
ABSTRACT 

DEVELOPMENT OF A SPECIFIC-USE POWER CONVERTER TO EFFICIENTLY SUPPLY 

A MEMS-TYPE ACTUATOR WITH THE ENERGY PRODUCED FROM A GLUCOSE 

FUEL CELL:  A PRELIMINARY INVESTIGATION INTO THE FUTURE  
DEVELOPMENT OF AN ARTIFICIAL MUSCLE CELL 

Kurk Macphearson, MS 

Department of Electrical Engineering 

Northern Illinois University, 2015 

Dr. Donald Zinger, Director 

The objective of this thesis is to develop a theoretical power converter that is capable of 

powering a MEMS-type electrostatic microactuator from the power provided by a glucose fuel 

cell.  The proposed converter is to serve as an investigation into the possibility of developing an 

artificial muscle cell that is able to draw energy directly from the sugar in human blood and 

convert it into linear motion.  The ultimate intent is to develop an actuation approach envisioned 

to drive active prosthetics that are permanently attached to the human body in the effort to 

eliminate the need for external power sources. 

The final configuration of the power converter is based on a switched capacitor high-ratio 

step-up converter that is capable of providing a minimum 7.0 volt output while being supplied 

with 0.75 volts input.  The 7.0 volt output limit is determined by a review of literature related to 

the selected electrostatic microactuator and the 0.75 volt input limit is dictated by reviewed 

research on glucose fuel cell technologies.  The final configuration performs as designed and 

shows that the concept of using the energy stored in the blood to drive mechanical actuators is 

achievable and the development of an artificial muscle cell is possible.  Furthering this 

technology could lead to advancements in both active prosthetics and robotics. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

It has been reported in the United States alone that there are approximately 185,000 

amputation surgeries performed each year resulting in nearly two million people living their lives 

as amputees [1].  Although the use of prosthetic devices by these amputees allows for 

participation in life by providing certain types of ambulation, current prosthetics are considered 

far less than optimal with regards to the issues of fit, control, and function [2].  To better address 

these issues a new discipline of active prosthetics called neuroprosthetics has emerged.  

Neuroprosthetics is a combination of neuroscience and bioengineering aimed at developing 

prosthetic devices used to replace or improve lost motor and sensory functionality [40].  Many of 

these neuroprosthetics are powered by an external power source.  Active prosthetics that are 

powered by batteries suffer the same drawbacks of any device powered by batteries which are 

that the extra batteries add weight and can only provide a limited run time [3]. 

It is the limitations associated with using external batteries that first fostered the idea of 

using the energy stored in the human bloodstream to power these advanced prosthetic devices.  

Abundant empirical evidence is available that demonstrates that there is enough chemical energy 

within the blood to provide ample power for human ambulation. It seems feasible that if these 

types of active neuroprosthetics could be supplied by this same chemical power source than there 
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would be enough energy to provide for adequate ambulation, given that this energy could be 

converted efficiently.  This realization led to the development of the following hypothesis. 

The chemical energy stored in the human blood can be a viable source of power 

sufficient to drive dynamic prosthetics that will one day be permanently attached to an amputee’s 

anatomy eliminating the need for external power sources.  Given that the method of conversion 

from chemical energy to mechanical energy is achieved efficiently.   

1.2 Motivation 

The motivation for developing the proposed power converter is to initiate the first steps 

toward realization of a concept of creating a viable and practical artificial muscle cell model that 

is able to convert the available chemical energy found in the human blood directly to linear 

mechanical motion similar to a biological muscle cell.  A rendering of the artificial muscle cell 

concept can be seen in Figure 1. The intended purpose of developing the artificial muscle cell is 

to improve the performance of dynamic human prosthetics.  The ultimate objective is to develop 

an artificial muscle cell that can function as a seamless combination of power supply, converter, 

and actuator in a single unit. The development of this artificial muscle cell would have profound 

effects on how future neuroprosthetic devices are designed, constructed, and ultimately used.  By 

eliminating the need for an external power source the weight of the dynamic prosthetic can be 

minimized allowing for much more efficient prosthetic devices design. 
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Figure 1 Future artificial muscle cell rendering. 

The proposed converter was envisioned as a bridge between two existing technologies.  

The concept was to investigate the possibility of driving an ideal microactuator from the power 

provided by a glucose fuel cell.  A rendering of the functional position of the proposed power 

converter can be seen in Figure 2.  The following work describes the approach used to determine 

the required characteristics of the proposed converter and the methods used to simulate the final 

model. 

 

 
Figure 2 Proposed Converter Functional Position 
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CHAPTER 2 

FUEL CELLS 

2.1 Description 

As glucose is understood as a universal fuel throughout biology [4] and it is considered 

the most important simple sugar in human metabolism [5] the first step was to determine the 

appropriate method of using this simple sugar as the power source for the proposed converter.  

The most promising technology as a candidate for converting the chemical energy found in 

glucose to the usable form of electricity is the fuel cell.  According to the United States 

Department of Energy a fuel cell is a device that uses a fuel and oxygen to electrochemically 

create electricity without employing combustion.  The general structural arrangement of a fuel 

cell consists of an electrolyte material placed between two catalyst-coated electrodes, one 

electrode serving as the cathode and the other serving as the anode.  When fuel is introduced to 

the device an electrical current is produced and will continue to do so as long as the fuel is being 

supplied [6]. 

There are many types of fuel cells in development which are classified by the type of 

catalyst used within the system [6].  The catalyst within the fuel cell determines many factors 

about the fuel cell such as the type of fuel that will be used and the chemical reactions that take 

place.  These factors make different fuel cells more suitable for certain applications.  Biofuel 

cells (BFC) or microbial fuel cells (MFC) are a class of fuel cell that incorporates biological 

organisms in the catalyst material that allows for the utilization of glucose as a preferred fuel 
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source [6].  This class of fuel cell, referred to as glucose fuel cell, was chosen to provide the 

input parameters for the proposed converter. 

2.2 Candidate Selection 

A literature review was conducted to gain a better understanding of the typical output 

characteristics being reported in the published research on current glucose fuel cell technologies.  

The data collected from the literature was used to provide a means of benchmarking the devices 

based on attributes such as power density, the open collector voltage (OCV), and the molar 

concentration of glucose.  These data points along with other information was gathered and can 

be seen in Table 1.  

Table 1 Comparison data. 

 

Power 
Density 

Current 
Density 

Load 
Open Circuit 

Voltage 

Molar 
Concentration 

Glucose 

Operating 
Temperature 

Effective 
Electrode Area 

Ref-# mW/cm2 mA/cm2 Ω V M °C cm2 

[7] 0.18 1.68 550k 0.192 0.01 18 -24 0.02 

[8] 0.0004 0.03 1000 0.488 0.0042 37 1.2 

[9] 0.61 2.13 OC-SC 0.771 0.89 Rm 27 

[10] 0.0011 0.01 - 0.218 0.70 37 2.25 

[11] 0.58 4.80 Var-Meg 0.230 0.01 37 0.0078 

[12] 0.295 1.58 SC 0.625 1.00 23 2.3 

[13] 0.036 0.45 Var-Meg 0.420 0.01 - 0.0078 

[14] 0.62 5.03 SC 0.644 1.00 Rm 3.8 

[15] 0.80 8.00 SC 0.626 1.00 Rm - 

[16] 0.126 1.34 SC 0.425 0.03 Rm 61.3mm2/g* 

[17] 0.0235 - SC 0.560 0.02 Rm - 

[18] 4.80 20.50** - - 0.20 30 5 

[19] 0.322 - SC - 0.01 50 1 

[20] 2.30 8.60 - 0.400 0.50 - 5.67 

[21] 0.0162 0.111 54k 0.880 0.05 22 - 

* Based on nano-structure, Effective Electrode Area given based on gram weight of material. 
** Based on graphical interpretation 
SC – Short Circuit, OC – Open Circuit, OC-SC – Load varied from OC to SC, Var-Meg – 1M Ω Potentiometer Varied 

Rm – Operational Temperature Declared to be Room Temperature 
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It was determined that the fuel cell attribute of power density should be used as the 

limiting value in determining the available voltages and currents to be supplied to the proposed 

power converter.   The attribute of power density is used because this value is able to be used to 

determine the power that could theoretically be produced by the fuel cells.  From this indicated 

power a voltage value and current value can be established to determine the inputs to the 

proposed converter.  In addition, the power density value can also be used to give an indication 

of the size of the fuel cell needed to power the proposed converter. 

The power densities being achieved by the glucose fuel cells are directly related to the 

concentration of glucose being supplied to them.  The resulting power densities increases 

proportionately when the concentration of glucose that is supplied to the fuel cells is increased.  

This increase in power density holds true for supplied concentrations up to a maximum value of 

about 0.98 M and then starts to decline as the glucose concentration continues to increase 

[9][22].  Figure 3 and Figure 4 support these findings.  Although the reviewed data indicates an 

upper limit for glucose concentration effects on power density, the challenge for this thesis work 

is to investigate the power densities at much lower concentrations of glucose. 

 

 
Figure 3 Plot of power density vs glucose 

concentration (Figure 3. from Mor). 

 
Figure 4 Collected data relating power density to 

glucose concentration (Table 1 from Bubis). 
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Given that stable concentrations of glucose in the human blood range from approximately 

3.9 mM to 5.0 mM [8], it must be noted that the majority of the fuel cells described in the 

reviewed literature operated at much higher glucose concentrations ranging from about 0.01 M to 

1.0 M.  In order to derive usable values for power density at the physiological glucose 

concentrations, extrapolated values are needed.  By plotting the pertinent data from the table 

shown in Figure 4 it is observed that the lowest two data points, the point at 0.22 M glucose and 

the point at 0.44 M glucose, produce the same power density value of 0.22 mW/cm2.  Based on 

the available data and by accepting that this data indicates the normal operating conditions of a 

glucose fuel cell, it is assumed that this system behaves linearly at least at values below a certain 

glucose concentration threshold.  This assumption allows for the linearization around an 

operation point to be applied thus allowing for the identification of a reasonable fuel cell power 

density function based on supplied glucose concentrations closer to human physiology.  

It is inferred from the data that if the operating point was at 0.22 M glucose then there 

existed a window extending to the point at 0.44 M glucose in which the system remains linear, 

see Figure 5.  This same window can then be extended in the opposite direction down to the 

point at 0.00 M describing the same system linearity.  The application of this linearization 

around the chosen operation point provides the tool for ultimately determining the available 

power that can be supplied to the proposed converter for the simulations.  To reiterate, according 

to this approach, a fuel cell with a known power density that is in operation while being supplied 

with a glucose concentration of less than 0.44 M can be used to determine a working power 

density at physiological glucose concentrations.  
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Figure 5 Plot and assumed linearization about the 0.2M glucose operation point. 

 

2.3 Proposed Converter Input Estimations 

The voltage and current values used in the simulations are determined based on the 

working power density identification methods established by the application of the previously 

discussed linearization techniques. This working power density is based on the highest reported 

power density of any of the fuel cells found to be operating at a glucose concentration below the 

0.44 M concentration limit.  A working power density value of 4.8 mW/cm2 was established and 

is based on a fuel cell that was being supplied with 0.2 M glucose.  This working power density 

provides a method for determining the theoretical working power available that can be supplied 

from the glucose fuel cell to the proposed power converter.  By dictating the size of the effective 

electrode area the theoretical working power can be calculated. It is this theoretical working 

power that is used to ultimately determine the maximum input voltage and input current for the 

proposed power converter.  Although the flexibility of this approach allows for any practical 

working input voltage to be selected, a voltage of 0.75 volts is selected as an upper end 

reasonable working voltage based on the open circuit voltages (OCV) reported in the literature. 



 

 

 

 

CHAPTER 3 

MICROACTUATORS 

3.1 Description 

Microactuators are simply actuators that have been developed on the microscopic scale.  

Where the term microscopic is referred to in the classical sense in that an object of interest is 

smaller than can be easily seen with the unaided eye.  Microactuators make up one of the 

components studied in an area of technological development referred to as Micro-Electro-

Mechanical Systems or MEMS [23].  MEMS are descried as miniaturized mechanical and 

electro-mechanical elements that are developed using microfabrication techniques [23]. 

These microactuators perform the same role as standard actuators by providing the means 

for converting stored energy into a controlled motion which are used in a mechanical system.  

There are different types of microactuators which are generally classified based on the energy 

source used to power them and/or the methods used to control them.  An electrostatic type 

microactuator was chosen as the representative load for the proposed power converter because of 

its small size and because it typically consumes very little power due to their capacitive nature 

[24].  These types of microactuators rely on exploiting the forces that exist between charged 

particles to produce movement.  One particular example of an electrostatic type microactuator 

was discovered during the development of this thesis’ proposal and has remained the top 

candidate as the basis for the development of the output parameters that are required by the 

proposed converter. 
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3.2 Candidate Selection 

The microactuator of interest is described as an electrostatic inchworm type MEMS 

actuator that was developed in the published article “A Low-Voltage Large-Displacement Large-

Force Inchworm Actuator” authored by Mehmet A. Erismis, Herc P. Neves, Robert Puers, and 

Chris Van Hoof.  The authors describe the development of a new family of pull-in style micro 

actuators with low operational voltages that have the ability to vary the displacement from 

nanometers to micrometers through minor changes in the design.  The authors’ main goal for the 

development of the new actuator type was to address the drawbacks of using current micro 

actuators for in-vivo biomedical applications due to higher input voltages.   

The basic design of the actuator is based on six smaller pull-in actuators arranged in a 

configuration that allows for the manipulation of a central shuttle.  Two of the small pull-in 

actuators are used to “Drive” the main shuttle back and forth by distorting the angle of a bent 

beam structure [24] providing the primary displacement of the device.  The four remaining pull-

in actuators are used to “Latch” the ends of the shuttle to maintain a desired shuttle position [24], 

as illustrated in Figure 6.  When the pull-in actuators are triggered in the correct sequence an 

overall progression can be achieved by the shuttle allowing for desired displacements of 

actuation.  The authors describe a modified control circuit that supplies positive and negative 

switching signals used to cancel out any accumulated charges within the actuator which 

successfully minimized stiction and allowed repeatable operation at frequencies around 75 Hz 

[24].  These frequencies are considered to be well suited for in vivo biomedical applications [24].  

This set up is described as inexpensive and simple to fabricate and has produced working 

actuators that have reached more than 25 million cycles without significant deterioration in 

performance [24]. 



 

 

11 
 

Fig. 2. Schematic view of our inchworm actuator topology. It has four latching 

and two driving actuators. The drive-stop electrodes prevent total collapsing 

of the drive actuators during pull-in. The shuttle serves as the stopping electrode 

for the latching actuators. 

 

  

 
 

 

 
Figure 6 Inchworm schematic (Fig. 2 from Erismis). 

 

 

According to their research the authors believe they have succeeded in developing an 

actuator with the lowest operational voltage for similar types of hardware.  The article describes 

an actuator driven at reported voltages as low as 7V while being able to provide ±30µN of output 

force with a total overall displacement of ±18µm [24].   The results of the authors benchmarking 

studies are displayed in Figure 7 which shows the extremely low operational voltages that were 

achieved when compared to similar published work.  This benchmarking gave compelling 

evidence that the stated 7 volts was an appropriate target output for the proposed power 

converter. 

 

 

Shuttle 
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Fig. 1. State-of-the-art benchmarking of inchworm actuators. 

Figure 7 Benchmarking of inchworm actuators (Fig. 1. from Erismis). 

 

A second article coauthored in part by the same researchers described the development a 

similar low voltage microactuator that was referred to as a state-of-the-art low-voltage low-

power actuator [27].  The second article titled “Low voltage electrostatic inchworm actuators in 

aqueous environments,” claimed that this type of actuator is low-power and that the device 

consumes only dynamic power due to its electrostatic nature [27].  This reference to dynamic 

power consumption implies that the actuator only consumes power when it is in a “pull-in” state 

and when at rest it theoretically consumes nothing.  Based on these claims it has been concluded 

that for simulation purposes the currents required to drive the electrostatic type microactuator 

will be mostly related to the minimal leakage currents within a capacitive device. 
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3.3 Proposed Converter Output Estimations 

The low operational voltages achieved by the authors of these articles are seen as the 

ideal target voltages for the proposed power converter. The 7.0 V operational voltage described 

in the reviewed literature is the lowest found and is chosen as the target output voltage for the 

converter simulations.  The reviewed literature also referred to a second similar actuator that had 

been developed that was described as low-power and that it consumed only dynamic power due 

to its electrostatic nature.  The reference to dynamic power consumption implies that the actuator 

only consumes a very small amount of power when it is in a “pull-in” state and when at rest it 

theoretically consumes nothing.   

 

 



CHAPTER 4 

PROPOSED CONVERTER 

4.1 Design Considerations 

The purpose of the following simulations are to develop a power converter that is capable 

of operating on a minimal amount of input current which is capable of providing an output DC 

voltage of 7.0 volts while being supplied with an input DC voltage of 0.75 volts.  The power 

converter has the intended use of supplying a MEMS-type electrostatic microactuator with the 

energy produced from a glucose fuel cell. 

One of the main design considerations is overall size reduction.  During the simulations 

the focus is to reduce the size of the proposed power converter while keeping the size of the 

effective electrode area of glucose fuel cell to a minimum.  MEMS-type devices are inherently 

small, therefore the reported area of 6.66 mm2 for the electrostatic microactuator serves as the 

benchmark for size comparisons.  While some theoretical exercises are used to reduce the 

component size of the converter, the main focus is to reduce its current draw of the converter. 

Reducing the current draw of the converter will reduce the total power consumed by the system. 

From this reduced power consumptions, a lower power density will be required by the glucose 

fuel cell which in turn will reduce the required size of its effective electrode area. 

Based on the reviewed literature it has been determined that a working power density 

value for the fuel cells is 4.8 mW/cm2.  With a fixed power density value and by holding the 
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input voltage to the converter constant the following equation can be used to determine the 

effective electrode area of the glucose fuel cell required for each simulation. 

��� = ��� ∗ ��		4.8 � ���  

 

(1) 

Where AEE is the calculated effective electrode area, Vin represents the supply voltage of 0.75 V 

and IiSS is the average steady state current drawn by the converter.   

4.2 Initial Simulations 

Because the microactuators outlined in the reviewed literature are referred to as 

electrostatic, a capacitor is used for modeling purposes.  The literature describes these 

microactuators as having a “pull-in” state defined by the equation, 

�������� = � 8���
27����� (2) 

Where k is the total spring constant, d is the gap between fingers, ε is the permittivity of air, and 

Acap is the total capacitance area [24].  This equation is of similar form to the equation for 

calculating the force on an ideal parallel plate capacitor shown as follows, 

� =  �!���
2��  (3) 

Where F is the force generated between the plates, ε0 is the permittivity of free space, A is the 

relative area, V is the applied voltage, and d is the average gap between the two parallel plates.  

This similarity is used to derive a representative capacitance for simulating the inchworm 

actuator.  First the terms are rearranged to find the relative area giving the equation. 
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� = 2���
�!��  (4) 

 

Next the variables are replaced by the given actuator values where F = 30-μN and V = 7 

volts, the appropriate value for the variable d was determined to be the stop gap distance and was 

stated as 2µm for the drive portion of the actuator [24].  This results in a calculated relative area 

of 5.50x10-7 m2.  This value is used to calculate the capacitance in the following equation. 

"#�$ = �!��  (5) 

Resulting in an actuator capacitance of 2.54x10-12 farads (CAct = 2.54 pF). 

OrCAD Pspice is used to simulate the initial converter concept which is based on a boost 

converter coupled to a buck converter as shown in Figure 8.  The strategy being to first boost the 

low working voltage supplied by the glucose fuel cell up to a relatively high voltage and then 

buck the recently boosted voltage back down to the desired operational voltage of the selected 

electrostatic inchworm microactuator. This topology was originally implemented to provide the 

maximum available current at the output, but was abandoned as it was discovered that the boost 

converter alone is capable of supplying adequate current when configured to operate within the 

desired limits.  

 
Figure 8 Initial converter topology (Boost - Buck). 
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4.3 Standard Boost Converter Simulations 

A standard boost converter is simulated after the buck converter portion was removed 

from the initial topology.  This greatly simplifies the process for determining the ideal converter 

attributes, such as duty cycle and inductor value, by allowing the standard formulas to be used.  

To calculate the duty cycle (D) for the boost converter the following equation is used, 

% = 1 − ��� �(�$�                )�(�$ > ���+, (6) 

Where Vin and Vout are chosen to be 0.75 volts and 7 volts respectively resulting in a duty cycle 

of % = 0.893.  This value is used to calculate the optimal inductor size for the converter based 

on a switching frequency (fS) of 20 kHz and an initial current ripple (Iripple) of 20 mA.  The 

following equation is used where TS = 1/fS resulting in an inductor value (L) of 1.674 mH.  

0 = )��� ∗ % ∗ 12+ �3����45  (7) 

The switching frequency and the current ripple values are selected as reasonable starting 

points for the simulation process along with the initial load resistor value of 1 kΩ and the output 

filter capacitor value of 10 uF. Figure 9 shows the completed boost converter modeled in Orcad 

Pspice and Figure 10 shows the resulting outputs which correspond to these estimated values.  

The resulting output voltage is approximately 6.994 volts and the ripple present in the inductor 

current is about 19.983 mA with a steady state maximum current of approximately 75.284 mA. 
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Figure 9 Initial boost converter topology. 

 

 
Figure 10 Initial boost converter outputs. 

 

Next a 2.54 pF capacitor calculated to represent the electrostatic inchworm microactuator 

is added to the load side of the converter, shown in Figure 11, and the simulations are again 

performed with the results shown in Figure 12.  As is expected, applying the additional small 

capacitor for the actuator in parallel with the much larger filter capacitor does not change the 

output values significantly. See Table 2 found on pg. 20.  The resulting steady state maximum 

inductor current for the new configuration is about 75.281 mA.  In this boost converter topology 

the current through the inductor is equal to the input current drawn by the converter.  With the 

input voltage selected to be 0.75 volts and an input current of 75.281 mA the input power can be 

roughly calculated to be 56.463 mW. The resulting effective electrode area is 11.763 cm2 based 

on the previously determined fuel cell power density of 4.8 mW/cm2.  This estimated area is 
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significantly larger than the given area of the actuator which is approximately 6.66 mm2.  Given 

that the required size of the fuel cell is directly related to the current drawn in by the converter, 

the next step is to reduce the current being used by the converter. This is achieved by optimizing 

the passive components of the boost converter. 

 

 

 
Figure 11  Boost converter topology with actuator capacitance added. 

 

 

 

 
Figure 12 Boost converter output with actuator capacitance added. 
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Table 2 Boost converter behavior before and after applied actuator capacitance. 

Table 2 

Steady State W/o Cact W/ Cact 

m
A
 ILripple Max 75.284 75.281 

ILripple Min 55.301 55.298 

ILripple 19.983 19.983 

V
 

VCripple Max 7.0093 7.0093 

VCripple Min 6.9781 6.9781 

VCripple Max 0.0312 0.0312 

 

 

As the power into the converter is equal to the power out of the converter, minus some 

losses, the first place to attempt to reduce the power consumed by the converter is to reduce the 

power output by the converter.  With the output voltage of the boost converter set to the required 

minimum voltage of 7.0 volts the best option reducing the power is to reduce the current through 

the load resistor (R2) that is fixed across the converters output.  This is done by increasing the 

resistance of R2.  The largest practical resistor value that can be used that allows the converter to 

remain in continuous conduction mode (CCM) is the described as the critical resistance Rcrit, and 

is defined by the equation, 

6�3�$ = 207	%)1 − %+� (8) 

This equation results in a calculated critical resistance value of 6533.33 Ω for the current 

configuration of the boost converter.  As expected, when this value is used for the load resistance 

in the simulation it does not cause the converter to operate in discontinuous conduction mode 

(DCM).   

To determine the critical load that will actually cause the boost converter simulation to go 

into DCM a method of trial and error is used.  Starting with the calculated Rcrit value the load 

resistance is incremented through successive iterations until the critical simulation resistance 
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value (RScrit) is established.  This approach determines RScrit to be 6931.87 Ω resulting in a six 

percent increase in the resistance required to cause the boost converter to go from CCM into 

DCM. Figure 13 shows the comparison of the inductor currents from the simulations for the two 

different load resistor values.  The steady state inductor current remains positive for the 

calculated Rcrit value indicating CCM operation and remains negative for the established RScrit 

value indicating DCM operation. 

To push the limits of the boost converter a load resistance that is just slightly less than a 

resistance that causes a DCM condition needs to be employed.  Based on the determination of 

the two previous resistance values maximum load resistance (RL) is established.  In an effort to 

have the converter safely remain in CCM it is determined that a load resistance that is 

approximately 10% less than the RScrit value will be used.  This RL value happens to be about 5% 

less than the calculated Rcrit value, therefore for simulation purposes, the scaling factor RL = 

0.95(Rcrit) is used giving a load resistance of 6206.67 Ω. 

 
Figure 13 Calculated critical resistance vs simulated critical resistance. 

RScrit 

Rcrit 
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Running the simulation with the established theoretical minimum load reveals a new 

steady state maximum current of about 20.532 mA.  Based on the 0.75 V input voltage and the 

fuel cell power density of 4.8 mW/cm2 this indicates a new effective electrode area for the fuel 

cell that is calculated to be about 3.208 cm2.  This is a size reduction of almost 400% but is still 

not significant enough to bring it down to a size that is comparable to the nominal size of the 

electrostatic inchworm microactuator. 

To reduce the power consumed by the boost converter even more the maximum steady 

state current drawn in from the glucose fuel cell is reduced. This is a two-step approach.  First, a 

steady state maximum current is determined by dictating the required effective electrode area.  

By selecting the required effective electrode area size to be the same as the 6.66 m2 area of the 

electrostatic actuator a much lower maximum steady state current of 0.425 mA is determined.  

The 0.425 mA current is determined by the following equation. 

�822 = �44%9���  (9) 

Where Imss is the maximum steady state current, Aee is the effective electrode area of the fuel 

cell, and DP is the power density of the fuel cell.   

Next, the magnitude of the current ripple through the inductor is reduced.  With the 

desired maximum steady state current and the ideal load resistance determined the simulation is 

conducted once again and successfully produces the desired output voltage of just over seven 

volts while remaining in CCM. The simulation results shows an average maximum steady state 

current of about 0.445 mA with a current ripple of about 0.428 mA at steady state.  The resulting 

topology shown in Figure 14 with the archived outputs shown in Figure 15.  Forcing the current 

ripple down to this low value results in an increase in the size of the inductor required for the 
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boost converter to achieve the desired Imss.  Based on Equation 7 the inductor value that this 

configuration requires is approximately 78.78 mH. 

It is difficult to determine the physical size of an inductor based on inductance alone due 

to other limiting factor such as the core material, coil and wire diameter, and the form factor.  

Therefore as sizing methodology is adopted to aid in determining component footprint areas.  

This methodology is to use the footprint area of a commercially available device found to have 

the same functional characteristics of the component in question.  This commercially available 

device is used as a stand-in device and provides the means of estimating components footprint 

areas for sizing comparisons. 

An estimated size was based on a stand-in part found through a component search for an 

80 mH fixed inductor.  The PE-51688 from Pulse Electronics Corporation is described as having 

the dimensions 17.01 mm by 9.91 mm with a height of 20.32 mm [25].  As the literature for 

either the actuator or the fuel cell do not describe a volume measurement for the components of 

interest it is assumed that each of these parts has a height associate with the given areas.  This 

assumption is based on the belief that any of the unindicated heights are within a reasonable 

proportion of the indicated lengths and widths i.e. of the same order of magnitude.  Based on this 

assumption the given areas have been used as a reasonable indication of the overall sizes for the 

components being described.  Therefore, by focusing on only the cross sectional area of the 

stand-in inductor (168.56 mm2) it is still much larger than the 6.66 mm2 established area for the 

actuator and fuel cell electrode.  In an effort to get a comparable inductor size the switching 

frequency of the converter was investigated.  
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Figure 14 Boost converter topology optimized for minimal fuel cell effective electrode area. 

 

 

 
Figure 15 Output from optimized boost converter simulation. 

 

It was determined that by selecting a representative inductor based on its size could 

provide a method for calculating the target inductance to be used for the simulations.  A second 

stand-in inductor was found based on its area of 6.75 mm2.  The T1008-8R2G fixed inductance 

device from Tamura was of the right size and had a stated inductance of 8.2 µH [26].  A 

switching frequency of 19.2 MHz was calculated by the following equation and used for the next 

set of simulations. 

7	 = ���%0�3����4 (10) 
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This final configuration for the boost converter performed as designed with an achieved 

output voltage of approximately 7.0001 V with a inductor current ripple of about 0.436 mA and 

an average steady state current (ILSS) of about 515.729 µA.  The values for the final configuration 

of the boost converter components can be seen in Table 3. 

 

 
Figure 16 Boost converter topology for final configuration with reduced inductor and increased switching 

frequency. 

 

 

 
Figure 17  Steady state output from final boost converter with an 8.2 µH inductor switched at 19.2 MHz. 
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Table 3 Boost converter final configuration. 

Table 3  

  Calculated Simulated 

Vin 0.75 V 0.75 V 

Vout 7.0 V 7.0001 V 

ILripple 425 µA 436 µA 

fS 19.2 MHz 19.2 MHz 

D 0.893 0.893 

L 0.82 µH 0.82 µH 

RL 292 kΩ 292 kΩ 

 

The final configuration of the boost converter, see Figure 16, has a simulated average 

steady state input current draw of 515.729 µA, shown in Figure 17.  According to Equation 1 this 

input current requires the glucose fuel cell to have an effective electrode area of 8.06 mm2.  One 

major shortcoming of this model is the rather large representative footprint area of the stand-in 

inductor determined by the T1008-8R2G fixed inductance device from Tamura.  Although the 

inductor is just one passive component of the boost converter it has an area of 6.75 mm2 [26] 

which is slightly larger than the 6.66 mm2 representative area of the electrostatic microactuator 

[27]. 

To establish a conservative but realistic relative area for the other components of the 

boost converter such as the switch, the diode, the capacitor, and the load resistor a stand-in 

device is again used.  A micro processing unit (MCU) has been selected to account for the area 

of the rest of the boost converters structure as the typical MCU is able to incorporate many of 

these components in a single device. MCUs incorporate millions of transistors which are used as 

oscillators and switches as well as resistors, diodes, and capacitors into a single device with a 

very small area [28].  The stand-in microprocessor is the Kinetis KL02 microcontroller 
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developed by Freescale which has a footprint 2.0 mm by 1.9 mm.  With an area of 3.80 mm2, it 

is the smallest integrated circuit of its kind identified [29].  Because the final configuration of the 

boost converter contains only one each of the elemental components as opposed to millions, this 

stand-in was believed to more than adequately represent their cumulative areas along with any 

wires or bussing structures.   

Based on the relative areas of key components for the final boost converter configuration 

along with the key components of the proposed artificial muscle cell a theoretical sizing scale is 

determined.  A suitable layout can be seen in Figure 18 and is based on the areas of the stand-in 

devices and the calculated effective electrode area of the fuel cell, the dimensions are given in 

Table 4. 

 

Figure 18 Theoretical sizing scale for the standard boost converter. 
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Table 4 Boost converter key component dimensions. 

 

Key Component Length (mm) Width (mm) Area (mm2) 

Fuel Cell Effective Electrode 4.60 1.75 8.06 

Electrostatic Actuator 3.70 1.80 6.66 

Inductor* 2.70 2.50 6.75 

Elemental Components** 2.00 1.90 3.80 

Total Estimated Area - ATotal 25.27 
 *Based on the T1008-8R2G fixed inductance device from Tamura. 

 **Based on the Kinetis KL02 microcontroller developed by Freescale. 

 

4.4 Switched Capacitor Converter Simulations 

In an attempt to reduce the current required by the system a switched capacitor converter 

is investigated. This type of converter can be implemented without any inductors or resistors and 

is based on an interconnected matrix of switches and capacitors that exploits the effects of 

moving a stored charge between capacitors in a process called charge pumping [30].  Depending 

on the number of capacitors, the configuration, and the switching sequence almost any ratio of 

input voltage to output voltage can be achieved [30] providing either buck or boost capabilities.  

A non-inverting boost configuration called a voltage doubler is employed. The voltage doubler 

implemented in the simulations uses a switching sequence that alternates the capacitor matrix 

between a parallel input configuration and a series output configuration shown in Figure 19. 

 

 
Figure 19 Switched capacitor boost converter. 

 

Table 4 

C1               C2                         Cn C1               C2                         Cn 

Series output configuration Parallel input configuration 
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This configuration has been selected because it is a high-ratio step-up converter typically 

used in low power applications and when it is implemented with n matched capacitors the 

approximate output voltage can be estimated using the following formula [30].  

�(�$ = :��� 
 

(11) 

With the input voltage to the switched capacitor converter fixed at 0.75 V by the glucose fuel cell 

and the required minimum output voltage of 7.0 V set by the electrostatic microactuator, the 

previous equation give a resulting n of 9.333. Therefore a minimum of ten matched capacitors is 

required in order to provide the necessary step-up ratio. 

OrCAD Pspice is also used to simulate the switched capacitor converter.  Figure 20 

shows the basic configuration of the Pspice model with the ten matched capacitors and a fixed 

2.54 pF capacitor representing the electrostatic microactuator.  The basic model also employs a 

switching scheme that provides a parallel input configuration and a series output configuration.  

Two different models of the switched capacitor converter are used to investigate functionality 

and to provide a method for comparing against the standard boost converter previously 

discussed.  The different switched capacitor converter models are referred to as Model-1 and 

Model-2 for the remainder of the simulations. 

Model-1 is set up with a fixed matched capacitors value. With the matched capacitors 

values fixed the switching frequency used to alter the series and parallel capacitor configurations 

is varied through a range of different frequencies.  Any reasonable value of capacitance could be 

used for the matched capacitors value, but ultimately a value of 2.54 pF is selected.  Based on the 

electrostatic microactuator this value is selected for simplicity. 
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Model-2 is alternatively set up to operate at a fixed switching frequency with the matched 

capacitors value being manipulated for each simulation.  Although the fixed variable of 

switching frequency could be any value, for continuity it is selected based on a previously 

determined value.  The switching frequency for Model-2 was set to the 19.2 MHz switching 

frequency calculated for the final configuration of the previously modeled standard boost 

converter. 

   

 
Figure 20 Switched capacitor converter topology with 10 matched capacitors. 
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4.4.1 Model-1 

The Model-1 simulations shows that in order to reach the minimum output voltage of 

seven volts a switching frequency greater than 0.1 GHz must be used.  To be thorough the 

switching frequency is varied form 0.1 GHz to 1 GHz and the appropriate data is collected. That 

data is related to the output voltage across the 2.54 pF actuator capacitor and the current drawn in 

from the voltage source V1.  In Figure 21 the average steady state values for the input current 

and the output voltages are plotted at each of the given switching frequencies. 

 

Figure 21 Average steady state values vs. switching frequency Model-1. 

 

The plot shows that the output voltage appears to approach a value less than the 7.5 volts 

predicted by Equation 11.  This is considered reasonable as the formula does not take in to 

account any considerations for efficiency.  This plot indicates that the minimum output voltage is 

achievable for a switching frequency greater than 0.1 GHz.  The steady state current however, is 

slightly more erratic but has a slight lowering trend as the switching frequency is increased.  
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To calculate a theoretical pull-in force for the actuator capacitor placed across the output 

of Model-1 the equation for force on a parallel plate capacitor is used. 

� =  �!���
2��  (12) 

Where F is the force generated between the plates, ε0 is the permittivity of free space, A is the 

relative area of the representative capacitor, V is the applied voltage, and d is the 2μm gap 

specified for the electrostatic microactuator.  The previously conducted simulations for the 

standard boost converter yielded the 2.54 pF capacitor value used to represent the capacitance of 

the electrostatic microactuator along with that representative capacitor’s area of 5.50x10-7 m2.  

The theoretical pull-in forces related to the achieved voltages are calculated and plotted. By 

rearranging the terms in Equation 9 the required effective electrode areas can be calculated. 

These calculated values based on the simulated steady state currents at the corresponding 

switching frequencies are also plotted.  Figure 22 shows these plotted values.  When the plot in 

Figure 22 is compared to the plot in Figure 21 the plots looked identical with the exception of a 

scale change. This stands to reason as the effective electrode area values and the theoretical pull-

in forces are proportional to the input current values and proportional to the square of the output 

voltage values respectively.   
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Figure 22 Calculated theoretical pull-in forces and calculated effective electrode areas.  

 

The data portrayed in Figure 22 suggests that there is a diminishing return on an 

increased switching frequency as both the theoretical pull-in force and the required effective 

electrode area show a leveling off trend as the frequency is increased.  Based on the plot of the 

theoretical pull in force the optimal switching speed for this model is selected to be at about 0.5 

GHz which gave a force of 32.41 μN with an output voltage of 7.2962 V.  Because the data for 

the effective electrode area is more inconclusive the data point at 0.5 GHz will not be used for 

determining the final effective electrode size instead and average of the areas over the span of 

frequencies will be determined.  This average area is calculated to be 8.23 mm2 and is used for 

determining the theoretical size for comparisons. 

As with the standard boost converter a theoretical sizing scale is established for Model-1.  

The sizing scale is based on the calculated effective electrode area and the relative areas of the 

other key components.  The calculated effective electrode area required for Model-1 is slightly 

larger than the effective electrode area required by the final configuration of the standard boost 
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converter, but unlike the standard boost converter model the area associated with the stand-in 

inductor was eliminated resulting in an overall reduction in total estimated area.  It is assumed 

that the stand-in elemental components area is still valid as eleven capacitors and twenty nine 

switches used in this model are still significantly less than the millions contained in a typical 

MCU. The new layout shown in Figure 23 depicts the smaller total area with the associated 

dimensions given in Table 5. 

 

Figure 23 Theoretical sizing scale for the switched capacitor converter Model-1. 

 

Table 5 Switched capacitor converter Model-1 key component dimensions. 

 

Key Component Length (mm) Width (mm) Area (mm2) 

Fuel Cell Effective Electrode 6.01 1.37 8.23 

Electrostatic Actuator 3.70 1.80 6.66 

Elemental Components** 2.00 1.90 3.80 

Total Estimated Area - ATotal 18.69 
 **Based on the Kinetis KL02 microcontroller developed by Freescale. 

 

Effective Electrode Area 

Electrostatic Microactuator 

Stand-in Elemental Components 

Table 5 
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4.4.2 Model-2 

Similar to Model-1 the initial simulations of Model-2 indicate that in order to supply the 

required 7.0 V minimum output voltage the variable component, in this case the matched 

capacitors value, has a minimum threshold.  This configuration requires a matched capacitors 

value greater than 25 pF.  Again, to be thorough, the simulations are conducted by varying the 

capacitance from 25 pF to 1 µF and the steady state output voltage and the steady state input 

current data is collected.  This collected data is plotted and shown in Figure 24. 

 

 
Figure 24 Average steady state values vs. matched capacitance Model-2. 

 

Like Model-1 the output voltage data from Model-2 appears to approach a value slightly 

less than the predicted 7.5 volts.  Unlike Model-1, the steady state input current values behave 

much more predictively and provide a much clearer indication of the optimal configuration for 
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Model-2.  As was previously established the values collected for steady state input current and 

steady state output voltage directly indicate the effective electrode size and the theoretical pull-in 

force respectively.  Therefore based on the plot shown in Figure 24 an optimal capacitance value 

of 2 nF can be established.  This capacitance value allows the converter to provide an output 

voltage of 7.4683 V resulting in a theoretical pull-in force of 33.95 µN. This is achieved while 

drawing a current of 284.763 µA which indicates a required effective electrode area of 4.45 

mm2.  Model-2 has the smallest theoretical sizing scale of all three converter models. Its layout 

can be seen in Figure 25 with the final dimensions listed in Table 6. 

 

Figure 25 Theoretical sizing scale for the switched capacitor converter Model-2. 

 
Table 6 Switched capacitor converter Model-2 key component dimensions. 

 

Key Component Length (mm) Width (mm) Area (mm2) 

Fuel Cell Effective Electrode 2.13 2.13 4.54 

Electrostatic Actuator 3.70 1.80 6.66 

Elemental Components** 2.00 1.90 3.80 

Total Estimated Area - ATotal 15.00 

 **Based on the Kinetis KL02 microcontroller developed by Freescale. 

Effective Electrode Area 

Electrostatic Microactuator 

Stand-in Elemental Components 

Table 6 
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4.5 Findings 

Table 7 shows the final attributes of the three converter models, all three of the converters 

are capable of providing the minimum 7.0 V output voltage required by the electrostatic 

microactuator while being supplied by the 0.75 V input voltage provided by the glucose fuel cell. 

The highest output voltage recorded is from Model-2. This indicates that this converter also has 

the highest calculated pull-in force which was determined to be 33.95 µN. While the theoretical 

sizing scale for each of the models can be brought down to relatively small sizes, the final 

displacement of the effective electrode area for the switched capacitor converter Model-2 is half 

the size of both the standard boost converter and Model-1.  The size comparisons can be seen in 

Figure 26.  Model-2 has the smallest total estimated area of just 15.00 mm2.  This miniature size 

is owed equally to the absence of an inductor and to the reduction in effective electrode area. 

 
Figure 26 Theoretical sizing scale comparison. 

 

 

Boost Converter Model-1 Model-2 
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Table 7 Converter models attributes comparison. 

  

  Vin (V) IiSS (μA) AEE (mm2) ATotal (mm2) Vout (V) Fpull (μN) 

Boost 0.75 515.729 8.06 25.27 7.0000 29.83 

Model-1 0.75 526.531 8.23 18.69 7.2962 32.74 

Model-2 0.75 284.763 4.45 15.00 7.4863 33.95 

 

 

Table 7 



CHAPTER 5 

CONCLUSION AND FUTURE SCOPE 

5.1 Conclusion 

The standard boost converter and the two configurations of the switched capacitor 

converter that were investigated perform as designed.  Each of these converters are able to 

provide power to the electrostatic micro actuator from the energy supplied by a glucose fuel cell 

operating at stable human blood glucose concentrations.  The switched capacitor converter 

Model-2 however has the best performance characteristics of the three converters developed. 

Model-2 has the highest output voltage which provides the highest pull-in force by the 

electrostatic microactuator. In addition Model-2 is capable of supplying this output while 

drawing the lowest input current recorded leading to the smallest required effective electrode 

area of the supplying glucose fuel cell.  Model-2 also had the smallest theoretical sizing scale 

with a required effective electrode area that was half the area of required effective electrode 

areas of both the standard boost converter and the switched capacitor converter Model-1. 

The preceding work shows that the approach of using the energy stored in the blood to 

provide mechanical actuation for permanent active prosthetics in humans is a viable concept. 

It is believed that the development of artificial muscle cell based on a similar configuration to the 

proposed design of a glucose fuel cell supplying a MEMS-type electrostatic microactuator via a 

switched capacitor power converter is possible. 



 

5.2 Future Scope 

5.2.1 Concept 1 

Because both the converter and the microactuator are essentially comprised of capacitive 

elements it only seems natural within the context of the artificial muscle cell concept that the two 

technologies could be combined into a single device.  By replacing one of the capacitors in the 

switched capacitor converter with the capacitance of the electrostatic microactuator a resulting 

novel actuator/power converter hybrid concept can be imagined.  This concept is depicted in 

Figure 27.  This could provide an elegant method for reducing size and the component count in 

the final device and could allow for the implementation of simpler control theories. Combining 

these into a single device eliminates the need for a separate control scheme for the actuator 

portion as is intrinsically handled by the control scheme for the switching of the power 

conversion portion of the hybrid.  By manipulating the switching scheme the voltage across the 

actuator capacitor will be varied which ultimately causes movement in the actuator.  

 
Figure 27 Novel actuator/power converter hybrid concept. 

 

This design could also be improved by having multiple capacitors within the converter 

being replaced with electrostatic actuators which could potentially increase the “pull-in force” in 
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one direction of actuation.  Furthermore, if the group of electrostatic actuators are placed at 

predetermined angles to each other controlled multidirectional movements could be obtained. 

5.2.2 Concept 2 

The artificial muscle concept will also be advantageous for traditional robotics 

applications.  As with active prosthetics for humans removing any external power sources could 

lead to more compact forms of actuation and could lead to an overall reduction in size and 

weight.  Another major benefit of this concept is that each artificial muscle cell is able to draw 

energy directly from its environment which eliminates the need to bus power from a separate 

source to the actuator.  This can lead to greater efficiencies by eliminating the losses associated 

with power transmission through wires and connectors.  In addition when applied to traditional 

robotics the artificial muscle cells and the fuel supplying them will not be limited by such low 

concentrations of glucose and can be optimized to generate greater amounts of power. 
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