
Vol. 34, No. 3, May–June 2015, pp. 346–366
ISSN 0732-2399 (print) � ISSN 1526-548X (online) http://dx.doi.org/10.1287/mksc.2014.0897

© 2015 INFORMS

Construction of Heterogeneous Conjoint Choice
Designs: A New Approach

Qing Liu
Wisconsin School of Business, University of Wisconsin–Madison, Madison, Wisconsin 53706, qliu@bus.wisc.edu

Yihui (Elina) Tang
College of Business Administration, University of Illinois at Chicago, Chicago, Illinois 60607, etang@uic.edu

Extant research on choice designs in marketing focuses on the construction of efficient homogeneous designs
where all respondents get the same design. Recently marketing scholars proposed the construction of effi-

cient heterogeneous designs where different respondents or groups of respondents get different subdesigns, and
demonstrated substantial efficiency gain when such heterogeneous designs are employed. A significant hurdle in
the widespread adoption of heterogeneous designs is the high computation cost, even when the number of subde-
signs contained in the heterogeneous design is restricted to be small. In this paper we propose a new approach for
the construction of efficient heterogeneous choice designs. In contrast to extant approaches that are based on an
exact design framework where it is computationally prohibitive to do an exhaustive search to find a globally opti-
mal design, our proposed approach is based on the continuous design framework where well-established math-
ematical theories can be leveraged for quick identification of a globally optimal design. The proposed approach
makes it feasible to generate a highly efficient choice design that is completely heterogeneous—a unique subde-
sign for each individual respondent in the choice experiment. The proposed approach is the first in the marketing
literature to find a completely heterogeneous choice design with assured high global design efficiency using the
continuous design framework. Results from simulation and empirical studies demonstrate superior performance
of the proposed approach over extant approaches in constructing efficient heterogeneous choice designs.
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1. Introduction
Conjoint choice experiments have been widely used
by practitioners and academics in marketing research
to measure consumer preferences. In a conjoint choice
experiment, respondents are given multiple sets of
product alternatives and are asked to pick their most
preferred product from each choice set. These prod-
uct alternatives are constructed using various com-
binations of product attributes and their levels. The
responses obtained from the conjoint choice experi-
ment are then used to estimate respondents’ prefer-
ences for product attributes and their levels. Based on
this information, marketers can identify characteris-
tics of products that affect consumers’ choice/buying
behavior and use it for a variety of applications that
include new product/concept evaluation, reposition-
ing, competitive analysis, pricing, and market seg-
mentation (see review by Green and Srinivasan 1990).

An important issue to consider when designing
conjoint choice experiments is the statistical efficiency
of the design. That is, how to construct the multiple

sets of product alternatives so that respondents’ pref-
erences can be estimated efficiently. The D-criterion
has been used in assessing the efficiency of an experi-
mental design on parameter estimation and has been
the main criterion used in constructing efficient choice
designs. Formally, it is defined as the minimization of
the determinant of the inverse of the Fisher informa-
tion matrix, also called the D-error in the marketing
literature (e.g., Huber and Zwerina 1996; Arora and
Huber 2001; Sándor and Wedel 2002, 2005), and aims
to minimize the volume of the confidence region for
the parameter estimates. Alternative design criteria
have also been proposed in the marketing literature,
including the A-criterion (Kuhfeld et al. 1994), which
aims to minimize the average variance of the parame-
ter estimates, the M-criteria (Toubia and Hauser 2007),
which aim at efficient estimation of linear functions of
model parameters that are managerially relevant, and
the V- and G-criteria (Kessels et al. 2006), which aim
at accurate prediction of future choices rather than
efficient estimation of model parameters that cap-
ture consumer preferences on product attributes and
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attribute levels. Another stream of research focuses on
increasing the response quality in preference measure-
ment (see discussions by Netzer et al. 2008) by better
engaging the respondents through incentive-aligned
mechanisms (Ding et al. 2005, Ding 2007) or game-like
mechanisms (Ding et al. 2009, Toubia et al. 2012).

Extant research on choice designs in marketing con-
centrates on constructing a homogeneous design—
all respondents get the same design, and thus
everyone gets the same sets of product alternatives
for evaluation. Sándor and Wedel (2005) were the
first to propose the use of heterogeneous designs
where different respondents or groups of respondents
get different designs (or subdesigns) in the choice
experiment. They obtained heterogeneous designs
that contain two to 10 subdesigns using a computer
search algorithm that relied on the swapping and
cycling of attribute levels. Even though the number
of subdesigns was small in the heterogeneous designs
they constructed, Sándor and Wedel (2005) demon-
strated that there is substantial efficiency gain where
a heterogeneous design is used instead of a homoge-
nous design.

A significant hurdle in widespread adoption of het-
erogeneous designs in practice is the high computa-
tion cost—the search for an efficient heterogeneous
design involves the search of not one, but multiple
(M5 subdesigns. The size of a heterogeneous design
is therefore much larger than a homogeneous design
(i.e., M times the size of a homogeneous design).
Computationally, this may become cost prohibitive.
To reduce the computation time, Sándor and Wedel
(2005) recommended the sequential (or greedy) search
for each of the subdesigns or the separate search of
all subdesigns independently. Even with these short-
cuts, the total computation cost for the search of
an efficient heterogeneous design is still at least M
times the computation cost for the search of an effi-
cient homogeneous design. Although many existing
computer search algorithms for constructing efficient
choice designs work well when constructing homoge-
neous designs, they are inadequate for the case of het-
erogeneous designs. The computation time required
to search for an efficient heterogeneous design is sim-
ply too long, especially when there is a large num-
ber of subdesigns contained in the heterogeneous
design. As a result, marketing practitioners often
resort to randomized designs by Sawtooth software,
where the subdesigns are generated in a balanced but
somewhat randomized way that aims for one-way
and two-way balances over the frequency of occur-
rences of different attribute levels while allowing
for some repeated occurrences of the same attribute
level within a choice task (see Chrzan and Orme
2000). Such designs “work” but their design feasibil-
ity comes at the expense of design efficiency.

We propose a new, flexible, and cost-effective
approach specific for the construction of efficient
heterogeneous choice designs. Based on the contin-
uous design framework (see, for example, Silvey
1980, Pukelsheim 1993) and recent research on opti-
mal designs in the statistics literature (Yang et al.
2013), the proposed approach makes it computation-
ally feasible to obtain heterogeneous designs with
assured high design efficiency. We show through
examples that compared to efficient heterogeneous
choice designs obtained from the separate search
approach recommended by Sándor and Wedel (2005),
designs obtained through our proposed approach
achieve efficiency gains from 12.5% to 16.6% (when
measured by the D-error), and at the same time take
only a fraction (12% to 20%) of the computation
time. In contrast to the separate search approach that
restricts the number of subdesigns to be small (e.g.,
six), the proposed approach does not impose such
restrictions and generates a completely heterogeneous
design with a unique subdesign for each individ-
ual respondent. Although the Sawtooth randomized
designs widely used in practice are also completely
heterogeneous, their design efficiency is shown to
be significantly lower than that of the heterogeneous
designs obtained from our proposed approach.

Methodologically, our proposed approach makes a
significant contribution because it is based on the con-
tinuous design framework, unlike extant approaches
to efficient choice designs that are based on the exact
design framework. In contrast to the exact design
framework where it is computationally prohibitive
to do an exhaustive search over all possible designs
to find a design that is globally optimal, the contin-
uous design framework has well-established math-
ematical theories and tools to leverage for the fast
identification of a globally optimal continuous design.
In particular, we discuss in §3 the use of the general
equivalence theorem (Kiefer 1974) and our extension
of the optimal weight exchange algorithm by Yang
et al. (2013) to achieve this goal.

Our proposed approach makes it feasible to gener-
ate a completely heterogeneous design with assured
high global design efficiency. In contrast to extant
approaches to efficient heterogeneous designs that
explicitly search for a given number of subdesigns
(e.g., six), our proposed approach generates heteroge-
neous designs without imposing any restrictions on
the number of subdesigns. In other words, whereas
designs obtained from these extant approaches are
only heterogeneous at the group level where different
groups of respondents get different subdesigns, our
proposed approach makes it practical to generate a
completely heterogeneous design where each respon-
dent is given a unique subdesign without additional
computation cost. To the best of our knowledge, our
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proposed approach is the first in the marketing litera-
ture to find a completely heterogeneous choice design
with assured high global design efficiency through the
use of the continuous design framework.

Our research is both distinctly different from
and complementary to previous research on adap-
tive choice designs (e.g., Toubia et al. 2004, 2007).
Unlike adaptive choice designs where the choice sets
are sequentially constructed and customized on the
fly for each respondent based on the respondent’s
responses to previous questions, our research focuses
on designs where the choice sets are constructed all
at once before the choice experiment is launched and
responses collected, as commonly used in practice.

The remainder of the paper is organized as follows.
In §2 we provide an overview of extant approaches
to efficient choice designs. We then provide a detailed
description of our new approach in §3 and report
results from the comparative study in §4. We present
an empirical application of the proposed approach in
§5, and discuss potential limitations and extensions of
the proposed approach in §6. We end the paper with
a summary and conclusion in §7.

2. Review on Extant Approaches to
Efficient Choice Designs

According to McFadden’s (1974) random utility model
of consumer choice, the utility usj for alternative j in
choice set s (j = 11 0 0 0 1 J and s = 11 0 0 0 1 S5 is

usj = x′

sj�+ �sj1 (1)

where xsj is a vector that captures the characteris-
tics of alternative j in choice set s, and correspond-
ingly � is the vector of parameters (part-worths). Note
that when a no-choice option is used in the conjoint
choice experiment for each choice set, it is treated
as a separate alternative with zero utility by setting
the vector xsj = 0, and correspondingly the number
of part-worths � is increased by one (Haaijer et al.
2001, Gilbride and Allenby 2006). The errors 8�sj9 are
assumed to have type 1 extreme value distribution
with location parameter 0 and scale parameter 1.

2.1. Efficient Choice Designs for the
Mixed Logit Model

Recognizing the importance of accounting for hetero-
geneity in modeling consumer behavior in marketing,
recent research on efficient choice designs focuses on
the mixed logit model (e.g., Sándor and Wedel 2002,
2005; Yu et al. 2009; Liu and Arora 2011). In contrast
to the standard logit model that assumes � is homo-
geneous across consumers, the mixed logit model
accounts for consumer heterogeneity by assuming that

the m parameters in � are random effects. For exam-
ple, for the choice designs investigated in Sándor and
Wedel (2002, 2005), it is assumed that � = �B + V�B

with vector �B = 4�11 0 0 0 1�m5
′, and V is an m × m

diagonal matrix, where the m diagonal elements are
independent and identically distributed (i.i.d.) from
the standard normal distribution. The probability that
alternative j is chosen from choice set s, given �B and
�B, is

�sj =

∫

psj4�5f 4�5d�1 where

psj4�5=
exp8x’sj4�B +V�B59

∑J
j=1 exp8x’sj4�B +V�B59

1 (2)

where v is the vector containing the m diagonal ele-
ments of matrix V .

Under the mixed logit model, an optimal design
for efficient estimation of the parameters � = 4�B1�B5
under the D-criterion is the one that minimizes the
D-error (Sándor and Wedel 2002) defined as the deter-
minant of the inverse of the Fisher information matrix
normalized by the total number of elements in �
(which is 2m in this case), that is

D-error = det
{

I�4X11 0 0 0 1XH 5
−1
}1/42m5

1 with

I�4X11 0 0 0 1XH 5=

H
∑

h=1

S
∑

s=1

I�4Xhs51 (3)

where Xh is the design matrix corresponding to the
S choice sets of product alternatives administered
to respondent h for evaluation, and I�4Xhs5 is the
Fisher information matrix for a single choice set s 4s =

1121 0 0 0 1 S5 for respondent h 4h = 1121 0 0 0 1H5. In the
case of homogeneous designs, X1 =X2 = · · · =XH , the
Fisher information matrix in (3) simplifies to

I�4X11 0 0 0 1XH 5 = H
S
∑

s=1

I�4Xs5

= H
S
∑

s=1

[

E ′
sã

−1
s Es E ′

sã
−1
s Qs

Q′
sã

−1
s Es Q′

sã
−1
s Qs

]

1 (4)

Es =

∫

6Ps4�5− ps4�5ps4�5
′7Xsf 4�5d�1

Qs =

∫

6Ps4�5− ps4�5ps4�5
′7XsVf 4�5d�1

ps4�5= 4ps14�51 0 0 0 1 psJ 4�55
′1

Ps4�5= diag4ps14�51 0 0 0 1 psJ 4�551

ãs = diag4�s11 0 0 0 1�sJ 50

Note that the expression of the Fisher informa-
tion matrix for the choice model, as shown in (4),
involves the vector of choice probabilities, which are
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a function of the model parameters. Therefore, choice
designs cannot be optimized without a prior estimate
of the model parameters (Ben-Akiva and Lerman
1985, Chapter 8.5). Drawing from insights obtained
from earlier research on choice designs (Huber and
Zwerina 1996, Arora and Huber 2001), one solu-
tion to the problem is to use prior knowledge to
specify the values of � = 4�B1�B5 for the design
construction. Alternatively, instead of using the fixed
values or point-mass prior estimates of � = 4�B1�B5,
the Bayesian approach can be used to incorporate
the uncertainty of the prior estimates through the
prior probability distributions and correspondingly
the D-criterion becomes the Bayesian D-criterion (see
Chaloner and Verdinelli 1995 for a review).

2.2. Computer Search Algorithms
Various computer search algorithms have been used
in extant research to find efficient choice designs,
such as the RS (relabeling and swapping) algo-
rithm (Huber and Zwerina 1996), the RSC (relabel-
ing, swapping, and cycling) algorithm (Sándor and
Wedel 2002), the modified Fedorov algorithm (Kessels
et al. 2006), and the coordinated exchange algorithm
(Kessels et al. 2009, Yu et al. 2009, Liu and Arora 2011).
The most recent research has advocated the use of the
coordinate-exchange algorithm because it is found to
be computationally efficient, especially when there is
a large number of attributes and attribute levels in
the choice experiment. All of these algorithms start
with an initial choice design and then go through var-
ious exchanges of attribute levels (i.e., an attribute
level in the initial choice design is exchanged with all
other possible levels of that attribute). An exchange is
accepted only if it improves the design criterion value.
The exchanges are done iteratively until no further
substantial improvement is possible.

Because the choice design under search in these
algorithms is discrete in nature, there is no mathemat-
ical tool or theory we can leverage to ensure that the
final design obtained is globally optimal. That is, it is
difficult to claim that no other design is better, unless
we check every possible option in the entire design
space. However, the number of all possible choice
designs can be so large that it is impossible to search
over every possible design and find a globally opti-
mal design. For example, for a choice experiment with
four attributes each with three levels, there are 34 = 81
possible product alternatives or attribute-level combi-
nations to choose from. Suppose we want to construct
a choice design with three alternatives per choice set,
then the number of all possible choice sets is

(

number of all possible product alternatives
number of alternatives per choice set

)

=

(

81
3

)

= 8513200 (5)

If we try to construct a homogeneous design with
eight choice sets, then the number of all possible
choice designs is

(

number of all possible choice sets
number of choice sets in the choice design

)

=

(

851320
8

)

= 609 × 10340 (6)

The number of all possible choice designs will be
even larger if we try to construct a heterogeneous
design. With the rare exception of an extremely sim-
ple case, it is impossible for the computer search to be
exhaustive and search over all possible choice designs
to find a globally optimal design. Thus, a common
problem with the currently available searching algo-
rithms mentioned earlier is that the search may give
rise to a design that is far less efficient than a glob-
ally optimal design. To remedy this problem, multi-
ple searches (tries) with different initial designs have
been used in practice and the best design is selected
(e.g., Kessels et al. 2009, Yu et al. 2009, Liu and Arora
2011). Although design efficiency is improved, with
such an approach the computation time can be very
long for the search of homogeneous designs. The com-
putation time would be undoubtedly even longer for
the search of heterogeneous designs.

Moreover, there are two outstanding questions with
this approach of multiple searches: First, how many
different initial designs are sufficient? Should we
include 50, 100, 1,000, or more tries in the design
search? When can we stop and say that that is
enough? There is no definite answer from extant
research—different researchers have used different
numbers of tries in their search of efficient designs.
For example, Kessels et al. (2009) used 250 tries, Yu
et al. (2009) used 1,000 tries, and Liu and Arora (2011)
used 100 tries. Second, and perhaps more impor-
tantly, how can we be assured that the final design
obtained is highly efficient? All we can claim is that
the obtained design has higher efficiency than the ini-
tial designs and all other designs covered in the com-
puter search during the exchange process. However,
no matter how many different initial designs we try,
there is no guarantee that we can find a globally opti-
mal design unless all possible designs are covered
in the computer search. Besides, without the knowl-
edge of a globally optimal design, the true or global
efficiency (i.e., efficiency relative to a globally opti-
mal design) of the design obtained from the computer
search is unknown.

3. Proposed Approach
We propose a novel approach for the construction
of heterogeneous choice designs that effectively
addresses the limitations of the extant approaches
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outlined above. The proposed approach makes it
computationally feasible to find a completely het-
erogeneous choice design with assured high global
efficiency. For ease of illustration, we focus on the
D-criterion in this section, and discuss in §6 how the
approach can be easily extended to other design cri-
teria such as the A-, V-, and M-criteria.

3.1. The Continuous Design Framework
The proposed approach employs the continuous
design (also called the approximate design) frame-
work (see Atkinson et al. 2007, Chapter 9), which is
different from the exact design framework used in
extant approaches in the marketing literature. Unlike
an exact design, which depends on the specific num-
ber of observations in the choice experiment, a con-
tinuous design is based on the probability measure
(or weights) associated with the choice sets and is
independent of the total number of observations. In
particular, a continuous design in the conjoint choice
context can be denoted as 84Ck1wk59, k = 11 0 0 0 1K,
where Ck is a choice set that belongs to the space of
all possible choice sets, and wk is the corresponding
weight for the choice set with the constraint such that
0 ≤wk ≤ 1 and

∑K
k=1 wk = 1. Note that the weight wk

is continuous and thereby the corresponding design
is defined in the continuous space rather than the
exact space. The Fisher information matrix for a con-
tinuous design 84Ck1wk59, k = 11 0 0 0 1K is defined as
∑K

k=1 wkI4Ck5, where I4Ck5 is the Fisher information
matrix for the single choice set Ck that contains J
product alternatives, that is, Ck = 4xk11xk21 0 0 0 1xkJ 5

′.
To distinguish a continuous design from an exact
design, we use the notation X̃ to represent a contin-
uous design in contrast to the corresponding exact
design X for the remainder of the paper.

For any exact design X = 8Chs9, h = 11 0 0 0 1H , s =

11 0 0 0 1 S, where Chs denotes the choice set s for
respondent h, there exists a corresponding continuous
design X̃ = 84Chs11/4HS559, h = 11 0 0 0 1H , s = 11 0 0 0 1 S.
This is because there are a total of HS observations,
and therefore the weight corresponding to each choice
set Chs is 1/HS. Given a fixed number of respondents
and a fixed number of choice sets per respondent, the
Fisher information matrix of an exact design X, which
equals to

∑H
h=1

∑S
s=1 I4Chs5, is proportional to that of

its corresponding continuous design X̃, which equals
to
∑H

h=1
∑S

s=1 41/4HS55I4Chs5. Let G represent the glob-
ally optimal exact design. The global efficiency of an
exact design X, defined as the efficiency relative to
the optimal exact design G, is therefore the same as
the relative efficiency of the two designs’ continuous
counterparts X̃ and G̃. For example, under the D-
criterion for the mixed logit model, let D-error4X5 and
D-error4G5 denote the D-errors (as defined in Equa-
tions (3) and (4)) associated with the exact design

X and the globally optimal exact design G, and let
D-error(X̃5 and D-error(G̃5 denote the D-errors associ-
ated with the corresponding continuous designs, we
have

Global efficiency of an exact design X

=
D-error4G5

D-error4X5
=

D-error4G̃5

D-error4X̃5
0 (7)

Note that G̃ is the continuous counterpart of the
globally optimal exact design G, and it may or may
not be globally optimal in the continuous design
space. Let X̃∗ be the globally optimal continuous
design such that D-error(X̃∗5 is minimized over the
entire space of continuous designs, then we have
D-error(G̃5 ≥ D-error(X̃∗5, and therefore from (7) we
have

Global efficiency of an exact design X

≥
D-error4X̃∗5

D-error4X̃5
0 (8)

The right-hand side of (8) measures the global effi-
ciency of design X̃ in the continuous design space,
and it provides a lower bound to the global effi-
ciency of the corresponding design X in the exact
design space, as shown by the above inequality. The
advantage of using the right-hand side of (8) to assess
global design efficiency in contrast to (7) is that it
does not require the knowledge of a globally optimal
exact design G, which is computationally infeasible
to obtain, as discussed in §2. Instead, we can focus
on finding a globally optimal continuous design X̃∗,
where the well-established general equivalence theo-
rem by Kiefer (1974) can be used to help achieve this
goal.

3.2. The General Equivalence Theorem
The general equivalence theorem provides the neces-
sary and sufficient condition for a globally optimal
continuous design. We can verify the global optimal-
ity of any design by verifying this condition. Note that
there may be multiple designs that are globally opti-
mal as long as they all satisfy this condition. These
designs are “equivalent” in the sense that they all
have the same value of the selected optimality crite-
rion (e.g., they all have the same minimum D-error
values). The theorem is a general theorem that applies
to a wide class of design optimality criteria, includ-
ing the D-, A-, V-, and M-design criteria based on the
Fisher information matrix. Here we provide a brief
review of the theorem for the D-criterion in the con-
text of choice designs.
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General Equivalence Theorem0 A design X̃∗ is globally
optimal in the continuous design space if, and only if,

d4Ck1 X̃
∗5≤ 01 (9)

for any Ck that belongs to the space of all possible
choice sets. For the D-criterion, we have

d4Ck1 X̃
∗5= Tr

{

6I4Ck5− I4X̃∗57I4X̃∗5
−1}

1 (10)

where I4Ck5 is the Fisher information matrix for
choice set Ck, and I4X̃∗5 is the Fisher information
matrix for the continuous design X̃∗.

For a design criterion other than the D-criterion,
the expression of the function d4Ck1 X̃

∗5 in the gen-
eral equivalence theorem differs. We provide in
Appendix A the expressions of the function d4Ck1 X̃

∗5
for the A-, V-, and M-design criteria. Detailed proofs of
the theorem can be found in Kiefer (1974), Pukelsheim
(1993), Fedorov and Hackl (1997), and Atkinson et al.
(2007), among others. The significance of the gen-
eral equivalence theorem is that it allows us to check
whether a design is indeed globally optimal by verify-
ing if the necessary and sufficient condition (9) is sat-
isfied over the space of all possible choice sets. That is,
to find a globally optimal continuous design using the
general equivalence theorem, we only need to check
over the space of all possible choice sets. In contrast,
to find a globally optimal exact design, we need to
check over the space of all possible choice designs. The
number of all possible choice sets is obviously much
smaller than that of all possible choice designs. For
example, in the design scenario discussed in §2.2, there
are four attributes each with three levels, three alterna-
tives per choice set, and eight choice sets in the design.
The number of all possible choice sets is 851320 (see
Equation (5)), a much smaller number in comparison
to the number of all possible choice designs, which is
609 × 1034 (see Equation (6)). Therefore, in contrast to
the computationally prohibitive task of finding a glob-
ally optimal exact design, it is much easier to find a
globally optimal continuous design. In fact, the com-
putation time is very fast using the algorithm, which
we describe in §3.3.

3.3. Algorithm for Finding a Globally Optimal
Continuous Design

Recently, following the line of work by Yang and
Stufken (2009) who obtained a series of unifying
results for multiple models and multiple design opti-
mality criteria, Yang et al. (2013) proposed a new opti-
mal weight exchange algorithm (OWEA) for deriving
globally optimal designs in the continuous design
space. Instead of relying completely on numeric
computation, the OWEA utilizes Newton’s iteration
method, a well-established mathematical tool, to find

optimal designs for a broad class of optimality cri-
teria. The authors theoretically proved the conver-
gence of the algorithm and demonstrated that the
proposed algorithm substantially outperforms exist-
ing algorithms in terms of computation time.

The problem considered by Yang et al. (2013)
focuses on nonlinear models with a small number
of continuous variables in which they can utilize the
finer grid approach as an adaptive way to simplify
the search process. In this paper we extend the OWEA
to the setting of choice experiments with a large
number of discrete variables (various attribute levels)
where the finer grid approach in OWEA cannot be
applied and we develop a new approach to address
this issue. We call our algorithm the modified OWEA
(mOWEA). The algorithm works by iteratively updat-
ing the choice sets and their corresponding weights
until they converge to a globally optimal continuous
design such that the sufficient and necessary condi-
tion (9) in the general equivalence theorem is satis-
fied. Figure 1 outlines the four steps of the mOWEA,
which can be summarized as follows:

(1) Start by randomly selecting r choice sets1 from
all possible choice sets and assign equal weights for
each selected choice set, where r is the total number
of parameters in the model. This serves as the initial
design.

(2) For a given initial design X̃0, update the ini-
tial weights corresponding to the selected choice
sets with the optimal weights using Newton’s itera-
tion method (details of the method are provided in
Appendix B). Note that there may be multiple itera-
tions with Newton’s iteration method before the opti-
mal weights are found. Elimination of zero, one, or
multiple choice sets from the initial design may occur
during the process.

(3) For the updated design X̃t , calculate the func-
tion d4Ck1 X̃t5 as defined in Equation (10) for every
possible choice set Ck and find the choice set C∗

k which
maximizes d4Ck1 X̃t5.

If the maximum value is less than a prespecified
threshold (e.g., 10−6), we consider the necessary and
sufficient condition in Equation (9) satisfied and there-
fore X̃t is a globally optimal continuous design.

(4) Otherwise, update the design X̃t by adding to
the design the choice set C∗

k with assigned weight 0.
This serves as the new initial design, and repeat
steps (2) and (3).

1 In theory, the number of choice sets in the initial design can be
set to any number. Regardless of which initial design to use, the
final converged optimal continuous design should be equivalent.
However, we advise against starting with an initial design where
the number of choice sets is large (e.g., 1,000) because this will
significantly slow down the computation speed in the next step
because of the calculation of the large Hessian matrix in Newton’s
iteration method (see details in Appendix B).

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

24
8.

15
5.

22
5]

 o
n 

09
 A

pr
il 

20
16

, a
t 1

9:
45

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Liu and Tang: Construction of Heterogeneous Conjoint Choice Designs
352 Marketing Science 34(3), pp. 346–366, © 2015 INFORMS

Figure 1 Flow Chart of the Algorithm

�

�
�

�

�

To illustrate the use of the algorithm through
an example, consider constructing a globally opti-
mal continuous design that involves four product
attributes each with three levels and three product
alternatives per choice set. The design optimization
criterion used is the D-criterion for the mixed logit
model as discussed in §2.1. The total number of
parameters for the mixed logit model is 8(�B5+
8(�B5 = 16. Thus, the algorithm starts by randomly
selecting 16 choice sets from the 851320 possible
choice sets (see Equation (5)), and allocating an equal
weight (1/16) to each choice set. These initial weights
are updated to the optimal weights according to
the Newton iteration method. Then for the updated

design X̃t , calculate the function d4Ck1 X̃t5 for all pos-
sible choice sets (k = 11 0 0 0 18513205. Add to the design
X̃t the choice set C∗

k that maximizes d4Ck1 X̃t5 with
an initial weight of 0. This becomes the new initial
design. Iteratively update the weights and the choice
sets until the necessary and sufficient condition in
Equation (9) is satisfied and the resulting design is
globally optimal.

3.4. Conversion from Optimal Continuous Design
to Exact Design with High Efficiency

Note that the globally optimal continuous design
obtained from the algorithm described above is inde-
pendent of the number of respondents and the

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

24
8.

15
5.

22
5]

 o
n 

09
 A

pr
il 

20
16

, a
t 1

9:
45

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Liu and Tang: Construction of Heterogeneous Conjoint Choice Designs
Marketing Science 34(3), pp. 346–366, © 2015 INFORMS 353

number of choice sets per respondent. In this sec-
tion we describe a procedure we developed to con-
vert the optimal continuous design to an exact design
with assured high efficiency. With the weight wk being
continuous between 0 and 1, the continuous design
framework does not limit the number of observations
per design point to be integers. That is, when the total
number of observations is N , where N = number of
respondents (H5× number of choice sets per respon-
dents (S5, the number of observations Nwk = HSwk

required for choice set Ck is not necessarily an inte-
ger. Therefore, in order to convert the continuous
design to an exact design, the number of observa-
tions required for each choice set needs to be rounded
to an integer. Although there are existing rounding
approaches in the statistics literature (see, for exam-
ple, Pukelsheim 1993, p. 311) that convert an optimal
continuous design to an exact design with high effi-
ciency, these approaches do not work well in the set-
ting of choice designs because they do not impose any
restrictions on the replication of the design points. As
a result, a respondent may be asked to evaluate two
or more choice sets that are exactly the same, which
clearly does not make sense. Therefore, we develop a
procedure that addresses this issue, with the assump-
tion that the maximum weight in the globally optimal
continuous design is less than or equal to 1/S (which
we have found to hold true for all design scenarios
explored in our simulation studies described in §4).
The steps of the procedure are outlined below.

1. Rank order (from high to low) the choice sets
within the globally optimal continuous design by
their corresponding required number of observations
l̃0k =HSwk, which are not necessarily integers. Assign
the first S choice sets to the first respondent 4h= 15.

2. For the S choice sets that have been assigned
in the previous step, let l̃hk = l̃h−11 k − 1. For those
that have not been assigned, let l̃hk = l̃h−11 k. Reorder
the choice sets according to l̃hk and assign the first
S choice sets to the next respondent (i.e., respondent
h+ 15.

3. Repeat step 2 until we have assigned S choice
sets for each of the H respondents.

To see the basic intuition of the procedure, consider
an example of converting the globally optimal con-
tinuous design obtained in §3.3 to an exact design
for the case of 120 respondents and eight choice sets
per respondent. The required number of observations
for choice set Ck is l̃0k = HSwk = 960wk, according
to the globally optimal continuous design. The con-
verting procedure starts by assigning the top eight
choice sets with the highest l̃0k to the first respon-
dent. Then the number of observations to be allocated
to each choice set is adjusted to reflect the fact that
these eight choice sets have already been assigned
once (such that l̃1k = l̃0k − 15 although others have

not (such that l̃1k = l̃0k5. The choice sets are subse-
quently reordered according to the adjusted number
of observations l̃1k and the top eight choice sets are
assigned to the next respondent. This continues until
each of the 120 respondents is assigned with eight
choice sets. The procedure ensures the following two
nice properties of the resulting exact design: (i) no
respondent will be given duplicate choice sets, and
(ii) the resulting exact design is assured to have high
global efficiency. It is easy to see that the first prop-
erty holds because by definition of the procedure, no
choice set can be taken more than once for the same
respondent. The second property is ensured because
the corresponding continuous design of the resulting
exact design is very close to the globally optimal con-
tinuous design. In other words, the weight of each
choice set of the continuous design corresponding to
the resulting exact design is very close to the optimal
weight wk in the globally optimal continuous design.
We refer readers to Appendix C for the detailed proof.

Note that when a no-choice option is used in the
conjoint choice experiment, we need to add the no-
choice option as an additional alternative to each
choice set of the resulting exact design from the above
procedure. In addition, in calculating the Fisher infor-
mation matrix, the no-choice option is treated as a
separate alternative with zero utility (xsj = 0) together
with an increased number of parameters for estima-
tion (Haaijer et al. 2001, Gilbride and Allenby 2006),
e.g., an increase from 84�B5 + 84�B5 = 16 to 94�B5 +

94�B5 = 18 parameters. All other aspects of the pro-
posed approach remain the same.

We end this section by noting that in addition to
the fast computation and the assured high global effi-
ciency of the resulting choice design, our proposed
approach naturally gives rise to completely hetero-
geneous designs. In particular, whereas the existing
approach to efficient heterogeneous designs (Sándor
and Wedel 2005) explicitly searches for a small num-
ber of (e.g., six) subdesigns to be administered to
different groups of respondents and thus results in
designs that are only heterogeneous at the group
level, our approach generates completely heteroge-
neous designs that are not limited to a prespecified
number of subdesigns.

4. Comparative Study: Simulations
In this section, we compare the proposed approach
with extant approaches in the search of efficient het-
erogeneous choice designs through a series of simula-
tion studies. We focus on the D-criterion for the mixed
logit model by minimizing the D-error as expressed
in (3) and (4), and discuss extensions to other design
criteria later in §6. We start by providing an overview
of extant approaches to the construction of heteroge-
neous choice designs.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

24
8.

15
5.

22
5]

 o
n 

09
 A

pr
il 

20
16

, a
t 1

9:
45

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Liu and Tang: Construction of Heterogeneous Conjoint Choice Designs
354 Marketing Science 34(3), pp. 346–366, © 2015 INFORMS

4.1. Extant Approaches to Heterogeneous
Choice Designs

As discussed in Sándor and Wedel (2005), extant
computer-search approaches to efficient heteroge-
neous choice designs include (i) the simultaneous
search, (ii) the greedy (sequential) search, and (iii) the
separate search. These three approaches rank from the
most to the least computationally intensive. Specif-
ically, for a heterogeneous design with M subde-
signs each with S choice sets, the simultaneous search
refers to the search of a big design with M × S
choice sets, the greedy search refers to the sequen-
tial search of each of the M subdesigns, and the
separate search refers to the independent search of
the M subdesigns. Because of the high computation
cost, it is recommended by Sándor and Wedel (2005)
to limit the number of subdesigns to six, with the
insights that marginal efficiency gain becomes small
once the number of subdesigns exceeds six. Among
the three approaches, the separate search is found to
have the highest computational efficiency, while at the
same time produces designs with similar efficiency
as designs from the other two approaches. Therefore,
the separate search is the recommended approach
for finding heterogeneous designs for the mixed logit
model by Sándor and Wedel (2005) and we use it as
the main benchmark in our comparative study.

In regards to the specific computer-search algorithm
for the separate search approach, we use the coor-
dinate exchange algorithm (Meyer and Nachtsheim
1995), which has been proven to be fast and efficient
based on recent research on the construction of effi-
cient choice designs (Kessels et al. 2009, Yu et al. 2009,
Liu and Arora 2011). The coordinate exchange algo-
rithm works by exchanging each attribute level in the
initial design with all possible levels of that attribute
and accepting the exchange only if it improves the
design criterion value. Starting with the first attribute
of the first alternative in the design, the algorithm iter-
ates until no further substantial improvement is pos-
sible. Without a clear guideline on the number of tries
(where each try refers to a search with one different
initial design) to be used for the coordinate exchange
algorithm, we take the two extremes used in extant
literature, that is, 100 tries on one end as used by Liu
and Arora (2011) and 1,000 tries on the other end as
used by Yu et al. (2009), and examine the impact of
the different number of tries on both the computation
time of the search and the efficiency of the resulting
design.

We also include in our comparison the Sawtooth
randomized designs as the industry benchmark for
heterogeneous choice designs. In contrast to the pro-
posed approach and the separate search approach that
aim to find designs optimized under the D-criterion

for the mixed logit model, the Sawtooth random-
ized designs are constructed in a balanced but some-
what randomized way that aims for one-way and
two-way balances over the frequency of occurrences
of different attribute levels while allowing for some
repeated occurrences of the same attribute level
within a choice task (i.e., “balanced overlap;”2 see
Chrzan and Orme 2000).

4.2. Performance Comparison Results
For ease of comparison, we start with the same
two design settings as those investigated by Sándor
and Wedel (2005), that is, four attributes each with
three levels, three alternatives per choice set, and
the number of choice sets S for each respondent is
either S = 10 (for design setting 1) or S = 15 (for
design setting 2). Including the two settings allows
for investigation on whether the number of choice
sets has any effect on the efficiency comparisons
between the proposed approach and the benchmark
approaches. Without loss of generality, we set the
number of respondents H in the choice experiment
to 120. Both the Sawtooth randomized designs and
the designs obtained from our proposed approach
contain M = 120 subdesigns each to be allocated to
one individual respondent. In contrast, the sepa-
rate search approach generates six subdesigns where
each subdesign is to be allocated to a group of
20 respondents.

Note that both the separate search approach from
Sándor and Wedel (2005) and our proposed approach
require prior knowledge of the model parameters
for the design construction. We follow Sándor and
Wedel (2002, 2005) and assume that �B = 4−1101
−1101−1101−11051 and �B = 41111 0 0 0 115. In addi-
tion, we use the same 64-point quasi-random sample
for both approaches in the evaluation of integrals in
the Fisher information matrix, as shown in (4). The
64-point quasi-random sample is obtained through
the Halton sequence approach, which has been shown
by Yu et al. (2009) to be more efficient than alter-
native random or quasi-random samples. Using the
same sample ensures that the integrals in the Fisher
information matrix are evaluated with the same accu-
racy across both approaches under comparison, and
thus any differences we may observe in computation
time or design efficiency are indeed attributable to the
nature of the different approaches rather than differ-
ent evaluations of the integrals.

2 The “balanced overlap” is recommended by Sawtooth software
as the preferred method to use for the generation of randomized
designs. The other main method used by Sawtooth software for this
purpose is the “complete enumeration” method, which allows for
no repeated occurrence of the same attribute level (i.e., no attribute-
level overlap) within a choice task.
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4.2.1. Performance Comparison on Global De-
sign Efficiency and Relative Efficiency. We start by
comparing the proposed approach with the bench-
mark approaches based on the following two mea-
sures of design efficiency:

(1) Global design efficiency. This is a measure of abso-
lute design efficiency, as defined on the right-hand
side of Equation (8). In particular, it assesses the effi-
ciency of a given design over the entire space of con-
tinuous designs by calculating the ratio of the D-error
of the given design and that of the globally optimal
continuous design.

(2) Percentage improvement in efficiency.3 This is a
measure of relative design efficiency that has been
used in the marketing literature (e.g., Sándor and
Wedel 2001, 2002, 2005; Yu et al. 2009) to assess the
performance of a given design (X5 relative to a refer-
ence design (or baseline design, R5. It is calculated as

Percentage improvement in efficiency

=

[

1 −
D-error4X5

D-error4R5

]

× 1000 (11)

If the measure is positive, then it shows that design X
is more efficient than the reference design. Otherwise
it is less efficient. For our comparative study, we use
the design obtained from the separate search with 100
tries as our reference design and calculate percentage
improvement in efficiency for all other designs rela-
tive to this design.

The top panel of Table 1 shows the compari-
son results based on global design efficiency. The
heterogeneous designs obtained from the proposed
approach have almost 100% global design efficiency
(99.998% and 99.995%, respectively), confirming the
assured high efficiency of the designs obtained from
the proposed approach. In contrast, designs obtained
from benchmark approaches have much lower effi-
ciency. Specifically, the separate search approach
results in heterogeneous designs with global design

3 This measure has also been called “percentage reduction in sample
size” in previous research that focuses on homogeneous designs.
This is because the Fisher information in the definition of the
D-error is proportional to the sample size given that the design is
fixed and independent of the sample size, such as in the case of a
homogeneous design where every respondent gets the same design.
Thus, if a design is twice as efficient as the reference design based
on the D-error, then we can reduce the number of respondents by
half when using this design and still obtain parameter estimates
that are as efficient as those from the reference design. However,
in the case of a heterogeneous design, this does not apply because
the design is changing with the number of respondents, that is, in
contrast to the case of a homogeneous design where every respon-
dent gets the same design and thus reducing the sample size does
not change the design, reducing the sample size (e.g., from 200 to
100 respondents) in the case of a heterogeneous design changes the
design itself because each respondent gets a different subdesign.

efficiency ranging from 83.37% to 88.79%, and
the Sawtooth randomized designs are at 55.43%
and 55.28% efficiency,4 respectively, for the two
design settings. Results on the relative design effi-
ciency measure reconfirm the high efficiency of the
heterogeneous designs from the proposed approach.
As shown in the middle panel of Table 1, designs
obtained from the proposed approach are 12.51% and
16.63% more efficient in comparison to the designs
obtained from the separate search approach with 100
tries. On the other hand, the Sawtooth randomized
designs are 50.41% and 58.27% less efficient.

It should be noted that although the proposed
approach and the separate search approach both
aim to find designs specifically optimized under
the D-criterion for the mixed logit model, the Saw-
tooth randomized designs aim for balanced over-
lap (Chrzan and Orme 2000) instead. Therefore the
lower efficiency of the Sawtooth randomized designs
should not come as a surprise. Further, the proposed
approach and the separate search approach assume
�B = 4−1101−1101−1101−1105 and �B = 41111 0 0 0 115
in the construction of optimal designs for the mixed
logit model. In contrast, the Sawtooth randomized
designs do not have the capability to incorporate
such prior knowledge and instead assume by default
that all respondents have zero part-worths with no
heterogeneity such that all product alternatives have
equal utilities and equal probabilities of being cho-
sen (Sawtooth software technical support). As a result,
Sawtooth designs can be highly efficient for settings
of zero part-worths with no or minimal heterogene-
ity, but their design efficiency diminishes in the pres-
ence of high heterogeneity and nonzero part-worths
as seen in our comparative study. Our result is con-
sistent with findings in Yu et al. (2009, Table 4) as
well, where the Sawtooth design (the “nearly orthog-
onal design” in the table) was found to have 35%
4= 00288/00818) efficiency relative to the design opti-
mized for the mixed logit model that accounts for
consumer heterogeneity and nonzero part-worths (the
“locally D-optimal mixed logit design”).

4.2.2. Performance Comparison on Computation
Time. In addition to comparisons based on global
design efficiency and relative design efficiency,
we also make comparisons between the proposed

4 We also examined the Sawtooth randomized designs generated
by the “complete enumeration” method and found that they are at
39.51% and 39.56% global design efficiency, respectively, for the two
design settings. As shown by Sándor and Wedel (2002), efficient
choice designs for the mixed logit model require some attribute-
level overlap within the choice sets. The complete enumeration
method allows for no overlap, and therefore results in randomized
designs with lower efficiency in comparison to randomized designs
generated by the balanced overlap method.
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Table 1 Comparison Between the Proposed Approach and Benchmark Approaches

Separate search approach
(M = 6)

Number of Proposed Sawtooth randomized
choice sets approach (M = 120) 100 tries 1,000 tries design (M = 120)

Global design efficiency S = 10 990998% 83037% 87003% 55043%
S = 15 990995% 87049% 88079% 55028%

Percentage improvement in efficiency S = 10 16063% — 4021% −50041%
S = 15 12051% — 1046% −58027%

Computation time (hh:mm:ss) S = 10 00:02:10 00:10:43 01:46:51 00:00:04
S = 15 00:02:15 00:17:31 04:04:15 00:00:05

Notes. (i) Both design settings (“S = 10” and “S = 15”) involve four attributes each with three levels; three alternatives per choice set; 120 respondents.
(ii) The computation time for Sawtooth randomized designs is not directly comparable to other approaches because of the different computing platforms
used—whereas the Sawtooth randomized designs are obtained exclusively from the Sawtooth software, designs from the proposed approach and the separate
search approach are obtained using SAS/IML on a Dell computer with 2.2 GHz and 8 GB RAM.

approach and benchmark approaches based on com-
putation time. The bottom panel of Table 1 shows the
time taken, in the format of hours:minutes:seconds
(hh:mm:ss), to obtain heterogeneous designs for each
design setting. We note that as an industry bench-
mark, the randomized designs by Sawtooth software
are very fast to generate (four and five seconds for
the two design settings). However, the computation
time is not directly comparable to other approaches
under comparison because of the different computing
platform used. In particular, while the Sawtooth ran-
domized designs are obtained exclusively from Saw-
tooth software, designs from the proposed approach
and the separate search approach are obtained using
SAS/IML on a Dell computer with 2.2 GHz and
8 GB RAM. Therefore, we next focus on the compar-
ison between the proposed approach and the sepa-
rate search approach where the computation time is
directly comparable.

We find that there is a substantial gain in computa-
tional efficiency using the proposed approach in com-
parison to the separate search approach. As shown in
the bottom panel of Table 1, the time taken by the
proposed approach is approximately only 20% and
12% of that taken by the separate search approach
with 100 tries for the settings of 10 choice sets and
15 choice sets, respectively. Note that the number of
subdesigns is limited to six for the separate search
approach, whereas it is not limited for the proposed
approach. This suggests that the gain in computa-
tional efficiency of the proposed approach would be
considerably larger if the limit on the number of sub-
designs is relaxed for the separate search approach.

Another advantage of the proposed approach over
the benchmark separate search approach is that there
is a minimal change in computation time when
the number of choice sets per respondent increases.
As shown in the bottom panel of Table 1, there
is an increase of only five seconds in computation
time for the proposed approach when the number
of choice sets per respondent increases from 10 to

15. In contrast, the computation time for the sepa-
rate search approach with 100 tries has an increase
of nearly seven minutes. This is because the pro-
posed approach is based on the continuous design
framework where the search of an optimal continu-
ous design is independent of the number of choice
sets and respondents. It is only during the conver-
sion from the optimal continuous design to the exact
design that the number of choice sets makes a differ-
ence together with the number of respondents. The
computation time required for the conversion proce-
dure is minimal and therefore an increased number of
choice sets per respondent has little influence on the
computation time for the proposed approach.

Last, we note that in the separate search approach,
the computation time increases considerably as the
number of tries increases from 100 to 1,000. This, in
combination with the minimal differences in design
efficiency between designs obtained from 100 tries
and 1,000 tries (as shown in the top panel of Table 1),
strongly argues for the use of 100 tries rather than
1,000 tries. Therefore, we use 100 tries only for the
separate search approach in the remainder of our
comparative study.

4.3. Comparison Results Under
Different Parameter Settings

The comparison results discussed so far are obtained
under a standard setting of parameters �B and
�B in the mixed logit model used in previ-
ous research (e.g., Sándor and Wedel 2002, 2005),
that is, �B = 4−1101−1101−1101−1105, and �B =

41111 0 0 0 115. Next we extend the comparative study to
different parameter settings and examine if and how
the performance of the proposed approach changes
accordingly. Given that the construction of Saw-
tooth randomized designs is based on the assump-
tion of zero part-worths, we start by examining
two settings in which the mean part-worths are
zero (�B = 40101 0 0 0 1055, with either standard con-
sumer heterogeneity (�B = 41111 0 0 0 1155 or in the
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Table 2(a) Efficiency Results (in %) Under Zero Mean Part-Worths

Zero mean part-worths �B = 401 0 0 0 105 Zero mean part-worths �B = 401 0 0 0 105

Design Standard heterogeneity �B = 411 0 0 0 115 Minimal heterogeneity �B = 400011 0 0 0 100015

Global design efficiency Proposed approach 99099 99099
Separate approach 87018 96027
Sawtooth randomized 58080 82092

Percentage improvement Proposed approach 12081 3072
in efficiency Separate approach — —

Sawtooth randomized −48027 −16010

Note. Results reported in the table are for the design setting “S = 15” that involves four attributes each with three levels; three alternatives per choice set; 15
choice sets per respondent; 120 respondents.

Table 2(b) Efficiency Results (in %) Under Various Nonzero Part-Worths and Heterogeneity

Low heterogeneity High heterogeneity
(�= 0055 4�= 25

Low magnitude High magnitude Low magnitude High magnitude
Design 4�= 0055 4�= 25 4�= 0055 4�= 25

Global design efficiency Proposed approach 99099 99099 99099 99099
Separate approach 91087 86093 82098 80029
Sawtooth randomized 68029 49055 45011 39067

Percentage improvement Proposed approach 8013 13007 17002 19071
in efficiency Separate approach — — — —

Sawtooth randomized −34052 −75044 −83095 −102039

extreme case with nearly zero heterogeneity5 (�B =

40001100011 0 0 0 1000155. This allows us to investigate
whether the benefit of the proposed approach over
the Sawtooth randomized designs still holds and how
it is affected by the zero prior specification.

In addition, we examine various settings of nonzero
part-worths and investigate how the performance of
the proposed approach changes when levels of con-
sumer heterogeneity and/or magnitudes of consumer
part-worths increase from low to high. Specifically,
we examine 2 × 2 = 4 different settings. We have
low and high levels of consumer heterogeneity, cor-
responding to � = 005 and 21 respectively, where
the vector of consumer heterogeneity parameters is
�B = � × 41111 0 0 0 115. We also have low and high
magnitudes of mean part-worths, corresponding to
�= 005 and 21 respectively, where the vector of mean
part-worths in the mixed logit model is �B = � ×

4−1101−1101−1101−1105.
For each setting, we obtain heterogeneous designs

with 15 choice sets per respondent using the pro-
posed approach and benchmark approaches for com-
parison. The computation time taken to generate the
designs are similar to those reported in Table 1.
We report results on global and relative design effi-
ciency measures in Tables 2(a) and 2(b). The results

5 The heterogeneity parameters in �B in the mixed logit model can-
not be set to exactly 0 because this will make the information matrix
singular.

in both tables show that designs obtained from
the proposed approach consistently outperform the
benchmark designs obtained from the separate search
approach and the Sawtooth randomized approach.
For example, designs from the proposed approach
achieve 99.99% global design efficiency across all set-
tings. In contrast, the global design efficiency ranges
from 80.29% to 96.27% for designs from the separate
search approach, and 39.67% to 82.92% for Sawtooth
randomized designs.

In comparison to the results reported in Table 1,
results in Table 2(a) show that under standard
consumer heterogeneity, the efficiency gain of the
proposed approach over the Sawtooth randomized
approach is not affected much by the change from
the nonzero prior to the zero prior specification of
the mean part-worths. This is because there is only a
slight change (from 55.28% to 58.80%) in global design
efficiency for the Sawtooth randomized design. In the
extreme case when there is almost no consumer het-
erogeneity, the global design efficiency improves for
the Sawtooth randomized design. Nevertheless, the
efficiency gain from using the proposed approach is
still about 17% (99.99% over 82.92%) based on the
D-error.

The results in Table 2(b) demonstrate that in gen-
eral, the efficiency gain from using the proposed
approach increases when either consumer heterogene-
ity or magnitude of part-worths increases. The mag-
nitude of the increase in efficiency gain from using
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the proposed approach, however, is much higher cor-
responding to the increase in consumer heterogeneity
(e.g., an increase from 8.13% to 17.02%, in contrast
to an increase from 8.13% to 13.07%). This suggests
that the advantage of using the proposed approach in
finding efficient heterogeneous choice designs would
be most prominent when consumer heterogeneity
is high.

4.4. Comparison Results Under
Alternative Measures of Efficiency

The comparison results in the previous two subsec-
tions provide strong supporting evidence in favor of
the proposed approach over benchmark approaches
in finding efficient heterogeneous choice designs for
the mixed logit model. In this section, we further
examine the performance of the designs under com-
parison based on alternative measures of efficiency.
We start with the following two measures that have
often been used in extant research (e.g., Sándor and
Wedel 2002, Kessels et al. 2006, Yu et al. 2009).

(a) Efficiency on prediction. This alternative mea-
sure focuses on predictive accuracy and is based
on the expected root mean squared prediction error
(ERMSEP 5. In particular, suppose there are Q all pos-
sible future choice sets each with J alternatives, the
ERMSEP for a given design X is defined as

ERMSEP 4X5 =
1

Q× J

∫

{

6�4�̂5−�4�57′6�4�̂5−�4�57
}1/2

·f 4�̂5 d�̂1 (12)

where f 4�̂5 is the distribution of the parameter esti-
mates, �4�̂5 is the vector of predicted probabilities for
the mixed logit model computed according to Equa-
tion (2) using the parameter estimates �̂ = 4�̂B1 �̂B5,
and �4�5 is the vector of true probabilities computed
using the true parameter values. The smaller the
ERMSEP , the more efficient the corresponding design
is in predictive accuracy. Using the design obtained
from the separate search approach as the reference
design R, we assess the relative efficiency of a given
design X in predictive accuracy by calculating the effi-
ciency gain relative to the reference design as follows:

Efficiency gain in prediction

=

[

1 −
ERMSEp4X5

ERMSEp4R5

]

× 1000 (13)

A positive value on the efficiency gain suggests that
design X is more efficient than the reference design
in predictive accuracy, whereas a negative value sug-
gests the opposite.

(b) Efficiency on recovery of the parameters � =

4�B1�B5 in the mixed logit model. In contrast to the two
design efficiency measures in §4.2.1 that are based on

the D-error, which focuses on the confidence region
of the parameter estimates, this alternative measure
is based on the ERMSE pertaining to the parameters
� = 4�B1�B5. Specifically, it is defined as

ERMSE�4X5=

∫

[

4�̂− �5′4�̂− �5
]1/2

f 4�̂5 d�̂0 (14)

The smaller the ERMSE�, the more efficient the corre-
sponding design is in parameter recovery. Similarly,
using the design obtained from the separate search
approach as the reference design R, we assess the
relative efficiency of a given design X in parameter
recovery through the efficiency gain defined the same
way as in (13) by replacing the ERMSEp’s with the
ERMSE�’s of the corresponding designs.

Following Sándor and Wedel (2002, 2005) and Yu
et al. (2009), we approximate the ERMSEs in Equa-
tions (12) and (14) by averaging over a large number
of random draws (e.g., 1,000 draws) from the asymp-
totic distribution of the parameter estimates, i.e., the
multivariate normal distribution with the mean vec-
tor � = 4�B1�B5 and the variance-covariance matrix
that is equal to the inverse of the Fisher information
matrix (Chaloner and Verdinelli 1995). To test if the
efficiency gains based on the ERMSEs are statistically
significant, we repeat the evaluation multiple times
(e.g., 100 times) with a different set of random draws
each time.

Although the focus of this paper is on the mixed
logit model where the parameters of interest are
the population-level parameters � = 4�B1�B5 that
capture mean part-worths and standard deviations,
individual-level part-worth estimates can also be
obtained through hierarchical Bayes estimation once
response data are available. Therefore, it would also
be interesting to examine how efficient the designs are
in the recovery of individual-level part-worths. To do
this, we follow Arora and Huber (2001) to first sim-
ulate responses y = 4y11 0 0 0 1yH 5 for all H individual
respondents and then use hierarchical Bayes estima-
tion to obtain 25,000 posterior draws of individual-
level part-worth estimates Â̂= 4�̂11 0 0 0 1 �̂H 5. Based on
the posterior draws, we calculate the ERMSE pertain-
ing to the individual-level part-worths Â as

ERMSE�4X5=

∫

[

4Â̂−Â5′4Â̂−Â5
]1/2

f 4Â̂ � y5 dÂ̂0 (15)

The efficiency gain in recovery of individual-level
part-worths is then calculated in the same way as in
(13) by replacing the ERMSEp’s with the ERMSEÂ’s of
the corresponding designs.

Tables 3(a) and 3(b) show the performance com-
parisons based on these alternative measures of effi-
ciency for various settings of mean part-worths and
consumer heterogeneity. On both the predictive accu-
racy and the recovery of � = 4�B1�B5, we find that
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Table 3(a) Efficiency Results (in %) Under Alternative Measures of Efficiency

Nonzero mean part-worths Zero mean part-worths Zero mean part-worths

Design Standard heterogeneity Standard heterogeneity Minimal heterogeneity

Efficiency gain in prediction Proposed approach 3007a 9084a 0079a

Separate approach — — —
Sawtooth randomized −52067a −62032a −2096a

Efficiency gain in recovery of Proposed approach 5005a 9010a 4082a

� = 4�B1 �B5 Separate approach — — —
Sawtooth randomized −45012a −39035a −23007a

Efficiency gain in recovery of Proposed approach 1013 −5008 −0041
individual-level part-worths Separate approach — — —

Sawtooth randomized −3035 −0086 −4029

aSignificantly different from 0 (�-level = 0005).

Table 3(b) Efficiency Results (in %) Under Alternative Measures of Efficiency—Various Nonzero Mean Part-Worths and Heterogeneity

Low heterogeneity High heterogeneity
4�= 0055 4�= 25

Low magnitude High magnitude Low magnitude High magnitude
Design 4�= 0055 4�= 25 4�= 0055 4�= 25

Efficiency gain in prediction Proposed approach 5026a 0011 8006a 11029a

Separate approach — — — —
Sawtooth randomized −44001a −48071a −47054a −57064a

Efficiency gain in recovery of Proposed approach 6035a 5021a 9083a 11032a

� = 4�B1 �B5 Separate approach — — — —
Sawtooth randomized −32073a −45023a −50094a −61083a

Efficiency gain in recovery of Proposed approach 5042 −2028 2030 5020
individual-level part-worths Separate approach — — — —

Sawtooth randomized −3043 −24067a −0031 2090

aSignificantly different from 0 (�-level = 0005).

the heterogeneous design obtained from the proposed
approach significantly outperforms the benchmark
designs, especially when there is high consumer het-
erogeneity. For example, as shown in Table 3(a), for
the setting of nonzero mean part-worths and stan-
dard heterogeneity, the design from the proposed
approach achieves 3.07% efficiency gain in predic-
tion and 5.05% efficiency gain in the recovery of � =

4�B1�B5 relative to the design obtained from the sep-
arate search approach. In contrast, the Sawtooth ran-
domized design results in efficiency losses of 52.67%
and 45.12%, respectively. We note that the magnitude
of efficiency gains of the proposed design over bench-
mark designs under these alternative measures of effi-
ciency is smaller than those based on the D-error in
Table 1 (e.g., 5.05% versus 12.51%). This is expected
because the proposed design is optimized based on
the D-error and therefore may not necessarily achieve
maximal efficiency gains when evaluated under alter-
native measures (Kessels et al. 2006).

On the recovery of the individual-level part-worths,
we find that there are generally no significant differ-
ences among the three types of designs except for one
occasion. This should not come as a surprise because
the designs from the proposed approach and the

separate search approach are optimized for the esti-
mation of population-level parameters in the mixed
logit model, which may not be optimal for the estima-
tion of individual-level parameters (Liu et al. 2012).
Therefore, these designs may not outperform the
Sawtooth randomized design on the recovery of the
individual-level part-worths. However, as shown in
Table 3(b), in the occasion when there are high mag-
nitudes of mean part-worths and low levels of hetero-
geneity, the designs from the proposed approach and
the separate search approach do significantly outper-
form the Sawtooth randomized design. This makes
intuitive sense because the Sawtooth design does not
take into account the nonzero prior, whereas the other
two types of designs do, and the greatest benefit of
incorporating the nonzero prior is achieved in the
occasion with high magnitudes of mean part-worths
and low heterogeneity (Arora and Huber 2001).

In summary, the findings from the compara-
tive study make a strong case for the use of the
proposed approach in the construction of efficient
heterogeneous choice designs for the mixed logit
model. In comparison to the separate search approach
that explicitly searches for a small number of sub-
designs (e.g., six), our proposed approach makes it
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computationally feasible to obtain a completely het-
erogeneous design with assured high efficiency. In
comparison to Sawtooth randomized designs, which
serve as the industry standard, heterogeneous designs
obtained from our proposed approach achieve con-
siderable gains in design efficiency, especially when
consumer heterogeneity is high.

5. Empirical Application of the
Proposed Approach

A key takeaway from the comparative study in §4
is that the proposed approach offers a practical and
valuable alternative to marketing practitioners in the
construction of heterogeneous choice designs. Instead
of using Sawtooth randomized designs, which have
been the industry standard, marketing practitioners
can possibly employ the proposed approach to obtain
heterogeneous choice designs with higher design effi-
ciency. To test this with real data, we conducted a
study online on Amazon’s Mechanical Turk or Mturk
(see review by Birnbaum 2000 for the use of Mturk in
behavioral research) directly contrasting the Sawtooth
randomized design with the heterogeneous design
from the proposed approach.

5.1. The Empirical Study
Participants in the study were asked to make choices
on laptop computers that are meaningful and relevant
to the general population online. The laptop comput-
ers were characterized by four product attributes each
with three possible attribute levels: screen size (12”,
14”, and 15.6”), memory (4 GB, 6 GB, and 8 GB), hard
drive (500 GB, 750 GB, and 1 TB), and price ($749,
$649, and $549). Data were collected on 240 respon-
dents who were randomly assigned to two groups
each of size 120. In each group every respondent
was given 15 choice sets with three product alterna-
tives, constructed either by the Sawtooth randomized
design (for the 120 respondents in group 1), or the het-
erogeneous design from the proposed approach (for
the 120 respondents in group 2). The same six holdout
choice tasks were given to both groups of respondents
following the above calibration choice tasks.

The heterogeneous design from the proposed
approach and the Sawtooth randomized design used
in the empirical study are the same ones that we
investigated in the simulation study in §4.2 for the
design setting of 15 choice sets. The heterogeneous
design from the proposed approach was constructed
under the prior specification that �B = 4−1101−11
01−1101−1105 and �B = 411 11 0 0 0 115. As shown in
Table 1, if the true values of �B and �B were the same
as the specified, then the heterogeneous design from
the proposed approach would have 99.995% global
design efficiency, and the Sawtooth design would have
55.28% global design efficiency.

Note that the attribute levels are based on the
effects-type coding as used in previous research (e.g.,
Arora and Huber 2001; Sándor and Wedel 2002, 2005;
Yu et al. 2009), where the part-worths of the three
levels of the same attribute sum to 0 and therefore
only two parameters are needed for that attribute in
the �B vector. For example, the first two specified val-
ues in the �B vector, −1 and 0, represent the mean
part-worths corresponding to the first two levels (12”
and 14”) of screen size. This implies that the mean
part-worth for the third level (15.6”) of screen size
is then 1, the negative sum of the part-worths for
the first two levels. Thus, the specified values of �B

and �B make intuitive sense—they indicate that con-
sumers generally prefer larger screens, larger mem-
ory, larger hard drive capacity, and lower price, with
modest levels of heterogeneity.

Without knowledge of the true values of the model
parameters, we cannot use the ERMSEs as defined
in §4.4 to compare design efficiency on parameter
recovery and prediction. Instead, we report in Table 4
the in-sample model fit and out-of-sample predic-
tion statistics as empirical measures of internal and
external validity. The in-sample model fit statistics
are based on the calibration choice tasks. We examine
both the average log likelihood and the log marginal
density (LMD) calculated according to the mean har-
monic estimator by Newton and Raftery (1994). The
out-of-sample prediction measures are based on the
six holdout choice tasks. We examine both the hit
rate that measures the predictive validity at the indi-
vidual level and the mean absolute error (MAE) that
measures predictive validity at the aggregate level
(Wittink and Bergestuen 1999). Starting with data
from group 1 where the choice sets were constructed
by the Sawtooth randomized design, we use hierar-
chical Bayesian analysis and retain 50,000 draws after
convergence in the Markov chain Monte Carlo for
inferences on the posterior estimates and holdout pre-
dictions. We do the same for the data from group 2
where the choice sets were constructed by the hetero-
geneous design from the proposed approach. Then,
based on the 50,000 posterior draws, we calculate
the differences in parameter estimates, model fit, and
holdout prediction statistics between the two groups.

Table 4 Empirical Test of the Proposed Approach as an Alternative to
the Industry Standard

In-sample model fit Hold-out prediction

Avg. log
Design likelihood LMD Hit rate (%) MAE

Proposed approach −580091a −627093a 83006a 00029a

Sawtooth randomized −691059 −740013 79003 00039

aSignificantly different from the corresponding statistics obtained from the
Sawtooth randomized approach (�-level = 0005).
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If the 95% highest posterior density (HPD) intervals
do not include 0, then the differences are considered
to be statistically significant (�-level = 0005).

The results from the empirical test, as shown in
Table 4, confirm the superior performance of the
heterogeneous design obtained from the proposed
approach in comparison to the Sawtooth random-
ized design. The significantly higher values in aver-
age log likelihood (−580.91 versus −691.59) and LMD
(−627.93 versus −740.13) in model fit statistics sug-
gest that data generated by the design from the pro-
posed approach lead to better internal validity in
contrast to data generated by the Sawtooth random-
ized design. In addition, the significantly higher hit
rate (83.06% versus 79.03%) and lower MAE (0.029
versus 0.039) suggest that better predictive validity
is achieved by using the design from the proposed
approach as opposed to the Sawtooth randomized
design.

Table 5 shows the posterior parameter estimates of
the model parameters �B and �B from using either
the proposed approach or the Sawtooth randomized
approach. We find that the two approaches lead to
significantly different parameter estimates on two
attributes—memory and hard drive capacity. In com-
parison to the estimates from the Sawtooth approach,
the estimates from the proposed approach demon-
strate significantly stronger preferences for larger
memory and larger hard drive capacity, together with
higher levels of heterogeneity. These significant differ-
ences in parameter estimates have important implica-
tions for substantive marketing problems such as the
development of a new product. It makes a strong case
for the use of the proposed approach as a valuable
alternative to the Sawtooth randomized design. With
gains in both model fit and predictive validity, the
proposed approach allows managers to make better
business decisions based on more accurate estimates
of consumer preferences and heterogeneity.

5.2. Difference Between Empirical and
Simulated Data

It should be noted that the efficiency gain of the
proposed approach over the Sawtooth approach
observed in the empirical data is less substantial than
that observed in the simulated data. This is similar to
findings in Johnson et al. (2005), where the authors
compared the adaptive choice-based conjoint (CBC)
with the standard CBC designs, both by Sawtooth
software. The authors provided an in-depth discus-
sion on possible reasons for this difference between
empirical and simulated data. In regards to our study,
we believe the following factors are especially rele-
vant: (1) imperfect prior specifications; (2) choice task
dependent response errors; and (3) use of simplifying
choice decision heuristics. We discuss each factor in
some detail next.

Table 5 Posterior Estimates of Model Parameters from the Empirical
Data

Proposed approach Sawtooth randomized

Attribute �B �B �B �B

Screen size
12” −1071 (0.21) 1084 (0.22) −2007 (0.20) 1076 (0.18)
14” 0017 (0.12) 0072 (0.12) 0043 (0.09) 0058 (0.11)

Memory
4 GB −2039a (0.23) 1078a (0.20) −1047 (0.15) 1016 (0.13)
6 GB −0003 (0.10) 0041 (0.08) 0021 (0.08) 0050 (0.09)

Hard drive
500 GB −1039a (0.17) 1023a (0.16) −0099 (0.12) 0081 (0.11)
750 GB 0016 (0.10) 0049 (0.09) 0004 (0.08) 0040 (0.07)

Price
$749 −2039 (0.24) 1089 (0.21) −1097 (0.20) 1082 (0.19)
$649 0035 (0.09) 0048 (0.09) 0031 (0.08) 0048 (0.08)

Note. The posterior standard deviations of the parameter estimates are repor-
ted in parentheses.

aSignificantly different from the corresponding estimate obtained from the
Sawtooth randomized approach (�-level = 0005).

First, in the simulated data we had perfect prior
knowledge and incorporated such knowledge in the
design construction for the proposed approach. In
the empirical data, however, there is no perfect prior
knowledge and the prior specifications used for the
design construction may deviate from the true val-
ues of model parameters (as reflected through the
posterior estimates in the empirical data). This devia-
tion decreases the efficiency of the design constructed
by the proposed approach and could contribute to
a reduction in the efficiency gain of the proposed
approach over the Sawtooth approach in the empirical
data. Nevertheless, we note that considerable gains
in model fit and predictive validity are still attained
by the proposed approach. We believe this is partly
because the prior specification correctly reflects the
rank order of part-worths within each attribute, which
worked to the benefit of the proposed approach over
the Sawtooth approach.

Second, by accounting for nonzero priors of part-
worths and consumer heterogeneity, designs from the
proposed approach tend to be more utility balanced
(Huber and Zwerina 1996), which increases the diffi-
culty of the choice tasks. In the simulated data, the
response errors are generated according to the logit
model where the errors are independent of the choice
task. However, in reality, responses to more difficult
choice tasks may have larger errors, and the increased
error may counterbalance the gains in statistical effi-
ciency (Johnson et al. 2003).

Third, in the simulated data, choices are gen-
erated according to the compensatory, mixed logit
model. However, in reality, respondents may not fol-
low a compensatory evaluation process when making
choices and may resort to simplifying choice decision
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heuristics (Swait and Adamowicz 2001). For exam-
ple, respondents may use a two-stage consider-then-
choose decision process (e.g., Gilbride and Allenby
2004) as task difficulty increases. It is known that
in such cases, designs from the proposed approach,
which are optimized for the mixed logit model, may
suffer efficiency loss (Liu and Arora 2011).

Regardless of how the above three factors may off-
set the efficiency gains of the proposed approach,
the results from the empirical data show that the
proposed approach results in statistically significant
gains in model fit and predictive validity. We offer
a novel method to construct efficient heterogeneous
choice designs. Although it is outside the scope of
this paper to decompose the individual effect of these
three factors on design efficiency in the field, it is
clearly an important avenue for future research.

6. Constraints and Extensions
In this section, we discuss computational constraints
of the proposed approach for the situation when there
is a large number of attribute and attribute level
combinations. We also discuss possible solutions and
extensions.

6.1. Computational Constraints and
Proposed Solution

The proposed approach stores all possible choice sets
in an attempt to find a globally optimal design. As
the number of attributes and attribute levels in the
choice experiment increases, the number of all pos-
sible choice sets increases exponentially. Constrained
by the memory limit of the computing platform,6 the
proposed approach will likely encounter the memory
shortage problem in computation. A potential solu-
tion to this problem is to reduce the design space for
the proposed approach by reducing all possible alter-
natives to a well-selected subset and then form the
choice sets with the subset of alternatives. For exam-
ple, for a big conjoint study that involves 10 attributes
each with three levels, rather than using all possible
310 = 591049 product alternatives to form the choice
sets, we can reduce the design space significantly by
using a subset of 45 alternatives. A larger subset (e.g.,
81) can be selected if permitted by the memory capac-
ity of the computing platform.

The subset of alternatives can be selected based
on the idea of fractional factorial designs or orthog-
onal/nearly orthogonal designs (see, for example,
Kuhfeld and Tobias 2005). Alternatively we can select

6 Currently in Windows-based SAS/IML with which we have
coded the proposed approach, the work memory is limited to 2 GB
even if there is extra memory available in the computer system. SAS
technical support is aware of this issue and is hoping to address it
in future releases.

the subset based on the idea of uniform designs
(see Fang and Lin 2003, Zhou and Fang 2012). Orthog-
onal designs strive for one-way and two-way bal-
ances over the frequency of occurrences of attribute
levels. In other words, they aim for the one- and
two-dimensional uniformity over the distribution of
attribute levels. In contrast, uniform designs strive for
uniformity across all dimensions. As a result, uniform
designs have been shown to be more robust against
model misspecifications (Fang and Lin 2003). For
example, when there are possible interaction effects,
uniform designs would allow us to separate the true
interaction effects from the main effects, whereas
they may be completely confounded in orthogonal
designs. Therefore, one could use the uniform designs
to select the subset of alternatives for the proposed
approach. Using the online catalog of uniform designs
publicly available at http://sites.stat.psu.edu/~rli/
DMCE/UniformDesign/, we obtain the subset of 45
alternatives used to form the reduced design space for
the proposed approach. Additional uniform designs
can be obtained by using the algorithms discussed in
Zhou and Fang (2012).

Table 6 shows the results of comparison between
the benchmark designs and the heterogeneous design
from the proposed approach with the reduced design
space where the choice sets are formed by the
subset of 45 alternatives. This reduction effectively
resolves the problem of memory shortage for the
proposed approach in the case of a big conjoint
study that involves 10 attributes each with three lev-
els, four alternatives per choice set, and 15 choice
sets per respondent. Whereas there are no signifi-
cant differences among the designs on the recovery
of individual-level part-worths, the efficiency results7

based on D-error, predictive accuracy, and recovery
of parameters � = 4�B1�B5 demonstrate the superior-
ity of the heterogeneous design from the proposed
approach, even when it is constructed with the
reduced design space. In comparison to the sepa-
rate search approach, the proposed approach with the
reduced design space takes only a fraction of the com-
putation time and generates a completely heteroge-
neous design with small to modest efficiency gains
based on three different design efficiency measures.
In comparison to the Sawtooth randomized design,
the proposed approach with the reduced design space
continues to attain substantial and significant gains in
efficiency.

These findings demonstrate that one could use
the proposed approach with reduced design space

7 Because of the memory constraint, we cannot search through all
possible choice sets to find a globally optimal continuous design.
Therefore, instead of using the global design efficiency measure,
we focus on the relative design efficiency measures.
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Table 6 Performance of the Proposed Approach with Reduced Design Space vs. Benchmark

Proposed approach Separate search Sawtooth
(reduced design space) approach randomized design

(M = 120) (M = 6) (M = 120)

Computation time (hh:mm:ss) 00:39:35 02:16:07 00:09:15
Percentage improvement in efficiency 8052% — −65071%
Efficiency gain in prediction 0019% — −27040%a

Efficiency gain in recovery of � = 4�B1 �B5 1079%a — −30036%a

Efficiency gain in recovery of individual-level part-worths −1023% — −0091%

Notes. (i) The reduced design space for the proposed approach is formed from a subset of 45 alternatives. (ii) The design setting involves 10 attributes each
with three levels; four alternatives per choice set; 15 choice sets per respondent; 120 respondents.

aSignificantly different from 0 (�-level = 0005).

for design scenarios that involve a large number of
attributes and attribute level combinations. Even for
scenarios with a modest number of attributes and
attribute levels, the reduction of the design space
could be used for the proposed approach if the
researcher is willing to sacrifice some design effi-
ciency to achieve faster computation speed. For exam-
ple, for the design scenarios discussed in §4 that
involve four attributes each with three levels, using a
reduced design space formed by a subset of 45 alter-
natives in the proposed approach would reduce the
computation time from 2 minutes 15 seconds to 40
seconds, at the cost of 6.52% loss in design efficiency
based on the D-error.

In addition to using the uniform designs for robust-
ness against possible model misspecifications in the
selection of the subset of alternatives for the pro-
posed approach, further improvement can be made if
prior knowledge is available in practical applications.
For example, if there is prior knowledge on possi-
ble interaction effects, then such knowledge can be
incorporated into the definition of the X matrix by
including additional columns that represent the pos-
sible interaction effects. The selection of the subset of
alternatives can then be based on a fractional facto-
rial design that is optimized based on the D-criterion
that incorporates the possible interaction effects in the
X matrix. Alternatively, a composite design criterion
can be used where the composite D-error is the prod-
uct of the D-error for the main-effect only model and
for the possible interaction-effect model. Such com-
posite criterion has been shown to be more robust to
misspecifications of interaction effects (Yu et al. 2008).
Similarly, when there is prior knowledge that the con-
sumer choice process is likely noncompensatory with
screening at the consideration stage, such knowledge
can be incorporated by using the design criterion for
the two-stage consider-then-choose model (Liu and
Arora 2011). Last, if there are prohibitions of certain
attribute-level combinations for practical considera-
tions (Chrzan and Orme 2000) then they can be easily
accommodated by restricting the subset of alterna-
tives to only those allowed.

6.2. Extension to Other Design Criteria
Beyond the popular D-criterion, the proposed app-
roach easily extends to other design criteria that are
based on the Fisher information matrix, such as the
A- and V-criteria (Kessels et al. 2006) as well as the
M-criterion (Toubia and Hauser 2007). This is because
the proposed approach is based on the general equiv-
alence theorem (Kiefer 1974) and the OWEA (Yang
et al. 2013), both of which apply to a wide class of
design optimality criteria. The expressions of the gen-
eral equivalence theorem for the A-, V-, and M-criteria
are provided in Appendix A. Correspondingly, the
formulas for the optimal weight derivations in the
proposed approach for the three criteria are provided
in Appendix B.

7. Summary and Conclusion
Extant research on choice designs in the market-
ing literature focuses on the construction of effi-
cient homogeneous designs where every respondent
is given the same sets of product alternatives for eval-
uation. Sándor and Wedel (2005) were the first to
propose efficient heterogeneous designs and demon-
strate substantial efficiency gain of using heteroge-
neous designs over homogeneous designs. Although
extant computer-search approaches to finding effi-
cient designs work well for the case of homoge-
neous designs, they become inadequate for the case
of heterogeneous designs. The high computation cost
significantly hinders the widespread adoption of het-
erogeneous designs, even when the number of sub-
designs for the heterogeneous design is restricted to
be small (i.e., six). As a result, randomized designs by
Sawtooth software (Chrzan and Orme 2000) are often
used in practice where the subdesigns are generated
in a balanced but somewhat randomized way fairly
quickly but at the expense of design efficiency.

In this paper, we propose a new approach, which
not only achieves high efficiency of the resulting het-
erogeneous choice design but is also computationally
feasible. Our approach makes it practical to obtain
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a highly efficient design that is completely hetero-
geneous with a unique subdesign for each individ-
ual respondent in the conjoint choice experiment. The
construction of the heterogeneous design occurs all
at once before the choice experiment is launched and
responses collected. This is different from an adap-
tive choice design where the choice sets are sequen-
tially constructed and customized on the fly for each
respondent based on the respondent’s responses to
previous questions (e.g., Toubia et al. 2004, 2007).

To the best of our knowledge, our research is the
first in the marketing literature to find a completely
heterogeneous choice design with assured high global
design efficiency. In contrast to extant approaches that
rely on the exact design framework, the use of a con-
tinuous design framework in the proposed approach
allows us to leverage existing mathematical theo-
ries to quickly identify a globally optimal continuous
design. A rounding procedure that converts the glob-
ally optimal continuous design to the corresponding
heterogeneous choice design ensures the high global
design efficiency of the obtained exact design. In prac-
tice, when the number of attributes or attribute lev-
els are moderate, the proposed approach is capable
of finding a globally optimal continuous design in
the entire design space and allows us to measure the
global design efficiency of any given design relative
to the globally optimal continuous design. When the
number of attributes or attribute levels increase, the
design space increases exponentially. In such circum-
stances, we demonstrate that a reduction of the design
space for the proposed approach can be easily accom-
plished by selecting a subset rather than using all
possible product alternatives to form the choice sets
in the design space. Our proposed approach is fairly
general. When alternative design criteria based on the
Fisher information matrix are of interest, including
the A-, V-, and M-criteria, the proposed approach can
be easily extended as well.

In conclusion, our proposed approach provides
a practical and valuable tool to marketing prac-
titioners. We believe that using this approach to
generate efficient heterogeneous designs can bene-
fit marketing researchers/managers in many areas,
including but not limited to new product develop-
ment, sales force management, pricing, etc. First, the
significant gain in design efficiency in comparison
to designs obtained from extant approaches allows
managers to estimate consumer preferences more
accurately and subsequently make better decisions
based on these estimates. Second, the fast computa-
tion speed of the proposed approach makes it practi-
cal for generating a completely heterogeneous design
at the individual level so that there is a unique sub-
design for each individual respondent. We hope this
research will generate more interest in the adoption

of heterogeneous designs and stimulate more inter-
est in further research in the area of efficient choice
designs.
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Supplemental material to this paper is available at http://dx
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Appendix A

General Equivalence Theorem Expressions for the
A-, V-, and M-Criteria
Note that the A-criterion is to minimize the trace of the
inverse of the Fisher information matrix, that is, Tr4I−14X550
The M-criterion is to minimize Tr4MI−14X5M′5, which is
equivalent to minimizing Tr4M′MI−14X55. The V-criterion is
to minimize average prediction variances over the choice
probabilities of product alternatives in all Q possible
future choice sets, that is, to minimize

∑Q
q=1

∑J
j=1 Z

′4xqj5 ·

I−14X5Z4xqj5 = Tr86
∑Q

q=1
∑J

j=1 Z4xqj5Z
′4xqj57I

−14X59, where
Z4xqj5 = ¡4p̂qj4xqj1 �55/¡�1 and p̂qj4xqj1 �5 denotes the pre-
dicted choice probability for alternative j in choice set q.
Thus, the A-, V-, and M-criteria can be expressed in a
general form as Tr4PI−14X55, where P = I for the A-criterion,
P =

∑Q
q=1

∑J
j=1 Z4xqj5Z

′4xqj5 for the V-criterion, and P = M′M
for the M-criterion. The general equivalence theorem for the
three criteria can then be expressed as follows.

General Equivalence Theorem0 A design X̃∗ is globally optimal
in the continuous design space if and only if

d4Ck1 X̃
∗5= Tr8PI4X̃∗5

−1
6I4Ck5− I4X̃∗57I4X̃∗5

−1
9≤ 01

for any Ck that belongs to the space of all possible choice sets.
Here, I4Ck5 is the Fisher information matrix for choice

set Ck, I4X̃∗5 is the Fisher information matrix for the
continuous design X̃∗, P = I for the A-criterion, P =
∑Q

q=1
∑J

j=1 Z4xqj5Z
′4xqj5 for the V-criterion, and P = M′M for

the M-criterion.

Appendix B

Procedure to Derive Optimal Weights Using
Newton’s Iteration Method
Suppose there are r choice sets in the initial design, and let
8w11 0 0 0 1wr−11wr 9 be the associated initial weights. Define
W 4t5 = 4w11 0 0 0 1wr−15 and �= 1. Notice that wr = 1−

∑r−1
i=1 wi.

So we only need to update w4t5, the first r − 1 weights after
the tth iteration.
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a. First, W 4t5 can be updated using the following formula

W 4t5

=











































W 4t−15 −�

(

¡2 log �Ĩ �

¡W¡W ′

∣

∣

∣

∣

W=W 4t−15

)−1 ¡ log �Ĩ �

¡W

∣

∣

∣

∣

W=W 4t−15
1

D-optimal

W 4t−15 −�

(

¡2Tr4PĨ−15

¡W¡W ′

∣

∣

∣

∣

W=W 4t−15

)−1 ¡Tr4PĨ−15

¡W

∣

∣

∣

∣

W=W 4t−15
1

A1 V1 M-optimal0

Here, Ĩ is the Fisher information matrix for the ini-
tial design with weights W . P = I for the A-criterion,
P =

∑Q
q=1

∑J
j=1 Z4xqj5Z

′4xqj5 for the V-criterion, and P = M′M
for the M-criterion.

b. Check if there are nonpositive components of W 4t5. If
so, go to step (c2), otherwise proceed to c1.

c1. Check if �¡ log �Ĩ �/¡W �W=W 4t−15� is less than a prespec-
ified small positive value, say, 10−6, for the D-criterion.
Similarly, check �4¡Tr4PĨ−155/¡W �W=W 4t5� for A-, V-, and
M-criterion. If so, W 4t5 is the vector of optimal weights. Oth-
erwise, start the next iteration.

c2. Reduce � to �/2. Repeat (a) and (b) until � reaches a
prespecified value, say 10−6.

Remove the choice set with the smallest weight, and then
go to (a) with the new set of choice sets and update their
weights.

Appendix C

Proof of the Assured High Efficiency of the
Resulting Exact Design
Assume the globally optimal continuous design is X̃∗ =

84Ck1wk591 k = 11 0 0 0 1K with the maximum weight less than
or equal to 1/S. The detailed steps of the procedure that
converts the globally optimal continuous design to an exact
design are as follows:

1. Rank order the choice sets within the globally opti-
mal continuous design by their corresponding weights wk

(from high to low) multiplied by the number of respondents
and the number of choice sets per respondent (l̃0k =HSwk5.
Assign the first S choice sets to the first respondent 4h= 15.

2. For the S choice sets that have been assigned in the
previous step, let l̃hk = l̃h−11 k − 1. For the remaining choice
sets, let l̃hk = l̃h−11 k. Reorder the choice sets according to l̃hk
and assign the first S choice sets to the next respondent (i.e.,
respondent h+ 1).

3. Repeat step 2 until we get S choice sets for each of the
H respondents.

Let n̄k be the total number of replications of choice sets
Ck in the resulting exact design. For the proof of the assured
high efficiency of the resulting exact design, we need to
show that

�HSwk� ≤ n̄k ≤ �HSwk�1 k = 11 0 0 0 1K0 (C1)

Here, �HSwk� means the largest integer less than or equal to
HSwk and �HSwk� means the smallest integer greater than
or equal to HSwk. The above inequality ensures that n̄k/HS,
the weight of each choice set of the continuous design cor-
responding to the resulting exact design, is very close to the
weight wk in the globally optimal continuous design. As a

result, the resulting exact design is assured to have high
global efficiency.

First, we show that the left half of (C1) (i.e., �HSwk� ≤ n̄k)
holds through proof by contradiction. Suppose that n̄k <
�HSwk� for some k, say, k1, which is equivalent to n̄k1
≤ �HSwk1

� − 1 since they are integers. According to the
procedure, l̃hk1

starts with l̃0k1
= HSwk1

and it remains the
same if the choice set Ck1

is not chosen, or l̃hk1
is reduced by

1 each time the choice set Ck1
is chosen, as h moves from 1

to H . As a result

l̃Hk1
≥ l̃0k1

− n̄k1
≥HSwk1

− 4�HSwk1
� − 15≥ 10 (C2)

On the other hand, all l̃Hk ≥ 0 for all k. This must hold
true according to the following proof by contradiction. Let
k2 = arg mink l̃Hk. Suppose that l̃Hk2

< 0. Then choice set Ck2
must be chosen for the last respondent (i.e., respondent H5,
and thus l̃H−11 k2

= l̃Hk2
+ 10 Otherwise, the Sth largest l̃H−11 k

must be greater than l̃H−11 k2
+1 by the definition of k2 and the

nature of the procedure. This would consequently mean that
l̃H−21 k2

is not among the S largest l̃H−21 k1 k = 11 0 0 0 1K because
l̃H−21 k ≥ l̃H−11 k and therefore there are at least S l̃H−21 k’s larger
than l̃H−11 k2

+ 1, which is larger than or equal to l̃H−21 k2
by the definition of the procedure. This would mean that
choice set Ck2

is not chosen for respondent H − 1 and thus
l̃H−21 k2

= l̃H−11 k2
. We can continue the same argument until

l̃01 k2
, and we have l̃01 k2

= l̃Hk2
< 01 which contradicts to the

condition that wk > 0 for all k = 11 0 0 0 1K. This contradic-
tion proves that choice set Ck2

must be chosen for the last
respondent (i.e., respondent H5, which means that l̃H−11 k2

is
among the S largest l̃H−11 k1 k = 11 0 0 0 1K. Next we prove that
l̃Hk2

cannot be less than 0. If l̃Hk2
< 0 then we have l̃H−11 k2

=

l̃Hk2
+1 < 10 This would suggest that choice set Ck1

must have
also been chosen for the last respondent because l̃H−11 k1

≥

l̃Hk1
≥ 1 > l̃Hk2

+1 = l̃H−11 k2
, which means that l̃H−11 k1

must be
among the S largest l̃H−11 k1 k = 11 0 0 0 1K. Therefore, we have
l̃H−11 k1

= l̃Hk1
+ 1 > l̃H−11 k2

+ 11 which means that l̃H−11 k1
is

greater than the Sth largest l̃H−11 k by more than 1. Subse-
quently, choice set Ck1

must have been chosen for the respon-
dent H − 1 too because l̃H−11 k ≤ l̃H−21 k ≤ l̃H−11 k + 1 and thus
l̃H−21 k1

must still be among the S largest l̃H−21 k. Therefore
we have l̃H−21 k1

= l̃H−11 k1
+ 1 = l̃Hk1

+ 20 We can continue this
argument until l̃01 k1

, and we have l̃01 k1
= l̃Hk1

+ H ≥ H + 1,
which contradicts to the assumption that max1≤k≤Kwk

≤ 1/S.
This contradiction proves that it must be that all l̃Hk ≥ 0 for
all k0

Now that we have all l̃Hk ≥ 0 for all k and l̃Hk1
≥ 10 By

the definition of exact design for H respondents each with
S choice sets, we have

∑K
k=1 n̄k =HS. Thus we have

K
∑

k=1

4l̃Hk + n̄k5≥ 1 +HS1 (C3)

which contradicts to the fact that
K
∑

k=1

4l̃Hk + n̄k5=

K
∑

k=1

l̃0k =HS0 (C4)

This contradiction proves that the left half of (C1) holds,
that is, n̄k ≥ �HSwk�.

Now let us prove the right half of Inequality (C1).
Suppose that there exists k3, such that n̄k3

> �HSwk3
�, which
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is equivalent to n̄k3
≥ �HSwk3

�+ 1. Similar to (C2), we must
have l̃Hk3

< −1. Let k5 = arg mink l̃Hk and it must be that
l̃Hk5

<−1. Let k4 = arg maxk l̃Hk. We must have l̃Hk4
> 0. Oth-

erwise, by the similar argument in (C3), we would have

K
∑

k=1

4l̃Hk + n̄k5≤HS − 11 (C5)

which contradicts to (C4).
Next, with l̃Hk4

> 0 and l̃Hk5
< −1, we have two possible

outcomes: (i) we can have l̃01 k5
= l̃Hk5

using exactly the same
argument as that for l̃01 k2

= l̃Hk2
or (ii) l̃01 k4

= l̃Hk4
+H >H

using exactly the same argument as that for l̃01 k1
= l̃Hk1

+

H ≥H +1. The first outcome contradicts with the condition
wk > 0 for all k = 11 0 0 0 1K, and the second outcome con-
tradicts with the assumption that max1≤k≤Kwk

≤ 1/S. This
completes the proof.
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