the road segments within each LAD . . . . . . . . . . . . 49

3.2.4 Step 3: Assigning schools and fast-food outlets to road segment . . . . 51

3.2.5 Step 4: Identifying the Lower layer Super Output Area (LSOA) for
each road segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.6 Step 5: Adding the deprivation level of each road segment via its
LSOA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Analytical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 Computing shortest-path distances. . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.3 Relating the presence of fast-food outlets to centralities . . . . . . . . . . 59

3.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



vii

Chapter Page

4 Simulating a nation: a data science approach to developing a model of the fast-
food environment in England . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Theoretical models supporting clustering . . . . . . . . . . . . . . . . . . . . 76

4.3 Design of the Model and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.1 Model boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.2 Simulation rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.3 Strategy for model validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.3.1 Running the simulation model . . . . . . . . . . . . . . . . . . . . . 82

4.3.3.2 Strategy for model validation . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.1 Principal Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 A novel visualization environment to support modelers in analyzing data gener-
ated by cellular automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Designing the visualization environment . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Application to classical cellular automata models . . . . . . . . . . . . . . . . . . . . 103

5.3.1 Epidemics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.2 Sandpile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.3 Fire spread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Feedback from modelers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



viii

Chapter Page

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Analyzing Spatio-Temporal and Multi-Run Data Produced by Simulations from
Cellular Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.1 Visualizing time-series of simulation outputs . . . . . . . . . . . . . . . . . . 115

6.2.2 Visualizing multi-run simulation data . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Design of the visualization environment. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Design of the empirical evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4.1 Objectives and overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4.2 Detailed Study Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4.2.1 Pre-study questionnaire and overview video . . . . . . . . . . . . 125

6.4.2.2 Observational study and short interview . . . . . . . . . . . . . . 126

6.4.2.3 Post-study questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4.3 Participants and Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.5 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.5.2 Quantitative analysis of the observational study . . . . . . . . . . . . . . . 130

6.5.2.1 What affects the participants’ experience? . . . . . . . . . . . . . 130

6.5.2.2 How are participants affected by the visualization?. . . . . . . 133

6.5.3 Qualitative analysis of the interview . . . . . . . . . . . . . . . . . . . . . . . . 136

6.5.4 Mixed methods analysis of the post-survey . . . . . . . . . . . . . . . . . . . 138

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142



ix

Chapter Page

7 Navigating complex systems for policymaking using simple software tools . . . . . . 144

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.2 Functionalities to navigate networks with a policy focus . . . . . . . . . . . . . . . 150

7.2.1 Functionalities required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2.2 Functionalities supported by existing software . . . . . . . . . . . . . . . . . 154

7.3 Proposed software: ActionableSystems . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.3.2 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.3.3 Implementation of the five functionalities . . . . . . . . . . . . . . . . . . . . 159

7.4 Demonstrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8 Conclusions and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.2 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.2.1 Contributions to computer science and simulation research. . . . . . . . 167

8.2.2 Contributions to public health and obesity research . . . . . . . . . . . . . 168

8.3 Limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.4.1 A new visualization approach to multiple run and multiple replicated
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8.4.2 Tracking peoples’ walking paths . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.4.3 Modelling public policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178



LIST OF TABLES

Table Page

2.1 Diseases related to obesity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Evidence linking the built environment with obesity. . . . . . . . . . . . . . . . . . 24

2.3 Summary of SES and obesity papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Categories of policies and regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Accessibility indices’ groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Small scale studies with network analysis . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Customer-side forces encouraging clustering of economic activities . . . . . . . . 38

3.1 Network science studies of road networks. . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Minimum and maximum values for each subdvision type in the UK. . . . . . . 47

3.3 Key features of previous studies of fast-food outlets in the UK. . . . . . . . . . . 48

3.4 Datasets combined for our study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Hypothetical example of data produced during network analysis . . . . . . . . . 53

3.6 Equations and fit (R2) of the distributions of distances d for fast-food outlets 66

4.1 Correlation ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Non-network national studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1 Study components, process, and recent studies employing the same process . 122

6.2 Results of the NASA Task Load Index (NASA-TLX) . . . . . . . . . . . . . . . . . 139

7.1 Current ICT software and the five key functionalities . . . . . . . . . . . . . . . . . 155



xi

8.1 Prioritization of public policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172



LIST OF FIGURES

Figure Page

1.1 Modeling & Simulation approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Model relationship of physical space and internal state representation . . . . . 8

1.3 Approximation of a street network using a grid for cellular automata. . . . . . 9

1.4 Key steps in the methodology of the first goal . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Clock glyph to aggregate data within each simulation component . . . . . . . . 13

2.1 Prevalence of obesity and poverty in main English cities . . . . . . . . . . . . . . . 17

2.2 Ecological model of obesity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Rising popularity and clustering of fast-food outlets . . . . . . . . . . . . . . . . . . 22

2.4 Conceptual framework of the local food environment . . . . . . . . . . . . . . . . . 22

2.5 The Index of Multiple Deprivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Hierarchy of methods to measure food access . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 The three most common types of centralities. . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Pre-processing overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Example of roads encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Three cases regarding the relationship between a road and an area. . . . . . . . 51

3.4 Visualizations of largely disconnected road networks. . . . . . . . . . . . . . . . . . 52

3.5 Distribution of the number of fast-food outlets and schools across LADs. . . . 54

3.6 Approximation of k parameter used in centrality computation. . . . . . . . . . . 62

3.7 Examples of nodes with zero value of betweenness centrality . . . . . . . . . . . . 63



xiii

Figure Page

3.8 Approximation of epsilon term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.9 Results for distances distribution for both outlets and schools . . . . . . . . . . . 65

3.10 Fit between the output and logarithmic curves, across levels of deprivation . 66

3.11 Distribution of correlations between the density of outlets and centralities . . 67

4.1 Examples of centralities meausres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Correlation cities average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Statistics of the greatest and lowest correlations. . . . . . . . . . . . . . . . . . . . . 87

4.4 Comparison of correlation in bins of values . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Comparison of results in respect to cities characteristics . . . . . . . . . . . . . . . 96

5.1 The EXP V2 environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Comparison of temporal glyphs for a dataset with continuous values . . . . . . 99

5.3 Modeling the spread of HIV within the body . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Data aggregation in 4, 8, or 16 segments . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Visualization of an epidemic in a CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6 Visualization of a sandpile in a CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.7 Visualization of a forest fire in a CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.8 Varying the segment length to encode information . . . . . . . . . . . . . . . . . . . 108

6.1 Example of the cellular automaton technique. . . . . . . . . . . . . . . . . . . . . . . 114

6.2 Visualization of clock glyph combined with cellular automaton grid . . . . . . . 116

6.3 Prototype visualization along with implemented tools. . . . . . . . . . . . . . . . . 117

6.4 Aggregation method for clock glyph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.5 Proposed environment based on compact visualization . . . . . . . . . . . . . . . . 121

6.6 Simple visualization environment using a slide . . . . . . . . . . . . . . . . . . . . . . 125



xiv

Figure Page

6.7 Results for age, gender, and prior experience of participants . . . . . . . . . . . . 129

6.8 ontribution of independent factors and pairs of factors to the total variance . 132

6.9 Distribution of participant’s confidence across tasks for both visualizations . 134

6.10 Distribution of participant’s errors across tasks for both visualizations . . . . . 135

7.1 The Foresight Obesity Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.2 Extending a model to capture relationships between inputs. . . . . . . . . . . . . 149

7.3 Examples of loops and disjoint paths in obesity . . . . . . . . . . . . . . . . . . . . . 151

7.4 Rendering of a System Dynamics model as hierarchical network . . . . . . . . . 160

7.5 Using ActionableSystems on a System Dynamics model . . . . . . . . . . . . . . . 161

7.6 Visualizations of the PHSA obesity and well-being map . . . . . . . . . . . . . . . 164

7.7 Comparing two maps for obesity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.1 Overview of policy cycle and stakeholders. Adapted from [121] . . . . . . . . . . 167



CHAPTER 1

INTRODUCTION

1.1 Introduction

Many countries are faced with a relatively high prevalence of overweight and obesity

among children. In the United Kingdom, based on the National Child Measurement Pro-

gramme (NCMP) 2013-2014, one third of children aged 10-11 and over a fifth of those aged

4-5 were overweight or obese [185]. This has an array of possible long-term consequences

which include high blood pressure, glucose intolerance, and adult obesity [51, 37]. The

current policy landscape in the United Kingdom emphasizes the role of eating patterns in

achieving a healthy weight. For example, the UK Department of Health stated that

“increasing physical activity is important but [...] eating and drinking less is key

to weight loss.” [167]

Among the different types of food outlets, fast-foods have received particular attention

since their products tend to be calorie dense, high in sugar, salt and fat, and low in fruit

and vegetables. This project focuses on fast-foods around schools, and their impact on chil-

dren. Studies in parts of the UK found that, over a 20 years period, fast-foods increased

by 45% [153]. Given that food outlets tend to cluster around schools [11, 59, 66], longitu-

dinal evidence from London has confirmed that schools have been exposed to an increasing

number of fast-foods [215]. These outlets play a significant role in childrens’ nutrition:

British secondary school children get more food from ’fringe’ shops than from the school

canteen [210]. In addition, even when there is a stay-on-site policy for lunch, the most popu-
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lar time to buy food is after school [211]. This situation has led policymakers to increasingly

advocate for the regulation of fast-foods as part of an overall strategy of obesity prevention

in school neighborhoods. The 2011 National Institute for Health and Clinical Excellence

(NICE) guidance recommended that local authorities regulate the number of fast-foods in

specific areas, such as within walking distance of school [75]. The 2013 Academy of Medical

Royal Colleges’ report advocated to

“reduce the proximity of fast-food outlets to schools, colleges, leisure centers and

other places where children gather.” [168]

The attention devoted to fast-foods around schools in the British policy landscape in-

creased at the end of 2014. Two reports were published in October 2014 recommending a

restriction of fast-foods around schools [119, 44]. Combined with growing local concerns,

this has increased the pressure on local authorities to act through planning. In this context,

meetings between researchers and planners were organized, such as the November 2014 Re-

search and Policy Meeting where school environments and fast-foods were central items on

the agenda [74]. Local authorities have stated planning as the tool of choice, owning to their

views that improving nutritional quality

“is not an issue that will be satisfactorily resolved by voluntary improvement,

education, advice or any other “easy” intervention. Without political will and

a determination to limit the proliferation of takeaway food businesses we are

unlikely to make any meaningful impact on the impact of poor diet on significant

parts of the population.” (Peter Wright, Gateshead Council) [74]

As we enter a period where local authorities increasingly prepare and implement zoning

restrictions for fast-foods, it is particularly time sensitive to inform the design of these

policies. Indeed, these policies currently face two obstacles. First, they rest on limited
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evidence on how fast-foods around schools’ impact obesity. A recent systematic review

found evidence for this association in 14 studies, while 2 studies showed the opposition

association and 4 showed no association [244]. Second, these policies have historically differed

widely in design as they can restrict takeaways in terms of clustering and concentration (e.g.,

maximum percentage of takeaways or minimum distance between them) or by setting buffers

of varying sizes around schools [232]. There is thus a pressing need for a systems approach to

find synergistic combinations of policy options to tackle obesity in an environment with high

uncertainty. This thesis seeks to support policymakers in designing effective interventions by

creating a simulation environment, serving as a virtual laboratory, in which policymakers can

safely test different policies. The focus is on schools’ exposure to fast-food restaurants, which

has a significant impact on children’s eating patterns. Moreover, we propose a new approach

to visualize time-varying data, to allow a deeper understanding of simulated phenomenon.

A more detailed description of these work goals is presented in next paragraph.

1.2 Objectives

1.2.1 Computer science and simulation research goals

In the context of policy making, analyzing data is crucial to understand the underlying

structure of complex social phenomena, and leverage that understanding to design and/or

evaluate interventions. Several parts of that process require technical innovations, thus

making fundamental contributions to computer science. In particular, this thesis seeks to

further the use of Modeling & Simulation (M&S) methods by making the following two

contributions:

1. Increasing the scale of network-based simulations of the fast-food environment.
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2. Visualizing the output of discrete simulations with replications and multiple time steps.

In the first contribution, we focus on developing the very first network-model for fast-food

environments at a national scale. This is a novelty, as previous attempts were limited to

single cities or regions. This objective is not technical straightforward: creating a large

model cannot be achieved by simply telling previous models to ‘expand’, or letting run for

longer. Indeed, new models have to be designed, supporting datasets must be identified

and combined, and approximation algorithms may have to be calibrated in order to run

simulations at a large scale (even when using resources such as high performance computing

cluster).

In the second contribution, we are interested in visualizing the output of discrete simu-

lations produced by Cellular Automata (CA). Since CA are run for multiple time steps (e.g.

until a desired number of time steps or stabilization is achieved), and with many repeats

(e.g. when the model is stochastic then repeats allow to assess the distribution of the out-

put), a difficult is to visualize CA with multiple time steps and replications. While solutions

have been identified previously for multivariate data, none has so far been used for CA. Our

contribution for M&S research is thus on better navigating the output of simulation models

using novel visualizations.

1.2.2 Public health and obesity research goals

The overarching contribution of this thesis to public health and obesity research is to

support the identification and evaluation of new policies for obesity. Specifically, this con-

tribution relies on two specific aims:

1. Anticipating the consequences of public health interventions (e.g., zoning) on exposure

to fast-food outlets.
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2. Providing researchers and policymakers with tools to design and evaluate interventions

taking place in complex social systems [124, 71].

The prevalence of overweight and obesity among children in England has remained high

for the past decade. Therefore, communities and the government seeks effective interventions

which would limit the extent to which children are exposed to unhealthy foods. This thesis

will investigate the spatial patterns of fast-food outlets, and explore factors (such as the

presence of schools) that may be involved in determining the location of new outlets. The

national scale of our analysis will support policymakers in designing national interventions,

whereas the current policy landscapes consists of fragmented interventions decided by local

policymakers with a paucity of evidence. This thesis will also provide practical tools that

policymakers can use to take a systems science approach, both for the study of fast-food

outlets and for policies in general.

1.3 Methods

1.3.1 Overview

As aforementioned, the key problem is that policymakers need better evidence to de-

velop public health interventions. It is important to note that this problem belongs to the

broader field of complex systems. Indeed, a growing literature has been devoted to view-

ing the design and evaluation of public policies as a complex system because of the many

actors (e.g., communities, local governments, firms) and factors involved through non-linear

interactions [124, 71]. In addition to being multi-actor or multi-sectoral, complex systems

such as policy planning are also at the intersection of several fields of science [81]. Modeling

will be the key approach in this thesis to support policymakers in designing interventions
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in the complex system that drives, and results from, fast-food outlets and health. Modeling

such systems faces several challenges. Complex systems often have an ability to change and

adapt. Due to nonlinearity, the result of that adaption can be difficult to predict. Studies

of M&S applied to social problems use a broad range of methods, and each approach is

able to capture only specific features of a problem [4, 188, 77]. For this reason, a variety of

techniques will be used for our three main goals. Network simulation is a popular method

in Modeling & Simulation (M&S) for simulating complex problems (Figure 1.1). It has been

used in a wide variety of fields ranging from the analysis of population dynamics [234, 129, 15]

to the representation of individual health behaviors [85, 88] or the management of complex

ecological issues [182]. We note that there are also many other M&S methods (e.g., cellular

automata, genetic algorithms) [231].

Figure 1.1: Hierarchy of commonly used Modeling & Simulation approaches.

The first and second goals will be operationalized by analyzing network data and devel-

oping a network model centered on the relationship between fast-food premises and schools

in England. This will support policymakers in understanding how combined planning mea-

sures around schools affect the English food landscape across different levels of deprivation.

The main steps will consist of:

• Assembling, pre-processing, and mining large heterogeneous datasets to understand

the relationship between fast-food outlets and schools using graph measures (i.e. street

networks) [39, 23].
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• Implementing, calibrating, and validating the first national-level network model of the

dynamics of regulating fast-food outlets, while monitoring effects on food exposure to

children across levels of deprivation [96].

Building the network model is only half the journey: its results still have to be ana-

lyzed. Simulation models generate outputs, which may be used to control other systems or

given to human experts. Using a simulation model is thus not only a matter of developing

it and running simulations: it also requires the ability to analyze and visualize its output

data. Generally speaking, data can be analyzed through a variety of techniques including

machine learning and visualizations. While such techniques have been used for the data

provided as input to the model, there has been relatively less research on how to apply them

to the output [94]. That is: given a specific simulation model, how can its characteristics be

leveraged when analyzing the data that it produces? Several interactive visualizations have

been developed, which can be adapted to discrete simulations such as network simulations

(Figure 1.1). This has been a particularly active area of research for simulations in engineer-

ing [134]. An example of a discrete modeling approach that commonly employs visualization

is Cellular Automaton modeling, where the user is often presented with a grid of cells and a

slider to navigate through time [152]. The third aim thus examines how to create interactive

visualizations for discrete simulation models. That is, models consisting of a collection of

elements that are updated over a period of discrete, fixed time steps, based on surrounding

elements and system-wide rules. To avoid challenges related to the network visualizations

(i.e. arbitrary arrangement of elements in space), a simpler approach will be adopted, the

Cellular Automata (CA) [242] (i.e. fixed layout of square cells over a grid), as presented in

Figure 1.2. In particular, we will consider a CA, which can be used to present complex and

multidimensional output (e.g., from network simulation) in more accessible form. Network

model can be approximated as a Cellular Automaton (Figure 1.3) via a process known as
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tessellation. Although, as conversions exist between some types of model, visualizing cel-

lular automata is only the beginning to visualize more complex models. This thesis will

improve on existing methods for visualizing two-dimensional CA with square cells, via an

innovative use of the ’temporal clock glyph’ (known in data visualization) [242]. In addition,

our proposed approach will be evaluated empirically, in terms of usefulness for modelers and

performance. Modelers will include Dr Piper J. Jackson (Simon Fraser University) and Dr

Vijay K. Mago (Lakehead University), with whom the senior thesis advisor has long-standing

collaborations.

Figure 1.2: Model relationship with respect to physical space and internal state representa-
tion. Adapted from Deutsch & Dormann [62].
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Figure 1.3: Approximation of a street network using a grid for cellular automata, as done in
geography when applying kernel-based methods.

1.3.2 Aim 1: Analyzing the relationship between the fast-food

environment and schools at the national scale

The aim is to create a system, which would contribute to better understanding of how

combined zoning restrictions and policies affect distribution of fast-food premises at the

national level. There are three main reasons supporting this study:

1. There is a high (and historically growing) prevalence of obesity among British chil-

dren [185].

2. Schools have been exposed to an increasing number of fast-food restaurants. Children

are highly exposed to unhealthy food on their way to school and back home [11, 59].

3. Current policies are attempting to regulate fast-food premises as part of an overall

strategy of obesity prevention in school neighborhoods [197].

This project will start with collecting, pre-processing, and analyzing data. The spatial

resolution will be the same as typically used when performing research on food geography
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at the level of city, but scale to the whole of England. Consequently, handling large datasets

through scientific computing will be a critical component to this project. For each area, we

will collect: (i) the road network, (ii) the location of every fast-food outlets and schools, (iii)

the level of deprivation as measured by the English Index of Deprivation [73], and (iv) the

population predictions for the next 26 years. All of these datasets already exist, thus they

do not require new data collection endeavors. The next step will focus on understanding the

current geography of the fast-food landscape, using a very detailed geographical resolution

over an unprecedented scale: the whole of England. Specifically, we will conduct network

analysis. A street network is represented as a set of nodes (road intersections) connected by

edges (roads). We will assume edges to be undirected, as we do not capture the directions

of roads. Multiple edges will also be removed, as we do not capture the number of lanes

but only whether there is a way to get from point A to point B. This undirected network

will be analyzed structurally with respect to (i) the distance between fast-food outlets and

schools, measured using the shortest path; and (ii) the correlation between the centrality of

nodes and the number of fast-food outlets. We note that similar analysis (at the scale of

a city) have previously been conducted [39]. This thesis’s approach is based on the widely

used combination of Graph Theory and Spatial Separation Indices [39].

Figure 1.4: Key steps in the methodology of the first goal.
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1.3.3 Aim 2: Anticipating the consequences of public health

interventions on exposure to fast-food outlet

Once the analysis is completed, a large-scale network simulation will be developed. It

will provide a virtual laboratory for testing policies and can thus be used to investigate

what effects to expect without having to first conduct natural experiments [96]. Our model

will focus on how new zoning policies may re-shape the fast-food landscape over years, thus

impacting the exposure of children to unhealthy food options. That is, we will assume that

school locations and roads are fixed, and that the normal rate at which fast-food outlets

close is driven by extrinsic economical dynamics. For simulating changes in the fast-food

landscape, results of network analysis (Aim 1) will be necessary to determine process of

locating new restaurants. Thus, we will influence where new fast-food locations can be

open, through policy. This will, in turn, modify the exposure that children have to fast-food

outlets, with the understanding that a lower exposure would translate to a lower utilization,

which in turns will impact health benefits. A health impact assessment study would be

necessary to quantify these benefits exactly, and is beyond the scope of this thesis. The

essential parts of the simulation are:

• Input data: Road network for given area, location of fast-food outlets and schools,

deprivation level, and population predictions.

• Output data: For each step of simulation, the number of opened and closed outlets

with their localization will be collected, as a proxy to schools’ exposure to fast-food

restaurants.
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• Timesteps: One iteration of a simulation will correspond to one year. This scale

allows to capture noticeable changes in the fast-food environment, while the process

itself is not too slow.

• Model boundaries: The drivers of children exposure to fast-foods are highly com-

plex and includes factors such as walking paths to and from schools, free meals plan

available for children at schools, healthy options offered by restaurants, eating patterns

of families etc. The scope of this project is limited to changes in population density

in given area, impact of social-economic status on, and effectiveness of implemented

zoning restrictions.

This model may be employed by policymakers to evaluate the effects of a new policy.

Our time frame will be 26 years. A visual interface will be provided so policymakers can run

a simulation with selected parameters in any area of England. The actual integration of our

network simulation into the current workflow of policymakers, as well as improvements in

usability and the evaluation of our method once policies are constructed are all important

aspects. However, these steps can take several years given the complexity of the policy

landscapes and the many actors involved. Consequently, they are beyond the scope of the

proposed thesis, which will stop aim 2 after having developed a network simulation and

before its integration in the policy workflow.

1.3.4 Aim 3: Visualizing the output of discrete simulations with

replications and multiple time steps

Simulation such as network simulations generate outputs which can have many time steps,

as well as many repeats (used to estimate the distribution of the output measure when there
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is randomness in the model). Slider-based visualizations are commonly employed to navigate

datasets, by displaying the state of all elements at each time step. However, this approach

has several issues (e.g., change blindness) and may not scale well to many replications or

many time steps. The aim is to support modelers by creating a new visualization framework

for easy and effective exploration of the output of discrete simulation models. The goal will

be reached by improving on the current slider-based approach by employing a clock glyph

to aggregate data within each simulation component (Figure 1.5).

Figure 1.5: The 32 successive states of one simulation item can be aggregated by dividing
them into chunks, and taking the majority state in each chunk (right). All chunks can
be displayed simultaneously by wrapping them using a clock glyph, starting from the first
chunk (at ’noon’) and proceeding clock-wise. Research will explore the appropriate number of
chunks, and how to encode additional simulation features such as variability across simulation
runs (left).

This study will be conducted in following order:

1. Prototyping creating a prototype model, using the clock glyph design;

2. Gathering feedback from modelers - feedback on prototype will serve as the foun-

dation for the design of the full visualization environment. As mentioned on p.4, there

will be a minimum of two modelers (Dr Piper J. Jackson, Dr Vijay K. Mago). Asso-

ciates in their respective research laboratories may also provide feedback;
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3. Updating model model will be changed according to suggestions gathered from

modelers in earlier step;

4. Observational study empirical evaluation of the performance and usefulness of our

proposed final environment;

The new environment will have several components: three small ones, and one occupying

most of the space (referred to as ‘the main’). The main visualization will represent the whole

CA at once, where each cell is divided into equal segments whose color represents the main

state during the corresponding part of the simulation. The three smaller components will

include a flow diagram, which is automatically inferred from the simulation data and shows

the different states (circles) and transitions (directed arrows). This new design proposed in

this thesis will be examined in an empirical evaluation to:

• Assess whether important tasks for modelers can be performed more efficiently using

the new environment than the one based on a slider; and

• Examine how performances are influenced by key simulation factors (length of the

simulation, the number of replicas, and phenomenon being simulated [200, 10]).



CHAPTER 2

BACKGROUND

2.1 The societal importance of obesity

Food is an inseparable part of people’s lives. It provides the energy and nutrients needed

by the organism, thus playing a key role in weight dynamics and health. An excess in

calories (i.e. a positive energy balance) is stored by the body as fat (either by adding

to existing fat cells or recruiting new ones). Consuming more calories than needed for a

person is an important contributor to overweight and obesity [232]. This condition is not

limited to adults, but is also found in children and young people. This raises a question: are

there risks associated with this condition? Studies on the co-morbidities of overweight and

obesity have established links to many conditions, presented in Table 2.1 [63]. Given these

detrimental consequences as well as the fact that individuals living with obesity often do so

for an extended period of time, obesity is recognized as a chronic condition.

The prevalence of overweight and obesity has become high in many countries. Predictions

show that this tendency will remain high. For example, linear models extrapolating from

1990-2008 data suggested that 51% of American adults will be obese by 2030 [72]. England is

no exception to this ‘obesity epidemic’. It has one of the highest rates of obesity in Europe

and the developed world [232], with two thirds of adults, a quarter of 2-10 year old and

one third of 11-15 year old already obese or overweight [187]. Figure 2.1 provides concrete

examples of the prevalence of obesity on children in 9 English cities, and also illustrates the

double burden of poverty and obesity [232, 61, 184].
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Table 2.1: Diseases related to obesity [63, 187]

Category Diseases and conditions

Metabolic Disease Type 2 diabetes mellitus

Cardiovascular Disease Coronary artery disease
Congestive heart failure
Ischemic heart disease
Hypertension

Respiratory Disease Asthma
Obstructive sleep apnea
Chronic obstructive pulmonary disease
Obesity hypoventilation syndrome

Musculoskeletal Disease Osteoarthritis
Chronic back pain

Cancer Colorectal cancer
Kidney cancer
Breast cancer
Ovarian cancer
Endometrial cancer

Cancer Polycystic ovary syndrome
Pulmonary embolism
Stroke
Gallbladder disease

In addition to the burden it creates for individuals’ health and well-being, the high

prevalence of obesity also has economic impacts on society. The annual cost of obesity in

England was estimated to 27 billion pounds, with 352 million pounds of this amount due to

social care and 13.3 million pounds spent on obesity medication only [187]. Other examples

of costs include direct patient treatment for type 2 diabetes, which was estimated at 8.7

billion a year in 2010/2011, that is, approximately one tenth of NHS expenditure [111].

In section 2.2 we describe the complexity of obesity and introduce popular frameworks

to conceptualize its determinants (i.e., factors that contribute to obesity). Specifically, we

begin with the problem of capturing all determinants of obesity and their impacts (which

are important for this section of the thesis). Then, Section 2.2.3 introduces the policy

landscape for obesity in England. As this section of the thesis is primarily interested in zoning
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Figure 2.1: Prevalence of obesity (top bar) and poverty (bottom bar) for 9 English cities,
with the population displayed as the bar’s hue. The top number shows how many children
are living with obesity [232, 61, 184].

regulations, we briefly explain spatial distribution analysis in Section 2.3.2. In particular,

this section covers both (i) the use of graph theory to perform small-scale analyses of street

networks (e.g., at the city level), and (ii) nation-wide analysis without using the underlying

street network.

2.2 Determinants of obesity and conceptual frameworks

Obesity research has undergone at least two significant conceptual shifts over the last

decades, with a third shift currently underway.

First, there is now a broad understanding and agreement that obesity is a complex issue,

deeply rooted within modern societies, which requires a multi-sectoral, multidisciplinary
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perspective [187]. This view has not always been prevalent, as there was historically an

emphasis on individual responsibility for health [158, 35], that is, on proximal (or ‘down-

stream’) determinants of obesity rather than distal (or ‘up-stream’) ones. The historical

reliance on proximal factors may be explained by a lack of studies showing clear correlations

between distal factors and obesity, as well as a moral stance on blaming individuals rather

than regulating. There is now conclusive evidence about the role of distal factors, and

particularly socio-environmental factors [158, 219].

Second, obesity research has also shifted from seeing influences as linear to studying

non-linear, system-wide dynamics. This gives rise to the concept of uncertainty and unpre-

dictability [204]. Spontaneous decisions and events make models less predictive and much

more sensitive to initial conditions, thus prompting some researchers to even view some be-

haviors as chaotic [191]. Reports have started to emerge that suggest using systems tools to

deal with problems such as obesity [171].

Third, a shift was advocated from obesity to well-being [183]. This posits that the

goal of interventions isn’t to change ‘silhouettes’ but rather to improve people’s lives in

a comprehensive manner, which includes physical and mental well-being. This shift also

emphasizes weight stigma and the negative consequences of attitudes that blame individuals,

which continue to prevail despite scientific evidence on distal determinants.

Once a conceptual lens has been chosen to study the problem, specific public health

interventions will be chosen. Those targeting food behaviors can take a broad range of forms,

including price promotions/subsidies on healthier foods (e.g., fruits and vegetables), labeling

less healthy options (e.g., those high in fat, sugar or salt), and limiting the proliferation

of fast-food outlets through zoning [226, 187]. While there is also a range of tools to act

on obesity through physical activity (e.g., improving cycling or walking), this section of the

thesis is primarily concerned with food behaviors and focuses accordingly. Childhood obesity

receives particular attention, as children are exposed to factors contributing to obesity early
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on. Moreover, studies suggest that the likelihood of persistence of overweight into adulthood

is moderate and effective interventions are essential to stop this process [212]. While some

interventions may target the population as a whole (e.g., zoning), others may be designed

specifically for them (e.g., limiting TV advertisement to children or school meal policies) or

tuned. As an example of tuning, zoning interventions may take into account educational

institutions, thus limiting the proliferation of fast-food outlets specifically in the vicinity to

such institutions.

Interventions (and their evaluations) cannot be conceived in a vacuum. Social, envi-

ronmental and political factors overlap and together shape humans’ reaction to different

stimuli [201]. In terms of food behavior, this translates to influences such as the environ-

ment, negative marketing, social impacts, or government actions [139, 141]. Each one can be

divided into many, more specific factors, carrying positive and/or negative influences. The

social-ecological framework allows to find a balance between proximal and distal contributors

to individual health. This framework combines multiple dimensions (e.g. intrapersonal, in-

terpersonal/network, community) and describes how they interact [157]. Figure 2.2 presents

an example of social-ecological model for the problem of obesity [201]. While using such con-

ceptual model can provide guidance to the design of interventions (Section 2.2.3), the very

use of a model already has benefits as it allows individuals to situate their role in a complex

system of interrelated factors. As a comprehensive examination of all determinants of human

health is beyond the scope of this thesis, the next three sections address three categories of

influence: environmental ( 2.2.1), socio-economical ( 2.2.2), and political ( 2.2.3).
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Figure 2.2: Ecological model of obesity from The Woman’s and Children’s Health Policy
Center, adapted from [201]

2.2.1 Role of environmental factors in determining people’s

health

The importance that environmental influences have on shaping peoples’ health might

not be easy recognizable, since these sources of influence are both distal and multiform.

Many studies have explored, and demonstrated, that this multitude of influences does act

collectively on obesity. This was made possible in part due to methodological improvements

in gathering reliable data on individual and contextual determinants of obesity [205]. That

is, such demonstrations require precise operationalization of ‘environment’ and ‘obesity’,

for example by focusing on characteristics of people’s neighborhood and measuring obesity

through the Body Mass Index (BMI) [32]. Beyond providing proofs of influences, such
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studies also contribute to identifying potential approaches to obesity prevention that target

determinants at multiple levels [205].

More generally, the literature points at three conduits through which environmental in-

fluences are exerted [141]:

“The environment can be related to health through: (1) its physical design (the

built environment); (2) the socio-cultural rules that govern these environments;

and (3) the socio-economic status of these environments.”

More specific examples will be offered in the next section through the impact of deprivation on

diet quality. This section of the thesis is primarily concerned with one environmental feature1

which received increased attention in recent years: fast-food outlets. Mounting evidence

points to the association of fast-foods with obesity [76, 122, 33] as well as broader detrimental

effects on health. Reasons may include (i) their composition [166, 105] and (ii) the under-

estimation by customers of their energy consumption when eating in fast-food outlets [25].

As shown in Figure 2.3, fast-food outlets are a mounting concern in England, particularly

as they are disproportionally found in proximity to schools [209, 59, 11]. Policymakers

thus see school neighborhoods as a key place for health promotion [220]. A conceptual

framework was recently proposed for urban planning policy and practice [161]. It shows

the hypothesized pathways through which the built environment may influence immediate

behavioral outcomes and even impacts long-term health effects. The framework accounts

for food outlets availability and accessibility to neighborhood-level attributes (Figure 2.4),

and it supports the view that there is a positive correlation between density of fast-food

restaurants and obesity. This view is however debated, given the conflicting evidence.

1The literature offers various interpretations of the term ‘environment’. According to Papas et al., people
perceive their surrounding as everything that is “external to individual” [172]. Others have referred to this
term as a collection of factors such as availability of unhealthy food and “the walkability” of the environment
– the term describing the level of environment’s adaptation to make individual’s surroundings more physical
activity friendly and encourage people to walking [149].
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Figure 2.3: Importance of fast-food outlets for child nutrition based on a March 2017 report
from Public Health England [186]. Additional data on the rising popularity of fast-foods can
be found in [34]. Findings are similar in other countries such as the US, with respect to both
rising popularity and clustering patterns. Studies in four large US cities found an increased
mean count of neighborhood fast-food outlets over time [203], while spatial analyses found
a clustering of fast-food outlets around schools [11].

Figure 2.4: Conceptual framework of the local food environment and health to inform urban
planning policy and practice. Adapted from Murphy at el. [161]
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The evidence in North America indicates the food environment contributes to problems

of energy imbalance and the ensuing weight gain in society. Most of the studies investigating

the potential relationship between environmental features and likelihood of being obese are

congruent with each other. The common suggestion is that easy access to unhealthy food

options has a significant impact on peoples’ weight statuses, however, not all research seems

to support that hypothesis (Table 2.2).

While evidence does link the built environment with obesity, methods varied across stud-

ies from indirect methods (e.g. combination of survey data to estimate socio-economic status)

to intermediate (e.g. use of telephone book, yellow pages or marketing databases) and direct

ones (e.g. face to face interviews by trained investigators) [27]. Consequently, the current

evidence base is not sufficient to clearly guide governmental environmental interventions into

the modification of supposedly ‘obesogenic’ neighborhoods. However, these blurred findings

and variety of convincing hypothesis do not discourage planning authorities from considering

the built environment as one of the main contributor to the obesity epidemic [246, 47, 46, 48].

2.2.2 Importance of socioeconomic status

The ecological model of obesity (Figure 2.2) emphasized the multiple spheres of influences

on health behaviors. The previous section discussed one such sphere (the built environment)

as part of different components of environmental influences. Another component is the socio-

economic status, which is a concept rather than an actual metric (as it can be operationalize

in different ways e.g. depending on the stage of life) [141]. In England, it is measured

using the Index of Multiple Deprivation (IMD) which weights different domains. Half of its

value comes from income and employment deprivation (in equal shares) and a fourth from

education/skills and health deprivation (in equal shares) [73].
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An overview of the deprivation level across England reveals an unequal distribution across

space2 (Figure 2.5). This difference may in turn impact overweight and obesity through mul-

tiple pathways, including the exposure to fast-food outlets. Note that patterns of deprivation

not only vary spatially but also across time, as can be seen through the different study waves.

Several studies have examined the distribution of fast-food outlets in relation to depriva-

tion. In particular, a review of 12 studies showed a significant positive association between

deprivation and the availability of fast-food outlets. None of them presented significant neg-

ative association and two studies indicated no significant association. However, only two of

the studies were conducted in United Kingdom, while the bulk was performed in the US [77].

In addition, the studies were highly heterogeneous in terms of methodology3.

We assembled a sample of studies in Table 2.3, which shows that findings from the United

Kingdom tend to be in agreement. Despite the studies different in geographical scale, they

conclude that a greater level of neighborhood deprivation comes with an increased likeliness

to (i) be exposed to fast-food outlets, and (ii) gain additional outlets over time. The one

study that does not support this view is from Glasgow (Scotland). In short, in England

specifically, the few studies conducted so far provide conclusive evidence that deprivation

level is an important factor shaping the fast-food outlet environment4.

2The 2015 report by the Department for Communities and Local Government, based on 32,844 small areas
or neighborhoods, detailed the distribution of deprivation across the country [73]. The summary showed that
61% of local authorities districts contain at least one of the most deprived neighborhoods in England. The
report also listed the local authorities with the highest proportions of neighborhoods among most deprived
in England (Middlesbrough, Knowsley, Kingston upon Hull, Liverpool, and Manchester). According to the
executive summary, the 20 most deprived local authorities are largely the same as found for the 2010 Index,
with few exceptions such as Tower Hamlets and Newham becoming relatively less deprived.

3Regression was used in few studies [153, 76, 32], while others employed repeated measures analysis of
variance (RMANOVA) [153], one-way analysis of variance [55], cross-classified multi-level model [245], and
correlation, chi-square and ANOVA [32].

4Several putative pathways have been put forth. One suggested that more affordable land-use costs
attract restaurant owners more to deprived areas [55, 174], whereas another suggested that retailers may
be catering to a greater customer demand or fast-foods in more deprived places [174]. The last hypothesis,
which is of particular importance here, is that least deprived areas put higher constraints on small businesses;
conversely, opening up a new fast-food outlet in more deprived places may be easier. [174]
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Figure 2.5: The Index of Multiple Deprivation 2015 among local authority districts based
on proportion of their neighborhoods in the most deprived decile nationally. Adopted from
The English Indices of Deprivation 2015 [73]
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2.2.3 Regulatory environment and new interventions

The complexity and prevalence of obesity has prompted policymakers to design many

interventions. These can broadly be classified as prevention (e.g., avoiding weight gain in

the first place) and treatment5. Techniques range from emphasizing healthy social norms

(to cause behavior change) to create environments where the healthy choice is the easy

choice [147].

Interventions differ in their ease of realization. Organizations including the UK Health

Forum and the World Obesity Federation applied a Food Environment Policy Index (Food-

EPI) to England. The aim was to influence government policy to create healthier food

environments [225]. The policy areas rated as less well implemented (in comparison with

best practices from other countries) included planning regulations and zoning to encourage

healthy food outlets, and government-led systems based approach to improving the food

environment. This suggests room for improvements in these two interventions, which will

be at the core of the next chapter. Specifically, the experts prepared an action list to fill

these policy gaps, in part by developing supplementary planning guidance and supporting

local authorities. More specifically, a recommendation for policies aiming at improving the

food environment in England is to monitor the food environment and strengthen planning

laws to discourage less healthy food offers [225].

The role of local authorities for health in England has increased. It is well-established

that they have a range of legislative and policy levers at their disposal [40]. On April 2013,

that range widened as a reorganization of health services transferred responsibilities from

5The distinction between prevention and treatment is important to understand the policies investigated
and simulated in this thesis. As policymaking is a professional field, there are many other specific terms
which may occasionally appear. In the context of British policies, those include ‘hugs’ (direct incentives
such as vouchers in return for healthy behavior), ‘shoves’ (measures restricting choices such as restricting
takeaways for schools), and ‘smacks’ (bans e.g. on smoking in public places) [147].
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the National Health Service (NHS) to local authorities [146]. Locally tailored strategies

for obesity are thus at the forefront of the policy agenda. In recent years, local authori-

ties have started to use the legal and planning systems to regulate the growth of fast-food

outlets, including those near schools. One of the biggest initiatives is called “UK Healthy

Cities Network” and refers to one of 20 networks accredited by World Health Organization

(WHO). Several large cities in the United Kingdom are included in the network, such as

Liverpool, Manchester, Newcastle or Sheffield [232]. Nonetheless, obstacles have emerged.

First, authorities face issues in evaluating the possible effectiveness of these restrictions. This

is particularly important when authorities are legally challenged. Second, the classification

of food premises can create barriers. Most of the limitations developed by local authorities

refers to new fast-food restaurants near schools. Before 2005, all hot food takeaways were

classified as Class A3, which is much less restrictive than current Class A5. This means

that, historically, hot food premises may have given planning permission under Class A3 it

they have been in existence since before 2005, so the new rules do not apply to them [40].

Finally, other political challenges can make the situation even more complex. For example,

Brexit (i.e. leaving the European Union) can change the price of food products importing

from Europe, thus impacting the dynamics of the national market [142].

The documents controlling planning permissions for hot food takeaways are called Sup-

plementary Planning Documents (SPDs). Through SPDs, local authorities are able to enact

restrictions, within the limits of the National Planning Policy Framework. In their SPDs,

fifteen councils have cited concerns relating obesity to hot food takeawaways. Table 2.4 sum-

marizes the main restrictions that authorities can create, through their SPDs [246, 47, 46, 48].

Note that while SPDs are a typical vehicle, authorities can also use other planning documents:

five authorities used local plans and two relied on Developent Plan Documents (DPDs) to

control hot food takeaways [197].
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Table 2.4: Categories of most popular common regulations implemented in English neigh-
borhoods [246, 47, 46, 48].

Type of regulation Description Councils where it was
adopted

Exclusion zones to re-
strict hot food take-
aways

Restrict access to hot food take-
aways, generally a 400-meter
zone with variations applied to:
schools, leisure centers, playing
fields, youth facilities

Warrington Borough Council,
City of Bradford MDC, Bark-
ing and Dagenham, Gateshead
Council, Islington Council, Soli-
hull Council, St Helen Council,
London Borough of Newham

Overconcentration/
proliferation

Limitations on the number of
hot food takeaways in shopping
centers and along high streets
(in locations outside of exclusion
zones)

Solihull Council, Gateshead
Council, Barking and Dagenham

Hours of operation Regulating the opening times, to
limit the sale in late hours and
lunch time, especially for restau-
rants close to schools

City of Bradford MDC, Warring-
ton Borough Council

Locations with high lev-
els of obesity

Planning permission will not be
granted for hot food takeaways in
wards where there is more than
10% of the year 6 pupils classified
as obese

Gateshead Council

2.3 Measuring the access to fast-food outlets

2.3.1 Overview

Section 2.2.1 introduced the association of fast-foods (and thus outlets serving them) with

obesity, while section 2.2.3 summarized the key tools that local planners can use to control

the proliferation of fast-food outlets. In other words, ‘control’ seeks to make fast-food outlets

less accessible. It is thus essential to understand (i) the extent to which fast-food outlets

are currently accessible, and (ii) how this accessibility would be impacted by new control
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measures. The next two chapters will use network analysis and agent-based modeling to

address these two aspects in turn. To situate the contribution of these chapters, this section

provides an overview of how accessibility has been computed so far. The next section is

devoted to one specific approach to computing accessibility, that is, network analysis.

Studies exploring relationship between the food environment and diet have used a wide

variety of methodologies to measure the degree of food access for study participants [39]:

1. Geographic Information Systems (GIS), which is a general term for a set of

measures, commonly operationalizes food access via store density (buffer distances) or

proximity [43]. One challenge is to find appropriate and consistent criteria for defining

geographic boundaries, which will be discussed in details in the next chapter [43];

2. Store audits, in which researchers visit stores and perform a manual assessment.

While this approach requires intensive manpower (and thus has limited scale), it has

been used on a few occasions. As exemplified by the Nutrition Environment Measures

Study (NEMS) [98], such approach is most relevant when researchers are concerned

with more than just physical accessibility. Their assessment may include price (afford-

ability) and other study-specific metrics (e.g., product variety);

3. Respondent-based perceived measures ask the participants for the perceived

availability and accessibility of food or food stores. As it is a perceived measure,

it is less reliable than direct measures;

4. Mixed methods combine perceived and objective measures. Only a few studies have

used them, for example by combining GIS methods with store audits. This allowed to

assess the number of stores selling certain foods (audit) near the participants’ homes

(GIS).
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Figure 2.6: Hierarchy of methods used to measure the degree of food access, based on studies
exploring the relationship between the food environment and diet. Adapted from Caspi et
al. [39]

The majority of studies exploring the spatial distribution of food premises used a GIS

approach [39, 156]. Trends suggest the use of GIS will even increase [43]. As the next

chapter of this thesis belongs to this line of research, we now summarize its sub-divisions

(Figure 2.6), culminating with the graph approach to street networks (detailed in the next

section).

In our context, GIS are used to study how urban form (the geometry of streets, blocks,

parcels, and buildings) relate to land-use patterns (spatial distribution of institutions and

activities). Activity measures are used to relate these two notions6. Researchers have divided

the various existing accessibility indices into five groups [23, 206], summarized in Table 2.5.

The approach used in this thesis belongs to the first group, ‘Graph Theory and Spatial

Separation Indices’.

6The notation of accessibility is somewhat similar to the notion of density, but what distinguishes them
is the scale used to summarize features of built environment. Density focuses on number of features per unit
of area, while accessibility analyzes the environment as seen from a specific location.
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Table 2.5: Five groups of existing accessibility indices. Adopted from Bhat, Handy et al. [23]

Accessibility group Methodology

Graph Theory and Spa-
tial Separation Indices

Describes the spatial impedance factors that separate locations,
without considering the nature of the activities separated. It typi-
cally measures accessibility from a particular location to either all
other locations in the study area or to all other locations that fall
within a certain distance threshold from the location of interest.

Cumulative Opportuni-
ties Indices

The Cumulative Opportunities Index differs from a graph theory
measure for its inclusion of a destination type parameter. The
index defines a travel time or distance threshold around a location
and counts the number of destinations located within a distance
threshold as the accessibility measure for the location.

Gravity Indices A gravity type measure combines the attractiveness of the op-
portunities and the travel times required to reach them. The
accessibility of a location can be quantified by calculating the
time-distance relationship between the location and all possible
destinations around that location.

Utility Indices It is based on random utility theory, which assumes that the prob-
ability that an individual will patronize a particular destination
depends on the relative utility of that choice compared to the util-
ities of all other possible choices.

Time Space Indices The motivation behind this approach to accessibility is that indi-
viduals have only limited time periods to undertake actions. As
travel times increase, the size of their prisms shrinks. This method
allows for better evaluation of trip changing.

2.3.2 Principles of graph theory and spatial separation indices

Graph theory (also referred to as network theory) studies graphs, which are collections

of nodes linked by edges. This approach will be formally developed in the next chapter.

To investigate the relations between locations and the geometry of the environment [19], a

street network is created. This is a specific type of graph, in which edges represent street

segments, and nodes stand for street intersections. Nodes are usually the unit of analysis. An

important strength of street network analysis is that it can measure access from each element

of urban form (e.g. street segment) to every other element. That is, graph-based indices can
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estimate a location’s accessibility to all surrounding people or activities, regardless of their

type. Specifically, a graph-based index can illustrate how some locations in the graph are

closer, more ‘between’, or otherwise better accessible than others. To capture these varying

aspects of nodes’ accessibility within street network, Sergio Porta and colleagues created

a methodology called Multiple Centrality Assessment (MCA). In short, different centrality

measures from graph theory are used to perform a spatial analysis. Three common metrics

employed in MCA are [178] (illustrated in Figure 2.7):

1. Betweenness centrality. It is the fraction of shortest paths between pairs of nodes in

a network that pass through a given node [78]. A simple way to calculate it is to create

a matrix of shortest paths between all node pairs. As will be discussed in the next

chapter, this computation can be prohibitive for large networks and approximation

algorithms are then used.

2. Closeness centrality. It is the inverse of the distance required, from one node, to

reach all other nodes through shortest paths. The value is usually normalized by the

number of nodes in the graph to make the measure comparable in different networks.

The main aim of this approach is to describe how far each location is from all other

locations.

3. Straightness centrality illustrates the extent to which the shortest paths from a node

to all others resemble straight Euclidean paths. The straightness measure increases as

the distance become larger. Higher values indicate a larger deviation from the shortest

Euclidian paths.

While street network analysis provides a very detailed picture, it comes at the expense

of computational requirements. For example, computing the shortest path between all pairs

of origin-destination nodes at a country level would be both prohibitive (in resources) and
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(a) Betweenness (b) Closeness (c) Straightness

Figure 2.7: The three most common types of centralities.

uninformative (as accessibility is about what people can reasonably access rather than any-

thing existing in the country). Consequently, it has so far been limited to the (relatively

small) scale of one or a few cities7, as shown in selected studies (Table 2.6). In these studies,

the three indices previously mentioned are the most popular. We also observe that the focus

is usually on retail activities or land use.

2.3.3 Application of graph theory to clustering patterns

Owners and businessmen wish to ensure that customers can easily access their fast-food

outlets. To maximize sales, it is thus important to find the right location. The literature on

restaurant site selection shows that planning takes into account several aspects, including the

physical network of roads that may draw in potential consumers, neighborhood demograph-

ics, and the presence of other businesses [206]. This last aspect is particularly important.

7A distinction was also made between a ‘global’ and a ‘local’ case [202]. In a global case, the centrality of
a node depends on the entire network. In a local case, the network around a node is limited using a buffer
area of radius d (e.g., 10km to match the average radius suburbs of Stockholm in [202]), and the node’s
centrality is computed in this limited network. This distinction is most useful in a study using multiple
spatial resolutions, but it can be misleading to compare studies. For example, a study may perform a ‘local’
case and still have a much bigger network (depending on d) than a study doing a ‘global’ case, whose network
may be smaller to start with.
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The decision must be on made on whether to stay close to competitors, or keep a distance

from them. A small proximity between venues may lead to the creation of clusters, which

can be defined as an excess or deficit of events across a geographic area measured relatively

to a null hypothesis or the expected spatial pattern [117].

As discussed by Krider and Putler, research on clustering patterns of retail activities

faces three challenges [138]. First, there are spatial differences in underlying demand den-

sity. It may thus be difficult to conclude whether stores attract/avoid one another when

their locations are confounded by heterogeneous spatial demands in the population for their

services. Second, the data collection and analysis process has historically been so labour

intensive that significant simplifications were made [138]:

“at most a handful of store types are evaluated for their attraction-avoidance

tendency in any one study. After data collection, the most commonly used anal-

ysis methods involve aggregate counts of stores in cells within a two dimensional

grid, which is much less accurate, but much easier, than using measures derived

from individual point locations.”

Note that this picture has gradually changed with the emerge of geocoding, and the increase

in computational power to use GIS techniques. For example, the analysis in the next chapter

will not aggregate stores in cells, but will instead opt for a more accurate analysis. Finally,

there is no agreed upon measure of clustering (like there was none for accessibility). The

wide range of methods to measure clustering include the average store counts in contiguous

sites, nearest-neighborhood analysis, and the K-function (a density measure of the number

of points within a Euclidean distance of another arbitrary fixed point) [248, 123, 175].

Clustering can be examined both from the businesses’ viewpoints, and from a customer

perspective. Several factors drive a customer’s decision on where to buy goods, and many

such factors can favor clustering (Table 2.7). For example, uncertain customers may prefer
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Table 2.7: Overview of factors contributing to agglomeration of retail activities [21, 133].

Attraction forces that encourage homogeneous agglomeration

Customer-side forces Firm-side forces

• Comparison shopping motivated by con-
sumer purchase

• Shared infrastructure

• Customer taste heterogeneity • Localized resources
• Customer expectations of lower prices • Efficiencies in firm resources utilization
• Increased customer awareness of homoge-
neous clusters

• Reduced location choice risk

• Shopping for entertainment • Follower’s traffic interceptor strategy
• Transportation savings • Demand externalities

• Beneficial rent contracts for stores that
constitute the primary motivation for cus-
tomers’ trips to the center

a cluster of shops (e.g., a mall) to easily contrast what they offer. The aggregation of outlets

also influences customers’ ability to remember locations: recall and awareness of clusters

should be higher than of a single outlet, which in turns increases the trade area of the

clustered outlets [138]. There are also arguments to justify avoidance rather than clustering.

Spatial differentiation from the competition helps to avoid price rivalry and increase chances

for monopoly rents. Similarly, separating increases market coverage, which has historically

be shown to play a role when travel costs are important to customers [57] or if demand

changes over time [65].

Several studies have analyzed the degree of clustering of fast-food outlets in proximity

to schools, although none was conducted in the UK. A New Zealand study revealed a high

concentration of fast-food outlets and convenience outlets within 1.5km of schools. More-

over, that clustering was greatest at distances less than 800 meters [59]. These findings are

consistent with previous North American studies [11, 209, 223] that have also found a high

degree of fast-food and/or convenience stores in close proximity to schools (e.g., a Chicago

study found clustering of fast-food outlets within 1.5km from schools [11]).
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2.3.4 Beyond graph theory: performing nation-wide analyses

As mentioned in the previous section, graph theory comes with scalability issues [19] and

studies have typically used it on one or few cities. When the research goal is to obtain insight

about the national scale, different methods have thus been used. It should be emphasized

that the number of studies at a large scale is scarce, compared to studies at the local/city

scale. Also, the type of ‘insight’ that studies aim for can be different, which is reflected once

again in the variety of methodologies.

A 2016 Swedish study used the national register data to generate a comprehensive

overview of the changing localization patterns of retail outlets. Concentration (or clus-

tering) was operationalized using the Hoover Index and the redistribution rate [6]. Another

large-scale study was conducted in the US and Canada. This research emphasized the use

of detailed data on establishment counts by employment-size categories, industry, and geo-

graphic classification [115]. Another study on Mexico and Canada used Location Quotients

(LQs) to determine patterns of economic development and industrial activity [176]. A 2010

study is particularly noteworthy for its large scale and unique method. Ghosh and colleagues

collected data from 4 countries: US, Mexico, China, and India. They used the distribution

of nighttime lights data (rather than a GIS-based method) to identify economic activities.

The main theme of these studies is not limited to the distribution of retail activities. The

absence of retail activities is also important, particularly when it comes to “food deserts”,

which are areas with limited access to food. In a study on food deserts, the authors collected

data from 2,275 non-metropolitan counties in the continental U.S., and examined inequalities

in food access for non-metropolitan residents [24].

In short, these studies show that national assessments can be done, but none has em-

ployed a street network approach.



CHAPTER 3

UNDERSTANDING A NATION: USING LARGE-SCALE

NETWORK ANALYSIS TO CAPTURE THE FAST-FOOD

LANDSCAPE IN ENGLAND

In the previous chapter, we discussed how access to fast-food outlets has been measured.

In particular, we showed that graph measures in street networks have been limited to small

areas such as cities, whereas studies in larger areas (e.g. national scale) used methods that

did not take into account the street networks and thus approximated distances. In this

chapter, we present the first study to use the accuracy of street networks at a national scale.

Specifically, we compute distances between fast-food outlets and schools in England. This

required linking several datasets, and performing computations over a high-performance

cluster. The chapter thus describes the datasets, their linkages, and our implementation.

Analyses from this chapter are used in the next chapter, which develops simulations.

My contributions consisted of (i) obtaining additional datasets on geographical

boundaries an deprivation, (ii) cleaning and linking all datasets, (iii) implementing and

running network analyses over a high-performance cluster (HPC), and (iv) visualizing the

results. This study was funded by Johns Hopkins University’s Global Obesity Prevention

Center (GOPC) through a grant to Dr PJ Giabbanelli, who also obtained the location

of all fast-food outlets and schools. Computations on the HPC were supported by the

Center for Research Computing & Data at Northern Illinois University, with assistance

from J Winans on writing scripts.
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3.1 Introduction

Road networks are one of the oldest forms of human-made infrastructure networks, pre-

ceding power and telecommunication networks. Before network science became a popular

approach, geographers devoted several books analyzing road networks, including Network

Analysis in Geography from the late 1960s [101] and the seminal The Seminal Logic of Space

in 1984 [112]. While some modern day cities may appear to have a grid-like pattern of roads,

many road networks do not result from a central planning process but instead emerge over

time as the result of an organic densification/exploration process [18] thus creating struc-

tures far more complex than square grids. While local geographical and socio-economical

differences may have influenced the process, road networks have nonetheless be found to have

commonalities across cities and countries. For example, Buhl and colleagues found similar

average degrees [31] while Cardillo et al. reported a fractal dimension (per the box-counting

method) in the narrow 1.7-2.00 range [38]. For a summary of these commonalities, and a

contextualization of findings among other spatial networks, we refer the reader to the review

by Barthelemy [17].

Network science has been particularly interested in relating a network’s structure to its

function. While there is a myriad of metrics, road networks are often analyzed with respect to

betweenness centrality (since they are infrastructure networks and this approximates traffic

between all pairs of nodes) and closeness centrality (as a proxy to access). These metrics

have been related to various phenomena, such as the presence of specific retail activities.

In this paper, we focus on using the structure of road networks to understand the presence

of fast-food outlets. Analyses of road networks in the recent years have all been at the

city level (Table 3.1). Geographers and economists have also analyzed retail activities at

a national level, but without using network-based metrics (e.g. shortest-paths calculations
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or centrality). For example, the geographical distribution of retail outlets was investigated

at the scale of Sweden using buffers [6], while food deserts were examined in rural U.S.

counties using county-level data [24], and economic activities across countries were assessed

by imposing a square grid [83]. In this paper, we present the first large-scale analysis of

retail activities (focusing on fast-food outlets) using network methods at the national scale.

Our scale is the whole of England. Studying the geography of fast-food outlets at a

detailed level (e.g. using network metrics such as shortest-paths distances between outlets)

at the scale of England is primarily motivated by the current public health context. In

the United Kingdom (UK), based on the National Child Measurement Programme (NCMP)

2013-2014, one third of children aged 10-11 and over a fifth of those aged 4-5 were overweight

or obese [107]. The current policy landscape in the UK emphasizes the role of eating patterns

in achieving a healthy weight, and fast-food outlets have received particular attention. These

outlets play a significant role in children’s nutrition: British secondary school children get

more food from ‘fringe’ shops than from the school canteen [210]. In addition, even when

there is a stay-on-site policy for lunch, the most popular time to buy food is after school [211].

This situation has led policymakers to increasingly advocate for the regulation of fast-foods

as part of an overall strategy of obesity prevention in school neighbourhoods. Between 2011

and 2014, four reports have called for a restriction of fast-food outlets around schools [75, 168,

1, 44]. However, policies have so far differed widely in design as they can restrict fast-food

outlets in terms of (i) clustering (e.g. minimum distance between them) or (ii) respectively

to schools (e.g. with a minimum distance from schools) [162]. In addition, the impact of fast-

foods on obesity and food consumption varies over space, and particularly depending on the

deprivation of the area [76]. In this context, The principal contribution of the present work

is to take a big data approach to propose the first investigation of fast-food activities based

on road networks at a nation’s rather than city’s level. Specifically, we conduct large-scale

network analyses to:
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Table 3.1: Network science studies investigating various structures in road networks (sorted
by year)

Ref. Cities Network Metrics Phenomena
[178] Bologna (Italy) Centrality (closeness, between-

ness, straightness)
Retail and service
activities

[206] Cambridge and Somerville,
MA (USA)

Number of destinations avail-
able in a given radius (i.e.
reach) and cumulative number
of meters/turns/intersections
to reach them using short-
est paths; centrality (between-
ness)

Retail activities,
urban form, and
land use

[241] East Baton Rouge (USA) Centrality (closeness, between-
ness, straightness)

Land use

[177] Barcelona (Spain) Centrality (closeness, between-
ness, straightness)

Retail activity

[221] Edinburgh (Scotland), Le-
icester (England), Sheffield
(England), Oxford (Eng-
land), Worcester (England),
Lancaster (England), Cata-
nia (Italy), Barcelona
(Spain), Bologna (Italy),
Geneva (Switzerland)

Centrality (closeness, between-
ness, straightness, accessibil-
ity), street lengths, intersec-
tion angles, areas

Geometric proper-
ties

[236] Neighborhoods of London
(England)

Centrality (betweenness) Gentrification

[202] Stockholm (Sweden) Centrality (closeness, between-
ness, straightness)

Land use (built-up
areas vs green ar-
eas)

[54] Zhengzhou (China) Centrality (closeness, between-
ness, straightness)

Land use (Points
Of Interests)

[247] Cardiff (Wales) Centrality (closeness, between-
ness)

Property prices

[170] Old cities (Kfar Saba,
Raanana, Bat-Yam), new
cities (Beer Sheva, Ashdod,
Modiin), and hybrid cities
(Lod, Ramle) in Israel

Degree, centrality (closeness,
betweenness)

Retail activity



44

(1) contribute to the evidence base for coordinated regulation at the level of England by

analyzing distances (i) between fast-food outlets and (ii) between fast-food outlets and

schools, across deprivation levels.

(2) we investigate the relationship between centrality and the presence of fast-food outlets

nation-wide, thus extending the scope of many previous studies employing network

centrality mostly at the city-scale.

The remainder of this paper is divided into four sections. In section 3.2, we summarize

the different geographical layers in England and the associated datasets used for this study.

In particular, we contextualize these datasets with respect to previous studies of food outlets

in England, and we explain the different steps to pre-process the datasets. Pre-processing

includes assigning fast-food outlets and schools to roads, building the road network, and

identifying the deprivation level of each road segment. Our analysis methods (including cen-

trality metrics and their computation) are summarized in section 3.3, with results provided

in section 3.4. Results are discussed in section 3.5 in terms of their contribution to the

evidence-base for public health in England, and regarding the potential of using large-scale

analyses to inform regulations going forward.

3.2 Assembling a dataset

3.2.1 Overview

Our objective was to assemble a data that includes the location of fast-food outlets and

schools on the road network, and also provides the level of deprivation. This objective was

accomplished in five steps, each involving the use of another dataset. We used a top-down
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process (Figure 3.1), starting with the whole of England (thus excluding Wales, Scotland,

and Northern Ireland). Rather than obtaining a single massive network which would be

computationally prohibitive to analyze, we started by dividing England into coarse units.

Steps 1 divides England in Local Authority Districts (LADs), specified in the 2016 boundary

line dataset. In step 2, we added in the 2016 Ordnance Survey (OS) Open Roads containing

3,396,694 roads. Specifically, we found the roads that resided (either entirely or partially)

within each LAD. In step 3, we retrieved the location of fast-food outlets and schools from

the Points of Interest data (PointX Database Right/Copyright 2016) obtained in January

2016. This dataset aggregates over 150 databases (in the ‘eating and drinking’ category)

and has an accuracy ranging from 81% to 100% [76]. Locations for fast-food outlets were

added to the street networks. At that stage, we had divided England into 327 LADs, each

containing a road network, with fast-food outlets and schools assigned to each road segment.

Research has shown that the impact of fast-foods on obesity and food consumption varies

over space, and particularly depending on the deprivation of the area [76]. Therefore, we also

had to track the deprivation score, Index of Multiple Deprivation (IMD), which takes into

account employment, living environment, crime, health, education, income and housing [163].

Tracking this score took two additional steps, because it was provided in datasets using

different geographical units.

Whereas LADs are designed based on local governance, most statistics are available in

census data, which uses different spatial units. England can be divided using three levels of

spatial units, from largest to smallest: Middle layer Super Output Areas (MSOAs), Lower

layer Super Output Areas (LSOAs), and Output Areas (OAs). The minimum and maximum

number of inhabitants in each of these 3 possible subdivision is summarized in Table 3.2. In

order to most accurately track deprivation levels, we used the most detailed level at which

this information is available: LSOAs. It should be noted that LSOAs is a spatial resolution

often used in studies of food geography focusing on a single city, such as Bristol [76], parts of
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Figure 3.1: Our five steps process to combine five (large) datasets into one, specifying the
location of fast-food outlets and schools within road as well as the level of deprivation. The
online version allows zooming to see detailed locations and deprivation levels within this
sample LAD (Adur).

Berkshire [245] or the North East of England [32]. However, using them in a national study

(together with the whole road network) and conducting a detailed network analysis are two

of the hallmarks of the present study, in contrast with previous work (Table 3.3).

In step 4, we used the latest (2011) census division of England into 34,753 LSOAs (which

also included Wales). We removed Wales, and identified the LSOAs to which each road

segment belonged. Finally, step 5 cross-referenced the LSOAs with the 2015 Indices of

Multiple Deprivation dataset: since we knew the LSOA for each road, and the deprivation

for each LSOA, we were able to assign a deprivation level for each road. The summary of

datasets involved is provided in Table 3.4.

This five step process required extensive data pre-processing, not only because of the

sheer volume of information, but because of numerous challenges in combining the datasets

(e.g., missing values, mismatch in geographical units). The operations involved in each
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Table 3.2: Minimum and maximum values for each subdvision type in the UK.

Subdivision Min value Max value

OA 100 residents
or 40 house-
holds

625 residents or
250 households

LSOA 1000 residents
or 400 house-
holds

3,000 residents
or 1,200 house-
holds

MSOA 5000 resi-
dents or 2000
households

15,000 residents
or 6,000 house-
holds

step are now detailed, each within a dedicated sub-section. All of the scripts necessary to

combine and pre-process the data are available within the ‘Pre-processing’ folder at https:

//osf.io/gn3f2/. Note that many of our spatial queries (e.g., to assess whether a road

‘fits’ within a LAD) require the open source library GeoTools for Java. As we do not own

the data, links within Table 3.4 track data provenance.

3.2.2 Step 1: Dividing England into Local Authority Districts

(LADs)

This straightforward step starts our process by using the 326 shape files defining LADs,

from the boundary-line dataset. Note that each each result is not only a geometry defining

the boundaries of the LAD, but a spatial object due to the use of coordinates. It also has a

name, which later steps use to double-check linking across datasets.

https://osf.io/gn3f2/
https://osf.io/gn3f2/
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Table 3.3: Key features of previous studies of fast-food outlets in the UK.

Ref. Area Data Analysis

[55] Norfolk
county

The location of food-related out-
lets was extracted from the Yel-
low Pages directory issued in six
years (1990, 1992, 1996, 2000,
2003, 2008). Locations were over-
laid onto the 2001 electoral ward
boundaries for Norfolk (n=205)

Repeated measures analysis
of variance (RMANOVA) /
multiple logistic regression
model

[153] England and
Scotland

The location of McDonald’s
restaurants (n=942) were ob-
tained from the Yellow Pages
directory and overlaid on 38,987
small areas: 6505 ‘Data zones’
in Scotland and 32,482 Super
Output Areas in England

One-way analysis of vari-
ance

[76] Avon county The location of outlets was ex-
tracted from the Ordnance Sur-
vey Points of Interest in Avon
county

Geographically weighted re-
gression

[245] Berkshire
county

The location of outlets was ob-
tained from six local councils,
with analyses at the LSOA level

Cross-classified multi-level
model with Markov chain
Monte Carlo methods

[32] North East of
England

The location of food-related out-
lets was extracted from the Yel-
low Pages directory, with analy-
ses at the LSOA level

Correlation analysis, logis-
tic multinomial regression,
ANOVA



49

Table 3.4: Datasets combined for our study.

Step Dataset Year Characteristics
kk Boundary-

Line1products.html
2016 Shape files of polling districts,

county and district regions,
wards, etc. 1.41Gb in total.

2 Ordnance Survey
(OS) Open Roads2

2016 3,396,694 roads

3 Points of Interest3 Jan.
2016

Location of 39,374 fast-food out-
lets and 25,755 schools.

4 Lower Layer Super
Output Area bound-
aries4

2011 Shape file of 34,753 geometries
defining LSOAs

5 Indices of Multiple
Deprivation5

2015 32,845 rows of IMD score and
contributing elements (e.g., in-
come, health).

3.2.3 Step 2: Finding the road segments within each LAD

The input to step 2 consists of the output from step 1 (326 shape files for LADs) and

the one shape file that defines roads as a series of segments, where new segments are made

everytime a road bends or intersects with another road (Figure 3.2). The output is a road

network, divided across the LADs. To create this output, we need to (i) identify the (parts

of) roads that belong to each LAD, and (ii) convert roads from a shapefile format into a

network. For the identification, we go through each LAD, and then through each road. The

trivial cases are when the road falls entirely outside the LAD (discarded), or entirely within

(assigned to the LAD). The one intermediate case is when a part of a road falls within a

LAD (Figure 3.3). In this case, we divide the road in two segments: one segment for the

LAD it belongs to (assigned to the LAD), and one remaining segment. Note that, while

LADs do not overlap, some road segments may be at the border of two LADs. In this case,

the segments are assigned to both LADs (i.e. duplicated). For the conversion, each road

segment corresponds to one edge of our network, and each node stores the coordinates of the
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segment’s endpoints as in Figure 3.2. Note that our edges are not a one-to-one mapping of

road segments in the road shape file, because some road segments may be sub-divided when

they span two LADs.

Figure 3.2: Roads are encoded in a shapefile as a series of segments. A segment links two
points, specified as coordinates in easting and northing coordinates. Segments are created
when a road has an intersection or turns.

After completing this procedure, we have 326 LADs and the road network within them.

To ensure the validity of the data, we tested (i) whether the network in each LAD was con-

nected with respect to fast-food outlets and schools, and (ii) whether the network has a large

disconnected component even without fast-food outlets of schools. In other word, a school or

fast-food outlet that is unreachable would indicate issues with the network data. Similarly,

a part of the city that is seemingly inaccessible may indicate issues in pre-processing. We

found 6 LADs (less than 2% of the dataset) experiencing one of these two issues. This was

mostly due to a misalignment between boundaries for governance (the LADs) and the trans-

portation network (Figure 3.4). For example, one city could be in charge of two areas, but

the only road to move between them was within the boundary of another city. The six cases

were manually resolved. For Tewkesbury, Windsor and Maidenhead, and Wyre, the small

road fragment needed to connect the disjoint parts was re-assigned from the LAD where it

fell (Cotswold and Gloucester, Bracknell Forest, and Fylde respectively). For Ashfield and
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North East Derbyshire, the parts connected the ‘main’ city to a hamlet were far off, and we

thus split each city into two LADs (one for the ‘main’ part and one for the hamlet). Finally,

the Isles of Scilly contained roads over five disconnected islands. Since our records indicate

that the islands contained no schools and no fast-food outlets, we dropped this LAD from

our dataset. We thus had 326− 1 + 2 = 327 LADs.

Figure 3.3: Three cases regarding the relationship between a road and an area.

3.2.4 Step 3: Assigning schools and fast-food outlets to road

segment

The input to this step consists of the road network divided across 327 LADs, and the

Points of Interest data for schools and fast-food outlets. The data includes easting and

northing coordinates, the postal code, and a district code. Several entries had missing infor-

mation, such as incomplete postal codes or no district code. We discarded such incomplete

entries, representing only 0.5% of the fast-food outlets and 0.6% of the schools. For the

remaining data, we assigned the entities to road segments (i.e., edges of our network) in two

steps: (i) identify the LAD based on the district code, and (ii) select the edge closest to the

entity. A difficulty of step (i) is that the district code provides the name of a city, and not
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Figure 3.4: Three situations leading to a largely disconnected road network. Top: hamlet
for which the access clearly lies outside the main area. Middle: a very small but critical road
section is administratively in another LAD. Bottom: the whole area is formed of islands.
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Table 3.5: Hypothetical example of data produced by step 3, showing a network where nodes
have coordinates and edges count fast-food outlets as well as schools.

Nodes
532715 181698
532742.771 181787.615
532339.31689 181923.56457
532308.7005602281 181913.6821562441
Edges
532715 181698 532742.771 181787.615
532339.31689 181923.56457 532308.7005602281
Outlets/schools
(532715 181698, 532742.771 181787.615) 0 1
(532339.31689 181923.56457, 532308.7005602281) 2 0

the name of a LAD. In most cases, the LAD had the same name as the city. However, for 36

cases, there was no LAD with the city’s name. This occured for LADs that represented coun-

ties, and had several cities (e.g., County Durham includes Durham, Derwentside, Sedgefield,

Teesdale, etc). All 36 cases were resolved manually, using Google Maps as geolocation service

to find the city in England, and thus identify the LAD that it fits in. After completion of

step (i), we knew the LAD for 99.5% of outlets and 99.4% of schools. For each entity within

a LAD, we computed its distance to all road segments of that LAD, and we assigned it to

the nearest segment (i.e. with minimum distance). The resulting network (Table 3.5) has

coordinates on the nodes, and number of fast-food outlets as well as schools on the edges.

Note that we do not differ between outlets or between schools, hence we only keep track of

their density nearby a given road segment. The distributions of fast-food outlets and schools

per LAD follows a similar pattern (Figure 3.5), although we note that there are typically 0

to 150 schools per LAD whereas there is a wider possible range of fast-food outlets.
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Figure 3.5: Distribution of the number of fast-food outlets and schools (x-axis) across LADs
(y-axis).
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3.2.5 Step 4: Identifying the Lower layer Super Output Area

(LSOA) for each road segment

The LSOA contains statistical information. Identifying the LSOA of a road segment

thus provides access to the deprivation level of this road segment. We started by excluding

5.63% of the LSOAs from the dataset because they were entirely outside of England, which is

the focus of this work. Then, we identified the LSOA to which each road segment belonged.

Because LSOAs were not designed to match the transportation network, we had to operate in

the same way as in step 2: segments entirely within an LSOA were assigned to it, while those

partially within the LSOA were further split. While LSOAs do not overlap, we also noted

that several road segments were exactly at the boundary of two LSOAs (53,459 segments or

≈ 0, 8% of the data), and we assigned them to both (i.e., a given edge has either one or two

LSOAs).

This process resulted in a final network size of 6,549,676 edges and 6,102,863 nodes. This

leads to an extremely low network density (≈ 3.51e−5), which we expect as a node is most

frequently connected to two edges (since a road is stored as a series of lines) and cannot be

connected to many others given the practical limitation on the number of roads that can

intersect. When outlets were present on a street segment, there were on average 1.28± 0.76

outlets. Similarly, when schools were present on a street segment, there were on average

1.03± 1.19 schools.

As this is the last step that affects the existence of an edge, we also finalized spatial

information about each edge at this step by computing the edge’s length (based on the Eu-

clidian distance between its two endpoints). Computing the distance was necessary to later

answer questions such as how far schools can be from fast-food outlets. The average edge

had a length of 59.69 ± 69.08m, with the large standard deviation due to the simultaneous
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presence of long non-intersecting straight roads as well as extremely small segments (e.g. for

tiny portions of roads spanning two LADs, on a road with a strong curvature approximated

by many small lines).

3.2.6 Step 5: Adding the deprivation level of each road segment

via its LSOA

The Index of Multiple Deprivation (IMD), commonly refered to as ‘deprivation level’

here, is a floating-point number assigned to each LSOA. When a road segment had a single

LSOA, we thus assigned it the deprivation level of its LSOA. For boundary roads assigned

to two LSOAs, we could not assume that their deprivation would be more like one LSOA or

the other, and thus we assigned them the average deprivation level of the two LSOAs. As

in previous analyses of the fast-food outlets in England with respect to deprivation [153],

we simplified the (continuous) deprivation level into three values: low deprivation, medium

deprivation, and high deprivation. As the deprivation level ranges from 1.097 to 92.601, we

partitioned this range into three: low from 1.097 to 30.501 (excluded), medium from 30.501

to 61.002 (excluded), and high from 61.002 to 92.601.

3.3 Analytical methods

3.3.1 Overview

The following two sub-sections detail why, and how we computed our results from the

network assembled in the previous section. Some notation will be used throughout this
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section, and is introduced here. We denote a graph G = (V,E) as formed of a node set V

and an edge set E. The number of nodes and edges in the graph is denoted by |E| = m

and |V | = n respectively. The ‘cost’ of an algorithm will be expressed in the worst-case,

that is, as the peak resources that it needs to complete. Resources are divided into time

(i.e. time complexity) and space (i.e. space complexity). The worst-case complexity is

expressed using the O notation, showing how either the running time or space requirements

grow as a function of m and n. For example, a space of O(m) says that we need to store

‘in the order’ of the number of edges for an algorithm (thus omitting constants). For larger

networks such as ours, acceptable costs rarely exceed quadratic forms: for instance, O(n2)

may be feasible, but O(n3) may exceed available resources. When computing distances, we

chose algorithms that provide exact answers at costs less than quadratic. When computing

centralities, we opted for approximation algorithms given the high cost of the exact ones.

Computations were performed on the shared High Performance Cluster (HPC) Gaea at

Northern Illinois University, typically using 5 nodes (each equipped with 2 Intel X5650

processors and 72 Gb RAM). Our scripts for analysis are available within the ‘Analysis’

folder at https://osf.io/gn3f2/.

3.3.2 Computing shortest-path distances

The current public health context in England aims at countering the perceived prolifera-

tion of fast-food outlets around schools. The Supplementary Planning Document (SPD) can

be used by local governments to enact local planning policies that affect fast-food outlets

(formally defined as shop types that fall within Use Classes A5 for an SPD). While planning

policies can range widely, two specific levers have received increased attention [162]. First,

there can be a minimum distance between fast-food outlets and schools. Second, there can

https://osf.io/gn3f2/
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be a maximum clustering, by limiting the number of fast-food outlets packed in an area,

which consequently would increase distance between fast-food outlets. In both cases, pol-

icymakers need to decide on a specific value: how close is ‘too close’ to a school? How

far should outlets be from each other? In the absence of detailed data, these choices are

made on a best-guess basis, reflected by a wide array of values. For instance, Islington

Council set a 200 meters buffer between schools and fast-food outlets, while others used a

400 meters buffer (Warrington Borough Council, City of Bradford, Barking and Dagenham,

Solihull council) [48, 42, 46, 50, 49]. Similarly, the clustering was set to having no more than

10% of units in an area for Gateshead Council, whereas Barking and Dagenham used a 5%

limit, and Solihull imposed a 15% limit. Target areas also varied, with some using zoning to

control town centers whereas others targeted specific demographics (e.g., Gateshead Council

imposed restrictions in wards where more than 10% of year 6 pupils were obese) [48, 246, 42].

Consequently, a major contribution of our work is to compute the distances used in both

policy levers. That is, we compute the shortest distances (i) between fast-food outlets, and

(ii) between fast-food outlets and schools.

The generic solution to compute shortest-path distances between two objects (i.e., a fast-

food outlet and another outlet or school) is typically the Bellman-Ford algorithm those time

complexity is O(mn). In networks exhibiting desirable properties, more specific solutions can

be identified. In our network, edges have a strictly positive weight, representing the length

of the corresponding road segment. In this situation, Dijkstra’s algorithm is faster due to a

time complexity of O(m+n log n). While there exists an optimal O(n) algorithm for planar

networks [108] (i.e. which can be drawn without two overlapping edges), the British road

network does not satisfy this constraint due to the presence of overpasses (called flyover)

including stack interchanges (when roads are above each other on multiple levels). We note

that this problem does not affect all LADs: as of 2017, http://www.cbrd.co.uk/ estimated

that there were less than 30 stack interchanges in the UK. Computations may thus be

http://www.cbrd.co.uk/
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optimized by processing planar LADs differently than non-planar ones. However, to run

distributed computations on the HPC facility, we ensured that the same version of the code

was used for all inputs. Consequently, we implemented Dijkstra’s algorithm, and results

were computed within approximately 42 hours.

3.3.3 Relating the presence of fast-food outlets to centralities

In this section, we relate the centrality of nodes to the number of fast-food outlets. The

motivation for this analysis is as follows. Table 3.1 provides a sample of ten studies, all of

which investigated betweenness centrality, and most of which also used closeness centrality.

Considering a street network as a transport infrastructure, a typical concern is about the flow

going through the network. In the absence of real-world data on traffic flows, betweenness

centrality provides a proxy to network flows. Specifically, it assumes that places passed by

a larger number of shortest paths connecting streets are more likely to be visited. This

notion has been applied to many large networks [16], and has shown good correlations

with important metrics for transportation networks such as congestion [114]. Closeness

serves as a proxy to access, by identifying how easy (i.e. distance-wise) it is to get from

a street to all others. Studies have shown good correlations between closeness centrality

and urban elements such as economic activities [177] (and particularly retail stores [54]) or

green spaces [202]. Research on food behavior also uses access as one factor driving the

choice of a food retail location for individuals [249], highlighting that individuals are more

inclined to purchase food sold within up to 1 mile, although other factors such as deprivation

mediate this relationship [3]. Our overall process to relate centrality and fast-food outlets is

summarized in Box 1, and detailed as follows.
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Box 1. Process to relate node centrality and the density of fast-food outlets.

(1) Remove nodes whose centrality would be zero.

(2) Approximate the centrality of the nodes.

(3) Transform the centrality into a ranking of nodes.

(4) Compute the number of fast-food outlets nearest to each node.

(5) Correlate (3) and (4).

Betweenness and closeness centralities are formally stated in the two definitions below.

Note that they are both centrality indices. For instance, for two elements x and y, if the

centrality c(x) is at least as much as c(y), then we conclude that x is at least as central as

y. As stated by Koschutzki et al, “in general, the difference or ratio of two centrality values

cannot be interpreted as a quantification of how much more central one element is than the

other” [135]. Given that our goal is to correlate the centrality with the presence of urban

elements, we do not want the correlation to be biased by wrongly using relative differences in

centrality. After computing the centrality of all nodes, we thus normalize it by transforming

it into a ranking.

Definition 1 Let σst(v) denote the number of shortest paths between two nodes s, t ∈ V that

contain v ∈ V . Then, the betweenness centrality of a node u ∈ V is given by [135]:

cB(u) =
σst(v)

σst
(3.1)

Definition 2 Let d(u, v) denote the shortest-path distance between two nodes u, v ∈ V .

Then, the closeness centrality of a node u ∈ V is given by [135]:

cC(u) =
1∑

v∈V d(u, v)
(3.2)
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Computing betweenness and closeness centralities in a weighted graph takes O(n3) time

with a modified FloydWarshall algorithm. This can be improved for a sparse graph specifi-

cally (as is the case here) by using Brandes’ algorithm which takes O(n2 log n + mn) time,

but this cost remains very significant for a graph with millions of nodes and edges. We

took two steps to improve it. First, similarly to Porta et al [178], we excluded nodes whose

centrality would be 0, without having to compute it. That is, for betwenness centrality, we

excluded nodes with a single edge as they act as sinks and no shortest paths go through them

(Figure 3.7). Similarly, for closeness, we excluded unreachable nodes (since their distance to

others would be infinite and their closeness tend to 0). This approach removed approximately

14% of nodes when computing betweenness, and less than 1% of nodes for closeness. We

thus had to use a second step, in which we employ Eppstein and Wang’s fast approximation

algorithm for betweenness and closeness [68]. The algorithm randomly selects k pivots, and

provides the probability that estimation errors are greater than ε × (n − 2). A higher k or

a lower ε would lead to more accurate results at the expense of more computation times.

We thus have to identify suitable values of the parameters k and ε, while noting that these

choices are interdependent (Figure 3.8). We set ε to a 5% error margin, and we performed a

parameter sweep across all 327 LADs and values of k (from 1 to 1000). We identified k = 109

as providing a good level of accuracy while keeping computational time small (Figure 3.6).

After obtaining a ranking of nodes with respect to (i) betweenness and (ii) closeness, we

had to correlate the ranking with the presence of fast-food outlets. Similarly to step 3 in

assembling the dataset, we went through each fast-food outlet and assigned it to the nearest

node (instead of the nearest edge as in step 3). Finally, we computed the Pearson correlation

between the number of fast-food outlets and the ranking of the nodes, for both betwenness

and closeness. Correlation values range from -1 (perfect negative correlation) to 1 (perfect

positive correlation).
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Figure 3.6: After setting ε to 5%, approximation errors depend on the number of pivots k
(y-axis) and the number of nodes n, which varies across cities (x-axis). We found that the
choice of city did not have a noticeable impact. Approximation error became small in the
range 100-150 (top), and we chose k = 109 (bottom; framed). Due to the wide range of
values, note that scales (i.e. colormaps) are different.

3.4 Results

The datasets produced by our analysis (previous section) are available within the ‘Results’

folder at https://osf.io/gn3f2/. We computed the distributions of distances between fast-

food outlets and (i) the nearest fast-food outlet, as well as (ii) the nearest school. Based on

these distributions (Figure 3.9), we can make the following observations:

• Fast-food outlets are very strongly clustered. Most of them are located either on the

same spot or within a few dozen meters (60% of the data falls within 0 to 60 meters).

Using a 120m buffer suffices to capture almost 80% of the outlets.

https://osf.io/gn3f2/
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Figure 3.7: Nodes with a single edge are easy to identify, and removed before computing the
betweenness centrality. This example in Adur City shows how 12 nodes (red circles) can be
removed, as no path goes through them.

• While outlets are strongly clustered around each other, they are much less clustered

around schools. Less than 5% of outlets are found within 60 meters of a school (com-

pared to 60% with respect to other outlets), and less than 20% of outlets are found

within 120m of a school (compared to 80% with respect to other outlets).

• The widest buffer of 600m around a school would capture over 80% of existing outlets,

while the other classic buffer of 420m would capture about 65%. This shows that

doubling the buffer does not double the number of outlets included.

We further investigated the relationship between distances and the fraction of fast-food

outlets, in general as well as across levels of deprivation. After transforming our discrete

distribution into a continuous one, we fitted different curves. We found that a logarithmic

relationship had the best fit, ranging from R2 = 0.76 to R2 = 0.87. We also tried polynomials

of degree 3 but found that they over-fitted the data (R2 = 0.99) and thus retained the
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Figure 3.8: Probability that the error exceeds a target (depending on ε) for different number
of pivots k. Computations were performed for Cornwall.

logarithm. The equations and corresponding fit are summarized in Table 3.6 while three

examples are shown in Figure 3.10. Distributions appear lower as deprivation increases

because most outlets were found in the least-deprived areas, followed by areas of medium

deprivation, and then most deprived areas.

The correlation between centrality and the presence of fast-food outlets is shown in

Figure 3.11. We observe that almost all of the data falls within the range [-.1, .1] in which

we conclude to the absence of a correlation. While three points fall outside this range, they

are still at a very low level of correlation and may be outliers.
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Figure 3.9: Distribution of distances (in meters) between outlets (a) as well as between
outlets and schools (b). The a-axis goes up to 600m as it is the largest value encountered in
current zoning policies regarding fast-food outlets and schools in England.
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Table 3.6: Equations and fit (R2) of the distributions of distances d for fast-food outlets with
respect to other outlets, or to schools. All p-values are lower than 0.0001.

With respect to outlets With respect to schools

All deprivation
0.109115 log d+ 0.181773 0.265617 log d− 1.09389
R2 : 0.83 R2 : 0.78

Low deprivation
0.0625031 log d+ 0.110917 0.15776 log d− 0.653455
R2 : 0.82 R2 : 0.79

Medium deprivation
0.0399222 log d+ 0.061546 0.0918827 log d− 0.370456
R2 : 0.84 R2 : 0.76

High deprivation
0.00695667 log d+ 0.00856996 0.016772 log d− 0.0746996
R2 : 0.87 R2 : 0.81

Figure 3.10: Fit between the analysis output (transformed from discrete to continuous) and
logarithmic curves, across three levels of deprivation, for distances between fast-food outlets.
Equations are provided in the first column of Table 3.6.

3.5 Discussion

While network analyses of retail activities have been performed at local scales (Table 3.1),

our study is the first to do it over an entire nation. This was made possible by obtaining and
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Figure 3.11: Distribution of correlations between the density of fast-food outlets and (a)
betweenness centrality or (b) closeness centrality.

linking very detailed datasets, including the position of all outlets as well as the complete

road network. Our focus is on fast-food outlets, and their relationship with schools. Research

has suggested that this relationship is mediated by the level of deprivation, which we have

included in our dataset to examine our findings across levels of deprivation.

Our first research question was to identify the distances between fast-food outlets and (i)

other outlets as well as (ii) schools. This was motivated by the pressing need for a national

evidence base to either (i) increase distances between fast-food outlets by limiting clustering,

or (ii) create a buffer around schools. The 2011 National Institute for Health and Clinical

Excellence (NICE) guidance recommended that local authorities regulate the number of fast-

foods in specific areas, such as within walking distance of school [75]. The 2013 Academy

of Medical Royal Colleges’ report advocated to “reduce the proximity of fast food outlets

to schools, colleges, leisure centres and other places where children gather” [168]. However,
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neither could say exactly by which distance to reduce it, and what number of outlets would

be affected, as this analysis was not previously available. Following these recommendations,

several local authorities have started to use planning as a tool to address childhood obesity.

As summarized by Peter Wright, an emerge view is that improving nutritional quality

“is not an issue that will be satisfactorily resolved by voluntary improvement,

education, advice or any other “easy” intervention. Without political will and

a determination to limit the proliferation of takeaway food businesses we are

unlikely to make any meaningful impact on the impact of poor diet on significant

parts of the population.” Peter Wright, Gateshead Council, Centre for Diet and

Activity Research (CEDAR), ‘Neighbourhood food environments, diet and health:

research policy meeting’, Nov. 4th 2014, Cambridge, UK.

Given the reality of having to address childhood obesity, local authorities have thus had

to make assumptions about what distances were the right ones and what effect would be

obtained. This illustrates the two unknown: what distance should we use, and how many

fast-food outlets would it capture? The Takeaways Toolkit, considered to be one of the

reference documents to assist with designing regulations, has previously emphasized the

need for more evidence since such planning measures “have not yet been evaluated, and the

impact on obesity and other health issues remains unknown”. This study contributed to

the creation of robust evidence through our national-scale analysis of distances. We found

strong spatial clusters of fast-food outlets (Figure 3.9-a): most fast-food outlets were within

a few dozen meters from each other, and 80% of them were within 120 meters. However,

clusters around schools were significantly weaker (Figure 3.9-b): less than 5% of outlets

were within a few dozen meters from schools, and going as far as 120 meters captures less

than 20% of them (compared to 80% when using other outlets as referential). This finding

is in contrast to previous studies finding strong clusters around schools. This difference
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may be explained partially by context, as previous analyses were conducted in Scotland,

New Zealand, or the United States instead of the United Kingdom [11, 59, 66]. Our data

can also inform authorities having implemented buffers around schools about the average

fraction of outlets that may be captured: the 200 meters buffer for Islington Council [49]

may impact a third of the outlets (based on national averages), while the 400 meters used

by others [48, 42, 46, 49]. This suggests that increasing the distances between fast-food

outlets may create more disruptive changes in the foodscape. However, like many upstream

interventions, being disruptive can be both an opportunity (to avoid concentrated obesogenic

environments) and a challenge (as many actors are concerned and a high political capital

may be needed to enact such changes). Our last contribution regarding fast-food outlets

and schools is the finding that their relationship may follow a logarithm (Table 3.6), which

grows slower than a linear relationship. The practical policy implications is that increasing

the buffer around schools (e.g., doubling its distance) provides a progressively lower level

of return on the number of fast-food outlets affected (e.g., less than double the number of

outlets). As we previously concluded in this situation, “moderate interventions would yield

benefits, but stronger interventions may only be of limited further benefit” [85].

Our second research question was to investigate the relationship between network cen-

trality and the density of fast-food outlets, thus taking previous local studies (Table 3.1) to

a national scale. While previous studies found strong correlations between centrality and

economic activities (R2 = 0.61 [177], or R2 = 0.651 [54]), we found no correlation: the

correlation was close to 0 for 324 out of 327 areas, and only marginally beyond -.1 or .1 for

3 areas (Figure 3.11). This suggests that, either at the national scale or at the scale of our

areas, closeness or betweenness centrality were not a sufficiently strong factor to explain the

location of outlets.

While our study combines large datasets from the national mapping agency with other

governmental sources, there are nonetheless limitations to this work. First, the location of
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outlets and schools is high but may not be perfect, as previous analyses have found the

accuracy of the location database to range from 81% to 100% [76]. This creates a small

margin of uncertainty on our results, but would not affect our broad conclusions on the lack

of correlation between fast-food outlets and betweenness/closeness centrality or the much

stronger clustering between outlets compared to outlets and schools. Second, while we used

the most common forms of centrality from previous studies, there are many other forms. In

particular, authors have also proposed using straightness [202, 241, 177, 178, 54, 221], or less

common notions such as the cumulative number of turns or intersection crossings to reach

destinations [206]. These metrics could also be approximated from our dataset, since each

intersection of turn led to divide a road into another edge. However, the scale of our dataset

raises the problem of efficient algorithms, and not all centrality metrics are supported by

approximation algorithms (whose approximation factor is well-known or controllable). In

addition, as there are dozens of centrality metrics [135], implementing and trying many

would be a significant endeavour while not being necessarily the most informative. Indeed,

it may be that several metrics taken independently exhibit low or no correlation, but together

they may be more informative. In our future work, we plan to explore the combination of

metrics that best explain the location of fast-food outlets. In addition, while this work

provides national evidence regarding the strength of the association between schools and

fast-food outlets, it cannot be used to make inferences about causation. Our next study will

focus on causation, examining how different factors may successfully replicate the location

of fast-food outlets.



CHAPTER 4

SIMULATING A NATION: A DATA SCIENCE APPROACH

TO DEVELOPING A MODEL OF THE FAST-FOOD

ENVIRONMENT IN ENGLAND

The previous chapter focused on the very first analysis of road networks at the national

scale. In this chapter we simulate the spatial patterns of allocating new fast-food outlets

and potential factors, which contribute to retailers’ decisions. We conduct series of spatial

simulations to assess which factors affect locational decision and we analyze the results with

respects to different cities’ characteristics. A factor is considered as being part of locational

decision-making when using it in a simulation produces a distribution of outlets similar to

real-world data. Our results suggest that proximity to schools may not be the main driving

force behind the location of fast-food outlets, and that network centrality also has a weak

predictive ability. The datasets described in chapter 3 have been used in this chapter as well.

All of this chapter will be submitted to the 2018 ACM SIGSIM Conference on Prin-

ciples of Advanced Discrete Simulation (ACM SIGSIM PADS).

My contributions consisted of (i) assessing at the national scale whether fast-food

outlets do preferentially target locations around schools and (ii) assessing which factor

can best predict the distribution of locations for fast-food outlets.
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4.1 Introduction

Understanding how social factors interact with the environment is essential to develop

more effective interventions for complex problems, such as obesity. One particular envi-

ronmental component that is receiving increased attention is the availability of local area

fast-food outlets.In the United Kingdom, the consumption of food away from the home has

increased by 29% during the last decade, paralleled by a dramatic increase in the number

of takeaways or fast-food outlets. For these reasons, modifying the distribution and density

of takeaways in cities and neighborhoods became very important in the policy agenda for

both the UK and US[33]. The government and local authorities seek to empower individuals

in making healthy choices by developing interventions to limit exposure to unhealthy foods.

Despite their efforts, there is a lack of efficient plan to reduce and manage the issue of over-

weight and obesity. Therefore, studies exploring spatial trends in the growth of new outlets

are essential to understand the changing foodscape and support policymakers in developing

effective interventions.

In the early years of spatial allocations studies, the most dominant approach was based

on intuition and experience of the owners. Additionally, stores tended to be separated from

one another to maximize coverage and reduce competition [217]. However, the growing pop-

ularity of geographic data and development of spatial simulations caused a shift in locational

decision-making. Controversially, close proximity to similar stores often gives more benefits

to retailers than risks, encouraging them to cluster within small areas [123]. New factors

that greatly contributed to this change of thinking include the transportation cost, which

supports an agglomeration of many stores, for example at shopping malls.

Existing evidences of the usage of geographical methods for decision making in retail are

very limited and refer to old trends of retail locational decision making. Simulation models
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for fast-food outlets are nowadays especially important because (i) policymakers are already

making decisions, and (ii) there is currently no tool to let policymakers try different policies

virtually before implementing them in the real-world. In the process of developing simulation

models that represent new policies on fast-food outlets, the first step is to develop models

whose rules can at least replicate the current foodscape. Therefore, more studies involving

network analysis performed at large scale are required to analyze the complex nature of

spatial allocation of retailers’ sites and factors that greatly impact them such as separation

from competitors. We have investigated some of them as well, as presented in previous

chapter. Specifically, our study is focused on road networks, which can give insights on

the importance of roads based on an adopted measure i.e. different centrality measures

(Figure 4.1). Overall this chapter aims to:

1. Verify whether fast-food outlets are preferentially located in close proximity to schools.

2. Determinate which factors have the greatest impact on retailers’ locational decisions.

Figure 4.1: Example of centrality measures applied to the road network of Oadby and
Wigston, left: betwenness centrality, right: closeness centralty.
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The rest of the paper is organized as follows. In section 4.2 the most common methods

used to analyze spatial allocation mechanisms are discussed based on previously developed

models. Researchers recognize GIS data as a supportive tool, which allows to effectively

track attractiveness of locations and proximity to competitors. The clustering pattern of

outlets is also presented along with possible reasons behind retailers’ decisions to reduce

rather than maximize distance to other premises. In section 4.3, we detail the design of our

spatial simulations. Developing and validation rules for the spatial distribution of fast-food

outlets helped us to understand which factors contribute to locational decision-makers of

retailers’. Rules used to obtain simulated allocation of restaurants include network measures

such as degree distribution, closeness centrality, betweenness centrality, proximity to schools,

and a purely random spatial distribution (used as baseline to evaluate the quality of other

rules). Section 4.4 presents the most intriguing findings, according to which none of the

analyzed factors had a significant impact on spatial allocation of outlets. In section 4.5 we

discuss our results given our assumptions and the current literature. We also elaborate on

limitations of our approach and future directions.

4.2 Background

The analysis of the existing distribution of fast-food outlets, presented in the previous

chapter, describes the availability of unhealthy foods to the population of England. However,

it does not tell how locations of restaurants will change in the future. The matter of where

to open new premises has been a subject of many studies for the past 100 years [173, 181]. A

historically prevalent assumption is that owners of food premises seek the areas which would

maximize demand. For instance, this translated to choosing retail locations as close to the
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clients as possible [217]. This assumption also highlights the importance of proximity to other

economic activities, rejecting the idea of clustering as limiting the chances for monopoly:

“By contrast, he [retailer] desires to locate as far away as possible from his direct

competitors, in order to enjoy as much of a monopolistic advantage as possi-

ble.” [217]

While this assumption dominated throughout the nineteenth century, the last decades

have brought technological changes that transformed the theory behind economics. The re-

liance on cars resulted in establishing shopping centers, where numerous stores compete over

overlapping control zones, thus running contrary to the theory of retailers’ attempting to

stay away from potential competitors. Technological changes do not only concern how clients

identify, and commute to stores, but also how the stores themselves optimize their locations.

The expansion of data-driven decision-making and computing power have supported a shift

in methods used by business organizations to select new sites. A survey conducted by Her-

nandez and Bennison in 1998 investigated the usage of different decision support tools by

retailers in 8 sectors of UK retailing [109]. Findings showed a growing interest and use of

GIS techniques as decision support tools. Grocery stores were also found to use a wide range

of techniques, such as gravity modeling. Nevertheless, human judgments were still essential

in the allocation processes. Similar results were obtained by Byrom et al. in their large-scale

postal survey of retailers, conducted in 2000 [36]. In the end “common sense” and retail-

ers’ intuition were again found to be the primary approach to locational decision-making,

although authors highlighted the growing reliance on GIS tools. Additionally, knowledge

about locations of competitors to improve strategy planning has been pointed out by re-

sponders as one of the main applications of geographical data. According to the results of

this large scale survey, 46% of businesses are conducting competitor analysis on a regular
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basis. This supports the theory that separation from homogeneous stores plays a role in the

spatial allocation of outlets.

Clustering patterns are not limited only to close proximity of homogenous stores. Our

investigation of the current distribution of fast-food outlets in England (see chapter 3) allowed

to discover an existing association between locations of fast-food outlets and schools. Results

showed that indeed fast-food outlets favor sites near educational institution, thus increasing

the availability of high-caloric food for children.

4.2.1 Theoretical models supporting clustering

The phenomenon of spatial agglomeration of similar stores has been widely studied,

providing many interesting ideas that can justify clustering patterns of some retailers’ busi-

nesses. Models introduced by Konishi incorporate taste uncertainty into the theory of spatial

competition [133]. Assumptions made in this study point out two important aspects that

can explain clustering patterns of stores within shopping malls:

1. Consumers are not fully aware of their own expectation towards stores and available

products within them. Therefore, a wider variety of competing stores have a greater

potential to satisfy unsettled tastes of customers. Moreover, in terms of food, one place

containing many restaurants, but offering different cuisines is a more desirable option

for someone with unspecified preferences by allowing to choose which type of food to

eat and this also encourages to return in the future.

2. Consumers calculate the expected benefit of choosing shopping malls by taking com-

muting costs (understood as both, financial and time, expenses) into consideration.

From the perspective of transportation spending, shopping malls are also a preferable
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option, because they offer many possibilities in only one place. Commuting costs are

reduced while the time available for shopping is increased.

Building on these two assumptions, the authors also proposed as an additional factor the

consumers’ expectations of lower prices in areas with high concentrations of stores.

Close proximity to retailers operating in the same market creates competition and consumers

perceive it as a logical reason for stores’ owners to lower their prices to attract consumers to

come to their store.

Another model that partially supports previous findings is based on the simplifying

assumption that the new stores will appear in the system at locations that maximize

profit [123]. Sites within this model are characterized by four factors, which together cap-

ture the market share of a given retailer: position, the number of businesses in the established

neighborhood, the variety of offered items, the price of the products sold, and the cost of

commuting to a given location. Authors recognized that a customer’s willingness to visit a

particular site is proportional to the expense of getting there, which highlights the impor-

tance of spatial analysis. This approach pointed out the role of geographical grouping of

stores as a main drive for increasing customers chances of finding a more desirable product

and of reduced price. Furthermore, the paper suggests that existing distribution of retailers

premises is a result of a well thought out plan of business owners rather than a random

effect.

One more interesting idea of how retailers locate their businesses was proposed by

Bester [21]. His model links together spatial distribution of economic sites with percep-

tions of product price and quality. The core idea is that low prices signal poor quality,

unless a store is located within a cluster of other, homogeneous businesses. Therefore, clus-

tering patterns can be explained as a mechanism to justify lower prices and results from

market imperfections rather than strategic decisions of retailers. In other words, customers
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have different knowledge about product quality among retailers, and are more willing to

trust economic sites offering their products for cheaper, which are located among similar

ones.

The evidence presented in this chapter indicates that clustering is an important pattern

in studies of spatial distribution of economic premises. Many models have been created to

explain this phenomenon, and many theories have also been suggested. Our own network

analysis, presented in chapter 3, suggested that the distribution of fast-food outlets may also

be following this pattern, since retailers’ businesses tend to gather in close proximity of not

only each other, but also of schools. Given the lack of a clear set of rules driving strategic

spatial allocation, we decided to build on our associational study in the previous chapter,

and develop in this chapter a study a causation. The next section details the design of our

model and experiments.

4.3 Design of the Model and Experiments

4.3.1 Model boundaries

This model operates at the national scale of England, which is a novelty among network-

based models and analyses for fast-food outlets. Each area of the model represents a city

(also referred to as LAD), which contains:

1. Road network. The simulation will identify the location of fast-food outlets on this

network. Features of the network (e.g. centrality) may be used to find locations,

depending on the model’s rule (as explained in the next sub-section).
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2. Location of schools. This does not change during our simulations: we use the real-

world data on the location of schools, and simulate the new locations of fast-food

outlets.

3. Number of fast-food outlets. Our simulation will consists of taking each one of

the fast-food outlets known to be in the area, and give them a location based on a

simulation rule. The of a rule will compare the simulated locations with the real-world

locations of the fast-food outlets.

Each model is a simplification of the reality and the one presented in this thesis is no

exception. In the simplification process, several aspects were not retained for our model, but

may be candidates for future extensions and adaptations of our work:

1. Zoning regulations. The need for zoning regulations has been recognized by several

local policymakers. Furthermore, several local councils have implemented their own

policies, as seen in official documents (Supplementary Planning Documents). Our

model does not take into account these policies. The rationale is that the policies are

currently restricted to very few communities, and our model operates at the national

scale. That is, our rules allow for fast-food outlets to choose locations regardless of

possible zoning regulations.

2. Directionality of the streets. We represent streets using an undirected network,

that is, we assume that all streets can be traveled both ways. This is primarily due to

our dataset, as the shapefiles used for the road network code them as sets of lines and

do not provide directions or meta-data about the types of roads. Ignoring directionality

may alter the results of our centrality-based rules, but it would not alter the results

when rules use exclusively the presence of schools or fast-food outlets to determine new

locations.
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3. Adjacency of cities. Our simulations were parallelized by dividing the nation into

independent cities. That is, each city was run on its own, and results were combined.

Relationships between fast-food outlets and schools belonging to different cities were

not included. For example, if a school is 500 meters away from a restaurant in a

different region, but 700 meters away from a restaurant in the same region, then the

‘closest’ restaurant is 700 meters per our simulation. We do not expect these boundary

effects to significantly alter the conclusions of our simulations, as neither schools nor

fast-food outlets appeared to be typically located at the edges of cities (per our manual

investigation of the dataset).

While designing the simulation model, we made the following assumption: the distance

between two premises on the same street segment is taken as zero. Each street

segment can contain multiple fast-food outlets or/and schools. Coordinates were used to

assign premises to the corresponding road segment. That is, the smallest unit of analysis

becomes the street segment. We cannot tell where outlets or schools are located within the

street segment, thus we assign them a distance of 0 if they are both in the same segment.

Segments have different length, thus this approximation does not create a uniform error

throughout the simulation. We limited this issue by providing results in groups of distances

(e.g. how many locations are within 0 to 60 meters away) rather than claiming a more

accurate result.

4.3.2 Simulation rules

The simulation ran on described model places a corresponding number of virtual stores,

based on simulation rules whose quality we seek to test. Each of the following five rules
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states the selection mechanism by which a fast-food outlet chooses a street segment within

a city:

• Random selection - business sites are chosen uniformly at random. This rule rep-

resents the method used as a baseline for comparison with other approaches. Factors

which have a real impact on fast-food outlets distribution would outperform the ran-

dom selection;

• Preferential attachment, a method in which some roads have a greater chance to

be selected than others, according to one of the following four characteristics:

– Degree distribution: the more favorable are the nodes connecting multiple

street segments indicated by degree of given node (number of connections with

other nodes). Degree distribution has been previously used in studies of the

world-wide airport network [99] and coauthorship networks [2];

– Closeness centrality: results of network analysis include a closeness centrality

measure (defined in 2.3.2) for each node within a road network. Using this infor-

mation, the impact of this measurement could be obtained by making roads that

are more “close” in the network more likely to be chosen as a new site for outlets.

This measure has been previously used to analyze scientific collaborations [2],

although it is less commonly used than degree distribution or betweenness cen-

trality;

– Betweenness centrality: similar to the previous case, betweenness centrality

(defined in 2.3.2) is calculated for each node in the road network and was used

to differentiate roads and choose the ones that are more “between” as new loca-

tions for food premises. This approach has been applied before to model traffic
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flow [114], airport network growth and distribution [99] and research collaboration

networks [2];

– Proximity to school: This case has a great importance for presented research,

because it focuses on the analysis of a potential causal effect between the presence

of schools (as a customer base) and the opening of fast-food outlets. The goal is

to prove that locations closer to schools are more likely to be selected. Results

of this simulation help to answer the question if retailers are indeed clustering

around places primarily because they are easily accessible to the youth, and by

this create a greater exposure to unhealthy foods for children 1;

4.3.3 Strategy for model validation

4.3.3.1 Running the simulation model

Simulations with randomness (i.e. outputs of stochastic models) need to be performed

multiple times, in order to approximate the underlying distribution of the output. We thus

need a method to determine the appropriate number of times that a simulation should run

for the same set of parameter values, also known as the amount of replicas. Few different

methods exist that can be used to approximate the right number of experimental replicas.

The approach adopted in this work is based on boundaries of probability called Confidence

Intervals. This statistical methodology estimates the range within which the real mean

1 These types of experiments require extra computations of shortest distances between each street and
closest school, and were made using Dijkstra’s algorithm
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average is expected to be false [195]. Therefore, the narrower the interval the more precise

the estimate is expected to be:

CI = X ± tn−1,α/2
S√
n

(4.1)

where:

X = mean of the output data from the replications

S = standard deviation of the output data from replications

n = number of replications

tn−1,α/2
S√
n

= value from Student t-distribution with n-1 degree of freedom and a sig-

nificance level α/2

The required number of replications can be determined by rearranging the confidence

interval formula:

n = (
100Stn−1,α/2

dX
)2 (4.2)

where:

d = the percentage deviation of the confidence interval about the mean

As an example, number of replications for Brentwood city using random allocation of fast-

food outlets is equal to:

n = (100∗0.254176396∗2.2622
10∗0.374704462 )2 = 235

The simulation process is based on three phases. Initially outlets are allocated to new

sites, following the chosen rule. Then, distances between newly located restaurants and
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schools are computed, using Dijkstra’s algorithm. Finally, correlation between the real dis-

tribution and the simulated one is obtained. This correlation is the output of a simulation,

and thus we repeat simulations until the correlation falls within a target confidence interval.

Specifically, we choose a 95% confidence interval with tn−1,α/2 = 2.2622 for 10 initial runs

(i.e. we perform a minimum of 10 runs so that we can compute the mean and standard

deviation necessary for equation 4.2). Equation 4.2 concludes that we need more than the

initial 10 runs, we automatically repeat the simulation for the additional number of runs.

The pseudocode for a single simulation run is presented in algorithm 1.

Algorithm 1 Simulation algorithm for a single city

Require: Rule for allocating R new outlets AND evaluating using the real-world distance
distribution D

1: L← ∅ // L is a list of correlations used to compute right number of replicas
2: for n ∈ 10 do
3: allocateNewOutlets(R)
4: S ← distanceDistributionDijkstra() // S is the simulated distribution of distances

between fast-food outlets
5: C ← computeCorrelation(D,S)
6: L← L ∪ C
7: R← computeReplications(L)
8: for r ∈ R− 10 do
9: allocateNewOutlets(R)

10: S ← distanceDistributionDijkstra()
11: C ← computeCorrelation(D,S)
12: L← L ∪ C

4.3.3.2 Strategy for model validation

The core idea behind the experiments is to compare the real distance distribution (ana-

lyzed in chapter 3) and the one acquired from simulation. The correlation measure is used to
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investigate the mutual relationship between distance distributions, which is known to reflect

the strength of statistical dependence between data:

ρX,Y = corr(X, Y ) =
cov(X, Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY
(4.3)

where:

X = first variable

Y = second variable

σX = the standard deviation of X

σY = the standard deviation of Y

µX = the mean of X

µY = the mean of Y

4.4 Results

Our investigation of potential factors influencing allocation of new fast-food restaurants

relies on comparing the existing distribution of outlets (obtained from the data) and the sim-

ulated distribution of outlets (created under certain conditions). Computed correlation was

averaged across all simulation runs for that city (to obtain at 95% confidence interval), and

then averaged again in respect to analysis types (i.e. the correlation of a rule is the average

of using that rule across all cities). Arithmetical mean obtained for particular simulation

conditions reflect the influence of tested factors on distribution of new fast-food outlets. Ran-

dom distribution was used as a baseline to measure the effectiveness of other factors. Our
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findings, presented in Figure 4.2, suggest that none of the analyzed circumstances have a po-

tential to significantly replicate current spatial patterns: random selection (0.6264), degree

distribution (0.6233), and closeness centrality (0.5900). Betweenness centrality (0.6454)

is the only condition that shows a slightly better result than random selection. The results

from the least significant group, the proximity to closest school (0.3617) is not a statistically

significant causation to support the theory of retailers’ tendency to locate fast-food outlets

around schools. These findings suggest that in England an existing clustering trends around

school are an unintended effect rather than a strategic business decision.

Analysis type 0.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.800.850.90

Standard deviation

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

Overall average

PA - betweenness
centrality

PA - closeness
centrality

PA - degree
distribution

PA -proximity to
school

Random selection

0.6454

0.6264

0.6233

0.5900

0.3617

Average correlation from all cities in respect to each analysis type

Figure 4.2: The average (main blue bar) and standard deviation (orange sub-bar) for corre-
lations from all simulation runs for each city, in respect to analysis type.
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Figure 4.3: Number of cities with greatest and lowest correlation in each simulation category.

Statistics for both the lowest and greatest correlation coefficients of each city supports

our claim of lacking evidence to prove takeaways spatial dependency on schools (Figure 4.3).

Although in 71 cities proximity to schools was the aspect with the highest correlation, in 229

cities it was also pointed out as the factor with the least importance (lowest correlation to

existing distribution). This might suggest that cities in England differ in terms of locational

strategy and different factors impact retailers decisions.

The range of values for correlation coefficient can be also divided on few subgroups to

better reflect the intensity of the relationship between two measures. In our analysis we

adopted 5 categories 4.1. Analysis of number of cities in respect to these groups shows that
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most of the values belong to the strong correlation category for all simulation types except

the factor of proximity to school. Categories of very small correlation, small correlation,

and medium correlation differ slightly among each other, while no correlation to existing

distribution was found only in a few cases, as showed at Figure 4.4.

Table 4.1: The division of correlation coefficient values into five categories.

Category Range

No connection [-0.1 , 0.1]

Very small relation [-0.3 , -0.1) & (0.1 , 0.3]

Small correlation [-0.5 , -0.3) & (0.3 , 0.5]

Medium relation [-0.7 , -0.5) & (0.5 , 0.7]

Strong correlation [-1.0 , -0.7) & (0.7 , 1.0]

In the next phase of analyzing results, we focused on specific characteristics of cities.

One of the characteristics was the deprivation level, divided into low-medium-high as in the

previous chapter. Comparison of average correlations among different types of simulations

showed that closeness centrality has been the most related measure to the real distribution

of outlets, as presented on Figure 4.5. However, results for random distribution, degree

distribution and betweenness centrality are very similar to one another, and do not vary

much from closeness centrality. One outstanding factor, which has the lowest score in all

deprivation levels, is proximity to schools, similar to previous findings.

We have also compared the importance of each tested factor among various deprivation

levels. Performed simulations fit best for the real allocation of stores in wealthier cities,

since the correlation coefficients for all except one factor were higher than 0.75. In contrast,

values of correlation for most deprived areas are relatively smaller, in any case exceeding

0.5. One possible explanation for these findings is that cities differing from each other by

wealth and prosperity take diverse factors into consideration in spatial decision making.
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Figure 4.4: Numerical comparison of number of cities in each correlation coefficient bin in
respect to type of performed analysis.

It seems that factors not included in this study (e.g., urban planning, land use, property

prices [54, 241, 247]) play a significant role in more deprived areas.

Another characteristic used to analyze results of simulations is the number of outlets

located within cities, presented on Figure 4.5. Again, we group values into 4 categories to gain

some insights of the effects of particular factors on the distribution of outlets. This approach

allowed us to discover that closeness and betweenness centralities, and degree distribution

and random distribution have similar average correlations in all groups. Additionally, higher

values of correlation were noted for cities with a larger number of fast-food outlets (over
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100), while areas with less aggregation of businesses were significantly less related to the

real distribution. Based on these results, it might be concluded that areas with greater and

smaller number of food restaurants follow various factors in relation to spatial placement of

new outlets and different approaches should be developed for them.

Similar findings were obtained when comparing average correlation among different pop-

ulation levels (Figure 4.5). Consistently with previous results, only proximity to schools

has very little impact on the distribution of restaurants. Moreover, results for cities with

a greater number of citizens (over 172000) have much higher correlation coefficients than

other groups. This would suggest that analyzed factors have an impact on only some part

of cities, while smaller ones adopted other guidelines for spatial decision making.

4.5 Discussion

4.5.1 Principal Findings

The network analysis, presented in 3 is consistent with results of previous studies from

England, since we found that fast-food outlets tend to form clusters, and stay rather close to

one other. Other relevant determinants, which greatly impact spatial strategy planning are

residential and workforce population, transport intensity and nearby non-retail attractions

such as transportation hubs and schools [138]. However, our spatial simulations proved that

factors investigated in many network studies (i.e. centrality) or central to the current policy

landscape (i.e. clustering around schools) are actually not a sufficiently strong driving force to

explain the current locations of fast-food outlets. These results should be nuanced, because

different cities follow different directions. Each characteristic considered in the analysis

contains a spectrum of results where some groups of cities show very good correlation with
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existing distributions, while others are only slightly related. Results for highly populated,

wealthy cities with a great number of outlets shows greater values than in smaller and poorer

areas. While network metrics tended to be in-par or slightly above baseline, proximity to

school seems to have no importance, which is a very important finding for public health

policies aiming at changing the dynamics of the fast-food landscape to reduce childhood

exposure to unhealthy foods..

4.5.2 Limitations

Our study is conducted on the scale of the whole country, which is one of its key strengths

for generalizability (in contrast to previous, small-scale studies), but it also faces many chal-

lenges and limitations. First, the focus of this work is on finding new locations for fast-food

restaurants. Although this process of allocating new premises constitute the important part

of any business, it is not the only locational decision available for retailers. Few studies

pointed out the set of approaches called 6 R’s, which describes increasingly important ap-

proaches used by spatial strategy planners [36, 109]

• Roll-out/extension - Refers to process of opening a new store or altering the existing

one by expanding occupied space;

• Relocation - Changing the location of the store due to competitors or availability of a

more desirable site;

• Rationalisation - Closure of an individual store or disposing of divisions;

• Refascia - Changes in the appearance or name of stores, which might vary among

different premises of the same business;

• Refurbishment - Altering the physical parts of an existing store;
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• Remerchandising - Updating the range of offered products to better fit local customers’

tastes;

The process of forecasting potential sites for new or relocated stores is even more complex

because priorities given to these activities are not equal. Reynolds and Wood reported [192]

there is less interest among retailers in managing existing stores and analyzing the distribu-

tion of outlets for the rationalisation process. The main focus is on opening and relocating

outlets to more attractive locations. The scope of this work follows this trend and investi-

gate the factors that drive the movement of stores, thus ignoring other possible locational

decisions.

Another limitation is our use of one rule to assign all fast-food outlets, whereas different

retailers may use different rules, and each rule itself may be a mix of different personal and

organizational preferences. Studies exploring adopted methods, by locational decision makers

in UK, found the whole set of approaches used at different levels of business management.

Grocery sector alone takes advantage of combining together various techniques including

statistical analysis, GIS support tools and gained experience [109]. Geographical solutions

can be divided also into few sub-groups adding another set of possibilities to an already

broad set of available methodologies. This work emphasizes the role of geographical data in

analyzing and predicting future trends of food premises allocation. Network simulations have

been conducted before, but on significantly smaller areas (i.e. city). Studies incorporating

the data at the national scale suggest other GIS methods that can be used to explore big

datasets. Table 4.2 contains a few examples of such cities.
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Table 4.2: Studies performed at national scale using different methods than network analysis

Study Year Methods

“The geographical redistri-
bution of retail outlets in
Sweden 1998-2008” [6]

2016 The relocation of shops between localities of different
sizes and between different kinds of positions within
them. Two simple measures were used: Hoover index
measures the general level of geographic concentration
and redistribution rate

“Spatial distribution of
economic activities in
North America” [115]

2004 Number of measures used to explore the composition
of economic activities across space: location quotient
(LQ), locational Gini coefficient, clustering of estab-
lishments based on EG (Ellison and Glaeser) index,
and measure of urbanization based on specialization
of establishments

“Retail Concentration,
Food Deserts, and Food-
Disadvantaged Communi-
ties in Rural America” [24]

2007 Classification of census block groups as high retail ac-
cess areas or low retail access area, based on zip code
and a ten mile buffer around locations. Descriptive
analysis: employment of both maps and tables to de-
scribe food desert counties.

“Shedding light on the
global distribution of eco-
nomic activity” [83]

2010 The creation of the disaggregated map of total eco-
nomic activity:

1. Estimation of estimated total economic activity
for each administrative unit by multiplying the
sum of lights of each administrative unit by a
unique coefficient;

2. Spatially distributing the estimated total eco-
nomic activity of each administrative unit into 1
km2 grid cells based on the percentage contribu-
tion of agriculture, the nighttime lights image,
and the LandScan population grid;

“Location matters: com-
paring the distribution of
economic activity in the
Canadian and Mexican ur-
ban systems” [176]

1999 Used methods: classification based on city size and
distance, grouping observations into comparable city-
size classes and comparable distance classes, location
quotients used to describe location patterns, for var-
ious sectors of the market, correlation coefficients to
compare measures from different countries
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4.5.3 Future work

Network simulation has a great potential to become an inseparable part of locational

strategy planning by supporting decision makers and retailers in expanding their businesses.

This chapter focuses on exploring determinants of spatial allocation of outlets and many

further directions should be explored in the future. Analyzed conditions for opening new

restaurants include two types of centralities, betweenness and closeness. Studies performed

on a much smaller scale (i.e. city) applied also other kinds of measures, not included in

this work. Further research should investigate influence of straightness centrality 2, and

accessibility 3 on distribution of premises. Another approach used in studies performing

network analysis is based on measuring centralities at different scales. Porta proposed to

calculate chosen measures both at a global level (entire area) as well as for local parts using

buffers with an established radius, for example 800 meters [177]. Such division would focus

more on particular parts of cities, instead of treating them equally.

From the perspective of city layout, one more characteristic stands out. Literature focus-

ing on spatial location choices of retail establishments points city urban form and land use

as an important factors, due to their complexity. Attributes of urban form include build-

ing’s geometry, aesthetic dimension, capacity of the chosen environment to adopt change,

and spatial accessibility [206]. The last aspect is especially attractive to researchers, who

attempt to understand the competition between the retailers seeking for the best locations

according to their needs and preferences. A study performed by Venerandi et al. investigated

land use as an indicator of morphological patterns in terms of urban form and geographic

2Describes the extent to which the shortest paths from source node to all other nodes within network
resemble straight Euclidean paths. The formal definition can be found at [178]

3Reflects the number of neighboring nodes reachable by imaginary agent randomly traversing the network,
compared to overall number of nodes that belong to the neighborhood [221]. It is increasingly used in
simulation models of food behavior such as [249]
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locations [236]. Another study analyzed land use separately in terms of built-area and green

areas [202]. However, these studies face some challenges as metrics of urban form are hard

to capture. Therefore, more research is required to explore obscure relationships between

urban form features and the locational decisions of retailers.
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Figure 4.5: Comparison of results based on (a) deprivation level, (b) number of outlets, and
(c) population. Average correlation is represented as bars and standard deviation as dark
line marks.



CHAPTER 5

A NOVEL VISUALIZATION ENVIRONMENT TO SUPPORT

MODELERS IN ANALYZING DATA GENERATED BY

CELLULAR AUTOMATA

The third aim of this thesis is to develop novel visualizations to assist modelers in man-

aging data produced by discrete simulation models. This aim is accomplished by designing,

implementing and evaluating an environment focused on the visualization of two-dimensional

cellular automata (CA) with square cells, which can intuitively be thought of as grids of col-

ored cells. This chapter focuses on the design and prototype, with its main contribution

being the use of a temporal clock glyph to show the successive states of each cell on the

same display. We illustrate this approach on three classical models include epidemics. Based

on feedback collected from trained modelers in this chapter, the next chapter refines the

design and evaluates our environment.

All of this chapter was published in the following peer-reviewed conference article [89]:

• PJ Giabbanelli, GJ Babu, & M Baniukiewicz. A novel visualization environment

to support modelers in analyzing data generated by cellular automata. Proceedings

of the 2016 Human-Computer Interface (HCI) International Conference, Lecture

Notes in Computer Science (LNCS) 9745, pp. 529–540.

My contributions consisted of (i) co-designing the software with PJ Giabbanelli; (ii)

leading the implementation, with GJ Babu as contributor; and (iii) applying the software

to three case studies.
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5.1 Introduction

In the ‘big data’ era, a lot of attention is devoted to processing massive datasets about

humans (e.g., Medicare data, hospital discharge data, police calls), by using machine learning

or by calibrating and validating digital human models. These models also produce massive

datasets to analyze. In particular, they typically produce time series capturing changes from

baseline to the end of a hypothetical intervention. While only the last point is seen as the

“final result”, both modelers and field experts often need to pay close attention to trends in

the series. This can inform modelers of potential bugs in the implementation (e.g., identical

consecutive pairs may indicate that results are mistakenly registered twice), while informing

experts about the human dynamics (e.g., by observing cycles).

Consequently, many interactive visualizations have been developed for time series gen-

erated by simulations (Figure 5.1). In this setting, time tends to be either linear (i.e.,

an ordered collection of time points) or branching (e.g., a simulation splits into ‘branches’

when there are several possible outcomes or competing hypotheses) [4]. While sliders can

straightforwardly navigate through time, they lead to issues such as change blindness (i.e.,

some differences from one time point to another may be missed). Pixel visualizations [128]

or glyphs [242] allow to visualize multiple time series on the same space. Several tempo-

ral glyphs have been designed (Figure 5.2) and experimentally evaluated for tasks such as

detecting peaks of trends [79]. While such innovative visualizations have adopted for simula-

tions in engineering [134] (e.g., automotive, flows), there is a relative paucity of visualization

environments for data generated by digital human models.

In this chapter, we focus on digital human models implemented as cellular automata

(CA). Intuitively, a cellular automaton is a collection of coloured cells on a grid that updates

over a period of discrete, fixed time steps based on certain rules defined around neighbouring
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Figure 5.1: The EXP V2 environment [159] allows to explore a simulation by hand gestures.
Reproduced with permission from Defense Research and Development Canada, who holds all
intellectual rights.

Figure 5.2: Fuchs and colleagues compared different temporal glyphs for a dataset with
continuous values [79].

cells [152]. CA grids and cells can be of different types and shapes. Square and hexagonal cells

are most common. CA models are generally one-dimensional (1D), two-dimensional (2D),

and three-dimensional (3D), but can have more dimensions as well. There is a vast quantity
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Figure 5.3: Cells within the body were modeled via a two-dimensional cellular automaton
to study the spread of HIV [188]. Each figure corresponds to CA at a specific time step.
To visually explore disease progression, the modeler would use a slider and go through the
weeks, displaying the CA of each week one after the other.

of research using CA, as it can be applied to study any situation where individual units

or cells affect others surrounding them [180]. In this chapter, we focus on two-dimensional

cellular automata with square cells, while noting that the same principles would apply to

other shapes of cells. Such CA are typically visualized by using a slider to move through the

grid of states at different time steps (Figure 5.3).

Our main contribution is the design and prototype implementation of temporal glyphs

for cellular automata. This allows to see multiple time steps rather than going through each

one via a slider. Our hypothesis is that this new visualization environment can contribute

to providing better analytical capabilities, particularly when designed for the specific needs

of modelers.

This chapter is organized as follows. In section 5.2, we introduce our visualization envi-

ronment and explain how the data is rendered. In section 5.3, the environment is illustrated

for three well-known simulations (i.e., epidemics, sandpile, burning forest). Our hypothesis

regarding the usefulness of this framework for modelers is discussed in section 5.4 based on

the feedback obtained from trained modelers. Finally, concluding remarks are provided in

section 5.5 together with a brief overview of future work.
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Figure 5.4: Data produced by a disease model (top-right: states and transitions) may be
entirely visualized if the model is ran for a few time steps (a). As the number of time steps
grows, they are aggregated into each of the 8 (b), 4 (c) or 16 possible segments.

5.2 Designing the visualization environment

Since CA have categorical values, line or star glyphs (Figure 2; top) are not suitable.

Either the stripe or clock glyphs could be used. They encode data values through colours

(Figure 2; bottom), and differ only in their encoding of time as either position (stripe glyph)

or angle (clock glyph). Recent experiments found that the ‘clock metaphor’ helps with

chronological orientation, thus proving better than linear layouts to detect temporal loca-

tions, and triangular shapes performed better than rectangular ones to encode colours [79].

This suggests that temporal glyphs with a ‘clock’ ordering and triangular shapes have po-

tential to support visualizing CA. Since users of CA are particularly familiar with square

cells, we used square cells as clock glyphs (Figure 3).
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To understand the design challenges in using clock glyphs, we can think of the well-known

pie chart. Having too many slices in a pie chart turns it from a meaningful visualization into

an abstract pattern. The number of slices is thus best kept small, for example by collecting

small slices within an ‘other’ category. A clock glyphs with too many data points would

thus be like a pie chart with too many categories. This problem is particularly salient in

our situation, since each glyph would have to represent the successive states taken by a cell

over all time steps of the simulation, and there may be more time steps than could even

fit within a circle (i.e., 360 slices). To address this problem, we limited the clock glyph to

have either 4, 8 or 16 equal-sized partitions and each partition attempts at displaying the

most relevant state within the corresponding segment of the data. This is illustrated in

Figure 5.4. In Figure 5.4(a) we use 8 partitions and there happen to be exactly 8 time steps

in the simulation, so each value is mapped to one partition. In Figure 5.4(b) there are more

values than partitions, so each partition represents the most frequent1 state among multiple

data points. Consequently, the visualization depends on the number of partitions (4, 8, or

16) and on the aggregation method (e.g., most frequent value). Both are set by the user in

the current prototype.

Research suggests that “multiple views are particularly helpful in analyzing time-oriented

data” [4]. Consequently, another design consideration was to allow working across multiple

data representation. Given that the glyphs need a significant amount of space to display

each cell, our goal was to have a complementary representation that takes limited space and

provides a higher level of abstraction. This was fulfilled by using a flow diagram as secondary

view. Flow diagrams are the most common depiction of cellular automata models; that is, a

modeler using CA would immediately recognize and know how to interpret a flow diagram.

In short, a flow diagram shows each state, and possible transitions between states. Formally,

1If the top frequency is found in multiple states, then ties are solved by picking the first one. For example,
if there are 1 ‘dead’, 2 ‘susceptible’, and 2 ‘infected’ then ‘susceptible’ would be picked.
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a flow diagram is a directed graph where each state corresponds to a node, and an edge

exists from node a to node b if a cell can transition from state a at time t to state b at time

t+ 1. Our prototype automatically generates the flow diagram from the trace file (i.e. dump

of simulation data).

5.3 Application to classical cellular automata models

5.3.1 Epidemics

In compartmental modeling, the population is divided into several groups or ‘compart-

ments’, and then transitions or ‘rules’ specify the flows. The underlying mathematics are

described in details by Hethcote [110]. Compartmental models of epidemics are typically

named after the transitions between compartments: for example, in the SIS model an in-

dividual starts susceptible, can become infected, and eventually becomes susceptible again;

similarly, in the SEIR model, an individual starts susceptible, can be exposed to a disease,

then becomes infectious, and eventually recovers.

While a compartmental model represents a population, it can be ran on a cellular au-

tomaton where each cell stands for an individual. In this case, the rules reflect how infections

can be passed on between neighbouring cells. This approach has been widely used. For ex-

ample, there are cellular automata models of the classical SIR model [243] or SIS model [80].

In this example, we used the SIR model where an infected cell has a probability pi = 0.4 of

transmitting the disease to a healthy cell, and an infected cell has a probability pr = 0.5 of

recovering.

Visualizations of simulation traces from this model are shown in Figure 5.5, with different

grid size (10 by 10 or 25 by 25) and different number of segments per cell (4, 8, or 18).
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Figure 5.5: Visualization of an epidemic over a 10x10 CA where each cell has 4 segments (a),
8 segments (b) or 18 segments (c). The same model is visualized over a 25x25 CA with 4 (a)
or 8 (b) segments. The same flow diagram applies to all simulations and is automatically
generated (f).

The flow diagram is automatically generated by the visualization environment, and names

or colours can be changed by the user. A consequence of displaying the most frequent

state within each segment is that, as the number of segment decreases, some transitions

are not visible. For example, we can see that cells get infected multiple times with 18

segments (Figure 5.5-c), less so with 8 segments (Figure 5.5-b), and not at all with 4 segments

(Figure 5.5-a). Similarly, some states may not be visible: using 4 segments (Figure 5.5-

d) instead of 8 (Figure 5.5-e) would tend to under-estimate the spread of the disease as

peripheral cells that were recently infected do not yet display this infection.



105

Figure 5.6: Visualization of a sandpile over a 10x10 CA where each cell has 4 (a) or 8 (b)
segments. The same model is visualized over a 25x25 CA with 8 (c) segments.

5.3.2 Sandpile

The sandpile model is a vehicle to illustrate the theory of Self-Organized Criticality

(SOC), that is, the idea that large interactive systems self-organize into a critical state and

that small perturbations in this state trigger chain reactions. Informally, one can build a

pile of sand by adding one grain at a time, until reaching a critical point where adding a

single more grain causes an avalanche. This model was introduced by Bak and colleagues

in 1987 [14]. We implemented the Sandpile model as described by Athanassopoulos and

colleagues [10]. There is only one parameter p which applies when two grains are above two

empty cells: the configuration either remains as such (with probability p), or both grains fall

in the cells below (with probability 1− p). In our example, we used p = 0.5.

Visualizations of simulation traces from this model are shown in Figure 5.6, with different

grid size (10 by 10 or 25 by 25) and different number of segments per cell (4, 8, or 18). All

visualizations display that grains gradually fall and a stack of filled cell increases from the

bottom. This would appear to be too simplified with 4 segments, and perhaps excessively

detailed with 18 segments. The visualization with 8 segments could thus offer an interesting

trade-off.
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5.3.3 Fire spread

The mathematical principles of fire spread were summarized by Rothermel in 1972 [200].

Cellular automata have since been abundantly used to model fire spread within a spatial

context, captured using either square [5, 126] or hexagonal cells [67, 229]. In its simplest

version, each cell has three possible states: empty, tree, or burning. Initially, each cell is

empty with probability p = 0.3 or a tree with probability 1 − p = 0.7; the fire is started

by picking one cell as burning. At each time step, a tree burns if at least one neighbour is

burning, or has a probability 0.001 of spontaneously burning. A burning tree turns into an

empty cell after 1 time step, and an empty cell can turn into a tree with probability 0.1.

Visualizations of simulation traces from this model are shown in Figure 5.7, with a grid

of 25 by 25 and different number of segments per cell (4, 8, or 18). In this simulation, no

large component formed, thus there were random sporadic and isolated fires. Since the fire

lasts only time step and only the most frequent state is displayed, the fire is never visible.

Thus, it is implicit that a cell transitioned from light green (tree) to dark green (empty)

because fire occurred. Having the most segments (i.e. 18) shows that almost all cells have

been occupied by a tree at some point, which is gradually lost as the number of segments

decreases.

5.4 Feedback from modelers

Two trained modelers were contacted to provide feedback on the prototype. On the pos-

itive side, the overall idea of avoiding a slider was well-liked. One modeler stated: “I like it

a lot because it simplifies visualization of states across timesteps”. On the negative side, a

modeler reported that it became quite hard to read with a large number of cells or segments
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Figure 5.7: Visualization of a forest fire over a 25x25 CA where each cell has 4 (a), 8 (b) or
18 (c) segments.

per cell. Having 8 segments was considered the most readable version. Several improvements

were suggested, falling into three categories. First, even if the motivation for this visual-

ization was to avoid sliding through time, a slider was deemed useful to allow modelers to

narrow the range of time steps that are displayed. In other words, modelers agreed that a

slider to move through a single time step was not as effective as our visualization, but they

recommended being able to move through a range of time steps. This is in line with the

visual information-seeking mantra of starting with an overview, and then having details on

demand: narrowing the time range would increase the detail of the cells since their segments

would represent a narrower set of values. Using range sliders to narrow the data of interest

was also done in the 2-d matrix-based interactive visualization by Song et al. [216].

Second, modelers appreciated the flow diagram and offered several way to better link it

with the main visualization. For example, hovering over a state or transition in the diagram

should highlight all the cells that include that state of transition. Conversely, selecting a

cell or group of cells should update the diagram to show only the transitions relevant to the

selected cell(s). The idea that selections in one view would affect another view is known as

‘brushing’, and is esse-ntial to work across multiple data representations. Other (interactive)

data representations were suggested, such as a stacked bar chart showing the number of cells

in each state, which would also update when selecting specific cells.
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Figure 5.8: Segments could have a different length to represent another feature of the data.
In this simple example, the length encodes the number of different states present within each
segment. All segments are low (since they only have one state) but segments (1) and (2),
which encode 2 and 3 states respectively. This encoding helps finding where changes happen
in the data.

Finally, the visualization currently displays a summary of the successive values within

each cell but leaves it to the user to find relationships between these values. One modeler

suggested going further by displaying trends among the values as additional features: “the

simulation will generate a temporal data streams (each cell will end up generating a stream of

data points), so change analysis (shape, direction and velocity of changes) can be performed

to understand how the whole system has impacted the individual cells”. Since the colour of

the segment already encodes information (i.e. the most frequent state) and all segments must

have equal width (as they represent the same amount of time steps), the main possibility to

encode additional information is to use the segment’s length. This is illustrated in Figure 5.8.

5.5 Discussion

There is a growing interest in using visualizations at different stages of the modeling pro-

cess, ranging from the early conceptual stage [94] to experimentation [159] and the analysis

of results. There has been a particular interest for visualizations for cellular automata [137],

as it is a widely used modeling approach. In this chapter, we focused on the analysis of

data generated by a two-dimensional cellular automaton. We presented a visualization in
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which the successive time steps of the simulation are aggregated and displayed all at once.

The resulting visualization allows to see key properties of the models, such as grains of sand

falling in a sandpile, or an epidemic spreading. Nonetheless, the visualizations had a num-

ber of shortcomings, mostly stemming from the aggregation method and/or the number of

segments used within each cell. Two approaches should be explored in future work.

First, we could introduce a customizable weighting, allowing to under- or over-weight

certain states for display. For example, consider an epidemic in which individuals start

as healthy, get infected, and either recover by being healthy again or die. This scenario

has three states (healthy, infected, dead) but they may not be equally important. Indeed,

if we are concerned with the spread of the disease, we may want to underweight healthy

individuals, give a neutral weight to infected individuals, and over-weight dead individuals.

Similarly, in a forest fire, we may be less interested in seeing empty spaces than we are in

seeing burning trees. In addition to allowing users to customize the weighting, an interesting

research avenue would be to automatically set the weights based on the dynamics of the

data. The simplest way would be to perform the equivalent of a histogram normalization,

where very frequent states are under-weighted while rare states are over-weighted. However,

finding a weighting scheme that best helps modelers understand the dynamics would require

performing change analysis on the data as well as structural analysis on the flow diagram.

Second, we could create a large databank of visualizations in which each dataset is visu-

alized using different aggregation methods and number of segments. Then, modelers would

assign a score to each visualization based on how informative they find it for a given task.

Tasks would be chosen by their relevance to modeling, and by their heterogeneity in terms

of the perceptual notions involved. Example of tasks could include identifying cells whose

final state is the initial one, localizing a spread, finding clusters of cells in the same state,

etc. For example, consider the epidemics described in section 3.1: that same dataset may

be rendered with 2 different aggregation methods and 3 different number of segments. For
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each of the 3× 2 = 6 visualizations, modelers would assign a score from 0 (least useful) to 5

(most useful) expressing the usefulness of the visualization for localizing disease spread. This

would generate a relational database consisting of properties of the dataset (e.g. number

of states), aggregation method, number of segments, and mean score per specific task. To

understand how visualization parameters (i.e. aggregation method and number of segments)

affect task performance for a given dataset, we could then mine the relational database by

building classifiers [52, 53, 84]. We acknowledge that assembling a dataset where modelers

judge a large number of visualizations is labour intensive. Nonetheless, having the target

audience evaluate the visualizations for a set of task is a routinely performed procedure.



CHAPTER 6

ANALYZING SPATIO-TEMPORAL AND MULTI-RUN DATA

PRODUCED BY SIMULATIONS FROM CELLULAR

AUTOMATA

The prototype in chapter 5 only dealt with spatio-temporal data, which is one facet of

the scientific data produced by CA. In this chapter, we also deal with multi-run data, since

simulations on CA are often repeated (e.g. to account for randomness in the model or to

study the impact of different parameter values). To do so, our expanded visualization envi-

ronment includes additional linked views, and represents variability within the glyphs. We

conducted an empirical evaluation of this new environment to (i) assess whether important

tasks for modelers can be performed efficiently with this environment, (ii) examine how per-

formances are influenced by key simulation factors, and (iii) identify whether modelers can

use the familiar slider-based visualization together with our new environment.

All of this chapter was submitted in the following peer-reviewed journal article:

• PJ Giabbanelli & M Baniukiewicz. Analyzing Spatio-Temporal and Multi-Run

Data Produced by Simulations from Cellular Automata. Under review.

My contributions consisted of (i) performing the empirical evaluation and processing

its results (including extracting confidence, correctness, and error patterns from the

videos), (ii) reviewing the literature of multi-faceted scientific data visualization, and

(iii) implementing the design. PJ Giabbanelli designed the software and the empirical

evaluation. J Salim assisted with processing results.
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6.1 Introduction

Visualization is a typical component of Modeling and Simulation (M&S) studies. It can

be used in the early stages of M&S studies to design or refine a model, for example, by

identifying data patterns that should be included in a model or by highlighting discrepancies

between a model and available data [94]. At a later stage, visualization can be employed

to represent and analyze simulation results [227]. Such results are often multi-faceted scien-

tific data, as they may include both spatio-temporal data (e.g., when a grid representing a

physical space is updated over a set of time steps) and multi-run data (e.g., for stochastic

simulation models which are run multiple times to estimate the distribution of the output).

Simulation models creating spatio-temporal and multi-run data can be found in applications

ranging from climate research [69, 208, 164] to geo-engineering [155, 113]. Despite their

relative ubiquity, visualization methods have often focused on only one facet [127], through

systems that can assist in the exploration of either spatio-temporal simulation outputs, or

multi-run/ensemble data. In addition, advanced systems have been developed by the visu-

alization community, but may not have made their way into practices within the simulation

community. In this paper, we design, implement, and evaluate a new set of visualizations to

explore the spatio-temporal, multi-run data generated by discrete simulation models.

The models under consideration are Cellular Automata (CA), which have been widely

used for decades in simulation. Recent examples of their aplication include geophysical

systems (see [230] and references therein for a brief review) and pharmaceutical modeling [22].

In short, a CA has a regular division of space (e.g., a square grid of hexagonal lattice) in

elements known as cells. Cells have a state, which is updated over a period of discrete, fixed

time steps based on rules involving neighboring cells. The temporal aspect is important for

CA. For example, individuals infected with HIV have to take treatment for life, and the
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virus may develop resistance to treatment due to mutations occurring daily (when the virus

replicates). CA-based simulations of HIV may thus run for many time steps [188]. There can

also be a significant number of runs to reach typical targets (e.g., 5% confidence interval for

a simulation output). In the context of HIV, massive variability between individuals is such

a hallmark of the disease that its presence can be used to validate a simulation [188]. Our

focus is on visualizing data generated by CA with multiple time steps and several simulation

runs. While the size of the CA (i.e., number of cells) is also a factor for visualizations, our

system is primarily designed for small to medium grids, and possible extensions to larger

sizes are examined in the Discussion section.

The typical visualization for a 2-dimensional CA consists of showing the cells on a plane,

with colors standing for states (Figure 6.1), and to navigate across simulation steps using a

slider. That is, analysts move through snapshots of the simulation, seeing all states but for

only one time step. This visualization has been witnessed in many contexts, ranging from geo-

social dynamics (e.g., migration [56] and insurgencies [180]) to biological ones (e.g., spread

of HIV within a host body [188]). While this approach is typical, reviews in visualization

have suggested that “visual analysis of a larger number of concurrent data volumes requires

more sophisticated methods” [127]. Consequently, the main question here is not whether

visualizations built for spatio-temporal, multi-run data can be more effective than those who

are not built (but commonly used) for this purpose. Rather, our research questions are

(i) whether important modeling tasks can be performed correctly and confidently with our

proposed environment, (ii) how performances depend on simulation parameters (e.g., when

there are more time steps or more variability), and (iii) whether the familiar slider-based

visualization can be used together our new environment.

The remainder of this paper is organized as follows. In section 6.2, we summarize how the

problem of visualizing results from CA and related structures has been addressed so far, in

part through our early prototype. Then, section 6.3 presents the design of our environment,
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Figure 6.1: This cellular automaton has 9 cells representing trees, burning trees, or empty
spaces (e.g. clearing in the forest). It changes over time as the fire spreads, and trees
eventually burn entirely.

significantly extending our previous work, by handling replications and offering details on

demand as well as filtering tools. In section 6.4, we explain the design of our empirical

evaluation including the tasks that participants were asked to perform and the surveys

that they filled. In order to provide full disclosure, all documents for this study (including

our source code, script for participants and all their recordings) can be freely accessed at

https://osf.io/brjqk while a video presenting the problem, the software, and the tasks can

be seen at https://www.youtube.com/watch?v=s5jQ2Z6iIf8. The results of our evaluation

are provided in section 6.5 and discussed in section 6.6. Finally, we offer concluding remarks

in section 6.7.

6.2 Background

As detailed in the introduction, there are two facets to the data considered here: it is

spatio-temporal (with an emphasis on the temporal dimension over space in this paper), and

it has multiple simulation runs (also called ‘ensemble data’). Visualizations for simulation

data have often been designed with respect to only one facet, and they are thus briefly

reviewed in turn.

https://osf.io/brjqk
https://www.youtube.com/watch?v=s5jQ2Z6iIf8
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6.2.1 Visualizing time-series of simulation outputs

Many interactive visualizations have been developed for data generated by simulations

over time. In this setting, ‘time’ tends to be either linear (i.e., an ordered collection of

time points) or branching (e.g., a simulation splits into ‘branches’ when there are several

possible outcomes or competing hypotheses) [4]. Sliders have been used for both types, as

they provide a straightforward way to navigate through time. One such example is the EXP

V2 environment produced in partnership with Defense Research and Development Canada,

where a slider is the essential link to interacting with 3D simulation results via hand ges-

tures [159]. Despite being intuitive and commonplace, slider-based navigation leads to issues

such as change blindness. As the user moves to the next snapshot of the simulation, the

whole visualization may be refreshed. Thus, users may not only miss differences from one

step to the next, but experience difficulties in identifying trends over time. Pixel visual-

izations [128] or glyphs [242] can address this difficulty by displaying several time steps on

the same space. Several studies have employed glyphs, either to determine their empiri-

cal effectiveness for temporal tasks [79] or for specific application contexts [134]. Different

glyphs may be used [242] depending on the type of data (e.g., numerical as in line or star

glyphs, vs categorical) or how time is visually encoded. For instance, one can use a linear

time axis [106] or a cyclic time axis [228]. Comprehensive design and usage guidelines for

glyphs can be found in [196, 29], although we note that some of the recommendations (e.g.,

avoiding asymmetry and visual ambiguity [131]) are more applicable to 3D data than the

two dimensional grid considered here.

A clock glyph provides a ‘clock metaphor’ whereby the data starts at the position for

noon on a clock, and is wrapped-up clockwise. Experimental evaluations found it efficient

on several temporal tasks [79]. Consequently, in 2016 we proposed a visualization for CA
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based on clock glyphs [89]. Intuitively, if the CA only runs for 8 time steps, then all steps

can simply be wrapped up and shown all at once (Figure 6.2). However, CA usually run

for much longer. We cannot subdivide the clock into as many time steps as we generated,

because this would be similar to producing unreadable pie charts with tiny divisions (and

it would not work beyond 360 time steps). Consequently, we face the classical problem of

visual scalability, which can be addressed either by blending (i.e. mixing colors proportion-

ally to their overlap) or aggregating (represent several data points through one color) [20].

Our solution used aggregation. The set of all time steps was divided into 8 regions, and only

the most frequently occurring state was represented for each region. While we also explored

dividing cells into 4 or 16 regions, feedback from our early system suggested that 8 divisions

provided a good balance [89] between heavily simplifying (4 divisions) or producing poten-

tially overwhelming renderings (16 divisions). While other parameters may influence the

Figure 6.2: Eight consecutive time steps of the simulation (top) displayed on the same space
(bottom) using a clock glyph. That is, each cell of the CA is replaced by a clock glyph
showing its consecutive states [89].
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Figure 6.3: Main visualization when the simulation unfolds in a 25x25 CA over 24 time steps
(a) or in a 10x10 CA over 100 time steps (b). Flow diagram for a simulation of an epidemic
using the Susceptible-Infected-Recovered (SIR) model (c).

quality of the visualization (e.g., differences in size or time steps as shown in Figure 6.3a-b),

these were not explored.

Given that “multiple views are particularly helpful in analyzing time-oriented data” [4],

our early prototype included a flow diagram (Figure 6.3c) together with the main view

(Figure 6.3a-b). The flow diagram is automatically constructed from the simulation data to

show the different states (circles) and transitions (directed arrows). The two visualizations

were independent from one another. Our early study engaged in discussions with modelers to

examine how to progress toward a complete visualization environment. Modelers suggested

using interaction schemes, so that additional linked data representations can offer details on

demand or complementary information.
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6.2.2 Visualizing multi-run simulation data

Multi-run simulation data refers specifically to the various datasets that might be ob-

tained when one model is run with one set of parameter values (i.e., an ‘experiment’). It is

implied that the model has some stochasticity, since running a purely deterministic model

several times with the same parameter values would produce the same output. We are thus

interested in visualizing a set of different simulation outputs, produced by the same exper-

iment for the same model. If one instead wished to compare data originated from different

models and experiments, then different views would be needed, as explained by Unger and

Schumann [233].

Our context is to visualize simulation output produced by a cellular automata, in which

cells have fixed positions throughout the simulation and may only change states. This

is different from Agent-Based Models, where the agents may be moving across the space,

and capturing these movements is a key objective of the visualization [8]. The different

possibilities in our setting have been summarized in a review by Kehrer and Hauser:

“Multi-run data can, for example, be represented as families of data surfaces

or spaghetti plots. However, it is often not practical to directly visualize such

data since they can consist of multiple co-located volumes of spatio-temporal

(and often multi-variate) data. Consequently, some approaches compute sum-

mary statistics from the multiple runs, which are represented by glyphs or box

plots” [127]

A recent example of using glyphs is provided by Kothur et al. [136], in which glyphs are

composed of three nested squares which represent the uncertainty of a set of ‘input squares’ in

the data. The size of the median one represents the median uncertainty, the outer one denotes

the lowest uncertainty, and the inner one shows the higher uncertainty. This is a typical case
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of data aggregation for multi-run data, in which characteristics of the underlying data are

calculated and only these characteristics are rendered. One potential caveat of computing

an aggregate is that it may not preserve outliers, or infrequent states [165]. While this can

be acceptable when the analyst seeks to see the overall trend, it may be less desirable in

tasks such as bug detection.

6.3 Design of the visualization environment

Our environment has four components (Figure 6.5): three on the left, and one occupying

most of the space (which we refer to as ‘the main’). All four are explained in this section. The

main visualization builds on the principles from section 2.1 and our previous experience

with modelers [89] to represent the whole CA at once, where each cell is divided into 8

equal segments whose color represents the main state during the corresponding part of the

simulation. However, this would only address temporality, and not the multi-run facet of

the data. Consequently, and in contrast with our early prototype, our main visualization

also represents replications through the length of each segment. That is, the length of a

segment is proportional to variability across replications. For example, Figure 6.4 shows the

same cell over three runs of the simulation, where some of the runs do not agree about the

majority state (highlighted in yellow). The extent of this disagreement is reflected in the

corresponding segments’ lengths.

All three visualizations on the left implement brushing, that is, they are linked to the

main visualization. Their objectives and the nature of that link are now detailed in turn,

from top to bottom. The top-left visualization displays states and transitions which are

automatically inferred from the simulation data, as in our prototype (section 6.2). While

this visualization did not allow for interaction in our prototype, our newer environment links
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it with the main visualization for filtering purposes. That is, clicking on a set of states will

highlight the segment of cells that contain all of these states. For example in Figure 6.5,

after users click on the green state (0) the main visualization highlights segments containing

the green state. If the user then clicks on the brown state (1), the main visualization will

highlight segments containing both the green and brown states (which will be fewer or equal

to those containing just green). The new time division visualization (left-center) is also a

filtering tool. The user selects one or more time divisions, and only these will be visible while

others will be made dark. This tool thus allows to focus on patterns within the divisions of

interest.

Finally, the new prevalence visualization (bar chart; bottom-left) offers details on de-

mand for the division of a cell. Specifically, for the part of the simulation results covered

by that cell and division, it shows the prevalence of each state and their standard deviation

across simulation runs. For example, in Figure 6.5, the selection has on average more brown

(9) than green (6) with a standard deviation of ±2 in both cases. This visualization gives

an intermediate between the aggregate of the main visualization and raw simulation runs.

Figure 6.4: The length for each of the 8 segments encodes the variability across replications,
where more width means more variability.
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Figure 6.5: Our new visualization environment with an update main view also providing
information on replications, and two additional visualizations (left-center, left-bottom) to
provide filtering and details on demand, respectively. This example displays a sandpile
simulation, where grains (brown) eventually settle due to gravity. Most of the uncertainty
(i.e. notable differences across simulation runs) happens around the ridge of the sand dune,
which is the interface between the sand and empty cells (green).

6.4 Design of the empirical evaluation

6.4.1 Objectives and overview

Our pilot study (section 6.2) gathered some of the requirements for the full environment

presented here, and concluded that 8 divisions were an appropriate choice. We did not

explore what factors influenced the participants’ experience and whether our environment
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Table 6.1: Study components, process, and recent studies employing the same process

Study Compo-
nent

Where
/how

Item References

Pre-study
questionnaire At home

Gather participants’ personal
data (age, sex)

[143, 148,
100]

Gather participants’ experi-
ence with the visualization or
the data being visualization

[143, 148,
130, 100]

Overview video Explanations on how to use
the software

[143, 140,
100, 189]

Observational
study

In lab
with
trained
facilitator

Measure reaction time for
each experiment

[145, 240]

Use the “Think-aloud”
method to record comments

[143, 140,
240, 189]

Short interview Ask about positive and nega-
tive aspects of each interface,
as well as overall impressions.

[148, 240]

Post-study ques-
tionnaire

In lab Assess the amount of distrac-
tion, and effectiveness on each
interface

[143, 148,
130, 100]

supported them in better performing typical modeling tasks. Consequently, the objectives

of our empirical evaluation are:

(1) Examine whether participants could correctly and confidently achieve common mod-

eling tasks through our proposed visualization,

(2) Assess how participants’ experiences were influenced by simulation factors, and

(3) Explore the possibility of combining the commonly used slider-based visualization with

our proposed visualization.

As our goal is to develop a visualization environment to effectively gain insight from

CA with many time steps and multiple replications, our empirical evaluation uses two tasks

corresponding to these two aspects. The first task focuses on time: users have to find the

cells that mostly end the simulation in the same state as they started. In other words, the
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temporal pattern of interest is a cycle. The second tasks focuses on replications: users have

to find where there is significant variation in the simulation, both spatially (i.e. which cells)

and temporally (i.e. which divisions of cells). In other words, users need to find areas where

replicates disagree a lot on the simulation outcome. Both tasks are common in modeling. The

first task is routinely carried out as we need to find if, and where, the simulation stabilizes.

The second task typically serves to assess whether more simulation runs are needed to get a

clear consensus on the outcome.

We also had to the slider-based visualization in our experiments, not only to see its

potential for combined used (objective 3) but also to serve as a referential for performances

(objective 1). Indeed, we wanted to observe whether using of our proposed environment

would take more time than users would normally spend via the slider-based visualization.

Consequently, we also programmed this visualization within our software (Figure 6.6). As

explained in section 6.2, the slider-based visualization shows the exact state of all cells for

one time step, and allows the user to refresh the whole screen via a slider controlling the time

step currently displayed. To allow user to navigate several replications within a slider-based

visualization, we provide a left panel in which users can simply click on what replication to

visualize. In sum, our two tasks were performed using both our proposed visualization and

the ‘simpler’, slider-based visualization.

For objective 2 (role of simulation factors on visualization performance), we included

three simulation factors as potentially impacting the participants’ experiences: the length

of the simulation, the number of replicas, and the phenomenon being simulated. Doing a

simple ‘sensitivity analysis’ that varies one factor while fixing the others has been described

as statistically inefficient, and does not account for interactions [118]. For example, it would

not reveal whether users find it harder to navigate CA that have many time steps and many

replicas. Consequently, we used a Design of Experiments (DoE) known as a 2k factorial

design, which captures interactions. We have a total of 4 factors (phenomenon, replicas,
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time steps, common vs. new visualization) thus there are 24 = 16 combinations. We asked

participants to perform both tasks, for all 16 combinations. We will refer to these combi-

nations as our experiments from here on. The order in which experiments are performed

may create bias. For example, imagine that a participant is given a simulation of a spread

(phenomenon) over 25 time steps with 50 replications and has to find cycles using our pro-

posed visualization. Then, if the participant was given the same phenomenon, same time

steps and same replications but using the simpler visualization, there would be a potential

for the answer to reflect the insight actually gained using the proposed visualization. This

effect may also be reciprocal, whereby insight from the simpler visualization may be used to

solve the problem using the proposed visualization. Consequently, we randomized the order

of the experiments for each participant.

6.4.2 Detailed Study Design

The previous section provided a brief overview of our two objectives, the two tasks that

they translate to, and the 16 experiments to perform for each task. Table 6.1 lists what

participants had to do, what part of our study it belonged to, and where/how they had to

do it. In order to highlight common practices and allow for comparison of study designs, we

also provide references to other studies incorporating the same aspects in their experimental

designs. The overall script for this study can be obtained at https://osf.io/brjqk under

Experimental Setup, including the template of emails sent to participants as well as subject

information and consent.

https://osf.io/brjqk
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Figure 6.6: Simple visualization environment allowing to select a simulation run (left) and
move through its time steps using a slide (bottom).

6.4.2.1 Pre-study questionnaire and overview video

A pre-study email was sent to all participants, asking them to complete a pre-study ques-

tionnaire, available at http://bit.do/NIUpreSurvey, and to watch a 22 minutes overview

video, available at https://www.youtube.com/watch?v=s5jQ2Z6iIf8. The video explained

the basics of cellular automata, the different visualizations of our software, and briefly stated

what tasks participants may be asked to complete. The questionnaire asked for the first

name, last name, participant ID, age, and gender. It also assessed previous experience in

terms of visualization, modeling and simulation, or visualization data from simulations. One

day prior to the observational component, participants received an email reminder about

http://bit.do/NIUpreSurvey
https://www.youtube.com/watch?v=s5jQ2Z6iIf8
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their appointment and, if they did not complete the questionnaire by then, this was specifi-

cally mentioned in their remainder. To check whether participants did watch the video, they

were asked questions about cellular automata upon meeting the facilitator in the lab for the

observational study. All answers were judged satisfactory, thus none of the participants was

asked to watch the video again.

6.4.2.2 Observational study and short interview

The first author served as facilitator for this study. Upon meeting with participants in the

lab, and after checking whether they watched the video, the facilitator emphasized the “think

aloud” protocol, asked participants to behave naturally, and informed them that overall

impressions would be discussed after experiments would be completed. The audio and video

recording started by confirming whether each participant agreed and consented to participate

in the study. In order to limit sources of bias [90], the randomized ordering of the experiments

was not known a priori to the facilitator. Instead, a random order for the experiments was

generated as the recording started (the code is available at https://osf.io/brjqk under

Experimental Setup).

For the 2k design of experiments that we employed, our four variables were limited to

binary values. The phenomena modeled (i.e. what the simulations were depicting) consisted

of a sandpile and a burning forest. The idea of a sandpile is that grains are dropped from

the top, go down under the effect of gravity, and possibly cause an avalanche when they

accumulate in unstable ways. That is, the CA shows the system from a side view, as if one

was taking a slice of how a dune builds up (Figure 6.5). The specific sandpile model that

we used to create the data is from Athanassopoulos and colleagues and uses a probability

p (set here to p = 0.5) to deal with the situation where two grains of sands are above two

https://osf.io/brjqk


127

cells [10]. The principles of a burning forest (also known as a ‘fire spread’) is that the system

is composed of clearings, trees, and burning trees. The fire originates at one tree, and spreads

through two rules: either one tree has a neighbour that is burning and catches fire from it,

or a tree spontaneously starts to burn with probability p = 0.001 (representing what may be

carried across the system by the wind) [126, 5]. In contrast with the sideways perspective in

the sandpile, a burning forest looks at the system ‘from above’, as if one had an aerial view of

the forest (Figure 6.6). The two models also represent broadly different types of phenomena,

between a mixing model (sandpile) or the dynamics of a spread (burning forest).

The three other variables were the type of visualization (either the simple one with the

slider or our proposed one), the number of time steps (few at 25 or more at 50), and the

number of replicas (few at 5 or more at 50). The rationale for the numbers is that we expect

‘few’ to be manageable by hand, and ‘more’ to start becoming overwhelming to get a correct

answer. For example, one may browse through 5 replicas to see if they agree, but browsing

through 50 may lead to a different outcome.

In total, the observational component generally lasted one hour. Then, a short interview

took place. Participants were asked for overall thoughts on the simple visualization, and then

on the full visualization. They were prompted to reflect on which task they found harder,

and if anything could be done to either visualization that would be helpful. The interview

component generally took about 10 minutes.

6.4.2.3 Post-study questionnaire

Immediately after the interview, participants completed the post-study questionnaire

available at http://bit.do/NIUdoneSurvey. As in [100], the questionnaire drew from the

NASA Task Load Index (NASA-TLX) questions for task evaluation. We did not include the

http://bit.do/NIUdoneSurvey
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questions ‘How physically demanding was the task?’ and ‘How hurried or rushed was the

pace of the task?’ as neither were applicable. All other questions were included and touched

on mental demand, performance, effort, and frustration. In addition, we asked participants

to share whether anything distracted them during the experiments, and asked for feedback

about the visualizations (which was already also part of the interview component).

6.4.3 Participants and Apparatus

The rendered images were generated on a professional workstation with 2 Intel Xeon

processors (E5-2650 v3 at 2.3 GHz). They were displayed on an Asus VS248H-P 24-inch LCD

monitor, using a full screen window (1920 by 1080 pixels). Participants sat approximately 75

cm away from the monitor. Participants were not fixated into a chin rest and were instructed

to behave naturally. Our participants were students from the computer science department

at Northern Illinois University. Participants received neither financial compensation nor

extra grades. We video-recorded the sessions using FlashBack Express version 5.24.0.4208.

We recruited a total of 16 participants, aged 18 to 31 (mean 24). Only two were female,

reflecting the skewed demographics for computer science students at our institution. Seven

participants (43.75%) reported having prior experience in simulation (Figure 6.7), while

only one reported formal training on visualizations. Four participants were excluded from the

analysis (Figure 6.7): three left before completing all experiments in the observational study,

and one had technical issues (unresponsive keyboard). After excluding these participants,

the mean age remained 24, there were still 2 females, half of the participants reported having

prior experience in simulation, and there was still one with formal training on visualizations.



129

Figure 6.7: Age, gender, and prior experience of participants. Four were excluded from the
analysis.

6.5 Results

6.5.1 Overview

The compressed video recordings of the computer screen for all 16 participants are avail-

able at https://osf.io/brjqk under Experiments (videos). The pre- and post-surveys as

well as all data measured from the video are available as series of spreadsheets under Ex-

perimental Results. The same folder contains the verbatim transcripts of the participants’

interview. The participants’ experience for each experiment was primarily measured through

3 variables:

• Confidence, using the categories ‘yes’, ‘no’ and ‘maybe’ based on the participant’s

verbal feedback. For example, “it would be hard to say” and “I really have no way

https://osf.io/brjqk


130

to tell” were coded as ‘no’, while “it’s obvious that...” and “ I am pretty confident

that...” were coded as ‘yes’, and “It seems like something...” as well as “It might be...”

were coded as ‘maybe’.

• Total number of errors, out of 4 possible errors. Three of the errors consisted of

(incorrectly) generalizing by looking at (i) entire regions rather than cells, (ii) a few

replicas, or (iii) a non-systematic sample of time steps1. For example, if there are 25

time steps and 50 replicas, and the user decides to randomly look at time steps 2–5–40

for only three of the replicas, then there are two errors. The fourth error is the failure

to accomplish the experiment, either by being unable to find any of the cells requested,

or by just guessing the cells.

• Total time spent, from the moment the dataset was loaded by the facilitator, to the

moment when the participant concluded.

Our analysis is available online under the Analysis folder. The next section shows the results

of the quantitative analysis based on the three metrics mentioned above. Then, we provide

findings from the qualitative analysis based on the verbatim transcripts. Finally, we discuss

the outcome of the post-survey.

6.5.2 Quantitative analysis of the observational study

6.5.2.1 What affects the participants’ experience?

We have four individual factors (phenomenon modeled, number of time steps, number of

replications, visualization employed) and six possible pairwise combination of factors. We

1We counted errors of time steps for task 2 but not for task 1, because looking only at the first and last
time steps suffices to correctly conclude whether a cell’s final state was the same as its initial state.



131

performed a factorial analysis to identify the key contributors to our three metrics, for both

tasks. In short, a factorial analysis shows how much of the variance is caused by each of

the 10 (4 individual and 6 pairs) potential contributors. The larger the percentage, and the

more important the contribution. Note that the ‘importance’ only tells us that it affects the

results, but not in which way. Complementary analyses (after the factorial analyses) thus

explore what creates a better experience.

Results are shown in Figure 6.8 and are now described, from top (confidence) to bottom

(reaction time). In both tasks, confidence is primarily driven by the type of visualization

(82.75% for task 1 and 76.90% for task 2) and is also affected by the phenomenon modeled

(9.59% in task 1 and 17.08% in task 2). All other contributors are negligible as they account

for less than 3% of the total variance. The type of visualization plays an even bigger role in

the number of errors (94.93% for task 1 and 93.86% for task 1), with a very small role for

replicas either directly or in interaction with the type of visualization. The picture is more

nuanced when it comes to the reaction time. On task 1, participants were highly impacted

by the type of visualization (73.43%), and moderately by the interaction of replications and

time steps (14.76%). On task 2, the visualization had a negligible impact, and instead the

key driver was the number of replications either as sole factor (25.46%) or in combination

with other factors (49.75% of the variance through interactions). Note that the reaction

time in task 2 has a much large error (9.70%) than in any other task or metric, suggesting

that some of the variation was driven by differences between participants. Results for the

reaction time in task 2 may thus be interpreted less precisely than for other metrics or for

task 1.

Through previous reviews on visualizing simulation data, it was expected that perfor-

mances would be higher using a visualization specifically designed for spatio-temporal, multi-

run data. These results shed light on the scale of the improvement, rather than its existence.

Our proposed visualization makes a significant difference on helping participants to either
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Figure 6.8: Contribution of independent factors and pairs of factors to the total variance,
for each task, and for each metric (i.e. participants’ time, participants’ confidence, and
participants’ error level).
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avoid errors or be confident about their findings. As shall be discussed in the qualitative

analysis, familiar phenomena may also boost a participant’s confidence. For example, in

sand dunes, participants may be certain that a grain of sand at the bottom of the screen will

stay there for all future time steps because of gravity. However, dealing with a more ‘famil-

iar’ phenomenon does not change the number of errors. Finally, the reaction time should be

interpreted with caution: participants overwhelmed with data and feeling incapable to nav-

igate it may quickly generalize and move on, thus ending an experiment early. The reaction

time thus also captures whether participants actually felt able to fully perform the task.

6.5.2.2 How are participants affected by the visualization?

The previous section showed that the type of visualization significantly impacts partic-

ipants’ confidence and errors, while its impact on time is more nuanced. We now focus on

how results on the three metrics are improved or worsened by the type of visualization. The

metrics are examined in the same order as in the previous section.

The distribution of confidence score for both visualizations and both tasks is shown in

Figure 6.9, with the number of participants as y-axis and the number of times an answer

was used as x-axis. For example, the top-left bar shows that 2 participants had the answer

‘no’ once. These distributions show that participants were uncertain using the simpler visu-

alization as we observed that the ‘no’ confidence dominates. Furthermore, all participants

(n=12) did not feel confident in at least one experiment for task 1, while the majority did

not feel confident (n=9) in at least one experiment for task 2. The opposite results are

found using the proposed visualization where we observe that ‘yes’ dominates, and only 1

(for task 1) or 2 (for task 2) participants did not feel confident in an experiment. Note that

the factorial analysis from the previous section showed that the type of visualization was an
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Figure 6.9: Distribution of participant’s confidence in their answers for both the simpler
(top) and proposed (bottom) visualization, on the first task (left) and second task (right).

important contributor but not the only one, given that the phenomenon modeled played a

role too. In other words, just changing the visualization is not powerful enough to create

perfect results across experiments: the proposed visualization shows more confidence, but

many participants felt uncertain (‘maybe’) at least once. Further improving the results may

thus require adapting the visualization to the phenomenon modeled.

The distribution of errors for both visualizations and both tasks is shown in Figure 6.10.

The absence of an error (i.e. a perfect answer) is shown as having committed 0 errors on

the y-axis. Using the simpler visualization for task 1, we see that all (n=12) participants

were unable to perform some of the experiments. Many also looked at only a few of the

replicas, thus assuming what other simulation runs would do without looking at them. They

also commonly generalized from regions rather than tracking individual cells. As concluded

in the factorial analysis, the type of visualization has a massive impact on errors. Using
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Figure 6.10: Distribution of participant’s errors in their answers for both visualizations and
both tasks. The y-axis shows the number of errors (where 0 is the absence of any error) and
the x-axis shows the number of participants having committed these many errors.

our proposed visualization, all participants but one were able to perform the experiments.

Their conclusions correspond to what was found in most simulation runs (n=12) and they

were able to track individual cells (n=12). Task 2 also included the un-systematic browsing

of time steps as an error. Findings are similar to task 1: all participants had difficulties

completing some experiments using the simple visualization, while all but two were able

to perform perfectly using the proposed visualization. Errors are most commonly made by
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ignoring replicas via the simpler visualization, which did not occur using the proposed one.

Un-systematically sampling time steps also occurred with the simple visualization but not

with the proposed one. Generalizing from region occurs using both the simple and proposed

visualization, although to a much lower extent with the proposed visualization. Overall,

the proposed visualization leads to a significant reduction in errors although a handful still

occur.

Finally, we investigated how much time participants spent using our proposed visualiza-

tion compared to the simpler one. Differences were small and going in different directions

from one task to the other, in line with the factorial analysis showing that the type of visu-

alization impacts time much less than confidence or errors. For task 1, participants spent an

average of 10.5% less time with the proposed visualization than the simpler one. For task

2, participants spent an average of 8.3% more time using our proposed visualization.

6.5.3 Qualitative analysis of the interview

We performed a thematic analysis to reveal the main themes from the interview compo-

nent. As this is a form of interpretive research, biases can occur. We considered that having

directly spoken to the participants or knowing who they were when reading the transcripts

could bias the interpretation. Consequently, the first author facilitated the experiments,

created verbatim transcripts, and anonymized them. The analysis was then performed by

the second author on the anonymized transcripts. Three themes emerged.

First, participants discussed how the two visualizations could actually be combined. The

fact that combination was a theme across interviews, rather than an anecdotal mention,

suggests that there is potential to use both our proposed visualization and the classic one.

The specific joint use was described by a participant as follows:
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“I would probably start with... with this view [points at our proposed visualiza-

tion], and you know try to make conclusions and assumptions, and then if there

was some use-cases or one-off-cases that seemed very unique I would probably

try to pull up the same dataset using the, the more simpler visualization, and try

to see... and try to drill down into the specific timesteps and see if I can identify

what’s going on.”

Similarly, another participant pointed out that to “be able to switch between the two is very

key”, which was echoed by a third as wishing to have a shortcut to easily switch “instead of

activating one, deactivating the other”. This suggests that future work should explore the

design of a more integrated visualization.

Second, participants mentioned their perceived obstacles to navigate the data across

time steps and replicas. This theme was expected, as such obstacles prompted the design of

this study. Some perceived that obstacles were traded between visualizations, which again

provides contextualization to a possible joint use of the two. The slider-based one required

many interactions and memorization (high cognitive load) while the proposed one had a

steeper learning curve. In the words of a participant, it is “a lot more simpler to use just an

original [slider-based] visualization, it is just not as efficient.”

Third, participants shared their experiences on functions of the proposed visualization

other than the main view. It was noticeable that the main view was discussed very little

beyond its ability at aggregating information, and that instead participants focused on other

tools or interactions. They occasionally started suggesting possibilities and then found that

they already existed. For example, they realized that they could zoom while describing how

they would do it, or suggested the ability to click on a tool and noticed that it was clickable.

While it is reassuring that participants discover interactions naturally when looking for them,

it also suggests the need for a tutorial to be more aware of what can be already be achieved.



138

Several participants pointed out that they did not use the States and Transitions tool (top-

left), which may be partly due to ignoring how it filters, or because there were only few

states and transitions in both phenomena modeled. It would thus be of interest to offer tools

depending on characteristics of the simulation. For example, the States and Transitions may

be displayed when there are many such states and transitions, while the prevalence graph

(bottom-left) is most useful when there are variations.

6.5.4 Mixed methods analysis of the post-survey

The post-survey asked participants if they were distracted during the study. None re-

ported an external distraction. While several participants shared additional impressions

about the visualizations, these were also stated in the interview component and would not

change the outcome of the thematic analysis. Table 6.2 provides the median scores for ques-

tions judging the degree of failure, hardness, stress, and mental demand to accomplish both

tasks using the two visualizations. Scores range from 1 (best) to 5 (worst). For example

from top to bottom, 1 stands for perfect success, very low work, very low stress/irritation,

and very low mental demand. We observe that the proposed visualization systematically

produces better scores.

These results are in line with the analysis in section 6.5.2.2 regarding the effect of the

two visualizations on task performance. The thematic analysis in section 6.5.3 suggested

that both visualizations could cause significant mental demands. On one hand, the slider-

based version creates a high cognitive load by having to mentally keep track of states which

participants avoided simply by not looking at the data and instead forming assumptions (“I

don’t know how about other replicas, but I am assuming they’re similar”). On the other

hand, the proposed one requires navigating multiple tools and looking at much more of the
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Table 6.2: Results of the NASA Task Load Index (NASA-TLX)

Metric Task Proposed vis. Slider-based vis.

Failure
1 2 4
2 2 4

Hardness
1 2 4
2 1 5

Stressed
1 2 4
2 1 5

Mental demand
1 1 4
2 2 5

data at once (“it is busy in there, there is a lot going on”). The fact that participants see

the slider-based visualization as causing a higher mental demand thus suggests that they

saw memorization as a much larger issue.

6.6 Discussion

Inspecting simulation output can be challenging when the simulation lasts for many steps

or uses multiple runs. In this paper, we focused on the output generated by 2-dimensional

cellular automata with square cells. This modeling approach is used in a wide variety of fields

ranging from geophysics [230] to biology [188] and occasionally social phenomena [180]. In

a pilot study, we examined whether a clock glyph could be used to provide a visualiza-

tion environment in this context [89]. Modelers suggested that the idea had potential, and

contributed to identifying important visualization parameters such as the number of divi-

sions for the clock. The present study then developed a more complete system including

interactive tools (e.g., to provide filtering or details on demand) and evaluated it with 16

participants, of whom 12 completed the protocol. Our evaluation examined their experience

when performing two typical modeling tasks: identifying temporal trends (with a cell ending

as it started) or assessing variability (where different simulation runs do not agree on the
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output). We measured their experience through their confidence, the number of errors, and

the time they took. A 2k factorial design of experiment allowed us to assess the impact

of several parameters on these three metrics, both as independent parameters and through

second-order interactions (i.e. pairs of parameters). While previous studies suggested that

there should be some improvement when using our multi-faceted visualization instead of the

classic slider-based alternative [127], we found the difference to be significant as the choice

of visualization made a major difference on confidence and errors. The phenomenon being

modeled also impacted the participants’ confidence, but did not play a role in other metrics.

Using our proposed visualization instead of the classic resulted in a small difference in time

(of up to 10%), although the direction of this change depended on the task. That is, partic-

ipants were faster with our proposed visualization (by 10%) to identify temporal trends but

slower to find variation (by 8%). A thematic analysis revealed that participants would like

to combine the two visualizations, which would allow them to spot potential trends using

the aggregation offered by our proposed visualization, and then confirm the trend by using

the ‘microscopic’ view of the slider-based visualization. Both visualizations create mental

demands. In the words of a participant,

“The more complex visualization is definitely better and then tools helps to

compare the first and the last state. But it is harder to see... to actually visualize

what is happening.”

Conversely, the slider-based visualization created a high cognitive load by mentally tracking

states across time or simulation runs. In the post-study questionnaire, participants expressed

that the proposed visualization exerted low or very low mental demand, while the slider-

based equivalent had a high or very high mental demand. Consequently, memorization was

much more of a barrier than navigating our new aggregate outputs and its interactive tools.

In addition, providing aggregated information about the whole dataset at once provides a
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systematic way to explore the data. When participants explored it without our aggregation,

they were often un-systematic, and (incorrectly) assumed that what they would see in a

simulation run would just be the same in one or all others.

Our evaluation was limited to two typical tasks. Other tasks may require the develop-

ment of additional interactive tools. For example, modelers may want to ensure that some

transitions never occurred (when debugging). These transitions may be more complex than

forbidding a dead cell to become alive again: for example, there may be a minimum time

requirement. While motif mining is a well-studied approach to find sequences in time series,

with multiple supporting visualizations (see Hao et al. for a recent example [104]), limited

research has been performed on motif mining in data from cellular automata. Identifying ef-

ficient ways to express and display patterns in the context of cellular automata (particularly

with multiple runs) would thus beneficial.

Two other avenues are of particular interest for future work. First, our evaluation found

a need to identify which interactive tools to use depending on the context. Ma’s suggested

integration of machine learning and visualization could be one step to realize this objec-

tive [150]. Specifically, we can collect information on an analysis session and characteristics

of the data, and then use machine learning to automatically adapt the visualization to the

person, task, and dataset. The information can be stored in a structure format, on which

different data mining algorithms can straightforwardly be applied [52, 53]. The main diffi-

culty is thus to collect enough data to create a comprehensive repository, and to extract the

right information from a session and dataset.

Second, our visualization focuses on the temporal and multi-run dimensions, while limit-

ing the size of the model to a small or medium number of cells. To broaden the application of

this work, it is necessary to accommodate much larger models. This is an important theme

for the modeling and simulation community. In a 2013 panel, ‘big simulation’ was presented

as a grand challenge [224], and many studies have recently been published on interactive visu-
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alizations for data produced by ‘big’ or ‘large-scale’ simulations. For example, in 2016 alone,

visualizations were proposed for the CODES simulation built on the large-scale Rensselaer’s

Optimistic Simulation System (ROSS) [198], for an ocean simulation built using the Model

for Prediction Across Scales (MPAS) [169], or for molecular dynamics simulations performed

via the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [194]. Cellu-

lar Automata can be produce big simulations as well. For instance, cells in a fungal network

may be at the micrometer (because many important interactions in the organism happen

in the 10-15 µm range), but the overall network may cover kilometers [58], which leads to

a massive number of cells. Our suggestion is to combine our work with approaches for di-

mensionality reduction. While several exist, not all can work in our context. For instance,

Self-Organizing Maps (SOMs) have been used for grouping and arranging spatial distribu-

tions and temporal variation profiles according to their similarity [9]. However, approaches

such as SOMs [9] and others [60] that rely on re-arranging elements would be difficult in

the case of a CA where the position of each cell within the grid already has an important

meaning to modelers. Potential approaches would have to be based on grouping/clustering

cells, rather than re-arranging them. Many such approaches exist, including hierarchical

clustering techniques from Bordoloi et al. [28], time-varying partitioning [208], or Janicke’s

information theoretic method which identifies regions with different temporal behavior [120].

Future studies could thus combine these methods and empirically evaluate their effectiveness

for selected modeling tasks.

6.7 Conclusion

Our proposed visualization efficiently supported users in performing key modeling tasks,

by aggregating information (across time steps and simulation runs) as well as through inter-
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active tools for filtering and details on demand. Additional work is needed to also aggregate

many elements (via multi-resolution techniques), find specific patterns (by adapting motif

mining to cellular automaton), or tailor the environment to features found in the simulation

run (such as the number of states and transitions).



CHAPTER 7

NAVIGATING COMPLEX SYSTEMS FOR POLICYMAKING

USING SIMPLE SOFTWARE TOOLS

The third aim of this thesis (realized in the previous two chapters) was to develop novel

visualizations for simulation data. In this chapter, we posit that simulation models them-

selves (rather than they data they generate) would also benefit from visualizations. This is

important for policymaking, to support a systems science approach that goes beyond think-

ing of disconnected ‘inputs’ and ‘outputs’ to instead emphasize interrelatedness and loops.

Similarly to chapter 5, we present a new environment, emphasize its key functionalities, their

relevance to policymaking, and why they have not been met by other software packages.

All of this chapter was submitted in the following peer-reviewed book chapter:

• PJ Giabbanelli & M Baniukiewicz. Navigating complex systems for policymaking

using simple software tools. In Advanced Data Analytics in Health, VK Mago, PJ

Giabbanelli, E Papageorgiou (eds.), Springer, 2018.

My contributions consisted of (i) finding and reviewing the functionality of software for

argumentation, visualization, and modeling (Table 7.1); (ii) leading the development

of the software based on an earlier prototype [86]; and (iii) creating the data used for

demonstrations. Functionalities and design principles were produced by PJ Giabbanelli,

while the supporting online video was made by N Rosso.
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7.1 Introduction

“As we enter an era marked by more complex drivers of population health and

by diseases with multifactorial roots [...], it will be more useful to have in our

population health armamentarium the capacity to model the potential impacts of

different manipulations of the multiple factors that produce health.” Galea et

al. [82]

Studies at the intersection of systems science and population health have demonstrated

the usefulness of computational models for conditions driven by multiple interacting factors.

For example, agent-based models of obesity have allowed to reconcile peer influences on food

and physical activity behaviors with environmental (e.g. built environment) and individual

(e.g. stress and depression) factors [249, 88, 92]. Such models are particularly useful for

policymaking, as they allow to evaluate the health impacts of complex interventions [41],

or can answer ‘what-if’ (also called ‘what happens if’) scenarios [82] in which policymakers

explore the consequence of several policy levers either independently or in a synergistic

fashion. Given the support that computational models can offer, they have become an

increasingly popular tool in public health. In the case of obesity, there were only a handful

of models in the 2000s [13, 116] but the recent years have seen so many models that they

were the subject of several dedicated reviews [144, 207].

The emphasis in a computational model has historically been to capture the salient

characteristics of a phenomenon. For instance, our early model of obesity focused on en-

vironmental and peer influences on changes in body weight. It thus had to capture how

peers and the environment come together in affecting one’s physical and food behaviors,

which in turn can affect one’s weight depending on physiological factors (e.g. metabolic

rate) [88]. Policy levers are limited to a subset of variables in the model: the gender or
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metabolism of individuals cannot be changed by policies, but social norms may be amenable

to changes [193, 218]. Running ‘what-if’ scenarios then consists of assigning different val-

ues to these variables, either independently (which is common yet statistically inefficient)

or using Design of Experiments techniques [118]. We recently discussed two issues with

this approach to ‘what-if’ scenarios [91]. First, policy levers may not be independent. For

example, a high density of restaurants might lead to increased market competition in part

through larger portion sizes. A ‘what-if’ scenario may artificially set values for density of

restaurants and portion size, without realizing that the value taken by one affects the other.

Second, a policy is not merely an abstract concept: it eventually has to be implemented by

coordinating across sectors or jurisdictional boundaries. This involves many stakeholders,

which have to work at different time scales. Consequently, inputs to a model may not be di-

rectly set to a value but instead change gradually, at different speeds for different inputs. In

sum, rather than freely manipulating a collection of disparate inputs, policy-relevant models

should include the essential interactions between inputs. This can be achieved by adding

another layer to models, which captures the interactions between inputs for policy purposes.

Any ‘what-if’ scenario would be done in this layer, and then passed to the model [91].

There are three key steps in driving a policy-relevant model through a layer accounting

for inter-dependencies between the model’s inputs. First, we need the layer itself, that is,

the set of relationships between inputs along with relevant metadata (e.g., causal strength or

time scales). Many suitable layers may already exist, but there is currently no comprehensive

database or repository where researchers or policymakers would find them for a population

health context. In obesity research, many projects have now produced comprehensive ‘maps’

of the relationships between factors related to weight or well-being. It is difficult to use one

of these maps as one may not know where to find them, cannot compare them, or may not

know the context in which they were produced. In addition, maps were produced using

different techniques, which means that they may not have the same type of metadata, or
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provide the same level of trust in the data. Causal networks are formed of directed weighted

relationships [235, 63], to which Fuzzy Cognitive Maps add an inference engine allowing to

simulate the consequences of these relationships and thus test their validity [95, 97]. System

Dynamics go even beyond, by including time effects and lags [238, 222].

Second, the target audience of a policy-relevant model is not the modeler(s) but the par-

ticipants, such as policymaker(s) and/or community member(s). Their views are essential

to select the inputs that are modified in ‘what-if’ scenarios, and to identify relevant out-

puts. When the interactions between inputs start to be accounted for, this information can

be provided to participants to support their decision-making processes. However, a set of

interactions defines a network, and handling networks can be a much more demanding task

for participants than handling seemingly disconnected inputs. Our usability study with pol-

icymakers in British Columbia (Canada) found that navigating even a medium-size network

could be a very challenging task [86]. The Foresight Obesity Map (Figure 7.1) exemplifies

the difficulty of using a network for the target audience. As pointed out in Hall et al. [102]

(emphasis added), “the complexity of the obesity epidemic is graphically illustrated by the

web of interacting variables”. This is echoed by Siokou et al [213]:

“With 100 or so causal factors, and 300 or more connections linking each cause

to one or more of the others, the Foresight diagram is a complicated, almost

incomprehensible web of interconnectedness that depicts the drivers of obesity

prevalence and the ways in which they depend on each other. The diagram is

brilliantly useful in demonstrating the complexity of factors driving the current

obesity trend, but the scale and number of interactions in the diagram make it

difficult to see how one might use it in any practical way to develop systemic

approaches to obesity prevention.”
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Figure 7.1: The Foresight Obesity Map is a well-known network representation of inter-
dependencies between weight-related factors [235]. The use of this representation as a herald
of ‘complexity’ rather than a decision-support tool [102, 213] exemplifies the difficulty of using
network-based representations for participants who are not modelers [86].

Once an appropriate layer has been identified or developed, and after participants have

been supported in working with this layer, the last step connects the layer with the model.

This connection may not be trivial, as discussed elsewhere [239, 132, 93]. At first, it may

also appear that this step could be done before or irrespectively of how participants navigate

the layer. However, a layer may start as a very comprehensive map (e.g. the Foresight

Obesity Map). Participants will find the subset of that map that is necessary to capture

relationships between inputs involved in a what-if scenario (Figure 7.2). Connecting only

what is necessary may save time, compared to connecting everything and then deciding on

what actually needs to be used.
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Figure 7.2: A policy may be targeting three inputs of a model (efficiency of production, access
to food offerings, cost of ingredients). Using the relevant part of the Foresight Obesity Map,
we can include the relationships between these inputs in a layer separate from the model.

Our aim is to improve the second step, such that existing maps (e.g., Foresight Obesity

Map) can be used as guidance tools for the design of policies rather than as symbols of

complexity. Our three contributions in this chapter are to:

• Identify the key functionalities that software need to support in order to navigate

networks with a policy focus.

• Contrast these features with existing network and modeling software.

• Propose a new open-source software, and demonstrate it on existing maps.

The next section presents five required functionalities, grounded in experimental studies

and key concepts of systems thinking in public policy. Then, we contrast these functionalities

with those supported in existing software for visualization, argumentation, or modeling.

Having identified unique needs for a new software, we introduce our open-source solution

ActionableSystems in section 3. A brief demonstration is given in section 4, with additional
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examples at https://youtu.be/OdKJW8tNDcM. Finally, we briefly discuss research directions

in public health informatics, and we provide concluding remarks.

7.2 Functionalities to navigate networks with a policy focus

7.2.1 Functionalities required

The idea of an ‘input’ to a model is often rooted in a simple cause/effect reasoning: a

change in one of the input factors triggers a changes in the model, which are reflected in a

different set of factors labeled as outputs. In contrast, systems science and systems thinking

emphasize the importance of loops:

“What really differentiates this kind of thinking from ordinary linear cause/effect

reasoning is that none of these concepts can be regarded as more primary than

the other. A change can be initiated everywhere in an event circle and after a

certain time be read off as either cause or effect elsewhere in a system.” [214]

In this perspective, an ‘input’ is simply a part of the system selected for a policy in-

tervention. A change in the input may trigger self-regulating mechanisms in the system,

which eventually affect the input itself. Such mechanisms are well illustrated for complex

conditions such as obesity (Figure 7.3) through the Foresight Obesity Map, or the landmark

Thinking in Circles About Obesity [103]. When considering whether a functionality is re-

quired, it should not only be an important feature, but one that participants need assistance

with. The volume Structure of Decision: the cognitive maps of political elites examined how

participants thought of systems, and whether they were aware of existing loops. Throughout

the book, findings are consistent: participants did not show that they were thinking of loops

https://youtu.be/OdKJW8tNDcM
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Figure 7.3: Example of a loop in obesity (a), where some classes of antidepressants cause
weight gain [88]. Example of disjoint paths from weight bias to mental well-being (b), going
through physical activity (solid red arrows) or eating behavior (dashed blue arrows).

when discussing complex systems. Ross saw it as peculiar that “those who set policy think

only acyclically, especially since the cyclical nature of causal chains in the real world has been

amply demonstrated” [199]. Examinations showed that the odd lack of loops or feedbacks in

the networks was not due to lacking expertise, voluntarily simplifying the structure, of being

focused on the near-term. Rather, the suggestion was to look for a cognitive explanation [12]:

individuals unconsciously reduce complexity [237]. Therefore, loops have been shown to be

crucial in understanding a complex system, and users need support to navigate them.

Functionality #1: Participants need to easily find the loops such that they can think

of policy ‘inputs’ within the context of a broader system.

Similarly to loops, other patterns in the map are relevant to policies and difficult to

manage. A policy intervention may target some factor(s) and measure its impact on other(s).

In between, there can be disjoint paths carrying the intervention (Figure 7.3). For example,

the intervention may fail significantly in one path and mask the relative success of another

path. Understanding how the intervention permeates through the system is thus important
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for its evaluation. Disjoint paths face the same issue as loops: individuals reduce complexity

and ignore multiple paths [237].

Functionality #2: Participants need to easily find disjoint paths, in order to monitor

how interventions unfold between a starting point and the outcomes.

The design and evaluation of an intervention may have taken into account what gets

directly affected by the policy, the outcomes, and everything in between (through disjoint

paths). However, a long-established hallmark of systems thinking is to understand “the

rippling effects created by choices” [45], even if the effects do not contribute to the outcome.

For instance, the ecological model of health promotion posits that (emphasis added) [64]:

“individual, familial, communal, national, international, and global health is

highly intertwined and interdependent. Negative perturbations in any of the

functional units may have untold negative rippling effects”

Note that the goal should not be to see all rippling effects. In some maps, an intervention may

impact a massive number of factors, and it would be overwhelming rather than instructive

to see them all. Rather, participants should be able to access a filtered set of rippling effects,

depending on their needs. There are many possible needs: participants may want to ensure

that a given set of factors are not affected by the policy (preserving a status-quo), sort

the factors that are affected into categories (for cross-sectorial coordination), or perform an

exploratory search with a limited depth (to see what would be affected through paths of up

to x factors).

Functionality #3: Participants need to find and filter the rippling effects of interven-

tions.
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As part of our previous usability study, we also asked policymakers to provide their

overall thoughts on a software supporting the use of maps for policymaking. Our thematic

analysis revealed that participants did not see the role of software as limited to exploring

or planning. They also suggested that it could serve as a tool for evidence synthesis, which

is important for justifying policies. In the words of a participant: “if I could just go to one

place, it would have all the information, that’s sort of my dream” [86]. In a comprehensive

map, information cannot consist solely of the names of factors and their interrelationships.

Given the multi-sectoral nature of public policies, the names of factors may have different

(or no) meanings for different stakeholders. This is exemplified by our map for obesity and

well-being [63], which included physiological (e.g., adipocytes, inflammation), legal (e.g.,

restrictive covenants), and behavioral factors (e.g., disordered eating, eating disorder). A

map can thus serve as a common tool in which the meaning of each term is clarified, in

addition to a synthesis of research regarding this term.

Functionality #4: Participants need to access and update the definitions and evidence

supporting each factor.

Finally, when developing a new software for a given audience, we should be mindful of

the existing workflow. That is, the software should integrate with existing tools rather than

assuming that participants will let go of all of their past work and migrate en masse. Research

on Information and Communication Technology (ICT) to support policies has shown that

many categories of tools exist, and within each, many tools are available [125]. The three

categories with which the proposed software would directly integrate are visualization (which

serve for information provision), argumentation (which support structured deliberation),

and simulation tools (which address ‘what-if’ questions through computations). There are

also different forms of integration. For example, scientific workflow systems can connect
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applications in pipelines where they automatically exchange information. The emphasis

here is not on the automation but on supporting human decision-making processes, thus a

new software should at least be able to take in data created via other tools.

Functionality #5: Participants need to manually exchange information between the

new software and existing visualization, argumentation, and simulation tools.

7.2.2 Functionalities supported by existing software

There exists plethora of software for visualization, argumentation, or modeling. As a

comprehensive analysis of these software and their reviews would be the subject of a dedi-

cated review, we instead focus on a subset of these software drawing from a recent compar-

ative analysis [125]. In Table 7.1, we summarized whether these software support the five

functionalities defined in the previous section.

Out of ten software, we found that loops were only supported by the software Vensim,

and similarly only the software Gephi provided (limited) support to finding paths. In this

case, it allowed to find the shorter paths, instead of all paths that lead to a selected outcome.

The other functionalities were supported by more software. Rippling effects were supported

in two software, with Vensim allowing to see rippling effects on all the system (i.e., without

filtering) and Commetrix offering an advanced level of customization including the depth.

Note that to qualify as rippling effects, we looked for a depth greater than 1: simply clicking

on a node and see what it directly affects was not counted as supporting rippling effects.

Many software offered the possibility of storing definition and evidence, but varied tremen-

dously in how convenient they make it for users to access or update the data.
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In Gephi and Visone, data about factors and their relationships is imported in the form of

a spreadsheet, so users ‘could’ go through the internal data storage and manually create/edit

columns for meta-data on definitions and supporting evidence. In Health Infoscape and

MentalModeler, the access is much more immediate: clicking on a factor suffices to see

the information as either a pop-up window (in Health Infoscape) or a side panel with

notes (in MentalModeler). Finally, all software but two allowed to import and export files.

However, the intention is not to merely to have a large collection of formats, but to promote

interoperability between software such that practitioners can add capabilities to an existing

workflow. Findings on formats are thus nuanced: three software operate with their own

formats (iThink, Vensim, MentalModeler), two are meant for graphs yet they each use over

ten different formats (Gephi and Visone), and even the same file CSV extension is used

to store very different graph data (one list for Gephi but two lists in Commetrix, and a

matrix in Visone). This paints some of the difficulties that practitioners have in navigating

this software ecosystem, with its many formats, and even different meanings for what could

appear to be the same format.

In summary, no software supports 4 or all 5 of the key functionalities for systems thinking

in policymaking. Only Commetrix fully supports 3 functionalities, while Vensim and Gephi

partially support 3. As the need for software supporting all functionalities is currently unmet,

the next section details the design of our solution.

We note that the software surveyed here also have their own strengths, which are not

necessarily captured by the five functionalities on which we focus. While a software may

not easily connect to others through file input/output, some provide additional (often less

intuitive) means to facilitate a workflow. Visone possesses a console to use the language

R, which offers extended capabilities to connect with other software. Gephi is designed as

an extensible software (i.e., uses a plug-in architecture), with over 21 plugins to import and

export. A visualization software also tends to provide extensive support for different ways to
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render information. In the case of a map, the position of the map elements on the screen is

determined by a layout, and software often support a variety of layouts (with over 15 layouts

in Gephi and over 10 in Visone). Even though the modeling software studied here all deal

with some extension of the concept of graphs, none supports layouts: the user is entirely

responsible for deciding on the position of all elements. Their strength is instead to support

practitioners in quantitatively evaluating what-if scenarios.

7.3 Proposed software: ActionableSystems

7.3.1 Overview

The design of our proposed software took place over a three year period. Starting in 2015,

our joint work with the Provincial Health Services Authority (PHSA) of British Columbia

produced a very comprehensive policy map [63], which was difficult to analyze with exist-

ing software (Table 7.1). Through extensive discussions with members of the PHSA and

other researchers, we developed a software tailored to the PHSA map. In 2016, we pilot-

tested the software with several policymakers [86]. Our usability sessions resulted in over 30

recommendations on how to improve the user experience. In addition, the analysis of semi-

structured interviews revealed that policymakers saw more potential uses for the software

than it was initially designed for. Based on these results, we clarified the key functionali-

ties that policymakers need to navigate policy maps (section 7.2), and we created the new

ActionableSystems software focused on these functionalities. Our software is written in the

Java programming language and is open-source. It is hosted on the third-party repository

Open Science Framework at https://osf.io/7ztwu/, where programmers can re-purpose

the code, while users can download and run the software.

https://osf.io/7ztwu/
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7.3.2 Design Principles

Three principles underlie the design of ActionableSystems. First, the software should

be simple. The expertise of our intended users resides in policymaking, or in specific do-

mains impacted by a policy. We do not assume that users are experts with specific computer

techniques, such as network visualization. Consequently, the software needs (i) to use a

language that is free of technical jargon, (ii) contextualize what its functionalities mean in a

policymaking context, and (iii) include training. Figure 7.4 illustrates these principles. The

left panel uses simple terms (e.g., ‘See’ instead of ‘Interactive Visualization’) and operations

emphasize what they are for rather than how they work (e.g., the button “Can’t see well?

Click here to reorganize!” would be labeled as applying a network layout in many software).

Examples are provided in three forms: long walkthrough tutorials (accessed via the ‘Tuto-

rials’ button), legends (Figure 7.4, bottom left), and tool-tips (e.g., hovering over a policy

domain provides examples of what it includes).

Our second principle is to emphasize consistency. This is a key principle in design, and it

contributes to making a software intuitive to use. It requires that similar elements are seen

the same way, and that similar controls function the same way. For example, simple elements

such as buttons in the same category should have the same sizes and fonts: Figure 7.4 shows

visual consistency for the main buttons in the left panel, sub-categories in the top panel,

and tool-specific buttons in the bottom panel. One added difficulty in maintaining visual

consistency in our software is that the same data can be viewed in different ways, each

emphasizing a different aspect: the policy network can be seen at a high level (Figure 7.4),

or through specific cycles and disjoint paths. All these views maintain visual consistency

on some aspects (e.g., the thickness of a causal relationship shows its strength) but differ

on others (e.g., relationships are arranged in a circle when showing a cycle). Consistency in
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control is relatively easier to maintain, as interactions within a same category such as ‘See’

all trigger the same effect (e.g., a double-click always packs or unpacks a policy domain into

its individual factors).

Finally, our third principle is relevance. Our software is designed for policymaking, hence

its functions must be relevant in this context and the relevance must be clearly conveyed ei-

ther through short explanations or longer tutorials. A consequence is to avoid the temptation

to implement functions just because we can, as may happen during software development

cycles that gradually lose track of their intended audience. For instance, while a myriad of

network measures exist, the ‘Measure’ button provides access to few measures but empha-

sizes their meaning in a policy context. Similarly, two networks can be compared on many

possible features, but the ‘Compare’ button contrasts two policy networks based on features

such as the presence and types of feedback loops.

7.3.3 Implementation of the five functionalities

A video demonstration of the five functionalities in ActionableSystems is provided at

https://youtu.be/OdKJW8tNDcM. The first three key functionalities are accessed via the top

panel (Figure 7.4), after clicking on the ‘See’ button. The analysis of cycles (functionality 1)

gives access to a list of all cycles, and each one is displayed by arranging the content as a circle

(Figure 7.5-a). When finding paths (functionality 2), we use a pop-up window whose design

implements recommendations from our previous usability study [86]. Users select the end

and start node, either through a drop-down menu or by typing a few letters and using auto-

complete. End-nodes that are greyed out cannot be reached from the selected starting node,

whereas black end-nodes can be reached from at least one path. When one or more paths

exist, they are graphically organized so the user can see the different paths (Figure 7.5-c).

https://youtu.be/OdKJW8tNDcM
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Figure 7.4: Rendering of the System Dynamics model from Verigin et al. [238] within
ActionableSystems as a hierarchical network. Each policy domain is shown as a thematic
cluster (triangle). Hovering over a cluster shows examples of its content, while clicking on it
will unpack the factors that it contains. Tools to find rippling effects, paths, and cycles are
at the top.

To find rippling effects (functionality 3), users choose the factor on which to intervene, and

how far they want to be screening for rippling effects. The result is organized in concentric

circles to emphasize ‘rippling’ effects (Figure 7.5-b). Participants can import definitions and

evidence en masse via the ‘data’ button (Figure 7.4, bottom right). The evidence can be

viewed, edited or created (functionality 4) by clicking on a factor and opening an editor

within a pop-up window.

While previous software opened files created by ‘similar’ software (Table 7.1), our software

works across domains. Specifically, it opens maps created by visualization, argumentation,

and simulation tools (functionality 5). To connect with network visualization software (e.g.,
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Figure 7.5: Key functionalities for the System Dynamics model from Verigin et al. [238]: (a)
a cycle with 8 nodes, (b) rippling effects of intervening on the NEWS rating up to depth 3,
and (c) searching for paths starting at the Framingham Risk Score.

Gephi and Visone), we use the GraphML format which is defined as a common (XML-based)

format for exchanging graph data in a visualization context [30]. We connect with argumen-

tation software (Cmap and Coggle) by reading files in their own formats, and similarly we

access data from simulation software such as MentalModeler by reading its own format. As

the idea of integrating in a workflow means that we can get data both in and out, all results

generated by users can be saved. For instance, the whole list of cycles can be exported with

the “Save cycles” button (Figure 7.5 bottom), and the same applies to pathways, or results

obtained via the ‘Measure’ or ‘Edit’ button.
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7.4 Demonstrations

In 2013, the Provincial Health Services Authority of British Columbia authored a dis-

cussion paper on the inter-relationships among obesity, overweight, weight bias and mental

well-being [183]. The paper narrated the evidence, but did not visually represent it. As a

follow-up, we created a map of obesity and well-being [63]. Using ActionableSystems, we

can now ask key policy questions from the map.

First, we can investigate in which ways weight bias affects mental well-being, in the

context of obesity. This is an essential question, whose answers runs through the pages

of the previous discussion paper but were not previously available in a simple, synthesized

form. Using the tool for disjoint paths in ActionableSystems, we immediately know that

there are 6 disjoint paths (Figure 7.6-a). They vary in length from a direct impact of weight

bias on mental well-being (length 1) to a path going towards depression and its effect on

physical health (length 5). The PHSA map is annotated, as its causal connections have

a strength and a type (either a causal increase or decrease). This information allows us to

more precisely understand the type of paths running from weight stigma to mental well-being.

The composition rule for causal effects (often used in System Dynamics) can intuitively be

understood as a multiplication: if A increases (×1) B, and B decreases C (× − 1), then

A decreases C (1 × −1 = −1). More formally, in a causal path, an odd number of causal

decreases leads to the path representing an overall decrease. In Figure 7.6-a, we observe that

all of the paths have an odd number of red edges (i.e. causal decrease), that is, weight bias

decreases mental well-being in six different ways.

Second, identifying potential policy levers requires a deep understanding of what already

drives the dynamics of the system. Loops are important drivers, either to balance (odd

number of causal decreases) or to amplify dynamics. Finegood has long suggested that
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“new methods are likely required to assist stakeholders in [...] creating new feedback loops

as a means to shifting the dominance away from [the loops that] currently give rise to

obesity” [70]. ActionableSystems provides support in this regard, by allowing policymakers

to list all loops and their types. Figure 7.6-b shows a balancing loop, where heart diseases

reduce exercises, which in turn increases the likeliness for heart diseases. Policymakers

need to counter-act this undesirable loop, but cannot simply ‘remove’ it because most of it

involves physiological causes (which are outside their control). They can thus add to the

system by supporting exercise-based cardiac rehabilitation, which has been proven to reduce

cardiovascular mortality in an updated 2016 Cochrane systematic review [7]. This will ‘take

away’ from the balancing loop and promote exercise. Conversely, Figure 7.6-c shows a

reinforcing loop in which individuals eat less healthily. The ‘Tragedy of the Commons’ in

System Dynamics suggests that, if a harmful loop needs a resource and this resource cannot

be directly modified, then a less harmful loop could be created in order to tap into that same

resource and deplete it. Rather than telling individuals to just eat less, an approach can

be to promote the consumption of healthy foods (e.g., high in fibers) which should deplete

‘appetite’ as the resource and consequently have individuals eat less unhealthy foods.

Finally, maps are representations of systems. Maps may depart from the real system

depending on how they were created, and understanding these discrepancies is important

when policymakers base their analysis off maps. ActionableSystems provides a summary

of a map, and can also contrast it with another map. In Figure 7.7, we see that the Foresight

Map has a roughly equal share of reinforcing and balancing loops. In contrast, the PHSA

Obesity and Well-Being map almost only has reinforcing loops despite being a view about

a very similar problem. Policymakers will thus be presented with very few balancing loops

when it comes to obesity, which under-estimates readily available solutions that policies may

reinforce.
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Figure 7.6: Visualizations of the PHSA obesity and well-being map [63] showing pathways
from weight stigma to mental well-being (a), and two examples of balancing loops (b-c).

Figure 7.7: Comparison of the Foresight Map (left) with the PHSA obesity and well-being
map [63], using metrics such as the number and types of loops.
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7.5 Discussion and conclusion

We designed a new software solution to support policymakers in navigating complex

systems, and demonstrated its possibilities on systems used in obesity research. Our soft-

ware integrates with visualization, argumentation, and simulation tools. However, there

are several other types of important tools in policymaking [125]. Integrating with opinion

mining tools is an important next step for public health informatics. Indeed, policymakers

need to know what constituents support in a policy [87]. If this was readily accessible in

a network form, they would be able to more easily find policies that can positively impact

the dynamics of the system and are endorsed by constituents. This integration would not

significantly alter the design of our software (e.g., the level of endorsement can be visually

shown through edge patterns). However, other types of integration call for new designs. In

particular, eParticipation tools require an online, distributed design. In contrast, our soft-

ware and all the other solutions reviewed are designed for a single user. The next frontier in

public health informatics is to develop tools that allow multiple users to navigate complex

systems, and possibly in an asynchronous manner (i.e. when not all users are interacting

with the software at the same time). This will require new designs and usability studies, but

the effort also comes with the promise of a more inclusive approach to policy-making and a

more comprehensive exploration of complex systems.



CHAPTER 8

CONCLUSIONS AND PERSPECTIVES

8.1 Introduction

The new millennium initiated the creation of a new perspective on public policies as

a complex system. The process of formulating a policy is non-linear and time-consuming,

due to a few important aspects [121]. Firstly, the development of new regulations involves

many stages, linked together into a “policy cycle”, as shown at Figure 8.1. Each stage itself

can be a composite process, requiring cooperation of various authorities and institutions.

Secondly, the important actors change across the various phases of policy-making, which

might result in fragmentation, since actors are often not aware of the decisions made by the

other actors. Politicians, members of parliament, executive branches, courts, and interest

groups may be involved in these formulations. Finally, often contradictory proposals are

made, and the impact of a proposal is difficult to determine as data can be missing, models

may inadequately capture the complexity of a policy, and interpreting the results of policy

models may be challenging.

A new notion for policymaking requires new methodologies, which would enhance effi-

ciency, increase transparency, and improve the acceptance level. Public health informatics,

and specifically Information and Communication Technologies (ICTs) used for policymaking,

have produced a variety of tools, including [125]:

• Visualization tools, which provide better understanding of data and give users a broader

context, especially when representing data in graphical form.
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Figure 8.1: Overview of policy cycle and stakeholders. Adapted from [121]

• Argumentation tools, which organizes complex argumentations and debates through

means including network visualizations.

• Simulation tools, in which real-world phenomena are abstracted so that can be better

analyzed, and decisions can be formulated.

8.2 Achievements

8.2.1 Contributions to computer science and simulation research

The design and evaluation of public policies can be seen as complex systems because of

non-linear interactions between factors and many actors involved, as presented at Figure 8.1.

There are many popular Modeling & Simulation methods used for simulating complex prob-

lems (e.g., agent based modeling, cellular automata, genetic algorithms)[231]. This thesis
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sought to further the use of M&S for complex systems, ranging from the design of models

for policy settings to the interpretation of their output through novel environments. Two

particular achievements are notable in this regard:

1. We have developed a novel model including food exposure for children across levels

of deprivation, combining several English databases to achieve a detailed large-scale

network simulation. This is a major improvement over previous studies, which used

networks only at the scale of one city or region [178, 177] whereas we have brought it

up to the national scale.

2. We provided and evaluated new interactive ways to visualize data, for example as it is

produced by discrete simulations. The innovation of the method proposed in this thesis

lies in organizing the data with replications and multiple time steps into a compact

representation. As a complement to this new environment, we developed several tools

connected with the main visualization, such as filtering or details on demand. Our

empirical evaluation of this new environment showed that participants could perform

important modeling tasks in a confident and accurate manner, while taking no longer

than they would have spent on the previously available but much less accurate tools.

8.2.2 Contributions to public health and obesity research

This thesis proposed brand-new systems, which addressed the multidisciplinary character

of policymaking by drawing from an array of fields including social science, economics, statis-

tics, and computer science. By analyzing and predicting complex environments, our work

has a potential to provide researchers and policymakers with tools to design and evaluate

interventions taking place in composite social systems. The important role of computational
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tools is considered to be a promising direction for the future of public policies. As Janssen

and Wimmer stated:

“... the explosive growth in data, computational power, and social media creates

new opportunities for innovating the processes and solutions of ICT-based policy-

making and research. To take advantage of these developments in the digital

world, new approaches, concepts, instruments, and methods are needed, which

are able to deal with societal and computational complexity.” [121]

The main contributions of this thesis to public health and obesity were to enable systems

thinking using computational tools. These tools can serve both as specialist platforms for

the experts and as teaching systems to enhance citizen’s engagement:

1. The aforementioned model of food exposure for children across levels of deprivation was

used to understand the factors contributing to the change of food premises locations.

While some association was found between the presence of schools and fast-food outlets,

we did not find a causal relationship. That is, fast-food outlets did not purposely target

schools to a visible extent, suggesting that more significant factors were involved in

the choice of a location. As there is a wide range of zoning regulations, and each

regulation may also take a wide range of parameter values, our model can serve to

quantify the expected impacts of these regulations together with their interactions.

The availability of such a model is very timely, given that many such policies have

been already implemented in a few English neighborhoods [46, 48, 47, 246], while

others are in the process of implementing them.

2. To create a complete data science pipeline for policymaking, we went from data analysis

(network mining) to predictive analytics (discrete simulations) and data visualization.

Each step has a potential to significantly improve policymakers’ understanding of social
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phenomenon such as obesity and help them to design more effective interventions. The

network analysis centered on the relationship between fast-food premises and schools

in England supports policymakers in understanding how combined planning measures

around schools affect the England food landscape across different levels of deprivation.

Finally, a new tool, which transforms models into more ‘actionable’ tools through

visualization, guides policymakers in navigating complex systems.

8.3 Limitations

A great challenge for researchers and scientists is the availability of data. Many datasets

that are free of charge contain incomplete data, and the ones with complete records may

be expensive. However, data is essential: in our simulation model, it serves to initialize the

variables at the beginning of the simulation, as well as to calibrate the model. Although

our study is the most comprehensive in terms of using data (Points of Interest, Lower Layer

Super Open Area Boundaries, Boundary-Line, Ordnance Survey Open Roads, Indices of

Multiple Deprivation 2015), we did not include data on the profile of the outlets or their

customer base. This limits our ability to precisely capture exposure, and thus utilization, of

fast-food outlets. Other datasets exist such as Dun and Bradstreet, which can complement

the datasets used in our study, but they require fees.

While availability of data is paramount, one should not ignore the many issues that

arise in the process of data cleaning and wrangling. The individual-level information is very

attractive for researchers in computational social science, but such datasets are very hard

to obtain. A common solution is to use aggregated data, which does not give the same

detailed perspective on individuals behavior but is easier to find (e.g. because there are less

risks to participants when sharing highly aggregated data across studies). We used the well-
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established Deprivation Index, which combines many factors [73]. However, each component

of the index may have a separate effect on the relation between individuals and fast-food

outlets. Disentangling these factors would thus allow later studies to capture specific subsets

of the population.

Another limitation that is common to modeling work is that models are necessarily a

simplification of reality: they never include all the factors that one may think of. Models

capture only the most important aspects of a problem, and thus narrow the object of the

study. In our case, we considered that the spatial distribution of fast-food outlets only

impacts school-year students’ exposure to calorie-dense foods, which greatly contributes to

obesity among children. In practice, other factors such as distinction of a different types

of school or patterns of urban growth in the area might also play a role. However, the

selection of factors used in a model is often limited by available data, as explained before. If

several factors are included in a model but there is no data to support them, then additional

assumptions have to be formulated about these factors’ values, which ultimately raises the

uncertainty of simulation outcomes.

The utilization process of the tools proposed in this thesis also faces few challenges and

critiques. In 2016 the Food Foundation prepared a report containing recommendations

and guidelines to help prioritize public policies. Two of them, listed among those poorest

implemented, emphasize the need for an effective change of food environment (Table 8.1).

However, the priorities of policy-makers and public policies’ developers may differ from

the Food Foundation, or vary across constituencies. A key argument that transcends local

preferences is the matter of cost. Our simulations can output the efficacy but do not provide

calculations in terms of cost, which is half of the equation given that cost-effectiveness

analysis is necessary to conclude as to which interventions should actually be prioritized.

Our proposed CA visualization also faces several limitations. First, our tool can deal with

many time steps and many replications, but not a large number of cells. Cluttering occurs



172

Table 8.1: Ranking of the best and worst implemented public policies in England [225]

Highest scores (good implementa-
tion of policies)

Lowest scores (poor implementa-
tion of policies)

Monitoring of overweight, obesity Platforms between civil society and
government

Monitoring of NCD risk factors Subsidies in favor of healthier food

Labelling with regard to nutrient dec-
larations

Investment management and non-food
policy development that takes account
of public health nutrition

Access to information and key govern-
ment documents relating to the food
environment

Planning policies that favor healthier
foods

Dietary guidelines established Systems based approach to im-
proving food environments

School food standards Advertising in child settings

Population intake targets established Coordination mechanisms across differ-
ent government departments

Labelling with regard to FOP Workplace food provision

Monitoring of nutrition status Advertising through non-broadcast
media

Food composition standards estab-
lished

Comprehensive implementation plan to
improve food environments

when visualizing a large CA. Our participants reported a significant increase in difficulty

when working with a CA of 50 by 50 cells, instead of 25 by 25. Additional research is

needed to identify, implement and evaluate the use of complementary scaling methods for

spatial data aggregation. Second, problems can occur when working with a great number

of segments per cell. In our first version of the environment we provided three options for

division of a single cells: 4, 8, or 16 segments per cell. After consulting with experts in

the field, the division on eight segments was chosen as providing the most readable version

of the visualization. However, the right number of divisions may vary depending on the

phenomenon model, or the visualization task, and such interactions were not explored.

Finally, our new approach to visualization focused on two tasks: detecting hypervari-

ability and trends from time series. Many other tasks are routinely performed on cellular
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automata, particularly when it comes to checking the output for the debugging process. We

are thus only able to conclude about the usefulness of our proposed approach for specific

tasks. In future versions of the environment, development of additional tools might be re-

quired to support these additional characteristics for CA tasks such as finding a specific

feature as in geographic systems [240] or exploring the distribution of a distinct state over

time and over space as in fire spreading studies [5].

8.4 Future work

This thesis emphasized the importance and outlined the benefits resulting from applying

system thinking approach to policymaking. Special interest focused on developing new ICTs

to support public health experts in their uneasy task of constructing effective interventions

to tackle obesity. As presented in this work, computer models and simulations creates new

opportunities to even better influence societies. Therefore, many other directions of collab-

oration between computer science experts and public health authorities should be further

explored. We highlight three potential avenues for future work. In section 8.4.1, we pro-

posed possible improvements to our visualization environment, which include both adapting

to specific users’ needs and expanding our method to other simulation techniques. In sec-

tion 8.4.2, we outline how GPS data incorporated to our model can help to collect additional

information about people’s walking paths and estimate their exposure to unhealthy food.

Finally, the potential application of our network model to test policies both separately and

altogether is explored in section 8.4.3.
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8.4.1 A new visualization approach to multiple run and multiple

replicated data

We proposed a new visualization technique to complex, hypervariable data based on

glyphs applied to each cell of a Cellular Automata grid. To improve our implementation

and expand its applications beyond CA, we have identified three specific objectives for fu-

ture work. First, the use of weights can help to differentiate important states within the

visualization. Our aggregation method showed the state that occurred the most. However,

it is not necessarily the most important state to see. Customizable weighting would allow

to under- and over-weight certain states for display. For example, ‘death’ in a cell may be

recorded just once, but it is of the utmost importance. Figure 5.3 in chapter 5 showed a CA

for modeling HIV spreading with four possible states [188]. In this context ‘dead’ state is

impossible to track and distinguished from other, more common cells. Consequently, users

may want to assign different weights to the states based on context. Future work should

examine the extent to which it is possible to automatically capture a context to set the

weights, rather than requiring users to set them all manually.

Second, there is a growing interest in using visualizations to analyze the output of simu-

lation models. In this work, we proposed a new aggregation technique to visualize the data

generated by a two-dimensional cellular automaton with square cells. This technique has a

lot of potential for other types of modelling approaches. For example, it can be applied to

spatial simulations that did not necessarily use a grid-based system. To do so, the simula-

tion’s geographical space can be discretized (see Figure 1.3). Similarly, it can be used for

hybrid simulations of which one component can be translated to a CA [93]. Using multi-

ple models can be particularly helpful for complex problems, since it helps to deal with a

plethora of important characteristics (e.g., agent characteristics, feedback and accumulation



175

effects, spatial and network effects) which could be hard to capture using a single simulation

model.

Third, we envision the creation of a large visualization databank, in which each dataset

is visualized using different aggregation methods and number of segments. A large collection

of visualizations, created using different aggregation techniques and number of divisions

within a cell, is an essential step on a way to understand how visualization parameters (i.e.

aggregation method or number of segments) affect task performance. Modelers’ contribution

is also necessary, to evaluate each display by assigning a numeric score to every visualization,

based on how informative it is for a given task. The challenge would be to select tasks most

relevant to modeling and suitably varied to capture the perceptual notions involved. In this

thesis, we focused on two tasks: detecting hypervariability, and trends from time series,

but other possibilities exist, such as identifying cells whose final state is the initial one or

localizing a spread. However, assembling a comprehensive dataset with cooperation with

modelers to judge a large number of visualization is a strenuous and hard work.

8.4.2 Tracking peoples’ walking paths

Two important barriers to accurately modeling dynamics in the food environment include

a lack of data to capture how individuals navigate the food environment, and a lack of

methods to integrate such data in models. In our work, we focused on a detailed dataset

containing the road network system across the entire England. This network-based model

can be extended, and transformed into a full Agent-Based Model (ABM). For example, we

could incorporate various datasets into our model to adjust the exposure function based

on the agents’ behavior, such as information about children’s walking paths, or how long

individuals stay in a fast-food outlet. A particularly promising possibility is to use data on
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individual mobility patterns captured using Global Positioning Systems (GPS). However, it

was previously emphasized that such datasets need to have both a sufficient time window and

over a hundred individuals [91]. These requirements are essential, in order to calibrate and

validate a system with reasonable confidence margins. While small number of participants

(less than 100) within dataset might not be sufficient to infer behavioral patterns, extensive

datasets, containing records collected over a single day are hard to process.

8.4.3 Modelling public policies

This thesis presented a large scale geospatial simulation using a network model to cap-

ture the food landscape across England. As this landscape is targeted by myriad different

regulations, that can each take a range of values, our model can serve in future work as a

tool to quantify the expected impacts of these regulations together with their interactions.

For example, the most typical measure of creating a buffer around schools has seen a variety

of distances in the UK: 65 meters (to prevent ”ice cream trading”), 300 meters (by Glasgow

City Council), or 400 meters [76]. Even the most common value of 400 meters tends to

be justified by heavily simplified calculations: assuming that children can walk 10 minutes,

that would make 800 meters as the crow flies, so having some physical barriers along the

way would make it half as much, hence 400 meters [76]. Our simulations might serve to

quantify the shift in fast-food exposure that would be expected for each value. Capturing

these interactions will be an essential step to bring a system science approach into local reg-

ulations, as previous research on obesity and other chronic conditions has shown that these

interactions can be particularly informative about the system as a whole [249, 88]. The

last challenge would be to provide policymakers with sets of synergetic scenarios depending

on the intended local priorities regarding changes in food exposure. However, part of the
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reason for the variety in regulations witnessed so far is that each local authority has its own

characteristics and priorities. Consequently, rather than providing a ’one-size-fits-all’ recom-

mendation, we believe that local councils seek to prioritize different aspects and thus further

work should provide a set of synergistic scenarios that could achieve their own targets. The

primary objective will be to identify the metrics that local authorities currently pay close

attention to, and the range of values that are deemed desirable. This will allow us to gener-

ate different combinations and relate them straightforwardly to these metrics such that local

authorities can find approaches that deliver on their own objectives. Possible metrics may

include a reduction in fast-food outlets around schools, a balance of takeaways across levels

of deprivation, or a reduction of fast-food outlets in areas with higher levels of childhood

obesity.
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[135] D. Koschützki, K. A. Lehmann, L. Peeters, S. Richter, D. Tenfelde-Podehl, and O. Zlotowski.

Centrality indices. In U. Brandes and T. Erlebach, editors, Network Analysis: Methodological

Foundations, pages 16–61. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[136] P. Kothur, C. Witt, M. Sips, N. Marwan, S. Schinkel, and D. Dransch. Visual analytics for

correlation-based comparison of time series ensembles. Computer Graphics Forum, 34(3):411–

420, 2015.

[137] G. Y. Krasnikov, I. V. Matyushkin, and S. V. Korobov. Visualization of cellular automata

in nanotechnology. Modelling of Artificial Intelligence, 3(3):98–120, 2014.



193

[138] R. E. Krider and D. S. Putler. Which birds of a feather flock together? clustering and

avoidance patterns of similar retail outlets. Geographical Analysis, 45(2):123–149, 2013.

[139] S. Kumanyika, R. Jeffery, A. Morabia, C. Ritenbaugh, and V. Antipatis. Obesity prevention:

the case for action. International journal of obesity, 26(3):425, 2002.

[140] K. Kurzhals, M. Hlawatsch, F. Heimerl, M. Burch, T. Ertl, and D. Weiskopf. Gaze stripes:

Image-based visualization of eye tracking data. IEEE transactions on visualization and com-

puter graphics, 22(1):1005–1014, 2016.

[141] A. Lake and T. Townshend. Obesogenic environments: exploring the built and food envi-

ronments. The Journal of the Royal society for the Promotion of Health, 126(6):262–267,

2006.

[142] T. Lang and V. Schoen. Food, the uk and the eu: Brexit or bremain? Working paper, Food

Research Collaboration, UK, March 2016. c© This working paper is copyright of the authors.

[143] K. Lawonn, E. Trostmann, B. Preim, and K. Hildebrandt. Visualization and extraction

of carvings for heritage conservation. IEEE Transactions on Visualization and Computer

Graphics, 23(1):801–810, 2017.

[144] D. Levy et al. Simulation models of obesity: a review of the literature and implications for

research and policy. Obesity reviews, 12:378–394, 2010.

[145] A. J. Lind and S. Bruckner. Comparing cross-sections and 3d renderings for surface match-

ing tasks using physical ground truths. IEEE Transactions on Visualization and Computer

Graphics, 23(1):781–790, 2017.

[146] Local Government Association. Tackling obesity: local government’s new pub-

lic health role. http://www.local.gov.uk/c/document_library/get_file?uuid=

dc226049-df94-487e-be70-96bdcb4a9115&groupId=10180, 2012. Accessed: March 13,

2017.

http://www.local.gov.uk/c/document_library/get_file?uuid=dc226049-df94-487e-be70-96bdcb4a9115&groupId=10180
http://www.local.gov.uk/c/document_library/get_file?uuid=dc226049-df94-487e-be70-96bdcb4a9115&groupId=10180


194

[147] Local Government Association. Changing behaviours in public health: to nudge or to

shove? http://www.local.gov.uk/documents/10180/11463/Changing+behaviours+in+

public+health+-+to+nudge+or+to+shove/5ae3b9c8-e476-495b-89b4-401d70e1e2aa,

2013. Accessed: March 13, 2017.
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