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ABSTRACT

HEAVY TAIL ANALYSIS FOR FUNCTIONAL AND INTERNET ANOMALY DATA

This dissertation is concerned with the asymptotic theory of statistical tools used in extreme
value analysis of functional data and internet anomaly data. More specifically, we study four
problems associated with analyzing the tail behavior of functional principal component scores in
functional data and interarrival times of internet traffic anomalies, which are available only with
a round-off error. The first problem we consider is the estimation of the tail index of scores in
functional data. We employ the Hill estimator for the tail index estimation and derive conditions
under which the Hill estimator computed from the sample scores is consistent for the tail index
of the unobservable population scores. The second problem studies the dependence between ex-
tremal values of functional scores using the extremal dependence measure (EDM). After extending
the EDM defined for positive bivariate observations to multivariate observations, we study condi-
tions guaranteeing that a suitable estimator of the EDM based on these scores converges to the
population EDM and is asymptotically normal. The third and last problems investigate the asymp-
totic and finite sample behavior of the Hill estimator applied to heavy—tailed data contaminated by
errors. For the third one, we show that for time series models often used in practice, whose non—
contaminated marginal distributions are regularly varying, the Hill estimator is consistent. For the
last one, we formulate conditions on the errors under which the Hill and Harmonic Moment esti-
mators applied to i.i.d. data continue to be asymptotically normal. The results of large and finite

sample investigations are applied to internet anomaly data.
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Chapter 1

Introduction

Heavy-tailed phenomena occur in a variety of fields and have been studied for several decades.
Benoit Mandelbrot, see e.g. [1], referred to them as the “Noah effect"; an observation can occur
after surviving a flood, long after all other observations have perished. The origins of the field of
extreme value theory are actually in mathematical research motivated by flood prevention engi-
neering problems, see e.g. Chapter 1 of [2]. The currently used theory began to take shape in early
1970s, but many fundamental problems, motivated by mathematical curiosity, have been solved
much earlier, with one of the most spectacular achievements being the solution to the problem of
the extremal domains of attraction obtained by [3].

In this dissertation, we derive asymptotic properties of statistical tools for the analysis of
heavy—tailed behavior observed in functional data and internet traffic anomaly data. In certain
applications, most notably in finance, functional principal component scores in functional data
exhibit heavy tails. Heavy—tailed characteristics are also found in anomalies arrival times. Quanti-
fying the tail behavior of such data is needed to further apply methods of extreme value theory.

This dissertation consists of four main chapters. Chapters 2 and 3 make a contribution at the
nexus of functional data analysis and heavy—tail analysis. In Chapters 4 and 5 we study the Hill
estimator applied to observations contaminated by some errors. We now outline the main ideas of
each chapter.

In Chapter 2, we study the tail behavior of functional principal component scores that are com-
monly used to reduce mathematically infinitely dimensional functional data to finite dimensional
vectors. To estimate the tail index of the scores, we consider the Hill estimator that is the most
commonly used tool for inference on the tail index. We derive conditions under which the Hill
estimator computed from the sample scores is consistent for the tail index of the unobservable

population scores.



In Chapter 3, we assess extremal dependence between functional principal component scores
by means of the extremal dependence measure (EDM). Estimated scores form a triangular array
of dependent random variables. We derive conditions under which an estimator of the EDM based
on these scores is asymptotically normal. These conditions are completely different from those
encountered in the second-order theory of functional data. They are formulated within the frame-
work of functional regular variation. Large sample theory is complemented by an application to
intraday return curves for certain stocks and by a simulation study.

Chapter 4 is concerned with the estimation of the tail index of heavy—tailed time series con-
taminated by measurement or other errors. We investigate asymptotic and finite sample properties
of the Hill estimator applied time series observed with errors. We derive conditions under which
the effect of the errors is asymptotically negligible. We show by means of a simulation study that
the Hill estimator is asymptotically robust to relatively large errors.

In Chapter 5, we establish the asymptotic normality of the Hill estimator and of the harmonic
moment estimator applied to heavy-tailed observations with measurement errors. The latter es-
timator is actually a class of estimators generalizing to the Hill estimator. Essentially, the only
assumption on the errors needed to obtain the asymptotic normality is that they have lighter tails
than the underlying unobservable process. The interarrival times of anomalies in a backbone in-
ternet network, computed with a roundoff error, are used in an application study in Chapters 4 and
5.

In the remainder of this chapter, we give a general introduction to the Hill estimator that we
will see in Chapters 2, 4, and 5, and to the EDM that will appear in Chapter 3. We also discuss
functional principal component analysis, to the extent needed to understand Chapters 2 and 3. It
is not possible to explain all relevant concepts fully in a brief account, but we attempt to pro-
vide enough information to make this dissertation reasonably self-contained. As we introduce the

required concepts, we give references to monographs that provide extensive, in-depth treatments.



1.1 Hill estimator and the EDM

In this section, we discuss two statistical tools used in heavy-tail analysis, the Hill estimator and
the EDM, that this dissertation focuses on. We start by introducing the theory of regular variation,
which provides a suitable mathematical framework. More detailed background is provided in
Chapters 2 and 6 of [4].

A function U : R, — R, is regularly varying with index o > 0, U € RV_,, if forany = > 0,

, Ultx)
oo U(t)

—_= l,—Oé

If the function U satisfies the above condition, we write U € RV_,. In applications, we often con-
sider tail probabilities U (t) = P(X > t), where the random variable X has the same distribution
as observations of an underlying random process. The tail index « characterizes the tail behavior
of the process.

Suppose X7, ..., X, are independent, nonnegative random variables with a common marginal

distribution function F'y, which has regularly varying tail probabilities:
FX:1—FX:P(Xi>')€RV_a.

There is an extensive body of work on estimating the tail index «. One of the well-known estima-

tors is the Hill estimator defined as

k-1

1 X(i)
H, =— E log ——,
k, k 08 X(k)

=1

with the convention that X ;) is the i—th largest order statistic. It uses only the k largest observa-
tions, which intuitively makes sense because any inference on the tail index should be based on
the extreme observations. The asymptotic properties of the Hill estimator have been studied as the

number of upper order statistics, k, tends to infinity with the sample size n, in such a way that

k/n — 0.



The EDM quantifies the tendency of large values between two components to occur simulta-
neously. Its construction is based on the theory of heavy—tailed regularly varying random vectors.
Thus, we first introduce multivariate regular variation and then discuss the EDM.

There are various equivalent formulations of multivariate regular variation, see Theorem 6.1
of [4]. We present here the definition with a polar coordinate representation. Fix a norm || - || in
RY, and let S? be the unit sphere in the nonnegative orthant in R?. A d-dimensional random vector
Z = [Zy,..., 74" is regularly varying if and only if there exists a sequence bg(n) — oo and an

angular probability measure I on S% such that for (R, ®) = (||Z||,Z/| Z])),

nP ((F]?n)’@) € > 2 cve x T, in M4 ((0,00] x S%),

where v, (x,00] = 27

and ¢ = v{x : ||x|| > 1} > 0. Basically, it can be interpreted that
the radius R is involved with the tail index « and the angular measure I' has all information on
extremal dependence of the components in Z.

Given a regularly varying nonnegative bivariate random vector Z = [Z;, Z,|", the EDM is

defined by

EDM(Zl, ZQ) = / alagf(da),
S

2
+
see [5]. The EDM takes the minimal value of zero iff the coordinates of Z are asymptotically inde-
pendent. Also, if the norm is symmetric, the EDM achieves its maximal value iff the coordinates

of Z exhibit asymptotic full dependence.

1.2 Functional principal component scores

Functional data analysis (FDA) is the statistical analysis of samples of curves, and it has be-
come an active field of statistics over the last three decades. Functional principal component anal-
ysis is one of the most fundamental tools of FDA. It leads to an efficient representation of infinitely

dimensional objects, like curves, by means of multivariate vectors of scores, e.g., [6], [7], [8], [9].



A finite number of these scores encode the shape of the curves and are amenable to various statis-
tical procedures.

We assume that all curves can be viewed as observations from a functional space L? = L?(T),
where the measure space 7 is such that L?(7"), with the usual inner product, is a separable Hilbert
space. Suppose X1, ..., X, are mean zero iid functions in L? with E||X;||> < oc. Then, by

Karhunen-Loéve expansion, see e.g., Chapter 11 of [10],
Xi(t) = Zﬁijvj(t); & = (Xi,v5), BES =),
j=1

where the v; are functional principal components (FPCs) and the ;; are functional principal com-
ponent scores.
The FPCs v; and the eigenvalues \; are estimated by 9, and 5\]-, which are solutions to the

equations

Q)

(0;)(t) = A;0;(t), for almost all t € T,

where C is the sample covariance operator defined by

~ 1 —
C t) = — X, X; S L.
@)t = 3 (Ko X @
The population scores §;; are estimated by the sample scores éij = (X;,v;), which is the

projection of X; onto the estimated FPC v;. Thus, each él-j quantifies the contribution of the curve
0; to the shape of the curve X;. Furthermore, the vector of the sample scores, [fil, - ,éip]T,
encodes the shape of X; to a good approximation since each curve X; can be approximated by a

linear combination of a finite set of the estimated FPCs 1, i.e., Xi(t) = Y /_, £;0;(1).



Chapter 2
Hill estimator of projections of functional data on

principal components

2.1 Introduction

A fundamental technique of functional data analysis is to replace infinite dimensional curves by
coefficients of their projections onto suitable, fixed or data—driven, systems, e.g. [6], [7], [8], [9].
A finite number of these coefficients encode the shape of the curves and are amenable to various
statistical procedures. The best systems are those that lead to low dimensional representations, and
so provide the most efficient dimension reduction. Of these, the functional principal components
(FPCs) have been most extensively used, with hundreds of papers dedicated to the various aspects

of their theory and applications.

If X1, X,, ..., X, are mean zero iid functions in L? with F || X,||* < co, then
Xit) =) &(t), BE; =\, 2.1
j=1

where the v; are the FPCs. The theory behind the Karhunen—Loéve expansion (2.1) is well-known,
see e.g. Chapter 11 of [10], so we do not repeat the details.

The FPCs v, and the eigenvalues A; are estimated by ¢, and 5\]- defined by

/ é(t, )oj(s)ds = A;0;(2), (2.2)

where é(t,5) = N~ 32N X, (t)X,,(s). In most inferential scenarios, replacing the v; by the ¥;,
and the \; by the 5\]- is asymptotically negligible, see [11], [12], [13], [14], [15], among dozens
of recent papers by other authors. Even though many different inferential problems have been

considered, they are all related to some form of “second order inference”, which utilizes estimators



of means and covariance structures. In this paper, we study a totally different type of estimator, the
Hill estimator, which is one of the most widely used tools of extreme value theory, see e.g. [16],
[17] and [4]. Its definition is given in Section 2.2. We now describe a motivation for our study. We
present an example based on financial data, but similar questions arise in the analysis of annual
precipitation or other climate related curves.

Denote by FP;(t) the price of an asset at time ¢ of trading day i. For the assets we consider
in our example, ¢ is time in minutes between 9:30 and and 16:00 EST (NYSE opening times)
rescaled to the unit interval (0,1). The intraday return curve on day 7 is defined by X;(t) =
log P;(t) — log P;(0). In practice, P;(0) is the price after the first minute of trading. The curves R;
show how the return accumulates over the trading day, see e.g. Figure 1 in [18]; examples of are

shown in Figure 2.1.

Day 1 Day 2 Day 3 Day 4 Day 5

-05 00 05 10 15
-05 00 05 10 15
-05 00 05 10 15
-05 00 05 10 15
-05 00 05 10 15

-1.0

-1.0
-1.0
-1.0
-1.0

-15

-15
-15
-15
-15

Figure 2.1: Five consecutive intraday return curves, Walmart stock.

The first three sample FPCs, 01, 05, U3, are shown in Figure 2.2. They are computed, using (2.2),
from minute-by-minute Walmart returns form July 05, 2006 to Dec 30, 2011, n = 1, 378 trading
days. (This period is used for the other assets we consider.) The curves )?Z(t) = Z?Zl éijf)j, with
the scores fij = [ X;(t)0;(t)dt, approximate the curves X; well. Figure 2.3 shows the Hill plots
of the sample score fij for two stocks and for 7 = 1, 2, 3. These plots are used to estimate the tail
index . Asymptotically, & is obtained as the number of upper order statistics, k, tends to infinity

with the sample size n, in such a way that k/n — 0. In the plots, the values of k£ between 100 and



00 05 10 15
| I

-0.5
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-1.0

-1.5

T T T T T T
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Rescaled intraday time

Figure 2.2: The first three sample FPCs of intraday returns on Walmart stock.

30 are used (recall, n = 1,378). These plots show that it is reasonable to assume that the scores
have Pareto tails, with the tail index between 2 and 4.

It is important to emphasize that the Hill plots Figure 2.3 are computed using the samples score
éij = (X, v;), whereas the population parameter is the tail index a of the unobservable scores
&j; = (Xi,v;). The question is if the Hill estimator based on the éij will be consistent for a,
at least under some additional conditions, or if there is a systematic bias due to the effect of the
estimation of the v; by the 0;. A problem of this type has not be studied. Consistency of the Hill
estimator has been established in several settings, but always assuming that the regularly varying
data are available.

Even for samples of iid positive random variables, the consistency of the Hill estimator is far
from trivial. The first proof in the iid setting was developed by [19]. [20] introduced a general
approach to establishing the consistency in case of dependent data, including both stationary times
series and triangular arrays. Another extension was obtained by [21]. The sample scores do form a

triangular array, but we were unable to adapt Hsing’s method to accommodate the transition from
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Figure 2.3: Hill plots for sample FPC scores for Walmart (left) and IBM (right). From top to bottom:
levels j = 1,2, 3.



the sample scores to the unobservable population scores. We developed an approach based on the
vague convergence of radon measures, see [22], [4].
In Section 2.2 we introduce the framework and state our main result, Theorem 1, which is

proven in Section 2.4, after some preparation in Section 2.3.

2.2 Assumptions and the main result

The most elegant, but in fact unnecessarily strong, assumption is that the function X whose
copies X;, 1 < i < n, we observe is regularly varying in L?. The space L? is infinitely dimensional
and not locally compact, so we cannot define regular variation using the framework of [22], [4],
but we can use a similar and more general framework of [23] who use M, convergence in place
of the vague convergence in the Euclidean space with zero removed and compactified at infinity.
Since we work with projections onto the real line, any definition of regular variation in L? which
implies regular variation of these projections would work. According to [23] a function X in L?

(or any Banach space) is regularly varying with index o > 0 if
P(|X]|| > u) = u*L(u) (2.1)

and

P(u_lX € ) Mo
PRI > M e =

where 1 is a non-null measure (exponent measure), and L is a slowly varying function. There are
several equivalent definitions, see Chapter 2 of [24], which also contains all details.
Set

U(u) = P(|[{X,0)| >w), U(u)=P((X,8)]>u),

where v is is one of the FPCs v; in (2.1) and © its estimated defined by (2.2). The function U is

regularly varying with index «, in the notation of [22], U € RV_,. To see this, consider the set

10



A, ={z:|(z,v)| > 1}, and observe that | (X,v) | > wiff u='X € A,. By (2.1) and (2.2),

U(tw) _ P((tu)"'X € A,) P(IX]| > tu) P([|X]| > u)
U(u) P(|X]| > tu) P(|X|]>u) Pu'X € A,)

—

provided p(.A,) > 0. It cannot be expected that U e RV_,; for a fixed n, ¥ is a random func-
tion whose distribution will, in general, influence the distribution of (X, v). Only some form of
asymptotic regular variation can be expected because U approaches U, in several ways, as n — oo.

The same argument shows that if y({z : (z,v) > 1}) > 0, then the function U (u) = P({x,v) >
u) is in RV_,, and if p({z : (z,v) < —1}) > 0, then U_(u) = P({(z,v) < —u)isin RV_,. To
avoid repetitions of almost identical statements, we focus in the following on the estimation of the

tail index of the function U. We will work under the following assumption.

ASSUMPTION 1. The functions X7, Xs, ... X, are independent and have the same distribution as
X. The function v is such that the function U(u) = P(| (X, v)| > u) is regularly varying with

index a > 2, o # 4.

The assumption o > 2 is needed because if X € RV_, with 0 < a < 2, then, by (2.1),
E||X||* = oo, so the FPCs are not defined. If o = 2, then either F|| X ||> = oo or E||X||? < oo are
possible, and complex assumptions on the slowly varying functions L are needed to derive various
rather technical results. We therefore assume o > 2. Another phase transition occurs at « = 4
separating, in a similar way, the cases with E|| X||* = co and E|| X ||* < oo.

In our theory, the index « can depend on the direction v, but we do not emphasize it in our
notation. We also note that even though the observed functions X1, X5, ... X, are iid, the sample
scores (X;,0) are no longer independent because ¢ depends on all X, X5, ... X,,. They form a
triangular array of dependent random variables, which are identically distributed for each fixed n.
The Hill estimator must be based on the projections (X, v). Before recalling its definition, we

introduce the following random variables:
Y = | <X7U> |’ Y = | <X7ﬁ> |7

11



This allows us to define
1 k—1 1 k—1
Hyn =7 ZlenYm —InYaw), Hen=o Zzllny(i) —In Y,

with the convention that Y/, is the largest order statistic. In the functional data context, Hy ,, is an
infeasible Hill estimator because the FPC v is not observed,; V2l kn 1s the Hill estimator that can be
actually computed. We want to establish condition under which it converges in probability to o *,

where « is the index of regular variation of Y.

We further define
1
1—F(u)=PY >u)=U(u), b(t)=F*" (1—;) :
We will use the representation
b(t) =t/ Ly(t), (2.3)

where L, is a slowly varying function.
The approach in Chapter 4 of [4] is based on vague convergence to the measure on the positive
half-line, which is defined by

Vo(z,00] =27 x> 0.

Our approach involves a sequence of “increasingly empirical” measures, with only the last one

being observable. We set

1 ¢ L_1¢ i1y , — Ly
UV, = % Z]Y"/b(%)’ Vp, = I Z]Yi/y(k)’ Vp = L Zjﬁ/b(%)’ Vn = k Zlﬁ'/y(k)'
i1 i=1 i=1 i=1

Any argument must involve some bounds on a suitable distance between Y; and Y;. We now

explain what can be assumed. If v is the jth eigenfunction of C, the population covariance operator,

12



and 9, is the jth eigenfunction of 6, then (see e.g. Lemma 2.3 in [8]),

2v/2
d X

J

|6 — ]| < ZZ2)C = Ol (2.4)

where d; = A\; — Ao, d; = min{\;_; —\;,\; — Aj41}. Assuming that the eigenfunctions \; of

C are such that for the j of interest d; > 0, we obtain
16— vl < AIC = C|le. 2.5)

Since

Y: = Vi < [(X5, 0 — o) [ < I Xif[[[0 = o,

we conclude from (2.5) that

Y = Yi| < AJXNNC = Ol (2.6)

If o > 4, then, see e.g. Theorem 2.5 in [8],
E|C—-C|Z=0n"). 2.7)

The case of regularly varying X with tail index o € (2,4) is studied in [25]. Under week

conditions, relation (2.7) must be replaced by
E|C = C|2 < La(n)n P02 v 8 € (0,0/2), (2.8)

where Lg is a slowly varying function. For a fixed «, the strongest bound is obtained as 5 " «/2,
in which case f(1 — 2/a) /~ a/2 — 1. Asa S 4and 7 «/2, relation (2.8) thus approaches,
in a heuristic sense, relation (2.7). It is enough to impose a slightly weaker, but more convenient,

condition:

_ 2
E|C—cCl|i=0n"), Ve (1, %) VK (o, 3 (1—5)). (2.9)

13



The above discussion shows that the following Assumption 2 basically always holds as long
as d; > 0 in (2.4). We formulated it for ease of reference, and to emphasize that only certain
properties of the sample covariance operator C are used; C could, in principle, be a different

estimator of C', which has those properties.

ASSUMPTION 2. Relation (2.5) holds. The estimator C satisfies 2.7)if a > 4and 29) if a €

(2,4).

. . ) .. P
Since the Y; are iid and in RV _,, the only conditions needed to ensure that Hy, — a~ ! are

k = k(n) — oo and k/n — 0, as n — oo. In our setting, we want to estimate the tail index of
unobservable random variables Y; based on their observed approximations Y;. It can be expected
that the rate of the approximation will impose additional conditions on the rate at which & tends to
infinity with n. A sufficient condition is formulated in Assumption 3 below.

Define the function

(o — 2
2% 9’ a € (4,00),
1
v(a) = . ae(3,4], (2.10)
a—1
\2—%, a € (2,3].

Observe that () is continuous at & = 4 with y(4) = 1/3, and at & = 3 with v(3) = 1/2. Ttis
increasing on (4, c0) with lim, o v(a) = 3 and decreasing on (2, 4) with lima\» () = 1.

We will write £ >> n?, for some v € (0, 1), if k/n” — oo.
ASSUMPTION 3. We assume that k& >> n” for some v € (y(«), 1), with y(«) defined in (2.10).

According to Assumption 3, as a \ 2, the order of £ approaches n. One can say that as the
value of «v approaches the smallest possible value for which the functional principal components

exit, only the very largest observations must be used to ensure the consistency of the Hill estimator.

THEOREM 1. Suppose Assumptions 1, 2 and 3 hold. Then H kn Bal

14



While Theorem 1 is formulated in the specific setting of projections of functional data onto
population and estimated FPCs, it is hoped that the approach we develop will be, in general out-
lines, applicable to other contexts where the tail indexed must be inferred from approximations to
unobserved data. For example, only Y; + ¢; with correlated errors €; may be observed. It is also
hoped that the theory developed for the most commonly used Hill estimator may be used to guide

similar developments for other estimators of the tail index.

2.3 Preliminary results

We collect in this section several results, none of which is particularly profound or difficult to
prove, but put together they play an important role in the proof of Theorem 1. By placing them in
a preparatory section, we will also avoid repeatedly distracting from the main flow of the argument
in Section 2.4.

Following [4], denote by M, = M, (0, oo] the space of Radon measures on (0, 0o].
LEMMA 1. The function h on M defined by h(j) = p(z, 00| is continuous at v,.

Proof. Suppose (i, — v,. This implies that for any relatively compact B with v,(0B) = 0,

tn(B) = vo(B). Taking B = (z, 00], we obtain h(iu,) = pin(B) = vo(B) = h(vy).

LEMMA 2. The function h on M defined by

s continuous at v,,.

1

Proof. Suppose (i, — V,. By Lemma 1, for every z > 0, u,(z,00]z™! = v,(z,00]z~!. The

convergence

M M
/un(x,oo]a:_ldx%/ Vo (2, 00|z dx

15



follows from the dominated convergence theorem because for « > z and sufficiently large n,

«

fin (2, 00] < pp (2, 00] < 20,(z, 00 = 2277,

]

The measure v, is a random element of M., v, its deterministic (constant) element. The

following lemma follows from Theorem 4.1 and relation (4.21) in [4].
LEMMA 3. In the space M (0, 0], v, 5 v, and v L.

The next lemma follows from relation (4.17) in the proof of Theorem 4.2 in [4].
LEMMA 4. Ifthe Y; are iid and in RV _,,, then Y3, /b(}) 5

aA1] —[bA1]] < |a—bl.

LEMMA 5. Forany a,b > 0,

Proof. There are four cases:
Da>1,b>1 [1-1=0<]|a—0;
a>1,0<1, [1-b=1-b<a—-b=]a—10;
Na<l,b>1, la—1ll=1—a<b—a=la—b|

Ha<1,b<1, |[a—0b| <|a—b|

The following statements are proven is Section 3.4 of [22]. The metric p which compactifies

(0, 00] at oo is
1 1

plu,v) = | — .

The distance between measures i1, ;13 € M (0, o0] is defined by

o

d(pr, pr2) = Z 27"l (fim) — p2(frm) [ A1} (2.1)

m=1

16



The functions f,,, € Ck (0, oo] are of the form

f(l’) =1- [Cp(l’, B) A 1]7 (2.2)

for some ¢ > 0 and relatively compact B C (0, oo].

LEMMA 6. For any metric p and any set B, |p(ay, B) — p(ag, B)| < p(ay, az).

Proof. Recall that p(a, B) = infyepp(a,b). Forany b € B, p(a1,b) < p(ai,as) + p(az,b).
Taking the infimum of the left-hand side, we obtain p(a;, B) < p(ay,as) + p(ag,b). Taking
the infimum of the right-hand side, we obtain p(a;, B) < p(ai,as) + p(az, B). Consequently,
play, B) — p(az, B) < p(ay, az). Switching a; and as, we obtain the claim.

]

LEMMA 7. Suppose random variables H,,(n), m,n > 1, satisfy 0 < H,(n) < 1andV m >

1, Hp(n) 50, asn— oo Then, Yo 27™H,(n) L0, asn— .

Proof. Define

S(n) =Y 27" H,(n)

= > 2"H,(n)+ > 27"Hy(n)

m<M m>M

=: Sy(n) + Sy (n).

Fix e > 0 and observe that P(S(n) > ¢) < P (Sy(n) > ¢/2)+P (S5,(n) > /2). Since S5, (n) <
27M we can choose M so large that P (S5,(n) > &/2) = 0. For such a (fixed) M, P(S(n) > ¢) <
P (Sy(n) >¢e/2) — 0.

[
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2.4 Proof of Theorem 1

The proof of Theorem 1 is constructed from a series of results, of which Proposition 1 is the
most prominent. To facilitate the understanding of the proofs of Proposition 1 and Theorem 1, we

note that
Ifa € (3,4), then = >2— %,

Ifae(2,3), then X <2-%.
We may thus write

1 o

’y(a):max{m, 2—5}, a € (2,4]. (2.1)

PROPOSITION 1. Under the assumptions of Theorem I, d(v}, v,,) Lo.

Proof. Since each function f,, in (2.1) has compact support in (0, 00|, s,,, := inf {supp(f,.)} > 0.
p

Therefore
i) = )l = | [ = [ o,
23| (sm) - s
- % I (b(jm) I (b(if}m)"
where

— {z >1:Y > smb(n/k) or'Y; > smb(n/k‘)}

Since each f,, is of the form (2.2), by Lemmas 5 and 6,

R — Cm Y Y S
) (fim) n(fm)] < i /)(b(n/ )aBm> p<b(n//{:)’Bm>

1€Lm

< Cm ) Y Y;
=k & P\ b(n/k) b(n/k) ) |

18



The claim will thus follow from the convergence

m=1 ’ieIm

b(n/k) _ b(n/k) ‘
Y Y,

/\1}50,

which, in turn, by Lemma 7, will follow from

n/ k) _bn/k)
Y;

o, 2.2)

ZEZ

where, for some s* > 0,
Z(n) = {z >1:Y;>sb(n/k)orY; > s*b(n/k)}.

Set

IOm)={i>1: Y > sb(n/k)}, I®(n) = {z >1: V> s*b(n/k)}.

Relation (2.2) will follow once we have shown that for g = 1 and g = 2,

b(n/k) Z Y; — Y| 2 2.3)
& i€Z(9) (n) Y;Y;

We verity (2.3) for ¢ = 1. The argument for g = 2 is basically the same; the roles of }A/, and Y;
must be interchanged.

Fix £ > 0. First observe that

b(n/k) Vi = Y]
P ——— >¢| < P(G(n) >¢),
DI (Gln) > <)

i€eZ(M (n)

where

Gln) = 1k 3 |Y; —Yi|
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Next, use the decomposition

P(G(n) > ¢) = Pi(n) + Pa(n),

with
Pi(n)=P (G(n) >e, 3ieZWn): V; < %S*b(n/kz)) ;
Py(n) =P (G(n) >e, VieIW(n):Y; > %s*b(n/k)) :
Observe that
<P (3 ieIWn): Y, < % <n/k;>>
<p (3 i<n:Y>sb(n/k)andY; < %5 (n/k))
<p (3 V- > 13 (n/k))
_p (1121212( V- ¥i| > o (n/k)) |
By (2.6),

. 1,
P < P (4,18 = Clle s 10 > 3700/ )

24,

<= _E||C- N1
< oI~ Cle o 11

We first consider the case of o > 4. By (2.5) and (2.7),

24, 2
P < e (B0 - i} { £ a1

=0 (g ) =0 (i) =20

20
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By Markov’s inequality,

2 U
P. <P| —m—— Y, -V, 2.6
2(”) = (S*ka<n/l{?) ;| ’ > 5) ( )
2 A
< EY, - Y,
~ es?kb(n/k) ; | |

By (2.6) and (2.7),
. 1/2 ~ 1/2 B
EY; - il < A, {EI X2} { BIIC - ClIz} = o).

Therefore,

Py(n) = O ( kqu;//Qk)) = o(1).

The last equality follows from the assumption k& >> n7(®) and (2.3).

Now consider the case of o € (2,4). We first show that P;(n) = o(1). By (2.4), (2.6), and

Markov’s inequality

_ 1 ~ 1/2 q11/2
Pi(n) =0 (—b(n /@) B (16 - €I s 6112

We apply Holder’s inequality with p = 25 and ¢ = 23/(25 — 1) to get

28—1

_ L G Pl 27
Pl(n)—C)(W) {EHC—C“c} {E@ag;HXiH p }

For the above bound to be effective, we need EHXZ-H%L—1 < 00, which is implied by Qﬁi—l < o

Since 24 — 1 > 1 and 5 < «/2, this condition always holds. It therefore follows from (2.9) that

1 s 28-1
P(n)=0 ——=n"5n2°
" ( b(n/k) )
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We can thus conclude that P;(n) = o(1), if there are 5 and « such that —x + 25 — 1 < 0. This is
possible if 23 —1 < (1 — 2). The above condition can be equivalently stated as 3 (1 — 2) < 1.
Since 8 < 5, B (1 — %) < § — 1 < 1 because @ < 4. This completes the verification of
Pi(n) =o(1) for a € (2,4).

To show that P(n) = o(1), observe that by (2.6), Markov’s inequality with 0 < r < 1, and

(2.6),

VAN

Py(n)

2 — -
P\ —r7—~ Y, -Y;
<s*2kb(n/k) ;' > 5)

0 (W( /@) E ||6—0||,;%i§n;uxi||]r

Applying Holder’s inequality with p = §/r and ¢ = /(8 — ), we obtain

n rqy 1/q
< {B|0 - |2} /B{E (%Zuxu) } -
=1

. (1S '
[eRell (5 > uxm)
i=1

For E|| X;||"? to be finite, we need

rq = BT—BT < a. (2.7)
Choosing
_ B
| (2.8)

implies rq = 1. We thus obtain, with r specified in (2.8),

Pu) = 0 (g GBI 2 = 0 ()

By (2.3), the claim P»(n) = o(1) will thus follow if £ >> n”, where

BT
B
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The exponent is smaller than 1, and attains its smallest value as % approaches its largest possible

value, i.e. 1 — 2/a. It remains to observe that

]

REMARK 2.4.1. The proof of Proposition 1, in the case « € (2,4), is valid in (2.1) is replaced by
v(a) = (a — 1)~1. Only the latter bound was used. The bound 2 — «/2 is needed in the proof of

Theorem 1.
Using Lemma 3, we obtain the following corollary.
COROLLARY 1. Under the assumptions of Theorem 1, v} ER Va-

The arguments used in the proofs of Propositions 2 and 3 are similar to those developed in

Sections 4.3. and 4.4 of [4].

PROPOSITION 2. Under the assumptions of Theorem 1,

Vi
b(n/)

51

Proof. Fix € > 0 and set

_ Y(k) _ )A/(k)
P.(n)=P <b(n/k’) > 1+€> , P.(n)=P (b(n/k) <1 —5) .
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Observe that
P.(n)=P (I 5 (L+e,00] = 1)

<P _[{/(i) (1—|—8,00]Z]€>
i=1 bn/k)

Iy, (1+e,00] > 1)

i=1 bn/k)

A similar argument shows that P_(n) < P (vf(1 —¢,00] < 1). The claim follows because by

Corollary 1 and Lemma 1,

v (1+¢, 0] 4 Va(l+e,00)=(14+¢)" < 1;

vi(1—¢, 0] KR Vo(l—g,00]=(1—¢)7% > 1.

. . P
PROPOSITION 3. Under the assumptions of Theorem 1, U, — V.

Proof. Consider the map 7" : M, x (0,00) — M defined by
T(u,z)(A) = p(xA), for Borel A C (0, 0.

[4], pp. 83—84 shows that 7" is continuous. Observe that

Vi .
T (V;r” b(n(/)k:)> =0Up, T (Vo 1) =1,
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The claim thus follows because by Corollary 1 and Proposition 2,

Y
<VT (*) ) 4 (Va, 1) in M, x (0, 00).

" b(n/k)
N
The following lemma may be of independent interest and more general utility.
LEMMA 1. Suppose y — P(Y > y) € RV_,, for some a > 0. Then,
lim lim sup/ tP(Y > zb(t))z~'dz = 0.
Z—r 00 t—00 o
Proof. The function b(-) is defined by P(Y" > b(t)) = t~*. We know that b(-) € RV, and
tlirn tP(Y > xb(t)) =27, x>0. (2.9)
—00

Set fi(z) = tP(Y > xb(t))z~'. We want to show

lim lim sup/ fi(z)dz = 0.

200 {00

By (2.9),Vz >0 fi(z) = 27>, ast — oco. To conclude that
/ZOO fi(z)dz — /:O 7 Yz, ast — oo,
we must find a function g such that for ¢ > ¢,
fi(z) < g(x) and /:og(x)d:c < 00.
Set U(y) = P(Y > y). Potter bounds state that V 6 > 0, 3 ug, V u > ug, Vy > 1,

(1-0)y "< < (14 0)yo+.




Since b(t) — coast — 0o, Jtg, Vit > to, U(xb(t)) < (1468)x~*TU(b(t)). Since U(b(t)) = 1/t,
we obtain, for t > to, fi(x) = tU(zb(t))x™! < (1 + 0)xz=*"~! =: g(x). The function g is

integrable if 6 < a.

PROOF OF THEOREM 1: Since

we must show that
oo P o
/ Dy (, 00lo ™ dw — / Vo (2, 00)z7 e = a1,
1 1

The verification is based on the commonly used truncation argument, Theorem 3.2 in [26], also

stated as Theorem 3.5 in [4]. Set

Vn:/ Dy (x, 0]z d, V:/ Vo (7, 00z dx;
1 1

n

M M
Yy M) — / D (z, 00]a tde, VM = / Vo (z, 00]x ™ d.
1 1

To establish the desired convergence V,, Ei V', equivalently V,, < V', we must verify that

VM >1, VM4 y0)  a6n oo (2.10)
VOD by a8 M = oo 2.11)
Ve>0, lim limsupP(|Vn(M)—Vn| >¢e) =0. (2.12)

M=o 500

Convergence (2.10) follows from Proposition 3 and Lemma 2. Convergence (2.11) is trivial be-

cause [, v (x, 00]lz  de = oM ~*. Since VM — v, | = [ n(z, 0olz ™ dzx, (2.12) is equiv-
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alent to

Ve>0, hm lim sup P (/ Dy(x, 0]z tdr > 5) = 0.

M=00 n—oo M
The steps of the verification of the above relation, up to (2.13), are pretty much the same as those
developed on pp. 84-85 of [4]. We provide the details because we work with the measure v/} rather
than with the measure v, and the context for the remainder of the proof is helpful. Following
(2.13), we use a different argument.

Fix ¢ > 0 and n > 0. Observe that

P </Oo D (z, 00]z ™ dz > 5) < @Qi(n) + @2(n),

M
—1 <77>>

where

~

Y

M b(n/k)

_ Y
Q2(n) = P( k) 1‘ ZU) :

By Proposition 2, lim sup,,_,., @2(n) = 0, so we focus on @1(n). We start with the bound

Qi(n) =P (/OO Dy, 00l dr > €,

~

Qi1(n) <P (/MOO Dy, 00l tdr > ¢, % >1— n)

1 -1 }A/(k)
:P(/M EZ[%/Y(M(SL‘,OO]I' dx > ¢, b(n/k;)>1_77 :
i=1

Conditions }A/;/f/(k) > x and f/(k)/b(n/k:) > 1 —nimply Y;/b(n/k) > z(1 —n), so

| N

P

% q -
/ Z]Y/b(n/k —1),00lz ™ dw > 5)

—n), 00lz  dr > 5)

P( ooz 1dx>€)
177)

P

/\/\
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Consequently, because the 171-, 1 < ¢ < n, have the same distribution,

~

1 [~ 1 [ n Y
Qi1(n g—/ E V); x, 00 xldx:—/ —P >z |z de.
2 oy B late el = ugo 87\ 6

It thus remains to show that

lim lim sup/ %P ()A/ > :vb(n/k)) ' dx = 0. (2.13)

270 n—oo

We use the decomposition

P (Y > :cb(n/k’)) -y (Y > ab(n/k), Y > %xb(n/k))
+P (f/ > zb(n/k), Y < %xb(n/k;))
<p (Y > %xb(n/k’)) 4P (|Y _y|> %xb(n/k:)) |

By Lemma 1,
o 1
lim lim sup/ “p (Y > —xb(n/k:)) v dr = 0.

200 pseo k 2

If @ > 4, by (2.6) and (2.7)

“n . 1 n [ 2 -
—P|Y =Y]| > -xb(n/k “dr < — _ — -1
/Z ’ (| | > 5% (n/ )) rdr < k/z xb(n/k:)E|Y Y|z de
_0 nl/2 1
kb(n/k) ) =z

By Assumption 3, for a slowly varying function L and v € (y(a), 1),

1/2

i~ (5] @)Y o e
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If o € (2,4), we use the bound (r € (0, 1]):

“n - 1 n [ 2 RN
—P(|Y =Y|>zazb(n/k) )z 'de < — ElY —Y['z7'd
[ ar (=115 gottngn) o7 < [ (G ) 19 = v
 (nEY-Y[]"\ 1
B k b(n/k) | 2
The value of r will depend on av. Choosing it, and checking that it is available, requires some work.

As in the proof of Proposition 1, E|Y — Y| = O (n=""/%), provided (2.7) holds. Set

Clearly v* < 1. We must verify that there are (3, x and r, in permitted ranges, such that v* can be
arbitrarily close to y(«) given by (2.1). With « and r fixed, «* will approach its smallest possible
value as /3 approaches its largest possible value, i.e. 1 — 2/« In this case, v* is greater than and

approaches
1—&—(1—%)7"_a—a7’+7“
T = .

o) = L

r
o

Condition (2.7) restricts the available values of . A direct calculation shows that it is equivalent to

For a fixed «, the right-hand side is an increasing function of 5 and attains its upper limit if
f = a/2. This means that » must be less than, but can be arbitrarily close, to /3. Thus, 7* can be

arbitrarily close to
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Combining it with Remark 2.4.1 concludes the proof.
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Chapter 3

Extremal dependence measure for functional data

3.1 Introduction

We first concisely state main contributions of the paper with the caveat that detailed definitions
and formulations will be provided in the following. Consider a sample of functions X;(t),t € T,
such that each of them has the same distribution as X. The Karhunen-Loéve expansion is X (t) =
> 721 &v;(t). The functions v; are the functional principal components (FPCs) and the random
variables §; are their scores. We want to estimate extremal dependence of {; and {;;. We define
a measure of such a dependence, which we denote by D(¢;, ;). We then define an estimator of
D(&;, &) and formulate conditions under which it is consistent (Theorem 1) and asymptotically
normal (Theorem 2). The main difficulty is that the population scores &;; = (X;,v;) are not
observable.

This paper thus makes a contribution at the nexus of functional data analysis (FDA) and ex-
treme value theory (EVT). We assume that the reader is familiar with mathematical foundations of
functional data analysis and central principles of extreme value theory. The FDA background given
in Chapters 2 and 3 of [8] is sufficient. More detailed treatment is provided in [9]. Chapters 2 and
6 of [4] provide sufficient background in extreme value theory. Other references are cited when
needed. We assume that all functions are elements of the space L?> = L?(7T ), where the measure
space T is such that L?(7), with the usual inner product, is a separable Hilbert space. This will be
ensured if the measure on 7 is o—finite and defined on a countably generated o-algebra, see e.g.
Proposition 3.4.5 in [27]. In particular, 7 can be taken to be a complete separable metric space
(Polish space).

Suppose X1, ..., X, are mean zero iid functions in L? with E || X;||* < oo, and denote by X
a generic random function with the same distribution as each X;. A main dimension reduction

tool of functional data analysis is to project the infinite dimensional functions X; onto a finite
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dimensional subspace spanned by the FPCs. We now recall the required definitions. Consider the

population covariance operator of X, defined by
C(z) :=E[(X,z) X], z¢€lL* (3.1)

The eigenfunctions of C' are the FPCs, denoted by v;,j > 1, i.e., C(v;) = Ajv;, where the \; are

the eigenvalues of C'. The FPCs lead to the commonly used Karhunen—-Loéve expansion
Xi(t) = Zfijvj(t), & = (Xi,v), BE =\, (3.2)
j=1

The FPCs v; and the eigenvalues \; are estimated by 9, and S\j, which are solutions to the equations

Q)

(0;)(t) = S\jﬁj(t), for almost all t € T, (3.3)

where C is the sample covariance operator defined by

n

Cla)(t) = %Z (X, 2) X;, 1€ L

Each curve X; can then be approximated by a linear combination of a finite set of the estimated
FPCs 9;, i.e., Xi(t) ~ >0, &,;0;(t), where the &; = (X;, 0;) are the sample scores. Each &,
quantifies the contribution of the curve ©0; to the shape of the curve X;. Thus, the vector of the
sample scores, [52-1, e ,ép]T, encodes the shape of X; to a good approximation. To illustrate,
Fig. 3.1 displays the first three sample FPCs, 01, U5, 03, for intraday return curves R;,1 < ¢ <
1, 378, for Walmart stock from July 05, 2006 to Dec 30, 2011. These data are described in detail
in Section II of the supplement. The curves R; show how a return on an investment changes
throughout a trading day as two examples are shown in Fig. 3.2. The curve 0; is a monotonic
trend throughout the day. If the score corresponding to it is large, trading in this stock on a given

day was dominated by a systematic increase (or decline if the score is negative) in the price of
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Figure 3.1: The first three sample FPCs of intraday returns on Walmart stock based on sample of 1,378
curves.

the stock. Notice the gradually decreasing slope of v, which reflects the well-known fact that the
most intense trading takes place after the opening of the trading floor. The second FPC, 75, has a
large score, if there is a significant reversal in investor sentiment during a given trading day. These
observations are illustrated in Fig. 3.2.

The main interest in this paper is the estimation of extremal dependence between the scores
corresponding to different FPCs. Extremal dependence is a tendency of large values of one com-
ponent to be coupled with large values of another component of a random vector. In the context
of our Walmart stock example, extreme dependence between the first and second scores indicates
that an extremely high monotonic trend and a pronounced reversion tend to occur simultaneously.
Therefore, knowledge of the extreme value dependence of the scores may enhance the management
of intraday risk.

We assess extremal dependence of the scores by means of the extremal dependence measure
(EDM), which is constructed based on the theory of heavy—tailed regularly—varying random vec-

tors. There has been considerable research on quantifying the tail dependence between extreme
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Figure 3.2: Walmart intraday cumulative return curves on two trading days and their approximations by
Zg’zl &ij05(t). In the left panel, §; = —4.7,& = 0.4, &3 = —0.1, observed on October 7, 2008. In the right
panel, & = 0.8,&; = 1.2,&3 = 0.1, observed on November 18, 2008.

values in a heavy—tailed random vector. [28-30] defined the coefficient of tail dependence, which
was later generalized to the extremogram by [31]. While these approaches are essentially based
on the exponent measure of a random vector, the EDM is defined in terms of the spectral measure.
The EDM was introduced by [32] and further investigated by [5]. Important related papers are [33]
and [34].

In this paper, we quantify extremal dependence of scores using the EDM. To estimate the EDM
of population scores, we consider an extension of the estimator proposed by [5]. It is important
to emphasize that in our functional setting, the estimator can only be computed using the sample
scores éz-j = (X}, 0;), not the population scores &;; = (X;, v;) because the ¢;; are unobservable.
Establishing large sample properties of any estimator based on sample scores requires taking the
effect of the estimation of the scores into account. Since the éij depend on the whole sample
Xi,...,X,, the vectors [éﬂ, . ,é,-p]T are no longer independent, even if Xy,..., X, are i.i.d

functions.
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The remainder of the paper is organized as follows. In Section 3.2, we introduce preliminaries
on multivariate regular variation and the EDM, and extend the concept of the EDM to multivariate
data. Our main large sample results are presented in Section 3.3, which deals with the EDM for
scores of functional observations. Section 3.4 presents a number of preliminary results. These
results allow us to streamline the exposition of the proofs of the results of Section 3.3, which are
presented in Section 3.5. Sections 3.6 and 3.7, present, respectively, an application to functional
return data and a simulation study.

The paper is accompanied by supplementary material in Appendix A, which contains a couple
of sections. Section A.l explains how to normalize tail indexes of components of multivariate
vectors. This is a well-researched topic in EVT, but may be less known in the FDA community,
so a brief account needed to understand the application in Section 3.6 is provided. Section A.1
contains additional tables discussed in Section 3.7.

We hope that this work will be received with some interest by researchers working in two

exciting and dynamic fields: functional data analysis and extreme value theory.

3.2 Multivariate regular variation and the EDM

We start by introducing multivariate regular variation for random vectors with positive com-
ponents because the extremal dependence measure (EDM) was defined in such context. Follow-
ing [4], we denote by 4 = [0, 00]” \ {0} the nonnegative orthant compactified at infinity. We de-
note by M, (E;) the space of Radon measures on E,4, and by — the vague convergence in M (E,).
An E,—valued random vector Z = [Zy, ..., Z4)" with distribution function F is regularly varying
with index —a, o > 0, if there exists a sequence b(n) — oo and a Radon measure v on E; such
that

Z v .
nPr <m € ) — v, in M, (Ey). (3.1)

Unless stated otherwise, all limits are taken as n — oo. The exponent measure v has the property,

v(t-) = t=*v(-). We assume that one-dimensional marginal distributions of v are nondegener-

ate. In (3.1), all components are normalized by the same sequence {b(n)}, which means that all
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marginal distributions are tail equivalent with the index —«. A possible choice for b(n) is the
quantile function, defined by Pr(Z; > b(n)) = n~!. When b(n) = n, all marginal distributions
are tail equivalent to the standard Pareto distribution with o = 1, which is called the standard case.

There are various equivalent formulations of multivariate regular variation, see Theorem 6.1

of [4]. The formulation with a polar coordinate representation is commonly used due to its com-

putational convenience and intuitive interpretation. Fix a norm || - || in R%, and set S1 = {z €
R? : ||z|| = 1} N E,, the unit sphere in the nonnegative orthant. A d—dimensional random vector
Z = [Zi,..., 74" is regularly varying if and only if there exists a sequence br(n) — oo and an

angular probability measure I' on S% such that for (R, ©) = (||Z||, Z/||Z]|).

n Pr ((i,(a) € ) 2 cve x T, in M4 ((0,00] x S), (3.2)
br(n)

where v,(z,00] = z7® and ¢ = v{x : ||x|| > 1} > 0. The sequence {br(n)} in (3.2) is
defined by Pr(R > br(n)) = n~!, so in this case br(-) depends on the choice of the norm || - ||.
Definitions (3.1) and (3.2) can be extended directly to an R¢valued random vector with v on
R\ {0} and " on S¢ = {z € R? : ||x|| = 1}, see, e.g., Propositions 2.2.5 and 2.2.6 of [24]. In
practice, the components of a random vector might not be tail equivalent. The case of different
tail indexes of the coordinates, and transformations which make the coordinates tail equivalent are
discussed in Section A.1.

We now turn to the EDM. Given a regularly varying nonnegative bivariate random vector Z =

[Z1, Z5) ", [5] define the EDM by

EDM(Zl, ZQ) = / alazf‘(da). (33)

2
S+

The EDM takes the minimal value of zero, EDM(Z;, Z5) = 0, iff the coordinates of Z are asymp-

totically independent. This means that the angular measure I" concentrates on {(1,0)/||(1,0)]|,

(0, /110, 1)]

norm is symmetric, EDM(Z;, Z5) achieves its maximal value iff the distribution of Z has asymp-

}, or equivalently, the exponent measure v concentrates on the axes. Also, if the
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totic full dependence; i.e., I" has mass on {(1,1)/]|(1,1)||}, or equivalently, v concentrates on the
line {¢(1,1),¢ > 0}.
[5] show that the EDM can be interpreted as the limit of cross moments between normalized

7y and Z, conditional on large values of R = ||Z||;

T Z714?2
EH)BA(ZZl,ZZJ ——JEEi)E][jE?‘Eg R > T}.

Based on this relation, they propose an estimator for EDM(Z;, Z5), defined by

1 & Ziy Z;
Du(Z1,22) = 1> 5 Irzhgy: (3.4)
S

where Z; = [Z;1, Zig]T, 1 < i < nareiid copies of Z = [Z1, Z5]", R; = ||Z;]|, and Ry is the kth
largest order statistics with the convention ;) = max{Ry,...,R,}.

[5] consider non—negative bivariate vectors. To be able to work with the vectors of scores of
functional data, we first have to extend their definitions to a setting of multivariate random vectors
of an arbitrary dimension. Our first objective is to generalize (3.3) to a d—dimensional vector
Z=[Z,...,7y". We formulate the EDM between the components Z; and Z, for simplicity. We
first assume that all components are positive. Given the angular measure [' on Si for Z, we define

the EDM for Z; and Z, as

a1a9
D(Zy, Zs) :/ ['(da). (3.5)
Si H(al,ag,O,...,O)HQ
We set ajas/ ||(a1,as2,0,...,0)||> = 0 when a; = ay = 0. Definition (3.5) is different from a
simple extension of (3.3) given by
I)'QZl,ZQ) ::u/m &1a2F(da). (3.6)
54
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We will now argue that for a d—dimensional vector Z, with d > 3, D is a better measure for
assessing extremal dependence between Z; and Z, than D’. Suppose that a random vector Z =
[Z1, Z5, Z3]" is regularly varying with an angular measure I' on S%, and fix the Euclidean norm

| - || in R3.. Consider the following four cases.

1. The angular measure I'; has unit mass on (1, 1, 10) /+/102; the exponent measure v/, concentrates
on {t(1,1,10),t > 0}.

2. The angular measure I', has unit mass on (1, 1,1)/4/3; the exponent measure v, concentrates
on {t(1,1,1),t > 0}.

3. The angular measure I's has unit mass on (7, 7, 2)/1/102; the exponent measure 75 concentrates
on {t(7,7,2),t > 0}.

4. The angular measure I', has mass 1/2 on each (1, 1,10)/+/102 and (7, 7, 2) /+/102; the exponent

measure v, concentrates on {t(1,1,10),¢ > 0} U {¢(7,7,2),t > 0}.

Suppose Z has a Pareto distribution with index o > (0. The following random vectors have

extremal distribution corresponding to each of the above cases:
ZzW =z, 7, 107], Z® =z z 27, Z® =[7Z, 7Z, 2Z],

ZW =¢(Z, 7,102+ (1 - O[7Z, 17, 27),

where ¢ is a Bernoulli random variable with probability of success 1/2.
Set P15 = {[t1,ts,0],t1,t, € R}. The projections of the random vectors Z(), Z(?), Z®), and

7™ onto P, are, respectively,
ZV =z, 2), 2P =2, 2], 29 =[12,72), ZW = [§Z+T(1 - )Z, £Z+7(1 - ) Z].

For all of the projected random vectors, the two components are equal, so a good measure of
extremal dependence between them should attain its maximal value. Since we use the Euclidean

norm and I" is normalized to unity, the maximum value of both D and D’ is 1/2. Direct verification
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shows that we achieve the maximum value for all cases using the measure D. The measure D’

however does not give the maximum value. For each case:

1 34
D’ Z(l) Z(l) _ = D’ Z(Q) Z(Q) _
( 1 »42 ) 102’ ( 1 42 ) 1027
49 11 49 1 25
D’ Z(3) Z(3) _ D’ Z(4) Z(4) e Rl
5247 = g DAL 20 = 1535 T 1022 ~ 12
It can be further shown that, for any norm || - || in R?, the measures D and D’, defined for

d—dimensional vector Z with d > 3, are not equivalent in the sense of Definition 1 on p.234
of [5], which we now recall. For a given Z, let p;(Z) = fSi k;(a)l'(da) for some nonnegative
map k; : S¢ — R;. Then pi(Z) and py(Z) are equivalent if and only if there are constants
0 <m < M < oo such that

mp1(Z) < p2(Z) < Mpi(Z).

It is obvious that the measures D and D’ are equivalent for a bivariate vector Z. We formalize the
nonequivalence between the measures for a d—dimensional vector Z with d > 3 in the following

proposition.

PROPOSITION 1. Suppose that a Eg—valued random vector Z. = |7, . .., Z4]" is regularly varying
with angular measure I on S, with d > 3. Then D(Zy, Z5) and D' (Z1, Z5), defined in (3.5), (3.6),

respectively, are not equivalent for any norm || - || in R%,

Proof. Proposition 1 of [5] shows that p;(Z) and py(Z) are equivalent if and only if there are

constants 0 < m < M < oo such that

mki(a) < ky(a) < Mk(a), VaeSi. (3.7)

Observe that the ratio of the integrand in D'(Z;, Z,) to the integrand in D(Z, Z,) is ||(a1, a2, 0, . . ., 0)||.

This ratio is clearly zero at a = 0, violating (3.7), but 0 ¢ S?. We therefore consider a path in S%
defined by
a(r) = (z,2,1,0,...,0)/|[(z,2,1,0,...,0)||, = \,O0.
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Then,
|(z,2,0,0,...,0)|?
|(z,2,1,0,...,0)[?

(a1 (), as(),0,0,...,0)|* = S0

as z \, 0 because every norm in R? is equivalent to the Euclidean norm.

O

Another question of interest is the relationship between D(Z;, Z5) in (3.5) and EDM(Z, Z5)

in (3.3). We clarify it in the following proposition.

PROPOSITION 2. Suppose that the exponent measure and angular measure of a d—dimensional
regularly—varying random vector Z. = [Zy,...,Zy]" are, respectively, v on E; and T on Si.
Denote the exponent measure and angular measure of the bivariate vector [Zy, Z,)", respectively,

by v, on Ey and T'y on S2.. Then,

a1a2

D(Z1, Z) = /

Si ||(a17a2707 s

T /S bibaTa(db) = EDM(Z1, Zy)

2
+
and, for any Borel set G C E,,
15(G) = v(G x [0, 00]47?).
Proof. We first clarify the connection between the measure v on E; and the measure v, on E,. By

(3.1), for any measurable rectangle A x B C Eo,

v(Ax Bx[0,00192)  nPr(Z/b(n) € Ax B x[0,00]"?)

vs(A % B) = P (Zi/b(n) € A, ZaJb(n) € B) -

We conclude that the measure v is obtained by integrating the entire measure v over all coordinates
except for the first two.

According to formulas on page 239 of [5], EDM(Z;, Z,) can be expressed as

1 Y1Y2
b1bo's(db) = / ——=— wy(dy1dys).
/Si e vo ([ )1 > D) Sy Ny g) P
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Therefore, using the relationship between v, and v,

/ bibaTa(db)
S2

+

— 1 / Y1Y2

14 ({y : ”(yla Y2, 07 s ’O)H > 1}) {y:l|(y1,¥2,0,...,0)||>1} ||(y1, Y2, 07 cee aO)H

5 v(dy).

Applying the polar transformation 7" defined by T'(y) = (||y||, ¥/ |ly||) for y € E,, we obtain

/ b1boTs(db)
%2
_ 1 /

v({y (192,00 0) 1 > 13) Syl we.0,0)[51)

foT r,a)voT dr x da),
where f(y) = y192/||(y1, 92,0, . .., 0)||°. First observe that

Ty : l(y1,92,0,...,0)]| > 1}) = {(r, (a1, aq,...,aq)) : ||(rai, ras,0,...,0)| > 1}

={(r,(a1,a9,...,aq)) : 7 > ||(a1,as,0, ... ,0)”71}.

Using the fact that v o T~! = cy, x T, where ¢ = v (||y|| > 1), we obtain

v({y : |(y1,92,0,...,0)] > 1})
=voT T ({y : [(y1,42,0,...,0)[ > 1}))
=cy, x T ({(r, (a1,a9,...,aq)) 11 > ||(a1,a2,0,...,0)\|_1})

= C||(a'17a2707"'70>”a'
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Therefore,

/ b1boTa(db)
S

2
+

1 / / a10a9
= — Vo (dr)T(da)
C||(a17a2707"’70)|| Sjl_ ||(a1,a2,0,...,0)||71 ”(a17a2a07"'70)||2

r>
:/ 102 _ T(da).
Sf_ ||(a1aa2707"'70)||

O

By Proposition 2 we can use the estimator (3.4), originally introduced for EDM(Z;, Z5), to
estimate D(Z;, Z3) as well.

A further extension of the EDM (3.3) is that from the nonnegative quadrant to the four quad-
rants, as a vector of the scores takes on values in R¢. [5] define the EDM for a nonnegative random
vector, but (3.3) can be readily generalized to a random vector Z = [Z, Z,]" with real compo-
nents. Suppose that Z = [Z;, Z,]" in R? is regularly varying with an angular measure I'; on S2.

Then, we define the EDM for Z = [Z;, Z,] " by

EDM(Zl,ZQ):/ alaQFg(da). (38)
s2

The above definition allows us to quantify the strength of the extremal dependence between 2
and Z, in R%. Unlike (3.3), (3.8) can take a negative value depending on which quadrants I'y has
its mass on, so careful interpretation is needed. To explore the dependence spectrum that (3.8)
can measure, we fix the Euclidean norm || - || in R%. Then, (3.8) has a range from -1/2 to 1/2.
The maximal value, 1/2, indicates a perfect positive extremal dependence; here, "positive" means
that Z; and Z, have the same signs, and "perfect" means that the magnitudes of Z; and Z, show
asymptotic full dependence, i.e., I'; concentrates on {(1,1)/v/2, (=1, —1)/v/2}. Similarly, the
minimum value, —1/2, indicates a perfect negative extremal dependence; "negative" means that

7, and Z, have the opposite signs, and in this case I" has mass on {(—1,1)/v/2, (1,—1)/v/2}.
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Note that if Z exhibits asymptotic independence, i.e., its exponent measure concentrates on the
standard axes, then (3.8) is 0, but the reverse does not necessarily hold true. For example, if I's

concentrates equally on each element of

then (3.8) is 0, but each quadrant shows the perfect dependence. To avoid this issue and take into
account the extremal dependence in each quadrant, we suggest to complement (3.8) on the unit
sphere S? with its decomposition into the four quadrants. Let S? = S?N{(z1,22) ER?: 2y >
0,79 > 0}. Similarly, let S%

2
St

_7+) - S2 m {Il S 07'r2 Z 0}’ S%_7_) - 82 ﬂ {xl S O,LUQ S O}’ and
= S?N{x; > 0,25 < 0}. We define the supplementary measure for (3.8) by splitting the

EDM into the four quadrant spheres,
[/ alagfg(da), / alagfg(da), / a1a2F2(da), / alagfg(da)] . (39)
St St St St

To estimate each of the components in (3.9), we slightly modify (3.4); for example, an estimator

for IS?+,+) arasl'(da) is

—_

[Zzl >0 Z’LQ >0-

CHb) 1
D (2, Z,) = k;

To elaborate, we first order the n bivariate vectors by norm and consider the top k vectors with large
norm. We then use only those for which Z;; > 0 and Z;, > 0 from the k vectors. Estimators for the
other components in (3.9) can be obtained in the same manner reflecting the different quadrants.
We conclude this section with an analog of Proposition 2. Given an R%—valued random vector
Z1,. .., Zd]T, we can measure extremal dependence between Z; and Z, using (3.5), but integrated
over the whole sphere S¢. Following the steps in the proof of Proposition 2, it is readily shown that

D(Z,, Z5) for two components of an R%—valued vector is in fact the same as (3.8).
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COROLLARY 1. Suppose the angular measure of a R%—valued random vector [Zy, ..., Z4" is T

on S¢ and the angular measure of |2, Z,|" is T'y on S2. Then,

109

D(Z1, Z,) =

’O)”QF(da) = \/SQ blbgrg(db) = EI)I\/[(Zl7 ZQ)

sd ||(aq, as,0,. ..

3.3 The EDM for scores of functional data

In this section, we consider the estimation of the EDM of scores of functional data. Following
the framework introduced in Section 3.1, recall that X, ..., X,, are mean zero iid functions in L?
with E || X;||* < oo, and that each X; admits the Karhunen—Loéve expansion (3.2). The unknown
population scores &; = (X;,v;) in (3.2) are estimated by the sample scores &;; = (X, 9;), where

the ¥, are estimators of the FPCs v;. We introduce the following random variables:
=[&, . &l &= (X u), Yi=[6,. .., &l &= (Xiv;),

=&, &, & =(X,9;), ?? =[Gy Gl &y = (X0, 0y)

To quantify the extremal dependence between components &; and &; in Y, we consider the EDM,

D(&;,&;), defined in (3.5). Then, by Corollary 1,

D(Sj)ﬁj’) = \/SVQ alagfjj/(da), (31)

where T';;» on S? is the angular measure of the bivariate random vector [§;, ;] "

SetY; = [&;, &7, Y, = [éz-j,éij/]T, 1 < i < n, where we suppress the dependence of the
bivariate vectors on j and j'. In light of (3.4), we consider two random variables that approximate
D(&;,&57):

Do (6, €7) Z S

5]75] . Z 5” 6/2\3 R >R (32)
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where R; = ||Yi], R, = ||?z

, and R and }A%(,;) are the respective largest order statistics.
There is a fundamental difference between D, (&;,&;+) and D,,(&;,£;/); D (€5, €5/) is an infeasible
estimator because the FPCs v; are not observable, so the §;; cannot be computed from the data.
The estimator based on the sample scores, ﬁn (&;,&;1), is what we can actually compute. Therefore,
the consistency of ﬁn(f‘j, &) for D(&;, &) must be established. As noted in the Introduction,
the sample scores éij are no longer independent in ¢ (nor in j); they form a triangular array of
dependent identically distributed vectors of dimension d. This new aspect of EDM estimation is
specific to functional data. To handle it rigorously, we must introduce a suitable framework for
regular variation of functional data. We follow [23] and [24].

[23] introduced a framework based on M, convergence, where M, is the space of measures
on a complete separable metric space. [24] further investigated regular variation in Banach spaces
using the notion of M, convergence. We define a regularly varying function in a separable Banach

space B as follows.

DEFINITION 1. Denote the norm in B by || - || and the unit sphere inBby S := {x € B : ||z||p =
1}. A random element X in B is regularly varying with index —«, o > 0 if any of the following
conditions hold:

(i) There exists a measure v and a regularly varying sequence b(n) — oo with index 1/« such
that

n Pr (% € ) 2 (), n— oo, (3.3)

where v is a non-null measure (exponent measure) on the Borel o—field B(By) of B, = B \ {0}.
(ii) There exists a probability measure I on S and a regularly varying sequence bgr(n) — oo

such that, for any y > 0,
nPr (|| X|s > ybr(n), X/|X|s € -) = ey °T(-), n — o0, (3.4)

for some ¢ > 0.
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There are several equivalent definitions, see Section 2.2 of [24], which also contains all details.

The quantile function b(t) in (3.3) admits the representation

b(t) = tYL(t), t >0, (3.5)

where L is slowly varying as ¢ — oo. An analogous representation holds for the function bz. With
the choice of bg(n), defined by Pr(||X ||z > br(n)) = n~', we get ¢ = 1in (3.4) since I'(S) = 1
for any y > 0.

We briefly review the theory of M, convergence. Let B, := {z € B : ||z||p < £} be the open
ball of radius € > 0 centered at the origin. A Borel measure v defined on B, is said to be boundedly
finite if v(A) < oo, for all Borel sets that are bounded away from 0, i.e., A N B. = (), for some
e > 0. Let M, be the collection of all such measures. For v,,,v € M, the v,, converge to v in
the M, topology, if v,(A) — v(A), for all bounded away from 0, v—continuity Borel sets A4, i.e.,
v(0A) = 0, where 0A is the boundary of A. If B is an Euclidean space, Definition 1 is equivalent
to regular variation as defined in Section 3.2.

We work in the Hilbert space L?, so in the following we replace the general Banach space B
with a separable Hilbert space H. We define the finite—dimensional projection of z € H on the

subspace spanned by f1, ..., f; € Hby

L fd(z) = [(Za f1> R <Z7 fd”—r‘

We claim in the following proposition that regular variation in H implies regular variation of the
finite—dimensional projections in R?. To lighten the notation, we suppress the subscript fi, ..., fa
1.(2). Let B(S?) be the Borel o—field on S?. For any set S in B(S?), define a

-----

set of elements in H by

Ax(S) = {z € H: |x(2)| > 1, n(2)/[[=(2)] € 5} (3.6)
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PROPOSITION 1. If a random element X in H is regularly varying with index —a,a« > 0, and

V(Ax(S?)) > 0, then (X)) is regularly varying in R? with index —cv.

In our FDA context, the functions fi, ..., f; of interest are the FPCs vy, . . ., v4. We work under

the following assumption.

ASSUMPTION 1. The functions X, ... X, are i.i.d copies of X, which is regularly varying in L?

according to Definition 1 with a > 2,a # 4. The FPCs vy, ..., vy satisfy v(A5, (%)) > 0.

.....

(The set .Am1 . is defined according to (3.6).)

RN}

By Proposition 1, under Assumption 1, the projection Y = m,, . (X) is regularly varying in
R? with the same index as X. The assumption o > 2 ensures that E|| X ||? < oo, so that the FPCs
can be defined. If a = 2, then either E||X||? = oo or E|| X||* < oo are possible, and complex
assumptions on the slowly varying function L would be needed to ensure that E|| X||* < oo.
Similarly, if @ = 4, then either E||X||* = oo or E[|X||* < oo are possible. There is a phase
transition at &« = 4 found in the functional context by [25]. The phase transitions at &« = 2 and
a = 4 in various context related to regular variation have been well-known since the 1980s, see,
e.g., Theorem 3.5 in [35], earlier papers of [36-38], and [16] for a broad picture. We therefore
exclude « = 2 and @ = 4 from our analysis. In the context of research on regularly varying
and heavy-tailed random elements, the chief restriction is o > 2, needed to ensure that the FPC
are readily defined. It is conceivable that in the context of functions whose projections are heavy-
tailed, data-driven bases different from the FPC might be appropriate, but such bases have not been
devised yet.

As noted earlier, the sample scores fij = (X;,0;) form a triangular array whose elements
are dependent across ¢ and j. We now review bounds on the distance ©; — v;. As noted in the
Introduction, these bounds apply to sign ((0;,v;)) v; — v;, but the sign always cancels in final
formulas, so we assume that sign ((0;,v;)) = 1. Recall that v; is the jth eigenfunction of the

covariance operator C' in (3.1) corresponding to the eigenvalue );, and ©; is the jth eigenfunction
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of its estimator C' in (3.3). By Lemma 2.3 in [8],
[0 —vll < A1 = Cle, (37
provided d; > 0, where A; = 2\/§/dj, and
di =M —Xo, dj=min{\j_1 =\, \j —N\jsa}, J>2 (3.8)

The asymptotic properties of the distance between C and C are separated into two cases depending

on the range of a. If a > 4, then E|| X ||* < oo, so, by Theorem 2.5 in [8],
E|C —C|]>=0(n™"). (3.9)

Using (3.7), we have
E[|0; — v;]* = O(n™). (3.10)

The case of regularly varying X with tail index o € (2,4), which implies E||X||? < oo and

E||X||* = oo, is studied in [25]. Under week conditions, relation (3.9) must be replaced by
E|IC — C|I7 < La(n)n P02 ¥ B e (0,a/2), (3.11)

where Lg is a slowly varying function. For a fixed «, the strongest bound is obtained as 5, «/2,
in which case f(1 — 2/a) S a/2—1. Asa S 4and § 7 a2, relation (3.11) thus approaches,

in a heuristic sense, relation (3.9). From (3.7) and (3.11), we get the condition

Ello; — v’ =0 (n7"), VBE (1, %) VK€ (0, B (1—%)) (3.12)
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Figure 3.3: The graph of the function () for « € (2,6).

To see this, observe that
WE[[6; — vj|° < AnBIIC — ClI < A;Ls(nyn 20 -2/)x,

Since — (1 — 2/a) + k < 0, by Proposition 2.6 (i) of [4], we obtain (3.12).
The following Assumption 2 thus always holds as long as the eigenvalue separations d; defined
by (3.8) are positive, but this is a sufficient condition, so we state what is needed for our results to

hold.
ASSUMPTION 2. The estimators 0; satisfy (3.10) if o > 4 and (3.12) if @ € (2,4).

Asymptotic properties in extreme value theory are typically derived as the number of upper
order statistics, k, tends to infinity with the sample size n, in such a way that k/n — 0. This
condition remains to be sufficient for D,,(&;, ;) KR D(¢&;, &), since the population scores Y; are
1.i.d. and regularly varying under Assumption 1. In our setting, however, we estimate the EDM

based on f)n(fj, &;+) calculated from the observed approximations ?Z It can be therefore expected
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that this additional approximation will, to some extent, restrict the rate at which & tends to infinity
with n. We formulate a sufficient condition on the order of k£ in Assumption 3 below. We first

define the function

06—«
2.4
a+27 ae(?}?
y(a) = (3.13)
a—2
4 .
S ac(x)

Fig. 3.3 shows that () is continuous at the phase transition point o« = 4 with y(4) = 1/3. It
increases on (4, 0o) with lim,, »oc y(r) = £. For av € (2,4), v(«) decreases with lima o y(r) = 1.

For each value of @ > 2, the interval (y(a), 1) is not empty. We write
k>>n" forsome~ € (0,1), if k/n” — oo.

ASSUMPTION 3. We assume that k£ >> n” for some v € (y(«), 1), with y(«) defined in (3.13).

Assumption 3 implies that k& > /n always works if & > 4, but as a \, 2, almost all observa-
tions must be used to ensure the consistency of the estimator.
With all assumptions formulated and explained, we are ready to state the first main result of

this section.

THEOREM 1. Recall the definitions of the EDM D(&;,&;/) and its estimator ﬁn(gj,fj/) given,

respectively, in (3.1) and (3.2). Under Assumptions 1, 2, and 3,

ﬁn(gja gj') £> D(gj, gj/)'

Recall that D(&;,&;) integrates extremal dependence over the whole sphere S?. As noted in

Section 3.2, this might distort the true dependence, so we decompose D(¢;, &;/) into components
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measuring dependence over the four quadrants:

[D(,650), DUP(E5,650), DO (&, €5), DT, 650)]

= [/ alagFjj/(da),/ alagFjj/(da),/ alagfjj/(da),/ alaQFjj/(da)] .
S2 S2 S2 82

(+,+) (=) (=) (+:-)

The corresponding estimators for the components are given by, respectively,

eg) = Ly b
JjrS3’') - A' = Rl>R<k) £U>O£ >0

( + 51] fz]
D 6]35‘7 : A A R>R(k)]f”<0€ >0

i

_ 5@] gz]
( (§]7 5‘7 . Z R A R >R(k) ]Elj <0 f”/ <0’

(2

3 &
@@.—EiﬁﬁRmemm (3.14)

i

Note that £ in (3.14) is the same as in (3.2). In application, we first select &, the number of upper
order statistics ﬁ(i) and then use it to compute (3.2) and (3.14). We will describe this with details
in Section 3.6.

We establish the consistency of these estimators in the following corollary.

COROLLARY 1. Under Assumptions 1, 2, and 3,

(€, &) = D5, 6, DSH(E,€) S DED(E €50),

U)

~(g, &) = DU (g, &), DS, 60) B DEI(g), €).

=)
:/\

Theorem 1 and Corollary 1 are proven in Section 3.5. Our approach to prove the consistency

for the EDM is based on weak convergence of tail empirical measures. Set ©; = Y;/|[Y;]|. The
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estimator ]/jn (&;,&;7) can then be written as an integral of a tail empirical measure, i.e.,

. ~ ~ 1«
Dn(é]vfy’) = /S2 CLIGQPTL(da)J FTL = E Zl Iél‘lﬁzzﬁ(k)

The key argument to prove the consistency is therefore to show
T, =Ty inM, (S?, (3.15)

with I';;- in (3.1). Relation (3.15) is established by proving a series of weak convergence results.
We now turn to the asymptotic normality. The asymptotic normality of the estimator for the
EDM is proven for i.i.d. bivariate observations in [5]. To show the asymptotic normality of an
estimator based on heavy—tailed data, additional conditions are required even in fully observable
i.i.d. settings. For example, for the Hill estimator, second—order regular variation with restrictions
on the rate of £ is assumed, see [39], [40], [41,42]. The aforementioned condition is a univariate
concept, which is not applicable to our context. Instead, we use a multivariate version of second—
order regular variation, defined by [43]. With some constraint on k, i.e., VEA(b(n/k)) — 0,
where A is defined in formula (15) in [43], the multivariate second—order regular variation implies

the following weaker condition, which is also assumed by [5].

ASSUMPTION 4. The R;, ®; satisty

Vi {% Pr <(b(fﬁ,@1) e > — vy X rjj,} 20 in Mo ((0, 00] x S?).

Assumption 4 means that R; and ©; are asymptotically independent. We emphasize that this
assumption applies to population quantities, which are not observable in our setting. We now
formulate the asymptotic normality of our estimator for the EDM, which is based on projections

of functional data.
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THEOREM 2. Under Assumptions 2, 3 and 4
VE (Da(&),€) = D(&, &) = N (0,0%),

where 0? = Var(élég) > 0, with ©, and O, being the components of a random vector with

distribution I ;.

3.4 Preliminary results

We put together several preliminary results in this section to avoid burdening the proofs in
Section 3.5, so that readers can keep track of the main flow of the argument made in Section 3.5.

The first lemma follows from Lemma 3.7 of [44] and is needed to prove Lemma 2.

LEMMA 1. Suppose random variables H,,(n), m,n > 1, satisfy 0 < H,(n) < 1andV m >

1, Hpy(n) 50, asn — oo. Then, Yo 27™H,(n) L0, asn— .

In the following lemma, we present a sufficient condition to guarantee the convergence between
random measures defined on a nice space. We denote a locally compact topological space with

countable base by E. Following page 51 of [4], the vague metric d(-,-) on M, (E) is defined by

S D)~ pe(fi) A1
d(ﬂl;ﬂz) = Z |Iu1(f) 2[52(.]0)‘ & y o M1, 2 € M+(]E)7 (31)
=1

for some sequence of functions f; € C}(E) where C}:(E) is the space of continuous functions

with compact support on E. By Lemma 1, the following is readily proven.

LEMMA 2. Suppose that ji,, vy, are random measures in M (E). If, for any f € C}(E),

:un(f) -

vn(f)] 20, n— oo, then d(pens Vi) Lo,

In the following lemma, we show that a continuous mapping with a compactness condition pre-
serves convergence of random measures. Suppose that [, and E, are locally compact topological

spaces with countable base. Denote by IC(IE) a set of all compact subsets of E.
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LEMMA 3. Suppose that H : E, — [E, is a continuous function such that

H(Ky) € K(Ey), VK, € K(Ey). (3.2)
If random measures [, v, in M (Ey) satisfy d(jin, vy,) it 0, as n — oo, then d(j1, o H %, v, o
HY 50, in M (E,).
Proof. By Lemma 2, it suffices to show that, for any f € C}(Eg),

fn 0 HY(f) — vpo HY(f) 5 0. (3.3)
Using the change of variables, we have (1, — v,) o H'(f) = [, f(e2)(ptn — vn) 0 H™'(dez) =
Jie, T(H(e1))(tn — vn)(der). Thus, we have (pi, —v,) o H™'(f) = (ttn — v4)(f © H). Since f and
H are both continuous, and with (3.2), we get f o H € C’;Q(El), see page 142 of [4]. Then, since
d(pin, Vn) 0 by assumption, we get (3.3).

]

Consider the polar coordinate transform 7' : [—o0, 00]? \ {0} — (0, 00] x S? defined by, for
X € [—00,00]*\ {0},
X
760 = (Il % ) 34
Il

Note that 7" is not bijective since its boundaries at infinity are included. Thus, Lemma 3 cannot
be directly applied to 7' to show that it preserves convergence of random measures. Instead, we
will show that by using, say, "restrict and then extend space" strategy, which is used in a different

setting on page 176~179 of [4]. We follow the technique in the proof of the next lemma.

LEMMA 4. Suppose that random measures [i,, V,, satisfy
P :
d(pin, v) = 0, in My ([—00,00]*\ {0}), (3.5)

asn — o0o. Then, d(jtn o T2, v, 0 T71) 50, in M,((0, 00] x S?).
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Proof. Consider the transform 7" : (—o0,00)? \ {0} + (0,00) x S? defined by (3.4). Our first

claim is that (3.5) implies

(i, vp) 20, in M, ((—o00,00)%\ {O}). (3.6)

Let f; € CF ((—00,00)%\ {0}), and suppose that K; € K((—oo,00)? \ {0}) is the compact
support of f. Let f; == fi()l.cx,, then f; € Cf ([—o00,00]%\ {0}). Observe that d(yu,,v,) =
S 27 (e — ) ()] = 5720 277 (= ) (£)] = 0, by (3.5), s0 we get (3.6).

Our second claim is that (3.6) implies

/ /

d(pn o (T v 0 (T')) 50, in Mo ((0, 00) x S?). (3.7)

This is readily proven by Lemma 3, since 7" is continuous and satisfy (3.2).

The last step is now to extend 7" to the bigger space, where oo is included. Let f; € Cy ((0, 00] x S?),

and set || fi|| = sup f; < oco. We define a smooth truncation function of r, for fixed M, ¢, by

gb(”f’; M, (5) = IO<7~§M + {-(T — M)/(5 —+ 1}]M<r§M+6'
Then, observe that

d(pn o T vy o T7H)
= Z2‘Z —vp) o T fi)| — ZQ ) o T7H(fi9)]
+Zz w =) o T (i |—Z2‘Z n =)o (T)7 ()

+Zz n—n)o (TN fid) = A+ B+ C.
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Now, we will show that each of the components goes to 0. First, observe that

(o]
A< Z 9
=1
<> 27 If]
=1

/(0 L Ji(r,0)(1 = ¢(r) (ptn — vn) 0 T~ (dr, d6)’

/(M =)o T de>\ .
,00] X

Taking a sufficiently large M, then A gets arbitrarily small. Next, for each M,
B2 U [ o (T = () dt) <o
Py (0,M]xS2

Since f;(r,0)¢(r; M,5) € Cf ((0,00) x S?), the last term C' goes to 0 by (3.7).
]

The next lemma shows that the distance between a population score and its corresponding

approximation is asymptotically negligible.

LEMMA 5. Under Assumptions 1, 2, for o > 4, E|€] — & = 0O(n™Y2), and for 2 < a < 4,

E‘é] - & = O(R_m'/ﬂ),for some r > 0 satisfying

2p3

r o,
B+2

(3.8)

where k, 8 are defined in (3.12).

Proof. For a > 4, by the Cauchy—Schwarz inequality, |£; — &;| < || X|[|[0; — v;]|, so by Assump-
tion 2,

EI¢; — & < {BIX|P}*{Ello; — v I°}? = O(n12).

Now consider the case of 2 < a < 4. Since for any [, ,82T62 < [, condition (3.8), implies
that » < (. Applying Holder’s inequality with p = 8/r > 1 and ¢ = 5/(8 — r), we get

Bl — &7 < {B|o; — v,]|°}#{E||X||"1}*/2. Direct verification shows that condition (3.8) is
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equivalent to
232
(B+2)(5—=r)

which implies r¢ < 2. Hence, by Assumption 1, {E|X||"}'/9 < oco. Therefore, by (3.12),

<2,

El§ — &7 = o(n=/%).
]

In the following lemmas, we verify the continuity of functions that will be used in Section 3.5

with the continuous mapping theorem.

LEMMA 6. Suppose that the map H : M, ((0,00] x S§?) x (0,00) — M, ((0,00] x S?), defined

by for any measurable set A x B C (0, 00] x S?,
H(U,z)(Ax B)=U(zxA x B).

The map H is continuous at (v, X L'jj, ).

Proof. Suppose W,, = v, x I';;rin M, ((0,00] x S?), and x,, — x in (0, c0). Then we must show
that

H(Wp,20) = Wo((m,7) X ) = H(vg X Dy, ) = vg x Dyjr((z7) X -).

To verify this, it suffices to show that for any f € C}£((0, 00] x §?),

Wallan) 30 = [ ) Wty = [ /o) Waldy,da

(0,00] xS2

— Vo X Djjr((z) X ) (f) = /(0 L f(t,a) va(z,dt)l;;(da) = / f(y/z,a) va(dy)T;; (da).

(0,00]xS2

The following verification is mostly based on pp. 83—84 of [4], whose test functions are univariate.
Our test functions are however bivariate. We must employ a product metric to apply uniform

continuity of the test functions.
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First observe that

/(;) e f(y/xn, a) Wn(dy7 da) - / f(’y/gj" a) Va<dy>rjj/(da)

(0,00]xS2

<

/(0 ]xS2 f(y/zn, 2) Wa(dy, da) — / f(y/z,a) Wy(dy, da)

(0,00]xS2

+

/ f(y/x,2) W(dy, da) — / f(y/.2) va(dy)T;5 (da)
(0,00] xS2

(0,00]xS?

Since W, = v, xI'j;rand f(=,-) € CE((0, 00] x S?), the second term of the right-hand side goes
to zero. Now, we focus on the first term. Since f has compact support in (0, oo] x S?, we can take
¢ > 0 such that the supports of f(,-) and f(-,), for large n, are contained in [d, co] x S?. Then

we get the bound

(0,00 x 8%,

/ F(y/ 2, 2) Wa(dy, da) — / Fly/a.a) Wa(dy, da)
(O,oo]XSi_
< / Fy/ena) — f(y/z, )| Wa(dy, da)

[(5,c>o]><Sz+

< suwp |f(y/wa,a) = f(y/z, @) Wa([0, 00] x §%).

y>4, acS?

Since W, ([0, oo] x S?) is bounded, it remains to show that as x,, — z,

sup | f(y/xn,a) = f(y/z,a)] = 0. (3.9)

y>4, acS?

We use the fact that a continuous function with compact support is uniformly continuous. The
metric on (0, o0] x S* is given by dproa((u, @), (v, b)) = d(o,0](u, v) + ds2(a, b), see p.57 of [4].

Define the metric on (0, oo] by

do,00) (U, v) = [u™" — v,
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for u, v € (0, o0], which measures the distance between points in (0, co] with one point compacti-

fication at co. Since x,, — z and y > d,

|z, — < |z, — ]

dproa ((y/7n,2) , (y/2,a)) = <

— 0.
Yy do

Therefore, by the uniform continuity of f, we get (3.9).

]

LEMMA 7. The function g on M, ((0,00] x S?) defined by for any measurable sets A C (0, o],

B CS% g(U) = U (A x B) is continuous at vy, X I'j;.

Proof. Suppose W,, — v, x Ty in My ((0,00] x S?). Since A x B is relatively compact in

(0, 00] x S?, by Theorem 3.2 of [4] g(W,,) = W,, (A X B) = g(va x Tjj1) = vo(A)T,;/(B).

LEMMA 8. The function h on M, (S*) defined by for B € {82,S%%Jr),S%ﬁH,S%ﬁf),

hMU) = [5010.U(d8) is continuous at T ;.

Proof. Suppose W,, — Ty in M, (S?). Consider a map f : S?> — R, defined by f(0) =
01021¢_ ;- Note that every continuous function on a compact space has compact support. Since f

is continuous with compact support, by the definition of vague convergence,

h(Wn) = /139192Wn(d0) — h(Fjj/) = \/Beleg]_—‘jj/(de).

3.5 Proofs of the results of Section 3.3

Proof of Proposition 1: To prove the regular variation of 7(X) in R?, we will show that there

exists a probability measure I' on S? and a regularly varying sequence b(n) satisfying (3.4); for
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any y > 0,

nPr(l|7(X)|| > yb(n), =(X)/|x(X)| € ) = cy™*T(:) asn — oo,

for some ¢ > 0.
First, note that ||7(X)| > yb(n) and n(X)/||7(X)| € - iff (yb(n))"'X € A,(-). Observe

that, for any set S in B(S?),

nPr([7(X)] > yb(n), =(X)/|7(X)] € §) = nPr (yj((n) e Aw<s>) .

To use (3.3) implied by the M, convergence, we must show that the A, (S) are continuity sets of
v, ie., v(0A:(S)) = 0. The verification uses the same idea described in the proof of Proposition
3.1 of [25], but the difference is that we work with the different projection 7(z) and its relevant set
A (S).

By (3.6), we have

0AR(S) ={z € H: ||r(2)]| =1, 7(2)/||=(2)[| € S},
and
I(rA(S)) ={z e H: ||r(2)|| =, 7(2)/lI7(2)| € S}.

Note that J(rA.(S)) = rdA.(S), and the sets J(r.A,(S)) are all disjoint in . We assume
v(0A,(S)) > 0 and get a contradiction. Since A,(S) D Up>10(n'/*A,(S)), for all & > 0,

and v is homogeneous,

v(A(S) =D v(n0A(S) =D n'w(0A(S)) = co.

n=1

This contradicts to the fact that v is boundedly finite. Therefore, the A, (S) are continuity sets of

V.
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Now, by (3.3), we obtain
nPr(|[[7(X)[| > yb(n), 7(X)/[|7(X)[ € 5) = v(yA=(S)) =y “v(A(S5)).
Setting
F() = —.7 c= V(Aﬂ'(Sd))? (3.1

we get the claim.
Proof of Theorem 1:

Recall that
Yi = [fijafij']T> Ri = ||Yz||7 @i = Yi/Ri> Yi = [éijaéij’]—ra Ez = HYzH, ®i = ?z/ﬁz

Under Assumption 1, the Y; are regularly varying with index —« by Proposition 1. More specif-
ically, there exist a sequence {b(n)} (the same as in (3.3)) and a probability angular measure I';;/

defined as (3.1) satisfying

nPr ((%7 @z) € > l> CUq X Fjj’ in M+((0, OO] X 82) (32)

The constant ¢ depends on the choice of b(n). In the following, we assume ¢ = 1 to keep the
notation simple.
Our approach is to establish several weak convergences of tail empirical measures. We start

with an empirical measure based on i.i.d. Y;:
1 ¢ :
U, = E Z [(Ri/b(n/k), ®;) = Vo X Fjj/ mn M+ ((O, OO] X 82) . (3.3)
i=1
We then extend (3.3) to

~ 1 .
U=+ Z I, oy, &) = Vo X Tjyr i My ((0,00] x §7). (3.4)



Since the ?, are no longer independent, this requires techniques involving the Slutsky theorem.

We further proceed to replace the unknown sequence b(n/k) by its estimate ﬁ(k)
P ‘
Un =1 ZI(E/EW 8,) = Vo x Djjr in M, ((0,00] x §%). 3.5)
i=1

Applying the continuous mapping theorem, we finally get (3.15), i.e.,
~ 1 <& '
Pu=2> Tolpzn, = Ly in M ().
=1

The consistency of ﬁn(gj, &) for D(§;, €;) is then established because ﬁn(fj, &) = Jeom ann(da).
We now present a series of the results mentioned above, of which Proposition 1 is the most
essential and important step toward Theorem 1. The following lemma verifies (3.3), which is

readily proven from (3.2) by Theorem 5.3 (ii) of [4].
LEMMA 1. Under Assumption I, relation (3.3) holds.

The next result shows that the infeasible samples Y; in (3.3) can be replaced by their approxi-

mations ?Z
PROPOSITION 1. Under Assumptions 1, 2, and 3, relation (3.4) holds.

Proof. By Lemma 1 and the Slutsky theorem, it suffices to prove that

d(U,,U,) = ( ZI (B0, 80 7 ZIR/b(n/k > = 0. (3.6)

To show (3.6), we set V, := L S Tg bty Ve = 2oy Iy b(ni)» and prove

d(V,, V) = ( ZIY/bn/k), nyl/bn/k)) 0. (3.7)

Applying the polar transformation defined in (3.4), we get (3.6) from (3.7) by Lemma 4.
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To prove (3.7), it suffices to show that, by Lemma 2, for any f € C}([—o0,c]? \ {0}), and

any 7 > 0,
1< Y 1« Y
Pr(E;f<b(n/k))—E;f(b(n/k)) >T)—>0. (3.8)
Since f has compact support in [—o0, 00]? \ {0}, set
= inf{||s|| : s € supp(f)} > 0. 3.9

To prove (3.8), we consider a decomposition using the following sets. For 0 < n < a/2, set

. Y, Y; Y,
Anlk) = {199“ bR~ (/) 5”"%””‘”}’

Ai i i
B,(k)=<1<i<n: - <, _i :

b(n/k)  b(n/k)

and

Then, we have

(e i) €32 (i) -

< Pr(S(A,) > 7/3) + Pr(S(By) > 7/3) + Pr(S(C,) > 7/3),

where

Sty =1 3

1€An (k)

f(b(%k)) 1 (07|

and S(B,) and S(C,) are defined analogously with 3, and > .. ), respectively.
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We will show that each of the three parts goes to 0. We first investigate Pr(S(A4,) > 7/3).

Since f is uniformly continuous,

wy,(f) = sup |f(x) = f(¥)]| =0, n—=0.

[x=ylI<n, x,y€[—00,00]*\{0}

Observe that

st < w {1 < i< 20 = u (0B

with the measure U,, defined in (3.3), and with the set £, C (0, 00] x S? defined by
Ey={(r,0) € (0,00l x S*: 7 >b}, b>0.

Now consider the function g on M ((0, oc] x S?), defined by, for any measurable set A C (0, oo,
g(U) = U (A x S?). Then, by Lemma 7 and the continuous mapping theorem, for a fixed 7,

Upn(Ea—y) EN Vo(a —n,00] = (a — n)~®. Therefore,

limsup Pr(S(A,) > 7/3) < Pr (w,(f)(a —n)~* > 7/3) < Pr(w,(f) > 2"%a*7/3).

n—oo

By taking sufficiently small 7, we can ensure that Pr (w,,(f) > 27%a%7/3) = 0, hence lim,,_,. Pr(S(4,) >
7/3) = 0.

Next, we consider the second probability in the decomposition. Observe that for each 7 €

<

Thus, the two points Y;/b(n/k), Y;/b(n/k) are outside of the support of f for all i € B, (k), so

B, (k),

Y, Y,

b(n/k)  b(n/k)

Y

b(n/k)

<a-—n.

vl <=

S(B,) = 0 by construction, and so Pr(S(B,) > 7/3) = 0.
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It remains to show that for any > 0, lim,,_,, Pr(S(C,,) > 7/3) = 0. Set

[fllo =" sup |f(x)]. (3.10)

x€[—00,00]2\{0}

First, consider the case of a > 4. By Markov’s inequality,

d (bo:?/im) -/ (b(%)‘

Pr(S(Cy) > 7/3) < =B >

1€Cr (k)

6| f 1o S
< Wl by (19, — i) > it/

T

6 flloc 7 o

E|lY; = Y,||.
™™  kb(n/k) l I
Since all norms in R? are equivalent, we get
H?z -Yi||<C (‘éz] — &l + |éij’ - &j/\) ; (3.11)

for some C' > 0. Since E|[Y; — Y;|| < O(n~Y/2) by Lemma 5, we have Pr(5(C,) > 7/3) =
O (n'/?/{kb(n/k)}). By Assumption 3 and (3.5), Pr(S(C,) > 7/3) = o(1).
Now consider the case of a € (2,4). We will use Lemma 5, which refers to relation (3.12).

Observe that since 5 < «/2 < 21in (3.12), it holds that ﬁ2—i < 1. This implies that r satisfying (3.8)
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also satisfies r < 1. Applying Markov’s and Lyapunov’s inequalities, we thus obtain

2|1 flloo & T
Pr(S(C,) > 7/3) < Pr < H kH Z[H%—Yilbnb(n/k) > §>

=1

1 '
<g 2_; I ||%—Yi>nb(n/k)) ]

6 flnen [ [1 & '
S kT E EZZII||?ZY1>77b("/k)

_ 6l
Trkr

6] f1[5n”
< e
- Trkr

Pr (1Y = Yill > b(n/h))

Applying Markov’s inequality with the same 7 again and (3.11), we obtain

n’/‘

Pr(S(Cn) > 7/3) < CW {E [max (|é@] - &ijl, |éz‘j’ - gij’|)r] }r,

for some ¢ > 0. Then by Lemma 5 and (3.5)

nr—m‘2/6 nr—M’Z/ﬁ—rQ/a
Pr(S(C,) >7/3) =0 (W) =0 <W) :

Let , ,
_r—%—%_l—
Y= S =1

r
a «a

Then, 7 is smaller than 1 for all 2 < o < 4, as /3 gets close to 0, and it attains its smallest value
as /3 approaches its largest possible value, i.e., 1 — 2/, see (3.12). We now set a lower bound

of ~y as a function of r for « fixed,

1-2—-(1-2)r a-—ar+r
yo(r;a) = al_i @ = p— (3.12)

Since 25/(5 + 2) in (3.8) is an increasing function of £ and attains its upper limit when 8 = a/2,

see (3.12), we obtain r < 2a//(« + 4). Then, since v, (r; ) is an decreasing function of r, v can
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be arbitrarily close to v, (2a/(a + 4); ) = (6 — ) /(« + 2). Thus, by Assumption 3, k& >> n?,
and we get Pr(S(C,) > 7/3) = o(1).
]

The following proposition is used to prove the asymptotic normality in Theorem 2. We put it
in this section to help readers follow its proof easily since it uses several elements of the proof of
Proposition 1. The claim is similar to (3.6), but 1/k is replaced by a suitably chosen power of k,

so a more delicate argument is needed.

PROPOSITION 2. Suppose that Assumptions 2 3 and 4 hold. Then,

(\/—ZIR/b(n/k \/—Zle/b n/k), © ») 5 0.

Proof. We follow the approach used in the proof of Proposition 1, so we skip fully analogous parts

and focus on the new aspects. To get the claim, it suffices to show that

1 Y Y;
o (_ d (b<n/k>> 1 (o) >T> -0

for every f € C}f([—o0,00]* \ {0}). For 0 < n < a/2, with a defined in (3.9), set

. Y, Y, Y,
o ::{&S”‘ Bb(n/R) /Ry | = WHZ“_”}’

Ba k) ‘{K“” R wb(n/R)|| <" WH“‘_”}’

)

where p is a positive constant such that pmin{r, 1} = 1/2 for some r satisfying (3.8). Except for

and

A~

kPb(n/k)  k»b(n/k)

Cn(k;)::{lgz'gn:

the factor k7, these sets of indexes are analogous to those used in the proof of Proposition 1. Then,
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we have

i (b(%k)) ‘f(boj{/ik))' >T>

< Pr(S(A,) > 7/3) + Pr(S(By) > 7/3) + Pr(S(C,) > 7/3),

where

) \FZ <n/l~c> f<ﬁ)‘

and S(B,) and S(C,) are defined analogously with >, 5, and >, o ), respectively. Our
claim is that each of the three terms converges to 0. Before we proceed, we note some results

about p in kP to facilitate the understanding of the proofs;

1 1
przéfor2<a<4, p > 3 or a > 2. (3.13)

To see this, observe that 5 < «/2 in (3.12) and ﬁ +2 in (3.8) is increasing of (5. It thus holds that

r < ;fQ < =% This implies that 0 < r < 1for2 <« <4,and 0 <r < 2fora > 2.

First, observe that

1 n
S(An) <2|f Hoo\/% > I webinmylza—n
=1

1 _ .
= C\/E (E Z IRi/b(n/k)zkp(afn) - I/a(k'p(a — 77), OO]) + ckl/? pa(a - 77) ,
=1

where || f]|« is defined in (3.10) and c is a positive constant. The last term goes to 0 since pa >

p > 1/2 for a > 2. Now, we focus on the first term. Assumption 4 implies

1 n
pin = Vk (E Zl TR, jo(n/) — ya> 5o. (3.14)

Consider the map gy on M, (0,00], defined by g (U) = U([M,c]). We must show that

Gikr (a—n) (fin) 25 0. This follows from the following more general argument. We have a sequence
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of signed measures on (0, o], such that y, 2 0. Since we can decompose (i, into positive and
negative parts, we can assume that the i, are positive. For a,, — oo (in our case a,, = k”(a — 1)),
we claim that j,,([a,, o0]) £ o. By Lemma 7, the map g, is continuous, so for each fixed M,
o ([M, 00]) L 0. For sufficiently large n, a, > 1, pin([an, o0]) < pn([1, 00]), and the claim
follows.

Next, we obtain Pr(S(B,) > 7/3) = 0 in the same manner in Proposition 1.

For S(C,,), we first consider the case of a > 4. Observe that by Markov’s inequality,

1 ~
Pr(S(C,) > 71/3) < L Gl fllee E|lY; — Y.

vk 0 kPb(n/k)

By Lemma 5, E||Y; — Y;|| = O(n~"/2), so Pr(S(C,,) > 7/3) = O (n!/2=te 1=/ - We

must thus verify that n'/2=1/e /E1/2+p=1/a _ (. We know that n? /k — 0 if 7 > (). We use the

nl/2-1/a nY 3 "ay 1 tP-s—ztay
Ll/2tp—1ja <?) <E> :
1

Since o > 2, %—% > 0, sowemustbeabletoclaimthat%—i—p—é—%—l—a > 0. Since p > L

factorization

this will follow from 1 — é — % (% — é) > (. A few algebraic manipulations show that the above

22 = y(w). For the case of o € (2,4), we apply Markov’s and

inequality is equivalent to v >

Lyapunov’s inequalities, just as we did in Proposition 1. Then, by Lemma 5 and (3.13) we obtain
r—kr2/B—r?/a r—rr?/B—r?/a
n n
Pr(S(C,) >7/3) =0 (—kT/QerrQTQ/a) =0 (—kTTQ/a ) )

It is verified at the end of the proof of Proposition 1 that the last quantity tends to zero under

Assumption 3.

The next lemma will be used in Proposition 3 to replace b(n/k) in (3.4) with }Af(k).

LEMMA 2. Under Assumptions 1, 2, and 3, ]?z(k)/b(n/k‘) 51
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Proof. Fix € > 0 and set

Observe that

Pu(n) = Pr (I, puyny (142,00 = 1)

1 n
< Pr (E ;Jﬁi/b(n/k)(l +¢,00] > 1)

:Pr(l/jn((l—i—a,oo] x §%) Zl).

A similar argument shows that P_(n) < Pr ((7" (1 —e,00] x §%) < 1) . The claim follows be-
cause by Lemma 7 and the continuous mapping theorem, we obtain [7”((1 + €,00] x S?) R

Va(l4 2,00 = (14 < 1;U,((1 —e,00] x S?) D 11 —e,00] = (1 — )@ > 1.

PROPOSITION 3. Under Assumptions 1, 2, and 3, relation (3.5) holds.

Proof. By Proposition 1 and Lemma 2, we obtain joint weak convergence (ﬁn, %) = (Va X

[, 1) in My ((0,00] x $?) x (0, 00). Consider the operator H : M, ((0,00] x S?) x (0,00) —
M ((0,00] x S?), defined by for any measurable set A x B C (0,00] x S?, H(U,z)(A x B) =
U(zA x B). Since H (ﬁn,ﬁ(k) /b(n/k:)) = LS Ly, 60 H (Va X Ty 1) = va x T,
we get (3.5) by Lemma 6 and the continuous mapping theorem.

O

Proof of Theorem 1: Consider the map g : M, ((0,00] x S*) — M, (S?), defined by for any
measurable set A C S?, g(U) = U ([1,00] x A). Then, by Lemma 7 and the continuous map-
ping theorem, we obtain (3.15) from (3.5). Now we consider the map h on M, (S?) defined by

h(U) = Js, 616:U(d6). By Lemma 8 and the continuous mapping theorem, we obtain, from (3.15),
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fSQ 9192fn(d0) = fSQ Hlﬁgfjj/ (dO) Since

~ 1 <& ~ ..
/S2 010, (d6) = > Insry, /s2 010219 .0 = Dn(&ijs Gijr)
i=1
we get the claim.
Proof of Corollary 1: Consider the map h on M, (S?) defined by

h(S) = /S 0,0,5(d6).

2
(++)

Applying the map to (3.15), we obtain the consistency of D4t (&,&50) for DH(&5. €50), by
Lemma 8 and the continuous mapping theorem. The consistency of the remaining estimators can

be proven in the same way, just using different quadrant domains in the map h.

Proof of Theorem 2: Define the empirical process based on the sample scores by

0= 23 (808 = B [8:]) v 120

The main argument to prove the asymptotic normality is the weak convergence of IV, to the stan-
dard Brownian motion W;

W, = W, in D|0,00), (3.15)

where D|0, o) is the usual Skorokhod space. Once we verify (3.15), then by Lemma 2 we obtain
the joint convergence
i)

(Wn(-), (b(n/k)) >:>(W(-),1), in D[0, 00) x [0,00).

Applying the composition map (z(+), ¢) — z(c), we conclude that

Vi (ﬁn(gj,gj,) _E [c:)léQD = oW, ((b(]i%) ﬂ) = oW(1).
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The general strategy is thus similar to the one employed to prove Theorem 1 in [5]. However, in
our setting, new arguments are needed to establish relations (3.17) and (3.18). These terms are
zero in the proof of [5].

Now, to show (3.15), consider the following decomposition

- ~ ~
I </a A

+ U\/E ; <@i1@i2]§i/b(n/k)2t*1/a - @il@iQIRi/b(n/k)Ztﬂ/a)
1 < ~ ~

+ 0\/__k Z_Zl E [@1@2] (IRi/b(n/k)Zt—l/a - ]}Aﬁ/b(n/k)zt—l/a> .

We will verify that
1 < ~ ‘
ok X_; <9“@i2 - [@192D Loy )17« = W in D[, 00), (3.16)

and for any s > 0,

I /A A P
osglilg)s 0_\/E ; <@i1@i2[§i/b(n/k)2t—l/a - @ilgiZIRi/b(n/k)zt*1/0> — 0; (3.17)
~ ~ 1 < P
E[@@} sup | —— <I e — T ) 0. 3.18
12 OStIS)s a\/E; R; /b(n/k)>t=1/ R;/b(n/k)>t—1/ ( )

We begin with (3.16). Since the empirical process in (3.16) is based on i.i.d. population scores,

if we verify

VE [g Pr ((%,@1) € ) - %Pr (% € ) X rjj,} 20, in M. ((0,00] x S?),
(3.19)

then (3.16) readily holds by Theorem 1 of [5]. Their theorem is proven for nonnegative random

vectors, but the proof also works for random vectors in R, with a small modification.
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To prove (3.19), we use the equivalent conditions for vague convergence presented in Theorem
3.2 of [4]. Take any relatively compact set B € (0, co]. Then, B x S? is also relatively compact in

(0, 00] x S?, so we obtain from Assumption 4,
n Rl
Vk |- Pr DR B) —va(B)| — 0. (3.20)

The constant ¢ in Assumption 4 depends on the choice of b(n), so we set ¢ = 1 for simplicity.

Now, take any relatively compact set A x S € (0, 00] x S?, and observe that

vk {% Pr ((%,@0 € Ax s> = %Pr (b(f/lk> € A) x rjj,(S)l
=k {% Pr <(b(f% @1> € Ax S) . VQ(A)rjj,(S)}

+Vk [VQ(A) - gPr (b(f/lk) € A)] T, (S) = 0.

The first term vanishes by Assumption 4. Also, since A is relatively compact in (0, co] and 0 <
I';;7(S) < 1, the second term goes to 0 by (3.20).

For (3.17) and (3.18), we Proposition 2, i.e.,

1 o 1 < P
7 D (upim, 6,) 7 > Lo, @) = 0- (3.21)
i=1 i=1
Consider the map h : M, ((0,00] x S*) — M, (0, 0], defined by h(U) = [, 016-U(dr,d8).
Applying h to (3.21), by Lemma 8 and the continuous mapping theorem we obtain

I /A A
On = ﬁ Z <@i1@i2jﬁi/b(n/k) - @il@iﬂRi/b(n/k)) 5 0. (3.22)
i=1

We thus have a sequence of signed measures on (0, col, such that ¢, £ 0. Since a signed measure
can be decomposed into positive and negative parts, we can assume that the ¢,, are positive. Now,
consider the map gy, on M, (0, oo|, defined by gy, (U) = U([M, 00]). By Lemma 7, the map g, is

continuous, so for each fixed M, ¢, ([M, 0o]) % 0. Therefore, for any s > 0, taking M such that
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Table 3.1: Time periods related to the subprime mortgage crisis.

Designation Time span Sample size n (days)
Before 07/05/2006 - 09/28/2007 313
During 10/01/2007 - 02/27/2009 351
After 1 03/02/2009 - 07/30/2010 356
After 2 08/02/2010 - 12/30/2011 358

M > s, we obtain

P
O’\/_ Z < 11612 Ri/b(n/k)>t=1/e — @ﬂ@iQIRi/l)("/k)Zt_l/a> ‘ < ¢”<[M’ OO]) — 0.

sup
0<t<s

Similarly, considering the map ¢ : M, ((0,00] X S*) — M, (0, 0], defined by ¢(U) =
Js2 U(dr, d@), we conclude (3.18).

3.6 Application to intraday returns

In this section, we quantify the extremal dependence between scores of cumulative intraday
returns (CIDRs) for Walmart and IBM stocks, taken from July 05, 2006 to Dec 30, 2011. We
define CIDRSs as follows: Denote by P;(¢) the price of an asset on trading day ¢ at time ¢. For the
assets in our example, ¢ is time in minutes between 9:30 and 16:00 EST (NYSE opening times)

rescaled to the unit interval (0, 1). We define the CIDR on day ¢ as the curve
R;(t) = In P,(t) — In P;(0).

In practice, P;(0) is the price after the first minute of trading. The curves R; show how the return
accumulates over the trading day, see, e.g., Figure 3.2.
[45] sought to identify the curves R; that are in some sense extreme. They did so by looking

for curves for which scores éij are extreme for some ;7 = 1,2 or 3, or by looking at the norm

Xl = {325 €532
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A question we seek to investigate is if the financial crisis of 2008 affected the extremal depen-
dence between the scores of the CIDRs. Over the last decade, the 2008 crisis has been extensively
studied in finance and economics literature, see, e.g., [46], [47] and [48] who cite many references.
We consider four time intervals, "before", "during", "afterl", and "after2", defined in Table 3.1.
For each interval, we compute estimates of the EDM for the three pairs of the first three scores, &;,
&2, &3, by which the shapes of the observed CIDR curves are encoded: R;(t) ~ E?Zl éij@j (). We
fix the Euclidean norm in this application.

Hill plots of the sample scores éij for j = 1,2, 3 are shown in Figure 2.3 in Section 2.1. The
Hill plot is a tool commonly used to detect the presence of heavy tails approximately following a
Pareto distribution for large values, see, for example, page 80 of [4]. Figure 2.3 indicates that it is
reasonable to assume that the scores follow Pareto distributions with the tail index between 2 and
4 since stable horizontal lines lie between these values. Since we cannot guarantee that the first
three scores are always tail equivalent, we first transform the scores so that they all have the same
tail index .. We use a power transformation approach, similar to that described in Section A.1, but
here we transform the scores to have o« = 3 since our theory requires o > 2, see Assumption 3. To
compute (3.14), we must choose %, the number of upper order statistics E(i). We use a data-driven
method proposed by [49]. It is based on the scaling property of the exponent measure: v(t-) =
t=*v(-). More specifically, using the weak convergence result (3.5) proven by Proposition 3 in

Section 3.5, we obtain
uUy ([u,00) x §%)

Uz ([1,00) x §?)

where u is in a neighborhood of 1. We then graph, for each fixed £,

{(u u“:;([u,oo) XSQ)) 01<u< 5}
CUp(Loo)xs?) ) T T

and choose k that makes the ratio to hover around 1 for most of the values of w.

Tables 3.2 reports estimates for the three pairs of the first three scores, &1, &, &3, for the Walmart

stock. Table A.1 reports analogous information for the IBM stock. We note that D*?(¢;, & j/), for
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Table 3.2: Estimates of EDM for Walmart stock. Standard errors in parentheses are computed using Theo-
rem 2.

D(+7+)(€1752) D(_’+)(€17€2) D(_7_)(£17€2) D(+7_)(§17 §2)
Before  0.07 (0.02) -0.06 (0.02) 0.07 (0.02) -0.09 (0.02)
During  0.11 (0.02) -0.06 (0.01) 0.07 (0.02) -0.06 (0.01)
After 1 0.13(0.03) -0.07 (0.02) 0.07 (0.03) -0.04 (0.02)
After2  0.09 (0.03) -0.05 (0.02) 0.03 (0.02) -0.10 (0.03)

DD, &) DU, &) D6, &) D6, 6)
Before 0.09 (0.03) -0.05 (0.02) 0.04 (0.02) -0.04 (0.02)
During 0.10 (0.02) -0.07 (0.02) 0.05 (0.02) -0.07 (0.02)
After 1 0.06 (0.02) -0.11 (0.03) 0.07 (0.03) -0.07 (0.03)
After2  0.07 (0.02) -0.08 (0.02) 0.05 (0.02) -0.05 (0.02)

DU (6,6) DUD(6 &) DU(6,6) DEI(6 &)
Before  0.08(0.03)  -0.09 (0.03)  0.05(0.02)  -0.05(0.02)
During  0.10(0.02)  -0.08(0.02)  0.07(0.02)  -0.07 (0.02)
After 1 0.10(0.02)  -0.08(0.02)  0.10(0.02)  -0.10(0.02)
After2  0.07(0.02)  -0.08(0.02)  0.07(0.02)  -0.05 (0.02)

#p € {(+,+), (—, —)}, has positive values because &; and { s have the same signs, and D*" (¢, ),
for ¥n € {(—,+), (4, —)}, has negative values because ¢; and {; have the opposite signs. Ta-
bles 3.2 and A.1 also report estimated standard errors of the estimates for EDM. Using Theorem 2,

the standard error was computed by 7/ V'k where

2
== Z (51] §ijr ) RZ>R<,€) ( Z fzy 5@] IR@'ZR(m) . 3.1

First, we see that there are apparent differences in estimates over the four quadrants for each
time period and each pair. This indicates that extremal dependence could provide different infor-
mation depending on quadrants, so it is more useful to obtain the EDM for each quadrant rather
than the EDM integrated over all quadrants when measurements take on values in R?. We observe
that the differences between the four periods are not significant, and they are within two estimated
standard errors. As documented in Section A.2, formula (3.1) tends to produce slightly underes-
timated standard errors. Thus the available data do not provide evidence for differences between

the periods. This is probably due to small sample sizes. Estimators of any form of extreme be-
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havior require large sample sizes because only the most extremal observations matter. With these
caveats, it is nevertheless interesting to examine the patterns whose statistical significance cannot
be claimed, but which provide some exploratory insights.

We then look at the results for Walmart. We see that estimates for "during" and "after 1" in
general have higher absolute values than those for "before" and "after 2" for all the three pairs. This
means that the crisis increased the level of extremal dependence, and its impact continued for about
a year after the crisis. For IBM stock, such a tendency is observed only for pair (£;,&3). For the
other pairs, there is no distinguishable differences or trends over the four periods. To investigate
the impact of the crisis more precisely, we interpret the EDM for each pair of the first three scores
since each score quantifies a different characteristic of the shape of a curve. First, we examine
the EDM between &; and &», both of which together have a considerable contribution to the shape
of CIDR curves. For Walmart, D+ (&, &) at "during", "after 1", and for IMB, D(=+)(¢&;, &)
at "before" are relatively strong. Such a dependence means that an extremely high monotonic
trend and a strong reversion are closely associated. Next, for &; and &3, each of which quantifies a
monotonic trend and a pronounced swing, respectively, the extremal dependence for Walmart are
affected by the crisis: the estimates for the four quadrants increased for "during" and "after 1". For
&5 and &3, the crisis increases the extremal dependence for Walmart again, implying that the chance
of a pronounced inflection is highly related with a strong swing during that time.

The scores &; have different variances and looking at the dependence measure between them
may not take into account the effect of the different variances and their estimation. The normalized
scores Z; = &;/ \/A_j have variance 1. We repeated the application to Walmart and IBM returns
using Zij = éij / 5\;/ % in place of the fw We got basically the same results, reported in Tables A.7
and A.8. An intuitive explanation might be that the EDM describes dependence between large
values in the orthogonal directions j and j’. If these values are rescaled, the dependence should

not change.
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One may consider various extensions of the analysis presented above for which suitable the-
ory would need to be developed. For example extending the seminal work of [50], who study
dependence between pairs of stocks, might be of particular interest.

An important point to note is that our theory is valid under the assumption that the curves
R; are independent. By construction and by the results of [15], it is reasonable to assume that
they form a stationary functional time series. The results of [51] indicate that they are in some
sense “uncorrelated"”, just like point-to-point returns. They could however be dependent in some
nonlinear, GARCH-type, way. Even in such a case, the analysis of extreme values focuses on
very few observations generally separated by long time intervals, so the extremal scores are nearly
independent, a common assumption in extreme value theory. It might nevertheless be of interest to

investigate under what temporal dependence assumptions our results would remain valid.

3.7 A simulation study

In this section, we investigate finite sample performances of the estimator of the EDM com-
puted from sample scores by means of a simulation study.

The design of our study is as follows. We generate a sample of functions of the form
3
j=1

where the v; are the FPCs of the Wiener Process, i.e.,

oi(t) = #sin((j—%) m), i=1,23

This choice is motivated by the observation that the estimated FPCs of the data we consider in
Section 3.6 are similar to the above v;, see Figure 3.1. This reflects the well-known fact that, to a
rough approximation, stock prices follow a random walk.

For the scores Y; = [£1, &io, fig]T, 1 <4 < n, we generate random vectors that are regularly

varying with the true tail index @ = 3. We must generate these vectors in such a way that the
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Table 3.3: Theoretical values of EDM for each case and each pair of the first three population scores, &1,

&2, &3.

n D(£17£2) D(+7+) (517£2> D(_’+)<€17£2) D(_’_)<€17€2) D(+’_)(§1’€2)

Casel 0.000 0.000 0.000 0.000 0.000
Case2 0.000 0.100 -0.100 0.100 -0.100
Case3  0.000 0.125 -0.125 0.125 -0.125

n D(€17§3) D(+7+) (£17€3) D(77+)(£1763) D(777)(€17g3) D(+’7)<€1753)
Casel  0.000 0.000 0.000 0.000 0.000
Case2 0.000 0.075 -0.075 0.075 -0.075
Case3  0.000 0.125 -0.125 0.125 -0.125

n D(£27£3) D(+7+) (527£3> D(_’+)<£27£3) D(_7_)<£27€3) D(+7_)(€27€3)
Casel 0.000 0.000 0.000 0.000 0.000
Case2 0.000 0.115 -0.115 0.115 -0.115
Case3  0.000 0.125 -0.125 0.125 -0.125

the theoretical value of the EDM can be computed analytically, so that we can see how close the
estimated EDM is to the true value. To construct vectors of scores with a known population EDM,
we start with 7y, Z,, Z3 that are i.i.d. random variables following a generalized Pareto distribution,
Pr(Z > z) = (1 +&(z — p)/o)~V/¢, with location p = 0, shape ¢ = 1/3, and scale 0 = 1. Next,
suppose that Uy, Uy, Us are i.i.d. random variables that take values —1 or 1, each with probability
1/2. We consider the following three cases for the Y.

Case 1 [Independence] The Y, are i.i.d. random variables generated from

(UL Zy, UsZy, UsZs)".

Case 2 The Y, are i.i.d. random variables generated from

(U1 Zy, 2U, 7y, 3UsZy]".

Case 3 [full dependence] The Y are i.i.d. random variables generated from

U\ Zy, UsZy, UsZy]".
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Table 3.4: Empirical biases (standard errors) of the estimator of the EDM for Case 1 [Independence]

n D(&,&) DUP(E,&) DUED(EG, &) DEI(EG,&) DRI, &)
200 0.000 (0.04) 0.035(0.02) -0.033(0.01) 0.0340.02) -0.033(0.0D
600 0.000(0.02) 0.027 (0.01) -0.027 (0.01) 0.027 (0.01) -0.026 (0.01)
1000 0.000 (0.02) 0.024 (0.01) -0.025(0.01) 0.024 (0.01) -0.025 (0.01)

n D(fly 53) D(+7+) (517 53) D(_7+) (€17 53) D(_’_) (517 53) D(+7_) (517 53)
200 0.000 (0.04) 0.023(0.02) -0.024(0.01) 0.024 (0.02) -0.023 (0.01)
600 0.000 (0.01) 0.017(0.01) -0.017(0.01) 0.017 (0.01) -0.017 (0.03)
1000 0.000 (0.01) 0.015(0.01) -0.015(0.01) 0.016(0.01) -0.015(0.01)

n D(&,&) DUP(&,&) DUP(6,&) DEI(6,&) D6, &)
200 0.002 (0.04) 0.051(0.02) -0.047(0.02) 0.048 (0.02) -0.049 (0.02)
600 0.000 (0.03) 0.040(0.02) -0.040(0.01) 0.041(0.02) -0.0410.0D
1000 0.000 (0.01) 0.037 (0.01) -0.036 (0.01) 0.037 (0.01) -0.037(0.01)

Table 3.3 reports theoretical values of EDM for each case and each pair of the first three pop-

D*(&1,&3)
= 0, where x € {(+,+),(—,+),(—,—),(+,—)}, since all pairs are independent. For Case

ulation scores in Y;. Note that for Case 1, we obtain D*({;,&) = D*(&,&) =

2, each pair of the scores has a different value of extremal dependence; D*?({, &) = 1/10,
D*p(é“Q’ 53) = 3/26, D*p(é’l’ 63) = 3/40, and D*n(gl’ 52) = —1/10, D*n(fg, 53) = —3/26,
D*n(gla 53) - _3/40 where xp € {(_'_7 +)7 (_7 _)} and *n € {(_7 +>7 (_7 +)} For Case 3,

since all pairs have asymptotic full dependence, each quadrant has a perfect extremal dependence;
we obtain D*?(£1,&) = D*(&,&) = D*P(&,£) = 1/8, which is the maximum value that
each quadrant can get. D*"(&,&) = D™(&,&) = D (&,£3) = —1/8, which is the min-
imum value. For all of the three cases, the EDM integrated over the four quadrants is 0, i.e.,
D(&1,&) = D(&,&) = D(&,&3) = 0, since extremal dependence is symmetric over the four
quadrants. For each case, we generate a sample of functions X; using the FPCs vy, v5, v3 and ob-
tain sample scores. Then, based on the sample scores, we compute an estimate for the EDM using
the estimator (3.14), and get the average and the estimated standard error of estimates over 1000
replications. We consider sample sizes n = 200, 600, 1000.

Tables 3.4, A.2, A.3 report empirical biases (average minus theoretical value) and standard

errors computed as sample standard deviations of the 1000 replications. The results show that
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the bias tends to 0 as the sample size increases. The standard errors also decrease with increas-
ing sample size, but slower, as expected. These results confirm the desirable performance of the
estimator.

It is also of interest to compare the standard errors in Tables 3.4, A.2, A.3 with those ob-
tained by the application of Theorem 2 and formula (3.1). Such comparisons are presented in Ta-
bles A.4, A.5, A.6 of Section A.2, which report the average of estimated standard errors computed
using (3.1). This formula generally leads to standard errors which are smaller than the empirical
standard errors, but the differences are small, especially for sample sizes used in Section 3.6.

There are some findings that are less expected. First, for the same sample size, the empirical
bias depends on the structure of extremal dependence of population score Y,. We see from Ta-
bles A.2 and A.3 that Case 2 has relatively small biases, but Case 3 of full dependence has relatively
large biases. This might be due to the fact that the theoretical EDM values in case 3 are larger in
absolute value or due to some bias introduced by estimating the population scores. Within the same
dependence structure (case), the bias seems to depend on pairs of scores. The biases for D*(;, &),
D*(&,&3) are larger in Case 3, but in Case 1 and Case 2, D*(&,, &3) is larger. This again might
be attributable to the discrepancy between the population scores and their approximations for each
pair. Table 3.4 gives some idea of biases and standard errors that can be expected in the case of
independence. We see that for the sample sizes considered in Section 3.6, the standard errors are
somewhere in the range 0.02 to 0.04. For Case 3 of full dependence, the estimator computed from

the sample scores underestimates the population EDMs.
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Chapter 4
Consistency of the Hill estimator for time series

observed with measurement errors

4.1 Introduction

Our objective is to establish the consistency of the Hill estimator applied to heavy-tailed time
series observed with measurement errors, and to explore the impact of the errors in finite samples.
Heavy-tailed time series commonly occur in fields such as finance, insurance, hydrology, and
computer network traffic. The theory of regular variation provides a suitable mathematical frame-
work. Suppose X, ..., X, is arealization of a strictly stationary time series with one-dimensional
distribution function F'x, which has a regularly varying tail with index a > 0, i.e. P(X; > x)
behaves roughly like ¢, for large . An estimate of « is essential for further inference related to
extreme behavior of the time series. Risk measures, like the VaR or the expected shortfall, require
an estimate &. The joint dependence structure is usually estimated by normalizing the data to the
standard Fréchet distribution with @ = 1, which requires some estimate &. Many more applica-
tions are discussed in the monographs cited in the next paragraph. A well known and commonly
used estimator of the index « is the Hill estimator, whose definition is recalled in Section 4.2. It is
often used after an examination of the Hill plot, which is also a tool for detecting the presence of
heavy tails. This paper studies the Hill estimator in situations in which the data are contaminated
by measurement errors.

The Hill estimator is studied in practically all monographs on extreme value theory, see e.g.
[16], [17], [4] and [2]. Its consistency for samples of i.i.d. random variables was first proven by
[19]. Consistency of the Hill estimator has been established beyond the i.i.d. setting. [20] derives
a general approach to establishing its consistency for stationary time series satisfying a certain

mixing condition. [52] and [53] also consider mixing conditions. Other extensions are obtained
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by [21], [54], and [55], who show the consistency of the Hill estimator for time series using a tail
empirical random measure proposed by [56]. Recently, [57] have proven the consistency of the
Hill estimator for network data in a linear preferential attachment model.

In many applications, we do not observe X7, ..., X, directly. Instead, the data are measured
with noise, measurement or roundoff error. In other words, we observe Y, = X, + &;, ¢ =
1,2,...,n, where {g;} is an error process. The question is whether the Hill estimator computed
from the Y; will be still consistent for o under suitable assumptions on the errors ;. The research
presented in this paper has been partially motivated by our work on modeling the stochastic behav-
ior of internet traffic anomalies, whose arrival times are available only with a roundoff error. The
database we have reports these times in 5 min. resolution.

Putting together known results, it is fairly straightforward to establish the consistency if the
X, are i.i.d., but a more in-depth investigation is needed when they follow a stochastic process
model with a complex dependence structure. We investigate this question in the context of models
considered by [55]. These include infinite moving averages with heavy-tailed innovations, bilin-
ear processes driven by heavy-tailed noise variables, solutions of stochastic difference equations,
the ARCH process of [58], and interarrival times of heavy-tailed hidden Markov chains. The
models considered by [55] thus cover practically all known stochastic processes whose marginal
distributions are regularly varying. Finite sample properties are investigated by means of a simu-
lation study based on these models and by an application to the interarrival times of internet traffic
anomalies. The main general conclusions of our research are as follows. 1) Asymptotically, the
Hill estimator is robust to relatively large errors. 2) This robustness is confirmed in finite sam-
ples. 3) Five minute resolution is sufficient to estimate the tail index of the interarrival times of the
anomalies we study.

Consistency of the Hill estimator based on data observed with measurement error has not been
studied, but there has been considerable interest in a related problem, estimation of the end-point of
a distribution function in the presence of additive observation errors, see [59], [60], [61], and [62].

They all consider Gaussian measurement errors. We, however, do not place this restriction on the
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errors. We assume a broader class of error distributions. Intuitively, we can relax the assumptions
on the measurement errors because heavy-tailed X; are “much larger" random variables than those
with a finite end-point.

In Section 4.2, we introduce notation and assumptions. Our framework and main results are
presented in Section 4.3. Finite sample performance of the Hill estimator in the presence of errors
is investigated in Section 4.4. In Section 4.5, we present an application to the interarrival times of
internet traffic anomalies. The proofs are developed in Section 4.7, preceded by some preparation

in Section 4.6.

4.2 Notation and assumptions

We start by introducing some notation, generally following [22]. Recall that X, ..., X, are
nonnegative random variables with common distribution F'x, which has regularly varying tail prob-
abilities:

szl—FXIP(X>')ERV,a,Oé>O. “4.1)

We denote by X a generic random variable with the same distribution as each X;. A function

U : R, — R, isregularly varying with index o > 0, U € RV_,, if for any z > 0,

For two functions U,V : R, — R, we write U(z) ~ V(z) if U(x)/V(z) — 1, as x — oo, and
U(z)=o0(V(z))ifU(x)/V(x) = 0,as x = 0.

The Hill estimator for the X, is defined as
k—1
Hy, =~ log ——, “4.2)
k, 2 ; & X

with the convention that Xy is the largest order statistic. We use definition (4.2) rather than the

commonly used, asymptotically equivalent, definition with the 1/k replaced by 1/(k — 1) because



it leads to visually shorter formulas in the proofs. The consistency of the Hill estimator has been
studied as the number of upper order statistics, k, tends to infinity with the sample size n, in such
a way that k/n — 0, i.e.

k
n—>oo,k—>oo,ﬁ—>0. 4.3)

We assume throughout the paper that condition (4.3) holds.

We consider the Hill estimator based on observations contaminated by measurement or other
errors whose source is difficult to quantify. We thus assume that we observe YV; = X; +¢;, 1 <
i < n, where {¢;} are i.i.d. random errors following F_, and independent of the {X;}. Then, the

Hill estimator for the observations Y; is defined as

k—1
= 1 Y
H, =— log —=.
bn = ; 8V

In our context, ] %.n 1s the Hill estimator that can be actually used since what we observe are the
Y. [55] show that the Hill estimator based on the X;, [ ,, is consistent for the tail index of Fy,
when it is applied to certain classes of heavy-tailed stationary processes. In our context, the X; are
unobservable. We want to establish conditions on F, under which i kn 18 consistent for the tail
index of Fx. We solve this problem for all classes of the X; considered by [55].

The approach of [55] is based on the weak convergence to the measure v on (0, 00|, satisfying
[ log(u)v(du) < co. One example of the measure v is vy, defined by v, (2, 00] = z7%, © > 0.
Our approach involves tail empirical random measures on (0, co], based on the X;, Y;, and their
weak convergence to the measure v in M, (0, oo], the space of Radon measures on (0, co]. We

study the limit relations

1 & 1 —
z ; Ix, b(n/k) =V, z ; Iy, jpnyky = v, 4.4)
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where b(-) is the quantile function, defined by
P(X; > b(t) =t

We investigate when the first convergence in (4.4) implies the second one. We use = to denote
weak convergence of random measures and — to denote vague convergence in M, (0, oc], see [4].

We now state assumptions on the unobservable random variables X;. We consider several
conditions. We first assume that the unobservable variables are independent and have a common,
regularly varying tail distribution. We then relax this assumption by considering three classes
introduced by [55]. We first assume that the X; follow a heavy-tailed stationary process which can
be approximated by sequences of m-dependent random variables, and the m-dependent sequences
carry enough information on the tail behavior of the original process. Then, we consider random
coefficient autoregressive model. The final class consists of heavy-tailed hidden semi-Markov

models.

ASSUMPTION 1. The X; are nonnegative, independent random variables with common one-dimensional

distribution F'x, which has regularly varying tail probabilities, i.e. (4.1) holds.

ASSUMPTION 2. The X; form a stationary sequence, which can be approximated by stationary
m-dependent sequences {Xi(m)} as follows. There exist Radon measures (™), v on (0, 0o] with

[ log(u)v(du) < oo and ™ % v, as m — co. The X;, X\™

, and the v, (™ satisfy the
following relations.

(a) For any fixed m > 1 (under (4.3)),

(m)
n X!
-p i ) B pm)
k <b<n/k>E )%”

(b) For any 7 > 0,

X(m)
lim limsup — P(‘ ’ > 7’) = 0.
M0 n—bog b(n/k) (n/k‘
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(c) For each m > 1, the function y ~— v(™)(y, oo] is right—continuous.

Condition (c) is not assumed by [55]. We need it to deal with the impact of the measurement
errors. This condition is however not restrictive in practice because in all examples considered

by [55], the functions y + v(™)(y, oc] are continuous.

ASSUMPTION 3. The X; form a stationary sequence, which satisfies the stochastic autoregressive
equation

X, = AiXi—l + B;, —00 <1 < 00,

where {(A;, B;), —0o < i < oo} are i.i.d. R2-valued random pairs satisfying the following

conditions. There exists o > 0 with
EA =1, EAlog" Ay < 0o, 0< EB§ < o,

where log™ 2 = log z V0, By/(1— Ay) is nondegenerate, and the conditional distribution of log A4

given A, # 0 is nonlattice.

The conditions imposed on (A;, B;) ensure that the X; are regularly varying, see Lemma 5 (i).

The final class we consider consists of hidden semi-Markov Models. These models general-
ize the commonly used hidden Markov models, and have recently found application in biology,
computer science, operations research and meteorology, see e.g. [63] and [64]. The heavy-tailed
hidden Markov has one or more states following heavy-tailed distributions. We first state its
building blocks and then state the assumption. Let {J,,,n > 0} be an ergodic, m-state Markov
chain on the state space {1,2,...,m} with the stationary distribution 7 = (m,...,7,), and
P ={pij,1 <i,j < m} be the transition probability matrix of the chain. Suppose (D, n >0},
r=1,2,...,m, are i.i.d. holding time random variables with common distributions {qff), n >0},

for each r. Define {V;,i > 0} by

o0
Vie S Jalin s ooy o
7 - n [Zl:ol D;JZ)SZSZL:U DZ(J”}’
n=
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and define for ¢ > 0,

X; = Fy (U;), 4.5)

where the U; are i.i.d. uniform random variables with support [0, 1], and F}, ..., F,, are distribu-
tions on R... The {U;,i > 0}, {Jo,n > 0}, {DY) ,n > 0,1 < r < m} are all independent. The X;

can be thought of as interarrivals which are generated from distribution F,. when V; = r.

ASSUMPTION 4. The X; form a sequence satisfying (4.5) with

ED£T)<OO, r=1,...,m,
and
_ F
Fi(-) € RV_, and lim 7J<I> =0, 7=2,...,m. (4.6)
T—>00 1({L’)

Under Assumption 4, we define b(-) by F;(b(t)) =t~ %

We next state an assumption on the tail distribution F., which says that the measurement error
¢ has a lighter tail than X. This assumption is reasonable as measurement errors are thought to be

small relative to the quantity being measured.
ASSUMPTION 5. The ¢; are i.i.d. random errors with a common tail distribution F., which has an
asymptotic tail property

P(le| > z) = o(P(X > x)), as x — oc.
The sequence {¢;} is independent of the sequence {X;} and of the approximating sequences
{x™Y} in Assumption 2.

The order statistics used to compute the Hill estimator must be positive. In the following, all

statements are tacitly assumed to hold conditional on the event {Y(;) > 0}.
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4.3 Main results

The underlying idea of our argument is that to get the consistency of the Hill estimator com-

puted from error contaminated observations, it is enough to show that

n Y; v 1 a
—P( ’ S > — d — 1y; /o(n =
L b(n/k) v oan L ; Yi/b(n/k) v

in M, (0, co], where v is the measure to which % Z?:l Lx, /b(n/k) Weakly converges. One can then

obtain

Hin S / log(u)v(du), 4.1)
1
by Proposition 2.4 of [21]. If v = v,, defined in Section 4.2, (4.1) leads to

~

1
Hyp 5 = 4.2)
[0

We start with the 1.1.d. case. We show that Y = X + ¢ has regularly varying tail probabilities
with the same index as Fy, i.e. Fyy € RV_,. This approach allows us to conclude consistency
for any estimator of «, provided it is consistent based on the X;. For the Hill estimator, regular
variation of the underlying tail distribution F'y is actually equivalent to the consistency of the
estimator based on the Y;. These results are presented respectively in parts (a) and (b) of Theorem 1,

for which Proposition 1 is a preparation.

PROPOSITION 1. Denote Y = X + ¢, and let Fy be the tail distribution of Y. Suppose that

P(X >:) € RV_,, P(le| > x) = o(P(X > x)), and ¢ is independent of X. Then,
Fy € RV_,.

THEOREM 1. (a) Under Assumptions I and 5, any estimator of o computed from the Y; is consis-
tent, if its counterpart computed from the unobservable X; is consistent. (b) For the Hill estimator,

under Assumption 5, the X; satisfy Assumption 1 if and only if (4.2) holds.
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We now turn to dependent X; that follow one of the assumptions specified in Section 4.2. The
contaminated variables X; + ¢; need not satisty these assumptions, and so a careful investigation
is required.

We first consider the stationary process {X;} and its approximating m-dependent processes

{X i(m)} satisfying Assumption 2. Set

YVi=Xi+e, v\ =Xx"+e. (4.3)

A %

THEOREM 2. If the unobservable sequences {X;} and {Xi(m)} satisfy Assumption 2 and if As-

sumption 5 holds, then the sequences {Y;} and {Yi(m)} defined by (4.3) satisfy Assumption 2 as

well.

[55] provide three examples of processes satisfying Assumption 2.

(a) Infinite-order moving averages of heavy-tail innovations defined by
o
X, = ZCjZi—jv —00 < 1 < 00,
=0
where the Z; are 1.1.d. nonnegative random errors with a regularly varying tail distribution,

P(Z;>-) € RV_q, a >0, (4.4)

and the c; contain at least one positive number, and satisfy Z?io |c;]° < oo, for some 0 < § <
a A 1. This model was recently studied by [65].

(b) A simple bilinear model driven by heavy-tail innovations defined by
X,=cX, 12,1+ Zl’, —0 <1< 0,

where ¢ > 0 and the Z; are i.i.d. nonnegative random errors satisfying (4.4) and c*/2EZ; 2 <.
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(c) Solutions of stochastic equations of the form
X, = Ain',l + Zi, —00 < 1 < 00,

where the Z; are i.i.d. nonnegative random errors satisfying (4.4) and {(4;, Z;) € R%, —co <i <
oo} are i.i.d. random pairs with EAS < 1, EAS < oo, for some 0 < o < .
By Corollary 3.1 of [55], processes (a), (b) and (c) satisfy Assumption 2, and for process (b),

« is replaced by «/2. We thus obtain the following corollary to Theorem 2.

COROLLARY 1. Convergence (4.1) holds under Assumptions 2 and 5, i.e. (4.2) holds for the

processes (a) or (c), and for the process (b), f];m Lt 2/a.

We next assume that the unobservable stationary process { X} satisfies Assumption 3. In this
case, it cannot be claimed that the contaminated process also satisfies Assumption 3. For example,

if the X; follow an ARCH model, then X; + ¢; will not follow this model.
THEOREM 3. Relations (4.1) and (4.2) hold under Assumptions 3 and 5.

The ARCH process introduced by [58] is defined by
X; = Ni(B+AX2 V2 —00 <i < o0, (4.5)

where the N; are i.i.d. N(0,1) random variables, 3 > 0, and A > 0. We assume 0 < \ < 2¢”,
where £ = 0.5772... is Euler’s constant, to guarantee the existence of « stated in Assumption 3,
see Lemma 8.4.6 of [16]. The process {X?} therefore satisfies Assumption 3 with A; = AN? and

B; = BN?. We then obtain the following corollary to Theorem 3.

COROLLARY 2. Relation (4.2) holds for the ARCH(1) process, under Assumption 5, provided

B>0and0 < \ < 2eF.

We finally study the consistency of the Hill estimator for interarrival times generated by a

heavy-tailed hidden Markov model, and which are observed with measurement errors. We assume
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that the process {X;} satisfies Assumption 4, under which [55] show that Hy,, R Ja. We

consider }ALM basedon Y; = X, + ¢;.

THEOREM 4. Convergence (4.2) holds under Assumptions 4 and 5.

4.4 Impact of measurement errors in finite samples

In this section, we report the results of simulation studies of the Hill estimator applied to various
processes contaminated by additive errors. We investigate the impact of these errors, especially
how large they can be compared to be tolerated in practice.

We generate observations Y; = X; +¢;, i = 1,2,...,n, where { X;} and {¢;} are independent
sets of random variables. We use four models for the X;, those considered in Section 4.2.

Model 1 The X, are i.i.d. random variables, which follow a Pareto distribution with o« = 2,
PX;>z)=a2 x>1.

Model 2 The X; form the AR(2) process X; = 1.3X;_1 — 0.7X,_5 + Z;, where the Z; follow a
Pareto distribution with a = 2, P(Z; > z) = 272, z > 1.

Model 3 The X; form the simple bilinear model driven by heavy-tail innovations defined by X; =
0.7X; 1Z;_1+ Z;, where the Z; follow a Pareto distribution with o« = 4, P(Z; > z) = 274 2> 1.
Model 4 The X; follow the ARCH process X; = N;(1 +0.5773X? |)'/2, where the N; are i.i.d.
N(0, 1) random variables.

Model 2 is causal and thus has an infinite moving average representation, which satisfies As-
sumption 2. Each X; therefore has tail index @ = 2. Model 3 also satisfies Assumption 2, and
each X; has tail index /2 = 2. Model 4 with § = 1, A = 0.5773 satisfies Assumption 3, and X?
has tail index @ which satisfies £(0.5773N2)* = 1. We get a numerical solution for the equation,
a = 2, since the equation cannot be solved explicitly. Thus, in all four models, the true value of
the tail index of the X; (X 3 for Model 4) is 2.

The ¢; are drawn from a normal distribution with mean O and standard deviation o, a scaled
t-distribution with 4 degrees of freedom (scaled ¢,), and a generalized Pareto distribution (GPD),

P(le] > 2) = (1 + &(2 — p) /o)~ V¢, with location 1 = 0, shape & = 1/4, and scale ogpp. The
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Table 4.1: Empirical bias and standard error of & of the Hill estimator applied to various models with
additive errors following N (0, 02), t4, or GPD, with fixed error SD.

No error N(0,0?) ty GPD
Error SD 0 0.1 0.2 0.3 0.4 0.5 1.41 0.47
Model 1  bias 0.02 0.05 0.05 0.07 0.08 0.11 0.31 0.07
SD=288 (SE) (0.14) (0.11) (0.11) (0.11) (0.11) (0.12) (0.17) (0.24)
Model 2 bias 0.42 0.42 0.42 0.43 0.43 0.43 0.49 0.43
SD=624 (SE) (0.33) (0.33) (0.33) (0.33) (0.33) (0.33) (0.34) (0.34)
Model 3  bias 0.23 0.23 0.23 0.22 0.23 0.23 0.23 0.23
SD=31.5 (SE) (0.54) (0.54) (0.54) (0.53) (0.54) (0.53) (0.53) (0.54)
Model 4  bias —-0.23 —-0.22 -0.22 -0.21 -0.21 -0.21 -0.18 —-0.21
SD=7.00 (SE) (0.21) (0.21) (0.21) (0.21) (0.22) (0.22) (0.22) (0.22)

scale parameters for each error distribution vary. They can be fixed or determined by the ratio of the
standard deviation of error distribution (error SD) to the standard deviation of underlying process
(model SD). For example, if we consider the ratio of 0.1 for Model 1 whose standard deviation
is 2.88, then the corresponding scale parameter is 0.288 for the normal distribution, 0.204 for the
scaled t4, and 0.125 for the GPD. All distributions of the measurement error have a lighter tail than
the X; (X? for Model 4), so the tail distributions satisfy Assumption 5.

We estimate the tail index using the Hill estimator with a data—driven cut-off k, the number
of upper order statistics used to compute it. We use the threshold selection method introduced
by [66], which employs a bootstrap procedure to choose £ that minimizes the asymptotic mean
square error (AMSE). This procedure is implemented by the function hall of the R package tea.
For each model/error pair, we compute the average of the estimates over 1000 replications, and the
estimated standard error based on these replications. The sample size is n = 5, 000.

Table 4.1 reports the results for fixed error SDs, Table 4.2 for fixed ratios of error SD to model
SD. The error SD of 0, or the ratio O means that there are no errors. Model SD is calculated from
the generated X;. Table 4.3 provides information on the effects of errors on the selection of optimal
k.

Tables 4.1 and 4.2 show that additive errors lead to estimates which indicate lighter tails than

those indicated by the estimates computed from uncontaminated data. This can be intuitively
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Table 4.2: Empirical bias and standard error of & for the fixed ratio of the error SD to model SD.

Model Error Error SD/Model SD Ratio
Type 0 0005 001 002 004 006 01 02
Noma] 002 004 005 005 005 005 006 0.12
(0.14) (0.13) (0.11) (0.11) (0.11) (0.11) (0.11) (0.12)
Model 1 002 004 005 005 005 004 005 009
sp=288 Al (114 (012) (0.11) (0.11) (0.11) (0.12) (0.12) (0.13)
app 002 005 005 005 004 004 004 007
(0.14) (0.12) (0.11) (0.11) (0.12) (0.12) (0.13) (0.14)
Normal 042 042 042 042 042 043 043 047
(0.33) (0.33) (0.33) (0.33) (0.33) (0.33) (0.33) (0.33)
Model 2 042 042 042 042 043 043 043 047
sD=624 S (a5 (033) (0.33) (0.33) (0.33) (0.33) (0.33) (0.33)
cpp 042 042 042 042 043 042 044 047
(0.33) (0.33) (0.33) (0.33) (0.34) (0.33) (0.34) (0.35)
Normal 023 023 023 023 022 023 024 0.6
(0.54) (0.54) (0.54) (0.54) (0.53) (0.53) (0.53) (0.53)
Model 3 023 023 022 023 023 023 023 026
sD=315 Sl 050 (054) (054) (0.54) (0.54) (0.53) (0.53) (0.54)
cpp 023 023 023 023 023 023 023 027
(0.54) (0.54) (0.54) (0.54) (0.54) (0.53) (0.53) (0.55)
Normal 023 022 —0.22 —0.22 —021 —021 —020 —0.18
(0.21) (0.21) (0.21) (0.21) (0.21) (0.22) (0.22) (0.23)
Model 4 —0.23 —022 -022 —022 -022 —021 —020 —0.18
sp=7.00 Sl o1 (021) (021) (0.21) (021) (0.22) (022) (0.23)
app 023 022 —022 —02 —0.22 —021 —021 —0.17
(0.21) (0.21) (0.21) (0.21) (0.21) (0.22) (0.22) (0.23)

expected because the errors in a sense “dilute” the true heavy tails. For Models 1-3, the biases
increase with the error SD. For Model 4, the bias becomes smaller in absolute value, but this cannot
be interpreted that the error helps the bias to be small. Instead, this behavior is in agreement with

the previous observation; the bias for uncontaminated process is negative, and it becomes less

negative (lighter tail) as the error SD increases.

A rather unexpected finding is that the bias is not affected a lot even by large errors. We
see from Table 4.1 that for iid X;, Model 1, even error SD equal to half the model SD causes
bias of 0.31, which is not large given the uncertainty about the selection of k. Such a level of

contamination could however indicate that the data have finite variance, whereas in fact they may
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have infinite variance. Even more remarkable is that for dependent data with heavy-tailed marginal
distributions, the errors have almost no impact on the bias and the SE of the estimator. Table 4.2
is designed to take a closer look at this finding by controlling the ratio of error SD to model SD.
We first observe that the bias increases with this ratio. Second, this increase is relatively flat. Only
for 1id X, the ratio of 20 percent causes a bump in bias. For dependent X;, such a ratio does
not change the bias much compared to uncontaminated data; Models 2, 3 and 4 are surprisingly
insensitive to the errors. Finally, the bias caused by the errors does not depend on the type of the
error distribution. Standard errors of the estimates are basically unaffected by the errors. In some
cases, the errors lead to smaller or larger estimated standard errors, but these estimates are so close
that the differences are probably not statistically significant.

Table 4.3 reports on average optimal ks and their standard errors for all combinations of the
underlying models and error distributions. We do not observe any clear positive or negative rela-
tionships between the average optimal & and the ratio, but the dependent data still show a consider-
ably weaker dependence on the ratio; again, only a large increase of the ratio has a relatively large
impact on the average optimal k.

Another question of interest is how the errors affect the shape of the Hill plot. The Hill estima-
tor is location variant, see Section 4.2.2 of [4]. The lack of location invariance makes it sensitive
to a shift in location; but it does not theoretically affect the tail index estimate. Since adding mea-
surement errors could be thought of as a location shift, there could be sensitivity to additive errors
over some range of k, which will not show up when examining the averages. The Hill plot is a
useful tool to examine this property by describing estimates as a function of the minimal order
statistic k used to compute the estimates.

Figure 4.1 shows the Hill plots for observations generated by Model 1 with the ratio of 0.1,
along with a vertical line showing the optimal k. The true tail index « is 2 for all the plots. The
impact due to the additive errors, for the ratio of 0.1, turns out to be surprisingly weak as all the
plots in Figure 4.1 look stable. We also consider the Hill plots for Model 1 observed with the same

types of errors, but with a relatively large error SD corresponding to the ratio 0.2. These plots are
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Table 4.3: Average optimal k (standard error) for the Hill estimator as the function of the ratio of the error
SD to model SD. The sample size is 5000, and the number of replications is 1000.

Model Error Error SD/Model SD Ratio
Type 0 0.005 0.01 0.02 0.04 0.06 0.1 0.2
2114 2933 3066 2973 2809 2690 2514 2141
Normal

(1622) (1727) (1625) (1552) (1378) (1201) (903) (537)
Model 1 scaled ¢ 2114 2990 3061 2959 2777 2635 2354 1951
SD =2.88 4(1622) (1702) (1633) (1558) (1429) (1291) (1080) (735)
2114 3022 3053 2928 2751 2587 2295 1700
(1622) (1690) (1634) (1585) (1483) (1380) (1208) (892)

1249 1250 1251 1261 1264 1280 1307 1293
(827)  (827) (824) (815) (811) (789) (697) (588)
Model 2 1249 1250 1254 1250 1255 1268 1225 1140
SD=624 SCUdls orr 26y (822) (8200 (812) (787) (711) (632)
1249 1252 1252 1248 1261 1246 1161 1041
(827)  (826) (826) (815) (808) (794) (725) (649)
638 639 639 651 654 668 749 821
907)  (907) (906) (908) (906) (901) (881) (827)
Model 3 638 644 642 649 652 667 703 709

GPD

Normal

GPD

Normal

sp=315 Sdle g0 907y (907) (903) (904) (892) (852) (789)
opp 638 639 641 646 647 657 654 621
907)  (906) (906) (906) (902) (886) (831) (756)
246 242 243 241 243 248 314 510
Normal

(134)  (136) (140) (141) (146) (156) (249) (376)
Model 4 oqs 246 243 242 243 244 251 300 377
SD=7.00 M 434y (136) (137) 141) (147 (157) (@211) (267)
246 243 244 244 246 253 281  3I1
(134)  (136) (139) (141) (145 (157) (184) (204)

GPD

shown in Figure 4.2. The shape of Hill plot is more affected by the larger error SD; this sensitivity
is especially noticeable for errors with the normal and scaled ¢4 distributions. The Hill plots for
Models 2, 3, and 4, even without errors, do not look as stable as for iid observations, there is an
upward trend. The presence of the errors changes their shape a little bit for the ratio of 0.2, but one

would not say that these errors make the plots any worse.
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Figure 4.1: Hill plots with a vertical line showing the optimal k£ for Model 1 (a single realization) observed
with no measurement errors (top left), with errors following the normal (top right), scaled ¢4 (bottom left),
and GPD (bottom right) with the ratio of 0.1.

4.5 Application to internet traffic anomalies

In this section, we illustrate the relevance of studying the Hill estimator for error contaminated
data by an application to the interarrival times of internet traffic anomalies. We first provide some
background, limited in scope to conserve space, and focus on the aspects relevant to this paper.
More detailed network background is presented in [67], a paper which to some extent motivates
the present research. We hope that that the analysis presented below may guide other applications
where the tail index must be estimated from error contaminated data.

Figure 4.3 shows the backbone internet network in the United States known as Internet2. A
traffic disruption in any of the links can slow down service in the whole country. For this reason,
anomalies in the internet traffic have been extensively studied. An anomaly is a time and space con-
fined traffic whose volume is much higher than typical. An anomaly can result from a malfunction

of network resources, like routers, or from malicious activity, like denial of service attacks. [67]
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Figure 4.2: Hill plots with a vertical line showing the optimal k for Model 1 (a single realization) observed
with no measurement errors (top left), with errors following the normal (top right), scaled ¢, (bottom left),
and GPD (bottom right) with the ratio of 0.2.

developed a simple algorithm, based on the Fourier transform, which, among other characteristics,
allowed them to identify the arrival time of an anomaly in any unidirectional link. They created
a database of anomalies and their characteristics for 28 unidirectional links, corresponding to the
14 two—directional links shown in Figure 4.3, for the time period of 50 weeks, starting October
16, 2005. Due to a huge amount of data to be processed, the algorithm computes an anomaly
arrival time only with the precision of five minutes. There is therefore uncertainty as to when the
anomaly actually arrived, a rounding error. A key element in the analysis of anomalous traffic is
to understand the distribution of the interarrival times, the time separation between the arrivals of
two consecutive anomalies. This may be helpful in provisioning network resources. [67] perform
a preliminary fitting, based on the exponential distribution. We take a closer look at this problem

and place it in the context of this paper.
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Figure 4.3: A map showing 14 two-directional links of the Internet2 network.

We index the unidirectional links by integers from 1 to 28, it is not important for our analysis
to which nodes they correspond. The count of anomalies detected by the algorithm of [67] varies
from link to link, as shown in Table 4.4. We have examined the Hill plots and performed other
diagnostic tests, and determined that it is reasonable to assume that for each link the distribution of
the interarrival times is regularly varying with the tail index between 1 and 3. The values computed
using the Hill estimator with the optimal £ introduced in Section 4.4 are shown in Table 4.4, in the
rows (,ps. Exploratory data analysis in [68] strongly suggests that the interarrival times form an
iid sequence, so the setting of Theorem 1 holds.

We illustrate our analysis using the interarrival times in link 5, corresponding to anomalies
traveling from Chicago to New York. In Figure 4.4 we display the Hill plot and the QQ plot of
the log transformed data matched against exponential quantiles beyond the exceedance threshold
corresponding to the optimal k. We should get approximately a line whose slope is 1/ if our
data had a Pareto tail with index «,ys, see Section 4.6.4 of [4]. The QQ plot looks linear with the
fit of a straight line whose slope is 1/1.53, which tells us that it is reasonable to assume a Pareto
tail with index 1.53. The same conclusion can be drawn for other links. The smallest value of
is 1.27. It corresponds to anomalies traveling from Los Angeles to Sun Valley. The largest is 2.22,

from the Indianapolis to Atlanta link.
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Table 4.4: Results of a simulation study based on anomalous internet traffic. The tail index «.; is computed
from the interarrival times produced by the algorithm. The average & is computed from 1,000 replications
of the interarrival times with errors, o, is the standard deviation of the 1,000 estimates.

Link 1 2 3 4 5 6 7
sample size 405 247 362 454 347 345 603
Qlobs 1.69 1.50 1.62 1.62 1.53 1.59 1.68

a 1.72 149 1.63 1.63 1.58 1.68 1.65
Oq 0.03 0.05 0.02 0.02 0.05 0.11 0.02
Link 8 9 10 11 12 13 14

sample size 300 387 345 382 304 476 507
Qlobs 1.56 147 144 179 222 211 1.93

o 1.51 1.50 1.50 1.80 224 2.12 1.90
Oq 0.03 0.03 0.05 0.03 0.03 0.03 0.05
Link 15 16 17 18 19 20 21

sample size 478 319 402 388 433 493 340
Qlobs 207 148 191 1.35 127 197 1.97

Q 200 145 191 136 1.29 1.96 2.00
Oq 0.05 0.04 0.02 0.01 0.02 0.04 0.03
Link 2223 24 25 26 27 28

sample size 417 597 296 258 340 348 264
Qobs 146 1.65 1.43 1.83 1.43 1.95 1.69
a 146 165 1.51 1.80 1.43 1.90 1.58
oo 0.0l 0.03 0.06 0.03 0.04 0.05 0.07

In the context of this paper, each interarrival time Y;, computed by the algorithm, is treated as a
“true" interarrival time X; measured with a roundoff error, i.e. Y; = X; + ;. The unobserved X is
not rigorously defined, but we can think of it as the time separation based on a more precise algo-
rithm, or just a different algorithm. In the latter case, the analysis that follows provides information
about the uncertainty in the estimation of « caused by the choice of a specific algorithm. Since
the smallest value of Y; in physical units is 5 min., we use 5 minutes as a unit lag. We therefore
assume that the errors ¢; are uniformly distributed on [—1,1]. We experimented with other beta
distributions on [—1, 1], the results were basically unaffected.

We perform the following numerical experiment. For each link, we generate R = 1,000

samples of unobservable interarrival times X" from the observations V;, i.e. X\ = Y; — &\,

)

where the 5? are drawn from the uniform distribution on [—1,1], for » = 1,..., R. We get

estimates ¢, for each sample and then compute the average of the estimates, &, and their estimated
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Figure 4.4: Hill plot (left) and QQ plot (right) for link 5.

standard error, o, i.e.,

The results in Table 4.4 show that & is close to «,s for most links. For each link, the ratio of the
error SD to the observations SD is less than 0.001, so one might expect such an outcome based on
the simulations in Section 4.4, but the sample sizes for these data are much smaller than 5,000, so
the result was not clear a priori. We find a couple links, 6 and 28, which have a relatively large
discrepancy between ay,s and &, with a high value of o,. All discrepancies are however within
20,4, so these differences are not significant. Overall, our numerical experiment shows that for the
purpose of the estimation of the tail index of the anomalies interarrival times, an algorithm that

identifies arrivals of anomalies with 5 min. resolution is sufficient.

4.6 Preliminary results

We list in this section several lemmas which are used in Section 4.7. The first lemma follows
from the definition of regular variation. The second lemma states three equivalent conditions for

regularly varying functions. It follows from Theorem 3.6 in [4].
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LEMMA 1. Suppose that U € RV_,, and V (x) ~ cU(z) for some two functions U,V : R, — R,

and 0 < ¢ < oo. Then, V € RV_,,.

LEMMA 2. Suppose X is a nonnegative random variable with its complementary distribution
function F. The following are equivalent:

(i) P(X >-) € RV_,, a > 0.

(ii) There exists a sequence a(n) with a(n) — oo such that lim,—s..nP(X > a(n)r) =
= x> 0.

(2

(iii) There exists a sequence a(n) with a(n) — oo such that nP(X/a(n) € -) = va(-),

in M (0, 00|, where vy(z,00] =z~

The sequence a(n) is the same in (ii) and (iii).
We next summarize what has been established for sums of regularly varying functions.

LEMMA 3. (i) Let X and Y be two independent non-negative random variables with their corre-
sponding complementary distributions P(X > -) € RV_,, and P(Y > :) € RV_,,, for some
ar,as > 0. Then P(X > ) + P(Y > ) € RVpax(—a1,—as)-

(ii) Under the assumptions of part (i), P(X +Y > z) ~ P(X > z)+ P(Y > z), and
P(X +Y > ) € RVpax(—a1,—as)-

(iii) Let X and Y be two independent non-negative random variables, P(X > -) € RV_,, for
a>0and P(Y >z) =0o(P(X > x)). Then P(X+Y >1z) ~ P(X >z),and P(X+Y > ) €
RV_,,.

Proof. Statement (i) is proven as Proposition 1.5.7 (iii) of [69]. Statement (ii) follows from Lemma
3 (1), Lemma 1, and calculations on p. 278 of [70], which establish a convolution property of finite
sums of regularly varying variables. Its proof is also found in Theorem 1.1 of [71]. Statement (iii)

is proven as Theorem 2.1 of [71]. OJ

The following lemma follows from Proposition 2.2 of [55].
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LEMMA 4. Under Assumption 2,

LEMMA 5. Under Assumption 3,
(i) P(X; > ) € RV_,

(ii) There exist vy and co such that 0 < v < o, 0 < ¢g < 1, EA] = co.
Proof. Statement (1) is shown in [72], [73] and [74]. Statement (ii) is shown on p. 220 of [75]. [J
The following lemma follows from Propositions 2.3 of [55].

LEMMA 6. Suppose a stationary sequence X; satisfies the following conditions:

n Xz v
EP<—<n/k‘)l/a € ) — Vg, (41)

where v, (z,00] = =% in M (0,00]. Forany x > 0,y > 0,

X X; B
Jim 5 ZP( T > T e y) =0. (4.2)

For any sequence l,, such that l,, — oo, l,/k — 0, n/k = o(l,,), and intervals

L=[Lk—1] I =[k+1,2k—0L] ... I = [([n/k] — Dk + 1, [n/k]k — L],

[n/k]

LS X, 1 X,
li E 1— = - F - S =0 4.3
a1 (-5 () ) - 11 (=15 (@) =0
7j=1 ZEIj 161]'
where f is any function of the form f = Y77 | Bpl(w,.o0 for Bn >0, h = 1,...,s, and x;, > 0,

h=1,...,s. Then,

(4.4)

Q.Iv—‘

Z log X(;
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4.7 Proofs of the results of Section 4.3

Proof of Proposition 1 : The result almost follows from Lemma 3 (iii). We must take care of the
absolute value.
Fory > 0, {X +¢ >y} C {X + || > y}. Therefore, P(X + ¢ > y) < P(X + |¢|] > y). By

Lemma 3 (iii),

. P(X+e>y) . P(X +¢e>y)
limsup ————= = limsup

4.1
M T X Sy P X e S ) @

Now, taking any 6 > 0, we obtain {X + ¢ >y} D {X > (1 +0)y,e > —dy}. Thus,
P(X+e>y)>P(X > (1406)y Ple > —dy),

by the independence of X and . Since P(X > -) € RV_, and ¢ > 0 is arbitrary,

lim inf —P(X c>y)

iminf —5—s > 1. (4.2)

Combining (4.1) and (4.2), we obtain lim,— ., P(X +¢ > y)/P(X > y) =1,and P(X +¢ >
) € RV_, by Lemma 1.
Proof of Theorem 1 : Since the Y, are i.i.d random variables with a common tail distribution
Fy € RV_,, by Proposition 1, the consistency follows, e.g., from Theorems 4.1 and 4.2 in [4]. By
Theorem 2 of [19] the consistency of the Hill estimator computed from the Y; implies Fy € RV_,,
and by Proposition 1 Fy € RV_,,
Proof of Theorem 2 : First, {Y;} and {Y;(m)} are stationary because the sequence {¢;} is indepen-

dent of the sequence {X;} and of the approximating sequences {Xi(m)}. Also, for any 7 > 0,

lim lims P((Y(m) Y ‘>) lim lims ”P(‘Xﬁ(m) ’>> 0
im limsu 7| = lim limsup— 7] =0.
m=te see ko \ID(n/k)  b(n/k) m=oe nses ko \ID(n/k) <n/k
So it remains to show that for each m > 1,
(m)
n Y.
Pt S m 4.3). 4,
(b(n/k)e>_>y , as (4.3) (4.3)
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In fact, it suffices to find M such that (4.3) holds for each m > M, since m — oo in Proposition

2.2 of [55].

We first show that the following is true. There exists M such that for each m > M,

Y(m) X-(m) ;
n nP( ;  Te€

EP(W > y> =7 D) > y) — ™ (y, 00], as (4.3).

Take any § > 0. Fory > 0, {Xi(m) +e& > yb(n/k)} D {Xi(m) > (1 4+ 6)yb(n/k), €
—dyb(n/k)}. Therefore, 2P(X\™ + & > yb(n/k)) > 2P(X™ > (1 + 8)yb(n/k))P(e; >

—dyb(n/k)), by the independence of X; and ¢;. By Assumption 2(a), since b(n/k) — oo,
lim inf kP(X( ™ 4g; > yb(n/k)) > v™((1 + 6)y, ool
Therefore, by the right—continuity of 3 — (™ (y, o0],
lim jnf %P(X( ™ 4e > yb(n/k)) > ™ (y, 0ol. (4.4)
Next observe that

(X" + e > yb(n/k)} € {X[™ > (1 - 8)yb(n/k)}

U{lei] > (1= 8)yb(n/k)} U{X[™ > syb(n/k), |e;| > dyb(n/k)}.

By the independence of X; and ¢,

%P(X(m) +e; > yb(n/k)) < %P<Xi(m) > (1= 0)yb(n/k))
+ %P(w > (1= 8)yb(n/k))
+ %P(Xi(m) > dyb(n/k))P(lei| > dyb(n/k))

=: Q1(n,m) + Qa2(n) + Qs(n, m).
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Then, by Assumption 2(a), for each m > 1

lim sup Q1 (n, m) = ™ ((1 = 8)y, 00, limsup Qs(n, m) = ™ (dy, 00] x 0 =0,

n—ro0 n—roo

Observe that

P(leil > (1 = 0)yb(n/k))

lim sup Q2(n) = lim sup ﬁP(XZ- > (1 —0)yb(n/k))

Since by Assumption 5,

lim sup P(le;] > (1 —9)yb(n/k)) _0
n—voo P(X; > (1 —=10)yb(n/k)) ’

we must verify that

limsup ~P(X; > (1 — 8)yb(n/k)) < co.
n—>00 k

Since for 0 < n < (1 —y)d,

4.5)

(X, > (1= d)yb(n/k)} € {X; — X[™ > nb(n/k)} U{X™ > {(1 - 6)y — n}b(n/k)},

we have

limsup ~P(X; > (1 — 8)yb(n/k))
n—>0o k

< limsup %P(XZ- — X™ > pb(n/k)) + lim sup %p(xw > {(1— &)y — ntb(n/k)).

A i

n—r00 n—>00

By Assumption 2 (b), for any 0 < v < 1, there exists M such that for m > M,

lim sup EP(Xi — Xi(m) > nb(n/k)) < 7.
n—>00 k

By Assumption 2 (a),

limsup = P(X™ > {(1 = )y = n}b(n/k)) = v'"((1 = 6)y — n,0].

n—>00
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We therefore conclude that for m > M,

lim sup %P(XZ- > (1= 8)yb(n/k)) <~ + ™ ((1—0)y —n,o00] < oo,
n—roo

concluding the verification of (4.5) and leading to

lim sup %P(Xi(m) + & > yb(n/k)) < v™(y, 00). (4.6)
n—roo

Combining (4.4) and (4.6), we obtain

lim 2 POC™ 2> yhn/R) = 7 (g, o0,

and thus, by Lemma 2 (i1), (iii), we conclude (4.3).
Proof of Corollary 1 : Processes (a) and (c) satisfy Assumption 2, with v = v, and process (b)
with v(z, oo] = 17%/2, The claim follows from Theorem 2 and Lemma 4.

We now describe a decomposition and state two lemmas, which will be used in the proof of

Theorem 3. By iterating X; = A; X; 1 + B; ¢ — j times, for j < 7, X; can be decomposed into two

components
X, = ijz i H;HXJ- 4.7
where
X' =B+ ABi_yi + AiAi 1 Bio+ -+ AA Ajr2Bj,
and

H;_,'_l - AiAifl st AjJrl.
Note that X; is independent of X, f * TIE. .. We will work with the decomposition

J+1°

Y; :Xi—i‘é?i :Xg’i—i‘H;JrlXj—i‘Ei. (48)
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LEMMA 1. Under Assumptions 3 and 5, there exists C' < oo such that for0 <n <z, 0 < <y,

7>0,and s < t,

P(Y;>z,Y, >vy)

k
<PXo>zx—nPXo>y—0—17)+ Cﬁcf)_l + P(eg > 0) + P(gg > 1).

Proof.

P(Y,>xz,Y; >y < P(Xs+e,>2Y,>y,es <n)+ Ples >1n)
<PXo>z—nPXo>y—0—71)

+O§C€)—1+P(€0 > 5) +P(€0 > 77)

The last inequality holds by Lemma 4.1(c¢) of [55].

[

LEMMA 2. Suppose iy < 19 < -+ <z 1y; >0fori=1,...,s and T > 0. Under Assumptions 3
and 5,
(1)

P (g > o i ) = (g > ) (s )

<> (H P(Yy > (n/k)"*y;) P(Yy € ((n/k)"* (ysmgrr — 7). (n/K)"/* (ys—gr + 7)])

s

< [I PO > (n/k)V(y; - T))) 3 P > (k) o)

J=s—q+2 Jj=2
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(ii) Moreover, there exists M = M(yy,...,ys) and K = K(y1,...,ys) such that for n large

enough,

P(<n;531/a T <n/}Z§va > ) - PW};W > ) P<W > )

s— k\s o kN /e ° Pi—ii1
< Kr(s—1)M 1(—) T VEYO”<E> S e

n

Jj=2

Proof. The verification of (i) uses a similar idea to that developed in the proof of Lemma 4.1
of [55], which uses induction. We however work with the observations Y;, which include the
measurement errors ;. We start with proving that (i) holds for s = 2 and then show that (i) also
holds for s = 3. We use the decomposition described as (4.7) and (4.8).

Forx > 0,0<7<y,ands <t

P(Y, > x,Y, > y)
<PYy>a, X+ X+ >y, T X, <7)+ P(IT, X > 7)

<PY,>2)P(X) +e>y—1)+ P, X > 7),

by the independence of Y, and X7 * 4+ &,. Then,

P(Ys>z,Y,>y) < P(Yy>z2)P(Y; >y)+ P(Yo>x)P(Yo € (y — 7,y]) + P, ° X > 7).

Also, observe that

P(Yy > z)P(Y; > y)
< PY,>2)PY; € (y,y+ 7))+ P(Ys>2)P(Y; >y +7)

< PYo>xz)P(Yo € (y,y+7])+ P(Ys >2,Y, >y)+ PAI°Xo > 7).
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Therefore,
P(Y, > 2,%, > y)—=P(Y, > 0)P(Ys > y)| < P(Ye > 2)P(Yy € (y— 7,y + 7)) + P X, > 7).
We now prove the inequality for s = 3 using the result for s = 2. For s <t < u,and z,y, 2z > 0

P(Y; >z Y, >y Y, >z)

<PY,>zY, >y X+ X +e, > 2, I, X, <7) + P X, > 7)
<PYs>2)P(Yy>y)P(Y,>z)+ P(Yo >x)P(Yo > y)P(Yy € (2 — 7, 2])
+P(Yo>z)P(Yo € (y — 7, y))P(Yo > 2 —7)

+ P X > 1) + P(IV' Xy > 7).
Also, observe that

P(Y; > 2)P(Y; > y)P(Y, > 2)
< P(Yy > 2)P(Y; > y)P(Yy € (2,2 +7]) + P(Ys > ) P(Y; > y)P(Y, > 2 +T)
< P(Yo > 2)P(Yo > y)P(Yo € (2,2 + 7))
+P(Y,>2,Y, >y, Y, >2)+ P(Yy>2)P(Yy € (y,y + T)P(Yo > 2 — 7)

+ P(Htsto > 7))+ P(H}HXO > 7).
Therefore,

|P(Ys > 2,Y; >y, Y, > 2)—P(Ys > 2)P(Y; > y)P(Y, > z)|
< P(Yo > 2)P(Yo > y)P(Yo € (z — 7,2+ 7))
+P(Yo>a)P(Yo € (y—Ty+7)P(Yo>2—7)

+ P<H378X0 > 7') + P(H%itXO > 7').
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Replacing Y; by Y;/(n/k)"/*, we conclude (i).
For (ii), we can use Lemma 4.1(b) of [55], since the X satisfy Assumption 3 and P(Y; > -) €

RV_, by Lemma 5 and Proposition 1.

O]

Proof of Theorem 3 : First, Y; satisfies (4.1) since P(Y; > -) € RV_, by Lemma 5 and Proposi-

tion 1. Thus, we conclude (4.1) by Lemma 2. Next, by Lemma 1, for any x > 0,y > 0,

ST PO> (1K), Y > (n/R) )

= % Z {P(Xo > (n/k)"*(z —m)P(Xo > (n/k)"/*(y — 6 — 7))
cht+ Pleg > (n/k)Y*8) + P(gy > (n/k‘)l/o‘n)}
MP<Xo > (n/k)Y (@ =) P(Xo > (n/k)V(y =6 — 7))

k-?
k
S+ M by s (g ves) + ME T piey > (/i

k2

By Lemma 5 (i) and Lemma 2,

ZP(Xo > (n/k)'/*(x =) = va(e —n,00] = (¢ =)™ < oc,

ZP(Xo > (n/k)"/*(y =5 = 7)) = valy =0 = 7,00 = (y =6 = 7)™ < 0.

Also, by Assumption 5,

n

k

Pleo > (n/k)V28) P(Xy > (n/k)/26)
P(Xo > (n/k)*d) P(Xo > (n/k)"/®)

%p(go > (n/k)°n) — 0.

P(gg > (n/k)/*5) = —S0x6 =0,

Since Z?Zl c%_l < 00, we conclude (4.2). We also conclude that Y; satisfies (4.3) by Lemma 2 (i)

and Lemma 4.2 of [55]. Therefore, we conclude the claim by Lemma 6.
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Proof of Theorem 4 : We will show that

1 n
. > Ly oy = v, (4.9)

i=1

—Q

where v(z, 00] = ;2~* and

~ ED{'m,
E 27:1 D§])7Tj

To verify (4.9), we follow, up to (4.10), the argument developed in the proof of Proposition 5.1
of [55]. Following (4.10), we handle the difference caused by the additive error and verify that the
difference is negligible under Assumption 5.
To show (4.9), it suffices to prove the convergence of Laplace transforms, that is, for f €
C (0,00,
Ee~ VkXio f(Yi/b(n/k) _y o—v(f)

Define for n > 0,

3

Nér) = 1[Vl=r]> r= 1,...,m.
=0

By the conditional independence of the { X} given {V;} and the independence between { X} and
{ei},

Ee Vk2Xioi Wy, o/ () — Fe=U/k 20 f(Yi/b(n/k))

B(E SRS A Y/b(n/k))“/’ V)

(e
E HE —1/kf(Y:/b(n/k) )|V1,...,Vn)>

1

Eﬁ </Ooo€ W/EP(Y /b(n/k) € dy|V = m)w

r=1

Note that N,\" /n L, 9,, shown as (5.6) in the proof of Proposition 5.1 of [55].
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Since 1 —e t <t forallt € R,

N

(/OOO e TORP(Y [b(n/k) € dy|V = T>)

n

() 2P(Y/b(n/k) € dy|V = r>)N’§”.

v

n

< fW

IW)2 for some ¢, which satisfies |¢| < =

Also, since 1 — e fW/k = fT + lem2e(L2

( /0 IO PV b(n k) € dy|V — 7“)) -

< (1 Jo @) eP(Y/b(n/k) Gdy!V—r))N()'

n

Forr =1,
ZP(Y/b(n/k) € |V = 1) % v,

since Fy € RV_,,. Therefore,
o9 N,Sl)
( / e TWRP(Y/b(n/k) € dy|V = 7«)) Ly e~0vald),
0
For2 <r <m,y >0,

%P(Y > b(n/k)y|V = r)
_ P(Y > b(n/k)ylV =r)

( S (1= e W/ (Y/b(n/k:)edyw_r))w
(-

Fi(b(n/k))
< P(X > (1- 5)b(n/k:)y|Y =7r)+ P(e > db(n/k)y|V =r)
= Fib(n/R)
_ F.((1- §)b(n/l_€)y) + F.(e > db(n/k)y)
_ F (/b)) _
_ R 0)b(n/E)y) FA((1— 5)bln/R)y) | e > bn/K)y) Fy(Sbn/
Fi((1—=96)b(n/k)y)  Fi(b(n/k)) F(0b(n/k)y)  Fi(b(n/k
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by Assumptions 4, 5. Therefore,

/ F) T PY/b(n/k) € dy|V =7) < IIfH/ PY/b(n/k) € dy|V =)

= ISP > b R)elV = 1) =0,

where ¢ := inf{supp(f)} > 0 and || f|| := sup g, f, concluding

o0 N
</ e TWRP(Y /b(n/k) € dy|V = T)) i (e70r =1.
0
N
Since [T, (fooo e FW/EP(Y/b(n/k) € dy|V = r)) is bounded, it is uniformly integrable,
which leads to (4.9). The weak convergence (4.9) implies Y{;)/b(n/k) R 6,Y*, whose proof
is similar to that described in Proposition 2.1 of [21]. Following the same steps developed in

Propositions 2.2, 2.3, and 2.4 of [21], we conclude (4.2).
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Chapter 5
Hill-type estimators applied to error contaminated
data: large sample normality and confidence

intervals

5.1 Introduction

Heavy-tailed phenomena have been found in a variety of fields, including finance, insurance,
computer network traffic and geophysics. The theory of regular variation provides a mathematical
framework for their analysis. Hundreds of papers have been written on the subject, and it is difficult
to present an unbiased selection of the most important contributions, so we merely cite here the
book of [4], and discuss the most closely related references, as the presentation progresses. This
work is concerned with the estimation of the tail index, «, of a heavy-tailed distribution from
observations contaminated by measurement or other errors. We investigate asymptotic and finite
sample properties of the Hill estimator, which is the most commonly used tool for inference on
«, and of the harmonic moment estimator (HME), which is a class of estimators related to and
generalizing the Hill estimator.

Suppose { X;,7 > 1} is a sequence of independent, nonnegative random variables with common
one dimensional marginal distribution function F', which has regularly varying tail probabilities,
ie.

Fz)=1—-F(z) =P(X; >z) =2 “L(x), a>0, (5.1)

where L is a slowly varying function. The class of distributions with tail behavior (5.1) coincides

with the maximum domain of attraction of the Fréchet distribution, one of the three basic types of
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extreme value distributions. The Hill estimator is defined as

k—1
X(i)
H,, = log =@
" ; X

=

with the convention that X ;) is the i—th largest order statistic. Throughout the paper, we assume
that

n—>oo,k;—>oo,ﬁ—>0. (5.2)
n

The Hill estimator is often used after an examination of the Hill plot, which is also a tool for
detecting the presence of heavy tails. The Hill plot and the Hill estimator have been extensively
studied, and are introduced in all monographs on extreme value theory, see e.g. [16], [76], [2], [4]
and [77]. Considerable research has been done to establish conditions for the asymptotic normality
of the Hill estimator. If only the regular variation (5.1) is assumed, asymptotic normality holds
with random centering. Several authors formulated conditions on F', which permit replacing the
random centering by a deterministic one. The first result of this type was established by [78]
for slowly varying functions, L, which converge to a constant at a polynomial rate. [79] showed
that the estimator is asymptotically normal for any regularly varying function satisfying the von
Mises condition, their centering, however, depends on the sample size n. To show that the Hill
estimator centered by the exponent a~! is asymptotically normal, second—order regular variation,
a refinement of the concept of regular variation, is assumed, see [39], [40], [41], and [42]. The
approach in Section 9.1 of [4], which is based on tail empirical processes, also requires the second—
order regular variation. [80] also use the tail empirical process to study asymptotic normality of the
Hill estimator for long memory stochastic volatility models assuming a second order condition.

The HME was introduced by [81] to provide a broad class of estimators, which, in a sense,
extend the Hill estimator and have desirable robustness properties against large outliers. Consis-
tency and asymptotic normality of the HME was established by [81] for the Pareto distribution

and by [82] under a second—order regular variation condition. The HME was also studied, under a
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different name, by [83], [84] and [85]. The HME is defined in [82] by

k p-11"t
lz Xy 1

=1

@ ._ 1
kn * ﬁ_l

where § > 0, 8 # 1, is a tuning parameter. For § = 1, the HME is defined by HST)L =
limg_,y H ,iﬁ Tz We therefore obtain the Hill estimator as the limit of the HME as 8 — 1.

We study the Hill estimator and the HME based on observations contaminated by measure-
ment errors, or other errors whose origin is either difficult to understand and model or to quantify

precisely. We thus assume that we observe
Yi=Xi+e, 1<i<n,

where the ¢; are 1.1.d. random errors and independent of the X;. The Hill estimator computed from

the observations Y; is then

In our context, H ks H ,5,5 n) are the estimators that can be actually used since what we observe are
the Y;, not the X satisfying (5.1). The consistency of the Hill estimator H 1 has been established
for a class of error distributions whose tail is lighter than the tail of the X, in [86]. In this paper, we
want to find conditions on the errors under which the asymptotic normality of H R H ,EB TZ continues
to hold. We start with conditions on the X satisfying (5.1), which implies the asymptotic normal-
ity with random centering. We then consider the second—order regular variation condition and

the exact Pareto distribution to derive the asymptotic normality with a constant centering. Some

specific questions we seek to answer are as follows. What must we assume about the errors ¢; to
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obtain asymptotic normality with random centering? What additional assumptions are needed for
the deterministic centering? In either case, are any additional assumptions on the rate of %k, beyond
(5.2), needed? Which characteristics of the distribution of the ; enter into these assumptions? In
finite samples, how “large", and in what sense, can the ¢; be for the asymptotic confidence intervals
to remain useful? It is hoped that the research we present answers such questions in a useful and
informative way.

The problem of estimation in the presence of errors has received considerable attention. For
example, [59], [60], [61], and [62] study estimation of the end-point of data observed with addi-
tive measurement errors. While they all show asymptotic normality in the presence of Gaussian
measurement errors, in our case we assume a broader class of error distributions, which includes
the normal distribution. This is due to the fact that the heavy-tailed X; are "much larger" random
variables than those with a finite end-point. Most closely related is the work of [87], in which the
asymptotic normality of the Hill estimator for round—off data is established. [87] assume that the
observations have the form Y; = 10_’[1OZU[1/ “], where Uj is uniform on [0, 1] and [-] denotes the

1/a

integer part. Such data can be written in the form of Y; = X +¢;, where X; = U, */" has the exact

Pareto distribution and £; = 10~ [10le‘_1/ “T— Ui_l/ “ is a bounded error of a specific form. We con-
sider broader classes for both the X; and the ; under the assumption that ¢; is independent of X,
reflecting our treatment of the €; as a measurement error. We use a different asymptotic approach.
We establish weak convergence of suitable empirical tail processes for observations contaminated
by general errors. Asymptotic normality then follows easily from these general results, which are
also of independent interest.

The paper is organized as follows. Assumptions and main theoretical results are stated in
Section 5.2. In Section 5.3, we present simulation studies examining finite sample properties of
confidence intervals based on the asymptotic normal distribution, focusing on the impact of errors.
This numerical investigation is followed in Section 5.4 by an application to the interarrival times

of internet traffic anomalies. The proofs are presented in Section 5.6 after some preparation in

Section 5.5.
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5.2 Assumptions and main asymptotic results

Recall that the observations are Y; = X; + ¢;, 1 <17 < n. We first state the assumptions on the
unobservable random variables X;. Recall that a function U : R, — R, is regularly varying with
index —«, a > 0, denoted U € RV_,, if

lim Ultx)
A% T

=z~ foranyx > 0.

ASSUMPTION 1. [Regular variation] The X; are nonnegative, independent random variables with

common distribution function Fy such that F'y = P(X; > -) € RV_,,.

As noted in the Introduction, even without measurement errors, the assumption of regular vari-
ation implies asymptotic normality of the Hill estimator only with random centering. To conduct
inference, in particular to obtain useful confidence intervals, one needs a result with centering by

1/a. For this, second—order regular variation is typically assumed.

ASSUMPTION 2. [Second—order regular variation (2RV)] The X; are nonnegative, independent
random variables with common distribution function Fx, which is second—order (—c«, p) regularly
varying (written Fy € 2RV (—a,p)), i.e. there exists a positive function g € RV, such that

g(t) = 0,ast — oo, and fora > 0, p <0, K # 0.

1 Fx(t$) —a\ _ L _al'p—l
tggoﬁ(ﬁx(t) -z )—H(x).—Kx , x> 0. 5.1

Note that Assumption 2 implies Assumption 1. Observe, however, that condition (5.1) does
not hold if the X; have the exact Pareto distribution, i.e. P(X; > x) = z~“. In this case one
would need to allow K = 0, and would thus lose any information contained in the function g. The
case of exact Pareto tails should however be included in any reasonable theory for heavy—tailed

observations. We do so by introducing a parallel set of assumptions.

ASSUMPTION 3. [Pareto] The X; are nonnegative, independent random variables with a common

distribution function Fx such that Fx(r) = P(X; > x) =27 2 > 1, a > 0.
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The function ¢ in (5.1) can be interpreted as the convergence rate of Fy (tx)/Fx(t) to 7. It

has been used to restrict the sequence k = k(n). [39], [40], [41], and [42] assume that
VEg(b(n/k)) =0, (5.2)

along with the second—order regular variation for p < 0. In (5.2), and throughout the paper, b(+) is

the quantile function, defined by P(X; > b(t)) = ¢t '. It has the representation
b(t) =tV Ly (1), (5.3)

where L is a slowly varying function. The condition (5.2) is sufficient in our setting under the
additional assumption p > —1. To cover the 2RV case with p < —1 and the pure Pareto case, we

consider the following condition:

\/E 0
bn/k)

Using (5.3), it is easy to verify that (5.2) implies k = o(n=2¢/(2=20) and (5.4) implies k =

(5.4)

o(n?/(@+2))_ These two rates agree at the phase transition point p = —1. We use Assumption 4 in

the 2RV case and Assumption 5 in the Pareto case.
ASSUMPTION 4. [2RV] The sequence k = k(n) satisfies (5.2) if p > —1 and (5.4) if p < —1.
ASSUMPTION 5. [Pareto] The sequence k = k(n) satisfies (5.4).

We now turn to the assumptions on the measurement errors £;. To get the consistency of the Hill
estimator, the only assumption on the errors is that they have lighter tails than X, as was assumed
in [86]. We will see that this assumption is also sufficient to establish the asymptotic normality of

the Hill estimator with random centering.

ASSUMPTION 6. The ¢; are i.i.d. with tails satisfying

P(le| > z) = o(P(X > x)), as x — oc.
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The sequence {¢;} is independent of the sequence { X }.

To obtain the asymptotic normality of the Hill estimator and the HME with a constant centering,
a stronger but still broadly applicable assumption on the errors is needed; the errors must have
lighter tails than a power function. Assumption 7 is needed when we assume the second—order

regular variation, and Assumption 8 is suitable for the Pareto distribution.

ASSUMPTION 7. [2RV] The ¢; satisfy Assumption 6 and
P(le] > ) = o(xz™"), as & — o0, (5.5)

for some xk > o + max(—p, 1).

ASSUMPTION 8. [Pareto] The ¢; satisfy Assumption 6 and (5.5) for some k > o + 1.

We now proceed to define the function spaces in which our functional convergence results hold.
We work in D[0, o), the Skorokhod space of real-valued, right—continuous functions on [0, o)
with finite left limits existing on (0, co). For any s > 0, the Skorokhod metric in D|0, s] is defined
by

ds(z,y) = nf ||A—ell; V]lz —yoAlls, @y€D[0s],

where A = {\: [0,s] — [0,s], A(0) =0, A(s) = s, A(:) is continuous, strictly increasing}, and

| - ||s is the supremum norm on [0, s]. The Skorokhod metric on D0, 00) is then defined by

doo(,y) = / e *(ds(rsx,rsy) A 1)ds, z,y € D|0,00),
0

where 7z, rsy are the restrictions of z,y € D|0, c0) to the interval [0, s]. Given a sequence of
random processes, X,,,n > 0, in D0, 00), we denote weak convergence of X, to X, by X,, = Xj.

We also use = to denote weak convergence of random variables.
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We define two "increasingly empirical" measures, with only the last one being observable. We

set
: il = il
Up = — /b(n/k),  Vn = 7 ; )
2 Do F 2D

with b(+) defined in (5.3). The random measures v,,, 7/, and all other Radon measures of this type,

are defined on (0, co] compactified at co. Thus, for s > 0, we can define the random processes

W(s) = \/E(Vn(s_l/av oo — EVn(S_l/aa o)),

—

W(s) = VE(@ (s, 00] — Eiy (s, oc]).

We first investigate the asymptotic normality of the tail empirical processes W,,, W,,, then study
B)

.- Theorem 1

when it implies the asymptotic normality of the Hill estimator H %n and the HME H ,g
shows that even very general errors specified in Assumption 6 do not impact the asymptotic be-
havior of the tail empirical processes W,, nor W,,: the limit distributions of these statistics based

on the Y; are the same as those of the corresponding statistics based on the unobservable X;.

THEOREM 1. Under Assumptions 1 and 6,
W, =W in DI0, c0), (5.6)

and

—

W, = W in D[0, 00), (5.7)
where W is the standard Brownian motion on [0, 00).

The Hill estimator can be written as an integral of the tail empirical measure 7, i.e.

~ 1 n e
Hyp :/1 EZIYZ./Y(M(S,OO]S_ldS :/1 ﬁn(s,oo]s_lds.
i=1
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Similarly, the HME can be expressed as a transformed integral of the tail empirical measure 7,,,
i.e.

R | L R E R N e

where

T - 8 LI (Yw\
Mk,n Z:/ Vn(S,OO]S dszm E;(%) —1]1.

1
The order statistics used to compute the Hill estimator and the HME must be positive. In the
following, all statements are tacitly assumed to hold conditional on the event {Y{;) > 0}, where &

is the count of the largest order statistics in the definition of Vé| R H lgﬁ 72

THEOREM 2. Suppose that Assumptions 1 and 6 hold. If « > 0 and f > 1 — /2,

0 00 _ 1 1 —1
Vk (/ (s, 00]s Pds —/ %Fy(8)85d5> = —/ W(s)sﬂT’lds.
1 @ Jo

Yir)

By putting 5 = 1 in Theorem 2 we obtain the asymptotic normality of the Hill estimator with
random centering, which is stated as Corollary 1 (a). Similarly, the asymptotic behavior of M ,§€3

follows directly from Theorem 2, which is presented in Corollary 1 (b).

COROLLARY 1. Under the Assumptions of Theorem 2,

(a)
~ “n - ds 1! ds
\/E (Hk,n — /Y(k) EFY(S)?> = a/o W(S)?,

(b) if B # 1, then

— ®n d 1 /1 -1
Vi [ M) —/ EFy(s)—S = —/ W (s)s = Lds.
’ Yoo K s8 a Jo

We emphasize that Theorem 1, Theorem 2, and Corollary 1 hold either under Assumption 2 or
Assumption 3, since both imply Assumption 1.
The convergence in Theorem 2 requires random centering with f;; n /kFy(s)s~?ds, which

makes Corollary 1 of limited practical use, but it provides a starting point for improvements. To
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replace it with a constant centering, we need the assumption of second—order regular variation
(or of exact Pareto tails) and the stronger assumptions on the errors. In the following theorem, we
establish the asymptotic normality of the integral of the tail empirical measure, floo (s, 00]sPds,

with a constant centering.

THEOREM 3. Suppose either Assumptions 2, 4, and 7 (2RV case), or Assumptions 3, 5, and 8

(Pareto case) hold. If « > 0 and 3 > 1 — /2, then

(S w5 ) = 8 (0 g

The asymptotic normality of the Hill estimator H i follows easily from Theorem 3. To obtain
the asymptotic normality of the HME H ,iﬁ n) we must apply Theorem 3 and the delta method. The

corresponding results are stated in the following corollary.

COROLLARY 2. Under the assumptions of Theorem 3,

(a)
vk (ﬁk,n _ é) = N(0,1/a?),

(b) if B # 1, then

@([(1 - BM) +1] - %ﬁ_l) -h (0’ <a+ﬁf(11>2_<f):25—2>)

and

73(8) 1 (Of—Fﬁ—l)Q
@(H - 5) =N (0’ a3(a+2ﬁ—2)) |

We note that the results in Corollary 2 are the same as for observations without measurement
errors; see Theorem 3.2.5 of [2] and Theorem 2 of [82]. The effect of relatively small errors ¢;
is thus asymptotically negligible. We also remark that Corollary 2 (a) cannot be easily proven by
verifying the conditions in Theorem 3.2.5 of [2]. If the X, are exactly Pareto or second—order

regularly varying, it is not clear if the Y; are in any of these classes. Proposition 1 is a related

124



result which plays an important role in the proof of Theorem 3, which is a general new result of
independent interest.

In the next two sections, we explore how small the errors must be in finite samples to have a
practically negligible effect on confidence interval inference. Then, we present preliminary results
in Section 5.5, followed by the proof of the main results in Section 5.6. Supplementary tables are

provided in Appendix B.

5.3 Impact of errors on confidence intervals

We investigate the effect of error contaminations on confidence intervals constructed using the
more commonly used Hill estimator. The effect of Pareto errors on the harmonic moment estimator
(HME) is studied in Section 5 of [82], in a more limited, but informative, simulation study.

The asymptotic level 1 — p confidence interval for a~! implied by Corollary 2 (a) is

ERPP S S 1 (5.1)
a PPavE a Pavk) '

L= H kn» and z, is the upper quantile of the standard normal distribution defined by

where &~
®(z,) = 1 — g. The above interval is implemented by the function hi11l of the R package evir,
with the default asymptotic coverage 1 — p = 0.95. According to Corollary 2 (a), it is asymptot-
ically valid even if the observations are contaminated by fairly general errors. In this section, we
investigate the impact of these errors on the empirical coverage probability of the interval (5.1). To
obtain interval (5.1), the number of upper order statistics, %, has to be chosen. We consider a range
of values of £ for a given sample size n. We also employ a few methods of selecting k, which have
been proposed.

The design of our simulation study is as follows. We generate observations Y; = X; +¢;, i =
1,2,...,n, where {X;} and {¢;} are independent sets of random variables. For each model/error

pair, we compute 1000 confidence intervals and report the fraction of the intervals that contain the
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reciprocal of the true tail index. We consider sample size n = 500, which is representative of the
sample sizes occurring in the application presented in Section 5.4.

We use two models for the X;, both satisfying the condition of Corollary 2 (a) and having
the true tail index o = 2. The first is the standard Pareto distribution, which is not second order
regularly varying, and the second is a distribution in the Hall/Weiss class. The Hall/Weiss class
provides examples of the second—order regular variation, see p. 142 of [88]. Model 2 satisfies
Assumption 2 with g(t) = ¢ 5.

Model 1 [Pareto] The X, are i.i.d. random variables, which follow a Pareto distribution with
a=2,PX;>z)=272 z>1.

Model 2 [2RV] The X; are i.i.d. random variables, which follow the Hall/Weiss class with o = 2
and p = =5, P(X; > z) =2 2(1+27%)/2, > 1.

We consider four different distributions for the errors ;. They all satisfy Assumptions 7 and 8
(with o = 2), since for each of them P(|¢| > z) = o(x™"), for some 7 < k < 8.

Error 1 [Normal] The ¢; are i.i.d. random variables, drawn from a normal distribution with mean
0 and standard deviation o yxormai-

Error 2 [scaled 3] The ¢; are i.i.d. random variables, drawn from a scaled ¢-distribution with 8
degrees of freedom.

Error 3 [GPD] The ¢; are i.i.d. random variables, drawn from a generalized Pareto distribution,
P(le| > 2) = (1 + &(2 — p) /o) /¢, with location i = 0, shape ¢ = 1/8, and scale ogpp.

Error 4 [Uniform]| The ¢; are i.i.d. random variables, drawn from the uniform distribution on the
interval [—a, a], a > 0.

The scale parameters for each error distribution vary. They are determined by the ratio of the
standard deviation of error distribution (error SD) to the standard deviation of underlying process
(model SD). For example, if the ratio is 0.1 for Model 1 whose standard deviation is 2.44, then
O Normal = 0.244 for Error 1, the corresponding scale for Error 2 is 0.183, ogpp = 0.131 for Error
3, and a for Error 4 is 0.423. We consider several values of the ratio and then obtain the confidence

interval (5.1) for each of them.
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We first examine the robustness of coverage probabilities to the errors in finite samples, con-
sidering a wide range of k for a given sample size n. Tables B.1 and B.2 in Section B.1 report
coverage probabilities of the approximate 95% confidence intervals for the Pareto model, with
n = 500 and n = 2000, respectively. We first observe that the coverage probabilities for samples
generated from the Pareto distribution without the errors are close to the target coverage, 95%, for
large £’s. This is found in the row with the ratio O in each table. This result is in agreement with the
typical behavior of the Hill plot showing stable, unbiased estimates for large & when its underlying
distribution is exactly a Pareto distribution. Second, the coverage overall decreases with the ratio,
but this decrease is relatively flat over a range of the ratio from 0.01 to 0.1, for all the error types.
In particular, for n = 2000, the coverage is surprisingly acceptable for a wide range of values of
k; in many cases it is close to the target of 95%. On the other hand, the coverage seems sensitive
to relatively large errors with the ratio more than 10 percent. An interesting observation is that,
in the presence of errors, the coverage gets worse as k gets larger. This result is consistent with
Corollary 2 (a), which implies that the Hill estimator obtains the asymptotic normality if % satisfies
Assumption 5; k goes to infinity with n, but not too fast. The reduction in the coverage probability
caused by large k is not observed for data contaminated by relatively small errors. Finally, the
impact on the coverage probability overall does not depend on the type of the error distribution. In
particular, for the small ratios, the difference that the error type makes looks negligible.

Tables B.3 and B.4 in Section B.1 report coverage probabilities of the asymptotic 95% confi-
dence intervals for the 2RV model, with n = 500 and n = 2000, respectively. Unlike the Pareto
case, the 2RV model does not achieve the target coverage, 95%, even if there are no errors. This
may be due to n not being sufficiently large. The errors with small ratio, however, have only a
small impact on the coverage. It can be also seen that the impact on the coverage probability for
small ratio does not depend on the error type. Finally, we see that k cannot increase too fast,
indirectly confirming the need for Assumption 4.

We have found so far that the coverage can achieve the target probability for some properly

chosen £ or cannot achieve it for any k, given a finite sample. Even if we can identify some range
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of k for which the coverage approaches the target, the question still remains of how to select an
optimal k in practice. There are various methods for choosing it. A commonly used approach
is based on the minimization of the asymptotic mean squared error (AMSE), see e.g. [89], [66],
[90], and [91]. These methods are however based on asymptotic arguments, which brings up a
question of how well they perform in finite samples. [92] suggest a data driven method minimizing
a penalty function of the distance between empirical quantiles and theoretical quantiles to improve
the performance in finite samples. There are also heuristic methods, mainly trying to find the
region where the Hill plot, a plot of estimates of the tail index against k£, becomes more stable,
see [42].

To provide practically useful information on choosing a data—driven cut—off &, we examined
four methods based on different underlying ideas of selecting the optimal k. The first threshold
selection method, introduced by [66], uses a bootstrap procedure to find the £ which minimizes
the AMSE. This value is computed by the function hall of the R package tea. (We also consid-
ered a few related methods based on the minimization of the AMSE argument, but they all gave
disappointing results. The coverage that the Hall method produced was always among the best of
these methods.) The second method, proposed by [92], is based on minimizing a penalty function
of the distance between the observed quantile and the fitted Pareto type tail. This distance is in the
quantile dimension, not in the probability dimension like the Kolmogorov—Smirnov distance. This
method is suggested to remedy the behavior that a small change in probabilities makes a large dif-
ference in quantiles. We use two different penalty functions: the supremum of the absolute distance
(KS), and the mean absolute distance (MAD). Both are implemented by the function mindist
of the R package tea. The final method is an Eye—Ball technique whose automatic algorithm is
developed by [92] and is carried out by the function eye of the R package tea. This heuristic
method attempts to find a stable portion of the Hill plot and obtain the k£ at which a considerable
drop in the variance occurs, as k increases.

Tables 5.1 and 5.2 report coverage probabilities and the average optimal k selected using the

four different methods. For the Pareto model, the coverage decreases with the ratio for all the
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Table 5.1: Proportion (in percent) of the approximate 95% confidence intervals including 1/« and the
average optimal % in parentheses, for n = 500 and the Pareto model. The Hall, MAD, KS, and Eye—Ball
methods are used to choose the optimal k. The target coverage is 95 percent.

Method Error Error SD/Model SD Ratio
Type 0 0.01 0.02 0.05 0.1 0.2 0.3
889 876 884 889 838 775 T1.2
Normal
(283) (311) (330) (329) (301) (256) (222)
88.7 88.0 88.6 889 832 776 689
scaled g
Hall (283) (321) (337) (322) (289) (242) (201)
GPD 894 889 88.8 887 837 769 727
(285) (322) (340) (320) (283) (220) (169)
Uniform 89.1 882 883 879 80.1 731 613
(284) (@308) (329) (329) (301) (265) (2398)
Normal 97.0 974 968 976 968 974 96.2
(218) (214) (214) (198) ((147) (92) (68)
97.1 972 974 978 972 972 972
scaled tg
MAD (219) (219) (214) (00) (156) (107) (79
GPD 971 972 980 982 97.8 982 98.0
(219) (216) (214) (191) (145 OS5 77
Uniform 97.0 974 964 962 970 948 93.6
(218) (219) (220) (195) (151) (99) (70)
Normal 834 822 840 812 772 750 67.6
68) (67) 68 (77 3 (@83) (79
scaled tg 83.6 836 835 842 817 714 719
KS (68) (67) (69 (71) (90) (85 (82
GPD 83.6 844 838 838 824 779 751
(68) (68) (66) (72) (83) (74 (62)
Uniform 834 840 820 820 786 694 63.6
68) (70) (©69) (®0) (92) (103) (101)
Normal 953 951 948 952 948 932 90.5
¢ (L) (¢51)  (51) (51  (51H GO
scaled £ 953 954 955 953 935 9277 882
Eye (51) (1) (51) (S1) (51) (50) (50)
GPD 953 952 949 952 935 917 86.0
51 G GShH G (S0 (50)  (49)
. 953 951 950 956 943 936 920
Uniform

GH GH  GH  GhH G G G
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Table 5.2: Proportion (in percent) of the approximate 95% confidence intervals including 1/« and the
average optimal k in parentheses, for n = 500 and the 2RV model. The Hall, MAD, KS, and Eye-Ball
methods are used to choose the optimal k. The target coverage is 95 percent.

Method Error Error SD/Model SD Ratio
Type 0 0.01 0.02 0.05 0.1 0.2 0.3

753 756 750 129 88 372 347

Normal — (1ey (119) (142) (395) (416) (326) (250)
758 753 744 290 08 291 374
scaled g
Hall (118) (119) (130) (339) (429) (366) (293)
opp P8 762 725 283 19 176 383
(118) (119) (150) (340) (422) (368) (284)
Uniform 136 752 740 338 264 350 303
(118) (119) (129) (316) (410) (314) (256)
Normal 187 182 185 163 75 366 708
(222) (221) (221) (228) (304) (150) (90)
waleds, 187 189 88 170 85 210 5L7
MAD (222) (221) (222) (223) (311) (200) (121)
cpp 187 183 188 163 21 222 662
(222) (221) (221) (223) (270) (203) (127)
Uniform 187 184 181 161 111 406 60.2
(222) (222) (221) (240) (282) (134) (82)
66.6 666 670 664 567 525 53.0
Normal
(104) (102) (104) (104) (152) (160) (117)
666 669 668 670 663 539 53.0
scaled g
KS (104) (103) (105) (100) (117) (175) (136)
Gpp 006 664 675 670 656 568 5838
(104) (103) (104) (101) (109) (155) (115)
Uniform 666 671 668 663 539 510 484
(104) (102) (102) (107) (169) (166) (140)
Norma] 030 939 034 937 026 887 778
(51) (1) (G S S (51)  (50)
waled, 930 939 946 939 OL9 OLI 833
Eye (51) (1) (1 S B (50)  (50)
opp 936 938 938 039 025 881 823
(1) (51) (1) (D (1)  (50)  (50)
. 93.6 937 938 940 927 904 829
Uniform

GH GH  GH  GhH G G G
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selection methods as shown in Table 5.1; again, a small ratio has a relatively small impact on
the coverage. The MAD and Eye—Ball methods achieve the target coverage, 95%, when the un-
derlying process is not contaminated by the errors. These methods also are less sensitive to the
ratio increase. For the Pareto model, the MAD approach generally leads to coverage probabilities
which are higher than 95%. However, as shown in Table 5.2, it gives very low coverage for the
2RV model. It has an unexpected, difficult to explain, property of the coverage increasing with the
ratio. The Hall method also shows some fluctuation over the ratio, but this fluctuation is not found
when the ratio is 0.01 and 0.02. The other methods also exhibit this insensitivity for small ratios.
The Eye—Ball method seems to work well for the Pareto and 2RV models since it gives relatively
high values of coverage. Its average optimal k also falls into the optimal range which gives high

values of coverage in Tables B.1 and B.3 in Section B.1.
The main conclusions of the above detailed discussion are as follows.
1. The Eye—Ball method of selecting & is recommended for both the Pareto and 2RV models.

2. For the heavy—tailed X; with the tail index o = 2, the coverage probability of the approx-
imate 95% confidence interval containing the true index is robust to errors whose SD does

not exceed 2 percent of model SD.

3. There is no clear evidence that the coverage probability depends on the error distribution. In-
stead, the coverage is mainly affected by how large the €; are compared to the X;, regardless

of the threshold selection methods.

We conclude this section with a discussion of the confidence interval for o obtained via an

application of the delta method. Corollary 2 (a) and the delta method imply that

VE(H; ) — ) = N(0,02).
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Thus, setting & = H k. ;, we get the approximate level 1 — p confidence interval for « of the form

- a a
(Q_Zp/2ﬁ7 Oé‘i‘Zp/Qﬁ) . (52)

One might want to use the interval (5.2) rather than (5.1) to make inference on «, but care is needed
in finite samples. Since the delta method is based on an additional asymptotic approximation,
confidence intervals derived from it could provide a poor approximation for small sample sizes.
We have performed a simulation study for the interval (5.2), similar to the one described earlier in
this section. We have found that it almost always gives coverage probability worse than the interval
(5.1). Therefore, when working with sample sizes similar to n = 500, we recommend using the

reciprocals of the bounds of the interval (5.1).

5.4 Application to Internet2 anomalous traffic

In this section, we present an application to interarrival times of anomalies in a backbone
internet network, Internet2. These times are available only with round—off errors. We provide only
minimal background; more details are presented in [67], a paper which to some extent motivates
the present research. We describe results of confidence interval inference for the tail index of
these interarrival times. We restrict ourselves to confidence intervals based on the Hill estimator,
the results for the HME are similar. We then examine the robustness of the Hill estimator to the
round-off errors by a numerical experiment.

The Internet2 network consists of 14 two—directional links connecting major cities in the United
States, as shown in Figure 4.3. A traffic disruption in any of these links can slow down service in
the whole country. For this reason, anomalies in the internet traffic have been extensively studied.
An anomaly is a time and space confined traffic whose volume is much higher than typical. [67]
developed an anomaly extraction algorithm. [86] and [93] argue that the interarrival times have
heavy tails. The anomaly extraction algorithm can identify the arrival time of an anomaly in

any unidirectional link only in a resolution of five minutes. While network measurement devices
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operate at much higher frequencies, such a rough resolution is due to the limitation of the anomaly
extraction algorithm. It is based on the Fourier transform, which eliminates noise by retaining only
low frequency harmonics. [67] created a database for the time period of 50 weeks, starting October
16, 2005. A question we seek to answer in this section is if the round—off error has a negligible
or a non—negligible impact on the confidence intervals for the tail index of the interarrival times.
Additionally, we would like to see if the various data—driven methods of selecting £, discussed in
Section 5.3 lead to overlapping confidence intervals, or if they suggest different ranges of o. These
conclusions could potentially be different for each of the 28 unidirectional links. We index these
links by integers from 1 to 28 since it is not important for the purpose of our investigation to which
nodes they correspond.

Tables 5.3 and 5.4 report tail index estimates and 95% confidence intervals for each link, ob-
tained using the four methods of selecting k discussed in Section 5.3. We first observe that all
methods, except for the KS method, generally produce similar point estimates for each link. The
interval estimates from the KS method are generally wider. In particular, some links have the
infinity as the upper end. This is manually put to deal with a negative lower end of the of the
interval (5.1). We now check whether intervals from the four methods overlap. We find 20 links
with a nonempty intersection of the four intervals and 8 links with an empty intersection. The
intersection does not have any interpretation in the usual frequentist sense of [94], but it provides,
so to say, the safest region in an engineering sense, for the 20 links for which it is nonempty. For
the links with the empty intersection, or even for all links, we recommend using the confidence
interval produced from the Eye—Ball method, which can be considered the most reliable estimate
based on the simulation result of Section 5.3.

In the context of this paper, each interarrival time Y;, computed by the algorithm, is treated
as a “true" interarrival time X; measured with a round—off error, i.e. Y; = X, + ;. The unob-
served X; is not rigorously defined, but we can think of it as the time separation based on a more
precise algorithm, or just a different algorithm. In the latter case, the analysis that follows pro-

vides information about the uncertainty in the estimation of o caused by the choice of a specific
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Table 5.3: Point estimates and 95% confidence intervals for the tail index of the anomalies interarrival
times. The link index along with the sample size are displayed. The estimates are obtained using the Hall,
MAD, KS, and Eye-Ball methods. The intersection of the four intervals is shown if it is nonempty, an empty

intersection is indicated by ().

Link 1 (n = 405) 2 (n = 247) 3 (n = 362) 4 (n = 454)
Hall 1.70 (1.3,24) 1.50 (1.1,2.5) 1.63 (1.3,2.1) 1.64 (1.3,2.1)
MAD 143 (1.2,1.8) 121 (1.0,1.6) 151 (1.1,2.3) 1.28 (0.9,2.6)
KS 319 (1.3,00) 3.06 (1.6,24.8) 4.66 (2.0,c0) 2.08 (1.2,8.0)
Eye 1.79 (1.4,24) 123 (1.0,1.8) 160 (1.3,2.2) 159 (1.3,2.1)
Overlap (1.4,1.8) (1.6,1.6) (2.0,2.1) (1.3,2.1)
5 (n = 347) 6 (n = 345) 7 (n = 603) 8 (n = 300)
Hall 1.54 (1.2,21) 1.59 (1.2,2.2) 1.64 (1.3,22) 145 (1.1,2.1)
MAD 143 (1.2,1.8) 149 (1.0,2.9) 131 (0.9,24) 127 (1.0,1.7)
KS  1.88 (1.3,32) 3.35 (1.9,12.9) 534 (3.2,174) 343 (2.1,9.9)
Eye 1.53 (1.2,2.1) 152 (1.2,2.1) 138 (1.1,1.7) 138 (1.1,1.9)
Overlap (1.3,1.8) (1.9,2.1) 0 0
9 (n = 387) 10 (n = 345) 11 (n = 382) 12 (n = 304)
Hall 148 (1.2,2.1) 144 (1.1,2.1) 1.83 (1.4,26) 227 (1.6,3.7)
MAD 131 (1.1,1.7) 124 (1.0,1.6) 136 (1.1,1.8) 150 (1.2,2.0)
KS 398 (23,154) 2.85 (1.7,93) 3.63 (1.7,00) 251 (1.7,4.9)
Eye 1.52 (1.2,2.0) 139 (1.1,1.9) 172 (1.4,2.3) 160 (1.3,2.2)
Overlap 0 0 (1.7,1.8) (1.7,2.0)
13 (n = 476) 14 (n = 507) 15 (n = 478) 16 (n = 319)
Hall 216 (1.7,3.0) 1.96 (1.5,3.0) 207 (1.6,3.0) 144 (1.1,2.0)
MAD 1.58 (1.0,3.9) 144 (0.9,3.5) 146 (0.9,34) 136 (1.0,2.2)
KS 206 (1.6,2.9) 3.85 (1.3,00) 2.05 (1.6,2.9) 3.32 (1.9,16.6)
Eye 2.02 (1.6,2.7) 1.60 (1.3,2.1) 180 (1.5,2.3) 147 (1.2,2.0)
Overlap (1.7,2.7) (1.5,2.1) (1.6,2.3) (1.9,2.0)

algorithm. Since the smallest value of Y; in physical units is 5 min., we use 5 minutes as a unit
lag. We therefore assume that the errors ¢; are uniformly distributed on [—1, 1]. We performed
the following numerical experiment. For each link, we treat the value of « estimated from the real
interarrival times as the true value. We then generate R = 1, 000 replications of error contaminated
data Y =X, +¢ (r) , 1 < r < 1000. With some abuse of notation, the X; are now the observed
interarrival times. For each of these replications we compute the interval (5.1) with p = 10% and
p = 5%. To choose k, we use the Hall, MAD, KS, and Eye-Ball methods described in Section 5.3.

For each link, we determine the percentage of these intervals that cover the value of o estimated
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Table 5.4: Continuation of Table 5.3.

Link 17 (n = 402) 18 (n = 388) 19 (n = 433) 20 (n = 493)
Hall 191 (1.5,25) 136 (1.1,1.9) 127 (1.1,1.6) 190 (1.5,2.6)
MAD 151 (1.0,3.7) 122 (1.0,1.6) 127 (1.0,1.9) 145 (0.9,3.3)
KS 196 (1.5,28) 322 (1.7,26.1) 2.63 (1.2,00) 197 (1.6,2.6)
Eye 186 (1.5,25) 131 (1.1,18) 151 (1.2,20) 183 (1.5,2.4)
Overlap (1.5,2.5) ] (1.2,1.6) (1.6,2.4)

21 (n = 340) 22 (n =417) 23 (n = 597) 24 (n = 296)

Hall 197 (1.5,29) 146 (1.2,1.9) 1.67 (1.3,22) 156 (1.2,2.2)
MAD 151 (1.0,3.3) 1.38 (1.1,2.0) 126 (0.8,2.9) 128 (1.0,1.7)
KS 201 (1.53.0) 361 (1.5,00) 3.67 (2.1,142) 3.44 (2.0,13.3)
Eye 187 (1.5,2.6) 1.54 (1.2,2.1) 150 (1.2,1.9) 143 (1.1,2.0)
Overlap (1.5,2.6) (1.5,1.9) 0 0

25 (n = 258) 26 (n = 340) 27 (n = 348) 28 (n = 264)

Hall 178 (1.3,29) 148 (1.1,23) 195 (1.5,29) 158 (1.2,2.3)
MAD 135 (1.0,1.9) 120 (0.9,1.7) 164 (1.0,47) 138 (1.0,2.4)
KS 411 (L7,00) 3.57 (2.2,10.3) 280 (1.6,14.0) 270 (1.3,00)
Eye 138 (1.1,2.0) 125 (1.0,1.7) 171 (1.4,24) 1.60 (1.2,2.3)
Overlap (1.7,1.9) ] (1.6,2.4) (1.3,2.3)

from real data. If the interarrival times were measured perfectly, i.e. ¢; = 0, then 100% of these
intervals would cover the “true value", so our target in this experiment is 100% rather than 95% or
90% as in Section 5.3. If the actual coverage is 100(1 — ¢)%, then we interpret g as the probability
of getting a wrong interval estimate due to the round-off error. It turned out that for all links we
achieved the target percentage, 100%, for both 95% and 90% confidence levels, regardless of the
threshold selection methods. In light of the results of Section 5.3, the 100% coverage could be
expected since the ratio of the Error SD to the observation SD is less than 0.001 for each link. We
have seen from Tables 5.1 and 5.2 that the errors with the ratio of 0.01 had almost no impact on the
coverage probability. Based on this 100% coverage, we conclude that the impact of the round—off
error on the confidence interval estimate from the real data is practically negligible. This allows us

to use the available rough interarrival times to make an inference on the tail index.
The conclusions of the research described in this section are as follows.

1. For the purpose of confidence interval inference on the tail index of the anomalies interarrival

times, the five minute resolution is acceptable.
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2. For most links the confidence intervals obtained using the four data—driven methods of se-

lecting k£ have a nonempty intersection.

3. Based on the Eye—Ball method, one can be confident that for all links the true value of « is
between 1.0 and 2.7. The most typical range for « is (1.2, 2.3); each interval for half of the

links falls into the range.

5.5 Preliminary results

We collect in this section a number of lemmas to avoid burdening the proofs in Section 5.6
with additional explanations. Many of these lemmas are results established earlier, in such cases
we list their sources. Lemmas for which direct sources could not be found are proven. We denote
by Y, X, ¢, the random variables with the same distribution as, respectively, each Y;, X;, ¢;.

Lemma 1 states useful properties of the Skorokhod metric. It follows from facts presented on
pp. 47, 48 of [4]. For a sequence of deterministic functions, x,,n > 0, in D[0, o), we denote

convergence of x, to xy by x, — x¢. The uniform metric on D[0, s] is defined by ||z — y||s :=

SUPg<i<s |(8) — y(t)]-

LEMMA 1. Suppose x,x,,y € D[0,s], z, € D[0,00), for n > 0.

(i) The Skorokhod metric on D|0, s| is bounded above by the uniform metric on D|0, s|, ie.
ds(z,y) < ||z — ylls-

(ii) If ds(zp, o) — 0, then for all 0 < t < s satisfying t € C(xy), the set of continuity points of
xo, Tn(t) = xo(t).

(iii) If ds(zn, x0) — 0 and xoy € C|0, s], the space of continuous functions on [0, s|, then we have

the uniform convergence, ||x,, — zo||s — 0.

(iv) doo(2n, 20) — 0 if and only if for any s € C(2), ds(rszn,Ts20) — 0, where 15z, 1520 are the

restrictions of z, zy to the interval [0, s].

We get the following lemma by combining the results of Lemma 1.
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LEMMA 2. Suppose x,,,x € D|[0,00), for n > 0. Then, x,, — z in D[0,00) and x is continuous if

and only if for any s > 0,

||zn — x||s = 0su1<) |z, (t) — z(t)| — 0.

<t<s

LEMMA 3. The functions hy, hs : D[0,00) — R defined, for any fixed M, by

M M
hl(zt):/o e *x(s)ds, h2($>:/1 z(s)sPds, for B> 1,

are continuous at any function in C[0, 00).

Proof. Suppose z,, — x¢ in D[0, 00), where x is continuous. Then

[t [ eraion] < [ e - o

0<s<M

M
< sup |on(s) — 2o(s)] / e~*ds
0
M

= ||xn—m0||M/ e ® —=0.
0

The last term goes to 0 by Lemma 2. The same argument is used for the proof of the continuity of

ha.

LEMMA 4. Suppose random processes D,, in D[0,00), n > 1, satisfy 0 < D,, < 1 and
Vs>0, Dy(s) Rt 0, asn — oo. (5.1)

Then,

/ e *D,(s)ds 50, asn— .
0
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Proof. Define

Fix € > 0 and observe that

P(I(n)>e) <P (IM(n) > %) 4P (I]*W(n) > g) .

Since I3,(n) < e, we can choose M so large that P (I5,(n) > &/2) = 0. For such a (fixed) M,
applying lemma 3 and the continuous mapping theorem, the assumption (5.1) implies fOM e *D,(s)ds R

0. Therefore,

P(I(n)>¢) < P (JM(n) > 5) 0.

O
LEMMA 5. (i) Suppose x,x,,y,,n > 1, are deterministic functions in D[0,00). If x,, — x in

D|0, o0), and for any s > 0,

|yn — xn”s = sup |yn(t) — 2,(t)| — 0,
0<t<s

then y,, — x in D0, c0).

(ii) Suppose X, X, Y,,n > 1, are random processes in D[0, ). If X,, = X, and for any s > 0,

1Y, — Xl = sup Yo, (4) — Xa(t)] S 0,

<t<s

then'Y, = X in DI0, c0).
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Proof. For (i), by Lemma 2, doo(yy, z,) — 0. Then, we conclude the claim by the triangle in-
equality. For (ii), by Lemma 1 (i), ds(rsY,, rsX,) R 0, for any s > 0. Then, by Lemma 4,
doo (Y, X0) £ 0. We conclude the claim by the Slutsky theorem.

LEMMA 6. The function h : D[0,00) x D[0,00) — D[0, c0), defined by

h(z,y) =xoy=x(y(-)), forz,y € D[0,00), y > 0,

is continuous at (o, yo), for any xg, yo € C(0, 0.

Proof. The metric on D[0,00) x D|0, c0) is given by

dprod((xna yn)a ((L’(), yO)) = doo(xna (L’g) + dOO(yn7 90)7

see p.57 of [4]. Therefore, if (x,,, y,) — (%0, Yo), then doo (2., o) — 0, and doo (Y1, Yo) — 0. Now

observe that

oo (Tn(Yn), T0(0)) < doo(Tn(Yn), T0(Yn)) + doo(T0(Yn), To(Yo))-

Since zy is continuous, duo.(xo(Yn), To(¥0)) — 0 as deo(Yn,yo) — 0. Next, to show the con-
vergence of duoo (T, (yn), To(yn)), it suffices to show that, for any s > 0, ||z, (y,) — zo(yn)||s =
SUPg<s<s [Tn(Yn(t)) — 2o(yn(t))] — 0. Since duo(zn,z9) — 0 and g is continuous on [0, c0),
we can take s’ such that s’ > supy<;, ¥.(t) and ||z, — z¢[|¢ — 0, by Lemma 2. Since, for any
s >0, [|xn(yn) — xo(yn)||s < ||zn — zolls — 0, we can conclude that do(z,,(y,), o(yn)) — 0,

by Lemma 2.

The next lemma follows from Theorem 4.1 in [4].
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LEMMA 7. Suppose {X;,i > 1} is a sequence of independent nonnegative random variables with

common distribution function F such that F(-) € RV_,. Then

1 n
z Z Ix, b(n/k) = Va
=1

in M, (0, o], the space of Radon measures on (0, 0c|, where v, (z,00] = =%z > 0.

Recall that the function b is defined by P(X > b(t)) = ¢~'. Part (i) of Lemma 8 follows from
the definition of regular variation and lim;_,, b(t) = oo; part (ii) was proven as Lemma 4.1 in [44].

It follows from an application of Potter bounds and dominated convergence.

LEMMA 8. Suppose u+— P(X > u) € RV_,, for some o > 0. Then
(i) for each u > 0, limy_, o tP(X > ub(t)) = u™¢,
(ii)

lim lim sup /OO tP(X > xb(t))z 'dx = 0.

200t so

The next lemma extends the results of Lemma 8toY = X + ¢.

LEMMA 9. Suppose Y = X + ¢, and let Fy be the tail distribution of Y. Suppose that u —
P(X > u) € RV_, for some o > 0, P(|le| > x) = o(P(X > x)), and ¢ is independent of X.
Then

(i)u— P(Y >u) € RV_,.

(ii) limy oo Fy (t)/Fx(t) = 1.

(iii) for each u > 0, limy_, o tP(Y > ub(t)) = u™ .

(iv) for each B > 1 — /2,

lim lim sup/ tP(Y > yb(t))d—g = 0.
z )

2700 to0
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Proof. Statement (i), (ii) are stated and proven in Proposition 3.1 of [86]. For statement (iii),

observe

. . P(Y >ubt)) . P(Y >ub(t) P(X > ub(t))
A tP(Y > ublt)) = lim 25y~ B X = wb(t) P(X > (1) |

By (ii) and Fx € RV_, from the assumption, we get the conclusion. For statement (iv), set

fi(y) = tP(Y > yb(t))y~". We want to show

lim lim sup/ fi(y)dy = 0.

2700 t00

By (iii),

Vy>0 fily) =y " ast— oo.

To conclude that

/ ft(y)dy—>/ y’o"ﬂdy, ast — 0o,

we must find a function g such that for ¢ > %,

fe(y) < g(y) and /Oog(y)dy < 00.

By the assumption Fy € RV_,, we obtain Potter bounds and combine this with (ii), then we get

bounds such that V §,¢ > 0, 3 tg, Vi > to,Vy > 1,

P(Y > yb(t)) P(X > yb(t))
P(X > yb(t)) P(X > b(t))

(1= =0y < fily) = y P < L+ o)L+ )yt b,

Then g := (1 + ¢)(1 + §)y~ T~ is integrable if § < /2.

The next lemma follows from Remark B.3.8 in [2].
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LEMMA 10. Suppose that F satisfies Assumption 2. Then under Assumption 4,

lim V& (%F(b(n/k)x) —) =0,

n—roo

locally uniformly for x > 0.
The next result is elementary. It follows for the convergence of characteristic functions.

LEMMA 11. Suppose that random vectors X,,,Y, in R? are independent for each n and that

X, = XandY, =Y, where X and Y are independent. Then X,, +Y, = X +Y.

The next result is known as Vervaat’s lemma. It is stated e.g. in Proposition 3.3 in [4]. Recall
that for a nondecreasing function H, the left—continuous inverse is defined by H (u) = inf{s :

H(s) > u}.

LEMMA 12. Suppose X,,,n > 0, is a sequence of random processes in D0, 0o) such that each X,
has nondecreasing paths and X, has continuous paths. Define the identity function by e(t) = t.

Then, c,(X,, — e) = X, implies that c,( X — e) = —X,.
The last lemma is well-known, see e.g. Lemma 9.1 in [4].

LEMMA 13. Suppose that « > 0 and 5 > 1 — /2. If W is the standard Wiener process, then for

some a,b € R,

e 2a2a? _ 2aba 2)
/W ds — bV (1) £ N(O’(a+ﬁ—1)(a+25—2) oY) 62

Proof. Since a linear combination of Gaussian random variables is still Gaussian, the left side

of (5.2) is Gaussian with mean 0. To get its variance, we observe that

(/W s — bW (1 ))2

—E ( / W (s lds/l W (w)u's ~'du — 2ab/01 W (s)W(1)s"s ~'ds +b2W(1)2) .
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Using E (W (s)W (u)) = s A u, we get

E <a /01 W(s)s™a ~'ds — bW(1)>2

1 u 1
= 2a2/ / s/\usﬂalldsuﬂalldu—Qab/ sA1 s%flds—l—b2
o Jo 0

B 2a%a? _ 2aba nr
T (a4+B8-D)(a+23-2) a+p-1

5.6 Proofs of the main results

5.6.1 Proof of Theorem 1

We begin by proving a couple of lemmas. The following fundamental lemma is known if there

are no errors, i.e. 'y = F'x. Using the results of Section 5.5, we can prove it in our setting.

LEMMA 1. Let {E;,i > 1} be i.i.d. exponential random variables with mean 1. Set S,, = > " | E;

and define

~

On(s) = %Fy(b(n/k)s_l/“)%, s > 0. (5.1)

Then under Assumptions 1, 6,

~

du(-) B e in DJ0,o0). (5.2)
where e is the identity function, e(x) = x.

Proof. By Lemma 9 (iii) and Lemma 2, ® Fy-(b(n/k)(-)~"/%) — e in D0, 00). Observe that for

any s > 0,

n Sn+1 _1‘
n

sup |00(t) = 7y (bn/R)i /)| < sup ZFy (bln/k)t /)

0<t<s 0<t<s
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Since n/kFy (b(n/k)t=1/*) — t, forall 0 < t < s, by Lemma 9 (iii), and S, /n LI by the

weak law of large numbers, we obtain

sup |én(t) — %Fy(b(n/k)t‘l/a) £o.

0<t<s

By Lemma 5 (ii), we get the conclusion.

]

Denote by v, the measure in M, (0, 0o], the space of Radon measures on (0, o], defined by

Vo(z,00] =27 x> 0.
LEMMA 2. Under Assumptions 1 and 6, v,, = % Yoy Iy, jo(n/ky = Vo in My (0, 00].

Proof. By Lemma 7, it suffices to verify that

1 < 1 P
Al =S Iy e =S Iy o | 25 0.
( p ?:1 Yi/b(n /1) 1 ;:1 X/ /k))
The vague metric d(-,-) on M (0, co] is defined by

M1, p2 € M+(07 OO],

d(py, o) = Y i (fi) — po(fi)| A 1

20 7
i=1

for some f; € C}(0, 00] where C;(0, 0c] is the space of continuous function with compact sup-
port. By the definition of the vague metric d on M, (0, co] and Lemma 3.7 of [44], it suffices to

show that, for any f € C£((0,0c]), 7 > 0,

P ( %;‘f(b(;//ik)) _%;f(b(f/ikﬂ‘ >T> =0,

Since f has compact support in (0, oo, set s := inf{supp(f)} > 0.

144



Also, since f is uniformly continuous,

wy(f) = sup |f(z) = fy)| =0, n—=0.

lz—y|<n, z,y€(0,00]

Fix 7 > 0. Let

f(b(::;k)> _f<b(2(/ik)>"

Observe that

(%; o) -1 )|+

< P(G(n) > 7)

< P(G(n)la, >7/3)+ P(G(n)Ig, >7/3)+ P(G(n)lc, > T1/3),

where
— <1 < — <
=i ol = | < g 2*
B ={1<i< Yi Xi < Xi <
N R D D ROk
and
Y, X;

for 0 < n < s/2. We start with the bound

P(G(n)La, > 7/3) <P<wn fo/bn/k s — 1,00 )>T/3>.

By Lemma 7, and taking sufficiently small 7,

P(G(n)ls, >7/3) <P (wn(f)(s —n)" > 7/3) =0.
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Next,

P(G(n)lg, > 7/3) =0,

since
Y; X
b(n/k)" b(n/k)

< s, foralli € B,.

By Markov’s inequality,

an]

Y, X
b(n /) b(n/k)‘ >">

P(G(n)Ic, > 7/3) < %E“Nﬁ) B f<%>

< 6supme(s,oo} |f(ZE)| P(

T P(Xl > b(n/k))
- 6 SUP,c(s o0 |f(2)| P(|e:| > nb(n/k)) P(X1 > nb(n/k))
= T P(X; > nb(n/k)) P(X;>b(n/k))"

Since sup,¢ (s o 1.f ()| < 00, P(lei| > nb(n/k))/P(X1 > nb(n/k)) — 0 by Assumption 6, and
P(X; > nb(n/k))/P(X1 > b(n/k)) = n~*, we obtain P(G(n)lc, > 7/3) — 0.
[

The proof of the following lemma is basically the same as the proof in Proposition 2.4.2 of [44],

so we skip it.
LEMMA 3. Under Assumptions I and 6, Y ;) /b(n/k) 5.

Proof of Theorem 1: For (5.6), we use the technique developed in the proof of Theorem 9.1 of [4].
We work with the Y; which are observed with errors, whereas Theorem 9.1 of [4] applies to the
unobservable X;. We must show that the effect of the errors ¢; is negligible in every step of the
proof.

Suppose {E;, i > 1} are i.i.d. exponential random variables with mean 1. Set S, = >\ | E;,
then

Vk (% ;ISi<kx - 93) = W(z), inDI0,00), (5.3)
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which is established in the proof of Theorem 9.1 of [4]. Consider the functions gﬁn defined by (5.1).

Combining (5.3) and (5.2), we obtain the joint convergence in D[0, c0) x D|0, c0),

I R
<\/E <E izlfsiszs- - 6) ,cbn(')) = (W(),e).
By Lemma 6 and the continuous mapping theorem, we have
1« . .
vk (% > Lsciini — ¢n(')> = W(:) in D0, 00). (5.4)
i=1

Recall that if 7 ~ Gamma(a = a,8 = 1), V ~ Gamma(a = b, = 1), and Z and V are
independent, then Z/(Z + V') ~ Beta(a, b). Therefore,

S Sh Sh S
( ! ’...7_)2(1— N 1)i(U(n),...,U(1)),

5%+1 5'n—i—l 5'n—‘rl 5'n—‘rl

where U,y < ... < U are the order statistics of i.i.d. U(0,1) random variables Uy, ..., U,.

Using the fact that Fy- (U;) = Y;, one can easily verify that

1< .
Ezlsigkén@):%[s e 00).
=1

The verification is the same as shown in the proof of Theorem 9.1 of [4], which uses the fact that
F{(U;) = X, so we skip it.

To complete (5.6), it remains to show that

sup vk

0<t<s

Ou(t) — Bvy [tV oo)‘ 5o (5.5)

Observe that for any s > 0

5%+1 —n

sup Vk |6, (t) — Evy[t™"/*,00)| = sup %wa(n/k)t-””)@ ND

0<t<s 0<t<s
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Since n/kFy (b(n/k)t=1/*) — t,forall 0 < t < s, by Lemma 9 (iii), and using | (S, .1 —n)//n| =

O,(1), which follows from the central limit theorem, we obtain (5.5).

For (5.7), by (5.6) and Lemma 3, we have the following joint weak convergence:

(@ (% >~ Bl ] %Fy(b(n/k)y)> , b;j‘;;ﬁ)) S (W), 1)

By Lemma 3 and the continuous mapping theorem, we get (5.7).

5.6.2 Proof of Theorem 2

Proof of Theorem 2: From (5.7), we obtain,
V(D (5,00 — Eby(s,00]) = W(s /) in D(0, o).

If we apply the map
> —
’ /1 #ls) s’

(5.6)

(5.7)

to (5.6), we can conclude the claim. The steps of the justification of the use of the map (5.7) are

similar to those developed on pp. 298-299 of [4]. We provide the details since we work with the

observations Y;, which include the measurement errors ¢;.

The verification is based on triangular array convergence argument, see Theorem 3.2 in [26].

Set

0 1 n - 00
B -8 o Wi(s™® —B .
Up = /1 \/E <E E IYz'/Y(k)<3> OO] - EFYO/(k)S)) s Pds, U= /1 (8 )8 ds;

M 1 . o
UT(LM)Z/1 \/E(EZ[K/YW(S,OO]—EFy(Y(k)S) s Pds, U(M):/1 W(s_a)s_ﬁds.

To establish the desired convergence U,, = U, we must verify that

VM >1, UM = UM a5 (5.2);

148

(5.8)



UM = U, as M — oc; (5.9
Ve>0, hm_mnprQU’ —U,| >¢) =0. (5.10)
M—oo poo
Convergence (5.8) follows from Theorem 1, Lemma 3 and the continuous mapping theorem. Con-

vergence (5.9) holds since

2
1 M= -1
ﬁ g2 __
(/ W(s ds > 5) 52a2E ( i W(s)s = 1ds> — 0.

Convergence (5.10) is equivalent to
s Pds > 5) =0.

Z]y/y 8 OO] — EFy(}/(k) )

—0  p—oo

Ve>0, A}im limsupP(\/_/

Fix € > 0 and n > 0. Observe that

P (x/Zi/ij) ! > &

L Z IYZ-/Y(M(S» oo — EFY(YUC)S)
=1

sPds > 8) < Q1(n) + Q2(n),
where

Yiw)

b(n/k)

sPds > e,

n —
ZIY/Y(k) S, OO — EFy(Yv(k)S)

=[]

L < n) ;

o=+ (220

By Lemma 3, limsup,,_, ., Q2(n) = 0, so we focus on Q1 (n). Since Y(x)/b(n/k) > 1 —n, with the

uw Pdu > 5) .

change of variable s = ub(n/k)/Y ),

< |1
n)ﬁP(\/E/ —
M(1-n) | K

D yioto ;5] = = Fy (b(n/k)u)

i=1
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By Chebychev’s inequality,

2
Q1(n) < %E (/ u_ﬁdu>
= M(1-n)
k, o

2
1 — n -
E|ll=Y Iy — —Fy(b(n/k —Pd

1 [ n

EFy(b(n/k)u)u’ﬁdu — 0,

l & n -
z Z Iy, jo(nyiy (u, 00] — EFY(b(n/k’)U)

i=1

IA
|

~ el M(1-n)

as M — oo, by Lemma 9 (iv).

5.6.3 Proof of Theorem 3

Proposition 1 below is a key argument needed to prove Theorem 3 under second order regular
variation. Lemmas 1, 2, and 3 are preparations for its proof.
Lemma 1 states, in a modified form, some results established in the proof of Theorem 3.2

of [88]. Its proof basically follows the arguments on pp. 150, 151 of [88], so we do not present it.

LEMMA 1. Under Assumptions 2 and 7, we have

tlgglo v t{(1—u/t)"* — 1}dF.(u) = tlgélo /OO t{(1 —u/t)"* = 1}dF.(u) = aE[el.>),
lim 0 t{(1 —u/t)"* = 1}dF.(u) = lim : t{(1 —u/t)"* = 1}dF.(u) = aEel.<],
t—00 —t/2 t—oo | o

Y2 Py (t(1 —uft)) — (1 —u/t)"*Fx(t)

. f Fx()g(t) dFe(u) =0,
and

[0 Ex(t( = u/t)) — (1 —u/t) *Fx(t) _

o p Fx(Dg(t) dFe(w) =0.

LEMMA 2. Under Assumptions 2 and 7,

P(le] > 1
M Fa(g(t)
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Proof. Since Fx(-)g(-) € RV_q1,, Fx(t)g(t) = t=*PL(t), where L is a slowly varying function.

Observe that

P(le| >t)  P(le[>t) t™™  P(le| >1t) 1

Fx(t)g(t) t= Fx(t)g(t) tr e L)

By Assumption 7, lim,_,, P(|e| > t)/t™" = 0. Also, by Proposition 2.6 (i) of [4], t "5 L(t) €

RV_ o4 ptr gOES 1O 00, s t — 00.

0
LEMMA 3. Under Assumptions 2 and 7,
V2 (t —u) — F.(t
lim v = B ) = 0,
t=e fo Fx(t)g(t)
Proof. Set q;(u) = F.(t(1 —u/t))/(Fx(t)g(t)). We want to show
t/2
lim qi(u)dFx(u) =0 (5.11)
t—o0 0

so that we conclude the claim. By Assumption 2, 7,

. (tZE) o Fs (tl‘) Fx<t$)g(t1’) o N
" Fx(t)g(t)  Fx(tz)g(tz) Fx(t)g(t) — 0, t — oo.

By Proposition B.1.9 of [2], we get an upper bound such that V nn > 0, 3 ty,c > 0, Vt > ¢,

Vi<z<l,

i F.(tz) F;E(tx)g(tx) < pp—aton
Fx(tzx)g(tr) Fx(t)g(t) — '

Since cx =P < @2%7PH we get (5.11).

]

In the following proposition we investigate the asymptotic behavior of Fy-. Its proof is mo-
tivated by Theorem 3.2 of [88], which describes how two i.i.d. second—order regularly varying

variables behave under convolution. We study in Proposition 1 the convolution of a second—order
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regularly varying variable and an error. The behavior of the convolution depends on whether or
not lim,_,, tg(t) is finite. By Proposition 2.6 (i) in [4], if p > —1, then lim; ., tg(t) = oo, and if

p < —1, then lim,_,., tg(t) = 0. For p = —1, lim;_,, tg(t) can be finite or infinity.

PROPOSITION 1. Under Assumptions 2 and 7, there exist two functions g and H such that

1 (Fy(m _w> — (),

e (1) \ Fx(t)

for x > 0.
(i)if p > —1 and limy_, tg(t) = 0o, then §(t) = g(t) and H(zx) = H(z).
(ii) if p < —1 and | = limy_,o tg(t) < 00, then §(t) = t~' and H(z) = IH(z) + az—* ' Ele].

Proof. Use the decomposition

PX+e>t)=PX+e>t,XVe>t)+ P(X +e>t,XVe<t)

First, considering P (), we obtain

Pt)=P(X>t)+Ple>t)— P(X >t,e>t)— /0 (Fx(t —u) — Fx(t))dF.(u).

— 00
Observe that

P(X >tx) —x “Fx(t) g(tz) Fx(tx) P(e > tz)
Fx(t)g(t) g(t) Fx(t) Fx(tz)g(tz)
g(tz) P(X > tx) P(e > tx)
S og(t) Fx() glta)
x(tx) g(tz) /0 Fx(tz(1 —u/(tx))) — (1 — u/(tx))*o‘FX(tx)dFE(u)

Fx(t) 9(t) J_w Fx(tz)g(tz)
L L[t /0 tef(1 = u/(tz)® — 1}dF.(u)

tg(t) |xFx(t) J_o
g(t) 1

tg(t)

=. —Pll(tLU) +

Plg(tl’).
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Now, we use another decomposition for P () such that

Pyt)=P(X +e>t,XVe<t,XNe<t/2)+ P(X+e>t,XVe<t,XNe>1/2)
2 B /2 B
:/0 (Fx(t —u) — Fx(t))dF.(u) —|—/0 (FL(t —u) — F.(t)dFx(u)

+ (Fx(t/2) = Fx (1)) (F(t/2) — F.(t)).

Fx(tz) g(tz) [ Fx(ta(l —u/(tx))) — (1 — u/(tz))"*Fx(tz)
/0 Fx(tz)g(tx) aFe(w)

— x (1) e —u/(tx))” " — U
Ol ol A G R
N Fx(t) FX(m/g) — Fx(tx) F;(tx/g) — F.(tx)
3(t) (0 Fr (D)
O B 0
=G U T R T Ty el
Therefore,
P(X +e>tx) —ax *Fx(t)
Fr(0t)
_ Pl(tx2 — a7 *Fx(t) N 7P2(tx)
i) Fx0i) )
_ 9y 1 905 1 o Ix(@) -
~ g T g e T g Pl g Pt = gy Palte)

By Assumption 2, and Lemmas 1, 2, 3, lim;_,, Pi1(tx) = H(x), limy_,o Po1(tz) = limy_,o Pos(tz) =
0, limy o0 Pr2(tr) = az ™ 'Elel.«], and limy o Pyo(tz) = ax™* ' E[el.>q]. Thus, we con-

clude the proof with the choices of H(z) and §(z).
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LEMMA 4. Under Assumptions 2, 4, and 7,

lim V& (%F’y(b(n/ls)y) - y*a) —0, (5.12)

n—>00

locally uniformly in (0, 00) and for any B > 1 — «/2,

n—roo S_ﬁ o

© d

lim \/E/ (ﬁFy(b(n/k;)s)—s*a) -0 (5.13)
1 k

Proof. Observe that

V(7P (b(n/R)y) —y™)

= vk (Fx(bln/k)y) —y~) +VE (T By (b(n/k)y) = Fx(bln/k)y))

Since the local uniform convergence of the first part holds by Lemma 10, it suffices to show that

for any 0 < s1 < 59,

sup Vk %Fy(b(n/k)t) - %Fx(b(n/k:)t)' — 0. (5.14)

s1<t<s2

Then, we get (5.12) by Lemma 5 (i). To show (5.14), first observe that for y > 0,

[Py (y) — Fx(y)| = [P(X + & >y) — P(X >y

y/2
< P> y/2) + / Frely —u) — Py (y)dE.(u).
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Then we obtain

swxﬁgmwmmm—ﬁawmmm\

s1<t<s2 k

. P(e > b(n/k)t/2)
Sﬁiﬂ%“/m{ Pulbo R0/ )

MU By (b(n/k)t — u) — Fx (b(n/k)t)
“ Fx(b(n/1))g(b(n/ 1)) dﬂ”}%Q

by Assumptions 2, 4, 7, and Lemma 1.
Next, for (5.13), by Lemma 1,

uf
—
N
=

n - o
v (b(n/k)y) —y=* ~ g(b(n/k))
as (5.2), for y > 1. To conclude that

lim f/ (b(n/k)s) — a) ds :nh_x>noo\/Eg<b(n/k))/loo ]:I(s)g =0,

3B

we must find a function ¢ such that for ¢ > %,

|
QQI
=
|
<
o
=
A
—~
—_
+
2
~—
—
—_
+
(=%}
~—
|
o
_l’_
(=9
@
QI
]
=

Then q := (1 + ¢)(1 + 6)y~ =% — y=2=F is integrable if § < a/2.

]

LEMMA 5. Under Assumptions 3, 5, and 8, (5.12) holds locally uniformly in [1,00) and (5.13)

holds.
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Proof. To prove (5.12), it suffices to show that for any s > 1,

sup \/_ Fy(b(n/k)z) — 2= — 0,

1<2<s

by Lemma 2. Observe that fory > 1,¢ > 1,

P(X +¢>ty) o
P(X >1t)
5o Jow dFx(2)dFe(u)
- P(X > 1) Bk
B et Jou AFx ()dF(u) + [ [ dFx(2)dFe(u)
- P(X > 1) v
[ty —u) " dF.(u) + P(e > ty — 1) .

P(X >1t)
= / <y — %)70{ —y YdF.(u) + /Oty— (y — %) o y “dF.(u) + %

—00

By the mean value theorem, there exists c_(y,u,t) € [y,y — u/t] and ¢, (y,u,t) € [y — u/t,y]

such that

'P(X~|—€ >ty) .,

P(X >1t)

— /(; ac_(y,u, t)—a—l%dFe(u) + /Oty—l —acy (y, u, t)—a—l%ng(u) + %

<O [ e+ PEE L),
Observing

Ple >ty —1) _ 1 Ple>ty—1) (y—1/t)"(ty — 1)~*
P(X >1) tP(X>ty— 1)ty 1) 1
— -1
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by Assumption 8, there exists ¢y such that V¢ > ¢y, Vy > 1,

Ple>ty—1
PE>ty—1)  gorrymamiyy (5.15)

(Z/ - 1/t>7a71 (ty _ 1)—(1—1 =

where M € [0,00) is an upper bound satisfying P(e > ty — 1)/(ty — 1)™** < M,V t > t.

Therefore, for large ¢,

P(X+e>ty) _ ay ot 1 o
_ al <« E _2a+1 e lM
‘ P(X > 1) S = Bl ’
and then by Assumptions 5, we obtain
vk

sup Vk pr(b(n/k)z) — 2z

<
1<2<s k

sup {az 7 LE|e| + 20Ty 0.
/R 12, l J

To verify (5.13), set fi(y) = (y — 1/t)"* Ly PP(e >ty — 1)/(ty — 1)"*"L. From (5.15),

there exists tg such that Vit > to, Vy > 1,
fily) < 207y~
Let ¢ := [ 22Ty~ "1=8 M dy < oo, then by the dominated convergence theorem,

lim sup / fi(y)dy < c.
1

t—o0
Therefore, by Assumption 5,

Vi
b(n/k)

W<
Y8

Vi [© ]%Mb(n/k)w Ly

/ ay P Ele| + fopm (y)dy — 0.
1
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LEMMA 6. Under either Assumptions 2, 4, and 7 (2RV case) or Assumptions 3, 5, and 8 (Pareto

V(o) —1) = 2w

Proof. Sety =1/« and observe

case), forany T € R,

\/E(Vn(y_va OO] - y)
=V (valy ™, 00l = ZEb(n/R)y ™) + VR (B (bn/R)y ™) )

By Lemma 5 (ii), Theorem 1, and (5.12), we obtain
Vi (y ™, 00] —y) = W(y™),

for y > 0 under Assumptions 2, 4, and 7 (2RV case), and for y > 1 under Assumptions 3, 5, and 8

(Pareto case). Then, by Lemma 12,
VE (va((-) 77, 00]7 (1) — t) = =W (7).

Since v, ((-)) ™, 00])(t) = inf{s : v,(s77,00]) > t} = (Y(jry)/b(n/k)) ", we have

RACIR R
ﬂ((b(n/k)) t>:> W ().

Vi ((5537@)7 “1) = 2w

By the delta method,
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Proof of Theorem 3 : We start with the decomposition

([ St )

—Vk (/ Zly/y(k) (s, 00]s ﬁds—/loo %Fy(m)s)s—ﬂds>
V([ E s ds - [T LRG0/ )
+VE ( /1 T B (b(n ) s) s~ ds — /1 Oosaﬁds) |

To establish the asymptotic normality, we verify that

o

?T|3

1

Vk (Z Iy, v, (5, oo]sPds — /OO ng(Y(k) Bds) / Wi(s T lds; (5.16)
i=1 1
VEk (/00 %Fy(Y(k)s)s_ﬁds _ [ %Fy(b(n/kz)s)s_ﬁds) = —
1 1
Vk (/OO %Fy(b(n/k)s)3’5d5 — /00 saﬁds) — 0; (5.18)
1 1

o) 1 n 00 _
/ z Z Iyi/y(k)(s, oo]s_ﬁds - / %Fy(Y(k)s)s_ﬂds is independent of Y. (5.19)
1 — 1

Convergence (5.16) follows from Theorem 2, and convergence (5.18) follows from (5.13). Since

00 1 n B 00 n - B
E[/1 E;[n/y(m(s,oo]s Bds—/l EF(Y(MS)S s

Y(k)] =0,

we get (5.19). Once we show (5.17), we can get the conclusion by Lemma 11.

To verify (5.17), first consider when 3 = 1 (for the Hill estimator). Observe that

b(n/k) 1 0
Vk —Fy(s)s s = Vk —Fy(b(n/k)s)s tds.
k
Yk

Yk /b(n/k)
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By the mean value theorem, there exists s(n) € [Y)/b(n/k), 1] such that

b /) ) " !
NG / EFe(s)s ds = VAT By (bn/)s(n) / s lds

Yy Yy /b(n/k)

n — Yk
= VL By (b(n/R)s(n)) (— log b(n(/)m) |

Since s(n) 5, n/kEFy (b(n/k)s(n)) %4 1 by Lemma 9 (iii). Consider the decomposition

Vi (‘ o b(x%) vk (1 - b(};(l;)k)> - “E{ 8 ) (b(x% - 1) }

From Lemma 6,

Observe that

Yy _ Yy
\/Elog bn/k) \/Elog (1—|— b /R — 1) ,

and set €, = Y{)/b(n/k) — 1. Then, for some ¢, € (1,1 +¢,), log(l +¢,) = €, — 5=

Therefore,

Vk

Yk Y _ 2
log k) (b(n/k) - 1) ‘ = VE|log(1+&,) — e,] < Vke?.

Since Vke, = 1/aW (1) from Lemma 6,

Vk

Yy Yoy 1 2 P
R U ) ‘ < JplVke) S0

We thus conclude that

Y 1
vk (—log b(n/k)) = ——W(1),

and prove that (5.17) holds when 3 = 1.
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For 5 # 1 (the HME), observe that

o

VE( [T aResas— [T LR 0/mesas)
_ \/E( 0 )ﬁ_l /Y: o %Fy(b(n//g)s)s*ﬂds

b(n/k)
Y(k) 5_1— 0027 n s)s Pds
+\/E<(b(n/k)) 1)/1 -y (b(n/k)s)sPds.

By the mean value theorem, there exists s(n) € [Y)/b(n/k), 1] such that

VE( [T gs)s s - [T LR G0ms)s )
= (souiy) R A1) 57V (1 - <b<§?2>)_ﬂ+l>

+Vk (( ; (Z’;)k))ﬁ_l - 1) /1 h %wa(n/k)s)s—ﬁds.

Then, by Lemmas 9 (iii), 3, 6, and (5.13),

Vi( [T iR s [T R R0 as)
_ _51+ 1 <__5a+ 1W<1)> + 6; 1W(1)a+;_ = —M;_ W)
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Appendix A

Supplementary material of Chapter 3

A.1 General definition of regular variation and transforma-

tions to equivalent tails

Let Z = [ZW, ..., Z@D]T be a R —valued random vector. Suppose that there exist a Radon
measure v on E; and sequences {b")(n), n > 1} with lim,, ., b%)(n) = oo, for j = 1,...,d, such
that

AL v :
npr((m, ]_1,,d> S ) — U, 1HM+(Ed) (Al)

and foreachj =1,...,d

7) v .
n Pr <b(j)(n) € ) — Va,, ; >0, in M(0,00]. (A.2)

The sequences {bY)(n)}, j = 1,...,d are defined by Pr(Z") > b (n)) = n~!. If conditions
(A.1) and (A.2) hold, we say that Z is regularly varying with marginal indexes o, . .., ag.

Two methods are recommended to transform non—standard cases to the standard case with
the tail index « = 1. The first method is to assume that for j = 1,...,d the jth marginal tail
asymptotically behaves like a Pareto tail with index «; and then use a power transformation to
make each transformed component regularly varying with o = 1. This method is mathematically
simple, but has the drawback of requiring the estimation of the marginal ajs. The uncertainty
due to the estimation of the «; can be avoided by using the ranks method, see [95], [96]. Let
{Z; = [Z(l), ce Zi(d)], 1 < i < n} be a random sample of R? random vectors with common

2

distribution satisfying the global and marginal regular variation conditions (A.1) and (A.2). For
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)

each fixed 7, define the the complementary rank of Zl.(j by

n
(4 _ E : S
ry = [Zl(j)ZZi(j)’ J= 17 s e 7d7
=1

()

which is the number of jth components at least as large as Zij . According to Proposition 9.4

of [4], a simple scaling argument for the tail empirical measure shows that

where v, is the limit measure for the standard case satisfying v,([0,x]¢) = v(]0, x¥/%|) for a =
(1, ..., aq) and v, (t-) = t~'v.(-). Using this transformation, we can achieve the standard case,
which allows estimation of the standard limit measure v, and the angular measure I" associated with
v.. The disadvantage of this method is that we cannot guarantee the sample {r; = [r;1,...,74), 1 <

i <n} tobei.id.

A.2 Supplementary graphs and Tables

We conclude this section by presenting the results of the estimation of the EDM between the
rescaled scores ;/ \/)\_] . Tables A.7 and A.8 report estimates for the three pairs of the first three
normalized scores, &1 /v/ A1, £2/v/ Xa, €3/+/ X3, for Walmart and IBM, respectively. It is seen that
there is not much difference in estimates compared to those for non—normalized scores in Ta-

bles 3.2 and A.1.
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Table A.1: Estimates of EDM for IBM stock. Standard errors in parentheses are computed using Theorem 2.

D(+7+)(€1752) D(_’+)(€17€2) D(_7_)(£17€2) D(+7_)(§17 §2)
Before 0.07 (0.02) -0.13 (0.03) 0.05 (0.02) -0.08 (0.02)
During 0.07 (0.02) -0.09 (0.02) 0.08 (0.02) -0.08 (0.02)
After 1 0.07 (0.02) -0.06 (0.01) 0.07 (0.02) -0.10 (0.02)
After2  0.07 (0.02) -0.10 (0.02) 0.10 (0.02) -0.06 (0.02)

DD, &) DU, &) D6, &) D6, 6)
Before 0.10 (0.02) -0.08 (0.02) 0.09 (0.02) -0.10 (0.02)
During 0.08 (0.03) -0.10 (0.03) 0.10 (0.03) -0.04 (0.02)
After 1 0.06 (0.02) -0.10 (0.02) 0.07 (0.02) -0.07 (0.02)
After2  0.06 (0.02) -0.10 (0.02) 0.06 (0.02) -0.06 (0.02)

DUFH(&,&) DUP(6,&) DET(6,86) D (6, &)
Before 0.09 (0.03) -0.09 (0.03) 0.04 (0.02) -0.07 (0.03)
During  0.13 (0.03) -0.08 (0.02) 0.09 (0.02) -0.08 (0.02)
After 1 0.08 (0.02) -0.06 (0.02) 0.08 (0.02) -0.09 (0.02)
After 2 0.06 (0.02) -0.08 (0.02) 0.07 (0.02) -0.09 (0.02)

Table A.2: Empirical biases (standard errors) of the estimator of the EDM for Case 2

n D(&1, &) D(+’+)(51, &) D) (&1,8) D(_’_)(fb &) D(+’_)(51, &)
200 -0.014 (0.10) -0.011(0.03) 0.006 (0.04) -0.018 (0.03) 0.008 (0.04)
600 -0.007 (0.09) -0.006 (0.02) 0.005(0.04) -0.007 (0.02) 0.001 (0.03)
1000 -0.009 (0.09) -0.006 (0.02) 0.003 (0.03) -0.007 (0.02) 0.002 (0.03)

n D<€1;£3) D(+7+)(§1a€3) D(i’Jr)(gla 53) D(i’i) (gla 53) D(Jﬁi) (51753)
200 -0.008 (0.05) -0.019(0.03) 0.014 (0.03) -0.017 (0.03) 0.014 (0.03)
600 -0.002 (0.04) -0.011(0.03) 0.012(0.03) -0.015(0.03) 0.012(0.03)
1000 -0.002 (0.04) -0.011(0.03) 0.013(0.03) -0.014(0.03) 0.010(0.03)

n D<€27€3) D(+7+)(£27€3) D(_7+)(£27§3) D(_’_) (52753) D(+7_) (’52753)
200 -0.003 (0.07) -0.039 (0.03) 0.040 (0.03) -0.042(0.03) 0.038 (0.05)
600 0.002 (0.06) -0.031(0.02) 0.032(0.02) -0.033(0.03) 0.034 (0.04)
1000 0.001 (0.06) -0.030 (0.02) 0.034 (0.02) -0.031(0.02) 0.028 (0.04)
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Table A.3: Empirical biases (standard errors) of the estimator of the EDM for Case 3 [full dependence]

n D(€1752) D(+7+)(§17€2) D(iﬂr)(éﬂla §2) D(iyi) (gla §2) D(Jﬁi) (51752)
200 0.005(0.09) -0.053(0.03) 0.056(0.03) -0.055(0.03) 0.057(0.03)
600 0.005(0.08) -0.051(0.02) 0.054(0.02) -0.053(0.02) 0.054(0.02)
1000 0.002 (0.07) -0.052(0.02) 0.053(0.02) -0.053(0.02) 0.054 (0.02)

n D(fly&i) D(+7+)(£17£3) D(_7+)(£17 £3> D(_’_) (517 £3) D(—h_) (51753)
200 -0.001 (0.05) -0.081(0.02) 0.081(0.02) -0.081(0.02) 0.081(0.07)
600 0.001 (0.04) -0.079(0.01) 0.079(0.01) -0.079 (0.01) 0.080 (0.06)
1000 0.000 (0.03) -0.079 (0.01) 0.079 (0.01) -0.079 (0.01) 0.079 (0.06)

n D(&,&) DUED(6,&6) DUD(6G,&6) DEI(6,6) DEI(6,6)
200 -0.002 (0.07) -0.037(0.03) 0.037(0.03) -0.037(0.03) 0.035(0.03)
600 0.002 (0.06) -0.029 (0.03) 0.030(0.03) -0.030(0.03) 0.030(0.02)
1000 -0.001 (0.06) -0.028 (0.02) 0.028 (0.02) -0.029 (0.02) 0.028 (0.02)

Table A.4: Estimated standard errors, computed by (3.1), of the estimator of the EDM for Case 1 [Indepen-

dence]

n D) (&1,&) D(=F) (&1,&) D(_’_)(fh &) D(+’_)(f17 &)
200 0.01 0.01 0.01 0.01
600 0.01 0.01 0.01 0.01
1000 0.01 0.01 0.01 0.01

n DD, &) DOP(E, &) DOI(E,&) D6, &)
200 0.01 0.01 0.01 0.01
600 0.01 0.01 0.01 0.01
1000 0.01 0.01 0.01 0.01

n D(+7+) (52753) D(_Hr) (§Q7§3> D(_7_)<§27§3> D(+7_)<§27§3)
200 0.01 0.01 0.01 0.01
600 0.01 0.01 0.01 0.01
1000 0.01 0.01 0.01 0.01
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Table A.5: Estimated standard errors, computed by (3.1), of the estimator of the EDM for Case 2

n DN, &) DEP(EG,E) DEI(E,L) DEI(E, &)

200 0.03 0.02 0.02 0.02
600 0.02 0.02 0.02 0.02
1000 0.02 0.01 0.02 0.01

n D(+7+) (51753) D(_7+) <£17£3> D(_’_)<£17é3> D(+7_)<£1753)
200 0.02 0.02 0.02 0.02
600 0.02 0.02 0.02 0.02
1000 0.01 0.01 0.01 0.01

n D&, &) DG, &) DE(6,&) D6, 6)
200 0.03 0.02 0.03 0.02
600 0.02 0.02 0.02 0.02
1000 0.02 0.01 0.02 0.01

Table A.6: Estimated standard errors, computed by (3.1), of the EDM for Case 3 [full dependence]

n_ DV, &) DU, &) DUT(E,6) DU, &)

200 0.03 0.03 0.03 0.03
600 0.02 0.02 0.02 0.02
1000 0.01 0.01 0.01 0.01

n D(+7+) (51753) D(77+) (£I7§3> D(777)(£17£3) D(+77)<§17£3)
200 0.02 0.02 0.02 0.02
600 0.01 0.01 0.01 0.01
1000 0.01 0.01 0.01 0.01

n DEH(G &) DED(G,&) D&, &) DTG, &)
200 0.03 0.03 0.03 0.03
600 0.03 0.03 0.03 0.03
1000 0.02 0.02 0.02 0.02
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Table A.7: Estimates of EDM for Walmart stock. Standard errors in parentheses are computed using Theo-

rem 2.

D(+7+)(€1752) D(_’+)(€17€2) D(_7_)(£17€2) D(+7_)(§17 §2)
Before 0.06 (0.02) -0.06 (0.02) 0.07 (0.02) -0.10 (0.02)
During 0.11 (0.02) -0.06 (0.01) 0.08 (0.02) -0.06 (0.01)
After 1 0.11 (0.03) -0.08 (0.02) 0.07 (0.02) -0.06 (0.02)
After2  0.11 (0.04) -0.07 (0.03) 0.04 (0.02) -0.11 (0.04)

DD, &) DU, &) D6, &) D6, 6)
Before 0.08 (0.02) -0.06 (0.02) 0.08 (0.02) -0.06 (0.02)
During 0.08 (0.02) -0.07 (0.02) 0.05 (0.02) -0.08 (0.02)
After 1 0.05 (0.02) -0.11 (0.03) 0.08 (0.03) -0.07 (0.03)
After2  0.08 (0.03) -0.07 (0.03) 0.07 (0.03) -0.05 (0.02)

DUFH(&,&) DUP(6,&) DET(6,86) D (6, &)
Before 0.08 (0.03) -0.09 (0.03) 0.05 (0.02) -0.05 (0.02)
During  0.09 (0.02) -0.08 (0.02) 0.07 (0.02) -0.07 (0.02)
After 1 0.10 (0.02) -0.08 (0.02) 0.09 (0.02) -0.09 (0.02)
After 2 0.07 (0.02) -0.08 (0.02) 0.08 (0.02) -0.06 (0.02)

Table A.8: Estimates of EDM for IBM stock. Standard errors in parentheses are computed using Theorem 2.

DUH(E, &) DUP(E,&6) DET(E,6) DI, 6)
Before  0.06 (0.02) -0.13 (0.02) 0.06 (0.02) -0.07 (0.02)
During  0.06 (0.02) -0.07 (0.03) 0.10 (0.02) -0.07 (0.02)
After 1 0.05(0.02) -0.05 (0.02) 0.08 (0.03) -0.09 (0.03)
After2  0.06 (0.02) -0.10 (0.02) 0.10 (0.02) -0.06 (0.02)

DUFP(g, &) DUEP(E,6) DET(6,85) DTI(6, &)
Before  0.10 (0.02) -0.08 (0.01) 0.08 (0.02) -0.10 (0.02)
During  0.07 (0.03) -0.10 (0.03) 0.10 (0.03) -0.05 (0.02)
After 1 0.08 (0.02) -0.09 (0.02) 0.06 (0.01) -0.06 (0.01)
After2  0.05(0.02) -0.12 (0.03) 0.10 (0.03) -0.07 (0.03)

D) (&2,63) D) (&2,63) D) (&2,63) D) (&2,&3)
Before  0.11 (0.03) -0.08 (0.02) 0.05 (0.02) -0.09 (0.02)
During  0.14 (0.03) -0.09 (0.03) 0.09 (0.03) -0.08 (0.03)
After 1  0.07 (0.02) -0.07 (0.02) 0.07 (0.02) -0.08 (0.02)
After 2 0.06 (0.02) -0.10 (0.02) 0.06 (0.02) -0.09 (0.02)
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Appendix B

Supplementary material of Chapter 5

B.1 Tables with coverage probabilities for fixed & values

Table B.1: Proportion (in percent) of the asymptotic confidence intervals including 1/« as a function of the
number of upper order statistics, k, for n = 500 and the Pareto model. In the “Ratio" column, the ratio
of error SD to model SD is displayed. Ratio equal to zero indicates no errors. The target coverage is 95
percent.

Ratio Error k
Type 30 50 100 150 200 250 300 350 400
0 925 933 943 939 939 944 945 951 955

0.01 Normal 923 933 942 945 942 941 941 949 095.1
scaledtg 92.5 93.1 947 94.1 944 943 945 95.1 948

GPD 924 935 945 941 940 943 941 949 954
Uniform 92.7 93.6 946 943 945 934 948 953 095.1

0.05 Normal 917 93.6 939 944 928 93.1 93.1 94.1 96.0
scaledts 91.2 940 952 94.0 935 933 929 945 96.2

GPD 91.6 93.6 948 94.6 933 942 933 944 0957
Uniform 91.9 93.0 93.7 94.1 932 934 942 94.1 0938

0.1 Normal 91.0 93.1 925 914 879 87.6 91.0 944 6738
scaledtg 90.0 90.6 86.6 83.2 813 89.0 964 739 2.7

GPD 905 928 928 91.8 91.1 924 948 952 88.0
Uniform 904 93.1 937 933 921 89.8 87.5 90.7 893

0.2 Normal 903 90.2 809 714 729 879 934 305 0.0
scaledts 88.5 89.3 84.1 842 87.0 924 939 531 0.6

GPD 88.6 88.0 87.1 87.1 886 943 939 704 9.7
Uniform 89.9 919 903 850 76.1 69.1 876 785 1.0

0.3 Normal 850 81.0 555 494 71.0 963 457 0.0 0.0
scaledtg 87.3 84.7 74.1 70.7 78.8 934 835 59 00

GPD 84.6 84.0 78.8 84.1 915 952 724 122 00
Uniform 88.9 88.1 804 59.7 44.1 709 904 57 0.0
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Table B.2: Proportion (in percent) of the asymptotic confidence intervals including 1/« as a function of the
number of upper order statistics, k, for n = 2000 and the Pareto model. In the “Ratio" column, the ratio
of error SD to model SD is displayed. Ratio equal to zero indicates no errors. The target coverage is 95
percent.

Error k
Type 50 100 200 300 400 500 600 700 800 1500

0 90.1 925 943 948 955 949 954 95 954 959
0.0 Normal 89.9 920 94.0 94.6 953 949 955 949 954 96.0
scaled tg 90.0 925 944 943 954 951 950 95.0 957 095.6

GPD 899 920 948 945 958 9477 958 951 951 095.1
Uniform 90.0 923 942 948 954 948 958 94.8 949 95.0

0.05 Normal 899 924 941 933 948 945 941 940 94.1 943
scaledtg 89.5 92.8 943 94.1 948 945 943 944 934 942

GPD  89.7 91.8 939 947 948 944 947 933 941 95.6
Uniform 90.2 91.8 945 94.0 947 939 952 944 940 90.7

0.1  Normal 90.1 919 946 935 932 926 91.7 90.6 874 909
scaledtg 90.3 91.6 934 933 922 91.7 886 86.5 83.0 73.7

GPD 89.6 925 931 916 904 882 872 856 863 64.7
Uniform 89.8 90.5 935 922 895 862 819 74.0 665 92.1

0.2 Normal 89.8 915 904 86.8 769 66.1 565 47.0 452 0.0
scaledtg 90.6 909 86.8 80.2 68.0 550 48.1 46.5 50.7 0.0

GPD 884 88.1 84.6 753 689 657 682 746 841 00
Uniform 88.5 89.2 85.1 714 492 257 90 26 1.0 0.0

0.3 Normal 89.1 88.6 829 67.8 569 50.7 494 541 646 0.0
scaledtg 88.3 86.1 70.1 437 269 19.0 183 27.0 468 0.0

GPD 859 799 63.6 513 458 52.1 6377 794 935 0.0
Uniform 885 850 614 227 33 01 00 00 05 0.0

Ratio
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Table B.3: Proportion (in percent) of the asymptotic confidence intervals including 1/« as a function of
the number of upper order statistics, k, for n = 500 and the 2RV model. In the “Ratio" column, the ratio
of error SD to model SD is displayed. Ratio equal to zero indicates no errors. The target coverage is 95
percent.

Ratio Error k
Type 30 50 100 150 200 250 300 350 400
0 922 920 &858 59.1 230 49 01 0.1 0.0

0.0 Normal 92.0 923 854 59.1 217 46 02 01 00
scaledtg 922 924 86.0 593 226 49 0.1 01 00

GPD 923 924 859 584 226 47 02 00 0.0
Uniform 92.1 92.1 859 587 223 49 02 00 0.0

0.05 Normal 90.8 912 84.6 532 178 25 02 00 0.0
scaledts 909 932 844 554 196 32 01 00 0.0

GPD 910 923 852 539 187 36 02 01 0.0
Uniform 91.6 925 844 532 176 24 0.1 01 00

0.1 Normal 899 910 79.0 381 100 14 0.1 02 04
scaledtg 91.0 91.6 815 448 133 19 0.1 00 00

GPD 902 915 788 452 142 32 0.1 01 00
Uniform 915 914 798 394 81 06 02 04 25

0.2 Normal 89.0 86.1 498 140 42 28 73 423 910
scaledts 89.4 88.1 634 239 70 21 15 49 492

GPD 882 850 642 335 146 68 37 39 196
Uniform 902 873 552 93 08 06 90 79.1 389

0.3 Normal 850 743 263 69 58 178 744 755 0.0
scaledtg 86.5 82.1 435 159 74 77 224 804 513

GPD 833 79.0 533 320 213 204 293 585 929
Uniform 84.7 795 219 1.1 02 99 838 205 00
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Table B.4: Proportion (in percent) of the asymptotic confidence intervals including 1/« as a function of the
number of upper order statistics, k, for n = 2000 and the 2RV model. In the “Ratio" column, the ratio
of error SD to model SD is displayed. Ratio equal to zero indicates no errors. The target coverage is 95
percent.

Error k
Type 50 100 200 300 400 500 600 700 800 1500

0 90.1 924 92.6 881 73.0 444 162 21 0.1 0.0
0.01 Normal 89.9 917 927 882 736 442 165 22 0.1 0.0
scaledtg 90.0 925 93.1 88.0 732 438 163 23 0.1 00

GPD 899 919 925 87.8 729 440 160 20 0.1 00
Uniform 90.0 922 923 885 727 442 160 18 0.1 0.0

0.05 Normal 902 91.8 923 865 682 354 91 08 00 0.0
scaledts 90.0 922 927 86.2 67.7 347 88 0.6 0.0 0.0

GPD 899 919 916 860 683 359 97 0.8 0.0 0.0
Uniform 90.7 91.1 92.0 865 673 345 94 05 00 0.0

0.1  Normal 904 912 913 785 453 11.6 07 00 0.0 0.0
scaledtg 904 915 915 819 560 205 21 0.1 00 00

GPD 896 923 900 788 499 183 3.0 02 0.0 00
Uniform 89.2 90.6 919 787 50.1 136 07 00 00 0.0
0.2 Normal 90.1 889 742 270 27 00 00 00 0.0 742
scaledts 90.5 903 81.1 484 134 18 00 0.0 0.0 85

GPD 882 873 729 440 167 38 07 0.1 0.0 0.1
Uniform 89.0 884 778 395 33 00 00 00 0.0 04

0.3 Normal 882 823 306 16 01 00 00 00 0.0 00
scaledtg 88.2 852 540 138 0.7 00 00 00 00 39
GPD 858 783 479 190 60 29 10 04 03 874
Uniform 87.1 832 479 35 00 00 00 00 00 0.0

Ratio
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