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On Optimal Designs for Nonlinear Models:
A General and Efficient Algorithm

Min YANG, Stefanie BIEDERMANN, and Elina TANG

Finding optimal designs for nonlinear models is challenging in general. Although some recent results allow us to focus on a simple subclass
of designs for most problems, deriving a specific optimal design still mainly depends on numerical approaches. There is need for a general
and efficient algorithm that is more broadly applicable than the current state-of-the-art methods. We present a new algorithm that can be used
to find optimal designs with respect to a broad class of optimality criteria, when the model parameters or functions thereof are of interest,
and for both locally optimal and multistage design strategies. We prove convergence to the optimal design, and show in various examples
that the new algorithm outperforms the current state-of-the-art algorithms.

KEY WORDS: Convergence; Locally optimal design; Multistage design; �p-optimality.

1. INTRODUCTION

Experimental design is an integral part of scientific research.
An optimal or efficient design, by using resources economically,
can facilitate the data-collection process and subsequent data
analysis, thus leading to reliable and reproducible conclusions
in a cost-effective manner. Much design work thus far focuses
on linear models. However, many natural phenomena follow
nonlinear models. Efficient designs for nonlinear models are
needed in a multitude of application areas.

A major complication in studying optimal designs for nonlin-
ear models is that information matrices and thus optimal designs
depend on the unknown model parameters, held in the vector
θ=(θ1, . . . , θk)′. A typical approach is to use a locally optimal
design, which is based on a “best guess” of the unknown param-
eters θ (Chernoff 1953). One would first make a “guess” about
the value of θ , and then start the search for an optimal design
accordingly. Such an approach will inevitably run into a hit-
and-miss problem. Many times, one may get lucky and obtain a
good guess of θ . Other times, the initial guess of θ is far from the
true value and the resulting locally optimal design is far from
the true optimal design. A practical way to get a reliable “best
guess” of θ is to employ response adaptive or multistage de-
signs, an approach that has gained a lot of popularity in practice
in the past decade. An initial experiment, typically using a ro-
bust design, is conducted to get a better idea about the unknown
parameters. The resulting initial estimate for θ is then used as
the “best guess” of θ , based on which the next stage design is
selected. The research question here is to find a design such that
the combination of the initial design and the second-stage de-
sign is optimal/efficient with respect to the selected optimality
criterion. The observations from both the initial and the second-
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stage designs are subsequently used to obtain new estimates for
the parameters. If a third-stage design is needed, these will serve
as the “best guess,” and so on. Such multistage design strategies
have recently been used by pharmaceutical companies in clini-
cal trial experimental designs. For example, a three-stage design
was used in a dose-response study for a new drug treating acute
pain (Dragalin, Hsuan, and Padmanabhan 2007).

Recently, Yang and Stufken (2009), Yang (2010), and Dette
and Melas (2011) obtained a series of unifying results for a
large class of nonlinear models, multiple optimality criteria,
and multiple objectives. They showed that we can focus on a
subclass of designs with a simple form, which is dominating in
the Loewner sense, implying that for each design and optimality
criterion there is a design in the subclass that is at least as
good. While these results are big steps toward simplifying design
search for nonlinear models, the numerical computation may
still be problematic. For example, suppose the dominating class
consists of designs with at most five support points. Then we
still have nine variables (five support points and four weights)
to be determined. Obviously, a full grid search is not feasible in
this situation, and efficient algorithms are needed.

There are several algorithms available in the literature, most
of which are modifications of either the Fedorov-Wynn algo-
rithm (FWA; Wynn 1970; Fedorov 1972) or the multiplicative
algorithm (MA; Silvey, Titterington, and Torsney 1978). The
FWA is concerned with updating the support of the design,
whereas the MA operates with updating the design weights only.
Optimization of weights works as a first-order optimization pro-
cedure. Therefore, these two algorithms are asymptotically slow
and any algorithm optimizing both points and weights will be
faster (see, e.g., Torsney 1981; Hettich 1983, for several-phase
approaches to determine optimal designs). As a result, many
different modifications of these algorithms have been proposed
(e.g., Böhning 1986; Harman and Pronzato 2007; Torsney and
Martı́n-Martı́n 2009; Martı́n-Martı́n, Rodrı́guez-Aragón, and
Torsney 2012). However, these modifications mainly focus on
one specific design problem, D-optimality, when all parameters
are of interest. Chernoff (1999) expressed concerns about the
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concentration on D-optimality in the literature, advocating opti-
mality results under different criteria. In particular, the selection
of an appropriate optimality criterion depends on the main
objective of the experiment. For example, if there are nuisance
parameters in the model, we may want to choose a design that is
optimal for estimating the parameters of interest only. In addi-
tion, and perhaps even more important, these algorithms cannot
be used for deriving optimal multistage designs. An exception
is Covey-Crump and Silvey (1970) who found two-stage D-
and E-optimal designs for multivariable polynomial models.

Recently, Yu (2011) proposed a new algorithm named “Cock-
tail algorithm” (CA), which combines in each step an iteration
of the FWA, a nearest neighbor exchange following the VEM,
and an iteration of the MA, in a way that increases speed con-
siderably compared with each individual method. However, it
is restricted to D-optimal designs for the full parameter vector
θ , and may not be directly applied to find multistage designs.
These are major obstacles to wider use of the optimal design
approach by practitioners.

The purpose of this article is to develop a general yet efficient
algorithm that can address this gap in the literature. We propose
a new algorithm, optimal weights exchange algorithm, that is
applicable to a large class of optimality criteria, and covers the
situations where a subset or a (differentiable) function of the
parameters is of interest. Furthermore, our algorithm finds not
only locally optimal designs, but also multistage designs. Our
method can be viewed as an extension of the FWA by adding an
optimization step for the weights. Specifically, we start with a
nonsingular design, optimize the weights for the current support,
and remove points with zero weights. Next, we add one point
to the support (as in the FWA), and optimize the weights again,
and so on and so forth. We propose to optimize the weights
using the Newton method, a second-order optimization method,
which increases the speed.

We investigate the theoretical properties of the new algo-
rithm, and prove convergence in many practical situations.
Silvey (1980) noted: “What is important about an algorithm is
not whether it converges, but whether it is effective in the sense
that it guarantees arbitrary close approach to the optimum; and
how fast this approach is.” We show that the new algorithm is
highly efficient for all different optimality problems. In fact,
for those problems to which the CA can be applied, the new
algorithm outperforms the CA by a large scale.

In addition, we investigate how to select a grid to substitute
a continuous design space. It is common practice to consider a
design set with grid points spread equidistantly in each variable.
The finer the grid, the better the design obtained, but the higher
the computational burden, especially in higher dimensions. We
derive a lower bound for the efficiency of a design that is optimal
on a grid, relative to the corresponding optimal design on the
continuous design space. This helps us to determine how fine
the grid should be to avoid unnecessary computational effort.

This article is organized as follows. In Section 2, we intro-
duce the necessary notations. The main results including con-
vergence properties, implementation of the algorithm, as well
as efficiency considerations in continuous space are presented
in Section 3. Applications to many commonly studied nonlin-
ear models, and comparisons with the current state-of-the-art
algorithms are shown in Section 4. Section 5 provides a brief
discussion, followed by an Appendix containing the proofs.

2. SETUP AND NOTATIONS

2.1 The Design Problem

Suppose we have a nonlinear regression model for which
at each point x the experimenter observes a response Y . Here x
could be a vector, and we assume that the responses are indepen-
dent and follow some distribution from the exponential family
with mean η(x, θ ), where θ is the (k × 1) vector of unknown
parameters. Typically, approximate designs are studied, that is,
designs of the form ξ = {(xi , ωi), i = 1, . . . , m} with support
points xi ∈ X and weights ωi > 0, and

∑m
i=1 ωi = 1. Let X

represent the set of all possible design points. For a numerical
study, while the original design space C is usually continuous,
we consider X to be a set of grid points spread equidistantly in
each variable.

In the multistage design context, let ξ0 denote the design we
have already carried out, and n0 be the number of observations.
Note that ξ0 is an exact design, that is, a special case of an
approximate design where the weights multiplied with n0 yield
integers, the exact number of observations at each support point.
Suppose we can take n1 observations at the next stage, so we
need to determine the design ξ such that the combined design
ξ0 + ξ optimizes the selected optimality criterion. The operator
“+” means that the support of the combined design consists of
the support points of ξ0 and ξ , where the corresponding weights
are weighted averages of their original weights. For example,
if x is a support point of both designs, with weights w0 and
w, respectively, its weight in ξ0 + ξ will be w0n0/(n0 + n1) +
wn1/(n0 + n1). For ease of computation, the design ξ is an
approximate design, that is, its weights will have to be rounded
appropriately before the design can be applied.

Denote the information matrix at a single point x as Ix. The
information matrix of a design ξ can then be written as Iξ =∑m

i=1 ωiIxi
, and the information matrix of the combined design

ξ0 + ξ is Iξ0+ξ = n0/(n0 + n1)Iξ0 + n1/(n0 + n1)Iξ .
Throughout this article, we assume that Iξ0 is nonsingular

and n0 > 0 unless specified otherwise. Such assumptions are
common in design for nonlinear models, especially for an al-
gorithmic approach. In fact, we expect the information matrix
of the initial design to be nonsingular, since the purpose of an
initial design is to obtain estimates for all parameters.

Let g(θ) = (g1(θ), . . . , gv(θ ))T , 1 ≤ v ≤ k, be the (possibly
vector-valued) differentiable function of the parameters, which
is of interest. We can estimate g(θ) using the maximum likeli-
hood estimator g(θ̂), where θ̂ is the maximum likelihood esti-
mator of θ . The asymptotic variance-covariance matrix of g(θ̂)
under design ξ0 + ξ can be written as

�ξ0+ξ (g) = ∂g(θ )

∂θT
I−1
ξ0+ξ

(
∂g(θ )

∂θT

)T

.

The aim is to identify a design ξ , such that the variance-
covariance matrix �ξ0+ξ (g) is minimized under the selected
optimality criterion.

There are a variety of optimality criteria. The commonly
used ones are A-, D-, and E-optimality, which is to minimize
Tr (�ξ0+ξ (g)), |�ξ0+ξ (g)|, and λmax, respectively, where λmax

is the largest eigenvalue of �ξ0+ξ (g). These optimality criteria
are appealing because of their statistical meanings. For exam-
ple, an A-optimal design minimizes the sum of the variances
of the estimators, a D-optimal design minimizes the volume of
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the confidence ellipsoid of the estimators, and an E-optimal
design protects against the worst case for inference. Kiefer
(1974), in an effort to unify these criteria, defined the class of
functions

�p(�ξ0+ξ (g)) =
[

1

v
Tr (�ξ0+ξ (g))p

]1/p

, 0 ≤ p < ∞.

The case p = 0 is understood as the limit limp→0 �p

(�ξ0+ξ (g)) = |�ξ0+ξ (g)|1/v (D-optimality); for p = 1, we have
A-optimality; limp→∞ �p(�ξ0+ξ (g)) = λmax, and we obtain E-
optimality for p → ∞. Throughout this article, we shall con-
sider �p-optimality. For technical reasons, we restrict to p be-
ing a nonnegative integer. This restriction has little impact on
any practical optimality problem since it is rare to consider �p-
optimality for noninteger p. Note that minimizing �p(�ξ0+ξ (g))
is equivalent to minimizing

�̃p(�ξ0+ξ (g)) =
{

log |�ξ0+ξ (g)|, if p = 0;

Tr(�ξ0+ξ (g))p, if p > 0.

A powerful tool for checking the optimality of a given design is
an equivalence theorem. We thus present the well-known equiv-
alence theorem for �p-optimal multistage designs. All designs
in this article have been carefully checked using Theorem 1.

Theorem 1. In a multistage design, suppose that n0 > 0 and
Iξ0 is nonsingular. Let the directional derivative of �p, dp(x, ξ ),
be defined as

dp(x, ξ ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Tr((�ξ0+ξ (g))−1A(g, ξ )), if p = 0;(

1

v

) 1
p

(Tr(�ξ0+ξ (g))p)
1
p
−1 if p > 0;

Tr((�ξ0+ξ (g))p−1A(g, ξ )),

(1)

where

A(g, ξ ) = n1

n0 + n1

(
∂g(θ )

∂θT

)
(Iξ0+ξ )−1(Ix − Iξ )(Iξ0+ξ )−1

×
(

∂g(θ )

∂θT

)T

.

Then a design ξ ∗ is �p-optimal for g(θ ) if and only if, for all
x ∈ X ,

dp(x, ξ ∗) ≤ 0,

with equality if x is any support point of a �p-optimal design.

2.2 Notations and Idea

The proposed new algorithm requires a starting set of initial
points S(0). Let S(t) denote the set of support points at the tth
iteration, and ξS(t) denote the design with support points S(t) with
optimal weights. In each step of the algorithm, one further grid
point is added to the current support S(t), and the design ξS(t+1)

is then found by directly optimizing the weights for the new
support S(t+1). This optimization may yield an optimum on the
boundary, that is, one or more weights may be zero, in which
case the corresponding support points are deleted from S(t+1).
The updating rule for the support is given by

S(t+1) = S(t)
⋃

{x∗
t }, where x∗

t = arg max
x∈X

dp(x, ξS(t) ). (2)

Note that the updating rule for the support in Equation (2) is the
same as in the FWA.

3. CONVERGENCE AND OPTIMAL WEIGHTS

We first establish convergence of the new algorithm when a
multistage design is sought.

Theorem 2. Suppose that n0 > 0, and that Iξ0 is nonsingular.
Let ∂g

∂θT be a matrix of full row rank. For any set of initial
points S(0), the sequence of designs {ξS(t) ; t ≥ 0} converges to
an optimal design that minimizes �p(�ξ0+ξ (g)) as t → ∞.

The convergence result of Theorem 2 also holds when n0 = 0,
that is, for one-stage or locally optimal designs, if an additional
condition is satisfied.

Theorem 3. Suppose that n0 = 0 and that the initial set S(0)

satisfies IξS(0) > 0. Furthermore, let ∂g(θ)
∂θT be a square matrix of

full rank. Then, as t → ∞, the sequence of designs {ξS(t) ; t ≥ 0}
converges to an optimal design that minimizes �p(�ξ0+ξ (g)).

If g(θ) = θ , then ∂g(θ)
∂θT is the (k × k)-identity matrix. Theorem

3 can thus be applied to any locally �p-optimal design for
the full parameter vector θ . This includes the well-studied D-
optimality problem for all parameters.

A critical step in the proposed algorithm is to find the opti-
mal weights for given support points. Pukelsheim and Torsney
(1991) gave an explicit formula for finding the optimal weights.
Although this formula was presented in the context of linear
models, it can be extended to nonlinear models, in which case
the weights depend on the model parameters. Their approach,
however, has two limitations. First, it requires the regression
vectors to be independent. As a result, the number of support
points cannot be greater than the number of parameters. For
example, when one searches for the optimal weights for S(t+1),
which consists of at least k + 1 support points (support of ξS(t)

and x∗
t ), the number of support points is greater than the number

of parameters and the above formula will not work. Second,
this formula is specifically developed for one-stage designs, and
cannot be directly extended to multistage designs, which is the
focus of this article.

To derive the optimal weights for both one-stage and mul-
tistage designs efficiently, we propose a direct approach. The-
orem 4 provides a property of the optimal weights for given
support points, which facilitates their numerical computa-
tion. Let ω = (ω1, . . . , ωm−1)T . Denote 	 = {ω : ωi ≥ 0, i =
1, . . . , m − 1,

∑m−1
i=1 ωi ≤ 1}.

Theorem 4. In a multistage design, suppose that Iξ0 is nonsin-
gular and n0 > 0. For given θ and support points (x1, . . . , xm) of
ξ , �̃p(�ξ0+ξ (g)) is minimized at any critical point in 	 (i.e., the

points where
∂�̃p(�ξ0+ξ (g))

∂ω
= 0, the zero-vector), or at the bound-

ary of 	, that is, ωi = 0 for some 1 ≤ i ≤ m. In addition, the

Hessian matrix of �̃p(�ξ0+ξ (g)),
∂2�̃p(�ξ0+ξ (g))

∂ω∂ωT , is a nonnegative
definite matrix.

Note that when p > 0, we can obtain a more general result
if we replace �̃p(�ξ0+ξ (g)) by �p(�ξ0+ξ (g)) in Theorem 4.
The proof can be derived directly utilizing the convexity of �p.
However, the corresponding Hessian matrix of �p(�ξ0+ξ (g))
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is more cumbersome to handle in computations. The proof of
Theorem 4 also provides the gradient and the Hessian matrix of
�̃p(�ξ0+ξ (g)), which are needed for numerical search.

From Theorem 4, we need to solve m − 1 nonlinear equations
to find optimal weights for given support points. In general there
is no closed form solution, so we employ a numerical approach.
Newton’s method features a quadratic convergence rate, which,
loosely speaking, means that the number of significant digits
doubles after each iteration (Isaacson and Keller 1966).

By Theorem 4, the Hessian matrix is nonnegative definite
in 	. This guarantees convergence given the starting point is
sufficiently close to the critical point (Kaplan 1999). Since 	

is a compact set, we can always find the critical points (given
there exists a critical point within 	) if we use sufficiently many
different initial points.

If the numerical search leads to a minimum on the boundary,
we remove the design point with zero weight, and then search
for the optimal weights on the reduced set of support points.
This process is repeated until we find weights that satisfy the
constraints, which is guaranteed since the number of support
points is finite.

One may be tempted to apply Theorem 4 directly to the whole
design set X . However, this is not feasible in general, unless
the size of the design set is very small, say, about the same
as the number of parameters. Even for a moderate number of
given support points, the computation of the Hessian matrix is
time consuming, and there will be too many different boundary
situations to be considered.

3.1 Implementation of the Algorithm

Theorems 2, 3, and 4 provide the theoretical foundation for
the algorithm defined in Equation (2). A step-by-step procedure
for its implementation in programming is described in what
follows:

(i) Let t = 0, and let S(0) be a set of k + 1 design points
uniformly distributed in X (the initial weights are
uniform).

(ii) Derive optimal weights for S(t) using Newton’s method.
(iii) Derive x∗

t = arg maxx∈X dp(x, ξS(t) ).
(iv) Select a small value ε0 > 0. If dp(x∗

t , ξS(t) ) ≤ ε0, ξS(t) is
the desired design.

(v) Otherwise, set S(t+1) = S(t) ⋃{x∗
t }, set t = t + 1 and

repeat Steps (ii)–(iv). The optimal weights from ξS(t)

(zero weight for x∗
t ) serve as initial weights of S(t+1) in

Step (ii).

Here, Newton’s method, for a given set of support points S(t)

and the associated initial weights ω
(t)
0 , updates ω

(t)
j , the weights

after the jth iteration, as follows (starting with α = 1).

(a) ω
(t)
j = ω

(t)
j−1 − α(

∂2�̃p(�ξ0+ξ (g))
∂ωωT |ω=ω

(t)
j−1

)−1 ∂�̃p(�ξ0+ξ (g))
∂ω

|ω=ω
(t)
j−1

.

(b) Check if there are nonpositive components of ω
(t)
j . If so,

go to Step (c2), otherwise proceed to Step (c1).

(c) Check whether || ∂�̃p(�ξ0+ξ (g))
∂ω

|ω=ω
(t)
j
|| is less than a pre-

specified ε̃ > 0. If so, ω(t+1) is the vector of optimal
weights. Otherwise, start the next iteration.

(d) Reduce α to α/2. Repeat Steps (a) and (b) until α reaches
a prespecified value, say 0.00001. Remove the support

point with smallest weight. For the new set of support
points as well as their weights, go to Step (a).

Concrete expressions for
∂�̃p(�ξ0+ξ (g))

∂ω
and

∂2�̃p(�ξ0+ξ (g))
∂ωωT , respec-

tively, can be found in the Appendix (formulas (A.17) and (A.18)
for p = 0, and (A.19) and (A.20) for p > 0).

In what follows, we briefly discuss the practical properties of
this algorithmic procedure.

1. Computation time. The computation time of Newton’s
method cannot be judged by the number of iterations
only. Each iteration includes the calculation of the second
derivative and evaluation of the Hessian matrix, which can
be time consuming if the number of given support points
in S(t) is large. The algorithm adds one point to the existing
support in each iteration. However, for a large support at
least one of the optimal weights will lie on the boundary,
and the support point with zero weight will be removed,
thus reducing the size of the support for the next iteration.
From Caratheodory’s theorem, there exists an optimal de-
sign with at most k(k + 1)/2 support points. In a series of
recent papers in this field, including those by Yang (2010),
Dette and Melas (2011), and Yang and Stufken (2012), it
has been demonstrated that for a large classes of nonlinear
models the number of support points can be reduced to
k. These results give some theoretical justification that,
when the iteration progresses toward an optimal design, it
is expected that the number of support points is close to k.
This has been verified in our numerical studies in the next
section.

2. Choice of ε0. From Theorem 1, when dp(x∗
t , ξS(t) ) = 0,

ξS(t) is �p-optimal. In numerical computations, it is rare to
achieve this bound. Typically we choose a small positive
value, say ε0, as the cut-off point, which depends on how
efficient the derived design should be compared with the
true optimal design from theory. From the proof of The-
orem 2, �̃0(�ξ0+ξS(t) (g)) − �̃0(�ξ0+ξ∗ (g)) ≤ d0(x∗

t , ξS(t) ),
and �p(�ξ0+ξS(t) (g)) − �p(�ξ0+ξ∗ (g)) ≤ dp(x∗

t , ξS(t) ) for
p > 0. These inequalities give a lower bound for the effi-
ciency of the derived design, which is exp(− ε0

v
) for p = 0

and 1 − ε0
�p(�ξ0+ξ

S(t) (g)) for p > 0. Here, efficiency of a de-

sign ξ is defined as
�p(�ξ0+ξ∗ )
�p(�ξ0+ξ ) .

3. There is no guarantee that the above Newton iteration pro-
cedure always finds the optimal weights. For all designs
obtained by our procedure, we have used Theorem 1 to
check whether we have indeed obtained an optimal design.
In our experience, we virtually always have.

4. E-optimality is equivalent to �p-optimality when p →
∞, but we cannot use p = ∞ in practice. We propose
to select a large value of p such that the correspond-
ing �p-optimal design is guaranteed to achieve at least
some predescribed E-efficiency. A lower bound for the
E-efficiency of such a design is found in what follows.
Let ξ ∗

p be a �p-optimal design, λmax be the largest eigen-
value of �ξ0+ξ∗

p
(g), ξ ∗

E be an E-optimal design, and λE
max be

the largest eigenvalue of �ξ0+ξ∗
E
(g). Clearly, ( 1

v
)

1
p λmax ≤

�p(�ξ0+ξ∗
p
(g)) ≤ �p(�ξ0+ξ∗

E
(g)) ≤ λE

max, which gives a
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lower bound for the E-efficiency of ξ ∗
p as effE(ξ ∗

p) =
λE

max
λmax

≥ ( 1
v
)

1
p , and we choose p such that ( 1

v
)

1
p is as close

to 1 as desired. For example, if v = 3, we need p = 11 to
have a lower bound of 0.905 for the E-efficiency. A large
value of p may result in computational difficulties since
the elements of some of the matrices are huge, leading to
imprecise inverses due to rounding errors. Hence, extra
care must be taken when p is relatively large. Based on
our experience, the algorithm works well when p ≤ 6.

3.2 Efficiency on Continuous Design Spaces

As is common practice in numerical design search, if the de-
sign space C is continuous, we consider optimal designs on X ,
a set of grid points spread equidistantly in each variable. The
finer the grid the more confident one can be about the optimality
of the design derived numerically. However, computation time
quickly increases with grid size, particularly in higher dimen-
sions. For example, if C is three-dimensional, taking 100 points
in each dimension results in 106 design points in X . To find
a balance between design performance and computation time,
we investigate the relationship between grid size and design
efficiency. Let ξ ∗

p be a �p-optimal design on X and ξ c
p be a

�p-optimal design on C (ξc
p is not available in general). Define

effcp(ξ ∗
p) = �p(�ξ0+ξc

p
)/�p(�ξ0+ξ∗

p
) to be the �p-efficiency of

the design ξ ∗
p on C. The following theorem provides a lower

bound for effcp(ξ ∗
p).

Theorem 5. Let X be a grid on the continuous design space
C ⊂ Rr , with grid points spread equidistantly in each variable
with step size εj , j = 1, . . . , r . Then effcp(ξ ∗

p) is bounded from
below by

effcp(ξ ∗
p)

≥

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
exp

⎛⎝− 1

2v
max
c∈C

r∑
j=1

Bj (c)εj

⎞⎠ , if p = 0;

1 − 1

2�p(�ξ0+ξ∗
p
(g))

max
c∈C

r∑
j=1

Bj (c)εj , if p > 0.

(3)

Here,

Bj (c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

n

∣∣∣∣Tr

(
M

∂Ic

∂cj

)∣∣∣∣ , if p = 0;

n

(
1

v

) 1
p (

Tr
(
�ξ0+ξ∗

p
(g)
)p) 1

p
−1

if p > 0;

×
∣∣∣∣Tr

(
M

∂Ic

∂cj

)∣∣∣∣ ,
(4)

where ci is the ith component of c and

M= (Iξ0+ξ∗
p
)−1

(
∂g(θ)

∂θT

)T (
�ξ0+ξ∗

p
(g)
)p−1

(
∂g(θ)

∂θT

)
(Iξ0+ξ∗

p
)−1.

Each term on the right-hand side of Equation (3) can be
computed directly from programming except ∂Ic

∂ci
, which we

may have to compute by hand or by symbolic software, such
as Maple or Mathematica. Computing maxc∈C

∑r
j=1 Bj (c)εj is

challenging. If it cannot be found explicitly, we suggest find-
ing a reasonably tight upper bound for this quantity, which can

be substituted into Equation (3) to obtain another (slightly less
tight) lower bound for the sought efficiency. To this end, con-
sider X ′, a finer grid on C, with grid points spread equidistantly
in each variable with step size ε′

j < εj . For any c ∈ C, there ex-
ists a point x′ ∈ X ′, such that |cj − x ′

j | ≤ ε′
j /2 for j = 1, . . . , r ,

where, x ′
j is the jth component of x′. By the mean value theorem

and the Cauchy-Schwarz inequality, we can show that∣∣∣∣Tr

(
M

∂Ic

∂cj

)∣∣∣∣ ≤
∣∣∣∣Tr

(
M

∂Ix′

∂x ′
j

)∣∣∣∣
+ 1

2
|M| max

c′∈C

√√√√ r∑
l=1

∣∣∣∣∣ ∂2Ic′

∂c′
l∂c′

j

∣∣∣∣∣
2
√√√√ r∑

l=1

(ε′
l)

2, (5)

where |.| is the L2-norm. By Equations (4) and (5), with some
rearranging of terms, we have

max
c∈C

r∑
j=1

Bj (c)εj ≤ max
x′∈X ′

r∑
j=1

Bj (x′)εj

+ 1

2
nD|M|

r∑
j=1

⎛⎜⎝εj max
c′∈C

√√√√ r∑
l=1

∣∣∣∣∣ ∂2Ic′

∂c′
l∂c′

j

∣∣∣∣∣
2
√√√√ r∑

l=1

(ε′
l)

2

⎞⎟⎠ . (6)

Here, D = 1 if p = 0 and D = ( 1
v
)

1
p (Tr(�ξ0+ξ∗

p
(g))p)

1
p
−1 if p >

0. All terms on the right side of Equation (6) can be computed by

SAS programming except for maxc′∈C
√∑r

l=1 | ∂2Ic′
∂cl∂c′

j
|2, which

requires computation by hand or by symbolic software. We
shall illustrate this method through an example in Section 4.

4. EXAMPLES

The most important feature of an algorithm is speed. Wu
(1978) noted that “speed of approach, in the sense of compu-
tation time required is usually best dealt with empirically.” In
this section, we shall demonstrate, through several examples,
that the algorithm is highly efficient. All coding was done in
SAS IML, and computed on a Dell Laptop (2.2 GHz and 8 Gb
RAM). The cut-off value for checking optimality was chosen
to be ε0 = 10−6. All derived optimal designs have been verified
through Theorem 1.

The existing algorithms mainly focus on D-optimal design,
when all parameters are of interest. Yu (2010) showed that the
CA outperforms all existing algorithms by a large scale in this
situation. We therefore compare the new algorithm only with
the CA. We also assess the computation time of the new algo-
rithm for different optimality criteria, different sets or functions
of parameters of interest, and for multistage designs—scenarios
other algorithms may not be directly applied to. Note that for
multistage designs, in practice, we need to estimate the param-
eters, and then use the estimated parameters to select the design
for the next stage. Since the aim here is to demonstrate the
performance of the algorithm, we use the true parameters for
illustration purposes.

For small step sizes εj , j = 1, . . . , r , the number of design
points in X increases rapidly, in particular for models with more
than one explanatory variable, slowing down design search. We
therefore also use a modified version of the new algorithm,
and compare its performance with the original version. In the
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Table 1. Computation time (seconds) for D-optimal designs for θ

N = 500 N = 1000 N = 5000 N = 10,000

Cocktail 0.32 0.46 2.54 5.16
New algorithm 0.14 0.21 0.99 1.26
Modified algorithm 0.12 0.17 0.32 0.37

modified algorithm, we employ the multistage search strategy
described by Stufken and Yang (2012): start with a coarse grid
that is made increasingly finer in later stages; at each stage
identify the best design based on the current grid. For the next
stage, a finer grid is restricted to neighborhoods of the support
points found at the current stage. The search continues until a
specified accuracy for the design points is reached. The last step
is to verify optimality through the equivalence theorem. From
our experience, this strategy can further reduce the computation
time. For illustration, the modified algorithm is applied to some
selected problems below.

Example 1. Consider the nonlinear model

Y ∼ θ1e
−θ2x + θ3e

−θ4x + N (0, σ 2),

θ = (θ1, θ2, θ3, θ4), x ∈ [0, 3].

Let (θ2, θ4) = (1, 2) and X = {3i/N, i = 1, . . . , N}. Yu (2010)
found D-optimal designs for θ (table 1 of Yu 2010). We code
the CA in SAS IML and compare its computation time with the
new algorithm for different grid sizes N in Table 1. We can see
that, while the CA performs well, the new algorithm is about
twice faster for moderate grid sizes, and even four times faster
for finer grids. The modification reduces computation time even
further.

The new algorithm is also highly efficient for different prob-
lems. We consider three different sets of parameters, θ , (θ1, θ3),
and (θ2, θ4), and two different optimality criteria, D- and A-
optimality. The computation time is less than 1 sec for almost all
cases, even if there are 10,000 design points in X (see Table 2).
Note that, although Theorem 3 does not imply that the new
algorithm converges when partial parameters are of interest, it
seems the new algorithm can still be applied to such problems.

Unlike the CA, the new algorithm can also be ap-
plied to multistage designs. Suppose we have an initial de-
sign ξ0 = {(0, 0.25), (1, 0.25), (2, 0.25), (3, 0.25)} with n0 =
40. The problem is how to allocate the next 80 subjects. Again,
we consider three sets of parameters, θ , (θ1, θ3), and (θ2, θ4),
and D- and A-optimality. We can see from Table 3 that the
performance is similar to that of locally optimal designs.

Table 2. Computation time (seconds) for different locally
optimal designs

D A

θ (θ1, θ3) (θ2, θ4) θ (θ1, θ3) (θ2, θ4)

N = 500 0.14 0.10 0.10 0.10 0.10 0.10
N = 1000 0.21 0.12 0.15 0.11 0.12 0.12
N = 5000 0.99 0.32 0.46 0.24 0.28 0.23
N = 10,000 1.26 0.54 0.85 0.45 0.42 0.45

Table 3. Computation time (seconds) for different multistage
optimal designs

D A

θ (θ1, θ3) (θ2, θ4) θ (θ1, θ3) (θ2, θ4)

N = 500 0.36 0.34 0.32 0.09 0.09 0.10
N = 1000 0.42 0.37 0.37 0.10 0.09 0.11
N = 5000 0.78 0.57 0.67 0.34 0.29 0.23
N = 10,000 1.27 0.78 0.98 0.54 0.57 0.40

Example 2. Consider the linear model

Y ∼ θ1 + θ2x1 + θ3x
2
1 + θ4x2 + θ5x1x2 + N (0, σ 2),

θ = (θ1, θ2, θ3, θ4, θ5), (7)

where (x1, x2) ∈ [−1, 1] × [0, 1], and let X = {(2i/s −
1, j/s), i = 0, 1, . . . , s, j = 0, 1, . . . , s}. Here, s is the num-
ber of grid points in each variable and the total number of
points in X is N = s2. Yu (2010) studied D-optimal design for θ

(table 4 of Yu 2010).
Table 4 shows that the new algorithm is again faster than the

CA. As the grid size increases, this becomes more pronounced.
For example, when s = 200 or 500, or equivalently N = 2002

or N = 5002, the new algorithm is about five times faster. The
modification further reduces computation time, in particular for
fine grids.

We also assessed the new algorithm on different problems;
D- and A-optimality; all or just partial parameters of θ ; locally
optimal or multistage designs (tables not shown). The perfor-
mance is similar, with computation times less than 1 sec for
most cases, about 1.5 sec for grid size N = 2002, and about 10
sec for grid size N = 5002.

We next investigate how effcp(ξ ∗
p), the �p-efficiency of the de-

sign ξ ∗
p on C = [−1, 1] × [0, 1], changes with N. Suppose ξ0 =

{[(0.2,−1), 0.25], [(0.5, 0), 0.25], [(0.8, 1), 0.25], [(0.5, 0.5),
0.25]} with n0 = 40 is the initial design, and that a further 120
subjects are to be allocated. We compute lower bounds for
effcp(ξ ∗

p), according to Theorem 5, for a variety of problems.
For model (7), the information matrix of a single point x =

(x1, x2), Ix = f (x)f (x)T , where f (x) = (1, x1, x
2
1 , x2, x1x2)T .

Hence, ∂I(x)
∂x1

= f1(x)f (x)T + f (x)f1(x)T , where f1(x) =
(0, 1, 2x1, 0, x2)T , and ∂I(x)

∂x2
= f2(x)f (x)T + f (x)f2(x)T , where

f2(x) = (0, 0, 0, 1, x1)T . With some algebra, we can show that∣∣∣∣∂2I(x)

∂2x1

∣∣∣∣2 +
∣∣∣∣ ∂2I(x)

∂x1∂x2

∣∣∣∣2 ≤ 350 and∣∣∣∣ ∂2I(x)

∂x1∂x2

∣∣∣∣2 +
∣∣∣∣∂2I(x)

∂2x2

∣∣∣∣2 ≤ 78. (8)

Table 4. Computation time (seconds) for D-optimal designs for θ

N = 202 N = 502 N = 1002 N = 2002 N = 5002

Cocktail 0.20 0.82 2.30 8.68 53.69
New

algorithm
0.15 0.24 0.51 1.66 11.03

Modified
algorithm

0.13 0.17 0.24 0.35 1.29
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Table 5. Lower bounds for effcp(ξ ∗
p ) for different grid sizes N

θ (θ2, . . . , θ5)

D A �2 D A �2

N = 202 0.872 0.680 0.662 0.843 0.676 0.662
N = 502 0.947 0.872 0.865 0.934 0.870 0.865
N = 1002 0.973 0.936 0.932 0.966 0.935 0.932
N = 2002 0.986 0.968 0.966 0.983 0.968 0.966
N = 5002 0.995 0.987 0.986 0.993 0.987 0.986

For given s, ε1 and ε2 (defined in Theorem 5) are 2
s

and 1
s
, re-

spectively. Hence,
√∑2

j=1 ε2
j = √

5/s. We define the grid X ′,
with points spread equidistantly in each variable with step sizes
2/3000 and 1/3000, respectively. We consider two different sets
of parameters of interest, θ and (θ2, . . . , θ5), and three different
optimality criteria, D-, A-, and �2-optimality. Applying The-
orem 5 and using Equations (6) and (8), we obtain the lower
bounds for effcp(ξ ∗

p) for different grid sizes N in Table 5.
As N increases, the lower bounds for effcp(ξ ∗

p) increase. For
N = 1002, the lower bounds are high (>0.93), while the true
efficiencies could be much higher than the lower bounds. For
example, for N = 202, the A-optimal design for θ gives an
optimality value of 0.203818 while the corresponding optimal-
ity value for N = 5002 is 0.203797, which implies that the
A-optimal design for N = 202 is at least 98.7% efficient. How-
ever, to find this tighter bound we require the optimal design for
N = 5002 and its lower bound for efficiency.

Example 3. We consider a multinomial model with three dif-
ferent categories, that is, a response Y = (Y1, Y2, Y3)T , with
Y1 + Y2 + Y3 = 1, at experimental condition x that has a multi-
nomial distribution with parameters π1(x), π2(x), 1 − π1(x) −
π2(x), where

πi(x) = P (Yi = 1|x) = eg(x)T θi

1 + eg(x)T θ1 + eg(x)T θ2
, i = 1, 2. (9)

The vectors g(x) usually hold lower-order monomials in the
covariates x = (x1, . . . , xr )T and θ1 and θ2 are the corresponding
coefficient vectors. The log-likelihood for a single observation
and parameter vector θ = (θT

1 , θT
2 )T ∈ IRk is then

l(θ ; Y ) = Y1 log π1(x) + Y2 log π2(x)

+ (1 − Y1 − Y2) log(1 − π1(x) − π2(x)),

and we obtain the information matrix at a single point x as

Ix =
(

π1(x)(1 − π1(x)) J(x) −π1(x)π2(x) J(x)

−π1(x)π2(x) J(x) π2(x)(1 − π2(x)) J(x)

)
,

where J(x) = g(x)gT (x). Note that the information matrix Ix

at a single point cannot be written in the form Ix = f (x)f (x)T

for any vector function f (x). Consequently, the CA cannot be
applied to this example directly.

Multinomial logistic models are commonly used in toxicol-
ogy experiments (see, e.g., Speybroeck et al. 2008, for an im-
munization experiment in cattle, with three categories, where
x is the log-dose of the immunization treatment). To make this
scenario more challenging for our algorithm, we add two further
explanatory variables to the model, which corresponds to a sit-
uation where the vaccine is enhanced by two further substances
to boost the immune reaction, or where the vaccine is composed
of three different strains of the diluted parasite. We consider lin-
ear predictors, that is, g(x) = (1, xT )T = (1, x1, x2, x3)T where
x ∈ [0, 6]3, and parameter vectors θ1 = (θ10, θ11, θ12, θ13) and
θ2 = (θ20, θ21, θ22, θ23).

Optimal designs for model (9) depend on the values of the
unknown parameters (Zocchi and Atkinson 1999). We assume
that θ1 = (1, 1,−1, 2) and θ2 = (−1, 2, 1,−1), and let the de-
sign space X = {(6i/s, 6j/s, 6l/s), i, j, l = 0, 1, . . . , s}. Due
to the large size of X , for this example we employ the modified
algorithm only.

We consider (i) two different sets of parameters, θ and
θ ′ = (θ11, θ12, θ13, θ21, θ22, θ23); (ii) both D- and A-optimality;
and (iii) locally optimal design and multistage design with ξ0 =
{[(1, 3, 6), 0.25], [(4, 2, 1), 0.25], [(0, 1, 2), 0.25], [(2, 1, 0),
0.25]} and n0 = 40. Table 6 shows the computation times for
different grid sizes.

Example 4. Dette, Melas, and Shpilev (2011) studied optimal
designs for estimating the derivative of the expected response
in nonlinear regression models. The optimal designs are de-
termined numerically, based on some recursive formulas they
derived. They considered following two models, (10) and (11),
to demonstrate their methods:

Y ∼ θ1e
θ2x + θ3e

θ4x + N (0, σ 2), (10)

Y ∼ θ1

x + θ2x
+ θ3

x + θ4x
+ N (0, σ 2), (11)

with x ∈ [0, 1]. The function of parameters of interest, g(θ), is
∂
∂x

(θ1e
θ2x + θ3e

θ4x) for model (10) and ∂
∂x

( θ1
x+θ2x

+ θ3
x+θ4x

) for

Table 6. Computation time (seconds) of the modified algorithm

Locally optimal designs Multistage optimal designs

θ θ ′ θ θ ′

D A D A D A D A

N = 103 0.32 0.32 0.26 0.39 0.29 0.31 0.18 0.23
N = 203 0.62 1.07 1.15 1.71 0.74 1.73 0.65 1.34
N = 503 8.14 17.81 17.94 24.52 12.85 16.98 11.29 19.57
N = 1003 54.38 86.92 101.13 169.57 71.73 68.14 71.09 114.64
N = 2003 524.1 653.0 664.4 814.3 531.8 738.7 718.2 853.8
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model (11). Since g(θ) is a scalar, this is a c-optimal design
problem. Assuming (θ1, θ2, θ3, θ4) = (1, 0.5, 1, 1), and interest
is in g(θ ) at the point x = 0 for both models, the optimal
designs provided by Dette, Melas, and Shpilev (2011) are
{(0, 0.3509), (0.3011, 0.4438), (0.7926, 0.1491), (1, 0.0562)}
for model (10) and {(0, 0.3509), (0.0952, 0.4419), (0.4707,

0.1479), (1, 0.0597)} for model (11).
We apply the new algorithm to this problem. Either A- or

D-optimality for g(θ) will yield the desired optimal designs. We
use D-optimality here, and consider the gridX = {i/10000, i =
0, 1, . . . , 10000}. We obtain {(0, 0.3508), (0.3011, 0.4438),
(0.7926, 0.1491), (1, 0.0563)} for model (10) and {(0, 0.3504),
(0.0952, 0.4415), (0.4705, 0.1480), (1, 0.0601)} for model
(11). The optimal designs provided by the new algorithm are
not exactly the same as those found by Dette, Melas, and
Shpilev (2011), which may be due to floating errors during
the numerical computation. Our designs actually give slightly
smaller optimal values if we do not round up to four decimal
places. The computation time for deriving these designs was
0.42 sec for model (10) and 0.34 sec for model (11). We also
tested the algorithm under different scenarios, such as different
parameter values, different optimality criteria, and locally
optimal or multistage designs. The computation times were all
less than 1 sec.

5. DISCUSSION

While the importance of optimal/efficient designs in scientific
studies cannot be disputed, their application in practice is not
well established. The main reason is the lack of availability of
efficient designs, caused by the lack of a general and efficient
algorithm. The existing algorithms mainly focus on a specific
optimality problem: locally D-optimal design for all parame-
ters. We have demonstrated in several examples that the new
algorithm outperforms the CA, which appears to be the best
available algorithm so far for that specific problem. Moreover,
the new algorithm can be applied to a much broader class of
optimality problems: any set of differentiable functions of the
parameters of interest; all �p-optimality criteria with p being
integer; locally optimal or multistage design. For all problems,
the new algorithm performs efficiently; for most cases, we get
instantaneous results. We believe this can greatly facilitate the
application of optimal/efficient designs in practice.

Theorems 2 and 3 do not guarantee the convergence in some
situations, for example, singular Iξ0 (for multistage designs) or
∂g(θ)
∂θT not being a full rank square matrix (for locally optimal

designs). However, we experienced convergence in virtually all
different situations. It may be worthwhile to study the theoretical
properties for these cases. On the other hand, we feel the idea in
this article can be extended to Bayesian optimal design, where
numerical approaches are even more important. More research
is certainly needed in this direction.

The coding of the new algorithm is more complicated than
that of the existing algorithms. However, the main body of the
code is the same for all models, with the only part requiring
change is the form of the information matrix. The SAS IML
codes for all examples in this article can be downloaded from
http://homepages.math.uic.edu/˜minyang. These codes can be
easily modified for different optimality problems.

APPENDIX

Proof of Theorem 2. We only give the proof for p > 0. For
p = 0, the proof is exactly the same with �p(�ξ0+ξ (g)) replaced by
log |�ξ0+ξ (g)|.

We begin the proof by establishing the convexity of �p(�ξ0+ξ (g))
for p ≥ 0.

Lemma 1. Suppose that ∂g

∂θT is a matrix of full row rank r. Then for
any 0 ≤ ε ≤ 1, we have

�p(�ξ0+(1−ε)ξ
S(t) +εξ∗ (g)) ≤ (1 − ε)�p(�ξ0+ξ

S(t) (g)) + ε�p(�ξ0+ξ∗ (g)).

Proof of Lemma 1. Since ∂g

∂θT is of full row rank, there exist a

nonsingular matrix A, such that ∂g

∂θ
= ( Ir 0 )A, where Ir is an identity

matrix and 0 is a zero-matrix with appropriate dimensions. Hence,

�−1
ξ0+(1−ε)ξ

S(t) +εξ∗ (g)

=
(

∂g

∂θT
I−1
ξ0+(1−ε)ξ

S(t) +εξ∗

(
∂g

∂θT

)T
)−1

=
(

(Ir 0)((AT)−1Iξ0+(1−ε)ξS(t) +εξ∗ A−1)−1

(
Ir

0T

))−1

. (A.1)

By the definition of Schur complement (Pukelsheim 2006, sec. 3.11),
�−1

ξ0+(1−ε)ξ
S(t) +εξ∗ (g) is the Schur complement of the first r × r princi-

pal submatrix of (AT )−1Iξ0+(1−ε)ξ
S(t) +εξ∗ A−1. Similarly, �−1

ξ0+ξ
S(t)

(g) and

�−1
ξ0+ξ∗ (g) are the Schur complements of the first r × r principal sub-

matrix of (AT )−1Iξ0+ξ
S(t) A−1 and (AT )−1Iξ0+ξ∗ A−1, respectively. Note

that

(AT )−1Iξ0+(1−ε)ξ
S(t) +εξ∗ A−1

= (1 − ε)(AT )−1Iξ0+ξ
S(t) A−1 + ε(AT )−1Iξ0+ξ∗ A−1. (A.2)

By concavity of the Schur complement (Pukelsheim 2006, sec. 3.11),

�−1
ξ0+(1−ε)ξ

S(t) +εξ∗ (g) ≥ (1 − ε)�−1
ξ0+ξ

S(t)
(g) + ε�−1

ξ0+ξ∗ (g). (A.3)

By Equation (A.3),

�p(�ξ0+(1−ε)ξ
S(t) +εξ∗ (g))

=
(

1

v
Tr(�−1

ξ0+(1−ε)ξ
S(t) +εξ∗ (g))−p

)1/p

≤
(

1

v
Tr((1 − ε)�−1

ξ0+ξ
S(t)

(g) + ε�−1
ξ0+ξ∗ (g))−p

)1/p

≤ (1 − ε)

(
1

v
Tr(�−1

ξ0+ξ
S(t)

(g))−p

)1/p

+ ε

(
1

v
Tr(�−1

ξ0+ξ∗ (g))−p

)1/p

= (1 − ε)�p(�ξ0+ξ
S(t) (g)) + ε�p(�ξ0+ξ∗ (g)). (A.4)

The first and the second inequalities in Equation (A.4) follow from
monotonicity and convexity of �p(M), respectively (Fedorov and
Hackl 1997, sec. 2.2), where �p(M) = (v−1Tr (M−p))1/p . �

Now let � be the set of all approximate designs ξ . Denote ξ ∗ as an
optimal design that minimizes �p(�ξ0+ξ (g)). Since Iξ0 is nonsingular
and n0 > 0, for any ξ ∈ �, we have

�p(�ξ0+ξ∗ (g)) ≤ �p(�ξ0+ξ (g)) ≤ �p(�ξ0 (g)), (A.5)

where �ξ0 (g) = ∂g(θ )
∂θT (n0Iξ0 )−1{ ∂g(θ )

∂θT }T . In addition, Iξ0+ξ is nonsingular
regardless of ξ . Thus, �p(�ξ0+(1−α)ξ1+αξ2 (g)) is infinitely differentiable
with respect to α. Combining this fact with Equation (A.5), there exists
K < ∞, such that

sup

{
∂2�p(�ξ0+(1−α)ξ1+αξ2 (g))

∂α2
: ξ1 ∈ �, ξ2 ∈ �, α ∈ [0, 1]

}
= K.

(A.6)

http://homepages.math.uic.edu/~minyang
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The convergence of �p(�ξ0+ξ
S(t) (g)) is obvious since it is a decreasing

nonnegative function of t. We shall show that

lim
t→∞

�p(�ξ0+ξ
S(t) (g)) = �p(�ξ0+ξ∗ (g)). (A.7)

If Equation (A.7) does not hold, by the monotonicity of
�p(�ξ0+ξ

S(t) (g)), there exists δ > 0, such that �p(�ξ0+ξ
S(t) (g)) −

�p(�ξ0+ξ∗ (g)) > δ for all t. Utilizing the convexity of �p , for any 0 ≤
ε ≤ 1, we have �p(�ξ0+(1−ε)ξ

S(t) +εξ∗ (g)) ≤ (1 − ε)�p(�ξ0+ξ
S(t) (g)) +

ε�p(�ξ0+ξ∗ (g)), which implies that

lim
ε↓0

1

ε
(�p(�ξ0+(1−ε)ξ

S(t) +εξ∗ (g)) − �p(�ξ0+ξ
S(t) (g)))

≤ �p(�ξ0+ξ∗ (g)) − �p(�ξ0+ξ
S(t) (g)). (A.8)

The left hand side of Equation (A.8) is the first derivative of
�p(�ξ0+(1−α)ξ

S(t) +αξ∗ (g)) with respect to α when α = 0. By some stan-
dard matrix differentiation approach, using Equations (A.8), (1), and
the definition of x∗

t in Equation (2), for all t, we have

dp(x∗
t , ξS(t) ) ≥ δ. (A.9)

Consider a differently updated design ξS(t+1) (α) = (1 − α)ξS(t)⋃
(x∗

t , α), where 0 ≤ α ≤ 1. By the definition of S(t+1) in Equation (2),
for any α ∈ [0, 1],

�p(�ξ0+ξ
S(t+1) (g)) ≤ �p(�ξ0+ξ

S(t+1) (α)(g)). (A.10)

Expanding into a Taylor series in α, and applying Equations (A.6) and
(A.9), we can show that

�p(�ξ0+ξ
S(t+1) (α)(g))

= �p(�ξ0+ξ
S(t) (g)) − dp(x∗

t , ξS(t) )α

+ 1

2
α2 ∂2�p(�ξ0+(1−α)ξ1+αξ2 )

∂α2
|α=α′

≤ �p(�ξ0+ξ
S(t) (g)) − δα + 1

2
Kα2, (A.11)

where α′ ∈ [0, α]. If K > δ, let α = δ
K

. By Equation (A.11), we have

�p(�ξ0+ξ
S(t+1) ( δ

K )(g)) − �p(�ξ0+ξ
S(t) (g)) ≤ − δ2

2K
. (A.12)

By Equations (A.10) and (A.12), we have, for all t ≥ 0,

�p(�ξ0+ξ
S(t+1) (g)) − �p(�ξ0+ξ

S(t) (g)) ≤ − δ2

2K
. (A.13)

Inequality (A.13) implies that limt→∞ �p(�ξ0+ξ
S(t) (g)) = −∞, which

contradicts the fact that �p(�ξ0+ξ
S(t) (g)) is a nonnegative function.

Similar arguments can be applied to the case when K ≤ δ, in which
we let α = 1. �

Proof of Theorem 3. Again, we only give the proof for p > 0.
When n0 = 0, there is no initial design ξ0, that is, �ξ0+ξ (g) = �ξ (g),

where

�ξ (g) = 1

n

∂g(θ)

∂θT
I−1
ξ

{
∂g(θ)

∂θT

}T

. (A.14)

Define �1 = {ξ : �p(�ξ (g)) ≤ �p(2�ξ
S(0) (g))}. Clearly ξS(t) ∈ �1

since �p(�ξ
S(t) (g)) is a decreasing nonnegative function. Consider a

differently updated design ξS(t+1) (α) = (1 − α)ξS(t)
⋃

(x∗
t , α). For any

α ∈ [0, 1
2 ], we have �p(�ξ

S(t+1) (α)(g)) ≤ �p(2�ξ
S(t) (g)), which implies

that ξS(t+1) (α) ∈ �1 for any α ∈ [0, 1
2 ].

Since ∂g(θ )
∂θT is a full rank square matrix, Iξ is nonsingular for any ξ ∈

�1. Thus, the function �p(�(1−α)ξ1+αξ2 (g)) is infinitely differentiable
with respect to α for any α ∈ [0, 1

2 ]. Combining this fact with Equation
(A.14), there exists M1 < ∞, such that

sup

{
∂2�p(�(1−α)ξ1+αξ2 (g))

∂α2
: ξ1 ∈ �1, ξ2 ∈ �, α ∈

[
0,

1

2

]}
= M1.

The rest of the proof is the same as that of Theorem 2 with a minor but
obvious modification. �

Proof of Theorem 4. By the standard theory of multivariate convex
functions (see Kaplan 1999, sec. 1.9), it is sufficient to show that

the Hessian of �̃p(�ξ0+ξ (g)),
∂2�̃p (�ξ0+ξ (g))

∂ω∂ωT , is a nonnegative definite
matrix. Stufken and Yang (2012) proved this for p = 0, 1, for one-
stage designs. Here we extend their results to nonnegative integers
p, for multistage designs. Notice that the constraints imposed by 	

guarantee that the corresponding matrix Iξ0+ξ is a nonnegative definite
matrix.

For simplification, we rewrite �ξ0+ξ (g) as � and Iξ0+ξ as I. For
i = 1, . . . , m − 1, define Ii = n(Ixi

− Ixm ). Applying matrix differen-
tiation, we have

∂�

∂ωi

= −∂g(θ )

∂θT
I−1IiI−1

{
∂g(θ )

∂θT

}T

, i = 1, . . . , m − 1, (A.15)

∂2�

∂ωiωj

= ∂g(θ )

∂θT
(I−1Ij I−1IiI−1 + I−1IiI−1Ij I−1)

{
∂g(θ )

∂θT

}T

,

i, j = 1, . . . , m − 1. (A.16)

Case (i): p = 0. Applying matrix differentiation, we obtain

∂ log |�|
∂ωi

= Tr

(
�−1 ∂�

∂ωi

)
, i = 1, . . . , m − 1, (A.17)

∂2 log |�|
∂ωiωj

= Tr

(
�−1 ∂2�

∂ωiωj

− �−1 ∂�

∂ωj

�−1 ∂�

∂ωi

)
,

i, j = 1, . . . , m − 1. (A.18)

Using Equations (A.15) and (A.16), with some matrix algebra, we
can show that

∂2 log |�|
∂ωiωj

= Tr

(
�− 1

2
∂g(θ)

∂θT
I−1Ij I− 1

2 I− 1
2 IiI−1

{
∂g(θ )

∂θT

}T

�− 1
2

)

+ Tr

(
�− 1

2
∂g(θ )

∂θT
I−1Ij I− 1

2 P ⊥
[

I− 1
2

{
∂g(θ )

∂θT

}T
]

× I− 1
2 IiI−1

{
∂g(θ )

∂θT

}T

�− 1
2

)
,

where P ⊥(X) = I − X(XT X)−XT denotes the orthogonal projection
matrix onto the orthogonal complement of the column space of X. Thus,
the Hessian matrix of log |�| is nonnegative definite by Proposition 1
by Stufken and Yang (2012).

Case (ii): p > 0. Applying matrix differentiation, we have

∂Tr (�)p

∂ωi

= pTr

(
�p−1 ∂�

∂ωi

)
, i = 1, . . . , m − 1, (A.19)

∂2Tr (�)p

∂ωiωj

= pTr

(
�p−1 ∂2�

∂ωiωj

+
p−2∑
l=0

�l ∂�

∂ωj

�p−2−l ∂�

∂ωi

)
,

i, j = 1, . . . , m − 1. (A.20)

Note that when p = 1, the second term on the right-hand side of Equa-
tion (A.20) vanishes.

Using Equation (A.16), with some algebra, it can be shown that

Tr

(
�p−1 ∂2�

∂ωiωj

)
= 2Tr

(
�

p−1
2

∂g(θ )

∂θT
I−1Ij I− 1

2 I− 1
2 IiI−1

{
∂g(θ )

∂θT

}T

�
p−1

2

)
, (A.21)

Tr

(
�l ∂�

∂ωj

�p−2−l ∂�

∂ωi

)
= Tr

(
�

l
2

∂�

∂ωj

�
p−2−l

2 �
p−2−l

2
∂�

∂ωi

�
l
2

)
. (A.22)
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By Equations (A.20), (A.21), and (A.22), applying Proposition 1 by
Stufken and Yang (2012), we conclude that the Hessian matrix of
Tr (�)p is nonnegative definite. �

Proof of Theorem 5. Let ξ c
p be a �p-optimal design on C. By the

same argument as in the proof of Theorem 2, we have �p(�ξ0+ξ∗
p
(g)) −

�p(�ξ0+ξc
p
(g)) ≤ maxc∈C dp(c, ξ ∗

p ).
By the construction of X , for any c ∈ C, there exists xc ∈ X , such

that |cj − xc
j | ≤ εj /2 for j = 1, . . . , r , where cj and xc

j are the jth
variable of c and xc, respectively. From the mean value theorem, there
exists a scalar α ∈ (0, 1) such that

dp(c, ξ ∗
p ) = dp(xc, ξ ∗

p ) + ∇dp((1 − α)c + αxc, ξ ∗
p ) · (c − xc)

≤
r∑

j=1

|∇j dp((1 − α)c + αxc, ξ ∗
p )|εj /2, (A.23)

where · denotes the Euclidean inner product, ∇ denotes the gradient,
and ∇j denotes its jth element. The inequality in Equation (A.23)
follows from maxx∈X dp(x, ξ ∗

p ) = 0. From the definition of dp in Equa-
tion (1), it is straightforward to show that |∇j dp((1 − α)c + αxc, ξ ∗

p )| =
Bj ((1 − α)c + αxc), where Bj is defined in Equation (4). From the
definition of efficiency, the conclusion follows. �

[Received February 2012. Revised April 2013.]
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