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HONORS CAPSTONE ABSTRACT 
 
This project centers on mathematical applications to biochemistry. Specifically, the use of a 

dynamical system to model a special type of biochemical network and determine the effect of 

initial concentrations on the existence of several constant solutions. Many biochemical networks 

act as biological switches that are responsible for important biological functions such as cell 

differentiation and cell death; consequentially, the ability to better predict and manipulate their 

outcome is of great importance. One particularly insightful and relatively simple form of 

biochemical mechanism is that of the reversible substrate inhibition reaction. Utilizing basic 

principles of mathematics and chemistry, it is possible to convert a biochemical network into a 

system of differential equations; this in turn permits further in-depth analysis of the original 

chemical reaction in order to determine its projected outcomes. Using the Jacobian and its 

characteristic polynomial as well as analysis of the system itself, we can gain enhanced 

comprehension into the effect initial concentration has on the eventual outcome of the overall 

system of biochemical reactions. Specifically, it is possible to determine what limitations must 

be imposed on the initial network in order to guarantee fixed points. 
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Saddle-node bifurcations are the basic mechanism for the creation and destruction of 

fixed points; that is, as a parameter varies, two fixed points can  bifurcate from a single one. 

These fixed points influence the flow of the overall system, determining the general trends and 

outcomes associated with it. The analysis of the saddle-node bifurcation for a multidimensional 

system of differential equations can permit greater understanding of the system, allowing us to 

determine the influence that initial conditions have on the outcome of the system. By analyzing 

the bifurcations of a biochemical mechanism, we can effectively determine constraints that will 

result in a manageable, effective reaction1. 

One particularly insightful and relatively simple form of biochemical mechanism is that 

of the reversible substrate inhibition reaction. The term substrate inhibition refers to the process 

wherein the substrate of an enzyme reaction inhibits the enzyme’s activity. In the simplest of 

terms, a substrate can be defined as the primary reactant in a chemical reaction; in other words, 

the substance on which the enzyme reacts. An enzyme, in turn, is a substance which acts as a 

catalyst to bring about a specific biochemical reaction. The particular biochemical reaction being 

considered is as follows: 

𝐴1

𝑘1
→ (), 

()
𝑘2
→ 𝐴1, 

  𝐴1 + 𝐴2

𝑘3
→ 𝐴3, 

𝐴3

𝑘4
→ 𝐴2,            

      𝐴1 + 𝐴3

𝑘5
→ 𝐴4, 

𝐴4

𝑘6
→ 𝐴1 + 𝐴3 

 

In this system of elementary reactions, A1 is a substrate, A2 is an enzyme, and A3 and A4 

are enzyme-substrate complexes; ki for each i ∈ {1, . . . ,6} is a positive rate constant2. The 

arrows (→) represent influx and outflux. 

                                            
1 Strogatz, S. H. (1994). Nonlinear dynamics and Chaos: With applications to physics, biology, chemistry, and 

engineering. Reading, Mass.: Addison-Wesley Pub.. 
2 Mincheva, M., Roussel, M.: Graph-theoretic methods for the analysis of chemical and biochemical networks. I. 

Multistability and oscillations in ordinary differential equation models. Mathematical Biology. 61-86 (2007). 



Per the law of mass action, there exists a proportionality between the rate of an 

elementary reaction and the product of the concentrations of the reactants; as such, it is possible 

to convert the above series of elementary reactions into a series of differential equations3. Let the 

concentrations of Ak be uk for each k ∈ {1, . . . ,4}. Then the system of differential equations 

derived from our initial reaction is 

𝑑𝑢1

𝑑𝑡
= −𝑘1𝑢1 + 𝑘2 − 𝑘3𝑢1𝑢2 − 𝑘5𝑢1𝑢3 + 𝑘6𝑢4 

𝑑𝑢2

𝑑𝑡
= −𝑘3𝑢1𝑢2 + 𝑘4𝑢3 

𝑑𝑢3

𝑑𝑡
= 𝑘3𝑢1𝑢2 − 𝑘4𝑢3 − 𝑘5𝑢1𝑢3 + 𝑘6𝑢4 

𝑑𝑢4

𝑑𝑡
= 𝑘5𝑢1𝑢3 − 𝑘6𝑢4 

Additionally, we can also derive initial conditions for this system: 

𝑢1
𝑜 = 𝑢1(0) 

𝑢2
𝑜 = 𝑢2(0) 

𝑢3
𝑜 = 𝑢3(0) 

𝑢4
𝑜 = 𝑢4(0) 

 It is notable that the last three equations- 
𝑑𝑢2

𝑑𝑡
, 

𝑑𝑢3

𝑑𝑡
, and 

𝑑𝑢4

𝑑𝑡
 – are linearly dependent; that 

is, their sum equals zero. This indicates that  

𝑢2 + 𝑢3 + 𝑢4 = 𝑢2(0) + 𝑢3(0) + 𝑢4(0) 

Since ki is always positive and ui are concentrations, it can be shown that ui ≥ 0. 

 Our overall goal is to determine how the initial concentrations- that is, uk for each k ∈ {1, 

. . . ,4}- affect the overall behavior of the system and specifically, the existence of several fixed 

points. In particular, we want to determine what constraints are necessary to produce several 

fixed points; in other words, we desire the production of equilibrium solutions whose overall 

outcomes are not affected by small disturbances away from them3. In order to attain this, we 

need to further analyze the last non-zero coefficient of (1)’s characteristic polynomial; doing so 

will permit the development of suitable constraints. 

 Deriving the Jacobian of (1), we obtain the following matrix: 

                                            
3 Strogatz, S. H. (1994). Nonlinear dynamics and Chaos: With applications to physics, biology, chemistry, and 

engineering. Reading, Mass.: Addison-Wesley Pub.. 

(1) 



J = [

−𝑘1 − 𝑘3𝑢2 − 𝑘5𝑢3 −𝑘3𝑢1 −𝑘5𝑢1 𝑘6

−𝑘3𝑢2 −𝑘3𝑢1 𝑘4 0
𝑘3𝑢2 − 𝑘5𝑢3 𝑘3𝑢1 −𝑘4−𝑘5𝑢1 𝑘6

𝑘5𝑢3 0 𝑘5𝑢1 −𝑘6

] 

  

Here we assume that J is evaluated at some fixed point. The determinant of this matrix is 

equal to zero as a result of the linear dependence of rows 2, 3, and 4. We now want to analyze 

the characteristic polynomial of the above determinant; that is, p(𝜆)= det(J- 𝜆I) = 𝜆4 + 𝑎1 𝜆3 +

𝑎2 𝜆2 + 𝑎3𝜆 + 𝑎4 . Since a4 = det(-J), we know that a4 = 0. As such, det(J- 𝜆I) = 𝜆4 + 𝑎1 𝜆3 +

𝑎2 𝜆2 + 𝑎3𝜆 = 𝜆(𝜆3 + 𝑎1 𝜆2 + 𝑎2 𝜆1 + 𝑎3). Consequentially, we will focus on the value of a3, 

since this is the last non-zero coefficient of p(𝜆). We consider the following matrix: 

 

[

−𝑘1 − 𝑘3𝑢2 − 𝑘5𝑢3 −𝑘3𝑢1 −𝑘5𝑢1 𝑘6

−𝑘3𝑢2 −𝑘3𝑢1 𝑘4 0
𝑘3𝑢2 − 𝑘5𝑢3 𝑘3𝑢1 −𝑘4−𝑘5𝑢1 𝑘6

𝑘5𝑢3 0 𝑘5𝑢1 −𝑘6

] − [

𝜆 0 0 0
0 𝜆 0 0
0 0 𝜆 0
0 0 0 𝜆

] 

Which can be simplified to: 

[

−𝑘1 − 𝑘3𝑢2 − 𝑘5𝑢3 − 𝜆 −𝑘3𝑢1 −𝑘5𝑢1 𝑘6

−𝑘3𝑢2 −𝑘3𝑢1 − 𝜆 𝑘4 0
𝑘3𝑢2 − 𝑘5𝑢3 𝑘3𝑢1 −𝑘4−𝑘5𝑢1 − 𝜆 𝑘6

𝑘5𝑢3 0 𝑘5𝑢1 −𝑘6 − 𝜆

] 

 

Calculating the determinant of this matrix, we obtain the following value as the coefficient of 𝜆: 

𝑎3 = 𝑘1𝑘3𝑘6𝑢1 + 𝑘1𝑘3𝑘5𝑢1
2 − 𝑘3𝑘4𝑘5𝑢1𝑢3 + 𝑘1𝑘4𝑘6 + 𝑘3𝑘4𝑘6𝑢2 

Which is a quadratic equation with respect to u1: 

(𝑘1𝑘3𝑘5)𝑢1
2 + (𝑘1𝑘3𝑘6 − 𝑘3𝑘4𝑘5𝑢3)𝑢1 + (𝑘1𝑘4𝑘6 + 𝑘3𝑘4𝑘6𝑢2) 

Setting this equal to zero and employing the quadratic formula to solve for u1, we obtain: 

𝑢1 =
𝑘3𝑘4𝑘5𝑢3 − 𝑘1𝑘3𝑘6 ± √(𝑘1𝑘3𝑘6 − 𝑘3𝑘4𝑘5𝑢3)2 − 4𝑘1𝑘3𝑘5(𝑘1𝑘4𝑘6 + 𝑘3𝑘4𝑘6𝑢2)

2𝑘1𝑘3𝑘5
 

Let the two roots of u1 be denoted as u1
1 and u1

2. In other words, let 

𝑢1
1 =

𝑘3𝑘4𝑘5𝑢3 − 𝑘1𝑘3𝑘6 − √(𝑘1𝑘3𝑘6 − 𝑘3𝑘4𝑘5𝑢3)2 − 4𝑘1𝑘3𝑘5(𝑘1𝑘4𝑘6 + 𝑘3𝑘4𝑘6𝑢2)

2𝑘1𝑘3𝑘5
 

𝑢1
2 =

𝑘3𝑘4𝑘5𝑢3 − 𝑘1𝑘3𝑘6 + √(𝑘1𝑘3𝑘6 − 𝑘3𝑘4𝑘5𝑢3)2 − 4𝑘1𝑘3𝑘5(𝑘1𝑘4𝑘6 + 𝑘3𝑘4𝑘6𝑢2)

2𝑘1𝑘3𝑘5
 



It is vital for 𝑢1
1 and 𝑢2

1 to both be positive so that a3 ≤ 0 for some parameter values, thus causing 

the existence of a saddle-node bifurcation. If they are both positive, then 

𝑘1𝑘3𝑘6 − 𝑘3𝑘4𝑘5𝑢3 < 0 

 We wish to impose constraints that ensure that u1 or u2 is real; that is, that any slight change in 

the initial conditions will damp out over time. In order to gain an increased understanding of the 

overall system, it can be useful to graphically study the sign of a3: 

 

 

 

 

 

 

 

 

 

In order for a3 < 0 for some parameter values, we need u1
1 < u1 < u1

2 (graphically, for u1 

to be in the highlighted region of the graph). This constraint will ensure that any initial u1 in this 

domain will have to eventually flow to one of the two nodes; as such, it is impossible for the 

system to spiral out of control away from these two nodes4. 

As we also want to determine when a3 = 0 will have two real roots, we will now focus in 

on the discriminant; more specifically, when the discriminant is greater than zero. The contents 

of the discriminant can as such be expanded and rearranged to generate the following polynomial 

with respect to u3: 

𝐷 = (𝑘3
2𝑘4

2𝑘5
2)𝑢3

2 + (−2𝑘1𝑘3
2𝑘4𝑘5𝑘6)𝑢3 + (𝑘1

2𝑘3
2𝑘6

2 − 4𝑘1
2𝑘3𝑘4𝑘5𝑘6 − 4𝑘1𝑘3

2𝑘4𝑘5𝑘6𝑢2) (*) 

 As we can see, u1 will have two real roots when the above quadratic equation with 

respect to u3 is greater than zero. Consequentially, we need to obtain a greater understanding of 

(*) from above. 

Once again setting this equal to zero and solving for the roots of u3, we now obtain that the roots 

of u3 are equal to: 

                                            
4 Strogatz, S. H. (1994). Nonlinear dynamics and Chaos: With applications to physics, biology, chemistry, and 

engineering. Reading, Mass.: Addison-Wesley Pub.. 

u1
1 u1

2 

a3 



2𝑘1𝑘3
2𝑘4𝑘5𝑘6 ± √4𝑘1

2𝑘3
4𝑘4

2𝑘5
2𝑘6

2 − 4𝑘3
2𝑘4

2𝑘5
2(𝑘1

2𝑘3
2𝑘6

2 − 4𝑘1
2𝑘3𝑘4𝑘5𝑘6 − 4𝑘1𝑘3

2𝑘4𝑘5𝑘6𝑢2)

2𝑘3
2𝑘4

2𝑘5
2  

This can be further simplified to the following equation: 

𝑢3 =
𝑘1𝑘3𝑘6 ± √𝑘1

2𝑘3𝑘4𝑘5𝑘6 + 𝑘1𝑘3
2𝑘4𝑘5𝑘6𝑢2

𝑘3𝑘4𝑘5
 

 Recall now that the purpose of these calculations was to determine when u1 has two real 

positive roots. By finding the roots of the discriminant- with respect to u3- of u1, we now have a 

more comprehensive understanding of the sufficient conditions for a3 = 0 to have real roots. Let 

the two roots of u3 be denoted as u3
1 and u3

2. Then we can say that 

𝑢3
1 =

𝑘1𝑘3𝑘6 − √𝑘1
2𝑘3𝑘4𝑘5𝑘6 + 𝑘1𝑘3

2𝑘4𝑘5𝑘6𝑢2

𝑘3𝑘4𝑘5
 

 

𝑢3
2 =

𝑘1𝑘3𝑘6 + √𝑘1
2𝑘3𝑘4𝑘5𝑘6 + 𝑘1𝑘3

2𝑘4𝑘5𝑘6𝑢2

𝑘3𝑘4𝑘5
 

 

where 𝑢3
2 > 0 and 𝑢3

1 can have either sign. As we wish to focus on when u3 is positive- and thus 

the discriminant of u1 is positive and generates two positive roots- the value of u3 needs to be 

constrained so that 0 < u3 < u3
1 or u3 > u3

2. 

 From the above calculations, we can conclude that if u3 is in the interval I1 = (0 , u3
2) in 

the case u3
1 < 0 or if u3 is in the interval I2 = (0 , u3

1)U(u3
2 , ∞) then the discriminant D of a3 = 0 

is positive. Additionally, if D > 0, then u1
1 and u1

2 are real. If we pick a value u3
* = u3(k1 , . . . , 

k6) where u3 is either in I1 or I2, then u1
1 and u1

2 are both positive since 
𝑘1𝑘4𝑘6+𝑘3𝑘4𝑘6𝑢2

𝑘1𝑘3𝑘5
 > 0. 

 Thus, for u1 in (u1
1 , u1

2), a3 < 0. Finally, using Proposition 13 applied to a3, we can claim 

that a saddle-node bifurcation occurs5. 

Returning now to the linear dependence of  
𝑑𝑢2

𝑑𝑡
, 

𝑑𝑢3

𝑑𝑡
, and 

𝑑𝑢4

𝑑𝑡
, we wish to analyze the 

relationship 

(u2 + u3 + u4) = e0 , e0 = 𝑢2(0) + 𝑢3(0) + 𝑢4(0) 

Setting the original four differential equations equal to zero, we obtain the following system: 

                                            
5 S. Bosi, D. Desmarchelier (2017) A simple method to study local bifurcations of three and four-dimensional 

systems : characterizations and economic applications FAERE Working Paper, 2017.16. 



(1) − 𝑘1𝑢1 + 𝑘2 − 𝑘3𝑢1𝑢2 − 𝑘5𝑢1𝑢3 + 𝑘6𝑢4 = 0 

(2) − 𝑘3𝑢1𝑢2 + 𝑘4𝑢3=0 

(3)     𝑘3𝑢1𝑢2 − 𝑘4𝑢3 − 𝑘5𝑢1𝑢3 + 𝑘6𝑢4=0 

(4)     𝑘5𝑢1𝑢3 − 𝑘6𝑢4=0 

Adding together (1) and (4) and manipulating the results, we obtain the following: 

𝑢1 =
𝑘2

𝑘1 + 𝑘3𝑢2
 

As we see that u1 can be written in terms of u2, we will fix u2 in order to simplify the 

calculations; consequentially, u2 is a parameter. Plugging in the values obtained for u1 and u2 

above (both functions of u2), we subsequently obtain the following functions of u2 for u3 and u4: 

𝑢3 =
𝑘2𝑘3𝑢2

𝑘1𝑘4 + 𝑘3𝑘4𝑢2
 

 

𝑢4 =
𝑘2

2𝑘3𝑘5𝑢2

(𝑘1𝑘6 + 𝑘3𝑘6𝑢2)(𝑘1𝑘4 + 𝑘3𝑘4𝑢2)
 

 

Now, we want to expand (u2 + u3 + u4)=e0 using these new formulas for the variables: 

𝑢2 + 𝑢3 + 𝑢4 =  𝑒0  ⟹ 

𝑢2 +
𝑘2𝑘3𝑢2

𝑘1𝑘4 + 𝑘3𝑘4𝑢2
+

𝑘2
2𝑘3𝑘5𝑢2

(𝑘1𝑘6 + 𝑘3𝑘6𝑢2)(𝑘1𝑘4 + 𝑘3𝑘4𝑢2)
= 𝑒0  ⟹ 

 

(𝑘3
2𝑘4𝑘6)𝑢2

3 + (2𝑘1𝑘3𝑘4𝑘6 + 𝑘2𝑘3
2𝑘4𝑘6 − 𝑒0𝑘3

2𝑘4𝑘6)𝑢2
2

+ (𝑘1
2𝑘4𝑘6 + 𝑘1𝑘2𝑘3𝑘6 + 𝑘2

2𝑘3𝑘5 − 2𝑒0𝑘1𝑘3𝑘4𝑘6)𝑢2 − 𝑒0𝑘1
2𝑘4𝑘6 = 0 (2) 

 

As we already know, the coefficients kj where j ∈ {1, . . . ,6} and ui where i ∈ {1, . . . ,4} 

are always positive; additionally, e0 is positive. This indicates that the coefficient for 𝑢2
3 is 

positive; concurrently, the coefficient for the free term is negative. If the coefficients for the 𝑢2
2 

and 𝑢2
1 terms can be manipulated to be negative and positive respectively, then by Descartes’ 

Rule u2 has either 1 or 3 positive roots. In order for (2) to have 3 positive real roots, we impose 

the following constraints: 

2𝑘1𝑘3𝑘4𝑘6 + 𝑘2𝑘3
2𝑘4𝑘6 − 𝑒0𝑘3

2𝑘4𝑘6 < 0 

𝑘1
2𝑘4𝑘6 + 𝑘1𝑘2𝑘3𝑘6 + 𝑘2

2𝑘3𝑘5 − 2𝑒0𝑘1𝑘3𝑘4𝑘6 > 0 



This implies that 

𝑘1
2𝑘4𝑘6 + 𝑘1𝑘2𝑘3𝑘6 + 𝑘2

2𝑘3𝑘5

2𝑘1𝑘3𝑘4𝑘6
> 𝑒0 >  

2𝑘1𝑘3𝑘4𝑘6 + 𝑘2𝑘3
2𝑘4𝑘6

𝑘3
2𝑘4𝑘6

 

If these constraints are met, the overall system may have 3 positive fixed points; as such, 

small changes in the initial conditions will be damped over time. Likely, 2 of the fixed points 

will be stable and one unstable. Resultantly, the system will avoid becoming unstable over time; 

it will not spiral out of control. Imposing such constraints permits us to ensure that the initial 

biochemical reaction being studied is not unstable. 

While we have found constraints that may produce a system with 3 positive fixed points, 

there is still much room for improvement. Future research into the necessary parameters for 

stable and unstable fixed points and a resultant overall stable system is necessary and would 

improve the success of the model. However, the constraints found in this paper serve as a solid 

basis which enables greater control over the reversible substrate inhibition reaction and has the 

potential to generate a more ideal and successful reaction network. 


