
ABSTRACT 
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John Shelton, Director 

The lid-driven cavity is a canonical problem in the field of analytical and computational 

fluid dynamics where a system is comprised of a square domain of an incompressible fluid, its 

upper lid has a specified velocity and the remaining wall boundaries are subjected to fixed, no-

slip, zero-velocity constraints. There are numerous examples found in the literature that address 

the validation of the system’s well-known, stable behavior, which includes a primary 

recirculating vortex, secondary corner vortices, and a velocity profile through the center 

midpoint y-axis that is shown to be dependent on the Reynolds number. By increasing the cavity 

depth to aspect ratios of 1x1.5, other studies have suggested that a different kind of stable fluid 

structure develops, which includes a primary recirculating vortex, secondary corner vortices, and 

a new secondary recirculating vortex that developed from the corner vortices of the square cavity 

and merged together at the bottom of this rectangular system. Mathematical perturbations to the 

square lid-driven cavity problem have been shown to decrease the stability of the flow structure 

and exhibit 3D, turbulent flow characteristics. Particle suspensions could be used as physical 

representations of these mathematical perturbations. In this thesis, I will investigate how these 

physical perturbations affect the stable flow characteristics observed in lid-driven cavities with 

high aspect ratios. The base flow is two-dimensional and is computed numerically over a range 

of Reynolds numbers and is perturbed with varying volume fractions and types of particle 



 
 

suspension. Using Ergun-Wen-Yu drag and particle slip velocities are used to represent particle-

fluid interactions. In this investigation, open-source CFD software called OpenFOAM will be 

used to solve the Navier-Stokes equations for the fluid phase and particle-particle interactions for 

the solid phase.  The purpose of these studies and analyses will aid in the future findings of 

advantageous methodologies to determine the flow characterization of drilling mud.   
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1. INTRODUCTION

With so much of Industrial revolution influencing the areas of research, scientists and 

engineers started developing keen interest and trying to understand the characteristics of flows 

with more than one phase that i.e. they started to understand and analyze  multi-phase flows ; In 

this thesis we will be analyzing solid-gas flows. To mention a few industrial applications, gas-

solid interactions are important in fluidized beds, propulsion and combustions, mixing, medical 

fields. With advancement in Computational Fluid Dynamics tools to understand the flows 

coupled with increased capacity of systems to handle complicated simulations eased the way to 

research on multiphase flows. Even though there has been a quite advancement in the ways the 

most standard approach is still a system with square cavity with a moving lid is used to analyze 

the complex fluid flow characteristics. This standard system is named LID DRIVEN CAVITY. 

 The lid-driven cavity problem has long been used a test or validation case for new codes 

or new solution methods. The problem geometry is simple and two-dimensional, and the 

boundary conditions are also simple. 

The standard case is fluid contained in a square domain with Dirichlet boundary 

conditions on all sides, with three stationary sides and one moving side. One of the pioneering 

works on this flow is the work done by Ghia et al [10]. for a two-dimensional case. Using the 

stream function-vorticity formulation of the Navier-Stokes equations, results were obtained for 

the flow at various Reynolds numbers ranging from 100-10,000. 



The main reasons for considering lid driven cavity is for its robust domain yet able to 

produce the most trivial and complicated flow characteristics. Extensive research has been done 

using lid driven cavity through decades which resulted in enormous references to look at and 

compare, validate the system and domains. Standard square lid driven cavity is said to show a 

primary vortex, up-stream and down-stream eddies. With increase in the Reynolds numbers the 

sizes of the up-stream and down-stream eddies change and also we can clearly see a shift in the 

center of the primary vortex. 

As the geometry of lid driven cavity is very simple, research has been done for different 

aspect ratios. In some cases the moving lid is replaced by moving fluid forming a new type of 

situations i.e. shear-driven cavity. Various types of numerical techniques were used to compute 

the solutions for this problem.  Also, this problem can be solved in both laminar and turbulent 

flow. Because of its simple boundary conditions, compatibility with various numerical 

approaches and vast literature to compare with, the lid driven cavity has always been of interest, 

and extensive research is still being done to better understand the flow characteristics. 

The main focus of this work was to understand the flow characteristics in the lid driven 

cavity when its lid is moving at a constant velocity. The main aspect being work is done with lid 

driven cavities with aspect ratios of 1.5. That is depth of cavity is 1.5 times the width for aspect 

ratio 1.5. The matter in the domain being both solid and gas. The main idea being behavior of 

fluid when perturbations are introduced into the systems through particles. This multiphase 

matter showed a very different behavior when compared to the standard single phase flow 

characteristics. 

First work was done with the square cavity that is the generic lid driven cavity with single 

phase to validate the system and approach comparing the results to Ghia et al [10]. Later 
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rectangular lid driven cavities with single phase have been studied and results are compared with 

Kumar [11]. 

3 



2. THEORY

2.1 Lid Driven Cavity: 

The lid-driven cavity flow is considered as a benchmark problem for the validation of 

numerical methods and techniques in computational fluid dynamics [8]. The fluid motion in a 

square or a rectangular box (also known as the lid driven cavity) is induced by the translation of 

one wall. The geometry of the lid driven cavity is shown in the Figure 2.1 below. It comprises of 

a rectangular box of which the top wall translates a horizontal velocity U. The walls on left, right 

and bottom are fixed. These walls are subjected to a boundary condition where its fluid velocity 

is the no-slip zero velocity. In 3D, all the boundary conditions remain the same for the additional 

walls and the geometry is extended to z-direction [8]. 

The Newtonian fluids in rectangular boxes are governed by two dimensionless 

parameters, namely Reynold’s number (Re) and the aspect ratio [8]. 

Figure 2.1 Schematic of Lid driven Cavity 



The Boundary conditions, for the Lid driven Cavity is as follows [7]: 

 No-slip velocity boundary condition u = v = 0 is applied on all the left, right and bottom

walls, except the top wall. 

 On the top wall u = 1 and v = 0 is applied. The bottom of the cavity is considered as wall.

2.2 Governing Equations: 

For an isothermal, incompressible, two-dimensional, Newtonian fluid in lid-driven cavity the 

laws of conservation of mass and conservation of momentum are considered. The governing 

non-linear partial differential equations can be written as follows [7]. 

The continuity equation is given by [7]: 

𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0 (1) 

The X-Momentum equation is given by [7]: 

𝜕𝑈

𝜕𝜏
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
= −

𝜕𝑃

𝜕𝑌
+

1

𝑅𝑒
[

𝜕2𝑈

𝜕𝑋2
+

𝜕2𝑈

𝜕𝑋2
] (2) 

The Y-Momentum equation is given by [7]: 

𝜕𝑉

𝜕𝜏
+ 𝑈

𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
= −

𝜕𝑃

𝜕𝑌
+

1

𝑅𝑒
[

𝜕2𝑉

𝜕𝑋2
+

𝜕2𝑉

𝜕𝑋2
]     (3) 

where, 

U =
𝑢

𝑈∞
V =

𝑣

𝑈∞
X =

𝑥

𝐿
Y =

𝑦

𝐿
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𝜏 =  
𝑡𝑈∞

𝐿
P =

𝑝

𝜌𝑈∞
Re = 

𝑈∞𝑙

𝑣

2.3 Flow in Lid driven Cavity: 

To analyze the flow in the lid driven cavity, it is assumed that it is infinitely long along the 

transverse direction and the base flow is found to be steady and two-dimensional. In his paper, 

Ramanan [10], explains the linear stability in a three dimensional lid-driven cavity, by 

introducing the disturbances. Mathematical perturbation field disturbance is introduced to the 

pressure and velocity of the base flow.  The purpose of this study was to analyze the behavior of 

the stability critical Reynolds number evolution from 2D and 3D [10]. 

2.3.1 Navier- Stokes Equation: 

According to Ramanan [9], the Navier-Stokes equation are written as: 

∇. 𝐮 = 𝟎       (4) 

 𝐮,𝑡 + 𝐮 ⋅ ∇𝐮 = −∇𝑝 +
1

𝑅𝑒
∇2𝐮 (5) 

where, 

∇ = gradient operator, 

u = velocity, 

p = pressure, 

t = time, 

Re = Reynolds number, 

p = kinematic pressure and 

a comma indicates differentiation. 

6 



2.3.2 Base Flow 

The base flow stability is examined in 2D for an infinitely long cavity in z direction and 

the equations are given as follows [9]: 

∇. 𝐔 = 𝟎       (6) 

 𝐔 ⋅ ∇∗𝐔 = −𝛁∗𝐏 +
1

𝑅𝑒
∇∗

2𝐔 (7) 

where, 

∇∗ = two-dimensional gradient operator, 

U = base flow velocity, 

P = base flow pressure, 

The boundary conditions for the equations (6) and (7) are: 

U = (1, 0), at y = 1, 

U = (0, 0), at x = 0, x = 1, and y = 0. 

2.3.3 Perturbation equations 

The base flow is perturbed by a disturbance velocity v and the pressure p' to study the 

stability of the base flow to disturbances [9]. 

The total velocity u is given by: u = U + v     (8) 

   and 

Pressure p = P + p'     (9) 

7 



By substituting equations (8) and (9) in equation (4) and (5) respectively, and subtracting 

equations (6) and (7) we get the equations for the perturbation velocity at no-slip conditions on 

all boundaries. 

The resultant equations obtained are [9]: 

∇. 𝐯 = 𝟎   (10) 

𝐯,𝑡 + 𝐯 ⋅ ∇𝐔 +  𝐔 ⋅ ∇𝐯 = −∇𝑝′ +
1

𝑅𝑒
∇2𝐯   (11) 

The perturbation vorticity transport equation is obtained by taking the curl of equation (11). 

 𝛚,𝑡 + ∇ × (𝐔 × 𝛚) − ∇ × (𝐯 × 𝛀)  =
1

𝑅𝑒
∇2𝜔    (12) 

where, 

ω = perturbation vorticity 

Ω = base flow vorticity 

In terms of set of potentials 𝜓 and 𝜙 the velocity (v) and the vorticity(𝜔) are expressed as 

follows [9]: 

𝐯 = ∇ × (𝒊𝝍) + ∇ × (𝐣𝛟)   (13) 

𝜔 = (𝜙,𝑥𝑦 − 𝜓,𝑦𝑦 − 𝜓,𝑧𝑧, 𝜙,𝑧𝑧 − 𝜙,𝑥𝑥 + 𝜓,𝑦𝑥 , 𝜙,𝑥𝑧 + 𝜙,𝑦𝑧)   (14) 

By expressing equation (12), in terms of these potentials, we get [9]: 

Re[ ω1,𝑡 − (𝑈1𝜔2 − 𝑈2𝜔1),𝑦 − 𝑈1𝜔3.𝑧 + Ω𝜙,𝑧𝑧]  = ∇2𝜔1          (15) 

Re[ ω2,𝑡 + (𝑈1𝜔2 − 𝑈2𝜔1),𝑥 − 𝑈2𝜔3.𝑧 − Ω𝜓,𝑧𝑧]  = ∇2𝜔2         (16) 
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The boundary conditions on the potentials are obtained from (13) as: 

𝜓𝑧 = 𝜙𝑧 = 0 and 𝜙𝑥 = 𝜓𝑦 

2.4 Stability Analysis: 

The above equation can be written as a function of velocity, as follows [2]: 

𝐮,𝑡 = f(𝐮) (17) 

The flow is further decomposed into a 3D amplitude function and a base flow �̂�. By considering, 

the Navier-Stokes equation, a new linearized eigenvalue problem can be represented as follows 

[2]: 

𝐮,𝑡 =
𝜕𝒇(�̅�)

𝜕𝒖
𝒖′ ≡ 𝑨𝒖′ (18) 

where, 

 A = Jacobian matrix of the RHS of the Navier-stokes equations. 

 The solution of the eigenmodes of the above equation is [2]: 

𝒖′(𝑥, 𝑦, 𝑧, 𝑡) = 𝜖�̂�(𝒙, 𝒚, 𝒛)𝑒𝜆𝒕 + 𝐜. 𝐜  (19) 

where, 

𝜆 = 𝜆𝑟 + 𝑖𝜆𝑖 

where, 

 𝜆𝑖 is frequency and 𝜆𝑟 is the amplification and damping rate of the disturbance.  

9 



c.c = complex conjugate and

𝜖 ≪ 1 

2.5 Fourier analysis: 

Once the perturbations are introduced into the system, to determine the spectral characteristics of 

the system, the frequency analysis need to be performed. To determine the intensity and 

frequency response of the system, Fast Fourier Transform (FFT) is used. The discrete signals in 

time domain are taken by the FFT and transformed into discrete signals in frequency domain. To 

perform Discrete Fourier Transform (DFT) the Fourier series representation of a signal 𝑓(𝑡) is 

used. 

The Fourier transform of time is given by [6]: 

𝑓(𝑡) =  
1

(2𝜋)
1
2

∫ 𝑓(𝜔)𝑒−𝑖𝜔𝑡∞

−∞
𝑑𝜔      (20) 

The Fourier transform of frequency is given by [6]: 

       𝑓(𝜔) =  
1

(2𝜋)
1
2

∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡∞

−∞
𝑑𝑡      (21) 

Fourier series for a given periodic function is given by [6]: 

 𝑓(𝑡) =
𝑎0

(2𝜋)
1
2

+ ∑ (𝑎𝑛 cos(𝑛𝑡) + 𝑏𝑛 sin(𝑛𝑡))
∞

𝑛=1
      (22) 

where the Fourier coefficients a0, an and bn are given by 
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𝑎0 =
1

𝐿
∫ 𝑓(𝑡)

𝐿

−𝐿

𝑑𝑡 
(23) 

𝑎𝑛 =
1

𝐿
∫ 𝑓(𝑡) cos (

𝑛𝜋𝑡

𝐿
) 𝑑𝑡  𝑛 = 1,2, … , ∞ 

𝐿

−𝐿
 

𝑏𝑛 =
1

𝐿
∫ 𝑓(𝑡) sin (

𝑛𝜋𝑡

𝐿
) 𝑑𝑡  𝑛 = 1,2, … , ∞ 

𝐿

−𝐿

The discrete signal is then defined as [6]: 

𝑓(𝑟∆𝑡) = 𝑓(𝑡) ∙ 𝛿(𝑡 − 𝑟∆𝑡) 

where, 𝛿 =Dirac delta function defined such that 𝛿(0) = 1 and 0 at all other points. 

For, Discrete Fourier transform (DFT) 𝑎𝑛 , 𝑏𝑛 are replaced by 𝑎𝑘, 𝑏𝑘 and given by: 

𝑎𝑘 =
1

𝐿
∑ 𝑓(𝑟∆𝑡) cos (

𝜋𝑘𝑟

𝐿
)   𝑘 = 1,2, … , 𝐿

2𝐿

𝑟=1

 

𝑏𝑘 =
1

𝐿
∑ 𝑓(𝑟∆𝑡) sin (

𝜋𝑘𝑟

𝐿
)  𝑘 = 1,2, … , 𝐿

2𝐿

𝑟=1

− 1 

The discrete Fourier series 𝑓(𝑟∆𝑡) for 𝑓(𝑡):  

𝑓(𝑟∆𝑡) =
𝑎0

2
+ ∑[(𝑎𝑘 cos (

𝜋𝑟𝑘

𝐿
) + 𝑏𝑘sin (

𝜋𝑟𝑘

𝐿

𝐿−1

𝑘=1

)] +
𝑎𝐿cos (𝜋𝑟)

2

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 
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3. METHODOLOGY

3.1 OpenFOAM: 

OpenFOAM stands for “Open Source Field Operation and Manipulation” [3]. To carry 

this thesis, OpenFOAM, an open source CFD (Computational Fluid Dynamics) software is used. 

It is an object-oriented library designed for Computational Continuum Mechanics [5]. 

OpenFOAM replaces the traditional monolithic software design and user coding 

extensions by implementing the components of mesh handling, linear system and solver support, 

discretization operators and physical models in library form [5]. The tools for data acquisition, 

mesh manipulation and handling, pre-processing etc. are built into this system making its way to 

the next level of CFD industrial tools [5]. 

OpenFOAM constitutes of a C++ CFD toolbox which can be used for numerical solvers 

[3]. These customized numerical solvers can perform a number of simulations which include 

Multiphase flow, Stress analysis, Turbulence modeling etc. [5]. 

OpenFOAM implements polyhedral type of mesh handling. In this type of mesh 

handling, a cell is described as a list of faces closing its volume, a face is an ordered list of point 

labels and points are gathered into an ordered list of (x, y, z) locations, stored as vectors[5]. The 

low level implementation is independent of discretization, where the addressing and the mesh 

metrics such as cell volumes, face areas, cell and face centers etc. is provided by polyMesh class 

[5]. Basic mesh information is wrapped for convenient use with discretization. fyMesh, 



tetFemMesh support the Finite Volume Method (FVM) and the Finite Element (FE) solver 

respectively[5]. The basic mesh structure and the functionality is shared in both the cases: a 

single mesh can simultaneously support the FVM and FEM solver without duplication of data 

and functionality [5]. The OpenFOAM discrete particle modelling solver DPM solver is used in 

this thesis. 

3.2 DPMFoam Solver: 

A transient solver  that is used for the coupled transport of a single kinematic particle 

cloud including the effect of the volume fraction of particles on the continuous phase is referred 

as DPMFoam Solver [5]. 

3.2.1 Numerical simulation of the gas-solid flow in a fluidized bed by combining DPM with 

CFD: [2] 

Any particle in a fluidized bed experiences two types of motion: Translational ad 

Rotational [2]. These two motions are completely determined Newton's second law of motion.  

During its movement, the energy and momentum is exchanged when the particles collide with 

it’s neighboring particles or its walls and interact with the surrounding fluid [2].  The movement 

of the particles not only is affected by the force originated from the neighbor particles and the 

surrounding fluid but also gets affected through the disturbance waves produced by far away 

particles and fluids [2]. To carry out the simulation, a numerical time step less than a critical 

value is assumed so that disturbance cannot propagate from the particle or the surrounding fluid 

during single time step [2]. At all times, the resultant force on the particle is determined from its 

interaction with the neighbor particles and surrounding fluid [2]. Therefore, from all the above 

13 



assumptions, according to Newton’s second law of motion at a time z, the equation of 

translational motion of particle 𝑖 is given by [2]: 

𝑚𝑖
𝑑𝑣𝑖

𝑑𝜏
= 𝑓𝑓,𝑖 + ∑ (𝑓𝑐.𝑖𝑗 + 𝑓𝑑,𝑖𝑗) + 𝑚𝑖𝑔

𝑘𝑖
𝑗=1

where, 

𝑚𝑖 = mass of particle, 

𝑣𝑖 = velocity of particle, 

𝑘𝑖 = number of particles in contact with the particle, 

 𝑓𝑓,𝑖= fluid drag force, 

𝑚𝑖𝑔= gravitational force, 

𝑓𝑐.𝑖𝑗= inter-particle forces between particles 𝑖 and 𝑗 i.e. contact forces and 

𝑓𝑑,𝑖𝑗= viscous contact damping force

Since the true density of particle is usually much larger than that of gas, the buoyancy force 

acting on particle 𝑖 has been ignored in the above equation [2]. 

3.2.2. Inter-particle forces: 

The torque 𝑇𝑖𝑗 is generated due to internal-particle forces acting at the contact point between 

particles 𝑖 and 𝑗, causing particle 𝑖 to rotate. For a spherical radius 𝑅𝑖, the torque 𝑇𝑖𝑗 is given by 

[2]: 

𝑇𝑖𝑗 = 𝑅𝑖  𝑓𝑐,𝑖𝑗 

Therefore, the rotational motion of particle 𝑖 is given by [2]: 

𝐼𝑖
𝑑𝜔𝑖

𝑑𝜏
=  ∑ 𝑇𝑖𝑗

𝑘𝑖
𝑗=1

(30) 

(31) 

(32) 
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where, 

𝜔𝑖= angular velocity,  

𝐼𝑖= moment of inertia of particle 𝑖 = 
2

5
𝑚𝑖𝑅𝑖

2

Figure 3.1 Schematic illustration of the forces acting on colliding particles 𝒊 and 𝒋 [2] 

The linear normal and tangential contact force models exhibited by the particles are given by [2]: 

𝑓𝑐𝑛,𝑖𝑗 = −(𝑘𝑛,𝑖𝛿𝑛,𝑖𝑗)𝑛𝑖  

and  

𝑓𝑐𝑡,𝑖𝑗 = −(𝑘𝑡,𝑖𝛿𝑡,𝑖𝑗)𝑡𝑖 

where, 

𝑘𝑛,𝑖, = spring constant in normal direction 

𝛿𝑛,𝑖𝑗= displacement between particles 𝑖 and 𝑗 in normal direction 

𝑘𝑡,𝑖, = spring constant in tangential direction 

𝛿𝑡,𝑖𝑗= displacement between particles 𝑖 and 𝑗 in tangential direction 

(33) 

(34)
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𝑛𝑖= the unit vector along the normal direction for particle 𝑖 

𝑡𝑖= the unit vector along the tangential direction for particle 𝑖

Figure 3.2 Relative positions between particles 𝒊 and 𝒋 before collision: (a) separated; (b) 

contacted [2]  

The magnitude of the tangential force is given by Coulomb law [2]: 

|𝑓𝑐𝑡,𝑖𝑗| = −𝛾𝑖𝑗|𝑓𝑐𝑛,𝑖𝑗|, 

where, 𝛾𝑖𝑗 = the coefficient of friction between particles 𝑖 and 𝑗 

(35) 
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As a result of inelastic collisions, when no external energy is added; the system tends to be 

stationary and can be simulated by introducing a viscous contact damping force to consume the 

system energy during the particle collisions [2]. 

For a particle 𝑖, the viscous contact damping forces along the normal and tangential directions 

are, respectively, given by [2]: 

𝑓𝑑𝑛,𝑖𝑗 =  −
𝑛,𝑖

(𝑣𝑟 . 𝑛𝑖)𝑛𝑖

𝑓𝑑𝑡,𝑖𝑗 =  −
𝑡,𝑖

[(𝑣𝑟 . 𝑡𝑖)𝑡𝑖 + (𝜔𝑖 × 𝑅𝑖 − 𝜔𝑗 × 𝑅𝑗)]

where, 

𝑓𝑑𝑛,𝑖𝑗 = viscous contact damping forces for particle 𝑖 along the normal direction 

𝑓𝑑𝑡,𝑖𝑗= viscous contact damping forces for particle 𝑖 along the tangential direction 


𝑛,𝑖

 = viscous contact damping coefficient for particle 𝑖 along the normal direction


𝑡,𝑖

 = viscous contact damping coefficient for particle 𝑖 along the tangential direction

𝑣𝑟= velocity vector of particle 𝑖 relative to 𝑗 = 𝑣𝑖 −  𝑣𝑗  

3.2.3 Drag Force: 

Fluid drag force is dependent on relative velocity of fluid and particle surroundings. 

According to Di Felice (1994), the fluid drag force acting on a single particle applicable to 

fluidized and fixed beds over the full practical range of particle Reynolds number is given by [2] 

𝑓𝑓,𝑖 = 𝑓𝑓0,𝑖𝜀𝑖
−𝑥

where, 

(36) 

(37) 

(38) 
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𝜀𝑖= porosity in a computational cell in which particle 𝑖 is located 

𝑓𝑓0,𝑖 = fluid drag fore on particle 𝑖 in the absence of other particles 

= 0.5 𝑐𝑑0,𝑖𝜌𝑓𝜋𝑅𝑖
2|𝑢𝑖 − 𝑣𝑖|(𝑢𝑖 − 𝑣𝑖)

Fluid drag coefficient  𝑐𝑑0,𝑖 = (0.63 +
4.8

𝑅𝑒𝜌,𝑖
0.5)2

Reynolds number 𝑅𝑒𝜌,𝑖 =
2𝜌𝑓𝑅𝑖|𝑢𝑖−𝑣𝑖|

𝜇𝑓

𝜌𝑓= fluid density and 𝜇𝑓= viscosity 

𝑥 = empirical coefficient = 3.7 − 0.65 exp [−
(1.5−log10 𝑅𝑒𝜌,𝑖)2

2
] 

3.3 Particle-fluid Coupling: 

The Fluid-Particle Coupling is a 4 way approach. The new version of OpenFOAM includes 

particle drag models that are suitable for dense particle flows [4]: 

• WenYu: suitable for particulate volume fractions up to approximately 0.2.

• ErgunWenYu: suitable for all particulate volume fractions up to the closed packed

condition. 

• PlessisMasliyah: suitable for all particulate volume fractions up to the closed packed

condition. 

Ergun-Wen-Yu drag model for solid spheres pressure drop is given by [11]: 

For Ergun, Pressure drop 𝐾𝑠𝑔 = 150
𝜇𝑔𝛼𝑠

2

𝑑𝑝
2𝛼𝑔

2 + 1.75
𝜌𝑔𝛼𝑠

𝑑𝑝𝛼𝑔
|𝐮𝑔 − 𝐮𝑠|

(39) 

(40) 

(41) 

(42) 

(43) 
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For Wen-Yu, Pressure drop 𝐾𝑠𝑔 = 0.75
𝐶𝑑𝛼𝑠𝛼𝑔

−1.65𝜌𝑔

𝑑𝑝
|𝐮𝑔 − 𝐮𝑠|

3.4 Slip Velocity: 

Slip velocity in two-phase (solid-liquid) flow, is defined as the ratio of the velocity of the gas 

phase to the velocity of the liquid phase. In the homogeneous model of two-phase flow, 

the slip ratio is by definition assumed to be unity (no slip) [12] 

𝑣𝑠𝑙 =
𝑑𝑠

2𝑔(𝜌𝑠−𝜌𝑓)

18𝜇

where 

μ = Newtonian viscosity of the fluid, in Pa-s = 1.983 ∗ 10−5 Pa-s

ds = particle diameter, m = 0.0025 m 

vsl = particle slip velocity, m/s 

ρs = solid density, kg/m
3
 = 0.6,1.2 and 2.4

ρf = fluid density, kg/m
3
 = 1.2

g = acceleration of gravity, m/s
2
 = 9.81

3.5 Collision Dynamics: 

In a gas fluidizes bed, the fast moving particles exhibit complicated collision patterns [2]. 

The collision partners, including the collision points change during the time evolution. During 

this time, there is a high possibility for a particle to collide with its collision partner via free fly 

path. Free fly path, when not considered properly introduces a fictitious elastic energy that is 

(44) 

(45) 

19 



stored in the particles. This problem is can be explained using a two-dimensional collision 

dynamic model [2]. 

Consider a movement of particle 𝑗 relative to 𝑖 within a time step ∆𝜏. At the current time, 

the two particles will be in contact. At the previous time, two possibilities exist: the two particles 

are either contacted or separated. If the two particles are separated before the collision, the 

position at which 𝑗 touches 𝑖 is found by moving particle 𝑗 in backward direction along the 

direction of their relative velocity to a point at which the distance between the mass centers is 

equal to sum of the radii [2]. The actual collision time from this point is given by ∆𝜏1 and is less

than ∆𝜏 [2]. 

∆𝜏1 = −
(𝑎𝑣𝑥+𝑏𝑣𝑦)+√(𝑎𝑣𝑥+𝑏𝑣𝑦)

2
+𝑣𝑟

2(𝑅2−𝐿2)

𝑣𝑟
2

If (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) are the Cartesian coordinates of the particles 𝑖 and 𝑗, 𝑣𝑥 and 𝑣𝑦 are the 

relative velocities in x and y direction respectively [2]; 

𝑎 = 𝑥𝑗 − 𝑥𝑖 

 𝑏 = 𝑦𝑗 − 𝑦𝑖   (48) 

𝑅 = 𝑅𝑖 + 𝑅𝑗  

𝐿 =  √𝑎2 + 𝑏2 

𝑣𝑟 = |𝑣𝑖 − 𝑣𝑗| 

During time step ∆𝜏1, the incremental displacements in normal and tangential direction

respectively, are given by [2]: 

(46) 

(47) 

(49) 

(50) 

(51) 
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∆𝛿𝑛,𝑖,𝑗 = (𝑣𝑟 . 𝑛𝑖)∆𝜏1

and 

∆𝛿𝑡,𝑖,𝑗 = (𝑣𝑟 . 𝑡𝑖 + (𝜔𝑖 ∗ 𝑅𝑖 − 𝜔𝑗 ∗ 𝑅𝑗). 𝑡𝑖)∆𝜏1

During time step ∆𝜏, the incremental displacements in normal and tangential direction 

respectively, are given by [2]: 

∆𝛿𝑛,𝑖,𝑗 = (𝑣𝑟 . 𝑛𝑖)∆𝜏 

and 

∆𝛿𝑡,𝑖,𝑗 = (𝑣𝑟 . 𝑡𝑖 + (𝜔𝑖 ∗ 𝑅𝑖 − 𝜔𝑗 ∗ 𝑅𝑗). 𝑡𝑖)∆𝜏 

3.6 Computational Fluid Dynamics: 

The particles in the gas fluidized bed create impermeable boundaries which force the gas 

to flow through the interstitial gaps by detouring from the path. A fluid drag force is produced by 

the gas flow which with the inter-particle forces results in the motion of individual particles [2]. 

Through this mutual interaction, the energy and the momentum are exchanged between the 

continuum gas and discrete particles. And this interaction complicates the flow pattern in the 

fluidized bed so that the point variables of gas phase vary rapidly in both space and time [2]. To 

calculate these instantaneous point variables of gas phase with moving discrete boundaries and a 

number of particles, the mass conservation and Navier-Stokes equation are used [2]. 

𝜕𝜀

𝜕𝜏
+ ∇. (εu) = 0 

and 

(52) 

  (53) 

  (54) 

  (55) 

   (56) 
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𝜕(𝜌𝑓𝜀𝑢)

𝜕𝜏
+ ∇. (𝜌𝑓εuu) = −𝜀∇𝜌 − 𝐹 + ∇. (𝜀Γ) + 𝜌𝑓𝜀g

where, 

𝜌 = fluid pressure, 

𝐹 = volumetric fluid-particle interaction force = 
∑ f𝑓,𝑖

𝑘𝑐
𝑖=1

∆𝑉

where, 

∆𝑉= volume of the computational cell = ∆𝑥∆𝑦∆𝑧 

 ∆𝑥, ∆𝑦, ∆𝑧 = lengths of a computational cell in x, y and z direction respectively 

𝑘𝑐= number of particles located in the cell 

𝜀 = porosity = 1 −
∑ 𝑉𝑖

𝑘𝑐
𝑖=1
∆𝑉

where, 

𝑉𝑖= volume of particles 𝑖 inside a computational cell 

Γ = viscous stress tensor 

 Γ = [(𝜇𝑓
′ −

2

3
𝜇𝑓) ∇. u] 𝛿𝑘 + 𝜇𝑓[(∇u) + (∇u)−1

where, 

 𝛿𝑥 = Kronecker delta and 

𝜇𝑓
′  = fluid bulk viscosity 

(57) 

(58) 

(59) 

(60) 

22 



 

3.7 Solution technique: 

Different governing equations and different solution schemes have be used in the 

Discrete Particle Method (DPM) and Computational Fluid Dynamics (CFD). To solve the 

translational and rotational motions in the DPM simulations, the explicit time integration method 

is used.  The main advantage of this method is the straight forward formulation, but to the 

numerical stability constraints, the time step used must be small for this simulation because until 

the particles finish the movement in one time step, they do not detect the contact with others. 

During this process, the displacements might me overestimated sometimes, which results in the 

fictitious elastic energy for the particle collisions. The predictor-corrector method is introduced 

to the present simulation in order to avoid this problem [2]. 

The following equations are uses in the predictor-corrector procedure. 

Predictor stage [2]: 

𝑣𝑖
𝑝 = 𝑣𝑖 + ∆𝜏(1 − 𝛼)𝑎𝑖

𝑟𝑖
𝑝 = 𝑟𝑖 + ∆𝜏𝑣𝑖 + 0.5∆𝜏2(1 − 2𝛽)𝑎𝑖

The force balance after predictor stage is [2]: 

𝑚𝑖𝑎𝑖
𝑝

= f𝑓.𝑖 + ∑ (f𝑐,𝑖,𝑗
𝑝

+ f𝑑,𝑖,𝑗
𝑝 ) + 𝑚𝑖𝑔

𝑘𝑐
𝑗=1

Corrector stage [22]: 

𝑣𝑖
𝑐 = 𝑣𝑖

𝑝 + ∆𝜏𝛼𝑎𝑖
𝑝

𝑟𝑖
𝑐 = 𝑟𝑖

𝑝 + ∆𝜏2𝛽𝑎𝑖
𝑝

(61) 

(62) 

(63) 

(64) 

(65) 
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where, 

𝑎𝑖, 𝑟𝑖 = acceleration and position vector of particle 𝑖, respectively, 

superscripts p, c = values estimated at the predictor and corrector stages, 

𝛼, 𝛽 = the Newmark parameters which control the accuracy and stability of the method 

To solve the CFD equations, the conventional SIMPLE method is used. The basic 

governing equations are discretized in finite volume form on a uniform, staggered grid. For the 

pressure gradient and divergence terms second-order central difference scheme is used.  To solve 

the convection term the first order up-wind scheme is used while for the time derivative a 

second-order Crank-Nicolson scheme is used [2]. 

3.8 GAEA NIU [13]: 

For any CFD analysis, the factors that need to be considered are: the accuracy, 

computational time, model and geometry.  The solver time for the analysis depends on the 

number of dimensions, mesh and the geometry. Apart from these another important factor is the 

computer specifications. The factors such as the memory, processor specifications, random 

access memory (RAM) size and graphics affect the analysis time. However, to save the time, 

scaling and parallel computing can be used which also increases the efficiency and reliability. 

For this analysis   Gaea NIU- super computer is used Gaea is a 60-node CPU/GPU hybrid 

cluster. Each node is an HP SL380s G7 equipped with 72 GB RAM, 2 Intel X5650 2.66 GHz 6-

core processors, four 500 GB 2.5” SATA disk drives  and 2  NVIDIA M2070 FERMI GPUs, 

each with 6GB RAM and connected via PCI-E. All 60 nodes are connected via Full 1:1 non-

blocking Infiniband and Ethernet switch connectors[13]. 
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The cluster also has two storage servers, each an HP Proliant DL380G7 server, and an 

HP P2000 disk storage array with 192 TB of effective storage space (i.e., after RAID6) [13]. The 

storage array is connected to the storage servers via 6 Gigabit per second SAS connections [13]. 
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4. RESULTS AND DISCUSSION

4.1 Benchmark 

4.1.1 Ghia, et al. High-Re Solutions for Incompressible Flow Using N-S Equations – 1982 

The first step of this thesis is to validate the system and the approach. To do this, the 

work was done on the square cavity that is the generic lid driven cavity with single phase and the 

results are compared to Ghia et al [10]. This paper represents the benchmark for 2D analysis and 

this is an effort to employ the multigrid method in the solution of the stream function-vorticity 

equations for a model flow problem with a goal of obtaining solutions for Reynolds numbers and 

mesh refinements as high as possible [10]. 

The grid size of 129 x 129 up to 257 x 257 is used in this paper, to acquire the 

results for the Reynolds number ranging between 100-10,000 [10].  The analysis was carried out 

without particles to approach steady-state in the lid-driven cavity. These results are used as 

benchmark for relative horizontal velocity along the centerline for Reynolds numbers 100,400 

and 1000. The convergence criteria for this analysis is set as 10
-6

 and the simulation time is 10

seconds [10]. 

The present results are compared to Ghia, and shown below in the figures 4.1, 4.3 and 4.3 

for various Reynolds numbers. 



Figure 4.1 Re100 2D centerline velocities 

Figure 4.2 Re400 2D centerline velocities 
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Figure 4.3 Re1000 2D centerline velocities 

From the above results, it is observed that for the Reynolds number 100, the solver provided 

accurate results with less number of grids which indicates that a fine grid is not necessary for low 

Reynolds number.  As the grid size increases to 80, the percent difference with Ghia’s results 

greatly reduces. 

The error percentage with respect to Ghia is shown is given by the formula below: 

%𝐸𝑟𝑟𝑜𝑟 =
𝑈𝐺ℎ𝑖𝑎 − 𝑈𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑈𝐺ℎ𝑖𝑎

The error percentage for Centerline Velocity Comparison, for the Reynolds number 100,400 and 

1000 compared to Ghia and shown below in the figure 4.4, 4.5 and 4.6. 

Ghia 
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Figure 4.4 Error Analysis of Re100 2D centerline velocities 

Figure 4.5 Error Analysis of Re400 2D centerline velocities 
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Figure 4.6 Error Analysis of Re1000 2D centerline velocities 

4.1.2 Kumar, et al. Mathematical and simulation of lid driven cavity flow at different 

aspect ratios using single relaxation time lattice boltzmann technique – 2013 

In this paper Single Relaxation Time (SRT) Lattice Boltzmann equation have been used 

to simulate 2D lid driven cavity flow at various Reynolds numbers and three aspect ratios, K=1, 

1.5 and 4 [1]. These results are used as benchmark for relative horizontal velocity along the 

centerline for K= 1.5 and  Reynolds numbers 100,400 and 1000 with the boundary conditions 

imposed in this paper is no-slip and constant inlet velocity [1]. 
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Figure 4.7 Re100 2D centerline velocities for K= 1.5 

Figure 4.8 Re400 2D centerline velocities for K= 1.5 
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Figure 4.9 Re1000 2D centerline velocities for K= 1.5 

The error percentage is calculated for Reynolds number 100,400 and 1000 and is shown below. 

From the error analysis graphs it can be stated that maximum error of 28% is seen when 

Reynolds number is 1000. 
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Figure 4.10 Error Analysis of Re100 2D centerline velocities for K=1.5 

Figure 4.11 Error Analysis of Re400 2D centerline velocities for K=1.5 
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Figure 4.12 Error Analysis of Re1000 2D centerline velocities for K=1.5 

4.2 Cases Calculated 

In this thesis three independent variables namely, the Reynolds number, particle 

concentration and particle density were evaluated. A particle concentration of 25, 50 or 75 

percent was suspended into the fluid at the Reynolds numbers 100, 400 and 1000 respectively, at 

the density ranged from half, double and equal to the density of the working fluid, as shown in 

the Table 1 below: 
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Table 1: Cases 

𝜌1 =
𝜌𝑝

𝜌𝑓
= 0.5 

ϕ1 = 25 % Re100 Re400 Re1000 

ϕ2 = 50 % Re100 Re400 Re1000 

ϕ3 = 75 % Re100 Re400 Re1000 

𝜌2 =
𝜌𝑝

𝜌𝑓
= 1 

ϕ1 = 25 % Re100 Re400 Re1000 

ϕ2 = 50 % Re100 Re400 Re1000 

ϕ3 = 75 % Re100 Re400 Re1000 

𝜌3 =
𝜌𝑝

𝜌𝑓
= 2 

ϕ1 = 25 % Re100 Re400 Re1000 

ϕ2 = 50 % Re100 Re400 Re1000 

ϕ3 = 75 % Re100 Re400 Re1000 

4.3 Particle Description 

The particles are initially placed in the middle of the cavity along the horizontal at the 

beginning of the simulation. As the density concentration increases, the particles are expanded 

along the vertical direction. The particles are placed at a distance of 2.5mm from each other at 

the start of the simulations. 

4.4 Settling Time 

Through the depth of lid-driven cavity 10 points are selected on the centerline of the cavity 

dividing it into equal parts Y= 0.1 to Y = 1 and then velocities at these points in the direction of 

the velocity of the moving lid of the lid-driven cavity are plotted over time. These plots are 

referred as Settling Time plots below. 
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The transient flow characteristics can be observed in the figures below. For the figures 4.13, 4.14 

and 4.15 a very low drag can be observed and the Ux is never negligible and amplitude of 

oscillations of Ux decreases gradually reaching the steady state. 

Figure 4.13 Re 100, ρ1, ϕ = 0.25 velocity over time 

Figure 4.14 Re 100, ρ2, ϕ = 0.25 velocity over time 

Figure 4.15 Re 100, ρ3, ϕ = 0.25 velocity over time 
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Low drag is observed in the figures 4.16 to 4.21, 4.25 to 4.30 and 4.43 to 4.39 below. Also, Ux is 

negligible until only 1.5 seconds and increases suddenly; and takes very less time to reach steady 

state. 

Figure 4.16 Re 400, ρ1, ϕ = 0.25 velocity over time 

Figure 4.17 Re 400, ρ2, ϕ = 0.25 velocity over time 

Figure 4.18 Re 400, ρ3, ϕ = 0.25 velocity over time 
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Figure 4.19 Re 1000, ρ1, ϕ = 0.25 velocity over time 

Figure 4.20 Re 1000, ρ2, ϕ = 0.25 velocity over time 

Figure 4.21 Re 1000, ρ3, ϕ = 0.25 velocity over time 
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High drag is observed in the figures 4.22 to 4.24 and 4.31 to 4.33 below. Also, Ux is negligible 

till 2.5 seconds and increases gradually in the form of smooth curves until it reaches steady state 

Figure 4.22 Re 100, ρ1, ϕ = 0.5 velocity over time 

Figure 4.23 Re 100, ρ2, ϕ = 0.5 velocity over time 

Figure 4.24 Re 100, ρ3, ϕ = 0.5 velocity over time 
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Figure 4.25 Re 400, ρ1, ϕ = 0.5 velocity over time 

Figure 4.26 Re 400, ρ2, ϕ = 0.5 velocity over time 

Figure 4.27 Re 400, ρ3, ϕ = 0.5 velocity over time 
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Figure 4.28 Re 1000, ρ1, ϕ = 0.5 velocity over time 

Figure 4.29 Re 1000, ρ2, ϕ = 0.5 velocity over time 

Figure 4.30 Re 1000, ρ3, ϕ = 0.5 velocity over time 
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Figure 4.31 Re 100, ρ1, ϕ = 0.75 velocity over time 

Figure 4.32 Re 100, ρ2, ϕ = 0.75 velocity over time 

Figure 4.33 Re 100, ρ3, ϕ = 0.75 velocity over time 
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Figure 4.34 Re 400, ρ1, ϕ = 0.75 velocity over time 

Figure 4.35 Re 400, ρ2, ϕ = 0.75 velocity over time 

Figure 4.36 Re 400, ρ3, ϕ = 0.75 velocity over time 
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Figure 4.37 Re 1000, ρ1, ϕ = 0.75 velocity over time 

Figure 4.38 Re 1000, ρ2, ϕ = 0.75 velocity over time 

Figure 4.39 Re 1000, ρ3, ϕ = 0.75 velocity over time 
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4.5 Spectral Analysis 

In this section, by means of Fourier transform the frequency component of the velocity is 

examined.  Through the depth of lid-driven cavity 10 points are selected on the centerline of the 

cavity dividing it into equal parts Y= 0.1 to Y = 1 and then frequency analysis was performed at 

these points. The settling time data is used to perform the frequency analysis. 

Figure 4.40 Re 100, ρ1, ϕ = 0.25 

Figure 4.41 Re 400, ρ1, ϕ = 0.25 

Figure 4.42 Re 1000, ρ1, ϕ = 0.25 
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Figure 4.43 Re 100, ρ1, ϕ = 0.5 

Figure 4.44 Re 400, ρ1, ϕ = 0.5 

Figure 4.45 Re 1000, ρ1, ϕ = 0.5 
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Figure 4.46 Re 100, ρ1, ϕ = 0.75 

Figure 4.47 Re 400, ρ1, ϕ = 0.75 

Figure 4.48 Re 1000, ρ1, ϕ = 0.75 
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Figure 4.49 Re 100, ρ2, ϕ = 0.25 

Figure 4.50 Re 400, ρ2, ϕ = 0.25 

Figure 4.51 Re 1000, ρ2, ϕ = 0.25 
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Figure 4.52 Re 100, ρ2, ϕ = 0.5 

Figure 4.53 Re 400, ρ2, ϕ = 0.5 

Figure 4.54 Re 1000, ρ2, ϕ = 0.5 
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Figure 4.55 Re 100, ρ2, ϕ = 0.75 

Figure 4.56 Re 400, ρ2, ϕ = 0.75 

Figure 4.57 Re 1000, ρ2, ϕ = 0.75 
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Figure 4.58 Re 100, ρ3, ϕ = 0.25 

Figure 4.59 Re 400, ρ3, ϕ = 0.25 

Figure 4.60 Re 1000, ρ3, ϕ = 0.25 
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Figure 4.61 Re 100, ρ3, ϕ = 0.5 

Figure 4.62 Re 400, ρ3, ϕ = 0.5 

Figure 4.63 Re 1000, ρ3, ϕ = 0.5 
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Figure 4.64 Re 100, ρ3, ϕ = 0.75 

Figure 4.65 Re 400, ρ3, ϕ = 0.75 

Figure 4.66 Re 1000, ρ3, ϕ = 0.75 
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4.6 Flow structures 

The flow characteristics in the lid driven cavity are observed through stream lines of the 

flow throughout the transient state and the steady state. A typical square lid-driven cavity shows 

a primary vortex and corner eddies which can be downstream eddy and upstream eddy 

depending on their direction. 

With change in the aspect ratio of the lid-driven cavity from 1 to 1.5 there are some 

interesting changes observed in the flow structures. Unperturbed flows i.e. the lid-driven cavity 

flows without particles shows a primary vortex, downstream eddy and upstream eddy for Re 100 

and is shown in figure 4.70. Both downstream eddy and upstream eddy in contact with each 

other can be observed in the figure. For Reynolds number Re400 a secondary primary vortex 

forming in the lower side of the cavity is seen. No formation of corner eddies i.e. downstream 

eddy and upstream eddy is seen. For Re1000 a primary vortex, secondary vortex and corner 

eddies were observed. 

When the lid-driven cavity is perturbed there are three types of steady state flow 

structures observed. 

4.6.1 One Vortex 

The simulations highlighted in the Table 2, after reaching steady state show one primary 

vortex with no corner eddies. 
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Table 2: Flow structures a steady state - One vortex

The perturbed flow structures of the highlighted simulations are shown in the figure 4.67. Figure 

4.68 shows the flow structure of unperturbed Re400 and Re1000. 

Figure 4.67 Perturbed - One vortex 

ϕ1 = 25 % Re100 Re400 Re1000

ϕ2 = 50 % Re100 Re400 Re1000

ϕ3 = 75 % Re100 Re400 Re1000

ϕ1 = 25 % Re100 Re400 Re1000

ϕ2 = 50 % Re100 Re400 Re1000

ϕ3 = 75 % Re100 Re400 Re1000

ϕ1 = 25 % Re100 Re400 Re1000

ϕ2 = 50 % Re100 Re400 Re1000

ϕ3 = 75 % Re100 Re400 Re1000
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Figure 4.68  Unperturbed - One vortex 

4.6.2 Two Vortices 

The simulations highlighted in the Table 3, after reaching steady state show a primary vortex, 

secondary vortex, corner eddies and eddy between primary and secondary vortex. An interesting 

phenomenon is observed here. When perturbed, the flow structure of Re100 shown is figure 4.69 

is very similar to unperturbed flow structure of Re1000 shown in figure 4.68, with vortices 

inverted. 

        Table 3: Flow structures a steady state - Two vortices

ϕ1 = 25 % Re100 Re400 Re1000

ϕ2 = 50 % Re100 Re400 Re1000

ϕ3 = 75 % Re100 Re400 Re1000

ϕ1 = 25 % Re100 Re400 Re1000

ϕ2 = 50 % Re100 Re400 Re1000

ϕ3 = 75 % Re100 Re400 Re1000

ϕ1 = 25 % Re100 Re400 Re1000

ϕ2 = 50 % Re100 Re400 Re1000

ϕ3 = 75 % Re100 Re400 Re1000
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Figure 4.69 Perturbed - Two vortices 

4.6.3 One vortex with corner eddies 

The simulations highlighted in the Table 4, after reaching steady state show a primary vortex, 

and corner eddies as shown in figures 4.70 and 4.71. 

Table 4: Flow structures a steady state - One vortex with corner eddies 

ϕ1 = 25 % Re100 Re400 Re1000

ϕ2 = 50 % Re100 Re400 Re1000

ϕ3 = 75 % Re100 Re400 Re1000

ϕ1 = 25 % Re100 Re400 Re1000

ϕ2 = 50 % Re100 Re400 Re1000

ϕ3 = 75 % Re100 Re400 Re1000

ϕ1 = 25 % Re100 Re400 Re1000

ϕ2 = 50 % Re100 Re400 Re1000

ϕ3 = 75 % Re100 Re400 Re1000
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Figure 4.70 Perturbed - One vortex with corner eddies 

Figure 4.71 Unperturbed - One vortex with corner eddies 
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5. CONCLUSIONS

 When particles are present to produce drag and particle-particle perturbations in the base

flow, the primary stable flow structure is one primary vortex with no corner eddies even 

with different Reynolds numbers, area fractions and density ratios 

 For Reynolds number = 100 and area fraction = 0.25, we have flow structures of an

unperturbed flow structure at Reynolds number = 1000, but inverted. 

 Of the two perturbation sources in base fluid flow, drag-induced perturbations was the

more significant contributor to how the resulting flow structures developed 

 At low Reynolds numbers, individual particle drag affected the time to reach a stable

flow structure is most 
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