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ABSTRACT

HEAVY TAIL ANALYSIS FOR FUNCTIONAL AND INTERNET ANOMALY DATA

This dissertation is concerned with the asymptotic theory of statistical tools used in extreme

value analysis of functional data and internet anomaly data. More specifically, we study four

problems associated with analyzing the tail behavior of functional principal component scores in

functional data and interarrival times of internet traffic anomalies, which are available only with

a round-off error. The first problem we consider is the estimation of the tail index of scores in

functional data. We employ the Hill estimator for the tail index estimation and derive conditions

under which the Hill estimator computed from the sample scores is consistent for the tail index

of the unobservable population scores. The second problem studies the dependence between ex-

tremal values of functional scores using the extremal dependence measure (EDM). After extending

the EDM defined for positive bivariate observations to multivariate observations, we study condi-

tions guaranteeing that a suitable estimator of the EDM based on these scores converges to the

population EDM and is asymptotically normal. The third and last problems investigate the asymp-

totic and finite sample behavior of the Hill estimator applied to heavy–tailed data contaminated by

errors. For the third one, we show that for time series models often used in practice, whose non–

contaminated marginal distributions are regularly varying, the Hill estimator is consistent. For the

last one, we formulate conditions on the errors under which the Hill and Harmonic Moment esti-

mators applied to i.i.d. data continue to be asymptotically normal. The results of large and finite

sample investigations are applied to internet anomaly data.
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Chapter 1

Introduction

Heavy-tailed phenomena occur in a variety of fields and have been studied for several decades.

Benoit Mandelbrot, see e.g. [1], referred to them as the “Noah effect"; an observation can occur

after surviving a flood, long after all other observations have perished. The origins of the field of

extreme value theory are actually in mathematical research motivated by flood prevention engi-

neering problems, see e.g. Chapter 1 of [2]. The currently used theory began to take shape in early

1970s, but many fundamental problems, motivated by mathematical curiosity, have been solved

much earlier, with one of the most spectacular achievements being the solution to the problem of

the extremal domains of attraction obtained by [3].

In this dissertation, we derive asymptotic properties of statistical tools for the analysis of

heavy–tailed behavior observed in functional data and internet traffic anomaly data. In certain

applications, most notably in finance, functional principal component scores in functional data

exhibit heavy tails. Heavy–tailed characteristics are also found in anomalies arrival times. Quanti-

fying the tail behavior of such data is needed to further apply methods of extreme value theory.

This dissertation consists of four main chapters. Chapters 2 and 3 make a contribution at the

nexus of functional data analysis and heavy–tail analysis. In Chapters 4 and 5 we study the Hill

estimator applied to observations contaminated by some errors. We now outline the main ideas of

each chapter.

In Chapter 2, we study the tail behavior of functional principal component scores that are com-

monly used to reduce mathematically infinitely dimensional functional data to finite dimensional

vectors. To estimate the tail index of the scores, we consider the Hill estimator that is the most

commonly used tool for inference on the tail index. We derive conditions under which the Hill

estimator computed from the sample scores is consistent for the tail index of the unobservable

population scores.
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In Chapter 3, we assess extremal dependence between functional principal component scores

by means of the extremal dependence measure (EDM). Estimated scores form a triangular array

of dependent random variables. We derive conditions under which an estimator of the EDM based

on these scores is asymptotically normal. These conditions are completely different from those

encountered in the second-order theory of functional data. They are formulated within the frame-

work of functional regular variation. Large sample theory is complemented by an application to

intraday return curves for certain stocks and by a simulation study.

Chapter 4 is concerned with the estimation of the tail index of heavy–tailed time series con-

taminated by measurement or other errors. We investigate asymptotic and finite sample properties

of the Hill estimator applied time series observed with errors. We derive conditions under which

the effect of the errors is asymptotically negligible. We show by means of a simulation study that

the Hill estimator is asymptotically robust to relatively large errors.

In Chapter 5, we establish the asymptotic normality of the Hill estimator and of the harmonic

moment estimator applied to heavy-tailed observations with measurement errors. The latter es-

timator is actually a class of estimators generalizing to the Hill estimator. Essentially, the only

assumption on the errors needed to obtain the asymptotic normality is that they have lighter tails

than the underlying unobservable process. The interarrival times of anomalies in a backbone in-

ternet network, computed with a roundoff error, are used in an application study in Chapters 4 and

5.

In the remainder of this chapter, we give a general introduction to the Hill estimator that we

will see in Chapters 2, 4, and 5, and to the EDM that will appear in Chapter 3. We also discuss

functional principal component analysis, to the extent needed to understand Chapters 2 and 3. It

is not possible to explain all relevant concepts fully in a brief account, but we attempt to pro-

vide enough information to make this dissertation reasonably self-contained. As we introduce the

required concepts, we give references to monographs that provide extensive, in-depth treatments.
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1.1 Hill estimator and the EDM

In this section, we discuss two statistical tools used in heavy-tail analysis, the Hill estimator and

the EDM, that this dissertation focuses on. We start by introducing the theory of regular variation,

which provides a suitable mathematical framework. More detailed background is provided in

Chapters 2 and 6 of [4].

A function U : R+ −→ R+ is regularly varying with index α > 0, U ∈ RV−α, if for any x > 0,

lim
t−→∞

U(tx)

U(t)
= x−α.

If the function U satisfies the above condition, we write U ∈ RV−α. In applications, we often con-

sider tail probabilities U(t) = P (X > t), where the random variable X has the same distribution

as observations of an underlying random process. The tail index α characterizes the tail behavior

of the process.

Suppose X1, . . . , Xn are independent, nonnegative random variables with a common marginal

distribution function FX , which has regularly varying tail probabilities:

F̄X = 1− FX = P (Xi > ·) ∈ RV−α.

There is an extensive body of work on estimating the tail index α. One of the well–known estima-

tors is the Hill estimator defined as

Hk,n =
1

k

k−1∑

i=1

log
X(i)

X(k)

,

with the convention that X(i) is the i–th largest order statistic. It uses only the k largest observa-

tions, which intuitively makes sense because any inference on the tail index should be based on

the extreme observations. The asymptotic properties of the Hill estimator have been studied as the

number of upper order statistics, k, tends to infinity with the sample size n, in such a way that

k/n −→ 0.
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The EDM quantifies the tendency of large values between two components to occur simulta-

neously. Its construction is based on the theory of heavy–tailed regularly varying random vectors.

Thus, we first introduce multivariate regular variation and then discuss the EDM.

There are various equivalent formulations of multivariate regular variation, see Theorem 6.1

of [4]. We present here the definition with a polar coordinate representation. Fix a norm ‖ · ‖ in

R
d, and let Sd

+ be the unit sphere in the nonnegative orthant in R
d. A d–dimensional random vector

Z = [Z1, . . . , Zd]
⊤ is regularly varying if and only if there exists a sequence bR(n) → ∞ and an

angular probability measure Γ on S
d
+ such that for (R,Θ) = (‖Z‖,Z/‖Z‖),

nP

((
R

bR(n)
,Θ

)
∈ ·
)

v→ cνα × Γ, in M+((0,∞]× S
d
+),

where να(x,∞] = x−α and c = ν{x : ‖x‖ > 1} > 0. Basically, it can be interpreted that

the radius R is involved with the tail index α and the angular measure Γ has all information on

extremal dependence of the components in Z.

Given a regularly varying nonnegative bivariate random vector Z = [Z1, Z2]
⊤, the EDM is

defined by

EDM(Z1, Z2) =

∫

S2+

a1a2Γ(da),

see [5]. The EDM takes the minimal value of zero iff the coordinates of Z are asymptotically inde-

pendent. Also, if the norm is symmetric, the EDM achieves its maximal value iff the coordinates

of Z exhibit asymptotic full dependence.

1.2 Functional principal component scores

Functional data analysis (FDA) is the statistical analysis of samples of curves, and it has be-

come an active field of statistics over the last three decades. Functional principal component anal-

ysis is one of the most fundamental tools of FDA. It leads to an efficient representation of infinitely

dimensional objects, like curves, by means of multivariate vectors of scores, e.g., [6], [7], [8], [9].
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A finite number of these scores encode the shape of the curves and are amenable to various statis-

tical procedures.

We assume that all curves can be viewed as observations from a functional space L2 = L2(T ),

where the measure space T is such that L2(T ), with the usual inner product, is a separable Hilbert

space. Suppose X1, . . . , Xn are mean zero iid functions in L2 with E ‖Xi‖2 < ∞. Then, by

Karhunen–Loéve expansion, see e.g., Chapter 11 of [10],

Xi(t) =
∞∑

j=1

ξijvj(t), ξij = 〈Xi, vj〉 , Eξ2ij = λj,

where the vj are functional principal components (FPCs) and the ξij are functional principal com-

ponent scores.

The FPCs vj and the eigenvalues λj are estimated by v̂j and λ̂j , which are solutions to the

equations

Ĉ(v̂j)(t) = λ̂j v̂j(t), for almost all t ∈ T ,

where Ĉ is the sample covariance operator defined by

Ĉ(x)(t) =
1

n

n∑

i=1

〈Xi, x〉Xi, x ∈ L2.

The population scores ξij are estimated by the sample scores ξ̂ij = 〈Xi, v̂j〉, which is the

projection of Xi onto the estimated FPC v̂j . Thus, each ξ̂ij quantifies the contribution of the curve

v̂j to the shape of the curve Xi. Furthermore, the vector of the sample scores, [ξ̂i1, . . . , ξ̂ip]
⊤,

encodes the shape of Xi to a good approximation since each curve Xi can be approximated by a

linear combination of a finite set of the estimated FPCs v̂j , i.e., Xi(t) ≈
∑p

j=1 ξ̂ij v̂j(t).

5



Chapter 2

Hill estimator of projections of functional data on

principal components

2.1 Introduction

A fundamental technique of functional data analysis is to replace infinite dimensional curves by

coefficients of their projections onto suitable, fixed or data–driven, systems, e.g. [6], [7], [8], [9].

A finite number of these coefficients encode the shape of the curves and are amenable to various

statistical procedures. The best systems are those that lead to low dimensional representations, and

so provide the most efficient dimension reduction. Of these, the functional principal components

(FPCs) have been most extensively used, with hundreds of papers dedicated to the various aspects

of their theory and applications.

If X1, X2, . . . , Xn are mean zero iid functions in L2 with E ‖Xi‖2 < ∞, then

Xi(t) =
∞∑

j=1

ξijvj(t), Eξ2ij = λj, (2.1)

where the vj are the FPCs. The theory behind the Karhunen–Loéve expansion (2.1) is well–known,

see e.g. Chapter 11 of [10], so we do not repeat the details.

The FPCs vj and the eigenvalues λj are estimated by v̂j and λ̂j defined by

∫
ĉ(t, s)v̂j(s)ds = λ̂j v̂j(t), (2.2)

where ĉ(t, s) = N−1
∑N

n=1 Xn(t)Xn(s). In most inferential scenarios, replacing the vj by the v̂j ,

and the λj by the λ̂j is asymptotically negligible, see [11], [12], [13], [14], [15], among dozens

of recent papers by other authors. Even though many different inferential problems have been

considered, they are all related to some form of “second order inference”, which utilizes estimators
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of means and covariance structures. In this paper, we study a totally different type of estimator, the

Hill estimator, which is one of the most widely used tools of extreme value theory, see e.g. [16],

[17] and [4]. Its definition is given in Section 2.2. We now describe a motivation for our study. We

present an example based on financial data, but similar questions arise in the analysis of annual

precipitation or other climate related curves.

Denote by Pi(t) the price of an asset at time t of trading day i. For the assets we consider

in our example, t is time in minutes between 9:30 and and 16:00 EST (NYSE opening times)

rescaled to the unit interval (0, 1). The intraday return curve on day i is defined by Xi(t) =

logPi(t)− logPi(0). In practice, Pi(0) is the price after the first minute of trading. The curves Ri

show how the return accumulates over the trading day, see e.g. Figure 1 in [18]; examples of are

shown in Figure 2.1.
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Figure 2.1: Five consecutive intraday return curves, Walmart stock.

The first three sample FPCs, v̂1, v̂2, v̂3, are shown in Figure 2.2. They are computed, using (2.2),

from minute-by-minute Walmart returns form July 05, 2006 to Dec 30, 2011, n = 1, 378 trading

days. (This period is used for the other assets we consider.) The curves X̂i(t) =
∑3

j=1 ξ̂ij v̂j , with

the scores ξ̂ij =
∫
Xi(t)v̂j(t)dt, approximate the curves Xi well. Figure 2.3 shows the Hill plots

of the sample score ξ̂ij for two stocks and for j = 1, 2, 3. These plots are used to estimate the tail

index α. Asymptotically, α̂ is obtained as the number of upper order statistics, k, tends to infinity

with the sample size n, in such a way that k/n → 0. In the plots, the values of k between 100 and
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Figure 2.2: The first three sample FPCs of intraday returns on Walmart stock.

30 are used (recall, n = 1, 378). These plots show that it is reasonable to assume that the scores

have Pareto tails, with the tail index between 2 and 4.

It is important to emphasize that the Hill plots Figure 2.3 are computed using the samples score

ξ̂ij = 〈Xi, v̂j〉, whereas the population parameter is the tail index α of the unobservable scores

ξij = 〈Xi, vj〉. The question is if the Hill estimator based on the ξ̂ij will be consistent for α,

at least under some additional conditions, or if there is a systematic bias due to the effect of the

estimation of the vj by the v̂j . A problem of this type has not be studied. Consistency of the Hill

estimator has been established in several settings, but always assuming that the regularly varying

data are available.

Even for samples of iid positive random variables, the consistency of the Hill estimator is far

from trivial. The first proof in the iid setting was developed by [19]. [20] introduced a general

approach to establishing the consistency in case of dependent data, including both stationary times

series and triangular arrays. Another extension was obtained by [21]. The sample scores do form a

triangular array, but we were unable to adapt Hsing’s method to accommodate the transition from

8



100 93 86 79 72 65 58 51 44 37 30

1
2

3
4

5
1.17 1.25 1.33 1.40 1.46 1.52 1.61 1.76

Order Statistics

a
lp

h
a
 (

C
I,
 p

 =
0
.9

5
)

Threshold

100 93 86 79 72 65 58 51 44 37 30

1
2

3
4

5

0.314 0.341 0.364 0.392 0.415 0.439 0.502

Order Statistics

a
lp

h
a
 (

C
I,
 p

 =
0
.9

5
)

Threshold

100 93 86 79 72 65 58 51 44 37 30

1
2

3
4

5

0.190 0.203 0.224 0.244 0.263 0.278 0.307

Order Statistics

a
lp

h
a
 (

C
I,
 p

 =
0
.9

5
)

Threshold

100 93 86 79 72 65 58 51 44 37 30

1
2

3
4

5

1.18 1.23 1.27 1.34 1.49 1.57 1.69 1.82

Order Statistics

a
lp

h
a
 (

C
I,
 p

 =
0
.9

5
)

Threshold

100 93 86 79 72 65 58 51 44 37 30

1
2

3
4

5

0.351 0.384 0.413 0.438 0.474 0.526 0.588

Order Statistics

a
lp

h
a
 (

C
I,
 p

 =
0
.9

5
)

Threshold

100 93 86 79 72 65 58 51 44 37 30

1
2

3
4

5

0.208 0.219 0.229 0.238 0.268 0.285 0.330

Order Statistics

a
lp

h
a
 (

C
I,
 p

 =
0
.9

5
)

Threshold

Figure 2.3: Hill plots for sample FPC scores for Walmart (left) and IBM (right). From top to bottom:

levels j = 1, 2, 3.
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the sample scores to the unobservable population scores. We developed an approach based on the

vague convergence of radon measures, see [22], [4].

In Section 2.2 we introduce the framework and state our main result, Theorem 1, which is

proven in Section 2.4, after some preparation in Section 2.3.

2.2 Assumptions and the main result

The most elegant, but in fact unnecessarily strong, assumption is that the function X whose

copies Xi, 1 ≤ i ≤ n, we observe is regularly varying in L2. The space L2 is infinitely dimensional

and not locally compact, so we cannot define regular variation using the framework of [22], [4],

but we can use a similar and more general framework of [23] who use M0 convergence in place

of the vague convergence in the Euclidean space with zero removed and compactified at infinity.

Since we work with projections onto the real line, any definition of regular variation in L2 which

implies regular variation of these projections would work. According to [23] a function X in L2

(or any Banach space) is regularly varying with index α > 0 if

P (‖X‖ > u) = u−αL(u) (2.1)

and

P (u−1X ∈ ·)
P (‖X‖ > u)

M0−→ µ(·), u → ∞, (2.2)

where µ is a non-null measure (exponent measure), and L is a slowly varying function. There are

several equivalent definitions, see Chapter 2 of [24], which also contains all details.

Set

U(u) = P (| 〈X, v〉 | > u), Û(u) = P (| 〈X, v̂〉 | > u),

where v is is one of the FPCs vj in (2.1) and v̂ its estimated defined by (2.2). The function U is

regularly varying with index α, in the notation of [22], U ∈ RV−α. To see this, consider the set
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Av = {x : | 〈x, v〉 | > 1} , and observe that | 〈X, v〉 | > u iff u−1X ∈ Av. By (2.1) and (2.2),

U(tu)

U(u)
=

P ((tu)−1X ∈ Av)

P (‖X‖ > tu)

P (‖X‖ > tu)

P (‖X‖ > u)

P (‖X‖ > u)

P (u−1X ∈ Av)
→ t−α,

provided µ(Av) > 0. It cannot be expected that Û ∈ RV−α; for a fixed n, v̂ is a random func-

tion whose distribution will, in general, influence the distribution of 〈X, v̂〉. Only some form of

asymptotic regular variation can be expected because Û approaches U , in several ways, as n → ∞.

The same argument shows that if µ({x : 〈x, v〉 > 1}) > 0, then the function U+(u) = P (〈x, v〉 >

u) is in RV−α, and if µ({x : 〈x, v〉 < −1}) > 0, then U−(u) = P (〈x, v〉 < −u) is in RV−α. To

avoid repetitions of almost identical statements, we focus in the following on the estimation of the

tail index of the function U . We will work under the following assumption.

ASSUMPTION 1. The functions X1, X2, . . . Xn are independent and have the same distribution as

X . The function v is such that the function U(u) = P (| 〈X, v〉 | > u) is regularly varying with

index α > 2, α 6= 4.

The assumption α > 2 is needed because if X ∈ RV−α with 0 < α < 2, then, by (2.1),

E‖X‖2 = ∞, so the FPCs are not defined. If α = 2, then either E‖X‖2 = ∞ or E‖X‖2 < ∞ are

possible, and complex assumptions on the slowly varying functions L are needed to derive various

rather technical results. We therefore assume α > 2. Another phase transition occurs at α = 4

separating, in a similar way, the cases with E‖X‖4 = ∞ and E‖X‖4 < ∞.

In our theory, the index α can depend on the direction v, but we do not emphasize it in our

notation. We also note that even though the observed functions X1, X2, . . . Xn are iid, the sample

scores 〈Xi, v̂〉 are no longer independent because v̂ depends on all X1, X2, . . . Xn. They form a

triangular array of dependent random variables, which are identically distributed for each fixed n.

The Hill estimator must be based on the projections 〈Xi, v̂〉. Before recalling its definition, we

introduce the following random variables:

Y = | 〈X, v〉 |, Ŷ = | 〈X, v̂〉 |,

11



Yi = | 〈Xi, v〉 |, Ŷi = | 〈Xi, v̂〉 |.

This allows us to define

Hk,n =
1

k

k−1∑

i=1

lnY(i) − lnY(k), Ĥk,n =
1

k

k−1∑

i=1

ln Ŷ(i) − ln Ŷ(k),

with the convention that Y(n) is the largest order statistic. In the functional data context, Hk,n is an

infeasible Hill estimator because the FPC v is not observed; Ĥk,n is the Hill estimator that can be

actually computed. We want to establish condition under which it converges in probability to α−1,

where α is the index of regular variation of Y .

We further define

1− F (u) = P (Y > u) = U(u), b(t) = F←
(
1− 1

t

)
.

We will use the representation

b(t) = t1/αLb(t), (2.3)

where Lb is a slowly varying function.

The approach in Chapter 4 of [4] is based on vague convergence to the measure on the positive

half–line, which is defined by

να(x,∞] = x−α, x > 0.

Our approach involves a sequence of “increasingly empirical” measures, with only the last one

being observable. We set

νn =
1

k

n∑

i=1

IYi/b(
n
k
), ν⋆

n =
1

k

n∑

i=1

IYi/Y(k)
, ν†n =

1

k

n∑

i=1

IŶi/b(
n
k
), ν̂n =

1

k

n∑

i=1

IŶi/Ŷ(k)
.

Any argument must involve some bounds on a suitable distance between Ŷi and Yi. We now

explain what can be assumed. If v is the jth eigenfunction of C, the population covariance operator,
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and v̂j is the jth eigenfunction of Ĉ, then (see e.g. Lemma 2.3 in [8]),

‖v̂ − v‖ ≤ 2
√
2

dj
‖Ĉ − C‖L, (2.4)

where d1 = λ1 − λ2, dj = min {λj−1 − λj, λj − λj+1}. Assuming that the eigenfunctions λj of

C are such that for the j of interest dj > 0, we obtain

‖v̂ − v‖ ≤ Av‖Ĉ − C‖L. (2.5)

Since

|Ŷi − Yi| ≤ | 〈Xi, v̂ − v〉 | ≤ ‖Xi‖‖v̂ − v‖,

we conclude from (2.5) that

|Ŷi − Yi| ≤ Av‖Xi‖‖Ĉ − C‖L. (2.6)

If α > 4, then, see e.g. Theorem 2.5 in [8],

E‖Ĉ − C‖2L = O(n−1). (2.7)

The case of regularly varying X with tail index α ∈ (2, 4) is studied in [25]. Under week

conditions, relation (2.7) must be replaced by

E‖Ĉ − C‖βL ≤ Lβ(n)n
−β(1−2/α), ∀ β ∈ (0, α/2), (2.8)

where Lβ is a slowly varying function. For a fixed α, the strongest bound is obtained as β ր α/2,

in which case β(1 − 2/α) ր α/2 − 1. As α ր 4 and β ր α/2, relation (2.8) thus approaches,

in a heuristic sense, relation (2.7). It is enough to impose a slightly weaker, but more convenient,

condition:

E‖Ĉ − C‖βL = O
(
n−κ

)
, ∀ β ∈

(
1,

α

2

)
, ∀ κ ∈

(
0, β

(
1− 2

α

))
. (2.9)
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The above discussion shows that the following Assumption 2 basically always holds as long

as dj > 0 in (2.4). We formulated it for ease of reference, and to emphasize that only certain

properties of the sample covariance operator Ĉ are used; Ĉ could, in principle, be a different

estimator of C, which has those properties.

ASSUMPTION 2. Relation (2.5) holds. The estimator Ĉ satisfies (2.7) if α > 4 and (2.9) if α ∈

(2, 4).

Since the Yi are iid and in RV−α, the only conditions needed to ensure that Hk,n
P→ α−1 are

k = k(n) → ∞ and k/n → 0, as n → ∞. In our setting, we want to estimate the tail index of

unobservable random variables Yi based on their observed approximations Ŷi. It can be expected

that the rate of the approximation will impose additional conditions on the rate at which k tends to

infinity with n. A sufficient condition is formulated in Assumption 3 below.

Define the function

γ(α) =





α− 2

2α− 2
, α ∈ (4,∞),

1

α− 1
, α ∈ (3, 4],

2− α

2
, α ∈ (2, 3].

(2.10)

Observe that γ(·) is continuous at α = 4 with γ(4) = 1/3, and at α = 3 with γ(3) = 1/2. It is

increasing on (4,∞) with limαր∞ γ(α) = 1
2

and decreasing on (2, 4) with limαց2 γ(α) = 1.

We will write k >> nγ , for some γ ∈ (0, 1), if k/nγ → ∞.

ASSUMPTION 3. We assume that k >> nγ for some γ ∈ (γ(α), 1), with γ(α) defined in (2.10).

According to Assumption 3, as α ց 2, the order of k approaches n. One can say that as the

value of α approaches the smallest possible value for which the functional principal components

exit, only the very largest observations must be used to ensure the consistency of the Hill estimator.

THEOREM 1. Suppose Assumptions 1, 2 and 3 hold. Then Ĥk,n
P→ α−1.
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While Theorem 1 is formulated in the specific setting of projections of functional data onto

population and estimated FPCs, it is hoped that the approach we develop will be, in general out-

lines, applicable to other contexts where the tail indexed must be inferred from approximations to

unobserved data. For example, only Yi + εi with correlated errors εi may be observed. It is also

hoped that the theory developed for the most commonly used Hill estimator may be used to guide

similar developments for other estimators of the tail index.

2.3 Preliminary results

We collect in this section several results, none of which is particularly profound or difficult to

prove, but put together they play an important role in the proof of Theorem 1. By placing them in

a preparatory section, we will also avoid repeatedly distracting from the main flow of the argument

in Section 2.4.

Following [4], denote by M+ = M+(0,∞] the space of Radon measures on (0,∞].

LEMMA 1. The function h on M+ defined by h(µ) = µ(z,∞] is continuous at να.

Proof. Suppose µn → να. This implies that for any relatively compact B with να(∂B) = 0,

µn(B) → να(B). Taking B = (z,∞], we obtain h(µn) = µn(B) → να(B) = h(να).

LEMMA 2. The function h on M+ defined by

h(µ) =

∫ M

z

µ(x,∞]x−1dx

is continuous at να.

Proof. Suppose µn → να. By Lemma 1, for every x > 0, µn(x,∞]x−1 → να(x,∞]x−1. The

convergence ∫ M

z

µn(x,∞]x−1dx →
∫ M

z

να(x,∞]x−1dx

15



follows from the dominated convergence theorem because for x > z and sufficiently large n,

µn(x,∞] ≤ µn(z,∞] ≤ 2να(z,∞] = 2z−α.

The measure νn is a random element of M+, να its deterministic (constant) element. The

following lemma follows from Theorem 4.1 and relation (4.21) in [4].

LEMMA 3. In the space M+(0,∞], νn
P→ να and ν⋆

n
P→ να.

The next lemma follows from relation (4.17) in the proof of Theorem 4.2 in [4].

LEMMA 4. If the Yi are iid and in RV−α, then Y(k)/b(
n
k
)

P→ 1.

LEMMA 5. For any a, b ≥ 0, |[a ∧ 1]− [b ∧ 1]| ≤ |a− b|.

Proof. There are four cases:

1) a > 1, b > 1, |1− 1| = 0 ≤ |a− b|;

2) a > 1, b ≤ 1, |1− b| = 1− b < a− b = |a− b|;

3) a ≤ 1, b > 1, |a− 1| = 1− a < b− a = |a− b|;

4) a ≤ 1, b ≤ 1, |a− b| ≤ |a− b|.

The following statements are proven is Section 3.4 of [22]. The metric ρ which compactifies

(0,∞] at ∞ is

ρ(u, v) =

∣∣∣∣
1

u
− 1

v

∣∣∣∣ .

The distance between measures µ1, µ1 ∈ M+(0,∞] is defined by

d(µ1, µ2) =
∞∑

m=1

2−m {|µ1(fm)− µ2(fm)| ∧ 1} . (2.1)
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The functions fm ∈ CK(0,∞] are of the form

f(x) = 1− [cρ(x,B) ∧ 1], (2.2)

for some c > 0 and relatively compact B ⊂ (0,∞].

LEMMA 6. For any metric ρ and any set B, |ρ(a1, B)− ρ(a2, B)| ≤ ρ(a1, a2).

Proof. Recall that ρ(a,B) = infb∈B ρ(a, b). For any b ∈ B, ρ(a1, b) ≤ ρ(a1, a2) + ρ(a2, b).

Taking the infimum of the left–hand side, we obtain ρ(a1, B) ≤ ρ(a1, a2) + ρ(a2, b). Taking

the infimum of the right–hand side, we obtain ρ(a1, B) ≤ ρ(a1, a2) + ρ(a2, B). Consequently,

ρ(a1, B)− ρ(a2, B) ≤ ρ(a1, a2). Switching a1 and a2, we obtain the claim.

LEMMA 7. Suppose random variables Hm(n), m,n ≥ 1, satisfy 0 ≤ Hm(n) ≤ 1 and ∀ m ≥

1, Hm(n)
P→ 0, as n → ∞. Then,

∑∞
m=1 2

−mHm(n)
P→ 0, as n → ∞.

Proof. Define

S(n) =
∞∑

m=1

2−mHm(n)

=
∑

m≤M

2−mHm(n) +
∑

m>M

2−mHm(n)

=: SM(n) + S⋆
M(n).

Fix ε > 0 and observe that P (S(n) > ε) ≤ P (SM(n) > ε/2)+P (S⋆
M(n) > ε/2). Since S⋆

M(n) ≤

2−M , we can choose M so large that P (S⋆
M(n) > ε/2) = 0. For such a (fixed) M , P (S(n) > ε) ≤

P (SM(n) > ε/2) → 0.
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2.4 Proof of Theorem 1

The proof of Theorem 1 is constructed from a series of results, of which Proposition 1 is the

most prominent. To facilitate the understanding of the proofs of Proposition 1 and Theorem 1, we

note that

If α ∈ (3, 4), then 1
α−1

> 2− α
2

,

If α ∈ (2, 3), then 1
α−1

< 2− α
2

.

We may thus write

γ(α) = max

{
1

α− 1
, 2− α

2

}
, α ∈ (2, 4]. (2.1)

PROPOSITION 1. Under the assumptions of Theorem 1, d(ν†n, νn)
P→ 0.

Proof. Since each function fm in (2.1) has compact support in (0,∞], sm := inf {supp(fm)} > 0.

Therefore

|ν†n(fm)− νn(fm)| =
∣∣∣∣
∫

fmdν
†
m −

∫
fmdνn

∣∣∣∣

≤ 1

k

n∑

i=1

∣∣∣∣∣fm
(

Ŷi

b(n/k)

)
− fm

(
Yi

b(n/k)

)∣∣∣∣∣

=
1

k

∑

i∈Im

∣∣∣∣∣fm
(

Ŷi

b(n/k)

)
− fm

(
Yi

b(n/k)

)∣∣∣∣∣ ,

where

Im =
{
i ≥ 1 : Ŷi > smb(n/k) or Yi > smb(n/k)

}
.

Since each fm is of the form (2.2), by Lemmas 5 and 6,

|ν†n(fm)− νn(fm)| ≤
cm
k

∑

i∈Im

∣∣∣∣∣ρ
(

Ŷi

b(n/k)
, Bm

)
− ρ

(
Yi

b(n/k)
, Bm

)∣∣∣∣∣

≤ cm
k

∑

i∈Im

∣∣∣∣∣ρ
(

Ŷi

b(n/k)
,

Yi

b(n/k)

)∣∣∣∣∣ .
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The claim will thus follow from the convergence

∞∑

m=1

2−m

{[
cm
k

∑

i∈Im

∣∣∣∣
b(n/k)

Ŷi

− b(n/k)

Yi

∣∣∣∣

]
∧ 1

}
P→ 0,

which, in turn, by Lemma 7, will follow from

1

k

∑

i∈I(n)

∣∣∣∣
b(n/k)

Ŷi

− b(n/k)

Yi

∣∣∣∣
P→ 0, (2.2)

where, for some s⋆ > 0,

I(n) =
{
i ≥ 1 : Ŷi > s⋆b(n/k) or Yi > s⋆b(n/k)

}
.

Set

I(1)(n) = {i ≥ 1 : Yi > s⋆b(n/k)} , I(2)(n) =
{
i ≥ 1 : Ŷi > s⋆b(n/k)

}
.

Relation (2.2) will follow once we have shown that for g = 1 and g = 2,

b(n/k)

k

∑

i∈I(g)(n)

|Ŷi − Yi|
ŶiYi

P→ 0. (2.3)

We verify (2.3) for g = 1. The argument for g = 2 is basically the same; the roles of Ŷi and Yi

must be interchanged.

Fix ε > 0. First observe that

P


b(n/k)

k

∑

i∈I(1)(n)

|Ŷi − Yi|
ŶiYi

> ε


 ≤ P (G(n) > ε) ,

where

G(n) =
1

s⋆k

∑

i∈I(1)(n)

|Ŷi − Yi|
Ŷi

.
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Next, use the decomposition

P (G(n) > ε) = P1(n) + P2(n),

with

P1(n) = P

(
G(n) > ε, ∃ i ∈ I(1)(n) : Ŷi ≤

1

2
s⋆b(n/k)

)
;

P2(n) = P

(
G(n) > ε, ∀ i ∈ I(1)(n) : Ŷi >

1

2
s⋆b(n/k)

)
.

Observe that

P1(n) ≤ P

(
∃ i ∈ I(1)(n) : Ŷi ≤

1

2
s⋆b(n/k)

)
(2.4)

≤ P

(
∃ i ≤ n : Yi > s⋆b(n/k) and Ŷi ≤

1

2
s⋆b(n/k)

)

≤ P

(
∃ i ≤ n : |Ŷi − Yi| >

1

2
s⋆b(n/k)

)

= P

(
max
1≤i≤n

|Ŷi − Yi| >
1

2
s⋆b(n/k)

)
.

By (2.6),

P1(n) ≤ P

(
Av‖Ĉ − C‖L max

1≤i≤n
‖Xi‖ >

1

2
s⋆b(n/k)

)
(2.5)

≤ 2Av

s⋆b(n/k)
E

[
‖Ĉ − C‖L max

1≤i≤n
‖Xi‖

]
.

We first consider the case of α > 4. By (2.5) and (2.7),

P1(n) ≤
2Av

s⋆b(n/k)

{
E‖Ĉ − C‖2L

}1/2
{
E max

1≤i≤n
‖Xi‖2

}1/2

= O

(
1

b(n/k)
n−1/2n1/2

)
= O

(
1

b(n/k)

)
= o(1).
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By Markov’s inequality,

P2(n) ≤ P

(
2

s⋆2kb(n/k)

n∑

i=1

|Ŷi − Yi| > ε

)
(2.6)

≤ 2

εs⋆2kb(n/k)

n∑

i=1

E|Ŷi − Yi|.

By (2.6) and (2.7),

E|Ŷi − Yi| ≤ Av

{
E‖Xi‖2

}1/2 {
E‖Ĉ − C‖2L

}1/2

= O(n−1/2).

Therefore,

P2(n) = O

(
n1/2

kb(n/k)

)
= o(1).

The last equality follows from the assumption k >> nγ(α) and (2.3).

Now consider the case of α ∈ (2, 4). We first show that P1(n) = o(1). By (2.4), (2.6), and

Markov’s inequality

P1(n) = O

(
1√

b(n/k)

)
E

[
‖Ĉ − C‖1/2L max

1≤i≤n
‖Xi‖1/2

]
.

We apply Hölder’s inequality with p = 2β and q = 2β/(2β − 1) to get

P1(n) = O

(
1√

b(n/k)

){
E‖Ĉ − C‖βL

} 1
2β

{
E max

1≤i≤n
‖Xi‖

β
2β−1

} 2β−1
2β

.

For the above bound to be effective, we need E‖Xi‖
β

2β−1 < ∞, which is implied by β
2β−1

< α.

Since 2β − 1 > 1 and β < α/2, this condition always holds. It therefore follows from (2.9) that

P1(n) = O

(
1√

b(n/k)
n−

κ
βn

2β−1
2β

)

21



We can thus conclude that P1(n) = o(1), if there are β and κ such that −κ + 2β − 1 < 0. This is

possible if 2β − 1 < β
(
1− 2

α

)
. The above condition can be equivalently stated as β

(
1− 2

α

)
< 1.

Since β < α
2

, β
(
1− 2

α

)
< α

2
− 1 < 1 because α < 4. This completes the verification of

P1(n) = o(1) for α ∈ (2, 4).

To show that P2(n) = o(1), observe that by (2.6), Markov’s inequality with 0 < r ≤ 1, and

(2.6),

P2(n) ≤ P

(
2

s⋆2kb(n/k)

n∑

i=1

|Ŷi − Yi| > ε

)

= O

(
1

krbr(n/k)

)
E

(
n∑

i=1

|Ŷi − Yi|
)r

= O

(
nr

krbr(n/k)

)
E

[
‖Ĉ − C‖L

1

n

n∑

i=1

‖Xi‖
]r

.

Applying Hölder’s inequality with p = β/r and q = β/(β − r), we obtain

E

[
‖Ĉ − C‖rL

(
1

n

n∑

i=1

‖Xi‖
)r]

≤
{
E‖Ĉ − C‖βL

}r/β
{
E

(
1

n

n∑

i=1

‖Xi‖
)rq}1/q

.

For E‖Xi‖rq to be finite, we need

rq =
rβ

β − r
< α. (2.7)

Choosing

r =
β

β + 1
(2.8)

implies rq = 1. We thus obtain, with r specified in (2.8),

P2(n) = O

(
nr

krbr(n/k)

)
{E‖X‖}1/q n−κr/β = O

(
nr−rκ/β

krbr(n/k)

)
.

By (2.3), the claim P2(n) = o(1) will thus follow if k >> nγ , where

γ =
r − κr

β
− r

α

r − r
α

=
1− 1

α
− κ

β

1− 1
α

.
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The exponent is smaller than 1, and attains its smallest value as κ
β

approaches its largest possible

value, i.e. 1− 2/α. It remains to observe that

1− 1
α
− κ

β

1− 1
α

=
1

α− 1
, if

κ

β
= 1− 2

α
.

REMARK 2.4.1. The proof of Proposition 1, in the case α ∈ (2, 4), is valid in (2.1) is replaced by

γ(α) = (α − 1)−1. Only the latter bound was used. The bound 2 − α/2 is needed in the proof of

Theorem 1.

Using Lemma 3, we obtain the following corollary.

COROLLARY 1. Under the assumptions of Theorem 1, ν†n
P→ να.

The arguments used in the proofs of Propositions 2 and 3 are similar to those developed in

Sections 4.3. and 4.4 of [4].

PROPOSITION 2. Under the assumptions of Theorem 1,

Ŷ(k)

b(n/k)

P→ 1.

Proof. Fix ε > 0 and set

P+(n) = P

(
Ŷ(k)

b(n/k)
> 1 + ε

)
, P−(n) = P

(
Ŷ(k)

b(n/k)
< 1− ε

)
.
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Observe that

P+(n) = P

(
I Ŷ(k)

b(n/k)

(1 + ε,∞] = 1

)

≤ P

(
n∑

i=1

I Ŷ(i)
b(n/k)

(1 + ε,∞] ≥ k

)

= P

(
1

k

n∑

i=1

I Ŷ(i)
b(n/k)

(1 + ε,∞] ≥ 1

)

= P
(
ν†n(1 + ε,∞] ≥ 1

)
.

A similar argument shows that P−(n) ≤ P
(
ν†n(1− ε,∞] < 1

)
. The claim follows because by

Corollary 1 and Lemma 1,

ν†n(1 + ε,∞]
P→ να(1 + ε,∞] = (1 + ε)−α < 1;

ν†n(1− ε,∞]
P→ να(1− ε,∞] = (1− ε)−α > 1.

PROPOSITION 3. Under the assumptions of Theorem 1, ν̂n
P→ να.

Proof. Consider the map T : M+ × (0,∞) → M+ defined by

T (µ, x)(A) = µ(xA), for Borel A ⊂ (0,∞].

[4], pp. 83–84 shows that T is continuous. Observe that

T

(
ν†n,

Ŷ(k)

b(n/k)

)
= ν̂n, T (να, 1) = να.
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The claim thus follows because by Corollary 1 and Proposition 2,

(
ν†n,

Ŷ(k)

b(n/k)

)
P→ (να, 1) in M+ × (0,∞).

The following lemma may be of independent interest and more general utility.

LEMMA 1. Suppose y 7→ P (Y > y) ∈ RV−α for some α > 0. Then,

lim
z→∞

lim sup
t→∞

∫ ∞

z

tP (Y > xb(t))x−1dx = 0.

Proof. The function b(·) is defined by P (Y > b(t)) = t−1. We know that b(·) ∈ RV1/α and

lim
t→∞

tP (Y > xb(t)) = x−α, x > 0. (2.9)

Set ft(x) = tP (Y > xb(t))x−1. We want to show

lim
z→∞

lim sup
t→∞

∫ ∞

z

ft(x)dx = 0.

By (2.9), ∀ x > 0 ft(x) → x−α−1, as t → ∞. To conclude that

∫ ∞

z

ft(x)dx →
∫ ∞

z

x−α−1dx, as t → ∞,

we must find a function g such that for t > t0,

ft(x) ≤ g(x) and

∫ ∞

z

g(x)dx < ∞.

Set U(y) = P (Y > y). Potter bounds state that ∀ δ > 0, ∃ u0, ∀ u ≥ u0, ∀ y ≥ 1,

(1− δ)y−α−δ ≤ U(yu)

U(u)
≤ (1 + δ)y−α+δ.
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Since b(t) → ∞ as t → ∞, ∃ t0, ∀ t > t0, U(xb(t)) ≤ (1+ δ)x−α+δU(b(t)). Since U(b(t)) = 1/t,

we obtain, for t ≥ t0, ft(x) = tU(xb(t))x−1 ≤ (1 + δ)x−α+δ−1 =: g(x). The function g is

integrable if δ < α.

PROOF OF THEOREM 1: Since

Ĥk,n =

∫ ∞

1

ν̂n(x,∞]x−1dx,

we must show that

∫ ∞

1

ν̂n(x,∞]x−1dx
P→
∫ ∞

1

να(x,∞]x−1dx = α−1.

The verification is based on the commonly used truncation argument, Theorem 3.2 in [26], also

stated as Theorem 3.5 in [4]. Set

Vn =

∫ ∞

1

ν̂n(x,∞]x−1dx, V =

∫ ∞

1

να(x,∞]x−1dx;

V (M)
n =

∫ M

1

ν̂n(x,∞]x−1dx, V (M) =

∫ M

1

να(x,∞]x−1dx.

To establish the desired convergence Vn
P→ V , equivalently Vn

d→ V , we must verify that

∀ M > 1, V (M)
n

d→ V (M)
n , as n → ∞; (2.10)

V (M) d→ V, as M → ∞; (2.11)

∀ ε > 0, lim
M→∞

lim sup
n→∞

P
(
|V (M)

n − Vn| > ε
)
= 0. (2.12)

Convergence (2.10) follows from Proposition 3 and Lemma 2. Convergence (2.11) is trivial be-

cause
∫∞
M

να(x,∞]x−1dx = α−1M−α. Since |V (M)
n − Vn| =

∫∞
M

ν̂n(x,∞]x−1dx, (2.12) is equiv-

26



alent to

∀ ε > 0, lim
M→∞

lim sup
n→∞

P

(∫ ∞

M

ν̂n(x,∞]x−1dx > ε

)
= 0.

The steps of the verification of the above relation, up to (2.13), are pretty much the same as those

developed on pp. 84-85 of [4]. We provide the details because we work with the measure ν†n rather

than with the measure νn, and the context for the remainder of the proof is helpful. Following

(2.13), we use a different argument.

Fix ε > 0 and η > 0. Observe that

P

(∫ ∞

M

ν̂n(x,∞]x−1dx > ε

)
≤ Q1(n) +Q2(n),

where

Q1(n) = P

(∫ ∞

M

ν̂n(x,∞]x−1dx > ε,

∣∣∣∣∣
Ŷ(k)

b(n/k)
− 1

∣∣∣∣∣ < η

)
,

Q2(n) = P

(∣∣∣∣∣
Ŷ(k)

b(n/k)
− 1

∣∣∣∣∣ ≥ η

)
.

By Proposition 2, lim supn→∞Q2(n) = 0, so we focus on Q1(n). We start with the bound

Q1(n) ≤ P

(∫ ∞

M

ν̂n(x,∞]x−1dx > ε,
Ŷ(k)

b(n/k)
> 1− η

)

= P

(∫ ∞

M

1

k

n∑

i=1

IŶi/Ŷ(k)
(x,∞]x−1dx > ε,

Ŷ(k)

b(n/k)
> 1− η

)
.

Conditions Ŷi/Ŷ(k) > x and Ŷ(k)/b(n/k) > 1− η imply Ŷi/b(n/k) > x(1− η), so

Q1(n) ≤ P

(∫ ∞

M

1

k

n∑

i=1

IŶi/b(n/k)
(x(1− η),∞]x−1dx > ε

)

= P

(∫ ∞

M

ν†n(x(1− η),∞]x−1dx > ε

)

= P

(∫ ∞

M(1−η)

ν†n(x,∞]x−1dx > ε

)
.
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Consequently, because the Ŷi, 1 ≤ i ≤ n, have the same distribution,

Q1(n) ≤
1

ε

∫ ∞

M(1−η)

E
[
ν†n(x,∞]

]
x−1dx =

1

ε

∫ ∞

M(1−η)

n

k
P

(
Ŷ

b(n/k)
> x

)
x−1dx.

It thus remains to show that

lim
z→∞

lim sup
n→∞

∫ ∞

z

n

k
P
(
Ŷ > xb(n/k)

)
x−1dx = 0. (2.13)

We use the decomposition

P
(
Ŷ > xb(n/k)

)
= P

(
Ŷ > xb(n/k), Y >

1

2
xb(n/k)

)

+ P

(
Ŷ > xb(n/k), Y ≤ 1

2
xb(n/k)

)

≤ P

(
Y >

1

2
xb(n/k)

)
+ P

(
|Ŷ − Y | > 1

2
xb(n/k)

)
.

By Lemma 1,

lim
z→∞

lim sup
n→∞

∫ ∞

z

n

k
P

(
Y >

1

2
xb(n/k)

)
x−1dx = 0.

If α > 4, by (2.6) and (2.7)

∫ ∞

z

n

k
P

(
|Ŷ − Y | > 1

2
xb(n/k)

)
x−1dx ≤ n

k

∫ ∞

z

2

xb(n/k)
E|Ŷ − Y |x−1dx

= O

(
n1/2

kb(n/k)

)
1

z
.

By Assumption 3, for a slowly varying function L and γ ∈ (γ(α), 1),

n1/2

kb(n/k)
=

{
nγ

k

}1− 1
α {

nγ(α)−γL
(n
k

)}1− 1
α → 0, as n → ∞.

28



If α ∈ (2, 4), we use the bound (r ∈ (0, 1]):

∫ ∞

z

n

k
P

(
|Ŷ − Y | > 1

2
xb(n/k)

)
x−1dx ≤ n

k

∫ ∞

z

(
2

xb(n/k)

)r

E|Ŷ − Y |rx−1dx

= O

(
n

k

E|Ŷ − Y |r
br(n/k)

)
1

zr
.

The value of r will depend on α. Choosing it, and checking that it is available, requires some work.

As in the proof of Proposition 1, E|Ŷ − Y |r = O
(
n−κr/β

)
, provided (2.7) holds. Set

γ∗ =
1− r

α
− κr

β

1− r
α

.

Then, for some slowly varying L,

n

k

E|Ŷ − Y |r
br(n/k)

= O

(
nγ∗

k
L
(n
k

))1− r
α

.

Clearly γ∗ < 1. We must verify that there are β, κ and r, in permitted ranges, such that γ∗ can be

arbitrarily close to γ(α) given by (2.1). With α and r fixed, γ∗ will approach its smallest possible

value as κ/β approaches its largest possible value, i.e. 1− 2/α. In this case, γ∗ is greater than and

approaches

γL(α, r) :=
1− r

α
−
(
1− 2

α

)
r

1− r
α

=
α− αr + r

α− r
.

Condition (2.7) restricts the available values of r. A direct calculation shows that it is equivalent to

r <
βα

β + α
.

For a fixed α, the right–hand side is an increasing function of β and attains its upper limit if

β = α/2. This means that r must be less than, but can be arbitrarily close, to α/3. Thus, γ∗ can be

arbitrarily close to

γL

(
α,

α

3

)
= 2− α

2
.
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Combining it with Remark 2.4.1 concludes the proof.
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Chapter 3

Extremal dependence measure for functional data

3.1 Introduction

We first concisely state main contributions of the paper with the caveat that detailed definitions

and formulations will be provided in the following. Consider a sample of functions Xi(t), t ∈ T ,

such that each of them has the same distribution as X . The Karhunen-Loéve expansion is X(t) =
∑∞

j=1 ξjvj(t). The functions vj are the functional principal components (FPCs) and the random

variables ξj are their scores. We want to estimate extremal dependence of ξj and ξj′ . We define

a measure of such a dependence, which we denote by D(ξj, ξj′). We then define an estimator of

D(ξj, ξj′) and formulate conditions under which it is consistent (Theorem 1) and asymptotically

normal (Theorem 2). The main difficulty is that the population scores ξij = 〈Xi, vj〉 are not

observable.

This paper thus makes a contribution at the nexus of functional data analysis (FDA) and ex-

treme value theory (EVT). We assume that the reader is familiar with mathematical foundations of

functional data analysis and central principles of extreme value theory. The FDA background given

in Chapters 2 and 3 of [8] is sufficient. More detailed treatment is provided in [9]. Chapters 2 and

6 of [4] provide sufficient background in extreme value theory. Other references are cited when

needed. We assume that all functions are elements of the space L2 = L2(T ), where the measure

space T is such that L2(T ), with the usual inner product, is a separable Hilbert space. This will be

ensured if the measure on T is σ–finite and defined on a countably generated σ-algebra, see e.g.

Proposition 3.4.5 in [27]. In particular, T can be taken to be a complete separable metric space

(Polish space).

Suppose X1, . . . , Xn are mean zero iid functions in L2 with E ‖Xi‖2 < ∞, and denote by X

a generic random function with the same distribution as each Xi. A main dimension reduction

tool of functional data analysis is to project the infinite dimensional functions Xi onto a finite
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dimensional subspace spanned by the FPCs. We now recall the required definitions. Consider the

population covariance operator of X , defined by

C(x) := E[〈X, x〉X], x ∈ L2. (3.1)

The eigenfunctions of C are the FPCs, denoted by vj, j ≥ 1, i.e., C(vj) = λjvj , where the λj are

the eigenvalues of C. The FPCs lead to the commonly used Karhunen–Loéve expansion

Xi(t) =
∞∑

j=1

ξijvj(t), ξij = 〈Xi, vj〉 , Eξ2ij = λj. (3.2)

The FPCs vj and the eigenvalues λj are estimated by v̂j and λ̂j , which are solutions to the equations

Ĉ(v̂j)(t) = λ̂j v̂j(t), for almost all t ∈ T , (3.3)

where Ĉ is the sample covariance operator defined by

Ĉ(x)(t) =
1

n

n∑

i=1

〈Xi, x〉Xi, x ∈ L2.

Each curve Xi can then be approximated by a linear combination of a finite set of the estimated

FPCs v̂j , i.e., Xi(t) ≈ ∑p
j=1 ξ̂ij v̂j(t), where the ξ̂ij = 〈Xi, v̂j〉 are the sample scores. Each ξ̂ij

quantifies the contribution of the curve v̂j to the shape of the curve Xi. Thus, the vector of the

sample scores, [ξ̂i1, . . . , ξ̂ip]
⊤, encodes the shape of Xi to a good approximation. To illustrate,

Fig. 3.1 displays the first three sample FPCs, v̂1, v̂2, v̂3, for intraday return curves Ri, 1 ≤ i ≤

1, 378, for Walmart stock from July 05, 2006 to Dec 30, 2011. These data are described in detail

in Section II of the supplement. The curves Ri show how a return on an investment changes

throughout a trading day as two examples are shown in Fig. 3.2. The curve v̂1 is a monotonic

trend throughout the day. If the score corresponding to it is large, trading in this stock on a given

day was dominated by a systematic increase (or decline if the score is negative) in the price of
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Figure 3.1: The first three sample FPCs of intraday returns on Walmart stock based on sample of 1,378

curves.

the stock. Notice the gradually decreasing slope of v̂1, which reflects the well-known fact that the

most intense trading takes place after the opening of the trading floor. The second FPC, v̂2, has a

large score, if there is a significant reversal in investor sentiment during a given trading day. These

observations are illustrated in Fig. 3.2.

The main interest in this paper is the estimation of extremal dependence between the scores

corresponding to different FPCs. Extremal dependence is a tendency of large values of one com-

ponent to be coupled with large values of another component of a random vector. In the context

of our Walmart stock example, extreme dependence between the first and second scores indicates

that an extremely high monotonic trend and a pronounced reversion tend to occur simultaneously.

Therefore, knowledge of the extreme value dependence of the scores may enhance the management

of intraday risk.

We assess extremal dependence of the scores by means of the extremal dependence measure

(EDM), which is constructed based on the theory of heavy–tailed regularly–varying random vec-

tors. There has been considerable research on quantifying the tail dependence between extreme
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Figure 3.2: Walmart intraday cumulative return curves on two trading days and their approximations by∑3
i=1 ξ̂ij v̂j(t). In the left panel, ξ̂1 = −4.7, ξ̂2 = 0.4, ξ̂3 = −0.1, observed on October 7, 2008. In the right

panel, ξ̂1 = 0.8, ξ̂2 = 1.2, ξ̂3 = 0.1, observed on November 18, 2008.

values in a heavy–tailed random vector. [28–30] defined the coefficient of tail dependence, which

was later generalized to the extremogram by [31]. While these approaches are essentially based

on the exponent measure of a random vector, the EDM is defined in terms of the spectral measure.

The EDM was introduced by [32] and further investigated by [5]. Important related papers are [33]

and [34].

In this paper, we quantify extremal dependence of scores using the EDM. To estimate the EDM

of population scores, we consider an extension of the estimator proposed by [5]. It is important

to emphasize that in our functional setting, the estimator can only be computed using the sample

scores ξ̂ij = 〈Xi, v̂j〉, not the population scores ξij = 〈Xi, vj〉 because the ξij are unobservable.

Establishing large sample properties of any estimator based on sample scores requires taking the

effect of the estimation of the scores into account. Since the ξ̂ij depend on the whole sample

X1, . . . , Xn, the vectors [ξ̂i1, . . . , ξ̂ip]
⊤ are no longer independent, even if X1, . . . , Xn are i.i.d

functions.
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The remainder of the paper is organized as follows. In Section 3.2, we introduce preliminaries

on multivariate regular variation and the EDM, and extend the concept of the EDM to multivariate

data. Our main large sample results are presented in Section 3.3, which deals with the EDM for

scores of functional observations. Section 3.4 presents a number of preliminary results. These

results allow us to streamline the exposition of the proofs of the results of Section 3.3, which are

presented in Section 3.5. Sections 3.6 and 3.7, present, respectively, an application to functional

return data and a simulation study.

The paper is accompanied by supplementary material in Appendix A, which contains a couple

of sections. Section A.1 explains how to normalize tail indexes of components of multivariate

vectors. This is a well-researched topic in EVT, but may be less known in the FDA community,

so a brief account needed to understand the application in Section 3.6 is provided. Section A.1

contains additional tables discussed in Section 3.7.

We hope that this work will be received with some interest by researchers working in two

exciting and dynamic fields: functional data analysis and extreme value theory.

3.2 Multivariate regular variation and the EDM

We start by introducing multivariate regular variation for random vectors with positive com-

ponents because the extremal dependence measure (EDM) was defined in such context. Follow-

ing [4], we denote by Ed = [0,∞]d \ {0} the nonnegative orthant compactified at infinity. We de-

note by M+(Ed) the space of Radon measures on Ed, and by
v→ the vague convergence in M+(Ed).

An Ed–valued random vector Z = [Z1, . . . , Zd]
⊤ with distribution function F is regularly varying

with index −α, α > 0, if there exists a sequence b(n) → ∞ and a Radon measure ν on Ed such

that

nPr

(
Z

b(n)
∈ ·
)

v→ ν, in M+(Ed). (3.1)

Unless stated otherwise, all limits are taken as n → ∞. The exponent measure ν has the property,

ν(t·) = t−αν(·). We assume that one-dimensional marginal distributions of ν are nondegener-

ate. In (3.1), all components are normalized by the same sequence {b(n)}, which means that all
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marginal distributions are tail equivalent with the index −α. A possible choice for b(n) is the

quantile function, defined by Pr(Z1 > b(n)) = n−1. When b(n) = n, all marginal distributions

are tail equivalent to the standard Pareto distribution with α = 1, which is called the standard case.

There are various equivalent formulations of multivariate regular variation, see Theorem 6.1

of [4]. The formulation with a polar coordinate representation is commonly used due to its com-

putational convenience and intuitive interpretation. Fix a norm ‖ · ‖ in R
d, and set Sd

+ = {x ∈

R
d : ‖x‖ = 1} ∩ Ed, the unit sphere in the nonnegative orthant. A d–dimensional random vector

Z = [Z1, . . . , Zd]
⊤ is regularly varying if and only if there exists a sequence bR(n) → ∞ and an

angular probability measure Γ on S
d
+ such that for (R,Θ) = (‖Z‖,Z/‖Z‖),

nPr

((
R

bR(n)
,Θ

)
∈ ·
)

v→ cνα × Γ, in M+((0,∞]× S
d
+), (3.2)

where να(x,∞] = x−α and c = ν{x : ‖x‖ > 1} > 0. The sequence {bR(n)} in (3.2) is

defined by Pr(R > bR(n)) = n−1, so in this case bR(·) depends on the choice of the norm ‖ · ‖.

Definitions (3.1) and (3.2) can be extended directly to an R
d-valued random vector with ν on

R
d \ {0} and Γ on S

d = {x ∈ R
d : ‖x‖ = 1}, see, e.g., Propositions 2.2.5 and 2.2.6 of [24]. In

practice, the components of a random vector might not be tail equivalent. The case of different

tail indexes of the coordinates, and transformations which make the coordinates tail equivalent are

discussed in Section A.1.

We now turn to the EDM. Given a regularly varying nonnegative bivariate random vector Z =

[Z1, Z2]
⊤, [5] define the EDM by

EDM(Z1, Z2) =

∫

S2+

a1a2Γ(da). (3.3)

The EDM takes the minimal value of zero, EDM(Z1, Z2) = 0, iff the coordinates of Z are asymp-

totically independent. This means that the angular measure Γ concentrates on {(1, 0)/‖(1, 0)‖,

(0, 1)/‖(0, 1)‖}, or equivalently, the exponent measure ν concentrates on the axes. Also, if the

norm is symmetric, EDM(Z1, Z2) achieves its maximal value iff the distribution of Z has asymp-
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totic full dependence; i.e., Γ has mass on {(1, 1)/‖(1, 1)‖}, or equivalently, ν concentrates on the

line {t(1, 1), t > 0}.

[5] show that the EDM can be interpreted as the limit of cross moments between normalized

Z1 and Z2 conditional on large values of R = ‖Z‖;

EDM(Z1, Z2) = lim
r→∞

E

[
Z1

R

Z2

R

∣∣∣R > r

]
.

Based on this relation, they propose an estimator for EDM(Z1, Z2), defined by

Dn(Z1, Z2) =
1

k

n∑

i=1

Zi1

Ri

Zi2

Ri

IRi≥R(k)
, (3.4)

where Zi = [Zi1, Zi2]
⊤

, 1 ≤ i ≤ n are iid copies of Z = [Z1, Z2]
⊤, Ri = ‖Zi‖, and R(k) is the kth

largest order statistics with the convention R(1) = max{R1, . . . , Rn}.

[5] consider non–negative bivariate vectors. To be able to work with the vectors of scores of

functional data, we first have to extend their definitions to a setting of multivariate random vectors

of an arbitrary dimension. Our first objective is to generalize (3.3) to a d–dimensional vector

Z = [Z1, . . . , Zd]
⊤. We formulate the EDM between the components Z1 and Z2 for simplicity. We

first assume that all components are positive. Given the angular measure Γ on S
d
+ for Z, we define

the EDM for Z1 and Z2 as

D(Z1, Z2) =

∫

Sd+

a1a2

‖(a1, a2, 0, . . . , 0)‖2
Γ(da). (3.5)

We set a1a2/ ‖(a1, a2, 0, . . . , 0)‖2 = 0 when a1 = a2 = 0. Definition (3.5) is different from a

simple extension of (3.3) given by

D′(Z1, Z2) =

∫

Sd+

a1a2Γ(da). (3.6)
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We will now argue that for a d–dimensional vector Z, with d ≥ 3, D is a better measure for

assessing extremal dependence between Z1 and Z2 than D′. Suppose that a random vector Z =

[Z1, Z2, Z3]
⊤ is regularly varying with an angular measure Γ on S

3
+, and fix the Euclidean norm

‖ · ‖ in R
3
+. Consider the following four cases.

1. The angular measure Γ1 has unit mass on (1, 1, 10)/
√
102; the exponent measure ν1 concentrates

on {t(1, 1, 10), t > 0}.

2. The angular measure Γ2 has unit mass on (1, 1, 1)/
√
3; the exponent measure ν2 concentrates

on {t(1, 1, 1), t > 0}.

3. The angular measure Γ3 has unit mass on (7, 7, 2)/
√
102; the exponent measure ν3 concentrates

on {t(7, 7, 2), t > 0}.

4. The angular measure Γ4 has mass 1/2 on each (1, 1, 10)/
√
102 and (7, 7, 2)/

√
102; the exponent

measure ν4 concentrates on {t(1, 1, 10), t > 0} ∪ {t(7, 7, 2), t > 0}.

Suppose Z has a Pareto distribution with index α > 0. The following random vectors have

extremal distribution corresponding to each of the above cases:

Z(1) = [Z, Z, 10Z], Z(2) = [Z, Z, Z], Z(3) = [7Z, 7Z, 2Z],

Z(4) = ξ[Z, Z, 10Z] + (1− ξ)[7Z, 7Z, 2Z],

where ξ is a Bernoulli random variable with probability of success 1/2.

Set P12 = {[t1, t2, 0], t1, t2 ∈ R}. The projections of the random vectors Z(1), Z(2), Z(3), and

Z(4) onto P12 are, respectively,

Z̃(1) = [Z, Z], Z̃(2) = [Z, Z], Z̃(3) = [7Z, 7Z], Z̃(4) = [ξZ + 7(1− ξ)Z, ξZ + 7(1− ξ)Z].

For all of the projected random vectors, the two components are equal, so a good measure of

extremal dependence between them should attain its maximal value. Since we use the Euclidean

norm and Γ is normalized to unity, the maximum value of both D and D′ is 1/2. Direct verification
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shows that we achieve the maximum value for all cases using the measure D. The measure D′

however does not give the maximum value. For each case:

D′(Z
(1)
1 , Z

(1)
2 ) =

1

102
, D′(Z

(2)
1 , Z

(2)
2 ) =

34

102
,

D′(Z
(3)
1 , Z

(3)
2 ) =

49

102
, D′(Z

(4)
1 , Z

(4)
2 ) =

1

102

1

2
+

49

102

1

2
=

25

102
.

It can be further shown that, for any norm ‖ · ‖ in R
d, the measures D and D′, defined for

d–dimensional vector Z with d ≥ 3, are not equivalent in the sense of Definition 1 on p.234

of [5], which we now recall. For a given Z, let ρi(Z) =
∫
Sd+

ki(a)Γ(da) for some nonnegative

map ki : S
d
+ 7→ R+. Then ρ1(Z) and ρ2(Z) are equivalent if and only if there are constants

0 < m ≤ M < ∞ such that

mρ1(Z) ≤ ρ2(Z) ≤ Mρ1(Z).

It is obvious that the measures D and D′ are equivalent for a bivariate vector Z. We formalize the

nonequivalence between the measures for a d–dimensional vector Z with d ≥ 3 in the following

proposition.

PROPOSITION 1. Suppose that a Ed–valued random vector Z = [Z1, . . . , Zd]
⊤ is regularly varying

with angular measure Γ on S
d
+, with d ≥ 3. Then D(Z1, Z2) and D′(Z1, Z2), defined in (3.5), (3.6),

respectively, are not equivalent for any norm ‖ · ‖ in R
d.

Proof. Proposition 1 of [5] shows that ρ1(Z) and ρ2(Z) are equivalent if and only if there are

constants 0 < m ≤ M < ∞ such that

mk1(a) ≤ k2(a) ≤ Mk1(a), ∀ a ∈ S
d
+. (3.7)

Observe that the ratio of the integrand in D′(Z1, Z2) to the integrand in D(Z1, Z2) is ‖(a1, a2, 0, . . . , 0)‖2.

This ratio is clearly zero at a = 0, violating (3.7), but 0 /∈ S
d
+. We therefore consider a path in S

d
+

defined by

a(x) = (x, x, 1, 0, . . . , 0)/‖(x, x, 1, 0, . . . , 0)‖, x ց 0.
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Then,

‖(a1(x), a2(x), 0, 0, . . . , 0)‖2 =
‖(x, x, 0, 0, . . . , 0)‖2
‖(x, x, 1, 0, . . . , 0)‖2 → 0,

as x ց 0 because every norm in R
d is equivalent to the Euclidean norm.

Another question of interest is the relationship between D(Z1, Z2) in (3.5) and EDM(Z1, Z2)

in (3.3). We clarify it in the following proposition.

PROPOSITION 2. Suppose that the exponent measure and angular measure of a d–dimensional

regularly–varying random vector Z = [Z1, . . . , Zd]
⊤ are, respectively, ν on Ed and Γ on S

d
+.

Denote the exponent measure and angular measure of the bivariate vector [Z1, Z2]
⊤, respectively,

by ν2 on E2 and Γ2 on S
2
+. Then,

D(Z1, Z2) =

∫

Sd+

a1a2

‖(a1, a2, 0, . . . , 0)‖2
Γ(da) =

∫

S2+

b1b2Γ2(db) = EDM(Z1, Z2)

and, for any Borel set G ⊂ E2,

ν2(G) = ν(G× [0,∞]d−2).

Proof. We first clarify the connection between the measure ν on Ed and the measure ν2 on E2. By

(3.1), for any measurable rectangle A× B ⊂ E2,

ν(A× B × [0,∞]d−2)

ν2(A× B)
= lim

n→∞

nPr
(
Z/b(n) ∈ A× B × [0,∞]d−2

)

nPr (Z1/b(n) ∈ A,Z2/b(n) ∈ B)
= 1.

We conclude that the measure ν2 is obtained by integrating the entire measure ν over all coordinates

except for the first two.

According to formulas on page 239 of [5], EDM(Z1, Z2) can be expressed as

∫

S2+

b1b2Γ2(db) =
1

ν2 (‖(y1, y2)‖ > 1)

∫

‖(y1,y2)‖>1

y1y2

‖(y1, y2)‖2
ν2(dy1dy2).
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Therefore, using the relationship between ν2 and ν,

∫

S2+

b1b2Γ2(db)

=
1

ν ({y : ‖(y1, y2, 0, . . . , 0)‖ > 1})

∫

{y:‖(y1,y2,0,...,0)‖>1}

y1y2

‖(y1, y2, 0, . . . , 0)‖2
ν(dy).

Applying the polar transformation T defined by T (y) = (‖y‖ ,y/ ‖y‖) for y ∈ Ed, we obtain

∫

S2+

b1b2Γ2(db)

=
1

ν ({y : ‖(y1, y2, 0, . . . , 0)‖ > 1})

∫

T ({y:‖(y1,y2,0,...,0)‖>1})

f ◦ T−1(r, a) ν ◦ T−1(dr × da),

where f(y) = y1y2/‖(y1, y2, 0, . . . , 0)‖2. First observe that

T ({y : ‖(y1, y2, 0, . . . , 0)‖ > 1}) = {(r, (a1, a2, . . . , ad)) : ‖(ra1, ra2, 0, . . . , 0)‖ > 1}

= {(r, (a1, a2, . . . , ad)) : r > ‖(a1, a2, 0, . . . , 0)‖−1}.

Using the fact that ν ◦ T−1 = cνα × Γ, where c = ν (‖y‖ > 1), we obtain

ν ({y : ‖(y1, y2, 0, . . . , 0)‖ > 1})

= ν ◦ T−1 (T ({y : ‖(y1, y2, 0, . . . , 0)‖ > 1}))

= cνα × Γ
(
{(r, (a1, a2, . . . , ad)) : r > ‖(a1, a2, 0, . . . , 0)‖−1}

)

= c ‖(a1, a2, 0, . . . , 0)‖α .
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Therefore,

∫

S2+

b1b2Γ2(db)

=
1

c ‖(a1, a2, 0, . . . , 0)‖α
∫

Sd+

∫

r>‖(a1,a2,0,...,0)‖
−1

a1a2

‖(a1, a2, 0, . . . , 0)‖2
cνα(dr)Γ(da)

=

∫

Sd+

a1a2

‖(a1, a2, 0, . . . , 0)‖2
Γ(da).

By Proposition 2 we can use the estimator (3.4), originally introduced for EDM(Z1, Z2), to

estimate D(Z1, Z2) as well.

A further extension of the EDM (3.3) is that from the nonnegative quadrant to the four quad-

rants, as a vector of the scores takes on values in R
d. [5] define the EDM for a nonnegative random

vector, but (3.3) can be readily generalized to a random vector Z = [Z1, Z2]
⊤ with real compo-

nents. Suppose that Z = [Z1, Z2]
⊤ in R

2 is regularly varying with an angular measure Γ2 on S
2.

Then, we define the EDM for Z = [Z1, Z2]
⊤ by

EDM(Z1, Z2) =

∫

S2

a1a2Γ2(da). (3.8)

The above definition allows us to quantify the strength of the extremal dependence between Z1

and Z2 in R
2. Unlike (3.3), (3.8) can take a negative value depending on which quadrants Γ2 has

its mass on, so careful interpretation is needed. To explore the dependence spectrum that (3.8)

can measure, we fix the Euclidean norm ‖ · ‖ in R
2. Then, (3.8) has a range from -1/2 to 1/2.

The maximal value, 1/2, indicates a perfect positive extremal dependence; here, "positive" means

that Z1 and Z2 have the same signs, and "perfect" means that the magnitudes of Z1 and Z2 show

asymptotic full dependence, i.e., Γ2 concentrates on {(1, 1)/
√
2, (−1,−1)/

√
2}. Similarly, the

minimum value, −1/2, indicates a perfect negative extremal dependence; "negative" means that

Z1 and Z2 have the opposite signs, and in this case Γ has mass on {(−1, 1)/
√
2, (1,−1)/

√
2}.
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Note that if Z exhibits asymptotic independence, i.e., its exponent measure concentrates on the

standard axes, then (3.8) is 0, but the reverse does not necessarily hold true. For example, if Γ2

concentrates equally on each element of

{(1, 1)/
√
2, (−1, 1)/

√
2, (−1,−1)/

√
2, (1,−1)/

√
2},

then (3.8) is 0, but each quadrant shows the perfect dependence. To avoid this issue and take into

account the extremal dependence in each quadrant, we suggest to complement (3.8) on the unit

sphere S2 with its decomposition into the four quadrants. Let S2
(+,+) = S

2 ∩ {(x1, x2) ∈ R
2 : x1 ≥

0, x2 ≥ 0}. Similarly, let S2
(−,+) = S

2 ∩ {x1 ≤ 0, x2 ≥ 0}, S2
(−,−) = S

2 ∩ {x1 ≤ 0, x2 ≤ 0}, and

S
2
(+,−) = S

2 ∩ {x1 ≥ 0, x2 ≤ 0}. We define the supplementary measure for (3.8) by splitting the

EDM into the four quadrant spheres,

[∫

S2
(+,+)

a1a2Γ2(da),

∫

S2
(−,+)

a1a2Γ2(da),

∫

S2
(−,−)

a1a2Γ2(da),

∫

S2
(+,−)

a1a2Γ2(da)

]
. (3.9)

To estimate each of the components in (3.9), we slightly modify (3.4); for example, an estimator

for
∫
S2
(+,+)

a1a2Γ(da) is

D(+,+)
n (Z1, Z2) =

1

k

n∑

i=1

Zi1

Ri

Zi2

Ri

IRi≥R(k)
IZi1≥0,Zi2≥0.

To elaborate, we first order the n bivariate vectors by norm and consider the top k vectors with large

norm. We then use only those for which Zi1 ≥ 0 and Zi2 ≥ 0 from the k vectors. Estimators for the

other components in (3.9) can be obtained in the same manner reflecting the different quadrants.

We conclude this section with an analog of Proposition 2. Given an R
d–valued random vector

[Z1, . . . , Zd]
⊤, we can measure extremal dependence between Z1 and Z2 using (3.5), but integrated

over the whole sphere Sd. Following the steps in the proof of Proposition 2, it is readily shown that

D(Z1, Z2) for two components of an R
d–valued vector is in fact the same as (3.8).
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COROLLARY 1. Suppose the angular measure of a R
d–valued random vector [Z1, . . . , Zd]

⊤ is Γ

on S
d and the angular measure of [Z1, Z2]

⊤ is Γ2 on S
2. Then,

D(Z1, Z2) =

∫

Sd

a1a2

‖(a1, a2, 0, . . . , 0)‖2
Γ(da) =

∫

S2

b1b2Γ2(db) = EDM(Z1, Z2).

3.3 The EDM for scores of functional data

In this section, we consider the estimation of the EDM of scores of functional data. Following

the framework introduced in Section 3.1, recall that X1, . . . , Xn are mean zero iid functions in L2

with E ‖Xi‖2 < ∞, and that each Xi admits the Karhunen–Loéve expansion (3.2). The unknown

population scores ξij = 〈Xi, vj〉 in (3.2) are estimated by the sample scores ξ̂ij = 〈Xi, v̂j〉, where

the v̂j are estimators of the FPCs vj . We introduce the following random variables:

Yd = [ξ1, . . . , ξd]
⊤, ξj = 〈X, vj〉 , Yd

i = [ξi1, . . . , ξid]
⊤, ξij = 〈Xi, vj〉 ,

Ŷd = [ξ̂1, . . . , ξ̂d]
⊤, ξ̂j = 〈X, v̂j〉 , Ŷd

i = [ξ̂i1, . . . , ξ̂id]
⊤, ξ̂ij = 〈Xi, v̂j〉 .

To quantify the extremal dependence between components ξj and ξj′ in Yd, we consider the EDM,

D(ξj, ξj′), defined in (3.5). Then, by Corollary 1,

D(ξj, ξj′) =

∫

S2

a1a2Γjj′(da), (3.1)

where Γjj′ on S
2 is the angular measure of the bivariate random vector [ξj, ξj′ ]

⊤.

Set Yi = [ξij, ξij′ ]
⊤, Ŷi = [ξ̂ij, ξ̂ij′ ]

⊤, 1 ≤ i ≤ n, where we suppress the dependence of the

bivariate vectors on j and j′. In light of (3.4), we consider two random variables that approximate

D(ξj, ξj′):

Dn(ξj, ξj′) :=
1

k

n∑

i=1

ξij
Ri

ξij′

Ri

IRi≥R(k)
,

D̂n(ξj, ξj′) :=
1

k̂

n∑

i=1

ξ̂ij

R̂i

ξ̂ij′

R̂i

IR̂i≥R̂(k̂)
, (3.2)
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where Ri = ‖Yi‖, R̂i = ||Ŷi||, and R(k) and R̂(k̂) are the respective largest order statistics.

There is a fundamental difference between Dn(ξj, ξj′) and D̂n(ξj, ξj′); Dn(ξj, ξj′) is an infeasible

estimator because the FPCs vj are not observable, so the ξij cannot be computed from the data.

The estimator based on the sample scores, D̂n(ξj, ξj′), is what we can actually compute. Therefore,

the consistency of D̂n(ξj, ξj′) for D(ξj, ξj′) must be established. As noted in the Introduction,

the sample scores ξ̂ij are no longer independent in i (nor in j); they form a triangular array of

dependent identically distributed vectors of dimension d. This new aspect of EDM estimation is

specific to functional data. To handle it rigorously, we must introduce a suitable framework for

regular variation of functional data. We follow [23] and [24].

[23] introduced a framework based on M0 convergence, where M0 is the space of measures

on a complete separable metric space. [24] further investigated regular variation in Banach spaces

using the notion of M0 convergence. We define a regularly varying function in a separable Banach

space B as follows.

DEFINITION 1. Denote the norm in B by ‖ · ‖B and the unit sphere in B by S := {x ∈ B : ‖x‖B =

1}. A random element X in B is regularly varying with index −α, α > 0 if any of the following

conditions hold:

(i) There exists a measure ν and a regularly varying sequence b(n) → ∞ with index 1/α such

that

nPr

(
X

b(n)
∈ ·
)

M0−→ ν(·), n → ∞, (3.3)

where ν is a non-null measure (exponent measure) on the Borel σ–field B(B0) of B0 = B \ {0}.

(ii) There exists a probability measure Γ on S and a regularly varying sequence bR(n) → ∞

such that, for any y > 0,

nPr (‖X‖B > ybR(n), X/‖X‖B ∈ ·) w−→ cy−αΓ(·), n → ∞, (3.4)

for some c > 0.
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There are several equivalent definitions, see Section 2.2 of [24], which also contains all details.

The quantile function b(t) in (3.3) admits the representation

b(t) = t1/αL(t), t > 0, (3.5)

where L is slowly varying as t → ∞. An analogous representation holds for the function bR. With

the choice of bR(n), defined by Pr(‖X‖
B
> bR(n)) = n−1, we get c = 1 in (3.4) since Γ(S) = 1

for any y > 0.

We briefly review the theory of M0 convergence. Let Bε := {z ∈ B : ‖z‖B < ε} be the open

ball of radius ε > 0 centered at the origin. A Borel measure ν defined on B0 is said to be boundedly

finite if ν(A) < ∞, for all Borel sets that are bounded away from 0, i.e., A ∩ Bε = ∅, for some

ε > 0. Let M0 be the collection of all such measures. For νn, ν ∈ M0, the νn converge to ν in

the M0 topology, if νn(A) → ν(A), for all bounded away from 0, ν–continuity Borel sets A, i.e.,

ν(∂A) = 0, where ∂A is the boundary of A. If B is an Euclidean space, Definition 1 is equivalent

to regular variation as defined in Section 3.2.

We work in the Hilbert space L2, so in the following we replace the general Banach space B

with a separable Hilbert space H. We define the finite–dimensional projection of z ∈ H on the

subspace spanned by f1, . . . , fd ∈ H by

πf1,...,fd(z) := [〈z, f1〉 , . . . , 〈z, fd〉]⊤.

We claim in the following proposition that regular variation in H implies regular variation of the

finite–dimensional projections in R
d. To lighten the notation, we suppress the subscript f1, . . . , fd

so that π(z) = πf1,...,fd(z). Let B(Sd) be the Borel σ–field on S
d. For any set S in B(Sd), define a

set of elements in H by

Aπ(S) := {z ∈ H : ‖π(z)‖ > 1, π(z)/‖π(z)‖ ∈ S} . (3.6)
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PROPOSITION 1. If a random element X in H is regularly varying with index −α, α > 0, and

ν(Aπ(S
d)) > 0, then π(X) is regularly varying in R

d with index −α.

In our FDA context, the functions f1, . . . , fd of interest are the FPCs v1, . . . , vd. We work under

the following assumption.

ASSUMPTION 1. The functions X1, . . . Xn are i.i.d copies of X , which is regularly varying in L2

according to Definition 1 with α > 2, α 6= 4. The FPCs v1, . . . , vd satisfy ν(Aπv1,...,vd
(Sd)) > 0.

(The set Aπv1,...,vd
is defined according to (3.6).)

By Proposition 1, under Assumption 1, the projection Yd = πv1,...,vd(X) is regularly varying in

R
d with the same index as X . The assumption α > 2 ensures that E‖X‖2 < ∞, so that the FPCs

can be defined. If α = 2, then either E‖X‖2 = ∞ or E‖X‖2 < ∞ are possible, and complex

assumptions on the slowly varying function L would be needed to ensure that E‖X‖2 < ∞.

Similarly, if α = 4, then either E‖X‖4 = ∞ or E‖X‖4 < ∞ are possible. There is a phase

transition at α = 4 found in the functional context by [25]. The phase transitions at α = 2 and

α = 4 in various context related to regular variation have been well-known since the 1980s, see,

e.g., Theorem 3.5 in [35], earlier papers of [36–38], and [16] for a broad picture. We therefore

exclude α = 2 and α = 4 from our analysis. In the context of research on regularly varying

and heavy-tailed random elements, the chief restriction is α > 2, needed to ensure that the FPC

are readily defined. It is conceivable that in the context of functions whose projections are heavy-

tailed, data-driven bases different from the FPC might be appropriate, but such bases have not been

devised yet.

As noted earlier, the sample scores ξ̂ij = 〈Xi, v̂j〉 form a triangular array whose elements

are dependent across i and j. We now review bounds on the distance v̂j − vj . As noted in the

Introduction, these bounds apply to sign (〈v̂j, vj〉) v̂j − vj , but the sign always cancels in final

formulas, so we assume that sign (〈v̂j, vj〉) = 1. Recall that vj is the jth eigenfunction of the

covariance operator C in (3.1) corresponding to the eigenvalue λj , and v̂j is the jth eigenfunction
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of its estimator Ĉ in (3.3). By Lemma 2.3 in [8],

‖v̂j − vj‖ ≤ Aj‖Ĉ − C‖L, (3.7)

provided dj > 0, where Aj = 2
√
2/dj , and

d1 = λ1 − λ2, dj = min {λj−1 − λj, λj − λj+1} , j ≥ 2. (3.8)

The asymptotic properties of the distance between Ĉ and C are separated into two cases depending

on the range of α. If α > 4, then E‖X‖4 < ∞, so, by Theorem 2.5 in [8],

E‖Ĉ − C‖2 = O(n−1). (3.9)

Using (3.7), we have

E‖v̂j − vj‖2 = O(n−1). (3.10)

The case of regularly varying X with tail index α ∈ (2, 4), which implies E‖X‖2 < ∞ and

E‖X‖4 = ∞, is studied in [25]. Under week conditions, relation (3.9) must be replaced by

E‖Ĉ − C‖βL ≤ Lβ(n)n
−β(1−2/α), ∀ β ∈ (0, α/2), (3.11)

where Lβ is a slowly varying function. For a fixed α, the strongest bound is obtained as β ր α/2,

in which case β(1 − 2/α) ր α/2 − 1. As α ր 4 and β ր α/2, relation (3.11) thus approaches,

in a heuristic sense, relation (3.9). From (3.7) and (3.11), we get the condition

E‖v̂j − vj‖β = o
(
n−κ

)
, ∀ β ∈

(
1,

α

2

)
, ∀ κ ∈

(
0, β

(
1− 2

α

))
. (3.12)
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Figure 3.3: The graph of the function γ(α) for α ∈ (2, 6).

To see this, observe that

nκE‖v̂j − vj‖β ≤ Ajn
κE‖Ĉ − C‖βL ≤ AjLβ(n)n

−β(1−2/α)+κ.

Since −β(1− 2/α) + κ < 0, by Proposition 2.6 (i) of [4], we obtain (3.12).

The following Assumption 2 thus always holds as long as the eigenvalue separations dj defined

by (3.8) are positive, but this is a sufficient condition, so we state what is needed for our results to

hold.

ASSUMPTION 2. The estimators v̂j satisfy (3.10) if α > 4 and (3.12) if α ∈ (2, 4).

Asymptotic properties in extreme value theory are typically derived as the number of upper

order statistics, k, tends to infinity with the sample size n, in such a way that k/n → 0. This

condition remains to be sufficient for Dn(ξj, ξj′)
P→ D(ξj, ξj′), since the population scores Yi are

i.i.d. and regularly varying under Assumption 1. In our setting, however, we estimate the EDM

based on D̂n(ξj, ξj′) calculated from the observed approximations Ŷi. It can be therefore expected
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that this additional approximation will, to some extent, restrict the rate at which k tends to infinity

with n. We formulate a sufficient condition on the order of k in Assumption 3 below. We first

define the function

γ(α) =





6− α

α + 2
, α ∈ (2, 4],

α− 2

2α− 2
, α ∈ (4,∞).

(3.13)

Fig. 3.3 shows that γ(·) is continuous at the phase transition point α = 4 with γ(4) = 1/3. It

increases on (4,∞) with limαր∞ γ(α) = 1
2
. For α ∈ (2, 4), γ(α) decreases with limαց2 γ(α) = 1.

For each value of α > 2, the interval (γ(α), 1) is not empty. We write

k >> nγ, for some γ ∈ (0, 1), if k/nγ → ∞.

ASSUMPTION 3. We assume that k >> nγ for some γ ∈ (γ(α), 1), with γ(α) defined in (3.13).

Assumption 3 implies that k >
√
n always works if α > 4, but as α ց 2, almost all observa-

tions must be used to ensure the consistency of the estimator.

With all assumptions formulated and explained, we are ready to state the first main result of

this section.

THEOREM 1. Recall the definitions of the EDM D(ξj, ξj′) and its estimator D̂n(ξj, ξj′) given,

respectively, in (3.1) and (3.2). Under Assumptions 1, 2, and 3,

D̂n(ξj, ξj′)
P→ D(ξj, ξj′).

Recall that D(ξj, ξj′) integrates extremal dependence over the whole sphere S
2. As noted in

Section 3.2, this might distort the true dependence, so we decompose D(ξj, ξj′) into components
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measuring dependence over the four quadrants:

[
D(+,+)(ξj, ξj′),D

(−,+)(ξj, ξj′),D
(−,−)(ξj, ξj′),D

(+,−)(ξj, ξj′)
]

:=

[∫

S2
(+,+)

a1a2Γjj′(da),

∫

S2
(−,+)

a1a2Γjj′(da),

∫

S2
(−,−)

a1a2Γjj′(da),

∫

S2
(+,−)

a1a2Γjj′(da)

]
.

The corresponding estimators for the components are given by, respectively,

D̂(+,+)
n (ξj, ξj′) :=

1

k

n∑

i=1

ξ̂ij

R̂i

ξ̂ij′

R̂i

IR̂i≥R̂(k)
Iξ̂ij≥0,ξ̂ij′≥0,

D̂(−,+)
n (ξj, ξj′) :=

1

k

n∑

i=1

ξ̂ij

R̂i

ξ̂ij′

R̂i

IR̂i≥R̂(k)
Iξ̂ij≤0,ξ̂ij′≥0,

D̂(−,−)
n (ξj, ξj′) :=

1

k

n∑

i=1

ξ̂ij

R̂i

ξ̂ij′

R̂i

IR̂i≥R̂(k)
Iξ̂ij≤0,ξ̂ij′≤0,

D̂(+,−)
n (ξj, ξj′) :=

1

k

n∑

i=1

ξ̂ij

R̂i

ξ̂ij′

R̂i

IR̂i≥R̂(k)
Iξ̂ij≥0,ξ̂ij′≤0. (3.14)

Note that k in (3.14) is the same as in (3.2). In application, we first select k, the number of upper

order statistics R̂(i) and then use it to compute (3.2) and (3.14). We will describe this with details

in Section 3.6.

We establish the consistency of these estimators in the following corollary.

COROLLARY 1. Under Assumptions 1, 2, and 3,

D̂(+,+)
n (ξj, ξj′)

P→ D(+,+)(ξj, ξj′), D̂(−,+)
n (ξj, ξj′)

P→ D(−,+)(ξj, ξj′),

D̂(−,−)
n (ξj, ξj′)

P→ D(−,−)(ξj, ξj′), D̂(+,−)
n (ξj, ξj′)

P→ D(+,−)(ξj, ξj′).

Theorem 1 and Corollary 1 are proven in Section 3.5. Our approach to prove the consistency

for the EDM is based on weak convergence of tail empirical measures. Set Θ̂i = Ŷi/||Ŷi||. The
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estimator D̂n(ξj, ξj′) can then be written as an integral of a tail empirical measure, i.e.,

D̂n(ξj, ξj′) =

∫

S2

a1a2Γ̂n(da), Γ̂n :=
1

k

n∑

i=1

I
Θ̂i
IR̂i≥R̂(k)

.

The key argument to prove the consistency is therefore to show

Γ̂n ⇒ Γjj′ in M+

(
S
2
)
, (3.15)

with Γjj′ in (3.1). Relation (3.15) is established by proving a series of weak convergence results.

We now turn to the asymptotic normality. The asymptotic normality of the estimator for the

EDM is proven for i.i.d. bivariate observations in [5]. To show the asymptotic normality of an

estimator based on heavy–tailed data, additional conditions are required even in fully observable

i.i.d. settings. For example, for the Hill estimator, second–order regular variation with restrictions

on the rate of k is assumed, see [39], [40], [41, 42]. The aforementioned condition is a univariate

concept, which is not applicable to our context. Instead, we use a multivariate version of second–

order regular variation, defined by [43]. With some constraint on k, i.e.,
√
kA(b(n/k)) → 0,

where A is defined in formula (15) in [43], the multivariate second–order regular variation implies

the following weaker condition, which is also assumed by [5].

ASSUMPTION 4. The Ri, Θi satisfy

√
k

[
n

k
Pr

((
R1

b(n/k)
,Θ1

)
∈ ·
)
− cνα × Γjj′

]
v→ 0 in M+((0,∞]× S

2).

Assumption 4 means that R1 and Θ1 are asymptotically independent. We emphasize that this

assumption applies to population quantities, which are not observable in our setting. We now

formulate the asymptotic normality of our estimator for the EDM, which is based on projections

of functional data.
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THEOREM 2. Under Assumptions 2, 3 and 4

√
k
(
D̂n(ξj, ξj′)−D(ξj, ξj′)

)
⇒ N (0, σ2),

where σ2 = Var(Θ̃1Θ̃2) > 0, with Θ̃1 and Θ̃2 being the components of a random vector with

distribution Γjj′ .

3.4 Preliminary results

We put together several preliminary results in this section to avoid burdening the proofs in

Section 3.5, so that readers can keep track of the main flow of the argument made in Section 3.5.

The first lemma follows from Lemma 3.7 of [44] and is needed to prove Lemma 2.

LEMMA 1. Suppose random variables Hm(n), m,n ≥ 1, satisfy 0 ≤ Hm(n) ≤ 1 and ∀ m ≥

1, Hm(n)
P→ 0, as n → ∞. Then,

∑∞
m=1 2

−mHm(n)
P→ 0, as n → ∞.

In the following lemma, we present a sufficient condition to guarantee the convergence between

random measures defined on a nice space. We denote a locally compact topological space with

countable base by E. Following page 51 of [4], the vague metric d(·, ·) on M+(E) is defined by

d(µ1, µ2) =
∞∑

i=1

|µ1(fi)− µ2(fi)| ∧ 1

2i
, µ1, µ2 ∈ M+(E), (3.1)

for some sequence of functions fi ∈ C+
K(E) where C+

K(E) is the space of continuous functions

with compact support on E. By Lemma 1, the following is readily proven.

LEMMA 2. Suppose that µn, νn are random measures in M+(E). If, for any f ∈ C+
K(E), |µn(f)−

νn(f)| P→ 0, n → ∞, then d(µn, νn)
P→ 0.

In the following lemma, we show that a continuous mapping with a compactness condition pre-

serves convergence of random measures. Suppose that E1 and E2 are locally compact topological

spaces with countable base. Denote by K(E) a set of all compact subsets of E.
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LEMMA 3. Suppose that H : E1 7→ E2 is a continuous function such that

H−1(K2) ∈ K(E1), ∀K2 ∈ K(E2). (3.2)

If random measures µn, νn in M+(E1) satisfy d(µn, νn)
P→ 0, as n → ∞, then d(µn ◦ H−1, νn ◦

H−1)
P→ 0, in M+(E2).

Proof. By Lemma 2, it suffices to show that, for any f ∈ C+
K(E2),

µn ◦H−1(f)− νn ◦H−1(f) P→ 0. (3.3)

Using the change of variables, we have (µn − νn) ◦H−1(f) =
∫
E2

f(e2)(µn − νn) ◦H−1(de2) =
∫
E1
f(H(e1))(µn− νn)(de1). Thus, we have (µn− νn) ◦H−1(f) = (µn− νn)(f ◦H). Since f and

H are both continuous, and with (3.2), we get f ◦H ∈ C+
K(E1), see page 142 of [4]. Then, since

d(µn, νn)
P→ 0 by assumption, we get (3.3).

Consider the polar coordinate transform T : [−∞,∞]2 \ {0} 7→ (0,∞] × S
2 defined by, for

x ∈ [−∞,∞]2 \ {0},

T (x) =

(
‖x‖, x

‖x‖

)
. (3.4)

Note that T is not bijective since its boundaries at infinity are included. Thus, Lemma 3 cannot

be directly applied to T to show that it preserves convergence of random measures. Instead, we

will show that by using, say, "restrict and then extend space" strategy, which is used in a different

setting on page 176∼179 of [4]. We follow the technique in the proof of the next lemma.

LEMMA 4. Suppose that random measures µn, νn satisfy

d(µn, νn)
P→ 0, in M+([−∞,∞]2 \ {0}), (3.5)

as n → ∞. Then, d(µn ◦ T−1, νn ◦ T−1) P→ 0, in M+((0,∞]× S
2).
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Proof. Consider the transform T
′

: (−∞,∞)2 \ {0} 7→ (0,∞) × S
2 defined by (3.4). Our first

claim is that (3.5) implies

d(µn, νn)
P→ 0, in M+((−∞,∞)2 \ {0}). (3.6)

Let fi ∈ C+
K ((−∞,∞)2 \ {0}), and suppose that Ki ∈ K((−∞,∞)2 \ {0}) is the compact

support of fi. Let f̃i := fi(x)Ix∈Ki
, then f̃i ∈ C+

K ([−∞,∞]2 \ {0}). Observe that d(µn, νn) =
∑∞

i=1 2
−i|(µn − νn)(f̃i)| =

∑∞
i=1 2

−i|(µn − νn)(fi)| P→ 0, by (3.5), so we get (3.6).

Our second claim is that (3.6) implies

d(µn ◦ (T
′

)−1, νn ◦ (T
′

)−1)
P→ 0, in M+((0,∞)× S

2). (3.7)

This is readily proven by Lemma 3, since T
′

is continuous and satisfy (3.2).

The last step is now to extend T
′

to the bigger space, where ∞ is included. Let fi ∈ C+
K ((0,∞]× S

2),

and set ‖fi‖ = sup fi < ∞. We define a smooth truncation function of r, for fixed M , δ, by

φ(r;M, δ) := I0<r≤M + {−(r −M)/δ + 1}IM<r≤M+δ.

Then, observe that

d(µn ◦ T−1, νn ◦ T−1)

=
∞∑

i=1

2−i|(µn − νn) ◦ T−1(fi)| −
∞∑

i=1

2−i|(µn − νn) ◦ T−1(fiφ)|

+
∞∑

i=1

2−i|(µn − νn) ◦ T−1(fiφ)| −
∞∑

i=1

2−i|(µn − νn) ◦ (T
′

)−1(fiφ)|

+
∞∑

i=1

2−i|(µn − νn) ◦ (T
′

)−1(fiφ)| =: A+B + C.
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Now, we will show that each of the components goes to 0. First, observe that

A ≤
∞∑

i=1

2−i
∣∣∣∣
∫

(0,∞]×S2
fi(r, θ)(1− φ(r))(µn − νn) ◦ T−1(dr, dθ)

∣∣∣∣

≤
∞∑

i=1

2−i‖fi‖
∣∣∣∣
∫

(M,∞]×S2
(µn − νn) ◦ T−1(dr, dθ)

∣∣∣∣ .

Taking a sufficiently large M , then A gets arbitrarily small. Next, for each M ,

B ≤
∞∑

i=1

2−i‖fi‖
∣∣∣∣
∫

(0,M ]×S2
(µn − νn) ◦ (T−1 − (T

′

)−1)(dr, dθ)

∣∣∣∣ = 0.

Since fi(r, θ)φ(r;M, δ) ∈ C+
K ((0,∞)× S

2), the last term C goes to 0 by (3.7).

The next lemma shows that the distance between a population score and its corresponding

approximation is asymptotically negligible.

LEMMA 5. Under Assumptions 1, 2, for α > 4, E|ξ̂j − ξj| = O(n−1/2), and for 2 < α < 4,

E|ξ̂j − ξj|r = o(n−κr/β), for some r > 0 satisfying

r <
2β

β + 2
, (3.8)

where κ, β are defined in (3.12).

Proof. For α > 4, by the Cauchy–Schwarz inequality, |ξ̂j − ξj| ≤ ‖X‖‖v̂j − vj‖, so by Assump-

tion 2,

E|ξ̂j − ξj| ≤ {E‖X‖2}1/2{E‖v̂j − vj‖2}1/2 = O(n−1/2).

Now consider the case of 2 < α < 4. Since for any β, 2β
β+2

< β, condition (3.8), implies

that r < β. Applying Hölder’s inequality with p = β/r > 1 and q = β/(β − r), we get

E|ξ̂j − ξj|r ≤ {E‖v̂j − vj‖β}
r
β {E‖X‖rq}1/q. Direct verification shows that condition (3.8) is
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equivalent to

2β2

(β + 2)(β − r)
< 2,

which implies rq < 2. Hence, by Assumption 1, {E‖X‖rq}1/q < ∞. Therefore, by (3.12),

E|ξ̂j − ξj|r = o(n−κr/β).

In the following lemmas, we verify the continuity of functions that will be used in Section 3.5

with the continuous mapping theorem.

LEMMA 6. Suppose that the map H : M+ ((0,∞]× S
2) × (0,∞) −→ M+((0,∞] × S

2), defined

by for any measurable set A× B ⊂ (0,∞]× S
2,

H(U, x)(A× B) = U(xA× B).

The map H is continuous at (να × Γjj′ , x).

Proof. Suppose Wn
v→ να×Γjj′ in M+ ((0,∞]× S

2), and xn → x in (0,∞). Then we must show

that

H(Wn, xn) = Wn((xn·)× ·) v→ H(να × Γjj′ , x) = να × Γjj′((x·)× ·).

To verify this, it suffices to show that for any f ∈ C+
K((0,∞]× S

2),

Wn((xn·)× ·)(f) =
∫

(0,∞]×S2
f(t, a) Wn(xndt, da) =

∫

(0,∞]×S2
f(y/xn, a) Wn(dy, da)

→ να × Γjj′((x·)× ·)(f) =
∫

(0,∞]×S2
f(t, a) να(xndt)Γjj′(da) =

∫

(0,∞]×S2
f(y/x, a) να(dy)Γjj′(da).

The following verification is mostly based on pp. 83–84 of [4], whose test functions are univariate.

Our test functions are however bivariate. We must employ a product metric to apply uniform

continuity of the test functions.
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First observe that

∣∣∣∣∣

∫

(0,∞]×S2+

f(y/xn, a) Wn(dy, da)−
∫

(0,∞]×S2
f(y/x, a) να(dy)Γjj′(da)

∣∣∣∣∣

≤
∣∣∣∣
∫

(0,∞]×S2
f(y/xn, a) Wn(dy, da)−

∫

(0,∞]×S2
f(y/x, a) Wn(dy, da)

∣∣∣∣

+

∣∣∣∣
∫

(0,∞]×S2
f(y/x, a) Wn(dy, da)−

∫

(0,∞]×S2
f(y/x, a) να(dy)Γjj′(da)

∣∣∣∣ .

Since Wn
v→ να×Γjj′ and f( ·

x
, ·) ∈ C+

K((0,∞]×S
2), the second term of the right–hand side goes

to zero. Now, we focus on the first term. Since f has compact support in (0,∞]× S
2, we can take

δ > 0 such that the supports of f( ·
x
, ·) and f( ·

xn
, ·), for large n, are contained in [δ,∞]× S

2. Then

we get the bound

∣∣∣∣∣

∫

(0,∞]×S2+

f(y/xn, a) Wn(dy, da)−
∫

(0,∞]×S2+

f(y/x, a) Wn(dy, da)

∣∣∣∣∣

≤
∫

[δ,∞]×S2+

|f(y/xn, a)− f(y/x, a)|Wn(dy, da)

≤ sup
y≥δ, a∈S2

|f(y/xn, a)− f(y/x, a)|Wn([δ,∞]× S
2).

Since Wn([δ,∞]× S
2) is bounded, it remains to show that as xn → x,

sup
y≥δ, a∈S2

|f(y/xn, a)− f(y/x, a)| → 0. (3.9)

We use the fact that a continuous function with compact support is uniformly continuous. The

metric on (0,∞] × S
2 is given by dprod((u, a), (v,b)) = d(0,∞](u, v) + dS2(a,b), see p.57 of [4].

Define the metric on (0,∞] by

d(0,∞](u, v) = |u−1 − v−1|,
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for u, v ∈ (0,∞], which measures the distance between points in (0,∞] with one point compacti-

fication at ∞. Since xn −→ x and y ≥ δ0,

dprod ((y/xn, a) , (y/x, a)) =
|xn − x|

y
≤ |xn − x|

δ0
−→ 0.

Therefore, by the uniform continuity of f , we get (3.9).

LEMMA 7. The function g on M+ ((0,∞]× S
2) defined by for any measurable sets A ⊂ (0,∞],

B ⊂ S
2, g(U) = U (A× B) is continuous at να × Γjj′ .

Proof. Suppose Wn
v→ να × Γjj′ in M+ ((0,∞]× S

2). Since A × B is relatively compact in

(0,∞]× S
2, by Theorem 3.2 of [4] g(Wn) = Wn (A× B) → g(να × Γjj′) = να(A)Γjj′(B).

LEMMA 8. The function h on M+ (S2) defined by for B ∈ {S2, S2
(+,+), S

2
(−,+), S

2
(−,−), S

2
(+,−)},

h(U) =
∫
B
θ1θ2U(dθ) is continuous at Γjj′ .

Proof. Suppose Wn
v→ Γjj′ in M+ (S2). Consider a map f : S

2 → R, defined by f(θ) =

θ1θ2Iθ∈B. Note that every continuous function on a compact space has compact support. Since f

is continuous with compact support, by the definition of vague convergence,

h(Wn) =

∫

B

θ1θ2Wn(dθ) → h(Γjj′) =

∫

B

θ1θ2Γjj′(dθ).

3.5 Proofs of the results of Section 3.3

Proof of Proposition 1: To prove the regular variation of π(X) in R
d, we will show that there

exists a probability measure Γ on S
d and a regularly varying sequence b(n) satisfying (3.4); for
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any y > 0,

nPr(‖π(X)‖ > yb(n), π(X)/‖π(X)‖ ∈ ·) w−→ cy−αΓ(·) as n → ∞,

for some c > 0.

First, note that ‖π(X)‖ > yb(n) and π(X)/‖π(X)‖ ∈ · iff (yb(n))−1X ∈ Aπ(·). Observe

that, for any set S in B(Sd),

nPr(‖π(X)‖ > yb(n), π(X)/‖π(X)‖ ∈ S) = nPr

(
X

yb(n)
∈ Aπ(S)

)
.

To use (3.3) implied by the M0 convergence, we must show that the Aπ(S) are continuity sets of

ν, i.e., ν(∂Aπ(S)) = 0. The verification uses the same idea described in the proof of Proposition

3.1 of [25], but the difference is that we work with the different projection π(z) and its relevant set

Aπ(S).

By (3.6), we have

∂Aπ(S) = {z ∈ H : ‖π(z)‖ = 1, π(z)/‖π(z)‖ ∈ S} ,

and

∂(rAπ(S)) = {z ∈ H : ‖π(z)‖ = r, π(z)/‖π(z)‖ ∈ S} .

Note that ∂(rAπ(S)) = r∂Aπ(S), and the sets ∂(rAπ(S)) are all disjoint in r. We assume

ν(∂Aπ(S)) > 0 and get a contradiction. Since Aπ(S) ⊃ ∪n≥1∂(n
1/αAπ(S)), for all α > 0,

and ν is homogeneous,

ν(Aπ(S)) ≥
∞∑

n=1

ν(n1/α∂Aπ(S)) =
∞∑

n=1

n−1ν(∂Aπ(S)) = ∞.

This contradicts to the fact that ν is boundedly finite. Therefore, the Aπ(S) are continuity sets of

ν.
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Now, by (3.3), we obtain

nPr(‖π(X)‖ > yb(n), π(X)/‖π(X)‖ ∈ S) → ν(yAπ(S)) = y−αν(Aπ(S)).

Setting

Γ(·) := ν(Aπ(·))
c

, c = ν(Aπ(S
d)), (3.1)

we get the claim.

Proof of Theorem 1:

Recall that

Yi = [ξij, ξij′ ]
⊤, Ri = ‖Yi‖, Θi = Yi/Ri, Ŷi = [ξ̂ij, ξ̂ij′ ]

⊤, R̂i = ‖Ŷi‖, Θ̂i = Ŷi/R̂i.

Under Assumption 1, the Yi are regularly varying with index −α by Proposition 1. More specif-

ically, there exist a sequence {b(n)} (the same as in (3.3)) and a probability angular measure Γjj′

defined as (3.1) satisfying

nPr

((
Ri

b(n)
, Θi

)
∈ ·
)

v→ cvα × Γjj′ in M+((0,∞]× S
2). (3.2)

The constant c depends on the choice of b(n). In the following, we assume c = 1 to keep the

notation simple.

Our approach is to establish several weak convergences of tail empirical measures. We start

with an empirical measure based on i.i.d. Yi:

Un :=
1

k

n∑

i=1

I(Ri/b(n/k), Θi) ⇒ να × Γjj′ in M+

(
(0,∞]× S

2
)
. (3.3)

We then extend (3.3) to

Ûn :=
1

k

n∑

i=1

I(R̂i/b(n/k), Θ̂i) ⇒ να × Γjj′ in M+

(
(0,∞]× S

2
)
. (3.4)
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Since the Ŷi are no longer independent, this requires techniques involving the Slutsky theorem.

We further proceed to replace the unknown sequence b(n/k) by its estimate R̂(k):

Û⋆
n :=

1

k

n∑

i=1

I(R̂i/R̂(k), Θ̂i) ⇒ να × Γjj′ in M+

(
(0,∞]× S

2
)
. (3.5)

Applying the continuous mapping theorem, we finally get (3.15), i.e.,

Γ̂n =
1

k

n∑

i=1

I
Θ̂i
IR̂i≥R̂(k)

⇒ Γjj′ in M+

(
S
2
)
.

The consistency of D̂n(ξj, ξj′) for D(ξj, ξj′) is then established because D̂n(ξj, ξj′) =
∫
S2
a1a2Γ̂n(da).

We now present a series of the results mentioned above, of which Proposition 1 is the most

essential and important step toward Theorem 1. The following lemma verifies (3.3), which is

readily proven from (3.2) by Theorem 5.3 (ii) of [4].

LEMMA 1. Under Assumption 1, relation (3.3) holds.

The next result shows that the infeasible samples Yi in (3.3) can be replaced by their approxi-

mations Ŷi.

PROPOSITION 1. Under Assumptions 1, 2, and 3, relation (3.4) holds.

Proof. By Lemma 1 and the Slutsky theorem, it suffices to prove that

d(Ûn, Un) = d

(
1

k

n∑

i=1

I(R̂i/b(n/k), Θ̂i),
1

k

n∑

i=1

I(Ri/b(n/k), Θi)

)
P−→ 0. (3.6)

To show (3.6), we set V̂n := 1
k

∑n
i=1 IŶi/b(n/k)

, Vn := 1
k

∑n
i=1 IYi/b(n/k), and prove

d(V̂n, Vn) = d

(
1

k

n∑

i=1

I
Ŷi/b(n/k)

,
1

k

n∑

i=1

IYi/b(n/k)

)
P−→ 0. (3.7)

Applying the polar transformation defined in (3.4), we get (3.6) from (3.7) by Lemma 4.
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To prove (3.7), it suffices to show that, by Lemma 2, for any f ∈ C+
K([−∞,∞]2 \ {0}), and

any τ > 0,

Pr

(∣∣∣∣∣
1

k

n∑

i=1

f

(
Ŷi

b(n/k)

)
− 1

k

n∑

i=1

f

(
Yi

b(n/k)

)∣∣∣∣∣ > τ

)
→ 0. (3.8)

Since f has compact support in [−∞,∞]2 \ {0}, set

a := inf{‖s‖ : s ∈ supp(f)} > 0. (3.9)

To prove (3.8), we consider a decomposition using the following sets. For 0 < η < a/2, set

An(k) :=

{
1 ≤ i ≤ n :

∥∥∥∥∥
Ŷi

b(n/k)
− Yi

b(n/k)

∥∥∥∥∥ ≤ η,

∥∥∥∥
Yi

b(n/k)

∥∥∥∥ ≥ a− η

}
,

Bn(k) :=

{
1 ≤ i ≤ n :

∥∥∥∥∥
Ŷi

b(n/k)
− Yi

b(n/k)

∥∥∥∥∥ ≤ η,

∥∥∥∥
Yi

b(n/k)

∥∥∥∥ < a− η

}
,

and

Cn(k) :=

{
1 ≤ i ≤ n :

∥∥∥∥∥
Ŷi

b(n/k)
− Yi

b(n/k)

∥∥∥∥∥ > η

}
.

Then, we have

Pr

(∣∣∣∣∣
1

k

n∑

i=1

f

(
Ŷi

b(n/k)

)
− 1

k

n∑

i=1

f

(
Yi

b(n/k)

)∣∣∣∣∣ > τ

)

≤ Pr(S(An) > τ/3) + Pr(S(Bn) > τ/3) + Pr(S(Cn) > τ/3),

where

S(An) =
1

k

∑

i∈An(k)

∣∣∣∣∣f
(

Ŷi

b(n/k)

)
− f

(
Yi

b(n/k)

)∣∣∣∣∣ ,

and S(Bn) and S(Cn) are defined analogously with
∑

i∈Bn(k)
and

∑
i∈Cn(k)

, respectively.
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We will show that each of the three parts goes to 0. We first investigate Pr(S(An) > τ/3).

Since f is uniformly continuous,

wη(f) := sup
‖x−y‖≤η, x,y∈[−∞,∞]2\{0}

|f(x)− f(y)| −→ 0, η −→ 0.

Observe that

S(An) ≤ wη(f)
1

k
#

{
1 ≤ i ≤ n :

∥∥∥∥
Yi

b(n/k)

∥∥∥∥ ≥ a− η

}
= wη(f)Un(Ea−η),

with the measure Un defined in (3.3), and with the set Eb ⊂ (0,∞]× S
2 defined by

Eb =
{
(r, θ) ∈ (0,∞]× S

2 : r ≥ b
}
, b > 0.

Now consider the function g on M+ ((0,∞]× S
2), defined by, for any measurable set A ⊂ (0,∞],

g(U) = U (A× S
2). Then, by Lemma 7 and the continuous mapping theorem, for a fixed η,

Un(Ea−η)
P→ να(a− η,∞] = (a− η)−α. Therefore,

lim sup
n→∞

Pr(S(An) > τ/3) ≤ Pr
(
wη(f)(a− η)−α > τ/3

)
≤ Pr

(
wη(f) > 2−αaατ/3

)
.

By taking sufficiently small η, we can ensure that Pr (wη(f) > 2−αaατ/3) = 0, hence limn→∞ Pr(S(An) >

τ/3) = 0.

Next, we consider the second probability in the decomposition. Observe that for each i ∈

Bn(k),

∥∥∥∥∥
Ŷi

b(n/k)

∥∥∥∥∥ ≤
∥∥∥∥∥

Ŷi

b(n/k)
− Yi

b(n/k)

∥∥∥∥∥+
∥∥∥∥

Yi

b(n/k)

∥∥∥∥ < a,

∥∥∥∥
Yi

b(n/k)

∥∥∥∥ < a− η.

Thus, the two points Ŷi/b(n/k),Yi/b(n/k) are outside of the support of f for all i ∈ Bn(k), so

S(Bn) = 0 by construction, and so Pr(S(Bn) > τ/3) = 0.
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It remains to show that for any η > 0, limn→∞ Pr(S(Cn) > τ/3) = 0. Set

‖f‖∞ = sup
x∈[−∞,∞]2\{0}

|f(x)|. (3.10)

First, consider the case of α > 4. By Markov’s inequality,

Pr(S(Cn) > τ/3) ≤ 3

τk
E


 ∑

i∈Cn(k)

∣∣∣∣∣f
(

Ŷi

b(n/k)

)
− f

(
Yi

b(n/k)

)∣∣∣∣∣




≤ 6‖f‖∞
τk

E

[
n∑

i=1

I‖Ŷi−Yi‖>ηb(n/k)

]

≤ 6‖f‖∞
τ

n

k
Pr
(
‖Ŷi −Yi‖ > ηb(n/k)

)

≤ 6‖f‖∞
τη

n

kb(n/k)
E||Ŷi −Yi||.

Since all norms in R
2 are equivalent, we get

||Ŷi −Yi|| ≤ C
(
|ξ̂ij − ξij|+ |ξ̂ij′ − ξij′ |

)
, (3.11)

for some C > 0. Since E||Ŷi − Yi|| ≤ O(n−1/2) by Lemma 5, we have Pr(S(Cn) > τ/3) =

O
(
n1/2/{kb(n/k)}

)
. By Assumption 3 and (3.5), Pr(S(Cn) > τ/3) = o(1).

Now consider the case of α ∈ (2, 4). We will use Lemma 5, which refers to relation (3.12).

Observe that since β < α/2 < 2 in (3.12), it holds that 2β
β+2

< 1. This implies that r satisfying (3.8)
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also satisfies r < 1. Applying Markov’s and Lyapunov’s inequalities, we thus obtain

Pr(S(Cn) > τ/3) ≤ Pr

(
2‖f‖∞

k

n∑

i=1

I‖Ŷi−Yi‖>ηb(n/k) >
τ

3

)

≤ 6r‖f‖r∞nr

τ rkr
E

[(
1

n

n∑

i=1

I‖Ŷi−Yi‖>ηb(n/k)

)r]

≤ 6r‖f‖r∞nr

τ rkr

{
E

[
1

n

n∑

i=1

I‖Ŷi−Yi‖>ηb(n/k)

]}r

=
6r‖f‖r∞nr

τ rkr
Pr
(
‖Ŷi −Yi‖ > ηb(n/k)

)r
.

Applying Markov’s inequality with the same r again and (3.11), we obtain

Pr(S(Cn) > τ/3) ≤ c
nr

kr{b(n/k)}r2
{
E
[
max

(
|ξ̂ij − ξij|, |ξ̂ij′ − ξij′ |

)r]}r

,

for some c > 0. Then by Lemma 5 and (3.5)

Pr(S(Cn) > τ/3) = o

(
nr−κr2/β

kr{b(n/k)}r2
)

= o

(
nr−κr2/β−r2/α

kr−r2/α

)
.

Let

γ =
r − κr2

β
− r2

α

r − r2

α

=
1− r

α
− κr

β

1− r
α

.

Then, γ is smaller than 1 for all 2 < α < 4, as κ/β gets close to 0, and it attains its smallest value

as κ/β approaches its largest possible value, i.e., 1 − 2/α, see (3.12). We now set a lower bound

of γ as a function of r for α fixed,

γL(r;α) :=
1− r

α
− (1− 2

α
)r

1− r
α

=
α− αr + r

α− r
. (3.12)

Since 2β/(β + 2) in (3.8) is an increasing function of β and attains its upper limit when β = α/2,

see (3.12), we obtain r < 2α/(α + 4). Then, since γL(r;α) is an decreasing function of r, γ can
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be arbitrarily close to γL(2α/(α + 4);α) = (6 − α)/(α + 2). Thus, by Assumption 3, k >> nγ ,

and we get Pr(S(Cn) > τ/3) = o(1).

The following proposition is used to prove the asymptotic normality in Theorem 2. We put it

in this section to help readers follow its proof easily since it uses several elements of the proof of

Proposition 1. The claim is similar to (3.6), but 1/k is replaced by a suitably chosen power of k,

so a more delicate argument is needed.

PROPOSITION 2. Suppose that Assumptions 2 3 and 4 hold. Then,

d

(
1√
k

n∑

i=1

I(R̂i/b(n/k), Θ̂i),
1√
k

n∑

i=1

I(Ri/b(n/k), Θi)

)
P−→ 0.

Proof. We follow the approach used in the proof of Proposition 1, so we skip fully analogous parts

and focus on the new aspects. To get the claim, it suffices to show that

Pr

(
1√
k

n∑

i=1

∣∣∣∣∣f
(

Ŷi

b(n/k)

)
− f

(
Yi

b(n/k)

)∣∣∣∣∣ > τ

)
→ 0,

for every f ∈ C+
K([−∞,∞]2 \ {0}). For 0 < η < a/2, with a defined in (3.9), set

An(k) :=

{
1 ≤ i ≤ n :

∥∥∥∥∥
Ŷi

kpb(n/k)
− Yi

kpb(n/k)

∥∥∥∥∥ ≤ η,

∥∥∥∥
Yi

kpb(n/k)

∥∥∥∥ ≥ a− η

}
,

Bn(k) :=

{
1 ≤ i ≤ n :

∥∥∥∥∥
Ŷi

kpb(n/k)
− Yi

kpb(n/k)

∥∥∥∥∥ ≤ η,

∥∥∥∥
Yi

kpb(n/k)

∥∥∥∥ < a− η

}
,

and

Cn(k) :=

{
1 ≤ i ≤ n :

∥∥∥∥∥
Ŷi

kpb(n/k)
− Yi

kpb(n/k)

∥∥∥∥∥ > η

}
,

where p is a positive constant such that pmin{r, 1} = 1/2 for some r satisfying (3.8). Except for

the factor kp, these sets of indexes are analogous to those used in the proof of Proposition 1. Then,
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we have

Pr

(
1√
k

n∑

i=1

∣∣∣∣∣f
(

Ŷi

b(n/k)

)
− f

(
Yi

b(n/k)

)∣∣∣∣∣ > τ

)

≤ Pr(S(An) > τ/3) + Pr(S(Bn) > τ/3) + Pr(S(Cn) > τ/3),

where

S(An) =
1√
k

∑

i∈An(k)

∣∣∣∣∣f
(

Ŷi

b(n/k)

)
− f

(
Yi

b(n/k)

)∣∣∣∣∣ ,

and S(Bn) and S(Cn) are defined analogously with
∑

i∈Bn(k)
and

∑
i∈Cn(k)

, respectively. Our

claim is that each of the three terms converges to 0. Before we proceed, we note some results

about p in kp to facilitate the understanding of the proofs;

pr =
1

2
for 2 < α < 4, p ≥ 1

2
for α > 2. (3.13)

To see this, observe that β < α/2 in (3.12) and 2β
β+2

in (3.8) is increasing of β. It thus holds that

r < 2β
β+2

< 2α
α+4

. This implies that 0 < r < 1 for 2 < α < 4, and 0 < r < 2 for α > 2.

First, observe that

S(An) ≤ 2‖f‖∞
√
k
1

k

n∑

i=1

I‖Yi/kpb(n/k)‖≥a−η

= c
√
k

(
1

k

n∑

i=1

IRi/b(n/k)≥kp(a−η) − να(k
p(a− η),∞]

)
+ ck1/2−pα(a− η)−α,

where ‖f‖∞ is defined in (3.10) and c is a positive constant. The last term goes to 0 since pα >

p ≥ 1/2 for α > 2. Now, we focus on the first term. Assumption 4 implies

µn :=
√
k

(
1

k

n∑

i=1

IRi/b(n/k) − να

)
P→ 0. (3.14)

Consider the map gM on M+(0,∞], defined by gM(U) = U([M,∞]). We must show that

gkp(a−η)(µn)
P→ 0. This follows from the following more general argument. We have a sequence
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of signed measures on (0,∞], such that µn
P→ 0. Since we can decompose µn into positive and

negative parts, we can assume that the µn are positive. For an → ∞ (in our case an = kp(a− η)),

we claim that µn([an,∞])
P→ 0. By Lemma 7, the map gM is continuous, so for each fixed M ,

µn([M,∞])
P→ 0. For sufficiently large n, an > 1, µn([an,∞]) ≤ µn([1,∞]), and the claim

follows.

Next, we obtain Pr(S(Bn) > τ/3) = 0 in the same manner in Proposition 1.

For S(Cn), we first consider the case of α > 4. 0bserve that by Markov’s inequality,

Pr(S(Cn) > τ/3) ≤ 1√
k

6‖f‖∞
τη

n

kpb(n/k)
E||Ŷi −Yi||.

By Lemma 5, E||Ŷi − Yi|| = O(n−1/2), so Pr(S(Cn) > τ/3) = O
(
n1/2−1/α/k1/2+p−1/α

)
. We

must thus verify that n1/2−1/α/k1/2+p−1/α → 0. We know that nγ/k → 0 if γ > γ(α). We use the

factorization

n1/2−1/α

k1/2+p−1/α
=

(
nγ

k

) 1
2γ
− 1

αγ
(
1

k

) 1
2
+p− 1

α
− 1

2γ
+ 1

αγ

.

Since α > 2, 1
2γ

− 1
αγ

> 0, so we must be able to claim that 1
2
+ p− 1

α
− 1

2γ
+ 1

αγ
> 0. Since p ≥ 1

2
,

this will follow from 1− 1
α
− 1

γ

(
1
2
− 1

α

)
> 0. A few algebraic manipulations show that the above

inequality is equivalent to γ > α−2
2α−2

= γ(α). For the case of α ∈ (2, 4), we apply Markov’s and

Lyapunov’s inequalities, just as we did in Proposition 1. Then, by Lemma 5 and (3.13) we obtain

Pr(S(Cn) > τ/3) = o

(
nr−κr2/β−r2/α

kr/2+pr2−r2/α

)
= o

(
nr−κr2/β−r2/α

kr−r2/α

)
.

It is verified at the end of the proof of Proposition 1 that the last quantity tends to zero under

Assumption 3.

The next lemma will be used in Proposition 3 to replace b(n/k) in (3.4) with R̂(k).

LEMMA 2. Under Assumptions 1, 2, and 3, R̂(k)/b(n/k)
P→ 1.
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Proof. Fix ε > 0 and set

P+(n) = Pr

(
R̂(k)

b(n/k)
> 1 + ε

)
, P−(n) = Pr

(
R̂(k)

b(n/k)
< 1− ε

)
.

Observe that

P+(n) = Pr
(
IR̂(k)/b(n/k)

(1 + ε,∞] = 1
)

≤ Pr

(
1

k

n∑

i=1

IR̂i/b(n/k)
(1 + ε,∞] ≥ 1

)

= Pr
(
Ûn

(
(1 + ε,∞]× S

2
)
≥ 1
)
.

A similar argument shows that P−(n) ≤ Pr
(
Ûn ((1− ε,∞]× S

2) < 1
)
. The claim follows be-

cause by Lemma 7 and the continuous mapping theorem, we obtain Ûn((1 + ε,∞] × S
2)

P→

να(1 + ε,∞] = (1 + ε)−α < 1; Ûn((1− ε,∞]× S
2)

P→ να(1− ε,∞] = (1− ε)−α > 1.

PROPOSITION 3. Under Assumptions 1, 2, and 3, relation (3.5) holds.

Proof. By Proposition 1 and Lemma 2, we obtain joint weak convergence
(
Ûn,

R̂(k)

b(n/k)

)
⇒ (να ×

Γjj′ , 1) in M+ ((0,∞]× S
2) × (0,∞). Consider the operator H : M+ ((0,∞]× S

2) × (0,∞) −→

M+((0,∞] × S
2), defined by for any measurable set A × B ⊂ (0,∞] × S

2, H(U, x)(A × B) =

U(xA × B). Since H
(
Ûn, R̂(k)/b(n/k)

)
= 1

k

∑n
i=1 I(R̂i/R̂(k), Θ̂i), H (να × Γjj′ , 1) = να × Γjj′ ,

we get (3.5) by Lemma 6 and the continuous mapping theorem.

Proof of Theorem 1: Consider the map g : M+ ((0,∞]× S
2) → M+ (S2), defined by for any

measurable set A ⊂ S
2, g(U) = U ([1,∞]× A). Then, by Lemma 7 and the continuous map-

ping theorem, we obtain (3.15) from (3.5). Now we consider the map h on M+(S
2) defined by

h(U) =
∫
S2
θ1θ2U(dθ). By Lemma 8 and the continuous mapping theorem, we obtain, from (3.15),
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∫
S2
θ1θ2Γ̂n(dθ) ⇒

∫
S2
θ1θ2Γjj′(dθ). Since

∫

S2

θ1θ2Γ̂n(dθ) =
1

k

n∑

i=1

IRi≥R(k)

∫

S2

θ1θ2IΘi∈dθ
= D̂n(ξ̂ij, ξ̂ij′),

we get the claim.

Proof of Corollary 1: Consider the map h on M+(S
2) defined by

h(S) =

∫

S2
(+,+)

θ1θ2S(dθ).

Applying the map to (3.15), we obtain the consistency of D̂
(+,+)
n (ξj, ξj′) for D(+,+)(ξj, ξj′), by

Lemma 8 and the continuous mapping theorem. The consistency of the remaining estimators can

be proven in the same way, just using different quadrant domains in the map h.

Proof of Theorem 2: Define the empirical process based on the sample scores by

Wn(t) =
1

σ
√
k

n∑

i=1

(
Θ̂i1Θ̂i2 − E

[
Θ̃1Θ̃2

])
IR̂i/b(n/k)≥t−1/α , t ≥ 0.

The main argument to prove the asymptotic normality is the weak convergence of Wn to the stan-

dard Brownian motion W ;

Wn ⇒ W, in D[0,∞), (3.15)

where D[0,∞) is the usual Skorokhod space. Once we verify (3.15), then by Lemma 2 we obtain

the joint convergence

(
Wn(·),

(
R̂(k)

b(n/k)

)−α)
⇒ (W (·), 1), in D[0,∞)× [0,∞).

Applying the composition map (x(·), c) 7→ x(c), we conclude that

√
k
(
D̂n(ξj, ξj′)− E

[
Θ̃1Θ̃2

])
= σWn

((
R̂(k)

b(n/k)

)−α)
⇒ σW (1).
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The general strategy is thus similar to the one employed to prove Theorem 1 in [5]. However, in

our setting, new arguments are needed to establish relations (3.17) and (3.18). These terms are

zero in the proof of [5].

Now, to show (3.15), consider the following decomposition

Wn(t) =
1

σ
√
k

n∑

i=1

(
Θi1Θi2 − E

[
Θ̃1Θ̃2

])
IRi/b(n/k)≥t−1/α

+
1

σ
√
k

n∑

i=1

(
Θ̂i1Θ̂i2IR̂i/b(n/k)≥t−1/α −Θi1Θi2IRi/b(n/k)≥t−1/α

)

+
1

σ
√
k

n∑

i=1

E
[
Θ̃1Θ̃2

] (
IRi/b(n/k)≥t−1/α − IR̂i/b(n/k)≥t−1/α

)
.

We will verify that

1

σ
√
k

n∑

i=1

(
Θi1Θi2 − E

[
Θ̃1Θ̃2

])
IRi/b(n/k)≥(·)−1/α ⇒ W, in D[0,∞), (3.16)

and for any s ≥ 0,

sup
0≤t≤s

∣∣∣∣
1

σ
√
k

n∑

i=1

(
Θ̂i1Θ̂i2IR̂i/b(n/k)≥t−1/α −Θi1Θi2IRi/b(n/k)≥t−1/α

) ∣∣∣∣
P→ 0; (3.17)

E
[
Θ̃1Θ̃2

]
sup
0≤t≤s

∣∣∣∣
1

σ
√
k

n∑

i=1

(
IRi/b(n/k)≥t−1/α − IR̂i/b(n/k)≥t−1/α

) ∣∣∣∣
P→ 0. (3.18)

We begin with (3.16). Since the empirical process in (3.16) is based on i.i.d. population scores,

if we verify

√
k

[
n

k
Pr

((
R1

b(n/k)
,Θ1

)
∈ ·
)
− n

k
Pr

(
R1

b(n/k)
∈ ·
)
× Γjj′

]
v→ 0, in M+((0,∞]× S

2),

(3.19)

then (3.16) readily holds by Theorem 1 of [5]. Their theorem is proven for nonnegative random

vectors, but the proof also works for random vectors in R
d, with a small modification.
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To prove (3.19), we use the equivalent conditions for vague convergence presented in Theorem

3.2 of [4]. Take any relatively compact set B ∈ (0,∞]. Then, B × S
2 is also relatively compact in

(0,∞]× S
2, so we obtain from Assumption 4,

√
k

[
n

k
Pr

(
R1

b(n/k)
∈ B

)
− να(B)

]
→ 0. (3.20)

The constant c in Assumption 4 depends on the choice of b(n), so we set c = 1 for simplicity.

Now, take any relatively compact set A× S ∈ (0,∞]× S
2, and observe that

√
k

[
n

k
Pr

((
R1

b(n/k)
,Θ1

)
∈ A× S

)
− n

k
Pr

(
R1

b(n/k)
∈ A

)
× Γjj′(S)

]

=
√
k

[
n

k
Pr

((
R1

b(n/k)
,Θ1

)
∈ A× S

)
− να(A)Γjj′(S)

]

+
√
k

[
να(A)−

n

k
Pr

(
R1

b(n/k)
∈ A

)]
Γjj′(S) → 0.

The first term vanishes by Assumption 4. Also, since A is relatively compact in (0,∞] and 0 ≤

Γjj′(S) ≤ 1, the second term goes to 0 by (3.20).

For (3.17) and (3.18), we Proposition 2, i.e.,

1√
k

n∑

i=1

I(R̂i/b(n/k), Θ̂i) −
1√
k

n∑

i=1

I(Ri/b(n/k), Θi)
P−→ 0. (3.21)

Consider the map h : M+ ((0,∞]× S
2) → M+(0,∞], defined by h(U) =

∫
S2
θ1θ2U(dr, dθ).

Applying h to (3.21), by Lemma 8 and the continuous mapping theorem we obtain

φn :=
1√
k

n∑

i=1

(
Θ̂i1Θ̂i2IR̂i/b(n/k)

−Θi1Θi2IRi/b(n/k)

)
P→ 0. (3.22)

We thus have a sequence of signed measures on (0,∞], such that φn
P→ 0. Since a signed measure

can be decomposed into positive and negative parts, we can assume that the φn are positive. Now,

consider the map gM on M+(0,∞], defined by gM(U) = U([M,∞]). By Lemma 7, the map gM is

continuous, so for each fixed M , φn([M,∞])
P→ 0. Therefore, for any s ≥ 0, taking M such that
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Table 3.1: Time periods related to the subprime mortgage crisis.

Designation Time span Sample size n (days)

Before 07/05/2006 - 09/28/2007 313

During 10/01/2007 - 02/27/2009 351

After 1 03/02/2009 - 07/30/2010 356

After 2 08/02/2010 - 12/30/2011 358

M > s, we obtain

sup
0≤t≤s

∣∣∣∣
1

σ
√
k

n∑

i=1

(
Θ̂i1Θ̂i2IR̂i/b(n/k)≥t−1/α −Θi1Θi2IRi/b(n/k)≥t−1/α

) ∣∣∣∣ ≤ φn([M,∞])
P→ 0.

Similarly, considering the map ℓ : M+ ((0,∞]× S
2) → M+(0,∞], defined by ℓ(U) =

∫
S2
U(dr, dθ), we conclude (3.18).

3.6 Application to intraday returns

In this section, we quantify the extremal dependence between scores of cumulative intraday

returns (CIDRs) for Walmart and IBM stocks, taken from July 05, 2006 to Dec 30, 2011. We

define CIDRs as follows: Denote by Pi(t) the price of an asset on trading day i at time t. For the

assets in our example, t is time in minutes between 9:30 and 16:00 EST (NYSE opening times)

rescaled to the unit interval (0, 1). We define the CIDR on day i as the curve

Ri(t) = lnPi(t)− lnPi(0).

In practice, Pi(0) is the price after the first minute of trading. The curves Ri show how the return

accumulates over the trading day, see, e.g., Figure 3.2.

[45] sought to identify the curves Ri that are in some sense extreme. They did so by looking

for curves for which scores ξ̂ij are extreme for some j = 1, 2 or 3, or by looking at the norm

‖Xi‖ = {∑p
j=1 ξ

2
ij}1/2.
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A question we seek to investigate is if the financial crisis of 2008 affected the extremal depen-

dence between the scores of the CIDRs. Over the last decade, the 2008 crisis has been extensively

studied in finance and economics literature, see, e.g., [46], [47] and [48] who cite many references.

We consider four time intervals, "before", "during", "after1", and "after2", defined in Table 3.1.

For each interval, we compute estimates of the EDM for the three pairs of the first three scores, ξ1,

ξ2, ξ3, by which the shapes of the observed CIDR curves are encoded: Ri(t) ≈
∑3

j=1 ξ̂ij v̂j(t). We

fix the Euclidean norm in this application.

Hill plots of the sample scores ξ̂ij for j = 1, 2, 3 are shown in Figure 2.3 in Section 2.1. The

Hill plot is a tool commonly used to detect the presence of heavy tails approximately following a

Pareto distribution for large values, see, for example, page 80 of [4]. Figure 2.3 indicates that it is

reasonable to assume that the scores follow Pareto distributions with the tail index between 2 and

4 since stable horizontal lines lie between these values. Since we cannot guarantee that the first

three scores are always tail equivalent, we first transform the scores so that they all have the same

tail index α. We use a power transformation approach, similar to that described in Section A.1, but

here we transform the scores to have α = 3 since our theory requires α > 2, see Assumption 3. To

compute (3.14), we must choose k, the number of upper order statistics R̂(i). We use a data-driven

method proposed by [49]. It is based on the scaling property of the exponent measure: ν(t·) =

t−αν(·). More specifically, using the weak convergence result (3.5) proven by Proposition 3 in

Section 3.5, we obtain

uαÛ⋆
n ([u,∞)× S

2)

Û⋆
n ([1,∞)× S2)

≈ 1,

where u is in a neighborhood of 1. We then graph, for each fixed k,

{(
u,

uαÛ⋆
n ([u,∞)× S

2)

Û⋆
n ([1,∞)× S2)

)
, 0.1 ≤ u ≤ 5

}
,

and choose k that makes the ratio to hover around 1 for most of the values of u.

Tables 3.2 reports estimates for the three pairs of the first three scores, ξ1, ξ2, ξ3, for the Walmart

stock. Table A.1 reports analogous information for the IBM stock. We note that D∗p(ξj, ξj′ ), for
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Table 3.2: Estimates of EDM for Walmart stock. Standard errors in parentheses are computed using Theo-

rem 2.

D(+,+)(ξ1, ξ2) D(−,+)(ξ1, ξ2) D(−,−)(ξ1, ξ2) D(+,−)(ξ1, ξ2)

Before 0.07 (0.02) -0.06 (0.02) 0.07 (0.02) -0.09 (0.02)

During 0.11 (0.02) -0.06 (0.01) 0.07 (0.02) -0.06 (0.01)

After 1 0.13 (0.03) -0.07 (0.02) 0.07 (0.03) -0.04 (0.02)

After 2 0.09 (0.03) -0.05 (0.02) 0.03 (0.02) -0.10 (0.03)

D(+,+)(ξ1, ξ3) D(−,+)(ξ1, ξ3) D(−,−)(ξ1, ξ3) D(+,−)(ξ1, ξ3)

Before 0.09 (0.03) -0.05 (0.02) 0.04 (0.02) -0.04 (0.02)

During 0.10 (0.02) -0.07 (0.02) 0.05 (0.02) -0.07 (0.02)

After 1 0.06 (0.02) -0.11 (0.03) 0.07 (0.03) -0.07 (0.03)

After 2 0.07 (0.02) -0.08 (0.02) 0.05 (0.02) -0.05 (0.02)

D(+,+)(ξ2, ξ3) D(−,+)(ξ2, ξ3) D(−,−)(ξ2, ξ3) D(+,−)(ξ2, ξ3)

Before 0.08 (0.03) -0.09 (0.03) 0.05 (0.02) -0.05 (0.02)

During 0.10 (0.02) -0.08 (0.02) 0.07 (0.02) -0.07 (0.02)

After 1 0.10 (0.02) -0.08 (0.02) 0.10 (0.02) -0.10 (0.02)

After 2 0.07 (0.02) -0.08 (0.02) 0.07 (0.02) -0.05 (0.02)

∗p ∈ {(+,+), (−,−)}, has positive values because ξj and ξj′ have the same signs, and D∗n(ξj, ξj′ ),

for ∗n ∈ {(−,+), (+,−)}, has negative values because ξj and ξj′ have the opposite signs. Ta-

bles 3.2 and A.1 also report estimated standard errors of the estimates for EDM. Using Theorem 2,

the standard error was computed by σ̂/
√
k where

σ̂2 =
1

k

n∑

i=1

(
ξij
Ri

ξij′

Ri

)2

IRi≥R(k)
−
(
1

k

n∑

i=1

ξij
Ri

ξij′

Ri

IRi≥R(k)

)2

. (3.1)

First, we see that there are apparent differences in estimates over the four quadrants for each

time period and each pair. This indicates that extremal dependence could provide different infor-

mation depending on quadrants, so it is more useful to obtain the EDM for each quadrant rather

than the EDM integrated over all quadrants when measurements take on values in R
d. We observe

that the differences between the four periods are not significant, and they are within two estimated

standard errors. As documented in Section A.2, formula (3.1) tends to produce slightly underes-

timated standard errors. Thus the available data do not provide evidence for differences between

the periods. This is probably due to small sample sizes. Estimators of any form of extreme be-
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havior require large sample sizes because only the most extremal observations matter. With these

caveats, it is nevertheless interesting to examine the patterns whose statistical significance cannot

be claimed, but which provide some exploratory insights.

We then look at the results for Walmart. We see that estimates for "during" and "after 1" in

general have higher absolute values than those for "before" and "after 2" for all the three pairs. This

means that the crisis increased the level of extremal dependence, and its impact continued for about

a year after the crisis. For IBM stock, such a tendency is observed only for pair (ξ2, ξ3). For the

other pairs, there is no distinguishable differences or trends over the four periods. To investigate

the impact of the crisis more precisely, we interpret the EDM for each pair of the first three scores

since each score quantifies a different characteristic of the shape of a curve. First, we examine

the EDM between ξ1 and ξ2, both of which together have a considerable contribution to the shape

of CIDR curves. For Walmart, D(+,+)(ξ1, ξ2) at "during", "after 1", and for IMB, D(−,+)(ξ1, ξ2)

at "before" are relatively strong. Such a dependence means that an extremely high monotonic

trend and a strong reversion are closely associated. Next, for ξ1 and ξ3, each of which quantifies a

monotonic trend and a pronounced swing, respectively, the extremal dependence for Walmart are

affected by the crisis: the estimates for the four quadrants increased for "during" and "after 1". For

ξ2 and ξ3, the crisis increases the extremal dependence for Walmart again, implying that the chance

of a pronounced inflection is highly related with a strong swing during that time.

The scores ξj have different variances and looking at the dependence measure between them

may not take into account the effect of the different variances and their estimation. The normalized

scores Zj = ξj/
√
λj have variance 1. We repeated the application to Walmart and IBM returns

using Ẑij = ξ̂ij/λ̂
1/2
j in place of the ξ̂ij . We got basically the same results, reported in Tables A.7

and A.8. An intuitive explanation might be that the EDM describes dependence between large

values in the orthogonal directions j and j′. If these values are rescaled, the dependence should

not change.
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One may consider various extensions of the analysis presented above for which suitable the-

ory would need to be developed. For example extending the seminal work of [50], who study

dependence between pairs of stocks, might be of particular interest.

An important point to note is that our theory is valid under the assumption that the curves

Ri are independent. By construction and by the results of [15], it is reasonable to assume that

they form a stationary functional time series. The results of [51] indicate that they are in some

sense “uncorrelated", just like point-to-point returns. They could however be dependent in some

nonlinear, GARCH-type, way. Even in such a case, the analysis of extreme values focuses on

very few observations generally separated by long time intervals, so the extremal scores are nearly

independent, a common assumption in extreme value theory. It might nevertheless be of interest to

investigate under what temporal dependence assumptions our results would remain valid.

3.7 A simulation study

In this section, we investigate finite sample performances of the estimator of the EDM com-

puted from sample scores by means of a simulation study.

The design of our study is as follows. We generate a sample of functions of the form

Xi(t) =
3∑

j=1

ξijvj(t), 0 < t ≤ 1, 1 ≤ i ≤ n,

where the vj are the FPCs of the Wiener Process, i.e.,

vj(t) =

√
2(

j − 1
2

)
π
sin

((
j − 1

2

)
πt

)
, j = 1, 2, 3.

This choice is motivated by the observation that the estimated FPCs of the data we consider in

Section 3.6 are similar to the above vj , see Figure 3.1. This reflects the well-known fact that, to a

rough approximation, stock prices follow a random walk.

For the scores Yi = [ξi1, ξi2, ξi3]
⊤, 1 ≤ i ≤ n, we generate random vectors that are regularly

varying with the true tail index α = 3. We must generate these vectors in such a way that the
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Table 3.3: Theoretical values of EDM for each case and each pair of the first three population scores, ξ1,

ξ2, ξ3.

n D(ξ1, ξ2) D(+,+)(ξ1, ξ2) D(−,+)(ξ1, ξ2) D(−,−)(ξ1, ξ2) D(+,−)(ξ1, ξ2)

Case1 0.000 0.000 0.000 0.000 0.000

Case2 0.000 0.100 -0.100 0.100 -0.100

Case3 0.000 0.125 -0.125 0.125 -0.125

n D(ξ1, ξ3) D(+,+)(ξ1, ξ3) D(−,+)(ξ1, ξ3) D(−,−)(ξ1, ξ3) D(+,−)(ξ1, ξ3)

Case1 0.000 0.000 0.000 0.000 0.000

Case2 0.000 0.075 -0.075 0.075 -0.075

Case3 0.000 0.125 -0.125 0.125 -0.125

n D(ξ2, ξ3) D(+,+)(ξ2, ξ3) D(−,+)(ξ2, ξ3) D(−,−)(ξ2, ξ3) D(+,−)(ξ2, ξ3)

Case1 0.000 0.000 0.000 0.000 0.000

Case2 0.000 0.115 -0.115 0.115 -0.115

Case3 0.000 0.125 -0.125 0.125 -0.125

the theoretical value of the EDM can be computed analytically, so that we can see how close the

estimated EDM is to the true value. To construct vectors of scores with a known population EDM,

we start with Z1, Z2, Z3 that are i.i.d. random variables following a generalized Pareto distribution,

Pr(Z > z) = (1 + ξ(z − µ)/σ)−1/ξ, with location µ = 0, shape ξ = 1/3, and scale σ = 1. Next,

suppose that U1, U2, U3 are i.i.d. random variables that take values −1 or 1, each with probability

1/2. We consider the following three cases for the Yi.

Case 1 [Independence] The Yi are i.i.d. random variables generated from

[U1Z1, U2Z2, U3Z3]
⊤.

Case 2 The Yi are i.i.d. random variables generated from

[U1Z1, 2U2Z1, 3U3Z1]
⊤.

Case 3 [full dependence] The Yi are i.i.d. random variables generated from

[U1Z1, U2Z1, U3Z1]
⊤.
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Table 3.4: Empirical biases (standard errors) of the estimator of the EDM for Case 1 [Independence]

n D(ξ1, ξ2) D(+,+)(ξ1, ξ2) D(−,+)(ξ1, ξ2) D(−,−)(ξ1, ξ2) D(+,−)(ξ1, ξ2)

200 0.000 (0.04) 0.035 (0.02) -0.033 (0.01) 0.034 (0.02) -0.033 (0.01)

600 0.000 (0.02) 0.027 (0.01) -0.027 (0.01) 0.027 (0.01) -0.026 (0.01)

1000 0.000 (0.02) 0.024 (0.01) -0.025 (0.01) 0.024 (0.01) -0.025 (0.01)

n D(ξ1, ξ3) D(+,+)(ξ1, ξ3) D(−,+)(ξ1, ξ3) D(−,−)(ξ1, ξ3) D(+,−)(ξ1, ξ3)

200 0.000 (0.04) 0.023 (0.02) -0.024 (0.01) 0.024 (0.02) -0.023 (0.01)

600 0.000 (0.01) 0.017 (0.01) -0.017 (0.01) 0.017 (0.01) -0.017 (0.03)

1000 0.000 (0.01) 0.015 (0.01) -0.015 (0.01) 0.016 (0.01) -0.015 (0.01)

n D(ξ2, ξ3) D(+,+)(ξ2, ξ3) D(−,+)(ξ2, ξ3) D(−,−)(ξ2, ξ3) D(+,−)(ξ2, ξ3)

200 0.002 (0.04) 0.051 (0.02) -0.047 (0.02) 0.048 (0.02) -0.049 (0.02)

600 0.000 (0.03) 0.040 (0.02) -0.040 (0.01) 0.041 (0.02) -0.041 (0.01)

1000 0.000 (0.01) 0.037 (0.01) -0.036 (0.01) 0.037 (0.01) -0.037 (0.01)

Table 3.3 reports theoretical values of EDM for each case and each pair of the first three pop-

ulation scores in Yi. Note that for Case 1, we obtain D∗(ξ1, ξ2) = D∗(ξ2, ξ3) = D∗(ξ1, ξ3)

= 0, where ∗ ∈ {(+,+), (−,+), (−,−), (+,−)}, since all pairs are independent. For Case

2, each pair of the scores has a different value of extremal dependence; D∗p(ξ1, ξ2) = 1/10,

D∗p(ξ2, ξ3) = 3/26, D∗p(ξ1, ξ3) = 3/40, and D∗n(ξ1, ξ2) = −1/10, D∗n(ξ2, ξ3) = −3/26,

D∗n(ξ1, ξ3) = −3/40 where ∗p ∈ {(+,+), (−,−)} and ∗n ∈ {(−,+), (−,+)}. For Case 3,

since all pairs have asymptotic full dependence, each quadrant has a perfect extremal dependence;

we obtain D∗p(ξ1, ξ2) = D∗p(ξ2, ξ3) = D∗p(ξ1, ξ3) = 1/8, which is the maximum value that

each quadrant can get. D∗n(ξ1, ξ2) = D∗n(ξ2, ξ3) = D∗n(ξ1, ξ3) = −1/8, which is the min-

imum value. For all of the three cases, the EDM integrated over the four quadrants is 0, i.e.,

D(ξ1, ξ2) = D(ξ2, ξ3) = D(ξ1, ξ3) = 0, since extremal dependence is symmetric over the four

quadrants. For each case, we generate a sample of functions Xi using the FPCs v1, v2, v3 and ob-

tain sample scores. Then, based on the sample scores, we compute an estimate for the EDM using

the estimator (3.14), and get the average and the estimated standard error of estimates over 1000

replications. We consider sample sizes n = 200, 600, 1000.

Tables 3.4, A.2, A.3 report empirical biases (average minus theoretical value) and standard

errors computed as sample standard deviations of the 1000 replications. The results show that
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the bias tends to 0 as the sample size increases. The standard errors also decrease with increas-

ing sample size, but slower, as expected. These results confirm the desirable performance of the

estimator.

It is also of interest to compare the standard errors in Tables 3.4, A.2, A.3 with those ob-

tained by the application of Theorem 2 and formula (3.1). Such comparisons are presented in Ta-

bles A.4, A.5, A.6 of Section A.2, which report the average of estimated standard errors computed

using (3.1). This formula generally leads to standard errors which are smaller than the empirical

standard errors, but the differences are small, especially for sample sizes used in Section 3.6.

There are some findings that are less expected. First, for the same sample size, the empirical

bias depends on the structure of extremal dependence of population score Yi. We see from Ta-

bles A.2 and A.3 that Case 2 has relatively small biases, but Case 3 of full dependence has relatively

large biases. This might be due to the fact that the theoretical EDM values in case 3 are larger in

absolute value or due to some bias introduced by estimating the population scores. Within the same

dependence structure (case), the bias seems to depend on pairs of scores. The biases for D∗(ξ1, ξ2),

D∗(ξ1, ξ3) are larger in Case 3, but in Case 1 and Case 2, D∗(ξ2, ξ3) is larger. This again might

be attributable to the discrepancy between the population scores and their approximations for each

pair. Table 3.4 gives some idea of biases and standard errors that can be expected in the case of

independence. We see that for the sample sizes considered in Section 3.6, the standard errors are

somewhere in the range 0.02 to 0.04. For Case 3 of full dependence, the estimator computed from

the sample scores underestimates the population EDMs.
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Chapter 4

Consistency of the Hill estimator for time series

observed with measurement errors

4.1 Introduction

Our objective is to establish the consistency of the Hill estimator applied to heavy-tailed time

series observed with measurement errors, and to explore the impact of the errors in finite samples.

Heavy–tailed time series commonly occur in fields such as finance, insurance, hydrology, and

computer network traffic. The theory of regular variation provides a suitable mathematical frame-

work. Suppose X1, . . . , Xn is a realization of a strictly stationary time series with one-dimensional

distribution function FX , which has a regularly varying tail with index α > 0, i.e. P (Xi > x)

behaves roughly like x−α, for large x. An estimate of α is essential for further inference related to

extreme behavior of the time series. Risk measures, like the VaR or the expected shortfall, require

an estimate α̂. The joint dependence structure is usually estimated by normalizing the data to the

standard Fréchet distribution with α = 1, which requires some estimate α̂. Many more applica-

tions are discussed in the monographs cited in the next paragraph. A well known and commonly

used estimator of the index α is the Hill estimator, whose definition is recalled in Section 4.2. It is

often used after an examination of the Hill plot, which is also a tool for detecting the presence of

heavy tails. This paper studies the Hill estimator in situations in which the data are contaminated

by measurement errors.

The Hill estimator is studied in practically all monographs on extreme value theory, see e.g.

[16], [17], [4] and [2]. Its consistency for samples of i.i.d. random variables was first proven by

[19]. Consistency of the Hill estimator has been established beyond the i.i.d. setting. [20] derives

a general approach to establishing its consistency for stationary time series satisfying a certain

mixing condition. [52] and [53] also consider mixing conditions. Other extensions are obtained
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by [21], [54], and [55], who show the consistency of the Hill estimator for time series using a tail

empirical random measure proposed by [56]. Recently, [57] have proven the consistency of the

Hill estimator for network data in a linear preferential attachment model.

In many applications, we do not observe X1, . . . , Xn directly. Instead, the data are measured

with noise, measurement or roundoff error. In other words, we observe Yi = Xi + εi, i =

1, 2, . . . , n, where {εi} is an error process. The question is whether the Hill estimator computed

from the Yi will be still consistent for α under suitable assumptions on the errors εi. The research

presented in this paper has been partially motivated by our work on modeling the stochastic behav-

ior of internet traffic anomalies, whose arrival times are available only with a roundoff error. The

database we have reports these times in 5 min. resolution.

Putting together known results, it is fairly straightforward to establish the consistency if the

Xi are i.i.d., but a more in-depth investigation is needed when they follow a stochastic process

model with a complex dependence structure. We investigate this question in the context of models

considered by [55]. These include infinite moving averages with heavy-tailed innovations, bilin-

ear processes driven by heavy-tailed noise variables, solutions of stochastic difference equations,

the ARCH process of [58], and interarrival times of heavy-tailed hidden Markov chains. The

models considered by [55] thus cover practically all known stochastic processes whose marginal

distributions are regularly varying. Finite sample properties are investigated by means of a simu-

lation study based on these models and by an application to the interarrival times of internet traffic

anomalies. The main general conclusions of our research are as follows. 1) Asymptotically, the

Hill estimator is robust to relatively large errors. 2) This robustness is confirmed in finite sam-

ples. 3) Five minute resolution is sufficient to estimate the tail index of the interarrival times of the

anomalies we study.

Consistency of the Hill estimator based on data observed with measurement error has not been

studied, but there has been considerable interest in a related problem, estimation of the end-point of

a distribution function in the presence of additive observation errors, see [59], [60], [61], and [62].

They all consider Gaussian measurement errors. We, however, do not place this restriction on the
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errors. We assume a broader class of error distributions. Intuitively, we can relax the assumptions

on the measurement errors because heavy-tailed Xi are “much larger" random variables than those

with a finite end-point.

In Section 4.2, we introduce notation and assumptions. Our framework and main results are

presented in Section 4.3. Finite sample performance of the Hill estimator in the presence of errors

is investigated in Section 4.4. In Section 4.5, we present an application to the interarrival times of

internet traffic anomalies. The proofs are developed in Section 4.7, preceded by some preparation

in Section 4.6.

4.2 Notation and assumptions

We start by introducing some notation, generally following [22]. Recall that X1, . . . , Xn are

nonnegative random variables with common distribution FX , which has regularly varying tail prob-

abilities:

F̄X = 1− FX = P (X > ·) ∈ RV−α, α > 0. (4.1)

We denote by X a generic random variable with the same distribution as each Xi. A function

U : R+ −→ R+ is regularly varying with index α > 0, U ∈ RV−α, if for any x > 0,

lim
t−→∞

U(tx)

U(t)
= x−α.

For two functions U, V : R+ −→ R+, we write U(x) ∼ V (x) if U(x)/V (x) −→ 1, as x −→ ∞, and

U(x) = o(V (x)) if U(x)/V (x) −→ 0, as x −→ ∞.

The Hill estimator for the Xi is defined as

Hk,n :=
1

k

k−1∑

i=1

log
X(i)

X(k)

, (4.2)

with the convention that X(1) is the largest order statistic. We use definition (4.2) rather than the

commonly used, asymptotically equivalent, definition with the 1/k replaced by 1/(k− 1) because
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it leads to visually shorter formulas in the proofs. The consistency of the Hill estimator has been

studied as the number of upper order statistics, k, tends to infinity with the sample size n, in such

a way that k/n −→ 0, i.e.

n −→ ∞, k −→ ∞,
k

n
−→ 0. (4.3)

We assume throughout the paper that condition (4.3) holds.

We consider the Hill estimator based on observations contaminated by measurement or other

errors whose source is difficult to quantify. We thus assume that we observe Yi = Xi + εi, 1 ≤

i ≤ n, where {εi} are i.i.d. random errors following Fε, and independent of the {Xi}. Then, the

Hill estimator for the observations Yi is defined as

Ĥk,n :=
1

k

k−1∑

i=1

log
Y(i)

Y(k)

.

In our context, Ĥk,n is the Hill estimator that can be actually used since what we observe are the

Yi. [55] show that the Hill estimator based on the Xi, Hk,n, is consistent for the tail index of F̄X ,

when it is applied to certain classes of heavy-tailed stationary processes. In our context, the Xi are

unobservable. We want to establish conditions on Fε under which Ĥk,n is consistent for the tail

index of F̄X . We solve this problem for all classes of the Xi considered by [55].

The approach of [55] is based on the weak convergence to the measure ν on (0,∞], satisfying

∫∞
1

log(u)ν(du) < ∞. One example of the measure ν is να, defined by να(x,∞] = x−α, x > 0.

Our approach involves tail empirical random measures on (0,∞], based on the Xi, Yi, and their

weak convergence to the measure ν in M+(0,∞], the space of Radon measures on (0,∞]. We

study the limit relations

1

k

n∑

i=1

IXi/b(n/k) ⇒ ν,
1

k

n∑

i=1

IYi/b(n/k) ⇒ ν, (4.4)

85



where b(·) is the quantile function, defined by

P (Xi > b(t)) = t−1.

We investigate when the first convergence in (4.4) implies the second one. We use ⇒ to denote

weak convergence of random measures and
v→ to denote vague convergence in M+(0,∞], see [4].

We now state assumptions on the unobservable random variables Xi. We consider several

conditions. We first assume that the unobservable variables are independent and have a common,

regularly varying tail distribution. We then relax this assumption by considering three classes

introduced by [55]. We first assume that the Xi follow a heavy-tailed stationary process which can

be approximated by sequences of m-dependent random variables, and the m-dependent sequences

carry enough information on the tail behavior of the original process. Then, we consider random

coefficient autoregressive model. The final class consists of heavy-tailed hidden semi-Markov

models.

ASSUMPTION 1. The Xi are nonnegative, independent random variables with common one-dimensional

distribution FX , which has regularly varying tail probabilities, i.e. (4.1) holds.

ASSUMPTION 2. The Xi form a stationary sequence, which can be approximated by stationary

m-dependent sequences {X(m)
i } as follows. There exist Radon measures ν(m), ν on (0,∞] with

∫∞
1

log(u)ν(du) < ∞ and ν(m) v→ ν, as m −→ ∞. The Xi, X
(m)
i , and the ν, ν(m) satisfy the

following relations.

(a) For any fixed m ≥ 1 (under (4.3)),

n

k
P

(
X

(m)
i

b(n/k)
∈ ·
)

v→ ν(m).

(b) For any τ > 0,

lim
m−→∞ lim sup

n−→∞
n

k
P

(∣∣∣ X
(m)
i

b(n/k)
− Xi

b(n/k)

∣∣∣ > τ

)
= 0.
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(c) For each m ≥ 1, the function y 7→ ν(m)(y,∞] is right–continuous.

Condition (c) is not assumed by [55]. We need it to deal with the impact of the measurement

errors. This condition is however not restrictive in practice because in all examples considered

by [55], the functions y 7→ ν(m)(y,∞] are continuous.

ASSUMPTION 3. The Xi form a stationary sequence, which satisfies the stochastic autoregressive

equation

Xi = AiXi−1 +Bi, −∞ < i < ∞,

where {(Ai, Bi), −∞ < i < ∞} are i.i.d. R
2
+-valued random pairs satisfying the following

conditions. There exists α > 0 with

EAα
0 = 1, EAα

0 log
+ A0 < ∞, 0 < EBα

0 < ∞,

where log+ x = log x∨0, B0/(1−A0) is nondegenerate, and the conditional distribution of logA0

given A0 6= 0 is nonlattice.

The conditions imposed on (Ai, Bi) ensure that the Xi are regularly varying, see Lemma 5 (i).

The final class we consider consists of hidden semi-Markov Models. These models general-

ize the commonly used hidden Markov models, and have recently found application in biology,

computer science, operations research and meteorology, see e.g. [63] and [64]. The heavy-tailed

hidden Markov has one or more states following heavy–tailed distributions. We first state its

building blocks and then state the assumption. Let {Jn, n ≥ 0} be an ergodic, m-state Markov

chain on the state space {1, 2, . . . ,m} with the stationary distribution π̃ = (π1, . . . , πm), and

P = {pij, 1 ≤ i, j ≤ m} be the transition probability matrix of the chain. Suppose {D(r)
n , n ≥ 0},

r = 1, 2, . . . ,m, are i.i.d. holding time random variables with common distributions {q(r)n , n ≥ 0},

for each r. Define {Vi, i ≥ 0} by

Vi =
∞∑

n=0

Jn1[∑n−1
l=0 D

(jl)

l ≤i≤
∑n

l=0 D
(jl)

l ]
,
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and define for i ≥ 0,

Xi = F←Vi
(Ui), (4.5)

where the Ui are i.i.d. uniform random variables with support [0, 1], and F1, . . . , Fm are distribu-

tions on R+. The {Ui, i ≥ 0}, {Jn, n ≥ 0}, {D(r)
n , n ≥ 0, 1 ≤ r ≤ m} are all independent. The Xi

can be thought of as interarrivals which are generated from distribution Fr when Vi = r.

ASSUMPTION 4. The Xi form a sequence satisfying (4.5) with

ED(r)
n < ∞, r = 1, . . . ,m,

and

F̄1(·) ∈ RV−α and lim
x−→∞

F̄j(x)

F̄1(x)
= 0, j = 2, . . . ,m. (4.6)

Under Assumption 4, we define b(·) by F̄1(b(t)) = t−1.

We next state an assumption on the tail distribution F̄ε, which says that the measurement error

ε has a lighter tail than X . This assumption is reasonable as measurement errors are thought to be

small relative to the quantity being measured.

ASSUMPTION 5. The εi are i.i.d. random errors with a common tail distribution F̄ε, which has an

asymptotic tail property

P (|ε| > x) = o(P (X > x)), as x −→ ∞.

The sequence {εi} is independent of the sequence {Xi} and of the approximating sequences

{X(m)
i } in Assumption 2.

The order statistics used to compute the Hill estimator must be positive. In the following, all

statements are tacitly assumed to hold conditional on the event {Y(k) > 0}.
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4.3 Main results

The underlying idea of our argument is that to get the consistency of the Hill estimator com-

puted from error contaminated observations, it is enough to show that

n

k
P
( Yi

b(n/k)
∈ ·
)

v→ ν and
1

k

n∑

i=1

1Yi/b(n/k) ⇒ ν

in M+(0,∞], where ν is the measure to which 1
k

∑n
i=1 1Xi/b(n/k) weakly converges. One can then

obtain

Ĥk,n
P−→
∫ ∞

1

log(u)ν(du), (4.1)

by Proposition 2.4 of [21]. If ν = να, defined in Section 4.2, (4.1) leads to

Ĥk,n
P−→ 1

α
. (4.2)

We start with the i.i.d. case. We show that Y = X + ε has regularly varying tail probabilities

with the same index as F̄X , i.e. F̄Y ∈ RV−α. This approach allows us to conclude consistency

for any estimator of α, provided it is consistent based on the Xi. For the Hill estimator, regular

variation of the underlying tail distribution F̄X is actually equivalent to the consistency of the

estimator based on the Yi. These results are presented respectively in parts (a) and (b) of Theorem 1,

for which Proposition 1 is a preparation.

PROPOSITION 1. Denote Y = X + ε, and let F̄Y be the tail distribution of Y . Suppose that

P (X > ·) ∈ RV−α, P (|ε| > x) = o(P (X > x)), and ε is independent of X . Then,

F̄Y ∈ RV−α.

THEOREM 1. (a) Under Assumptions 1 and 5, any estimator of α computed from the Yi is consis-

tent, if its counterpart computed from the unobservable Xi is consistent. (b) For the Hill estimator,

under Assumption 5, the Xi satisfy Assumption 1 if and only if (4.2) holds.
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We now turn to dependent Xi that follow one of the assumptions specified in Section 4.2. The

contaminated variables Xi + εi need not satisfy these assumptions, and so a careful investigation

is required.

We first consider the stationary process {Xi} and its approximating m-dependent processes

{X(m)
i } satisfying Assumption 2. Set

Yi = Xi + εi, Y
(m)
i = X

(m)
i + εi. (4.3)

THEOREM 2. If the unobservable sequences {Xi} and {X(m)
i } satisfy Assumption 2 and if As-

sumption 5 holds, then the sequences {Yi} and {Y (m)
i } defined by (4.3) satisfy Assumption 2 as

well.

[55] provide three examples of processes satisfying Assumption 2.

(a) Infinite-order moving averages of heavy-tail innovations defined by

Xi =
∞∑

j=0

cjZi−j, −∞ < i < ∞,

where the Zi are i.i.d. nonnegative random errors with a regularly varying tail distribution,

P (Zi > ·) ∈ RV−α, α > 0, (4.4)

and the cj contain at least one positive number, and satisfy
∑∞

j=0 |cj|δ < ∞, for some 0 < δ <

α ∧ 1. This model was recently studied by [65].

(b) A simple bilinear model driven by heavy-tail innovations defined by

Xi = cXi−1Zi−1 + Zi, −∞ < i < ∞,

where c > 0 and the Zi are i.i.d. nonnegative random errors satisfying (4.4) and cα/2EZ
α/2
1 < 1.
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(c) Solutions of stochastic equations of the form

Xi = AiXi−1 + Zi, −∞ < i < ∞,

where the Zi are i.i.d. nonnegative random errors satisfying (4.4) and {(Ai, Zi) ∈ R
2
+, −∞ < i <

∞} are i.i.d. random pairs with EAα
0 < 1, EAβ

0 < ∞, for some 0 < α < β.

By Corollary 3.1 of [55], processes (a), (b) and (c) satisfy Assumption 2, and for process (b),

α is replaced by α/2. We thus obtain the following corollary to Theorem 2.

COROLLARY 1. Convergence (4.1) holds under Assumptions 2 and 5, i.e. (4.2) holds for the

processes (a) or (c), and for the process (b), Ĥk,n
P→ 2/α.

We next assume that the unobservable stationary process {Xi} satisfies Assumption 3. In this

case, it cannot be claimed that the contaminated process also satisfies Assumption 3. For example,

if the Xi follow an ARCH model, then Xi + εi will not follow this model.

THEOREM 3. Relations (4.1) and (4.2) hold under Assumptions 3 and 5.

The ARCH process introduced by [58] is defined by

Xi = Ni(β + λX2
i−1)

1/2, −∞ < i < ∞, (4.5)

where the Ni are i.i.d. N(0, 1) random variables, β > 0, and λ > 0. We assume 0 < λ < 2eE ,

where E = 0.5772... is Euler’s constant, to guarantee the existence of α stated in Assumption 3,

see Lemma 8.4.6 of [16]. The process {X2
i } therefore satisfies Assumption 3 with Ai = λN2

i and

Bi = βN2
i . We then obtain the following corollary to Theorem 3.

COROLLARY 2. Relation (4.2) holds for the ARCH(1) process, under Assumption 5, provided

β > 0 and 0 < λ < 2eE .

We finally study the consistency of the Hill estimator for interarrival times generated by a

heavy-tailed hidden Markov model, and which are observed with measurement errors. We assume
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that the process {Xi} satisfies Assumption 4, under which [55] show that Hk,n
P→ 1/α. We

consider Ĥk,n based on Yi = Xi + εi.

THEOREM 4. Convergence (4.2) holds under Assumptions 4 and 5.

4.4 Impact of measurement errors in finite samples

In this section, we report the results of simulation studies of the Hill estimator applied to various

processes contaminated by additive errors. We investigate the impact of these errors, especially

how large they can be compared to be tolerated in practice.

We generate observations Yi = Xi + εi, i = 1, 2, . . . , n, where {Xi} and {εi} are independent

sets of random variables. We use four models for the Xi, those considered in Section 4.2.

Model 1 The Xi are i.i.d. random variables, which follow a Pareto distribution with α = 2,

P (Xi > x) = x−2, x > 1.

Model 2 The Xi form the AR(2) process Xi = 1.3Xi−1 − 0.7Xi−2 + Zi, where the Zi follow a

Pareto distribution with α = 2, P (Zi > z) = z−2, z > 1.

Model 3 The Xi form the simple bilinear model driven by heavy-tail innovations defined by Xi =

0.7Xi−1Zi−1+Zi, where the Zi follow a Pareto distribution with α = 4, P (Zi > z) = z−4, z > 1.

Model 4 The Xi follow the ARCH process Xi = Ni(1 + 0.5773X2
i−1)

1/2, where the Ni are i.i.d.

N(0, 1) random variables.

Model 2 is causal and thus has an infinite moving average representation, which satisfies As-

sumption 2. Each Xi therefore has tail index α = 2. Model 3 also satisfies Assumption 2, and

each Xi has tail index α/2 = 2. Model 4 with β = 1, λ = 0.5773 satisfies Assumption 3, and X2
i

has tail index α which satisfies E(0.5773N2
0 )

α = 1. We get a numerical solution for the equation,

α ≈ 2, since the equation cannot be solved explicitly. Thus, in all four models, the true value of

the tail index of the Xi (X2
i for Model 4) is 2.

The εi are drawn from a normal distribution with mean 0 and standard deviation σ, a scaled

t-distribution with 4 degrees of freedom (scaled t4), and a generalized Pareto distribution (GPD),

P (|ε| > z) = (1 + ξ(z − µ)/σ)−1/ξ, with location µ = 0, shape ξ = 1/4, and scale σGPD. The
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Table 4.1: Empirical bias and standard error of α̂ of the Hill estimator applied to various models with

additive errors following N(0, σ2), t4, or GPD, with fixed error SD.

No error N(0, σ2) t4 GPD

Error SD 0 0.1 0.2 0.3 0.4 0.5 1.41 0.47

Model 1 bias 0.02 0.05 0.05 0.07 0.08 0.11 0.31 0.07
SD = 2.88 (SE) (0.14) (0.11) (0.11) (0.11) (0.11) (0.12) (0.17) (0.24)
Model 2 bias 0.42 0.42 0.42 0.43 0.43 0.43 0.49 0.43

SD = 6.24 (SE) (0.33) (0.33) (0.33) (0.33) (0.33) (0.33) (0.34) (0.34)
Model 3 bias 0.23 0.23 0.23 0.22 0.23 0.23 0.23 0.23

SD = 31.5 (SE) (0.54) (0.54) (0.54) (0.53) (0.54) (0.53) (0.53) (0.54)
Model 4 bias −0.23 −0.22 −0.22 −0.21 −0.21 −0.21 −0.18 −0.21

SD = 7.00 (SE) (0.21) (0.21) (0.21) (0.21) (0.22) (0.22) (0.22) (0.22)

scale parameters for each error distribution vary. They can be fixed or determined by the ratio of the

standard deviation of error distribution (error SD) to the standard deviation of underlying process

(model SD). For example, if we consider the ratio of 0.1 for Model 1 whose standard deviation

is 2.88, then the corresponding scale parameter is 0.288 for the normal distribution, 0.204 for the

scaled t4, and 0.125 for the GPD. All distributions of the measurement error have a lighter tail than

the Xi (X2
i for Model 4), so the tail distributions satisfy Assumption 5.

We estimate the tail index using the Hill estimator with a data–driven cut-off k, the number

of upper order statistics used to compute it. We use the threshold selection method introduced

by [66], which employs a bootstrap procedure to choose k that minimizes the asymptotic mean

square error (AMSE). This procedure is implemented by the function hall of the R package tea.

For each model/error pair, we compute the average of the estimates over 1000 replications, and the

estimated standard error based on these replications. The sample size is n = 5, 000.

Table 4.1 reports the results for fixed error SDs, Table 4.2 for fixed ratios of error SD to model

SD. The error SD of 0, or the ratio 0 means that there are no errors. Model SD is calculated from

the generated Xi. Table 4.3 provides information on the effects of errors on the selection of optimal

k.

Tables 4.1 and 4.2 show that additive errors lead to estimates which indicate lighter tails than

those indicated by the estimates computed from uncontaminated data. This can be intuitively
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Table 4.2: Empirical bias and standard error of α̂ for the fixed ratio of the error SD to model SD.

Model
Error Error SD/Model SD Ratio

Type 0 0.005 0.01 0.02 0.04 0.06 0.1 0.2

Normal
0.02 0.04 0.05 0.05 0.05 0.05 0.06 0.12
(0.14) (0.13) (0.11) (0.11) (0.11) (0.11) (0.11) (0.12)

Model 1
scaled t4

0.02 0.04 0.05 0.05 0.05 0.04 0.05 0.09
SD = 2.88 (0.14) (0.12) (0.11) (0.11) (0.11) (0.12) (0.12) (0.13)

GPD
0.02 0.05 0.05 0.05 0.04 0.04 0.04 0.07
(0.14) (0.12) (0.11) (0.11) (0.12) (0.12) (0.13) (0.14)

Normal
0.42 0.42 0.42 0.42 0.42 0.43 0.43 0.47
(0.33) (0.33) (0.33) (0.33) (0.33) (0.33) (0.33) (0.33)

Model 2
scaled t4

0.42 0.42 0.42 0.42 0.43 0.43 0.43 0.47
SD = 6.24 (0.33) (0.33) (0.33) (0.33) (0.33) (0.33) (0.33) (0.33)

GPD
0.42 0.42 0.42 0.42 0.43 0.42 0.44 0.47
(0.33) (0.33) (0.33) (0.33) (0.34) (0.33) (0.34) (0.35)

Normal
0.23 0.23 0.23 0.23 0.22 0.23 0.24 0.26
(0.54) (0.54) (0.54) (0.54) (0.53) (0.53) (0.53) (0.53)

Model 3
scaled t4

0.23 0.23 0.22 0.23 0.23 0.23 0.23 0.26
SD = 31.5 (0.54) (0.54) (0.54) (0.54) (0.54) (0.53) (0.53) (0.54)

GPD
0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.27
(0.54) (0.54) (0.54) (0.54) (0.54) (0.53) (0.53) (0.55)

Normal
−0.23 −0.22 −0.22 −0.22 −0.21 −0.21 −0.20 −0.18
(0.21) (0.21) (0.21) (0.21) (0.21) (0.22) (0.22) (0.23)

Model 4
scaled t4

−0.23 −0.22 −0.22 −0.22 −0.22 −0.21 −0.20 −0.18
SD = 7.00 (0.21) (0.21) (0.21) (0.21) (0.21) (0.22) (0.22) (0.23)

GPD
−0.23 −0.22 −0.22 −0.22 −0.22 −0.21 −0.21 −0.17
(0.21) (0.21) (0.21) (0.21) (0.21) (0.22) (0.22) (0.23)

expected because the errors in a sense “dilute" the true heavy tails. For Models 1–3, the biases

increase with the error SD. For Model 4, the bias becomes smaller in absolute value, but this cannot

be interpreted that the error helps the bias to be small. Instead, this behavior is in agreement with

the previous observation; the bias for uncontaminated process is negative, and it becomes less

negative (lighter tail) as the error SD increases.

A rather unexpected finding is that the bias is not affected a lot even by large errors. We

see from Table 4.1 that for iid Xi, Model 1, even error SD equal to half the model SD causes

bias of 0.31, which is not large given the uncertainty about the selection of k. Such a level of

contamination could however indicate that the data have finite variance, whereas in fact they may
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have infinite variance. Even more remarkable is that for dependent data with heavy–tailed marginal

distributions, the errors have almost no impact on the bias and the SE of the estimator. Table 4.2

is designed to take a closer look at this finding by controlling the ratio of error SD to model SD.

We first observe that the bias increases with this ratio. Second, this increase is relatively flat. Only

for iid Xi, the ratio of 20 percent causes a bump in bias. For dependent Xi, such a ratio does

not change the bias much compared to uncontaminated data; Models 2, 3 and 4 are surprisingly

insensitive to the errors. Finally, the bias caused by the errors does not depend on the type of the

error distribution. Standard errors of the estimates are basically unaffected by the errors. In some

cases, the errors lead to smaller or larger estimated standard errors, but these estimates are so close

that the differences are probably not statistically significant.

Table 4.3 reports on average optimal ks and their standard errors for all combinations of the

underlying models and error distributions. We do not observe any clear positive or negative rela-

tionships between the average optimal k and the ratio, but the dependent data still show a consider-

ably weaker dependence on the ratio; again, only a large increase of the ratio has a relatively large

impact on the average optimal k.

Another question of interest is how the errors affect the shape of the Hill plot. The Hill estima-

tor is location variant, see Section 4.2.2 of [4]. The lack of location invariance makes it sensitive

to a shift in location; but it does not theoretically affect the tail index estimate. Since adding mea-

surement errors could be thought of as a location shift, there could be sensitivity to additive errors

over some range of k, which will not show up when examining the averages. The Hill plot is a

useful tool to examine this property by describing estimates as a function of the minimal order

statistic k used to compute the estimates.

Figure 4.1 shows the Hill plots for observations generated by Model 1 with the ratio of 0.1,

along with a vertical line showing the optimal k. The true tail index α is 2 for all the plots. The

impact due to the additive errors, for the ratio of 0.1, turns out to be surprisingly weak as all the

plots in Figure 4.1 look stable. We also consider the Hill plots for Model 1 observed with the same

types of errors, but with a relatively large error SD corresponding to the ratio 0.2. These plots are
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Table 4.3: Average optimal k (standard error) for the Hill estimator as the function of the ratio of the error

SD to model SD. The sample size is 5000, and the number of replications is 1000.

Model
Error Error SD/Model SD Ratio

Type 0 0.005 0.01 0.02 0.04 0.06 0.1 0.2

Normal
2114 2933 3066 2973 2809 2690 2514 2141

(1622) (1727) (1625) (1552) (1378) (1201) (903) (537)

Model 1
scaled t4

2114 2990 3061 2959 2777 2635 2354 1951

SD = 2.88 (1622) (1702) (1633) (1558) (1429) (1291) (1080) (735)

GPD
2114 3022 3053 2928 2751 2587 2295 1700

(1622) (1690) (1634) (1585) (1483) (1380) (1208) (892)

Normal
1249 1250 1251 1261 1264 1280 1307 1293

(827) (827) (824) (815) (811) (789) (697) (588)

Model 2
scaled t4

1249 1250 1254 1250 1255 1268 1225 1140

SD = 6.24 (827) (826) (822) (820) (812) (787) (711) (632)

GPD
1249 1252 1252 1248 1261 1246 1161 1041

(827) (826) (826) (815) (808) (794) (725) (649)

Normal
638 639 639 651 654 668 749 821

(907) (907) (906) (908) (906) (901) (881) (827)

Model 3
scaled t4

638 644 642 649 652 667 703 709

SD = 31.5 (907) (907) (907) (903) (904) (892) (852) (789)

GPD
638 639 641 646 647 657 654 621

(907) (906) (906) (906) (902) (886) (831) (756)

Normal
246 242 243 241 243 248 314 510

(134) (136) (140) (141) (146) (156) (249) (376)

Model 4
scaled t4

246 243 242 243 244 251 300 377

SD = 7.00 (134) (136) (137) (141) (147) (157) (211) (267)

GPD
246 243 244 244 246 253 281 311

(134) (136) (139) (141) (145) (157) (184) (204)

shown in Figure 4.2. The shape of Hill plot is more affected by the larger error SD; this sensitivity

is especially noticeable for errors with the normal and scaled t4 distributions. The Hill plots for

Models 2, 3, and 4, even without errors, do not look as stable as for iid observations, there is an

upward trend. The presence of the errors changes their shape a little bit for the ratio of 0.2, but one

would not say that these errors make the plots any worse.
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Figure 4.1: Hill plots with a vertical line showing the optimal k for Model 1 (a single realization) observed

with no measurement errors (top left), with errors following the normal (top right), scaled t4 (bottom left),

and GPD (bottom right) with the ratio of 0.1.

4.5 Application to internet traffic anomalies

In this section, we illustrate the relevance of studying the Hill estimator for error contaminated

data by an application to the interarrival times of internet traffic anomalies. We first provide some

background, limited in scope to conserve space, and focus on the aspects relevant to this paper.

More detailed network background is presented in [67], a paper which to some extent motivates

the present research. We hope that that the analysis presented below may guide other applications

where the tail index must be estimated from error contaminated data.

Figure 4.3 shows the backbone internet network in the United States known as Internet2. A

traffic disruption in any of the links can slow down service in the whole country. For this reason,

anomalies in the internet traffic have been extensively studied. An anomaly is a time and space con-

fined traffic whose volume is much higher than typical. An anomaly can result from a malfunction

of network resources, like routers, or from malicious activity, like denial of service attacks. [67]
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Figure 4.2: Hill plots with a vertical line showing the optimal k for Model 1 (a single realization) observed

with no measurement errors (top left), with errors following the normal (top right), scaled t4 (bottom left),

and GPD (bottom right) with the ratio of 0.2.

developed a simple algorithm, based on the Fourier transform, which, among other characteristics,

allowed them to identify the arrival time of an anomaly in any unidirectional link. They created

a database of anomalies and their characteristics for 28 unidirectional links, corresponding to the

14 two–directional links shown in Figure 4.3, for the time period of 50 weeks, starting October

16, 2005. Due to a huge amount of data to be processed, the algorithm computes an anomaly

arrival time only with the precision of five minutes. There is therefore uncertainty as to when the

anomaly actually arrived, a rounding error. A key element in the analysis of anomalous traffic is

to understand the distribution of the interarrival times, the time separation between the arrivals of

two consecutive anomalies. This may be helpful in provisioning network resources. [67] perform

a preliminary fitting, based on the exponential distribution. We take a closer look at this problem

and place it in the context of this paper.
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Figure 4.3: A map showing 14 two-directional links of the Internet2 network.

We index the unidirectional links by integers from 1 to 28, it is not important for our analysis

to which nodes they correspond. The count of anomalies detected by the algorithm of [67] varies

from link to link, as shown in Table 4.4. We have examined the Hill plots and performed other

diagnostic tests, and determined that it is reasonable to assume that for each link the distribution of

the interarrival times is regularly varying with the tail index between 1 and 3. The values computed

using the Hill estimator with the optimal k introduced in Section 4.4 are shown in Table 4.4, in the

rows αobs. Exploratory data analysis in [68] strongly suggests that the interarrival times form an

iid sequence, so the setting of Theorem 1 holds.

We illustrate our analysis using the interarrival times in link 5, corresponding to anomalies

traveling from Chicago to New York. In Figure 4.4 we display the Hill plot and the QQ plot of

the log transformed data matched against exponential quantiles beyond the exceedance threshold

corresponding to the optimal k. We should get approximately a line whose slope is 1/αobs if our

data had a Pareto tail with index αobs, see Section 4.6.4 of [4]. The QQ plot looks linear with the

fit of a straight line whose slope is 1/1.53, which tells us that it is reasonable to assume a Pareto

tail with index 1.53. The same conclusion can be drawn for other links. The smallest value of αobs

is 1.27. It corresponds to anomalies traveling from Los Angeles to Sun Valley. The largest is 2.22,

from the Indianapolis to Atlanta link.

99



Table 4.4: Results of a simulation study based on anomalous internet traffic. The tail index αobs is computed

from the interarrival times produced by the algorithm. The average ᾱ is computed from 1,000 replications

of the interarrival times with errors, σa is the standard deviation of the 1,000 estimates.

Link 1 2 3 4 5 6 7

sample size 405 247 362 454 347 345 603

αobs 1.69 1.50 1.62 1.62 1.53 1.59 1.68
ᾱ 1.72 1.49 1.63 1.63 1.58 1.68 1.65
σa 0.03 0.05 0.02 0.02 0.05 0.11 0.02

Link 8 9 10 11 12 13 14

sample size 300 387 345 382 304 476 507

αobs 1.56 1.47 1.44 1.79 2.22 2.11 1.93
ᾱ 1.51 1.50 1.50 1.80 2.24 2.12 1.90
σa 0.03 0.03 0.05 0.03 0.03 0.03 0.05

Link 15 16 17 18 19 20 21

sample size 478 319 402 388 433 493 340

αobs 2.07 1.48 1.91 1.35 1.27 1.97 1.97
ᾱ 2.00 1.45 1.91 1.36 1.29 1.96 2.00
σa 0.05 0.04 0.02 0.01 0.02 0.04 0.03

Link 22 23 24 25 26 27 28

sample size 417 597 296 258 340 348 264

αobs 1.46 1.65 1.43 1.83 1.43 1.95 1.69
ᾱ 1.46 1.65 1.51 1.80 1.43 1.90 1.58
σa 0.01 0.03 0.06 0.03 0.04 0.05 0.07

In the context of this paper, each interarrival time Yi, computed by the algorithm, is treated as a

“true" interarrival time Xi measured with a roundoff error, i.e. Yi = Xi+ εi. The unobserved Xi is

not rigorously defined, but we can think of it as the time separation based on a more precise algo-

rithm, or just a different algorithm. In the latter case, the analysis that follows provides information

about the uncertainty in the estimation of α caused by the choice of a specific algorithm. Since

the smallest value of Yi in physical units is 5 min., we use 5 minutes as a unit lag. We therefore

assume that the errors εi are uniformly distributed on [−1, 1]. We experimented with other beta

distributions on [−1, 1], the results were basically unaffected.

We perform the following numerical experiment. For each link, we generate R = 1, 000

samples of unobservable interarrival times X
(r)
i from the observations Yi, i.e. X

(r)
i = Yi − ε

(r)
i ,

where the ε
(r)
i are drawn from the uniform distribution on [−1, 1], for r = 1, . . . , R. We get

estimates α̂r for each sample and then compute the average of the estimates, ᾱ, and their estimated
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Figure 4.4: Hill plot (left) and QQ plot (right) for link 5.

standard error, σa, i.e.,

ᾱ =
1

R

R∑

r=1

α̂r, σa =

{
1

R

R∑

r=1

(α̂r − ᾱ)2
}1/2

.

The results in Table 4.4 show that ᾱ is close to αobs for most links. For each link, the ratio of the

error SD to the observations SD is less than 0.001, so one might expect such an outcome based on

the simulations in Section 4.4, but the sample sizes for these data are much smaller than 5,000, so

the result was not clear a priori. We find a couple links, 6 and 28, which have a relatively large

discrepancy between αobs and ᾱ, with a high value of σa. All discrepancies are however within

2σa, so these differences are not significant. Overall, our numerical experiment shows that for the

purpose of the estimation of the tail index of the anomalies interarrival times, an algorithm that

identifies arrivals of anomalies with 5 min. resolution is sufficient.

4.6 Preliminary results

We list in this section several lemmas which are used in Section 4.7. The first lemma follows

from the definition of regular variation. The second lemma states three equivalent conditions for

regularly varying functions. It follows from Theorem 3.6 in [4].

101



LEMMA 1. Suppose that U ∈ RV−α and V (x) ∼ cU(x) for some two functions U, V : R+ −→ R+,

and 0 < c < ∞. Then, V ∈ RV−α.

LEMMA 2. Suppose X is a nonnegative random variable with its complementary distribution

function F̄ . The following are equivalent:

(i) P (X > ·) ∈ RV−α, α > 0.

(ii) There exists a sequence a(n) with a(n) −→ ∞ such that limn−→∞ nP (X > a(n)x) =

x−α, x > 0.

(iii) There exists a sequence a(n) with a(n) −→ ∞ such that nP (X/a(n) ∈ ·) v→ να(·),

in M+(0,∞], where να(x,∞] = x−α.

The sequence a(n) is the same in (ii) and (iii).

We next summarize what has been established for sums of regularly varying functions.

LEMMA 3. (i) Let X and Y be two independent non-negative random variables with their corre-

sponding complementary distributions P (X > ·) ∈ RV−α1 and P (Y > ·) ∈ RV−α2 , for some

α1, α2 > 0. Then P (X > ·) + P (Y > ·) ∈ RVmax(−α1,−α2).

(ii) Under the assumptions of part (i), P (X + Y > x) ∼ P (X > x) + P (Y > x), and

P (X + Y > ·) ∈ RVmax(−α1,−α2).

(iii) Let X and Y be two independent non-negative random variables, P (X > ·) ∈ RV−α for

α > 0 and P (Y > x) = o(P (X > x)). Then P (X + Y > x) ∼ P (X > x), and P (X + Y > ·) ∈

RV−α.

Proof. Statement (i) is proven as Proposition 1.5.7 (iii) of [69]. Statement (ii) follows from Lemma

3 (i), Lemma 1, and calculations on p. 278 of [70], which establish a convolution property of finite

sums of regularly varying variables. Its proof is also found in Theorem 1.1 of [71]. Statement (iii)

is proven as Theorem 2.1 of [71].

The following lemma follows from Proposition 2.2 of [55].
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LEMMA 4. Under Assumption 2,

1

k

k−1∑

i=1

log
X(i)

X(k)

P−→
∫ ∞

1

log(u)ν(du).

LEMMA 5. Under Assumption 3,

(i) P (Xi > ·) ∈ RV−α.

(ii) There exist γ and c0 such that 0 < γ < α, 0 < c0 < 1, EAγ
0 = c0.

Proof. Statement (i) is shown in [72], [73] and [74]. Statement (ii) is shown on p. 220 of [75].

The following lemma follows from Propositions 2.3 of [55].

LEMMA 6. Suppose a stationary sequence Xi satisfies the following conditions:

n

k
P

(
Xi

(n/k)1/α
∈ ·
)

v→ να, (4.1)

where να(x,∞] = x−α in M+(0,∞]. For any x > 0, y > 0,

lim
n−→∞

n

k2

k∑

j=2

P

(
X1

(n/k)1/α
> x,

Xj

(n/k)1/α
> y

)
= 0. (4.2)

For any sequence ln such that ln −→ ∞, ln/k −→ 0, n/k = o(ln), and intervals

I1 = [1, k − ln], I2 = [k + 1, 2k − ln], . . . , I[n/k] = [([n/k]− 1)k + 1, [n/k]k − ln],

lim
n−→∞

∣∣∣∣E
[n/k]∏

j=1

(
1− 1

k

∑

i∈Ij

f

(
Xi

(n/k)1/α

))
−

[n/k]∏

j=1

E

(
1− 1

k

∑

i∈Ij

f

(
Xi

(n/k)1/α

))∣∣∣∣ = 0, (4.3)

where f is any function of the form f =
∑s

h=1 βh1(xh,∞], for βh > 0, h = 1, . . . , s, and xh > 0,

h = 1, . . . , s. Then,

Hk,n =
1

k

k−1∑

i=1

log
X(i)

X(k)

P−→ 1

α
. (4.4)
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4.7 Proofs of the results of Section 4.3

Proof of Proposition 1 : The result almost follows from Lemma 3 (iii). We must take care of the

absolute value.

For y > 0, {X + ε > y} ⊂ {X + |ε| > y}. Therefore, P (X + ε > y) ≤ P (X + |ε| > y). By

Lemma 3 (iii),

lim sup
y−→∞

P (X + ε > y)

P (X > y)
= lim sup

y−→∞
P (X + ε > y)

P (X + |ε| > y)
≤ 1. (4.1)

Now, taking any δ > 0, we obtain {X + ε > y} ⊃ {X > (1 + δ)y, ε > −δy}. Thus,

P (X + ε > y) ≥ P (X > (1 + δ)y)P (ε > −δy),

by the independence of X and ε. Since P (X > ·) ∈ RV−α and δ > 0 is arbitrary,

lim inf
y−→∞

P (X + ε > y)

P (X > y)
≥ 1. (4.2)

Combining (4.1) and (4.2), we obtain limy−→∞ P (X + ε > y)/P (X > y) = 1, and P (X+ε >

·) ∈ RV−α by Lemma 1.

Proof of Theorem 1 : Since the Yi are i.i.d random variables with a common tail distribution

F̄Y ∈ RV−α, by Proposition 1, the consistency follows, e.g., from Theorems 4.1 and 4.2 in [4]. By

Theorem 2 of [19] the consistency of the Hill estimator computed from the Yi implies F̄Y ∈ RV−α,

and by Proposition 1 F̄X ∈ RV−α.

Proof of Theorem 2 : First, {Yi} and {Y (m)
i } are stationary because the sequence {εi} is indepen-

dent of the sequence {Xi} and of the approximating sequences {X(m)
i }. Also, for any τ > 0,

lim
m−→∞ lim sup

n−→∞
n

k
P

(∣∣∣ Y
(m)
i

b(n/k)
− Yi

b(n/k)

∣∣∣ > τ

)
= lim

m−→∞ lim sup
n−→∞

n

k
P

(∣∣∣ X
(m)
i

b(n/k)
− Xi

b(n/k)

∣∣∣ > τ

)
= 0.

So it remains to show that for each m ≥ 1,

n

k
P
( Y

(m)
i

b(n/k)
∈ ·
)

v→ ν(m), as (4.3). (4.3)
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In fact, it suffices to find M such that (4.3) holds for each m ≥ M , since m −→ ∞ in Proposition

2.2 of [55].

We first show that the following is true. There exists M such that for each m ≥ M ,

n

k
P
( Y

(m)
i

b(n/k)
> y
)
=

n

k
P
(X(m)

i + εi
b(n/k)

> y
)
−→ ν(m)(y,∞], as (4.3).

Take any δ > 0. For y > 0, {X(m)
i + εi > yb(n/k)} ⊃ {X(m)

i > (1 + δ)yb(n/k), εi >

−δyb(n/k)}. Therefore, n
k
P (X

(m)
i + εi > yb(n/k)) ≥ n

k
P (X

(m)
i > (1 + δ)yb(n/k))P (εi >

−δyb(n/k)), by the independence of Xi and εi. By Assumption 2(a), since b(n/k) −→ ∞,

lim inf
n−→∞

n

k
P (X

(m)
i + εi > yb(n/k)) ≥ ν(m)((1 + δ)y,∞].

Therefore, by the right–continuity of y 7→ ν(m)(y,∞],

lim inf
n−→∞

n

k
P (X

(m)
i + εi > yb(n/k)) ≥ ν(m)(y,∞]. (4.4)

Next observe that

{X(m)
i + εi > yb(n/k)} ⊂ {X(m)

i > (1− δ)yb(n/k)}

∪ {|εi| > (1− δ)yb(n/k)} ∪ {X(m)
i > δyb(n/k), |εi| > δyb(n/k)}.

By the independence of Xi and εi,

n

k
P (X

(m)
i + εi > yb(n/k)) ≤ n

k
P (X

(m)
i > (1− δ)yb(n/k))

+
n

k
P (|εi| > (1− δ)yb(n/k))

+
n

k
P (X

(m)
i > δyb(n/k))P (|εi| > δyb(n/k))

=: Q1(n,m) +Q2(n) +Q3(n,m).
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Then, by Assumption 2(a), for each m ≥ 1

lim sup
n−→∞

Q1(n,m) = ν(m)((1− δ)y,∞], lim sup
n−→∞

Q3(n,m) = ν(m)(δy,∞]× 0 = 0.

Observe that

lim sup
n−→∞

Q2(n) = lim sup
n−→∞

n

k
P (Xi > (1− δ)yb(n/k))

P (|εi| > (1− δ)yb(n/k))

P (Xi > (1− δ)yb(n/k))
.

Since by Assumption 5,

lim sup
n−→∞

P (|εi| > (1− δ)yb(n/k))

P (Xi > (1− δ)yb(n/k))
= 0,

we must verify that

lim sup
n−→∞

n

k
P (Xi > (1− δ)yb(n/k)) < ∞. (4.5)

Since for 0 < η < (1− y)δ,

{Xi > (1− δ)yb(n/k)} ⊂ {Xi −X
(m)
i > ηb(n/k)} ∪ {X(m)

i > {(1− δ)y − η}b(n/k)},

we have

lim sup
n−→∞

n

k
P (Xi > (1− δ)yb(n/k))

≤ lim sup
n−→∞

n

k
P (Xi −X

(m)
i > ηb(n/k)) + lim sup

n−→∞
n

k
P (X

(m)
i > {(1− δ)y − η}b(n/k)).

By Assumption 2 (b), for any 0 < γ < 1, there exists M such that for m ≥ M ,

lim sup
n−→∞

n

k
P (Xi −X

(m)
i > ηb(n/k)) < γ.

By Assumption 2 (a),

lim sup
n−→∞

n

k
P (X

(m)
i > {(1− δ)y − η}b(n/k)) = ν(m)((1− δ)y − η,∞].
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We therefore conclude that for m ≥ M ,

lim sup
n−→∞

n

k
P (Xi > (1− δ)yb(n/k)) ≤ γ + ν(m)((1− δ)y − η,∞] < ∞,

concluding the verification of (4.5) and leading to

lim sup
n−→∞

n

k
P (X

(m)
i + εi > yb(n/k)) ≤ ν(m)(y,∞]. (4.6)

Combining (4.4) and (4.6), we obtain

lim
n−→∞

n

k
P (X

(m)
i + εi > yb(n/k)) = ν(m)(y,∞],

and thus, by Lemma 2 (ii), (iii), we conclude (4.3).

Proof of Corollary 1 : Processes (a) and (c) satisfy Assumption 2, with ν = να, and process (b)

with ν(x,∞] = x−α/2. The claim follows from Theorem 2 and Lemma 4.

We now describe a decomposition and state two lemmas, which will be used in the proof of

Theorem 3. By iterating Xi = AiXi−1 +Bi i− j times, for j < i, Xi can be decomposed into two

components

Xi := Xj,i
i +Πi

j+1Xj (4.7)

where

Xj,i
i = Bi + AiBi−1 + AiAi−1Bi−2 + · · ·+ AiAi−1 · · ·Aj+2Bj+1,

and

Πi
j+1 = AiAi−1 · · ·Aj+1.

Note that Xj is independent of Xj,i
i , Πi

j+1. We will work with the decomposition

Yi = Xi + εi = Xj,i
i +Πi

j+1Xj + εi. (4.8)
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LEMMA 1. Under Assumptions 3 and 5, there exists C < ∞ such that for 0 < η < x, 0 < δ < y,

τ > 0, and s < t,

P (Ys > x, Yt > y)

≤ P (X0 > x− η)P (X0 > y − δ − τ) + C
k

n
ct−10 + P (ε0 > δ) + P (ε0 > η).

Proof.

P (Ys > x, Yt > y) ≤ P (Xs + εs > x, Yt > y, εs ≤ η) + P (εs > η)

≤ P (X0 > x− η)P (X0 > y − δ − τ)

+ C
k

n
ct−10 + P (ε0 > δ) + P (ε0 > η).

The last inequality holds by Lemma 4.1(c) of [55].

LEMMA 2. Suppose i1 < i2 < · · · < is, yi > 0 for i = 1, . . . , s, and τ > 0. Under Assumptions 3

and 5,

(i)

∣∣∣∣∣P
( Yi1

(n/k)1/α
> y1, . . . ,

Yis

(n/k)1/α
> ys

)
− P

( Yi1

(n/k)1/α
> y1

)
· · ·P

( Yis

(n/k)1/α
> ys

)∣∣∣∣∣

≤
s−1∑

q=1

( s−q∏

j=1

P (Y0 > (n/k)1/αyj)P (Y0 ∈ ((n/k)1/α(ys−q+1 − τ), (n/k)1/α(ys−q+1 + τ)])

×
s∏

j=s−q+2

P (Y0 > (n/k)1/α(yj − τ))
)
+

s∑

j=2

P (Π
ij−ij−1

1 X0 > (n/k)1/ατ)
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(ii) Moreover, there exists M = M(y1, . . . , ys) and K = K(y1, . . . , ys) such that for n large

enough,

∣∣∣∣∣P
( Yi1

(n/k)1/α
> y1, . . . ,

Yis

(n/k)1/α
> ys

)
− P

( Yi1

(n/k)1/α
> y1

)
· · ·P

( Yis

(n/k)1/α
> ys

)∣∣∣∣∣

≤ Kτ(s− 1)M s−1
(k
n

)s
+ τ−γEY γ

0

(k
n

)γ/α s∑

j=2

c
ij−ij−1

0 .

Proof. The verification of (i) uses a similar idea to that developed in the proof of Lemma 4.1

of [55], which uses induction. We however work with the observations Yi, which include the

measurement errors εi. We start with proving that (i) holds for s = 2 and then show that (i) also

holds for s = 3. We use the decomposition described as (4.7) and (4.8).

For x > 0, 0 < τ < y, and s < t

P (Ys > x, Yt > y)

≤ P (Ys > x,Xs,t
t +Πt

s+1Xs + εt > y, Πt
s+1Xs ≤ τ) + P (Πt

s+1Xs > τ)

≤ P (Ys > x)P (Xs,t
t + εt > y − τ) + P (Πt

s+1Xs > τ),

by the independence of Ys and Xs,t
t + εt. Then,

P (Ys > x, Yt > y) ≤ P (Ys > x)P (Yt > y) + P (Y0 > x)P (Y0 ∈ (y − τ, y]) + P (Πt−s
1 X0 > τ).

Also, observe that

P (Ys > x)P (Yt > y)

≤ P (Ys > x)P (Yt ∈ (y, y + τ ]) + P (Ys > x)P (Yt > y + τ)

≤ P (Y0 > x)P (Y0 ∈ (y, y + τ ]) + P (Ys > x, Yt > y) + P (Πt−s
1 X0 > τ).
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Therefore,

|P (Ys > x, Yt > y)−P (Ys > x)P (Yt > y)| ≤ P (Y0 > x)P (Y0 ∈ (y − τ, y + τ ]) + P (Πt−s
1 X0 > τ).

We now prove the inequality for s = 3 using the result for s = 2. For s < t < u, and x, y, z > 0

P (Ys > x, Yt > y, Yu > z)

≤ P (Ys > x, Yt > y,X t,u
u +Πu

t+1Xt + εu > z, Πu
t+1Xt ≤ τ) + P (Πu

t+1Xu > τ)

≤ P (Ys > x)P (Yt > y)P (Yu > z) + P (Y0 > x)P (Y0 > y)P (Y0 ∈ (z − τ, z])

+ P (Y0 > x)P (Y0 ∈ (y − τ, y])P (Y0 > z − τ)

+ P (Πt−s
1 X0 > τ) + P (Πu−t

1 X0 > τ).

Also, observe that

P (Ys > x)P (Yt > y)P (Yu > z)

≤ P (Ys > x)P (Yt > y)P (Yu ∈ (z, z + τ ]) + P (Ys > x)P (Yt > y)P (Yu > z + τ)

≤ P (Y0 > x)P (Y0 > y)P (Y0 ∈ (z, z + τ ])

+ P (Ys > x, Yt > y, Yu > z) + P (Y0 > x)P (Y0 ∈ (y, y + τ ])P (Y0 > z − τ)

+ P (Πt−s
1 X0 > τ) + P (Πu−t

1 X0 > τ).

Therefore,

|P (Ys > x, Yt > y, Yu > z)−P (Ys > x)P (Yt > y)P (Yu > z)|

≤ P (Y0 > x)P (Y0 > y)P (Y0 ∈ (z − τ, z + τ ])

+ P (Y0 > x)P (Y0 ∈ (y − τ, y + τ ])P (Y0 > z − τ)

+ P (Πt−s
1 X0 > τ) + P (Πu−t

1 X0 > τ).
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Replacing Yi by Yi/(n/k)
1/α, we conclude (i).

For (ii), we can use Lemma 4.1(b) of [55], since the Xi satisfy Assumption 3 and P (Yi > ·) ∈

RV−α by Lemma 5 and Proposition 1.

Proof of Theorem 3 : First, Yi satisfies (4.1) since P (Yi > ·) ∈ RV−α by Lemma 5 and Proposi-

tion 1. Thus, we conclude (4.1) by Lemma 2. Next, by Lemma 1, for any x > 0, y > 0,

n

k2

k∑

j=2

P (Y1 > (n/k)1/αx, Yj > (n/k)1/αy)

≤ n

k2

k∑

j=2

{
P (X0 > (n/k)1/α(x− η))P (X0 > (n/k)1/α(y − δ − τ))

+ C
k

n
ct−10 + P (ε0 > (n/k)1/αδ) + P (ε0 > (n/k)1/αη)

}

≤ n(k − 1)

k2
P (X0 > (n/k)1/α(x− η))P (X0 > (n/k)1/α(y − δ − τ))

+ C
1

k

k∑

j=2

cj−10 +
n(k − 1)

k2
P (ε0 > (n/k)1/αδ) +

n(k − 1)

k2
P (ε0 > (n/k)1/αη).

By Lemma 5 (i) and Lemma 2,

n

k
P (X0 > (n/k)1/α(x− η)) −→ να(x− η,∞] = (x− η)−α < ∞,

n

k
P (X0 > (n/k)1/α(y − δ − τ)) −→ να(y − δ − τ,∞] = (y − δ − τ)−α < ∞.

Also, by Assumption 5,

n

k
P (ε0 > (n/k)1/αδ) =

P (ε0 > (n/k)1/αδ)

P (X0 > (n/k)1/αδ)

P (X0 > (n/k)1/αδ)

P (X0 > (n/k)1/α)
−→ 0× δ−α = 0,

n

k
P (ε0 > (n/k)1/αη) −→ 0.

Since
∑k

j=1 c
j−1
0 < ∞, we conclude (4.2). We also conclude that Yi satisfies (4.3) by Lemma 2 (ii)

and Lemma 4.2 of [55]. Therefore, we conclude the claim by Lemma 6.
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Proof of Theorem 4 : We will show that

1

k

n∑

i=1

1Yi/b(n/k) ⇒ ν, (4.9)

where ν(x,∞] = θ1x
−α and

θr =
ED

(r)
1 πr

E
∑m

j=1 D
(j)
1 πj

, r = 1, · · · ,m.

To verify (4.9), we follow, up to (4.10), the argument developed in the proof of Proposition 5.1

of [55]. Following (4.10), we handle the difference caused by the additive error and verify that the

difference is negligible under Assumption 5.

To show (4.9), it suffices to prove the convergence of Laplace transforms, that is, for f ∈

C+
K(0,∞],

Ee−1/k
∑n

i=1 f(Yi/b(n/k)) −→ e−ν(f).

Define for n ≥ 0,

N (r)
n =

n∑

l=0

1[Vl=r], r = 1, . . . ,m.

By the conditional independence of the {Xi} given {Vi} and the independence between {Xi} and

{εi},

Ee−1/k
∑n

i=1 1Yi/b(n/k)(f) = Ee−1/k
∑n

i=1 f(Yi/b(n/k))

= E(E(e−1/k
∑n

i=1 f(Yi/b(n/k))|V1, . . . , Vn))

= E
( n∏

i=1

E(e−1/kf(Yi/b(n/k))|V1, . . . , Vn)
)

= E
m∏

r=1

(∫ ∞

0

e−f(y)/kP (Y/b(n/k) ∈ dy|V = r)
)N(r)

n

.

Note that N
(r)
n /n

P−→ θr, shown as (5.6) in the proof of Proposition 5.1 of [55].
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Since 1− e−t ≤ t, for all t ∈ R,

(∫ ∞

0

e−f(y)/kP (Y/b(n/k) ∈ dy|V = r)

)N
(r)
n

=

(
1−

∫∞
0
(1− e−f(y)/k)nP (Y/b(n/k) ∈ dy|V = r)

n

)N
(r)
n

≥
(
1−

∫∞
0

f(y)n
k
P (Y/b(n/k) ∈ dy|V = r)

n

)N
(r)
n

.

Also, since 1− e−f(y)/k = f(y)
k

+ 1
2
e−2c(f(y)

k
)2, for some c, which satisfies |c| ≤ f(y)

k
,

(∫ ∞

0

e−f(y)/kP (Y/b(n/k) ∈ dy|V = r)

)N
(r)
n

≤
(
1−

∫∞
0

f(y)n
k
P (Y/b(n/k) ∈ dy|V = r)

n

)N
(r)
n

.

For r = 1,

n

k
P (Y/b(n/k) ∈ ·|V = 1)

v→ να,

since F̄1 ∈ RV−α. Therefore,

(∫ ∞

0

e−f(y)/kP (Y/b(n/k) ∈ dy|V = r)

)N
(1)
n

P−→ e−θ1να(f). (4.10)

For 2 ≤ r ≤ m, y > 0,

n

k
P (Y > b(n/k)y|V = r)

=
P (Y > b(n/k)y|V = r)

F̄1(b(n/k))

≤ P (X > (1− δ)b(n/k)y|V = r) + P (ε > δb(n/k)y|V = r)

F̄1(b(n/k))

=
F̄r((1− δ)b(n/k)y) + F̄ε(ε > δb(n/k)y)

F̄1(b(n/k))

=
F̄r((1− δ)b(n/k)y)

F̄1((1− δ)b(n/k)y)

F̄1((1− δ)b(n/k)y)

F̄1(b(n/k))
+

F̄ε(ε > δb(n/k)y)

F̄1(δb(n/k)y)

F̄1(δb(n/k)y)

F̄1(b(n/k))
−→ 0,
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by Assumptions 4, 5. Therefore,

∫ ∞

0

f(y)
n

k
P (Y/b(n/k) ∈ dy|V = r) ≤ ‖f‖

∫ ∞

c

n

k
P (Y/b(n/k) ∈ dy|V = r)

= ‖f‖n
k
P (Y > b(n/k)c|V = r) −→ 0,

where c := inf{supp(f)} > 0 and ‖f‖ := sup(0,∞] f , concluding

(∫ ∞

0

e−f(y)/kP (Y/b(n/k) ∈ dy|V = r)

)N
(r)
n

P−→ (e−0)θr = 1.

Since
∏m

r=1

( ∫∞
0

e−f(y)/kP (Y/b(n/k) ∈ dy|V = r)
)N(r)

n

is bounded, it is uniformly integrable,

which leads to (4.9). The weak convergence (4.9) implies Y(k)/b(n/k)
P→ θ1

1/α, whose proof

is similar to that described in Proposition 2.1 of [21]. Following the same steps developed in

Propositions 2.2, 2.3, and 2.4 of [21], we conclude (4.2).
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Chapter 5

Hill-type estimators applied to error contaminated

data: large sample normality and confidence

intervals

5.1 Introduction

Heavy-tailed phenomena have been found in a variety of fields, including finance, insurance,

computer network traffic and geophysics. The theory of regular variation provides a mathematical

framework for their analysis. Hundreds of papers have been written on the subject, and it is difficult

to present an unbiased selection of the most important contributions, so we merely cite here the

book of [4], and discuss the most closely related references, as the presentation progresses. This

work is concerned with the estimation of the tail index, α, of a heavy–tailed distribution from

observations contaminated by measurement or other errors. We investigate asymptotic and finite

sample properties of the Hill estimator, which is the most commonly used tool for inference on

α, and of the harmonic moment estimator (HME), which is a class of estimators related to and

generalizing the Hill estimator.

Suppose {Xi, i ≥ 1} is a sequence of independent, nonnegative random variables with common

one dimensional marginal distribution function F , which has regularly varying tail probabilities,

i.e.

F̄ (x) = 1− F (x) = P(Xi > x) = x−αL(x), α > 0, (5.1)

where L is a slowly varying function. The class of distributions with tail behavior (5.1) coincides

with the maximum domain of attraction of the Fréchet distribution, one of the three basic types of
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extreme value distributions. The Hill estimator is defined as

Hk,n =
1

k

k−1∑

i=1

log
X(i)

X(k)

,

with the convention that X(i) is the i–th largest order statistic. Throughout the paper, we assume

that

n −→ ∞, k −→ ∞,
k

n
−→ 0. (5.2)

The Hill estimator is often used after an examination of the Hill plot, which is also a tool for

detecting the presence of heavy tails. The Hill plot and the Hill estimator have been extensively

studied, and are introduced in all monographs on extreme value theory, see e.g. [16], [76], [2], [4]

and [77]. Considerable research has been done to establish conditions for the asymptotic normality

of the Hill estimator. If only the regular variation (5.1) is assumed, asymptotic normality holds

with random centering. Several authors formulated conditions on F , which permit replacing the

random centering by a deterministic one. The first result of this type was established by [78]

for slowly varying functions, L, which converge to a constant at a polynomial rate. [79] showed

that the estimator is asymptotically normal for any regularly varying function satisfying the von

Mises condition, their centering, however, depends on the sample size n. To show that the Hill

estimator centered by the exponent α−1 is asymptotically normal, second–order regular variation,

a refinement of the concept of regular variation, is assumed, see [39], [40], [41], and [42]. The

approach in Section 9.1 of [4], which is based on tail empirical processes, also requires the second–

order regular variation. [80] also use the tail empirical process to study asymptotic normality of the

Hill estimator for long memory stochastic volatility models assuming a second order condition.

The HME was introduced by [81] to provide a broad class of estimators, which, in a sense,

extend the Hill estimator and have desirable robustness properties against large outliers. Consis-

tency and asymptotic normality of the HME was established by [81] for the Pareto distribution

and by [82] under a second–order regular variation condition. The HME was also studied, under a

116



different name, by [83], [84] and [85]. The HME is defined in [82] by

H
(β)
k,n :=

1

β − 1





[
1

k

k∑

i=1

(
X(k)

X(i)

)β−1
]−1

− 1



 ,

where β > 0, β 6= 1, is a tuning parameter. For β = 1, the HME is defined by H
(1)
k,n :=

limβ→1 H
(β)
k,n . We therefore obtain the Hill estimator as the limit of the HME as β → 1.

We study the Hill estimator and the HME based on observations contaminated by measure-

ment errors, or other errors whose origin is either difficult to understand and model or to quantify

precisely. We thus assume that we observe

Yi = Xi + εi, 1 ≤ i ≤ n,

where the εi are i.i.d. random errors and independent of the Xi. The Hill estimator computed from

the observations Yi is then

Ĥk,n :=
1

k

k−1∑

i=1

log
Y(i)

Y(k)

,

and the HME based on the Yi is

Ĥ
(β)
k,n :=

1

β − 1





[
1

k

k∑

i=1

(
Y(k)

Y(i)

)β−1
]−1

− 1



 .

In our context, Ĥk,n, Ĥ
(β)
k,n are the estimators that can be actually used since what we observe are

the Yi, not the Xi satisfying (5.1). The consistency of the Hill estimator Ĥk,n has been established

for a class of error distributions whose tail is lighter than the tail of the Xi, in [86]. In this paper, we

want to find conditions on the errors under which the asymptotic normality of Ĥk,n, Ĥ
(β)
k,n continues

to hold. We start with conditions on the Xi satisfying (5.1), which implies the asymptotic normal-

ity with random centering. We then consider the second–order regular variation condition and

the exact Pareto distribution to derive the asymptotic normality with a constant centering. Some

specific questions we seek to answer are as follows. What must we assume about the errors εi to
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obtain asymptotic normality with random centering? What additional assumptions are needed for

the deterministic centering? In either case, are any additional assumptions on the rate of k, beyond

(5.2), needed? Which characteristics of the distribution of the εi enter into these assumptions? In

finite samples, how “large", and in what sense, can the εi be for the asymptotic confidence intervals

to remain useful? It is hoped that the research we present answers such questions in a useful and

informative way.

The problem of estimation in the presence of errors has received considerable attention. For

example, [59], [60], [61], and [62] study estimation of the end-point of data observed with addi-

tive measurement errors. While they all show asymptotic normality in the presence of Gaussian

measurement errors, in our case we assume a broader class of error distributions, which includes

the normal distribution. This is due to the fact that the heavy-tailed Xi are "much larger" random

variables than those with a finite end-point. Most closely related is the work of [87], in which the

asymptotic normality of the Hill estimator for round–off data is established. [87] assume that the

observations have the form Yi = 10−l[10lU
−1/α
i ], where Ui is uniform on [0, 1] and [·] denotes the

integer part. Such data can be written in the form of Yi = Xi+εi, where Xi = U
−1/α
i has the exact

Pareto distribution and εi = 10−l[10lU
−1/α
i ]−U

−1/α
i is a bounded error of a specific form. We con-

sider broader classes for both the Xi and the εi under the assumption that εi is independent of Xi,

reflecting our treatment of the εi as a measurement error. We use a different asymptotic approach.

We establish weak convergence of suitable empirical tail processes for observations contaminated

by general errors. Asymptotic normality then follows easily from these general results, which are

also of independent interest.

The paper is organized as follows. Assumptions and main theoretical results are stated in

Section 5.2. In Section 5.3, we present simulation studies examining finite sample properties of

confidence intervals based on the asymptotic normal distribution, focusing on the impact of errors.

This numerical investigation is followed in Section 5.4 by an application to the interarrival times

of internet traffic anomalies. The proofs are presented in Section 5.6 after some preparation in

Section 5.5.
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5.2 Assumptions and main asymptotic results

Recall that the observations are Yi = Xi + εi, 1 ≤ i ≤ n. We first state the assumptions on the

unobservable random variables Xi. Recall that a function U : R+ −→ R+ is regularly varying with

index −α, α > 0, denoted U ∈ RV−α, if

lim
t−→∞

U(tx)

U(t)
= x−α, for any x > 0.

ASSUMPTION 1. [Regular variation] The Xi are nonnegative, independent random variables with

common distribution function FX such that F̄X = P (Xi > ·) ∈ RV−α.

As noted in the Introduction, even without measurement errors, the assumption of regular vari-

ation implies asymptotic normality of the Hill estimator only with random centering. To conduct

inference, in particular to obtain useful confidence intervals, one needs a result with centering by

1/α. For this, second–order regular variation is typically assumed.

ASSUMPTION 2. [Second–order regular variation (2RV)] The Xi are nonnegative, independent

random variables with common distribution function FX , which is second–order (−α, ρ) regularly

varying (written F̄X ∈ 2RV (−α, ρ)), i.e. there exists a positive function g ∈ RVρ such that

g(t) → 0, as t → ∞, and for α > 0, ρ ≤ 0, K 6= 0.

lim
t→∞

1

g(t)

(
F̄X(tx)

F̄X(t)
− x−α

)
= H(x) := Kx−α

xρ − 1

ρ
, x > 0. (5.1)

Note that Assumption 2 implies Assumption 1. Observe, however, that condition (5.1) does

not hold if the Xi have the exact Pareto distribution, i.e. P (Xi > x) = x−α. In this case one

would need to allow K = 0, and would thus lose any information contained in the function g. The

case of exact Pareto tails should however be included in any reasonable theory for heavy–tailed

observations. We do so by introducing a parallel set of assumptions.

ASSUMPTION 3. [Pareto] The Xi are nonnegative, independent random variables with a common

distribution function FX such that F̄X(x) = P (Xi > x) = x−α, x ≥ 1, α > 0.
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The function g in (5.1) can be interpreted as the convergence rate of F̄X(tx)/F̄X(t) to x−α. It

has been used to restrict the sequence k = k(n). [39], [40], [41], and [42] assume that

√
kg(b(n/k)) → 0, (5.2)

along with the second–order regular variation for ρ ≤ 0. In (5.2), and throughout the paper, b(·) is

the quantile function, defined by P (Xi > b(t)) = t−1. It has the representation

b(t) = t1/αLb(t), (5.3)

where Lb is a slowly varying function. The condition (5.2) is sufficient in our setting under the

additional assumption ρ > −1. To cover the 2RV case with ρ ≤ −1 and the pure Pareto case, we

consider the following condition: √
k

b(n/k)
→ 0. (5.4)

Using (5.3), it is easy to verify that (5.2) implies k = o(n−2ρ/(α−2ρ)), and (5.4) implies k =

o(n2/(α+2)). These two rates agree at the phase transition point ρ = −1. We use Assumption 4 in

the 2RV case and Assumption 5 in the Pareto case.

ASSUMPTION 4. [2RV] The sequence k = k(n) satisfies (5.2) if ρ > −1 and (5.4) if ρ ≤ −1.

ASSUMPTION 5. [Pareto] The sequence k = k(n) satisfies (5.4).

We now turn to the assumptions on the measurement errors εi. To get the consistency of the Hill

estimator, the only assumption on the errors is that they have lighter tails than X , as was assumed

in [86]. We will see that this assumption is also sufficient to establish the asymptotic normality of

the Hill estimator with random centering.

ASSUMPTION 6. The εi are i.i.d. with tails satisfying

P (|ε| > x) = o(P (X > x)), as x −→ ∞.
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The sequence {εi} is independent of the sequence {Xi}.

To obtain the asymptotic normality of the Hill estimator and the HME with a constant centering,

a stronger but still broadly applicable assumption on the errors is needed; the errors must have

lighter tails than a power function. Assumption 7 is needed when we assume the second–order

regular variation, and Assumption 8 is suitable for the Pareto distribution.

ASSUMPTION 7. [2RV] The εi satisfy Assumption 6 and

P (|ε| > x) = o(x−κ), as x −→ ∞, (5.5)

for some κ > α +max(−ρ, 1).

ASSUMPTION 8. [Pareto] The εi satisfy Assumption 6 and (5.5) for some κ > α + 1.

We now proceed to define the function spaces in which our functional convergence results hold.

We work in D[0,∞), the Skorokhod space of real–valued, right–continuous functions on [0,∞)

with finite left limits existing on (0,∞). For any s > 0, the Skorokhod metric in D[0, s] is defined

by

ds(x, y) = inf
λ∈Λs

||λ− e||s ∨ ||x− y ◦ λ||s, x, y ∈ D[0, s],

where Λs = {λ : [0, s] 7→ [0, s], λ(0) = 0, λ(s) = s, λ(·) is continuous, strictly increasing}, and

‖ · ‖s is the supremum norm on [0, s]. The Skorokhod metric on D[0,∞) is then defined by

d∞(x, y) =

∫ ∞

0

e−s(ds(rsx, rsy) ∧ 1)ds, x, y ∈ D[0,∞),

where rsx, rsy are the restrictions of x, y ∈ D[0,∞) to the interval [0, s]. Given a sequence of

random processes, Xn, n ≥ 0, in D[0,∞), we denote weak convergence of Xn to X0 by Xn ⇒ X0.

We also use ⇒ to denote weak convergence of random variables.
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We define two "increasingly empirical" measures, with only the last one being observable. We

set

νn :=
1

k

n∑

i=1

IYi/b(n/k), ν̂n :=
1

k

n∑

i=1

IYi/Y(k)
,

with b(·) defined in (5.3). The random measures νn, ν̂n, and all other Radon measures of this type,

are defined on (0,∞] compactified at ∞. Thus, for s ≥ 0, we can define the random processes

Wn(s) =
√
k(νn(s

−1/α,∞]− Eνn(s
−1/α,∞]),

Ŵn(s) =
√
k(ν̂n(s

−1/α,∞]− Eν̂n(s
−1/α,∞]).

We first investigate the asymptotic normality of the tail empirical processes Wn, Ŵn, then study

when it implies the asymptotic normality of the Hill estimator Ĥk,n and the HME Ĥ
(β)
k,n . Theorem 1

shows that even very general errors specified in Assumption 6 do not impact the asymptotic be-

havior of the tail empirical processes Wn nor Ŵn: the limit distributions of these statistics based

on the Yi are the same as those of the corresponding statistics based on the unobservable Xi.

THEOREM 1. Under Assumptions 1 and 6,

Wn ⇒ W in D[0,∞), (5.6)

and

Ŵn ⇒ W in D[0,∞), (5.7)

where W is the standard Brownian motion on [0,∞).

The Hill estimator can be written as an integral of the tail empirical measure ν̂n, i.e.

Ĥk,n =

∫ ∞

1

1

k

n∑

i=1

IYi/Y(k)
(s,∞]s−1ds =

∫ ∞

1

ν̂n(s,∞]s−1ds.

122



Similarly, the HME can be expressed as a transformed integral of the tail empirical measure ν̂n,

i.e.

Ĥ
(β)
k,n =

1

β − 1

{[
(1− β)M̂k,n + 1

]−1
− 1

}
, β 6= 1,

where

M̂
(β)
k,n :=

∫ ∞

1

ν̂n(s,∞]s−βds =
1

1− β

[
1

k

k∑

i=1

(
Y(k)

Y(i)

)β−1

− 1

]
.

The order statistics used to compute the Hill estimator and the HME must be positive. In the

following, all statements are tacitly assumed to hold conditional on the event {Y(k) > 0}, where k

is the count of the largest order statistics in the definition of Ĥk,n, Ĥ
(β)
k,n .

THEOREM 2. Suppose that Assumptions 1 and 6 hold. If α > 0 and β > 1− α/2,

√
k

(∫ ∞

1

ν̂n(s,∞]s−βds−
∫ ∞

Y(k)

n

k
F̄Y (s)s

−βds

)
⇒ 1

α

∫ 1

0

W (s)s
β−1
α
−1ds.

By putting β = 1 in Theorem 2 we obtain the asymptotic normality of the Hill estimator with

random centering, which is stated as Corollary 1 (a). Similarly, the asymptotic behavior of M̂
(β)
k,n

follows directly from Theorem 2, which is presented in Corollary 1 (b).

COROLLARY 1. Under the Assumptions of Theorem 2,

(a)
√
k

(
Ĥk,n −

∫ ∞

Y(k)

n

k
F̄Y (s)

ds

s

)
⇒ 1

α

∫ 1

0

W (s)
ds

s
,

(b) if β 6= 1, then

√
k

(
M̂

(β)
k,n −

∫ ∞

Y(k)

n

k
F̄Y (s)

ds

sβ

)
⇒ 1

α

∫ 1

0

W (s)s
β−1
α
−1ds.

We emphasize that Theorem 1, Theorem 2, and Corollary 1 hold either under Assumption 2 or

Assumption 3, since both imply Assumption 1.

The convergence in Theorem 2 requires random centering with
∫∞
Y(k)

n/kF̄Y (s)s
−βds, which

makes Corollary 1 of limited practical use, but it provides a starting point for improvements. To
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replace it with a constant centering, we need the assumption of second–order regular variation

(or of exact Pareto tails) and the stronger assumptions on the errors. In the following theorem, we

establish the asymptotic normality of the integral of the tail empirical measure,
∫∞
1

ν̂n(s,∞]s−βds,

with a constant centering.

THEOREM 3. Suppose either Assumptions 2, 4, and 7 (2RV case), or Assumptions 3, 5, and 8

(Pareto case) hold. If α > 0 and β > 1− α/2, then

√
k

(∫ ∞

1

ν̂n(s,∞]s−βds− 1

α + β − 1

)
⇒ N

(
0,

α

(α + β − 1)2(α + 2β − 2)

)
.

The asymptotic normality of the Hill estimator Ĥk,n follows easily from Theorem 3. To obtain

the asymptotic normality of the HME Ĥ
(β)
k,n , we must apply Theorem 3 and the delta method. The

corresponding results are stated in the following corollary.

COROLLARY 2. Under the assumptions of Theorem 3,

(a)
√
k

(
Ĥk,n −

1

α

)
⇒ N(0, 1/α2),

(b) if β 6= 1, then

√
k

([
(1− β)M̂

(β)
k,n + 1

]
− α

α + β − 1

)
⇒ N

(
0,

α(1− β)2

(α + β − 1)2(α + 2β − 2)

)

and
√
k

(
Ĥ

(β)
k,n − 1

α

)
⇒ N

(
0,

(α + β − 1)2

α3(α + 2β − 2)

)
.

We note that the results in Corollary 2 are the same as for observations without measurement

errors; see Theorem 3.2.5 of [2] and Theorem 2 of [82]. The effect of relatively small errors εi

is thus asymptotically negligible. We also remark that Corollary 2 (a) cannot be easily proven by

verifying the conditions in Theorem 3.2.5 of [2]. If the Xi are exactly Pareto or second–order

regularly varying, it is not clear if the Yi are in any of these classes. Proposition 1 is a related
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result which plays an important role in the proof of Theorem 3, which is a general new result of

independent interest.

In the next two sections, we explore how small the errors must be in finite samples to have a

practically negligible effect on confidence interval inference. Then, we present preliminary results

in Section 5.5, followed by the proof of the main results in Section 5.6. Supplementary tables are

provided in Appendix B.

5.3 Impact of errors on confidence intervals

We investigate the effect of error contaminations on confidence intervals constructed using the

more commonly used Hill estimator. The effect of Pareto errors on the harmonic moment estimator

(HME) is studied in Section 5 of [82], in a more limited, but informative, simulation study.

The asymptotic level 1− p confidence interval for α−1 implied by Corollary 2 (a) is

(
1

α̂
− zp/2

1

α̂
√
k
,
1

α̂
+ zp/2

1

α̂
√
k

)
, (5.1)

where α̂−1 = Ĥk,n, and zq is the upper quantile of the standard normal distribution defined by

Φ(zq) = 1− q. The above interval is implemented by the function hill of the R package evir,

with the default asymptotic coverage 1 − p = 0.95. According to Corollary 2 (a), it is asymptot-

ically valid even if the observations are contaminated by fairly general errors. In this section, we

investigate the impact of these errors on the empirical coverage probability of the interval (5.1). To

obtain interval (5.1), the number of upper order statistics, k, has to be chosen. We consider a range

of values of k for a given sample size n. We also employ a few methods of selecting k, which have

been proposed.

The design of our simulation study is as follows. We generate observations Yi = Xi + εi, i =

1, 2, . . . , n, where {Xi} and {εi} are independent sets of random variables. For each model/error

pair, we compute 1000 confidence intervals and report the fraction of the intervals that contain the
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reciprocal of the true tail index. We consider sample size n = 500, which is representative of the

sample sizes occurring in the application presented in Section 5.4.

We use two models for the Xi, both satisfying the condition of Corollary 2 (a) and having

the true tail index α = 2. The first is the standard Pareto distribution, which is not second order

regularly varying, and the second is a distribution in the Hall/Weiss class. The Hall/Weiss class

provides examples of the second–order regular variation, see p. 142 of [88]. Model 2 satisfies

Assumption 2 with g(t) = t−5.

Model 1 [Pareto] The Xi are i.i.d. random variables, which follow a Pareto distribution with

α = 2, P (Xi > x) = x−2, x ≥ 1.

Model 2 [2RV] The Xi are i.i.d. random variables, which follow the Hall/Weiss class with α = 2

and ρ = −5, P (Xi > x) = x−2(1 + x−5)/2, x ≥ 1.

We consider four different distributions for the errors εi. They all satisfy Assumptions 7 and 8

(with α = 2), since for each of them P (|ε| > x) = o(x−κ), for some 7 < κ < 8.

Error 1 [Normal] The εi are i.i.d. random variables, drawn from a normal distribution with mean

0 and standard deviation σNormal.

Error 2 [scaled t8] The εi are i.i.d. random variables, drawn from a scaled t-distribution with 8

degrees of freedom.

Error 3 [GPD] The εi are i.i.d. random variables, drawn from a generalized Pareto distribution,

P (|ε| > z) = (1 + ξ(z − µ)/σ)−1/ξ, with location µ = 0, shape ξ = 1/8, and scale σGPD.

Error 4 [Uniform] The εi are i.i.d. random variables, drawn from the uniform distribution on the

interval [−a, a], a > 0.

The scale parameters for each error distribution vary. They are determined by the ratio of the

standard deviation of error distribution (error SD) to the standard deviation of underlying process

(model SD). For example, if the ratio is 0.1 for Model 1 whose standard deviation is 2.44, then

σNormal = 0.244 for Error 1, the corresponding scale for Error 2 is 0.183, σGPD = 0.131 for Error

3, and a for Error 4 is 0.423. We consider several values of the ratio and then obtain the confidence

interval (5.1) for each of them.
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We first examine the robustness of coverage probabilities to the errors in finite samples, con-

sidering a wide range of k for a given sample size n. Tables B.1 and B.2 in Section B.1 report

coverage probabilities of the approximate 95% confidence intervals for the Pareto model, with

n = 500 and n = 2000, respectively. We first observe that the coverage probabilities for samples

generated from the Pareto distribution without the errors are close to the target coverage, 95%, for

large k’s. This is found in the row with the ratio 0 in each table. This result is in agreement with the

typical behavior of the Hill plot showing stable, unbiased estimates for large k when its underlying

distribution is exactly a Pareto distribution. Second, the coverage overall decreases with the ratio,

but this decrease is relatively flat over a range of the ratio from 0.01 to 0.1, for all the error types.

In particular, for n = 2000, the coverage is surprisingly acceptable for a wide range of values of

k; in many cases it is close to the target of 95%. On the other hand, the coverage seems sensitive

to relatively large errors with the ratio more than 10 percent. An interesting observation is that,

in the presence of errors, the coverage gets worse as k gets larger. This result is consistent with

Corollary 2 (a), which implies that the Hill estimator obtains the asymptotic normality if k satisfies

Assumption 5; k goes to infinity with n, but not too fast. The reduction in the coverage probability

caused by large k is not observed for data contaminated by relatively small errors. Finally, the

impact on the coverage probability overall does not depend on the type of the error distribution. In

particular, for the small ratios, the difference that the error type makes looks negligible.

Tables B.3 and B.4 in Section B.1 report coverage probabilities of the asymptotic 95% confi-

dence intervals for the 2RV model, with n = 500 and n = 2000, respectively. Unlike the Pareto

case, the 2RV model does not achieve the target coverage, 95%, even if there are no errors. This

may be due to n not being sufficiently large. The errors with small ratio, however, have only a

small impact on the coverage. It can be also seen that the impact on the coverage probability for

small ratio does not depend on the error type. Finally, we see that k cannot increase too fast,

indirectly confirming the need for Assumption 4.

We have found so far that the coverage can achieve the target probability for some properly

chosen k or cannot achieve it for any k, given a finite sample. Even if we can identify some range
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of k for which the coverage approaches the target, the question still remains of how to select an

optimal k in practice. There are various methods for choosing it. A commonly used approach

is based on the minimization of the asymptotic mean squared error (AMSE), see e.g. [89], [66],

[90], and [91]. These methods are however based on asymptotic arguments, which brings up a

question of how well they perform in finite samples. [92] suggest a data driven method minimizing

a penalty function of the distance between empirical quantiles and theoretical quantiles to improve

the performance in finite samples. There are also heuristic methods, mainly trying to find the

region where the Hill plot, a plot of estimates of the tail index against k, becomes more stable,

see [42].

To provide practically useful information on choosing a data–driven cut–off k, we examined

four methods based on different underlying ideas of selecting the optimal k. The first threshold

selection method, introduced by [66], uses a bootstrap procedure to find the k which minimizes

the AMSE. This value is computed by the function hall of the R package tea. (We also consid-

ered a few related methods based on the minimization of the AMSE argument, but they all gave

disappointing results. The coverage that the Hall method produced was always among the best of

these methods.) The second method, proposed by [92], is based on minimizing a penalty function

of the distance between the observed quantile and the fitted Pareto type tail. This distance is in the

quantile dimension, not in the probability dimension like the Kolmogorov–Smirnov distance. This

method is suggested to remedy the behavior that a small change in probabilities makes a large dif-

ference in quantiles. We use two different penalty functions: the supremum of the absolute distance

(KS), and the mean absolute distance (MAD). Both are implemented by the function mindist

of the R package tea. The final method is an Eye–Ball technique whose automatic algorithm is

developed by [92] and is carried out by the function eye of the R package tea. This heuristic

method attempts to find a stable portion of the Hill plot and obtain the k at which a considerable

drop in the variance occurs, as k increases.

Tables 5.1 and 5.2 report coverage probabilities and the average optimal k selected using the

four different methods. For the Pareto model, the coverage decreases with the ratio for all the
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Table 5.1: Proportion (in percent) of the approximate 95% confidence intervals including 1/α and the

average optimal k in parentheses, for n = 500 and the Pareto model. The Hall, MAD, KS, and Eye–Ball

methods are used to choose the optimal k. The target coverage is 95 percent.

Method
Error Error SD/Model SD Ratio

Type 0 0.01 0.02 0.05 0.1 0.2 0.3

Hall

Normal
88.9 87.6 88.4 88.9 83.8 77.5 71.2

(283) (311) (330) (329) (301) (256) (222)

scaled t8
88.7 88.0 88.6 88.9 83.2 77.6 68.9

(283) (321) (337) (322) (289) (242) (201)

GPD
89.4 88.9 88.8 88.7 83.7 76.9 72.7

(285) (322) (340) (320) (283) (220) (169)

Uniform
89.1 88.2 88.3 87.9 80.1 73.1 61.3

(284) (308) (329) (329) (301) (265) (238)

MAD

Normal
97.0 97.4 96.8 97.6 96.8 97.4 96.2

(218) (214) (214) (198) (147) (92) (68)

scaled t8
97.1 97.2 97.4 97.8 97.2 97.2 97.2

(219) (219) (214) (200) (156) (107) (79)

GPD
97.1 97.2 98.0 98.2 97.8 98.2 98.0

(219) (216) (214) (191) (145) (95) (77)

Uniform
97.0 97.4 96.4 96.2 97.0 94.8 93.6

(218) (219) (220) (195) (151) (99) (70)

KS

Normal
83.4 82.2 84.0 81.2 77.2 75.0 67.6

(68) (67) (68) (77) (93) (83) (79)

scaled t8
83.6 83.6 83.5 84.2 81.7 77.4 71.9

(68) (67) (69) (71) (90) (85) (82)

GPD
83.6 84.4 83.8 83.8 82.4 77.9 75.1

(68) (68) (66) (72) (83) (74) (62)

Uniform
83.4 84.0 82.0 82.0 78.6 69.4 63.6

(68) (70) (69) (80) (92) (103) (101)

Eye

Normal
95.3 95.1 94.8 95.2 94.8 93.2 90.5

(51) (51) (51) (51) (51) (51) (50)

scaled t8
95.3 95.4 95.5 95.3 93.5 92.7 88.2

(51) (51) (51) (51) (51) (50) (50)

GPD
95.3 95.2 94.9 95.2 93.5 91.7 86.0

(51) (51) (51) (51) (50) (50) (49)

Uniform
95.3 95.1 95.0 95.6 94.3 93.6 92.0

(51) (51) (51) (51) (51) (51) (51)
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Table 5.2: Proportion (in percent) of the approximate 95% confidence intervals including 1/α and the

average optimal k in parentheses, for n = 500 and the 2RV model. The Hall, MAD, KS, and Eye–Ball

methods are used to choose the optimal k. The target coverage is 95 percent.

Method Error Error SD/Model SD Ratio

Type 0 0.01 0.02 0.05 0.1 0.2 0.3

Hall

Normal
75.3 75.6 75.0 12.9 8.8 37.2 34.7

(118) (119) (142) (395) (416) (326) (250)

scaled t8
75.8 75.3 74.4 29.0 0.8 29.1 37.4

(118) (119) (130) (339) (429) (366) (293)

GPD
75.8 76.2 72.5 28.3 1.9 17.6 38.3

(118) (119) (150) (340) (422) (368) (284)

Uniform
75.6 75.2 74.0 33.8 26.4 35.0 30.3

(118) (119) (129) (316) (410) (314) (256)

MAD

Normal
18.7 18.2 18.5 16.3 7.5 36.6 70.8

(222) (221) (221) (228) (304) (150) (90)

scaled t8
18.7 18.9 18.8 17.0 8.5 21.0 51.7

(222) (221) (222) (223) (311) (200) (121)

GPD
18.7 18.3 18.8 16.3 12.1 22.2 66.2

(222) (221) (221) (223) (270) (203) (127)

Uniform
18.7 18.4 18.1 16.1 11.1 40.6 60.2

(222) (222) (221) (240) (282) (134) (82)

KS

Normal
66.6 66.6 67.0 66.4 56.7 52.5 53.0

(104) (102) (104) (104) (152) (160) (117)

scaled t8
66.6 66.9 66.8 67.0 66.3 53.9 53.0

(104) (103) (105) (100) (117) (175) (136)

GPD
66.6 66.4 67.5 67.0 65.6 56.8 58.8

(104) (103) (104) (101) (109) (155) (115)

Uniform
66.6 67.1 66.8 66.3 53.9 51.0 48.4

(104) (102) (102) (107) (169) (166) (140)

Eye

Normal
93.6 93.9 93.4 93.7 92.6 88.7 77.8

(51) (51) (51) (51) (51) (51) (50)

scaled t8
93.6 93.9 94.6 93.9 91.9 91.1 83.3

(51) (51) (51) (51) (51) (50) (50)

GPD
93.6 93.8 93.8 93.9 92.5 88.1 82.3

(51) (51) (51) (51) (51) (50) (50)

Uniform
93.6 93.7 93.8 94.0 92.7 90.4 82.9

(51) (51) (51) (51) (51) (51) (51)
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selection methods as shown in Table 5.1; again, a small ratio has a relatively small impact on

the coverage. The MAD and Eye–Ball methods achieve the target coverage, 95%, when the un-

derlying process is not contaminated by the errors. These methods also are less sensitive to the

ratio increase. For the Pareto model, the MAD approach generally leads to coverage probabilities

which are higher than 95%. However, as shown in Table 5.2, it gives very low coverage for the

2RV model. It has an unexpected, difficult to explain, property of the coverage increasing with the

ratio. The Hall method also shows some fluctuation over the ratio, but this fluctuation is not found

when the ratio is 0.01 and 0.02. The other methods also exhibit this insensitivity for small ratios.

The Eye–Ball method seems to work well for the Pareto and 2RV models since it gives relatively

high values of coverage. Its average optimal k also falls into the optimal range which gives high

values of coverage in Tables B.1 and B.3 in Section B.1.

The main conclusions of the above detailed discussion are as follows.

1. The Eye–Ball method of selecting k is recommended for both the Pareto and 2RV models.

2. For the heavy–tailed Xi with the tail index α = 2, the coverage probability of the approx-

imate 95% confidence interval containing the true index is robust to errors whose SD does

not exceed 2 percent of model SD.

3. There is no clear evidence that the coverage probability depends on the error distribution. In-

stead, the coverage is mainly affected by how large the εi are compared to the Xi, regardless

of the threshold selection methods.

We conclude this section with a discussion of the confidence interval for α obtained via an

application of the delta method. Corollary 2 (a) and the delta method imply that

√
k(Ĥ−1k,n − α) =⇒ N(0, α2).
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Thus, setting α̃ = Ĥ−1k,n, we get the approximate level 1− p confidence interval for α of the form

(
α̃− zp/2

α̃√
k
, α̃ + zp/2

α̃√
k

)
. (5.2)

One might want to use the interval (5.2) rather than (5.1) to make inference on α, but care is needed

in finite samples. Since the delta method is based on an additional asymptotic approximation,

confidence intervals derived from it could provide a poor approximation for small sample sizes.

We have performed a simulation study for the interval (5.2), similar to the one described earlier in

this section. We have found that it almost always gives coverage probability worse than the interval

(5.1). Therefore, when working with sample sizes similar to n = 500, we recommend using the

reciprocals of the bounds of the interval (5.1).

5.4 Application to Internet2 anomalous traffic

In this section, we present an application to interarrival times of anomalies in a backbone

internet network, Internet2. These times are available only with round–off errors. We provide only

minimal background; more details are presented in [67], a paper which to some extent motivates

the present research. We describe results of confidence interval inference for the tail index of

these interarrival times. We restrict ourselves to confidence intervals based on the Hill estimator,

the results for the HME are similar. We then examine the robustness of the Hill estimator to the

round-off errors by a numerical experiment.

The Internet2 network consists of 14 two–directional links connecting major cities in the United

States, as shown in Figure 4.3. A traffic disruption in any of these links can slow down service in

the whole country. For this reason, anomalies in the internet traffic have been extensively studied.

An anomaly is a time and space confined traffic whose volume is much higher than typical. [67]

developed an anomaly extraction algorithm. [86] and [93] argue that the interarrival times have

heavy tails. The anomaly extraction algorithm can identify the arrival time of an anomaly in

any unidirectional link only in a resolution of five minutes. While network measurement devices
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operate at much higher frequencies, such a rough resolution is due to the limitation of the anomaly

extraction algorithm. It is based on the Fourier transform, which eliminates noise by retaining only

low frequency harmonics. [67] created a database for the time period of 50 weeks, starting October

16, 2005. A question we seek to answer in this section is if the round–off error has a negligible

or a non–negligible impact on the confidence intervals for the tail index of the interarrival times.

Additionally, we would like to see if the various data–driven methods of selecting k, discussed in

Section 5.3 lead to overlapping confidence intervals, or if they suggest different ranges of α. These

conclusions could potentially be different for each of the 28 unidirectional links. We index these

links by integers from 1 to 28 since it is not important for the purpose of our investigation to which

nodes they correspond.

Tables 5.3 and 5.4 report tail index estimates and 95% confidence intervals for each link, ob-

tained using the four methods of selecting k discussed in Section 5.3. We first observe that all

methods, except for the KS method, generally produce similar point estimates for each link. The

interval estimates from the KS method are generally wider. In particular, some links have the

infinity as the upper end. This is manually put to deal with a negative lower end of the of the

interval (5.1). We now check whether intervals from the four methods overlap. We find 20 links

with a nonempty intersection of the four intervals and 8 links with an empty intersection. The

intersection does not have any interpretation in the usual frequentist sense of [94], but it provides,

so to say, the safest region in an engineering sense, for the 20 links for which it is nonempty. For

the links with the empty intersection, or even for all links, we recommend using the confidence

interval produced from the Eye–Ball method, which can be considered the most reliable estimate

based on the simulation result of Section 5.3.

In the context of this paper, each interarrival time Yi, computed by the algorithm, is treated

as a “true" interarrival time Xi measured with a round–off error, i.e. Yi = Xi + εi. The unob-

served Xi is not rigorously defined, but we can think of it as the time separation based on a more

precise algorithm, or just a different algorithm. In the latter case, the analysis that follows pro-

vides information about the uncertainty in the estimation of α caused by the choice of a specific
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Table 5.3: Point estimates and 95% confidence intervals for the tail index of the anomalies interarrival

times. The link index along with the sample size are displayed. The estimates are obtained using the Hall,

MAD, KS, and Eye–Ball methods. The intersection of the four intervals is shown if it is nonempty, an empty

intersection is indicated by ∅.

Link 1 (n = 405) 2 (n = 247) 3 (n = 362) 4 (n = 454)

Hall 1.70 (1.3, 2.4) 1.50 (1.1, 2.5) 1.63 (1.3, 2.1) 1.64 (1.3, 2.1)
MAD 1.43 (1.2, 1.8) 1.21 (1.0, 1.6) 1.51 (1.1, 2.3) 1.28 (0.9, 2.6)

KS 3.19 (1.3,∞) 3.06 (1.6, 24.8) 4.66 (2.0,∞) 2.08 (1.2, 8.0)
Eye 1.79 (1.4, 2.4) 1.23 (1.0, 1.8) 1.60 (1.3, 2.2) 1.59 (1.3, 2.1)

Overlap (1.4, 1.8) (1.6, 1.6) (2.0, 2.1) (1.3, 2.1)

5 (n = 347) 6 (n = 345) 7 (n = 603) 8 (n = 300)

Hall 1.54 (1.2, 2.1) 1.59 (1.2, 2.2) 1.64 (1.3, 2.2) 1.45 (1.1, 2.1)
MAD 1.43 (1.2, 1.8) 1.49 (1.0, 2.9) 1.31 (0.9, 2.4) 1.27 (1.0, 1.7)

KS 1.88 (1.3, 3.2) 3.35 (1.9, 12.9) 5.34 (3.2, 17.4) 3.43 (2.1, 9.9)
Eye 1.53 (1.2, 2.1) 1.52 (1.2, 2.1) 1.38 (1.1, 1.7) 1.38 (1.1, 1.9)

Overlap (1.3, 1.8) (1.9, 2.1) ∅ ∅
9 (n = 387) 10 (n = 345) 11 (n = 382) 12 (n = 304)

Hall 1.48 (1.2, 2.1) 1.44 (1.1, 2.1) 1.83 (1.4, 2.6) 2.27 (1.6, 3.7)
MAD 1.31 (1.1, 1.7) 1.24 (1.0, 1.6) 1.36 (1.1, 1.8) 1.50 (1.2, 2.0)

KS 3.98 (2.3, 15.4) 2.85 (1.7, 9.3) 3.63 (1.7,∞) 2.51 (1.7, 4.9)
Eye 1.52 (1.2, 2.0) 1.39 (1.1, 1.9) 1.72 (1.4, 2.3) 1.60 (1.3, 2.2)

Overlap ∅ ∅ (1.7, 1.8) (1.7, 2.0)

13 (n = 476) 14 (n = 507) 15 (n = 478) 16 (n = 319)

Hall 2.16 (1.7, 3.0) 1.96 (1.5, 3.0) 2.07 (1.6, 3.0) 1.44 (1.1, 2.0)
MAD 1.58 (1.0, 3.9) 1.44 (0.9, 3.5) 1.46 (0.9, 3.4) 1.36 (1.0, 2.2)

KS 2.06 (1.6, 2.9) 3.85 (1.3,∞) 2.05 (1.6, 2.9) 3.32 (1.9, 16.6)
Eye 2.02 (1.6, 2.7) 1.60 (1.3, 2.1) 1.80 (1.5, 2.3) 1.47 (1.2, 2.0)

Overlap (1.7, 2.7) (1.5, 2.1) (1.6, 2.3) (1.9, 2.0)

algorithm. Since the smallest value of Yi in physical units is 5 min., we use 5 minutes as a unit

lag. We therefore assume that the errors εi are uniformly distributed on [−1, 1]. We performed

the following numerical experiment. For each link, we treat the value of α estimated from the real

interarrival times as the true value. We then generate R = 1, 000 replications of error contaminated

data Y
(r)
i = Xi + ε

(r)
i , 1 ≤ r ≤ 1000. With some abuse of notation, the Xi are now the observed

interarrival times. For each of these replications we compute the interval (5.1) with p = 10% and

p = 5%. To choose k, we use the Hall, MAD, KS, and Eye–Ball methods described in Section 5.3.

For each link, we determine the percentage of these intervals that cover the value of α estimated
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Table 5.4: Continuation of Table 5.3.

Link 17 (n = 402) 18 (n = 388) 19 (n = 433) 20 (n = 493)

Hall 1.91 (1.5, 2.5) 1.36 (1.1, 1.9) 1.27 (1.1, 1.6) 1.90 (1.5, 2.6)
MAD 1.51 (1.0, 3.7) 1.22 (1.0, 1.6) 1.27 (1.0, 1.9) 1.45 (0.9, 3.3)

KS 1.96 (1.5, 2.8) 3.22 (1.7, 26.1) 2.63 (1.2,∞) 1.97 (1.6, 2.6)
Eye 1.86 (1.5, 2.5) 1.31 (1.1, 1.8) 1.51 (1.2, 2.0) 1.83 (1.5, 2.4)

Overlap (1.5, 2.5) ∅ (1.2, 1.6) (1.6, 2.4)

21 (n = 340) 22 (n = 417) 23 (n = 597) 24 (n = 296)

Hall 1.97 (1.5, 2.9) 1.46 (1.2, 1.9) 1.67 (1.3, 2.2) 1.56 (1.2, 2.2)
MAD 1.51 (1.0, 3.3) 1.38 (1.1, 2.0) 1.26 (0.8, 2.9) 1.28 (1.0, 1.7)

KS 2.01 (1.5, 3.0) 3.61 (1.5,∞) 3.67 (2.1, 14.2) 3.44 (2.0, 13.3)
Eye 1.87 (1.5, 2.6) 1.54 (1.2, 2.1) 1.50 (1.2, 1.9) 1.43 (1.1, 2.0)

Overlap (1.5, 2.6) (1.5, 1.9) ∅ ∅
25 (n = 258) 26 (n = 340) 27 (n = 348) 28 (n = 264)

Hall 1.78 (1.3, 2.9) 1.48 (1.1, 2.3) 1.95 (1.5, 2.9) 1.58 (1.2, 2.3)
MAD 1.35 (1.0, 1.9) 1.20 (0.9, 1.7) 1.64 (1.0, 4.7) 1.38 (1.0, 2.4)

KS 4.11 (1.7,∞) 3.57 (2.2, 10.3) 2.80 (1.6, 14.0) 2.70 (1.3,∞)
Eye 1.38 (1.1, 2.0) 1.25 (1.0, 1.7) 1.71 (1.4, 2.4) 1.60 (1.2, 2.3)

Overlap (1.7, 1.9) ∅ (1.6, 2.4) (1.3, 2.3)

from real data. If the interarrival times were measured perfectly, i.e. εi ≡ 0, then 100% of these

intervals would cover the “true value", so our target in this experiment is 100% rather than 95% or

90% as in Section 5.3. If the actual coverage is 100(1− q)%, then we interpret q as the probability

of getting a wrong interval estimate due to the round-off error. It turned out that for all links we

achieved the target percentage, 100%, for both 95% and 90% confidence levels, regardless of the

threshold selection methods. In light of the results of Section 5.3, the 100% coverage could be

expected since the ratio of the Error SD to the observation SD is less than 0.001 for each link. We

have seen from Tables 5.1 and 5.2 that the errors with the ratio of 0.01 had almost no impact on the

coverage probability. Based on this 100% coverage, we conclude that the impact of the round–off

error on the confidence interval estimate from the real data is practically negligible. This allows us

to use the available rough interarrival times to make an inference on the tail index.

The conclusions of the research described in this section are as follows.

1. For the purpose of confidence interval inference on the tail index of the anomalies interarrival

times, the five minute resolution is acceptable.
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2. For most links the confidence intervals obtained using the four data–driven methods of se-

lecting k have a nonempty intersection.

3. Based on the Eye–Ball method, one can be confident that for all links the true value of α is

between 1.0 and 2.7. The most typical range for α is (1.2, 2.3); each interval for half of the

links falls into the range.

5.5 Preliminary results

We collect in this section a number of lemmas to avoid burdening the proofs in Section 5.6

with additional explanations. Many of these lemmas are results established earlier, in such cases

we list their sources. Lemmas for which direct sources could not be found are proven. We denote

by Y , X , ε, the random variables with the same distribution as, respectively, each Yi, Xi, εi.

Lemma 1 states useful properties of the Skorokhod metric. It follows from facts presented on

pp. 47, 48 of [4]. For a sequence of deterministic functions, xn, n ≥ 0, in D[0,∞), we denote

convergence of xn to x0 by xn → x0. The uniform metric on D[0, s] is defined by ||x − y||s :=

sup0≤t≤s |x(t)− y(t)|.

LEMMA 1. Suppose x, xn, y ∈ D[0, s], zn ∈ D[0,∞), for n ≥ 0.

(i) The Skorokhod metric on D[0, s] is bounded above by the uniform metric on D[0, s], i.e.

ds(x, y) ≤ ||x− y||s.

(ii) If ds(xn, x0) → 0, then for all 0 ≤ t ≤ s satisfying t ∈ C(x0), the set of continuity points of

x0, xn(t) → x0(t).

(iii) If ds(xn, x0) → 0 and x0 ∈ C[0, s], the space of continuous functions on [0, s], then we have

the uniform convergence, ||xn − x0||s → 0.

(iv) d∞(zn, z0) → 0 if and only if for any s ∈ C(z0), ds(rszn, rsz0) → 0, where rszn, rsz0 are the

restrictions of zn, z0 to the interval [0, s].

We get the following lemma by combining the results of Lemma 1.
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LEMMA 2. Suppose xn, x ∈ D[0,∞), for n ≥ 0. Then, xn → x in D[0,∞) and x is continuous if

and only if for any s ≥ 0,

||xn − x||s = sup
0≤t≤s

|xn(t)− x(t)| → 0.

LEMMA 3. The functions h1, h2 : D[0,∞) → R defined, for any fixed M, by

h1(x) =

∫ M

0

e−sx(s)ds, h2(x) =

∫ M

1

x(s)s−βds, for β > 1,

are continuous at any function in C[0,∞).

Proof. Suppose xn → x0 in D[0,∞), where x0 is continuous. Then

∣∣∣∣
∫ M

0

e−sxn(s)ds−
∫ M

0

e−sx0(s)ds

∣∣∣∣ ≤
∫ M

0

e−s|xn(s)− x0(s)|ds

≤ sup
0≤s≤M

|xn(s)− x0(s)|
∫ M

0

e−sds

= ||xn − x0||M
∫ M

0

e−s → 0.

The last term goes to 0 by Lemma 2. The same argument is used for the proof of the continuity of

h2.

LEMMA 4. Suppose random processes Dn in D[0,∞), n ≥ 1, satisfy 0 ≤ Dn ≤ 1 and

∀ s ≥ 0, Dn(s)
P→ 0, as n → ∞. (5.1)

Then, ∫ ∞

0

e−sDn(s)ds
P→ 0, as n → ∞.
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Proof. Define

I(n) =

∫ ∞

0

e−sDn(s)ds

=

∫ M

0

e−sDn(s)ds+

∫ ∞

M

e−sDn(s)ds

=: IM(n) + I⋆M(n).

Fix ε > 0 and observe that

P (I(n) > ε) ≤ P
(
IM(n) >

ε

2

)
+ P

(
I⋆M(n) >

ε

2

)
.

Since I⋆M(n) ≤ e−M , we can choose M so large that P (I⋆M(n) > ε/2) = 0. For such a (fixed) M ,

applying lemma 3 and the continuous mapping theorem, the assumption (5.1) implies
∫M

0
e−sDn(s)ds

P→

0. Therefore,

P (I(n) > ε) ≤ P
(
IM(n) >

ε

2

)
→ 0.

LEMMA 5. (i) Suppose x, xn, yn, n ≥ 1, are deterministic functions in D[0,∞). If xn → x in

D[0,∞), and for any s ≥ 0,

‖yn − xn‖s = sup
0≤t≤s

|yn(t)− xn(t)| → 0,

then yn → x in D[0,∞).

(ii) Suppose X,Xn, Yn, n ≥ 1, are random processes in D[0,∞). If Xn ⇒ X , and for any s ≥ 0,

‖Yn −Xn‖s = sup
0≤t≤s

|Yn(t)−Xn(t)| P→ 0,

then Yn ⇒ X in D[0,∞).
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Proof. For (i), by Lemma 2, d∞(yn, xn) → 0. Then, we conclude the claim by the triangle in-

equality. For (ii), by Lemma 1 (i), ds(rsYn, rsXn)
P→ 0, for any s ≥ 0. Then, by Lemma 4,

d∞(Yn, Xn)
P→ 0. We conclude the claim by the Slutsky theorem.

LEMMA 6. The function h : D[0,∞)×D[0,∞) → D[0,∞), defined by

h(x, y) = x ◦ y = x(y(·)), for x, y ∈ D[0,∞), y ≥ 0,

is continuous at (x0, y0), for any x0, y0 ∈ C(0,∞].

Proof. The metric on D[0,∞)×D[0,∞) is given by

dprod((xn, yn), (x0, y0)) = d∞(xn, x0) + d∞(yn, y0),

see p.57 of [4]. Therefore, if (xn, yn) → (x0, y0), then d∞(xn, x0) → 0, and d∞(yn, y0) → 0. Now

observe that

d∞(xn(yn), x0(y0)) ≤ d∞(xn(yn), x0(yn)) + d∞(x0(yn), x0(y0)).

Since x0 is continuous, d∞(x0(yn), x0(y0)) → 0 as d∞(yn, y0) → 0. Next, to show the con-

vergence of d∞(xn(yn), x0(yn)), it suffices to show that, for any s ≥ 0, ||xn(yn) − x0(yn)||s =

sup0≤t≤s |xn(yn(t)) − x0(yn(t))| → 0. Since d∞(xn, x0) → 0 and x0 is continuous on [0,∞),

we can take s′ such that s′ ≥ sup0≤t≤s yn(t) and ||xn − x0||s′ → 0, by Lemma 2. Since, for any

s ≥ 0, ||xn(yn) − x0(yn)||s ≤ ||xn − x0||s′ → 0, we can conclude that d∞(xn(yn), x0(yn)) → 0,

by Lemma 2.

The next lemma follows from Theorem 4.1 in [4].
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LEMMA 7. Suppose {Xi, i ≥ 1} is a sequence of independent nonnegative random variables with

common distribution function F such that F̄ (·) ∈ RV−α. Then

1

k

n∑

i=1

IXi/b(n/k) ⇒ να

in M+(0,∞], the space of Radon measures on (0,∞], where να(x,∞] = x−α, x > 0.

Recall that the function b is defined by P (X > b(t)) = t−1. Part (i) of Lemma 8 follows from

the definition of regular variation and limt→∞ b(t) = ∞; part (ii) was proven as Lemma 4.1 in [44].

It follows from an application of Potter bounds and dominated convergence.

LEMMA 8. Suppose u 7→ P (X > u) ∈ RV−α, for some α > 0. Then

(i) for each u > 0, limt→∞ tP (X > ub(t)) = u−α,

(ii)

lim
z→∞

lim sup
t→∞

∫ ∞

z

tP (X > xb(t))x−1dx = 0.

The next lemma extends the results of Lemma 8 to Y = X + ε.

LEMMA 9. Suppose Y = X + ε, and let F̄Y be the tail distribution of Y . Suppose that u 7→

P (X > u) ∈ RV−α for some α > 0, P (|ε| > x) = o(P (X > x)), and ε is independent of X .

Then

(i) u 7→ P (Y > u) ∈ RV−α.

(ii) limt→∞ F̄Y (t)/F̄X(t) = 1.

(iii) for each u > 0, limt→∞ tP (Y > ub(t)) = u−α.

(iv) for each β > 1− α/2,

lim
z→∞

lim sup
t→∞

∫ ∞

z

tP (Y > yb(t))
dy

yβ
= 0.
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Proof. Statement (i), (ii) are stated and proven in Proposition 3.1 of [86]. For statement (iii),

observe

lim
t→∞

tP (Y > ub(t)) = lim
t→∞

P (Y > ub(t))

P (X > b(t))
= lim

t→∞

P (Y > ub(t))

P (X > ub(t))

P (X > ub(t))

P (X > b(t))
.

By (ii) and F̄X ∈ RV−α from the assumption, we get the conclusion. For statement (iv), set

ft(y) = tP (Y > yb(t))y−β . We want to show

lim
z→∞

lim sup
t→∞

∫ ∞

z

ft(y)dy = 0.

By (iii),

∀ y > 0 ft(y) → y−α−β, as t → ∞.

To conclude that ∫ ∞

z

ft(y)dy →
∫ ∞

z

y−α−βdy, as t → ∞,

we must find a function g such that for t > t0,

ft(y) ≤ g(y) and

∫ ∞

z

g(y)dy < ∞.

By the assumption F̄X ∈ RV−α, we obtain Potter bounds and combine this with (ii), then we get

bounds such that ∀ δ, c > 0, ∃ t0, ∀ t ≥ t0, ∀ y ≥ 1,

(1− c)(1− δ)y−α−δ−β ≤ ft(y) =
P (Y > yb(t))

P (X > yb(t))

P (X > yb(t))

P (X > b(t))
y−β ≤ (1 + c)(1 + δ)y−α+δ−β.

Then g := (1 + c)(1 + δ)y−α+δ−β is integrable if δ < α/2.

The next lemma follows from Remark B.3.8 in [2].
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LEMMA 10. Suppose that F satisfies Assumption 2. Then under Assumption 4,

lim
n−→∞

√
k
(n
k
F̄ (b(n/k)x)− x−α

)
= 0,

locally uniformly for x > 0.

The next result is elementary. It follows for the convergence of characteristic functions.

LEMMA 11. Suppose that random vectors Xn, Yn in R
d are independent for each n and that

Xn ⇒ X and Yn ⇒ Y , where X and Y are independent. Then Xn + Yn ⇒ X + Y.

The next result is known as Vervaat’s lemma. It is stated e.g. in Proposition 3.3 in [4]. Recall

that for a nondecreasing function H , the left–continuous inverse is defined by H←(u) = inf{s :

H(s) ≥ u}.

LEMMA 12. Suppose Xn, n ≥ 0, is a sequence of random processes in D[0,∞) such that each Xn

has nondecreasing paths and X0 has continuous paths. Define the identity function by e(t) = t.

Then, cn(Xn − e) ⇒ X0 implies that cn(X
←
n − e) ⇒ −X0.

The last lemma is well–known, see e.g. Lemma 9.1 in [4].

LEMMA 13. Suppose that α > 0 and β > 1− α/2. If W is the standard Wiener process, then for

some a, b ∈ R,

a

∫ 1

0

W (s)s
β−1
α
−1ds− bW (1)

d
= N

(
0,

2a2α2

(α + β − 1)(α + 2β − 2)
− 2abα

α + β − 1
+ b2

)
. (5.2)

Proof. Since a linear combination of Gaussian random variables is still Gaussian, the left side

of (5.2) is Gaussian with mean 0. To get its variance, we observe that

E

(
a

∫ 1

0

W (s)s
β−1
α
−1ds− bW (1)

)2

= E

(
a2
∫ 1

0

W (s)s
β−1
α
−1ds

∫ 1

0

W (u)u
β−1
α
−1du− 2ab

∫ 1

0

W (s)W (1)s
β−1
α
−1ds+ b2W (1)2

)
.

142



Using E (W (s)W (u)) = s ∧ u, we get

E

(
a

∫ 1

0

W (s)s
β−1
α
−1ds− bW (1)

)2

= 2a2
∫ 1

0

∫ u

0

s ∧ u s
β−1
α
−1dsu

β−1
α
−1du− 2ab

∫ 1

0

s ∧ 1 s
β−1
α
−1ds+ b2

=
2a2α2

(α + β − 1)(α + 2β − 2)
− 2abα

α + β − 1
+ b2.

5.6 Proofs of the main results

5.6.1 Proof of Theorem 1

We begin by proving a couple of lemmas. The following fundamental lemma is known if there

are no errors, i.e. FY = FX . Using the results of Section 5.5, we can prove it in our setting.

LEMMA 1. Let {Ei, i ≥ 1} be i.i.d. exponential random variables with mean 1. Set Sn =
∑n

i=1 Ei

and define

φ̂n(s) =
n

k
F̄Y (b(n/k)s

−1/α)
Sn+1

n
, s > 0. (5.1)

Then under Assumptions 1, 6,

φ̂n(·) P→ e in D[0,∞). (5.2)

where e is the identity function, e(x) = x.

Proof. By Lemma 9 (iii) and Lemma 2, n
k
F̄Y (b(n/k)(·)−1/α) → e in D[0,∞). Observe that for

any s > 0,

sup
0≤t≤s

∣∣∣φ̂n(t)−
n

k
F̄Y (b(n/k)t

−1/α)
∣∣∣ ≤ sup

0≤t≤s

n

k
F̄Y (b(n/k)t

−1/α)

∣∣∣∣
Sn+1

n
− 1

∣∣∣∣ .
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Since n/kF̄Y (b(n/k)t
−1/α) → t, for all 0 ≤ t ≤ s, by Lemma 9 (iii), and Sn+1/n

P→ 1 by the

weak law of large numbers, we obtain

sup
0≤t≤s

∣∣∣φ̂n(t)−
n

k
F̄Y (b(n/k)t

−1/α)
∣∣∣ P→ 0.

By Lemma 5 (ii), we get the conclusion.

Denote by να the measure in M+(0,∞], the space of Radon measures on (0,∞], defined by

να(x,∞] = x−α, x > 0.

LEMMA 2. Under Assumptions 1 and 6, νn = 1
k

∑n
i=1 IYi/b(n/k) ⇒ να in M+(0,∞].

Proof. By Lemma 7, it suffices to verify that

d

(
1

k

n∑

i=1

IYi/b(n/k),
1

k

n∑

i=1

IXi/b(n/k)

)
P−→ 0.

The vague metric d(·, ·) on M+(0,∞] is defined by

d(µ1, µ2) =
∞∑

i=1

|µ1(fi)− µ2(fi)| ∧ 1

2i
, µ1, µ2 ∈ M+(0,∞],

for some fi ∈ C+
K(0,∞] where C+

K(0,∞] is the space of continuous function with compact sup-

port. By the definition of the vague metric d on M+(0,∞] and Lemma 3.7 of [44], it suffices to

show that, for any f ∈ C+
K((0,∞]), τ > 0,

P

(∣∣∣∣∣
1

k

n∑

i=1

f
( Yi

b(n/k)

)
− 1

k

n∑

i=1

f
( Xi

b(n/k)

)∣∣∣∣∣ > τ

)
P−→ 0.

Since f has compact support in (0,∞], set s := inf{supp(f)} > 0.
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Also, since f is uniformly continuous,

wη(f) := sup
|x−y|≤η, x,y∈(0,∞]

|f(x)− f(y)| −→ 0, η −→ 0.

Fix τ > 0. Let

G(n) =
1

k

n∑

i=1

∣∣∣∣f
( Yi

b(n/k)

)
− f

( Xi

b(n/k)

)∣∣∣∣ .

Observe that

P

(∣∣∣∣∣
1

k

n∑

i=1

f
( Yi

b(n/k)

)
− 1

k

n∑

i=1

f
( Xi

b(n/k)

)∣∣∣∣∣ > τ

)

≤ P (G(n) > τ)

≤ P (G(n)IAn > τ/3) + P (G(n)IBn > τ/3) + P (G(n)ICn > τ/3),

where

An =

{
1 ≤ i ≤ n :

∣∣∣∣
Yi

b(n/k)
− Xi

b(n/k)

∣∣∣∣ ≤ η,
Xi

b(n/k)
≥ s− η

}
,

Bn =

{
1 ≤ i ≤ n :

∣∣∣∣
Yi

b(n/k)
− Xi

b(n/k)

∣∣∣∣ ≤ η,
Xi

b(n/k)
< s− η

}
,

and

Cn =

{
1 ≤ i ≤ n :

∣∣∣∣
Yi

b(n/k)
− Xi

b(n/k)

∣∣∣∣ > η
}
,

for 0 < η < s/2. We start with the bound

P (G(n)IAn > τ/3) ≤ P
(
wη(f)

1

k

n∑

i=1

IXi/b(n/k)[s− η,∞) > τ/3
)
.

By Lemma 7, and taking sufficiently small η,

P (G(n)IAn > τ/3) ≤ P
(
wη(f)(s− η)−α > τ/3

)
= 0.
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Next,

P (G(n)IBn > τ/3) = 0,

since

Yi

b(n/k)
,

Xi

b(n/k)
< s, for all i ∈ Bn.

By Markov’s inequality,

P (G(n)ICn > τ/3) ≤ 3n

kτ
E

[ ∣∣∣∣f
( Yi

b(n/k)

)
− f

( Xi

b(n/k)

)∣∣∣∣ ICn

]

≤
6 supx∈(s,∞] |f(x)|

τ

P
(∣∣∣ Yi

b(n/k)
− Xi

b(n/k)

∣∣∣ > η
)

P (X1 > b(n/k))

≤
6 supx∈(s,∞] |f(x)|

τ

P (|εi| > ηb(n/k))

P (X1 > ηb(n/k))

P (X1 > ηb(n/k))

P (X1 > b(n/k))
.

Since supx∈(s,∞] |f(x)| < ∞, P (|εi| > ηb(n/k))/P (X1 > ηb(n/k)) −→ 0 by Assumption 6, and

P (X1 > ηb(n/k))/P (X1 > b(n/k)) −→ η−α, we obtain P (G(n)ICn > τ/3) −→ 0.

The proof of the following lemma is basically the same as the proof in Proposition 2.4.2 of [44],

so we skip it.

LEMMA 3. Under Assumptions 1 and 6, Y(k)/b(n/k)
P→ 1.

Proof of Theorem 1: For (5.6), we use the technique developed in the proof of Theorem 9.1 of [4].

We work with the Yi which are observed with errors, whereas Theorem 9.1 of [4] applies to the

unobservable Xi. We must show that the effect of the errors εi is negligible in every step of the

proof.

Suppose {Ei, i ≥ 1} are i.i.d. exponential random variables with mean 1. Set Sn =
∑n

i=1 Ei,

then
√
k

(
1

k

n∑

i=1

ISi≤kx − x

)
⇒ W (x), in D[0,∞), (5.3)
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which is established in the proof of Theorem 9.1 of [4]. Consider the functions φ̂n defined by (5.1).

Combining (5.3) and (5.2), we obtain the joint convergence in D[0,∞)×D[0,∞),

(
√
k

(
1

k

n∑

i=1

ISi≤k· − e

)
, φ̂n(·)

)
⇒ (W (·), e).

By Lemma 6 and the continuous mapping theorem, we have

√
k

(
1

k

n∑

i=1

ISi≤kφ̂n(·)
− φ̂n(·)

)
⇒ W (·) in D[0,∞). (5.4)

Recall that if Z ∼ Gamma(α = a, β = 1), V ∼ Gamma(α = b, β = 1), and Z and V are

independent, then Z/(Z + V ) ∼ Beta(a, b). Therefore,

(
S1

Sn+1

, · · · , Sn

Sn+1

)
d
=

(
1− Sn

Sn+1

, · · · , 1− S1

Sn+1

)
d
=(U(n), . . . , U(1)),

where U(n) ≤ . . . ≤ U(1) are the order statistics of i.i.d. U(0, 1) random variables U1, . . . , Un.

Using the fact that F←Y (Ui) = Yi, one can easily verify that

1

k

n∑

i=1

ISi≤kφ̂n(s)

d
= νn[s

−1/α,∞).

The verification is the same as shown in the proof of Theorem 9.1 of [4], which uses the fact that

F←X (Ui) = Xi, so we skip it.

To complete (5.6), it remains to show that

sup
0≤t≤s

√
k

∣∣∣∣φ̂n(t)− Eνn[t
−1/α,∞)

∣∣∣∣
P→ 0. (5.5)

Observe that for any s > 0

sup
0≤t≤s

√
k
∣∣∣φ̂n(t)− Eνn[t

−1/α,∞)
∣∣∣ = sup

0≤t≤s

n

k
F̄Y (b(n/k)t

−1/α)

√
k

n

∣∣∣∣
Sn+1 − n√

n

∣∣∣∣ .
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Since n/kF̄Y (b(n/k)t
−1/α) → t, for all 0 ≤ t ≤ s, by Lemma 9 (iii), and using |(Sn+1−n)/

√
n| =

Op(1), which follows from the central limit theorem, we obtain (5.5).

For (5.7), by (5.6) and Lemma 3, we have the following joint weak convergence:

(
√
k

(
1

k

n∑

i=1

IYi/b(n/k)(y,∞]− n

k
F̄Y (b(n/k)y)

)
,

Y(k)

b(n/k)

)
⇒ (W (y−α), 1).

By Lemma 3 and the continuous mapping theorem, we get (5.7).

5.6.2 Proof of Theorem 2

Proof of Theorem 2: From (5.7), we obtain,

√
k(ν̂n(s,∞]− Eν̂n(s,∞]) ⇒ W (s−1/α) in D(0,∞]. (5.6)

If we apply the map

x 7→
∫ ∞

1

x(s)
ds

sβ
(5.7)

to (5.6), we can conclude the claim. The steps of the justification of the use of the map (5.7) are

similar to those developed on pp. 298-299 of [4]. We provide the details since we work with the

observations Yi, which include the measurement errors εi.

The verification is based on triangular array convergence argument, see Theorem 3.2 in [26].

Set

Un =

∫ ∞

1

√
k

(
1

k

n∑

i=1

IYi/Y(k)
(s,∞]− n

k
F̄Y (Y(k)s)

)
s−βds, U =

∫ ∞

1

W (s−α)s−βds;

U (M)
n =

∫ M

1

√
k

(
1

k

n∑

i=1

IYi/Y(k)
(s,∞]− n

k
F̄Y (Y(k)s)

)
s−βds, U (M) =

∫ M

1

W (s−α)s−βds.

To establish the desired convergence Un ⇒ U , we must verify that

∀ M > 1, U (M)
n ⇒ U (M), as (5.2); (5.8)
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U (M) ⇒ U, as M → ∞; (5.9)

∀ ε > 0, lim
M→∞

lim sup
n→∞

P
(
|U (M)

n − Un| > ε
)
= 0. (5.10)

Convergence (5.8) follows from Theorem 1, Lemma 3 and the continuous mapping theorem. Con-

vergence (5.9) holds since

P

(∫ ∞

M

W (s−α)s−βds > δ

)
≤ 1

δ2α2
E



(∫ M−α

0

W (s)s
β−1
α
−1ds

)2

→ 0.

Convergence (5.10) is equivalent to

∀ ε > 0, lim
M→∞

lim sup
n→∞

P

(
√
k

∫ ∞

M

∣∣∣∣∣
1

k

n∑

i=1

IYi/Y(k)
(s,∞]− n

k
F̄Y (Y(k)s)

∣∣∣∣∣ s
−βds > ε

)
= 0.

Fix ε > 0 and η > 0. Observe that

P

(
√
k

∫ ∞

M

∣∣∣∣∣
1

k

n∑

i=1

IYi/Y(k)
(s,∞]− n

k
F̄Y (Y(k)s)

∣∣∣∣∣ s
−βds > ε

)
≤ Q1(n) +Q2(n),

where

Q1(n) = P

(
√
k

∫ ∞

M

∣∣∣∣∣
1

k

n∑

i=1

IYi/Y(k)
(s,∞]− n

k
F̄Y (Y(k)s)

∣∣∣∣∣ s
−βds > ε,

∣∣∣∣
Y(k)

b(n/k)
− 1

∣∣∣∣ < η

)
,

Q2(n) = P

(∣∣∣∣
Y(k)

b(n/k)
− 1

∣∣∣∣ ≥ η

)
.

By Lemma 3, lim supn→∞Q2(n) = 0, so we focus on Q1(n). Since Y(k)/b(n/k) > 1− η, with the

change of variable s = ub(n/k)/Y(k),

Q1(n) ≤ P

(
√
k

∫ ∞

M(1−η)

∣∣∣∣∣
1

k

n∑

i=1

IYi/b(n/k)(u,∞]− n

k
F̄Y (b(n/k)u)

∣∣∣∣∣u
−βdu > ε

)
.
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By Chebychev’s inequality,

Q1(n) ≤
k

ε2
E



(∫ ∞

M(1−η)

∣∣∣∣∣
1

k

n∑

i=1

IYi/b(n/k)(u,∞]− n

k
F̄Y (b(n/k)u)

∣∣∣∣∣u
−βdu

)2



≤ k

ε2

∫ ∞

M(1−η)

E



(
1

k

n∑

i=1

IYi/b(n/k)(u,∞]− n

k
F̄Y (b(n/k)u)

)2

 u−βdu

≤ 1

ε2

∫ ∞

M(1−η)

n

k
F̄Y (b(n/k)u)u

−βdu → 0,

as M → ∞, by Lemma 9 (iv).

5.6.3 Proof of Theorem 3

Proposition 1 below is a key argument needed to prove Theorem 3 under second order regular

variation. Lemmas 1, 2, and 3 are preparations for its proof.

Lemma 1 states, in a modified form, some results established in the proof of Theorem 3.2

of [88]. Its proof basically follows the arguments on pp. 150, 151 of [88], so we do not present it.

LEMMA 1. Under Assumptions 2 and 7, we have

lim
t→∞

∫ t/2

0

t{(1− u/t)−α − 1}dFε(u) = lim
t→∞

∫ ∞

0

t{(1− u/t)−α − 1}dFε(u) = αE[εIε≥0],

lim
t→∞

∫ 0

−t/2

t{(1− u/t)−α − 1}dFε(u) = lim
t→∞

∫ 0

−∞

t{(1− u/t)−α − 1}dFε(u) = αE[εIε≤0],

lim
t→∞

∫ t/2

0

F̄X(t(1− u/t))− (1− u/t)−αF̄X(t)

F̄X(t)g(t)
dFε(u) = 0,

and

lim
t→∞

∫ 0

−t/2

F̄X(t(1− u/t))− (1− u/t)−αF̄X(t)

F̄X(t)g(t)
dFε(u) = 0.

LEMMA 2. Under Assumptions 2 and 7,

lim
t→∞

P (|ε| > t)

F̄X(t)g(t)
= 0.
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Proof. Since F̄X(·)g(·) ∈ RV−α+ρ, F̄X(t)g(t) = t−α+ρL(t), where L is a slowly varying function.

Observe that

P (|ε| > t)

F̄X(t)g(t)
=

P (|ε| > t)

t−κ
t−κ

F̄X(t)g(t)
=

P (|ε| > t)

t−κ
1

t−α+ρ+κL(t)
.

By Assumption 7, limt→∞ P (|ε| > t)/t−κ = 0. Also, by Proposition 2.6 (i) of [4], t−α+ρ+κL(t) ∈

RV−α+ρ+κ goes to ∞, as t → ∞.

LEMMA 3. Under Assumptions 2 and 7,

lim
t→∞

∫ t/2

0

F̄ε(t− u)− F̄ε(t)

F̄X(t)g(t)
dFX(u) = 0.

Proof. Set qt(u) = F̄ε(t(1− u/t))/(F̄X(t)g(t)). We want to show

lim
t→∞

∫ t/2

0

qt(u)dFX(u) = 0 (5.11)

so that we conclude the claim. By Assumption 2, 7,

∀ 1

2
≤ x ≤ 1,

F̄ε(tx)

F̄X(t)g(t)
=

F̄ε(tx)

F̄X(tx)g(tx)

F̄X(tx)g(tx)

F̄X(t)g(t)
→ 0, as t → ∞.

By Proposition B.1.9 of [2], we get an upper bound such that ∀ η > 0, ∃ t0, c > 0, ∀ t ≥ t0,

∀ 1
2
≤ x ≤ 1,

F̄ε(tx)

F̄X(tx)g(tx)

F̄X(tx)g(tx)

F̄X(t)g(t)
≤ cx−α+ρ−η.

Since cx−α+ρ−η ≤ c2α−ρ+η, we get (5.11).

In the following proposition we investigate the asymptotic behavior of F̄Y . Its proof is mo-

tivated by Theorem 3.2 of [88], which describes how two i.i.d. second–order regularly varying

variables behave under convolution. We study in Proposition 1 the convolution of a second–order
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regularly varying variable and an error. The behavior of the convolution depends on whether or

not limt→∞ tg(t) is finite. By Proposition 2.6 (i) in [4], if ρ > −1, then limt→∞ tg(t) = ∞, and if

ρ < −1, then limt→∞ tg(t) = 0. For ρ = −1, limt→∞ tg(t) can be finite or infinity.

PROPOSITION 1. Under Assumptions 2 and 7, there exist two functions g̃ and H̃ such that

lim
t→∞

1

g̃(t)

(
F̄Y (tx)

F̄X(t)
− x−α

)
= H̃(x),

for x > 0.

(i) if ρ ≥ −1 and limt→∞ tg(t) = ∞, then g̃(t) = g(t) and H̃(x) = H(x).

(ii) if ρ ≤ −1 and l = limt→∞ tg(t) < ∞, then g̃(t) = t−1 and H̃(x) = lH(x) + αx−α−1E[ε].

Proof. Use the decomposition

P (X + ε > t) = P (X + ε > t,X ∨ ε > t) + P (X + ε > t,X ∨ ε ≤ t)

=: P1(t) + P2(t).

First, considering P1(t), we obtain

P1(t) = P (X > t) + P (ε > t)− P (X > t, ε > t)−
∫ 0

−∞

(F̄X(t− u)− F̄X(t))dFε(u).

Observe that

P1(tx)− x−αF̄X(t)

F̄X(t)g̃(t)
=

g(t)

g̃(t)

[
P (X > tx)− x−αF̄X(t)

F̄X(t)g(t)
+

g(tx)

g(t)

F̄X(tx)

F̄X(t)

P (ε > tx)

F̄X(tx)g(tx)

− g(tx)

g(t)

P (X > tx)

F̄X(t)

P (ε > tx)

g(tx)

+
F̄X(tx)

F̄X(t)

g(tx)

g(t)

∫ 0

−∞

F̄X(tx(1− u/(tx)))− (1− u/(tx))−αF̄X(tx)

F̄X(tx)g(tx)
dFε(u)

]

+
1

tg̃(t)

[
F̄X(tx)

xF̄X(t)

∫ 0

−∞

tx{(1− u/(tx))−α − 1}dFε(u)

]

=:
g(t)

g̃(t)
P11(tx) +

1

tg̃(t)
P12(tx).
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Now, we use another decomposition for P2(t) such that

P2(t) =P (X + ε > t,X ∨ ε ≤ t,X ∧ ε ≤ t/2) + P (X + ε > t,X ∨ ε ≤ t,X ∧ ε ≥ t/2)

=

∫ t/2

0

(F̄X(t− u)− F̄X(t))dFε(u) +

∫ t/2

0

(F̄ε(t− u)− F̄ε(t))dFX(u)

+ (F̄X(t/2)− F̄X(t))(F̄ε(t/2)− F̄ε(t)).

Then,

P2(tx)

F̄X(t)g̃(t)
=

g(t)

g̃(t)

[
F̄X(tx)

F̄X(t)

g(tx)

g(t)

∫ tx/2

0

F̄X(tx(1− u/(tx)))− (1− u/(tx))−αF̄X(tx)

F̄X(tx)g(tx)
dFε(u)

+
F̄X(tx)

F̄X(t)

g(tx)

g(t)

∫ tx/2

0

F̄ε(tx− u)− F̄ε(tx)

F̄X(tx)g(tx)
dFX(u)

]

+
1

tg̃(t)

[
F̄X(tx)

xF̄X(t)

∫ tx/2

0

tx{(1− u/(tx))−α − 1}dFε(u)

]

+
F̄X(t)

g̃(t)

[
F̄X(tx/2)− F̄X(tx)

F̄X(t)

F̄ε(tx/2)− F̄ε(tx)

F̄X(t)

]

=:
g(t)

g̃(t)
P21(tx) +

1

tg̃(t)
P22(tx) +

F̄X(t)

g̃(t)
P23(tx).

Therefore,

P (X + ε > tx)− x−αF̄X(t)

F̄X(t)g̃(t)

=
P1(tx)− x−αF̄X(t)

F̄X(t)g̃(t)
+

P2(tx)

F̄X(t)g̃(t)

=
g(t)

g̃(t)
P11(tx) +

1

tg̃(t)
P12(tx) +

g(t)

g̃(t)
P21(tx) +

1

tg̃(t)
P22(tx) +

F̄X(t)

g̃(t)
P23(tx).

By Assumption 2, and Lemmas 1, 2, 3, limt→∞ P11(tx) = H(x), limt→∞ P21(tx) = limt→∞ P23(tx) =

0, limt→∞ P12(tx) = αx−α−1E[εIε≤0], and limt→∞ P22(tx) = αx−α−1E[εIε≥0]. Thus, we con-

clude the proof with the choices of H̃(x) and g̃(x).
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LEMMA 4. Under Assumptions 2, 4, and 7,

lim
n−→∞

√
k
(n
k
F̄Y (b(n/k)y)− y−α

)
= 0, (5.12)

locally uniformly in (0,∞) and for any β > 1− α/2,

lim
n−→∞

√
k

∫ ∞

1

(n
k
F̄Y (b(n/k)s)− s−α

) ds

sβ
= 0. (5.13)

Proof. Observe that

√
k
(n
k
F̄Y (b(n/k)y)− y−α

)

=
√
k
(n
k
F̄X(b(n/k)y)− y−α

)
+
√
k
(n
k
F̄Y (b(n/k)y)−

n

k
F̄X(b(n/k)y)

)
.

Since the local uniform convergence of the first part holds by Lemma 10, it suffices to show that

for any 0 < s1 ≤ s2,

sup
s1≤t≤s2

√
k

∣∣∣∣
n

k
F̄Y (b(n/k)t)−

n

k
F̄X(b(n/k)t)

∣∣∣∣→ 0. (5.14)

Then, we get (5.12) by Lemma 5 (i). To show (5.14), first observe that for y > 0,

|F̄Y (y)− F̄X(y)| = |P (X + ε > y)− P (X > y)|

≤ P (ε > y/2) +

∫ y/2

0

F̄X(y − u)− F̄X(y)dFε(u).
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Then we obtain

sup
s1≤t≤s2

√
k

∣∣∣∣
n

k
F̄Y (b(n/k)t)−

n

k
F̄X(b(n/k)t)

∣∣∣∣

≤ sup
s1≤t≤s2

√
kg(b(n/k))

{
P (ε > b(n/k)t/2)

F̄X(b(n/k))g(b(n/k))

+

∫ b(n/k)t/2

0

F̄X(b(n/k)t− u)− F̄X(b(n/k)t)

F̄X(b(n/k))g(b(n/k))
dFε(u)

}
→ 0,

by Assumptions 2, 4, 7, and Lemma 1.

Next, for (5.13), by Lemma 1,

n

k
F̄Y (b(n/k)y)− y−α ∼ g̃(b(n/k))H̃(y)

as (5.2), for y ≥ 1. To conclude that

lim
n−→∞

√
k

∫ ∞

1

(n
k
F̄Y (b(n/k)s)− s−α

) ds

sβ
= lim

n−→∞
√
kg̃(b(n/k))

∫ ∞

1

H̃(s)
ds

sβ
= 0,

we must find a function q such that for t > t0,

F̄Y (b(t)y)

F̄X(b(t))
y−β − y−α−β ≤ q(y) and

∫ ∞

1

q(y)dy < ∞.

By Assumption 2, Lemma 9 (ii), and Potter bounds, ∀ δ, c > 0, ∃ t0, ∀ t ≥ t0, ∀ y ≥ 1,

F̄Y (b(t)y)

F̄X(b(t)y)

F̄X(b(t)y)

F̄X(b(t))
y−β − y−α−β ≤ (1 + c)(1 + δ)y−α+δ−β − y−α−β.

Then q := (1 + c)(1 + δ)y−α+δ−β − y−α−β is integrable if δ < α/2.

LEMMA 5. Under Assumptions 3, 5, and 8, (5.12) holds locally uniformly in [1,∞) and (5.13)

holds.
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Proof. To prove (5.12), it suffices to show that for any s ≥ 1,

sup
1≤z≤s

√
k

∣∣∣∣
n

k
F̄Y (b(n/k)z)− z−α

∣∣∣∣→ 0,

by Lemma 2. Observe that for y ≥ 1, t ≥ 1,

P (X + ε > ty)

P (X > t)
− y−α

=

∫∞
−∞

∫∞
ty−u

dFX(x)dFε(u)

P (X > t)
− y−α

=

∫ ty−1

−∞

∫∞
ty−u

dFX(x)dFε(u) +
∫∞
ty−1

∫∞
1

dFX(x)dFε(u)

P (X > t)
− y−α

=

∫ ty−1

−∞
(ty − u)−αdFε(u) + P (ε > ty − 1)

P (X > t)
− y−α

=

∫ 0

−∞

(
y − u

t

)−α
− y−αdFε(u) +

∫ ty−1

0

(
y − u

t

)−α
− y−αdFε(u) +

P (ε > ty − 1)

P (X > t)
.

By the mean value theorem, there exists c−(y, u, t) ∈ [y, y − u/t] and c+(y, u, t) ∈ [y − u/t, y]

such that

∣∣∣∣
P (X + ε > ty)

P (X > t)
− y−α

∣∣∣∣

=

∣∣∣∣
∫ 0

−∞

αc−(y, u, t)
−α−1u

t
dFε(u) +

∫ ty−1

0

−αc+(y, u, t)
−α−1u

t
dFε(u) +

P (ε > ty − 1)

P (X > t)

∣∣∣∣

≤ αy−α−1

t

∫ ty−1

−∞

|u|dFε(u) +
P (ε > ty − 1)

P (X > t)
.

Observing

P (ε > ty − 1)

P (X > t)
=

1

t

P (ε > ty − 1)

P (X > ty − 1)(ty − 1)−1
(y − 1/t)−α(ty − 1)−1

t−1

=
1

t
(y − 1/t)−α−1

P (ε > ty − 1)

(ty − 1)−α−1
,
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by Assumption 8, there exists t0 such that ∀ t ≥ t0, ∀ y ≥ 1,

(y − 1/t)−α−1
P (ε > ty − 1)

(ty − 1)−α−1
≤ 2α+1y−α−1M, (5.15)

where M ∈ [0,∞) is an upper bound satisfying P (ε > ty − 1)/(ty − 1)−α−1 ≤ M , ∀ t ≥ t0.

Therefore, for large t,

∣∣∣∣
P (X + ε > ty)

P (X > t)
− y−α

∣∣∣∣ ≤
αy−α−1

t
E|ε|+ 1

t
2α+1y−α−1M,

and then by Assumptions 5, we obtain

sup
1≤z≤s

√
k

∣∣∣∣
n

k
F̄Y (b(n/k)z)− z−α

∣∣∣∣ ≤
√
k

b(n/k)
sup

1≤z≤s
{αz−α−1E|ε|+ 2α+1z−α−1M} → 0.

To verify (5.13), set ft(y) = (y − 1/t)−α−1y−βP (ε > ty − 1)/(ty − 1)−α−1. From (5.15),

there exists t0 such that ∀ t ≥ t0, ∀ y ≥ 1,

ft(y) ≤ 2α+1y−α−1−βM.

Let c :=
∫∞
1

2α+1y−α−1−βMdy < ∞, then by the dominated convergence theorem,

lim sup
t→∞

∫ ∞

1

ft(y)dy ≤ c.

Therefore, by Assumption 5,

√
k

∫ ∞

1

∣∣∣∣
n

k
F̄Y (b(n/k)y)− y−α

∣∣∣∣
dy

yβ
≤

√
k

b(n/k)

∫ ∞

1

αy−α−1−βE|ε|+ fb(n/k)(y)dy → 0.
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LEMMA 6. Under either Assumptions 2, 4, and 7 (2RV case) or Assumptions 3, 5, and 8 (Pareto

case), for any τ ∈ R,
√
k

((
Y(k)

b(n/k)

)τ

− 1

)
⇒ τ

α
W (1).

Proof. Set γ = 1/α and observe

√
k(νn(y

−γ,∞]− y)

=
√
k
(
νn(y

−γ,∞]− n

k
F̄Y (b(n/k)y

−γ)
)
+
√
k
(n
k
F̄Y (b(n/k)y

−γ)− y
)
.

By Lemma 5 (ii), Theorem 1, and (5.12), we obtain

√
k(νn(y

−γ,∞]− y) ⇒ W (y−γ),

for y > 0 under Assumptions 2, 4, and 7 (2RV case), and for y ≥ 1 under Assumptions 3, 5, and 8

(Pareto case). Then, by Lemma 12,

√
k
(
νn((·)−γ,∞]←(t)− t

)
⇒ −W (t−γ).

Since νn((·))−γ,∞])←(t) = inf{s : νn(s−γ,∞]) ≥ t} =
(
Y([kt])/b(n/k)

)−α
, we have

√
k

((
Y([kt])

b(n/k)

)−α
− t

)
⇒ −W (t−γ).

By the delta method,
√
k

((
Y(k)

b(n/k)

)τ

− 1

)
⇒ τ

α
W (1).
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Proof of Theorem 3 : We start with the decomposition

√
k

(∫ ∞

1

n∑

i=1

IYi/Y(k)
(s,∞]s−βds− 1

α + β − 1

)

=
√
k

(∫ ∞

1

n∑

i=1

IYi/Y(k)
(s,∞]s−βds−

∫ ∞

1

n

k
F̄Y (Y(k)s)s

−βds

)

+
√
k

(∫ ∞

1

n

k
F̄Y (Y(k)s)s

−βds−
∫ ∞

1

n

k
F̄Y (b(n/k)s)s

−βds

)

+
√
k

(∫ ∞

1

n

k
F̄Y (b(n/k)s)s

−βds−
∫ ∞

1

s−α−βds

)
.

To establish the asymptotic normality, we verify that

√
k

(
n∑

i=1

IYi/Y(k)
(s,∞]s−βds−

∫ ∞

1

n

k
F̄Y (Y(k)s)s

−βds

)
⇒ 1

α

∫ 1

0

W (s)s
β−1
α
−1ds; (5.16)

√
k

(∫ ∞

1

n

k
F̄Y (Y(k)s)s

−βds−
∫ ∞

1

n

k
F̄Y (b(n/k)s)s

−βds

)
⇒ − 1

α + β − 1
W (1); (5.17)

√
k

(∫ ∞

1

n

k
F̄Y (b(n/k)s)s

−βds−
∫ ∞

1

s−α−βds

)
→ 0; (5.18)

∫ ∞

1

1

k

n∑

i=1

IYi/Y(k)
(s,∞]s−βds−

∫ ∞

1

n

k
F̄Y (Y(k)s)s

−βds is independent of Y(k). (5.19)

Convergence (5.16) follows from Theorem 2, and convergence (5.18) follows from (5.13). Since

E

[ ∫ ∞

1

1

k

n∑

i=1

IYi/Y(k)
(s,∞]s−βds−

∫ ∞

1

n

k
F̄ (Y(k)s)s

−βds

∣∣∣∣ Y(k)

]
= 0,

we get (5.19). Once we show (5.17), we can get the conclusion by Lemma 11.

To verify (5.17), first consider when β = 1 (for the Hill estimator). Observe that

√
k

∫ b(n/k)

Y(k)

n

k
F̄Y (s)s

−1ds =
√
k

∫ 1

Y(k)/b(n/k)

n

k
F̄Y (b(n/k)s)s

−1ds.
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By the mean value theorem, there exists s(n) ∈ [Y(k)/b(n/k), 1] such that

√
k

∫ b(n/k)

Y(k)

n

k
F̄Y (s)s

−1ds =
√
k
n

k
F̄Y (b(n/k)s(n))

∫ 1

Y(k)/b(n/k)

s−1ds

=
√
k
n

k
F̄Y (b(n/k)s(n))

(
− log

Y(k)

b(n/k)

)
.

Since s(n)
P→ 1, n/kF̄Y (b(n/k)s(n))

P→ 1 by Lemma 9 (iii). Consider the decomposition

√
k

(
− log

Y(k)

b(n/k)

)
=

√
k

(
1− Y(k)

b(n/k)

)
−

√
k

{
log

Y(k)

b(n/k)
−
(

Y(k)

b(n/k)
− 1

)}
.

From Lemma 6,
√
k

(
1− Y(k)

b(n/k)

)
⇒ − 1

α
W (1).

Observe that
√
k log

Y(k)

b(n/k)
=

√
k log

(
1 +

Y(k)

b(n/k)
− 1

)
,

and set εn = Y(k)/b(n/k) − 1. Then, for some cn ∈ (1, 1 + εn), log(1 + εn) = εn − 1
2c2n

ε2n.

Therefore,

√
k

∣∣∣∣ log
Y(k)

b(n/k)
−
(

Y(k)

b(n/k)
− 1

) ∣∣∣∣ =
√
k| log(1 + εn)− εn| ≤

√
kε2n.

Since
√
kεn ⇒ 1/αW (1) from Lemma 6,

√
k

∣∣∣∣ log
Y(k)

b(n/k)
−
(

Y(k)

b(n/k)
− 1

) ∣∣∣∣ ≤
1√
k
(
√
kεn)

2 P→ 0.

We thus conclude that
√
k

(
− log

Y(k)

b(n/k)

)
⇒ − 1

α
W (1),

and prove that (5.17) holds when β = 1.
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For β 6= 1 (the HME), observe that

√
k

(∫ ∞

1

n

k
F̄Y (Y(k)s)s

−βds−
∫ ∞

1

n

k
F̄Y (b(n/k)s)s

−βds

)

=
√
k

(
Y(k)

b(n/k)

)β−1 ∫ 1

Y(k)/b(n/k)

n

k
F̄Y (b(n/k)s)s

−βds

+
√
k

((
Y(k)

b(n/k)

)β−1

− 1

)∫ ∞

1

n

k
F̄Y (b(n/k)s)s

−βds.

By the mean value theorem, there exists s(n) ∈ [Y(k)/b(n/k), 1] such that

√
k

(∫ ∞

1

n

k
F̄Y (Y(k)s)s

−βds−
∫ ∞

1

n

k
F̄Y (b(n/k)s)s

−βds

)

=

(
Y(k)

b(n/k)

)β−1
n

k
F̄Y (b(n/k)s(n))

1

−β + 1

√
k

(
1−

(
Y(k)

b(n/k)

)−β+1
)

+
√
k

((
Y(k)

b(n/k)

)β−1

− 1

)∫ ∞

1

n

k
F̄Y (b(n/k)s)s

−βds.

Then, by Lemmas 9 (iii), 3, 6, and (5.13),

√
k

(∫ ∞

1

n

k
F̄Y (Y(k)s)s

−βds−
∫ ∞

1

n

k
F̄Y (b(n/k)s)s

−βds

)

=
1

−β + 1

(
−−β + 1

α
W (1)

)
+

β − 1

α
W (1)

1

α + β − 1
= − 1

α + β − 1
W (1).
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Appendix A

Supplementary material of Chapter 3

A.1 General definition of regular variation and transforma-

tions to equivalent tails

Let Z = [Z(1), . . . , Z(d)]⊤ be a R
d
+–valued random vector. Suppose that there exist a Radon

measure ν on Ed and sequences {b(j)(n), n ≥ 1} with limn→∞ b(j)(n) = ∞, for j = 1, . . . , d, such

that

nPr

((
Z(j)

b(j)(n)
, j = 1, . . . , d

)
∈ ·
)

v→ ν, in M+(Ed) (A.1)

and for each j = 1, . . . , d

nPr

(
Z(j)

b(j)(n)
∈ ·
)

v→ ναj
, αj > 0, in M+(0,∞]. (A.2)

The sequences {b(j)(n)}, j = 1, . . . , d are defined by Pr(Z(j) > b(j)(n)) = n−1. If conditions

(A.1) and (A.2) hold, we say that Z is regularly varying with marginal indexes α1, . . . , αd.

Two methods are recommended to transform non–standard cases to the standard case with

the tail index α = 1. The first method is to assume that for j = 1, . . . , d the jth marginal tail

asymptotically behaves like a Pareto tail with index αj and then use a power transformation to

make each transformed component regularly varying with α = 1. This method is mathematically

simple, but has the drawback of requiring the estimation of the marginal αjs. The uncertainty

due to the estimation of the αj can be avoided by using the ranks method, see [95], [96]. Let

{Zi = [Z
(1)
i , . . . , Z

(d)
i ], 1 ≤ i ≤ n} be a random sample of Rd

+ random vectors with common

distribution satisfying the global and marginal regular variation conditions (A.1) and (A.2). For
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each fixed j, define the the complementary rank of Z
(j)
i by

r
(j)
i =

n∑

l=1

I
Z

(j)
l ≥Z

(j)
i
, j = 1, . . . , d,

which is the number of jth components at least as large as Z
(j)
i . According to Proposition 9.4

of [4], a simple scaling argument for the tail empirical measure shows that

1

k

n∑

i=1

I(
k/r

(j)
i ; j=1,...,d

) ⇒ ν∗, in M+(Ed),

where ν∗ is the limit measure for the standard case satisfying ν∗([0,x]
c) = ν([0,x1/α]

c
) for α =

[α1, . . . , αd] and ν∗(t·) = t−1ν∗(·). Using this transformation, we can achieve the standard case,

which allows estimation of the standard limit measure ν∗ and the angular measure Γ associated with

ν∗. The disadvantage of this method is that we cannot guarantee the sample {ri = [ri1, . . . , rid], 1 ≤

i ≤ n} to be i.i.d.

A.2 Supplementary graphs and Tables

We conclude this section by presenting the results of the estimation of the EDM between the

rescaled scores ξj/
√

λj . Tables A.7 and A.8 report estimates for the three pairs of the first three

normalized scores, ξ1/
√
λ1, ξ2/

√
λ2, ξ3/

√
λ3, for Walmart and IBM, respectively. It is seen that

there is not much difference in estimates compared to those for non–normalized scores in Ta-

bles 3.2 and A.1.
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Table A.1: Estimates of EDM for IBM stock. Standard errors in parentheses are computed using Theorem 2.

D(+,+)(ξ1, ξ2) D(−,+)(ξ1, ξ2) D(−,−)(ξ1, ξ2) D(+,−)(ξ1, ξ2)

Before 0.07 (0.02) -0.13 (0.03) 0.05 (0.02) -0.08 (0.02)

During 0.07 (0.02) -0.09 (0.02) 0.08 (0.02) -0.08 (0.02)

After 1 0.07 (0.02) -0.06 (0.01) 0.07 (0.02) -0.10 (0.02)

After 2 0.07 (0.02) -0.10 (0.02) 0.10 (0.02) -0.06 (0.02)

D(+,+)(ξ1, ξ3) D(−,+)(ξ1, ξ3) D(−,−)(ξ1, ξ3) D(+,−)(ξ1, ξ3)

Before 0.10 (0.02) -0.08 (0.02) 0.09 (0.02) -0.10 (0.02)

During 0.08 (0.03) -0.10 (0.03) 0.10 (0.03) -0.04 (0.02)

After 1 0.06 (0.02) -0.10 (0.02) 0.07 (0.02) -0.07 (0.02)

After 2 0.06 (0.02) -0.10 (0.02) 0.06 (0.02) -0.06 (0.02)

D(+,+)(ξ2, ξ3) D(−,+)(ξ2, ξ3) D(−,−)(ξ2, ξ3) D(+,−)(ξ2, ξ3)

Before 0.09 (0.03) -0.09 (0.03) 0.04 (0.02) -0.07 (0.03)

During 0.13 (0.03) -0.08 (0.02) 0.09 (0.02) -0.08 (0.02)

After 1 0.08 (0.02) -0.06 (0.02) 0.08 (0.02) -0.09 (0.02)

After 2 0.06 (0.02) -0.08 (0.02) 0.07 (0.02) -0.09 (0.02)

Table A.2: Empirical biases (standard errors) of the estimator of the EDM for Case 2

n D(ξ1, ξ2) D(+,+)(ξ1, ξ2) D(−,+)(ξ1, ξ2) D(−,−)(ξ1, ξ2) D(+,−)(ξ1, ξ2)

200 -0.014 (0.10) -0.011 (0.03) 0.006 (0.04) -0.018 (0.03) 0.008 (0.04)

600 -0.007 (0.09) -0.006 (0.02) 0.005 (0.04) -0.007 (0.02) 0.001 (0.03)

1000 -0.009 (0.09) -0.006 (0.02) 0.003 (0.03) -0.007 (0.02) 0.002 (0.03)

n D(ξ1, ξ3) D(+,+)(ξ1, ξ3) D(−,+)(ξ1, ξ3) D(−,−)(ξ1, ξ3) D(+,−)(ξ1, ξ3)

200 -0.008 (0.05) -0.019 (0.03) 0.014 (0.03) -0.017 (0.03) 0.014 (0.03)

600 -0.002 (0.04) -0.011 (0.03) 0.012 (0.03) -0.015 (0.03) 0.012 (0.03)

1000 -0.002 (0.04) -0.011 (0.03) 0.013 (0.03) -0.014 (0.03) 0.010 (0.03)

n D(ξ2, ξ3) D(+,+)(ξ2, ξ3) D(−,+)(ξ2, ξ3) D(−,−)(ξ2, ξ3) D(+,−)(ξ2, ξ3)

200 -0.003 (0.07) -0.039 (0.03) 0.040 (0.03) -0.042 (0.03) 0.038 (0.05)

600 0.002 (0.06) -0.031 (0.02) 0.032 (0.02) -0.033 (0.03) 0.034 (0.04)

1000 0.001 (0.06) -0.030 (0.02) 0.034 (0.02) -0.031 (0.02) 0.028 (0.04)
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Table A.3: Empirical biases (standard errors) of the estimator of the EDM for Case 3 [full dependence]

n D(ξ1, ξ2) D(+,+)(ξ1, ξ2) D(−,+)(ξ1, ξ2) D(−,−)(ξ1, ξ2) D(+,−)(ξ1, ξ2)

200 0.005 (0.09) -0.053 (0.03) 0.056 (0.03) -0.055 (0.03) 0.057 (0.03)

600 0.005 (0.08) -0.051 (0.02) 0.054 (0.02) -0.053 (0.02) 0.054 (0.02)

1000 0.002 (0.07) -0.052 (0.02) 0.053 (0.02) -0.053 (0.02) 0.054 (0.02)

n D(ξ1, ξ3) D(+,+)(ξ1, ξ3) D(−,+)(ξ1, ξ3) D(−,−)(ξ1, ξ3) D(+,−)(ξ1, ξ3)

200 -0.001 (0.05) -0.081 (0.02) 0.081 (0.02) -0.081 (0.02) 0.081 (0.07)

600 0.001 (0.04) -0.079 (0.01) 0.079 (0.01) -0.079 (0.01) 0.080 (0.06)

1000 0.000 (0.03) -0.079 (0.01) 0.079 (0.01) -0.079 (0.01) 0.079 (0.06)

n D(ξ2, ξ3) D(+,+)(ξ2, ξ3) D(−,+)(ξ2, ξ3) D(−,−)(ξ2, ξ3) D(+,−)(ξ2, ξ3)

200 -0.002 (0.07) -0.037 (0.03) 0.037 (0.03) -0.037 (0.03) 0.035 (0.03)

600 0.002 (0.06) -0.029 (0.03) 0.030 (0.03) -0.030 (0.03) 0.030 (0.02)

1000 -0.001 (0.06) -0.028 (0.02) 0.028 (0.02) -0.029 (0.02) 0.028 (0.02)

Table A.4: Estimated standard errors, computed by (3.1), of the estimator of the EDM for Case 1 [Indepen-

dence]

n D(+,+)(ξ1, ξ2) D(−,+)(ξ1, ξ2) D(−,−)(ξ1, ξ2) D(+,−)(ξ1, ξ2)

200 0.01 0.01 0.01 0.01

600 0.01 0.01 0.01 0.01

1000 0.01 0.01 0.01 0.01

n D(+,+)(ξ1, ξ3) D(−,+)(ξ1, ξ3) D(−,−)(ξ1, ξ3) D(+,−)(ξ1, ξ3)

200 0.01 0.01 0.01 0.01

600 0.01 0.01 0.01 0.01

1000 0.01 0.01 0.01 0.01

n D(+,+)(ξ2, ξ3) D(−,+)(ξ2, ξ3) D(−,−)(ξ2, ξ3) D(+,−)(ξ2, ξ3)

200 0.01 0.01 0.01 0.01

600 0.01 0.01 0.01 0.01

1000 0.01 0.01 0.01 0.01
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Table A.5: Estimated standard errors, computed by (3.1), of the estimator of the EDM for Case 2

n D(+,+)(ξ1, ξ2) D(−,+)(ξ1, ξ2) D(−,−)(ξ1, ξ2) D(+,−)(ξ1, ξ2)

200 0.03 0.02 0.02 0.02

600 0.02 0.02 0.02 0.02

1000 0.02 0.01 0.02 0.01

n D(+,+)(ξ1, ξ3) D(−,+)(ξ1, ξ3) D(−,−)(ξ1, ξ3) D(+,−)(ξ1, ξ3)

200 0.02 0.02 0.02 0.02

600 0.02 0.02 0.02 0.02

1000 0.01 0.01 0.01 0.01

n D(+,+)(ξ2, ξ3) D(−,+)(ξ2, ξ3) D(−,−)(ξ2, ξ3) D(+,−)(ξ2, ξ3)

200 0.03 0.02 0.03 0.02

600 0.02 0.02 0.02 0.02

1000 0.02 0.01 0.02 0.01

Table A.6: Estimated standard errors, computed by (3.1), of the EDM for Case 3 [full dependence]

n D(+,+)(ξ1, ξ2) D(−,+)(ξ1, ξ2) D(−,−)(ξ1, ξ2) D(+,−)(ξ1, ξ2)

200 0.03 0.03 0.03 0.03

600 0.02 0.02 0.02 0.02

1000 0.01 0.01 0.01 0.01

n D(+,+)(ξ1, ξ3) D(−,+)(ξ1, ξ3) D(−,−)(ξ1, ξ3) D(+,−)(ξ1, ξ3)

200 0.02 0.02 0.02 0.02

600 0.01 0.01 0.01 0.01

1000 0.01 0.01 0.01 0.01

n D(+,+)(ξ2, ξ3) D(−,+)(ξ2, ξ3) D(−,−)(ξ2, ξ3) D(+,−)(ξ2, ξ3)

200 0.03 0.03 0.03 0.03

600 0.03 0.03 0.03 0.03

1000 0.02 0.02 0.02 0.02
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Table A.7: Estimates of EDM for Walmart stock. Standard errors in parentheses are computed using Theo-

rem 2.

D(+,+)(ξ1, ξ2) D(−,+)(ξ1, ξ2) D(−,−)(ξ1, ξ2) D(+,−)(ξ1, ξ2)

Before 0.06 (0.02) -0.06 (0.02) 0.07 (0.02) -0.10 (0.02)

During 0.11 (0.02) -0.06 (0.01) 0.08 (0.02) -0.06 (0.01)

After 1 0.11 (0.03) -0.08 (0.02) 0.07 (0.02) -0.06 (0.02)

After 2 0.11 (0.04) -0.07 (0.03) 0.04 (0.02) -0.11 (0.04)

D(+,+)(ξ1, ξ3) D(−,+)(ξ1, ξ3) D(−,−)(ξ1, ξ3) D(+,−)(ξ1, ξ3)

Before 0.08 (0.02) -0.06 (0.02) 0.08 (0.02) -0.06 (0.02)

During 0.08 (0.02) -0.07 (0.02) 0.05 (0.02) -0.08 (0.02)

After 1 0.05 (0.02) -0.11 (0.03) 0.08 (0.03) -0.07 (0.03)

After 2 0.08 (0.03) -0.07 (0.03) 0.07 (0.03) -0.05 (0.02)

D(+,+)(ξ2, ξ3) D(−,+)(ξ2, ξ3) D(−,−)(ξ2, ξ3) D(+,−)(ξ2, ξ3)

Before 0.08 (0.03) -0.09 (0.03) 0.05 (0.02) -0.05 (0.02)

During 0.09 (0.02) -0.08 (0.02) 0.07 (0.02) -0.07 (0.02)

After 1 0.10 (0.02) -0.08 (0.02) 0.09 (0.02) -0.09 (0.02)

After 2 0.07 (0.02) -0.08 (0.02) 0.08 (0.02) -0.06 (0.02)

Table A.8: Estimates of EDM for IBM stock. Standard errors in parentheses are computed using Theorem 2.

D(+,+)(ξ1, ξ2) D(−,+)(ξ1, ξ2) D(−,−)(ξ1, ξ2) D(+,−)(ξ1, ξ2)

Before 0.06 (0.02) -0.13 (0.02) 0.06 (0.02) -0.07 (0.02)

During 0.06 (0.02) -0.07 (0.03) 0.10 (0.02) -0.07 (0.02)

After 1 0.05 (0.02) -0.05 (0.02) 0.08 (0.03) -0.09 (0.03)

After 2 0.06 (0.02) -0.10 (0.02) 0.10 (0.02) -0.06 (0.02)

D(+,+)(ξ1, ξ3) D(−,+)(ξ1, ξ3) D(−,−)(ξ1, ξ3) D(+,−)(ξ1, ξ3)

Before 0.10 (0.02) -0.08 (0.01) 0.08 (0.02) -0.10 (0.02)

During 0.07 (0.03) -0.10 (0.03) 0.10 (0.03) -0.05 (0.02)

After 1 0.08 (0.02) -0.09 (0.02) 0.06 (0.01) -0.06 (0.01)

After 2 0.05 (0.02) -0.12 (0.03) 0.10 (0.03) -0.07 (0.03)

D(+,+)(ξ2, ξ3) D(−,+)(ξ2, ξ3) D(−,−)(ξ2, ξ3) D(+,−)(ξ2, ξ3)

Before 0.11 (0.03) -0.08 (0.02) 0.05 (0.02) -0.09 (0.02)

During 0.14 (0.03) -0.09 (0.03) 0.09 (0.03) -0.08 (0.03)

After 1 0.07 (0.02) -0.07 (0.02) 0.07 (0.02) -0.08 (0.02)

After 2 0.06 (0.02) -0.10 (0.02) 0.06 (0.02) -0.09 (0.02)
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Appendix B

Supplementary material of Chapter 5

B.1 Tables with coverage probabilities for fixed k values

Table B.1: Proportion (in percent) of the asymptotic confidence intervals including 1/α as a function of the

number of upper order statistics, k, for n = 500 and the Pareto model. In the “Ratio" column, the ratio

of error SD to model SD is displayed. Ratio equal to zero indicates no errors. The target coverage is 95

percent.

Ratio
Error k
Type 30 50 100 150 200 250 300 350 400

0 92.5 93.3 94.3 93.9 93.9 94.4 94.5 95.1 95.5

0.01 Normal 92.3 93.3 94.2 94.5 94.2 94.1 94.1 94.9 95.1

scaled t8 92.5 93.1 94.7 94.1 94.4 94.3 94.5 95.1 94.8

GPD 92.4 93.5 94.5 94.1 94.0 94.3 94.1 94.9 95.4

Uniform 92.7 93.6 94.6 94.3 94.5 93.4 94.8 95.3 95.1

0.05 Normal 91.7 93.6 93.9 94.4 92.8 93.1 93.1 94.1 96.0

scaled t8 91.2 94.0 95.2 94.0 93.5 93.3 92.9 94.5 96.2

GPD 91.6 93.6 94.8 94.6 93.3 94.2 93.3 94.4 95.7

Uniform 91.9 93.0 93.7 94.1 93.2 93.4 94.2 94.1 93.8

0.1 Normal 91.0 93.1 92.5 91.4 87.9 87.6 91.0 94.4 67.8

scaled t8 90.0 90.6 86.6 83.2 81.3 89.0 96.4 73.9 2.7

GPD 90.5 92.8 92.8 91.8 91.1 92.4 94.8 95.2 88.0

Uniform 90.4 93.1 93.7 93.3 92.1 89.8 87.5 90.7 89.3

0.2 Normal 90.3 90.2 80.9 71.4 72.9 87.9 93.4 30.5 0.0

scaled t8 88.5 89.3 84.1 84.2 87.0 92.4 93.9 53.1 0.6

GPD 88.6 88.0 87.1 87.1 88.6 94.3 93.9 70.4 9.7

Uniform 89.9 91.9 90.3 85.0 76.1 69.1 87.6 78.5 1.0

0.3 Normal 85.0 81.0 55.5 49.4 71.0 96.3 45.7 0.0 0.0

scaled t8 87.3 84.7 74.1 70.7 78.8 93.4 83.5 5.9 0.0

GPD 84.6 84.0 78.8 84.1 91.5 95.2 72.4 12.2 0.0

Uniform 88.9 88.1 80.4 59.7 44.1 70.9 90.4 5.7 0.0
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Table B.2: Proportion (in percent) of the asymptotic confidence intervals including 1/α as a function of the

number of upper order statistics, k, for n = 2000 and the Pareto model. In the “Ratio" column, the ratio

of error SD to model SD is displayed. Ratio equal to zero indicates no errors. The target coverage is 95

percent.

Ratio
Error k
Type 50 100 200 300 400 500 600 700 800 1500

0 90.1 92.5 94.3 94.8 95.5 94.9 95.4 95 95.4 95.9

0.01 Normal 89.9 92.0 94.0 94.6 95.3 94.9 95.5 94.9 95.4 96.0

scaled t8 90.0 92.5 94.4 94.3 95.4 95.1 95.0 95.0 95.7 95.6

GPD 89.9 92.0 94.8 94.5 95.8 94.7 95.8 95.1 95.1 95.1

Uniform 90.0 92.3 94.2 94.8 95.4 94.8 95.8 94.8 94.9 95.0

0.05 Normal 89.9 92.4 94.1 93.3 94.8 94.5 94.1 94.0 94.1 94.3

scaled t8 89.5 92.8 94.3 94.1 94.8 94.5 94.3 94.4 93.4 94.2

GPD 89.7 91.8 93.9 94.7 94.8 94.4 94.7 93.3 94.1 95.6

Uniform 90.2 91.8 94.5 94.0 94.7 93.9 95.2 94.4 94.0 90.7

0.1 Normal 90.1 91.9 94.6 93.5 93.2 92.6 91.7 90.6 87.4 90.9

scaled t8 90.3 91.6 93.4 93.3 92.2 91.7 88.6 86.5 83.0 73.7

GPD 89.6 92.5 93.1 91.6 90.4 88.2 87.2 85.6 86.3 64.7

Uniform 89.8 90.5 93.5 92.2 89.5 86.2 81.9 74.0 66.5 92.1

0.2 Normal 89.8 91.5 90.4 86.8 76.9 66.1 56.5 47.0 45.2 0.0

scaled t8 90.6 90.9 86.8 80.2 68.0 55.0 48.1 46.5 50.7 0.0

GPD 88.4 88.1 84.6 75.3 68.9 65.7 68.2 74.6 84.1 0.0

Uniform 88.5 89.2 85.1 71.4 49.2 25.7 9.0 2.6 1.0 0.0

0.3 Normal 89.1 88.6 82.9 67.8 56.9 50.7 49.4 54.1 64.6 0.0

scaled t8 88.3 86.1 70.1 43.7 26.9 19.0 18.3 27.0 46.8 0.0

GPD 85.9 79.9 63.6 51.3 45.8 52.1 63.7 79.4 93.5 0.0

Uniform 88.5 85.0 61.4 22.7 3.3 0.1 0.0 0.0 0.5 0.0

178



Table B.3: Proportion (in percent) of the asymptotic confidence intervals including 1/α as a function of

the number of upper order statistics, k, for n = 500 and the 2RV model. In the “Ratio" column, the ratio

of error SD to model SD is displayed. Ratio equal to zero indicates no errors. The target coverage is 95

percent.

Ratio
Error k
Type 30 50 100 150 200 250 300 350 400

0 92.2 92.0 85.8 59.1 23.0 4.9 0.1 0.1 0.0

0.01 Normal 92.0 92.3 85.4 59.1 21.7 4.6 0.2 0.1 0.0

scaled t8 92.2 92.4 86.0 59.3 22.6 4.9 0.1 0.1 0.0

GPD 92.3 92.4 85.9 58.4 22.6 4.7 0.2 0.0 0.0

Uniform 92.1 92.1 85.9 58.7 22.3 4.9 0.2 0.0 0.0

0.05 Normal 90.8 91.2 84.6 53.2 17.8 2.5 0.2 0.0 0.0

scaled t8 90.9 93.2 84.4 55.4 19.6 3.2 0.1 0.0 0.0

GPD 91.0 92.3 85.2 53.9 18.7 3.6 0.2 0.1 0.0

Uniform 91.6 92.5 84.4 53.2 17.6 2.4 0.1 0.1 0.0

0.1 Normal 89.9 91.0 79.0 38.1 10.0 1.4 0.1 0.2 0.4

scaled t8 91.0 91.6 81.5 44.8 13.3 1.9 0.1 0.0 0.0

GPD 90.2 91.5 78.8 45.2 14.2 3.2 0.1 0.1 0.0

Uniform 91.5 91.4 79.8 39.4 8.1 0.6 0.2 0.4 2.5

0.2 Normal 89.0 86.1 49.8 14.0 4.2 2.8 7.3 42.3 91.0

scaled t8 89.4 88.1 63.4 23.9 7.0 2.1 1.5 4.9 49.2

GPD 88.2 85.0 64.2 33.5 14.6 6.8 3.7 3.9 19.6

Uniform 90.2 87.3 55.2 9.3 0.8 0.6 9.0 79.1 38.9

0.3 Normal 85.0 74.3 26.3 6.9 5.8 17.8 74.4 75.5 0.0

scaled t8 86.5 82.1 43.5 15.9 7.4 7.7 22.4 80.4 51.3

GPD 83.3 79.0 53.3 32.0 21.3 20.4 29.3 58.5 92.9

Uniform 84.7 79.5 21.9 1.1 0.2 9.9 83.8 20.5 0.0
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Table B.4: Proportion (in percent) of the asymptotic confidence intervals including 1/α as a function of the

number of upper order statistics, k, for n = 2000 and the 2RV model. In the “Ratio" column, the ratio

of error SD to model SD is displayed. Ratio equal to zero indicates no errors. The target coverage is 95

percent.

Ratio
Error k
Type 50 100 200 300 400 500 600 700 800 1500

0 90.1 92.4 92.6 88.1 73.0 44.4 16.2 2.1 0.1 0.0

0.01 Normal 89.9 91.7 92.7 88.2 73.6 44.2 16.5 2.2 0.1 0.0

scaled t8 90.0 92.5 93.1 88.0 73.2 43.8 16.3 2.3 0.1 0.0

GPD 89.9 91.9 92.5 87.8 72.9 44.0 16.0 2.0 0.1 0.0

Uniform 90.0 92.2 92.3 88.5 72.7 44.2 16.0 1.8 0.1 0.0

0.05 Normal 90.2 91.8 92.3 86.5 68.2 35.4 9.1 0.8 0.0 0.0

scaled t8 90.0 92.2 92.7 86.2 67.7 34.7 8.8 0.6 0.0 0.0

GPD 89.9 91.9 91.6 86.0 68.3 35.9 9.7 0.8 0.0 0.0

Uniform 90.7 91.1 92.0 86.5 67.3 34.5 9.4 0.5 0.0 0.0

0.1 Normal 90.4 91.2 91.3 78.5 45.3 11.6 0.7 0.0 0.0 0.0

scaled t8 90.4 91.5 91.5 81.9 56.0 20.5 2.1 0.1 0.0 0.0

GPD 89.6 92.3 90.0 78.8 49.9 18.3 3.0 0.2 0.0 0.0

Uniform 89.2 90.6 91.9 78.7 50.1 13.6 0.7 0.0 0.0 0.0

0.2 Normal 90.1 88.9 74.2 27.0 2.7 0.0 0.0 0.0 0.0 74.2

scaled t8 90.5 90.3 81.1 48.4 13.4 1.8 0.0 0.0 0.0 8.5

GPD 88.2 87.3 72.9 44.0 16.7 3.8 0.7 0.1 0.0 0.1

Uniform 89.0 88.4 77.8 39.5 3.3 0.0 0.0 0.0 0.0 0.4

0.3 Normal 88.2 82.3 30.6 1.6 0.1 0.0 0.0 0.0 0.0 0.0

scaled t8 88.2 85.2 54.0 13.8 0.7 0.0 0.0 0.0 0.0 3.9

GPD 85.8 78.3 47.9 19.0 6.0 2.9 1.0 0.4 0.3 87.4

Uniform 87.1 83.2 47.9 3.5 0.0 0.0 0.0 0.0 0.0 0.0
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