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ABSTRACT

SOME EFFICIENT OPEN-LOOP CONTROL SOLUTION STRATEGIES FOR DYNAMIC

OPTIMIZATION PROBLEMS AND CONTROL CO-DESIGN

This thesis explores strategies to efficiently solve dynamic optimization (DO) and control co-

design (CCD) problems that arise in early-stage system design studies. The task of design opti-

mization of dynamic systems involves identifying optimal values of the physical elements of the

system and the inputs to effectively control the dynamic behavior of the system to achieve peak

performance.

The problem becomes more complex when designing multidisciplinary systems, where the

coupling between disciplines must be accounted for to achieve optimal performance. Developing

tools and strategies to efficiently and accurately solve these problems is needed.

Conventional design practices involve sequentially optimizing the plant parameters and then

identifying a control scheme for the given plant design. This sequential design procedure does

not often produce system-level optimal solutions. Control co-design or CCD is a design paradigm

that seeks to find system-level optimal design through simultaneous optimization of the plant and

control variables. In this work, both the plant and controls optimization are framed as a integrated

DO problem. We focus on a class of direct methods called direct transcription (DT) to solve these

DO problems.

We start with a subclass of nonlinear dynamic optimization (NLDO) problems for the first

study, namely linear-quadratic dynamic optimization problems (LQDO). For this class of prob-

lems, the objective function is quadratic, and the constraints are linear. Highly efficient and ac-

curate computational tools have been developed for solving LQDO problems on account of their

linear and quadratic problem elements. Their structure facilities the development of automated

solvers. We identify the factors that enable creating these efficient tools and leverage them towards
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solving NLDO problems. We explore three different strategies to solve NLDO problems using

LQDO elements, and analyze the requirements and limits of each approach.

Though multiple studies have used one of the methods to solve a given CCD problem, there is

a lack of investigations identifying the trade-offs between the nested and simultaneous CCD, two

commonly used methods. We build on the results from the first study and solve a detailed active

suspension design using both the nested and simultaneous CCD methods. We look at the impact

of derivative methods, tolerance, and the number of discretization points on the solution accuracy

and computational times. We use the implementation and results from this study to form some

heuristics to choose between simultaneous and nested CCD methods.

A third study involves CCD of a floating offshore wind turbine using the levelized cost of

energy (LCOE) as an objective. The methods and tools developed in the previous studies have

been applied toward solving a complex engineering design problem. The results show that the

impact of optimal control strategies and the importance of adopting an integrated approach for

designing FOWTs to lower the LCOE.
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Chapter 1

Introduction

There is an increasing demand for advanced dynamic multidisciplinary systems that can satisfy

tight performance requirements and exist and operate in adverse environments. A floating offshore

wind turbine (FOWT), aircraft thermal management system, and the drive train of electric vehicles

are examples of such systems [4–6]. The task of designing these systems involves identifying opti-

mal physical parameters of the system and an effective control strategy to satisfy the performance

requirements and ensure these systems’ safety in such environments [7].

Because of the complex nature of these systems, the optimal design is often non-obvious and

identifying the optimal design requires non-conventional methods [8]. Also, conventional design

practices often do not take into account the dynamic nor the multidisciplinary nature of these

systems. Design optimization is the process of identifying the optimal design by using numerical

optimization techniques on a mathematical model of the system [9]. This model of the system

is commonly developed using first-principle methods. For controls, the model can be developed

using system-identification methods. The objective or utility function for the optimization problem

can represent the quantities that must be minimized or maximized. This objective function is

subject to constraints that represent physical behavior, functional limits, time, resources, and failure

modes [10].

Multidisciplinary design optimization (MDO) provides a framework to combine each disci-

pline’s analysis and design considerations by taking into account the coupling that exists between

them. Traditional application of MDO is to design static systems. Thus, the numerical optimiza-

tion problem solved for MDO is a static optimization problem [11]. Though MDO can be used to

design dynamic systems, the complications that arise due to the coupling between time-dependent

quantities can be a challenge. Multidisciplinary dynamic system design optimization (MDSDO) is

a framework defined by Allison and Herber [11]. As defined by the authors, MDSDO:
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“Deals with systems where the evolution of system state through time is a critical

element of performance; where multiple disciplines, energy domains, models or sub-

systems must be integrated; and where the unique properties of dynamic systems are

exploited to improve system performance and yield efficient problem solutions.”

To capture the dynamic behavior of the system, a family of ordinary differential equations is

commonly used. Black box simulations of the system dynamics are a common alternative to ODEs.

The constraints that are placed on the system can be simple upper and lower bound constraints to

limit the range of the trajectories or complex algebraic constraints to impose specific trajectories

that the system states must follow. The goals of the system are expressed in terms of an objective

function. The resulting MDSDO problem formulations are dynamic optimization problems. When

these problems involve finding a control strategy, they are also known as optimal control problems.

Thus, the task of design optimization of dynamic systems involves solving a dynamic optimization

problem that is subject to a set of constraints on the system’s behavior. The problem becomes more

complex when designing multidisciplinary systems, where the coupling between disciplines must

be accounted for to achieve optimal performance. Efficient tools and strategies to accurately solve

these problems are needed.

The primary application of these integrated design methods has been on structural design ap-

plications, but recently, the applicability of these methods to design renewable energy systems has

been identified by experts [6, 12, 13]. These integrated design methods have recently been applied

to modern renewable energy systems like land-based wind turbines, hydrokinetic turbines, wave

energy extractors, and airborne wind energy systems [14–17]. These renewable energy systems are

highly dynamic, and there are strong interactions between the different aspects of these systems.

As the size of these systems increases as the technology advances, the complexities of the interac-

tions within the systems and between other systems in the same environment increases, such as grid

integration, offshore deployment, and environmental impacts. To account for these considerations,

a systems engineering approach needs to be adopted towards the design of these systems [18].
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1.1 Dynamic System Design Optimization

Using optimization techniques to solve a given design problem involves reformulating the sys-

tem’s design goals and requirements into elements appropriate for inclusion in an optimization

problem. Mathematically, the full problem is represented as:

min
x

f(x) (1.1a)

subject to: h(x) = 0 (1.1b)

g(x) ≤ 0 (1.1c)

A given optimization problem has the following elements:

1. A set of variables that represent the different aspects of the system. These are also called

design variables. Ultimately these are choices that the designer can make.

2. The objective function that represents overarching goals for the system.

3. The constraint equations that represent the inherent restrictions in the system and limits that

are externally placed. There are two kinds of constraints, equality constraints, where the

constraint equation must be equal to a given value, and inequality constraints where the

constraint equation must be lesser than or greater than a given value.

Using an example of design of floating offshore wind turbine (FOWT), the design tasks are refor-

mulated in terms of an optimization problem as follows:

1. Design variables for a FOWT design problem can be the tower height, tower thickness, blade

length, and platform mass. The control variables for the problem are the generator torque

and the blade pitch.

2. The objective function is to minimize the cost of the tower and maximize the power captured

by this system.

3. The constraints can be for example to limit the tower bending moment, limit the rotor speed

etc.
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where x is the vector of design variables, f denotes the objective function, and (h, g) represent

the equality and inequality constraints, respectively.

Dynamic optimization problems have additional different elements as opposed to their static

counterparts, and these elements are different because of their dynamic nature. The next section

describes the elements in a dynamic optimization problem.

1.1.1 Dynamic Optimization Problem Elements

Problem variables.

In our treatment of dynamic systems and their design, we concentrate on the following kinds

of variables:

1. Time is expressed as t and describes the time horizon under consideration t ∈ [t0, tf ]. Where

t0 describes the initial time and tf denotes the final time.

2. The state variables of the system, denoted by ξ(t). State variables are time dependent, and

their first-order time derivative ξ̇(t) describes the rate of change of system states. The states

capture the system evolution over time.

3. Control or input variables to the system, denoted by u(t). These variables are traditionally

time dependent, but they can have constant values as well as is the case of controller gains.

4. Plant variables denoted by xp that describe the physical design variables. They are consid-

ered static variables.

These problem variables will be referred to as optimization variables in this thesis.

State derivative function.

Dynamic systems describe the evolution of the system states over time. Mathematically this

behavior is often expressed as an ordinary differential equation:

ξ̇(t) = f(ξ(t),u(t),xp, t) (1.2)
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This equation is also referred to as the state derivative function. Using the example of a FOWT,

some the system states are usually the generator speed and platform pitch.

In addition to the state derivative function, there are other types of equations that are used to

describe the system and limitations on its behavior.

Boundary constraints.

Since dynamic systems are time-varying, additional boundary constraints are also prescribed.

They specify the optimization variable values at the start and end of the time horizon. They can be

expressed as equality or inequality constraints:

Φ(ξ(t0),u(t0), t0, ξ(tf ),u(tf ), tf ) = 0 (1.3)

ψ(ξ(t0),u(t0), t0, ξ(tf ),u(tf ), tf ) ≤ 0 (1.4)

Practically, boundary constraints specify the values of the optimization variables at the initial

and final time points. For example, in the design of a thermal management system, these constraints

can be used to set the desired value of the working fluid’s temperature at the start and end of the

time horizon.

Path constraints.

Mathematically, path constraints are algebraic constraints specified to restrict the optimization

variables’ trajectories throughout the time horizon. They can be expressed as equality or inequality

constraints:

h(ξ(t),u(t),xp, t) = 0 (1.5)

g(ξ(t),u(t),xp, t) ≤ 0 (1.6)

For example, when designing a wind turbine, one common constraint is limiting the maximum

power generated by the turbine to be at the rated power or below it. This is done by placing path

constraints on the variables that are used to calculate the power.
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Objective function.

The final element of a dynamic optimization problem is the objective function. The objective

term represents the quantity of interest that we would like to minimize or maximize. There are

two kinds of objective function terms encountered in dynamic optimization problems, Lagrange

terms L(·), and Mayer termsM(·). Lagrange terms denote the running cost, and the Mayer terms

denote the terminal costs. Correspondingly, Lagrange terms depend on the value optimization

variables throughout the time horizon, while the Mayer term depends only on the optimization

variable values at the initial and final time points. They are represented as:

φ =M(ξ(t0), t0, ξ(tf ), tf ,xp) +

∫ tf

t0

L(t, ξ(t),u(t),xp)dt (1.7)

The full dynamic optimization problem with all the elements present is given by:

min
ξ,u,xp

φ =M(ξ(t0), t0, ξ(tf ), tf ,xp) +

∫ tf

t0

L(t, ξ(t),u(t),xp)dt (1.8a)

subject to: ξ̇(t)− f(ξ(t),u(t),xp, t) = 0 (1.8b)

h(ξ(t),u(t),xp, t) = 0 (1.8c)

g(ξ(t),u(t),xp, t) ≤ 0 (1.8d)

ψ(ξ(t0),u(t0), t0, ξ(tf ),u(tf ), tf ) ≤ 0 (1.8e)

Unlike static optimization problems, DO problems are defined by the optimization variables’

value at the infinite points in a given time horizon [t0, tf ]. For this reason, they are also called

infinite-dimensional optimization problems [19, 20]. This aspect of DO problems can make it

harder to solve them. Though various solution methods have been investigated for solving dynamic

optimization problems, a class of methods called direct transcription (DT) methods have proven

to be useful [7, 8, 19, 21, 22]. DT methods are part of a family of direct numerical methods that

transcribe the infinite-dimensional problem to finite-dimensional problems as given by Eq. (1.1)

by approximating the continuous functions with piecewise continuous functions in the given time

interval.
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In this thesis, we consider two design domains: the physical plant and the control system

design. The next section elaborates on how a system level optimal solution can be found, by taking

into account the coupling between the plant design and the control design.

1.2 Control Co-Design

Control co-design involves simultaneously optimizing different plant and control design deci-

sion associated with a given system [8,23]. Traditional engineering practices often involve design-

ing the plant first and then designing a suitable control system for the given plant design [11,14,24].

However, this approach will only yield system-optimal designs if there exists no coupling between

the plant and the control systems. Many systems exhibit tight coupling between the physical and

control systems. This approach was primarily applied to structural optimization problems [25].

But studies have shown the applicability of this approach to other domains as well [7, 23, 26–28].

This work deals with the two main approaches to control co-design, nested control co-design

and simultaneous control co-design. It is essential to look at the physical system design and control

system design processes, before a discussion of CCD can be presented.

1.2.1 Optimal Physical System Design

The primary goal of the physical system design is to identify the optimal plant parameters xp.

In the case of plant design, commonly a static model is used1.

min
xp

φp(xp) (1.9a)

subject to: hp(xp) = 0 (1.9b)

gp(xp) ≤ 0 (1.9c)

Solving this problem will yield the optimal set of plant variables xp. Then for this optimal

plant design, a control system is designed as shown in the next section.

1A dynamic model can also be used as discussed in Ref. [14].
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1.2.2 Optimal Control Systems Design

The control system objective, in a sequential approach, is to identify the input u(t) that would

produce the desired performance for the given plant design xp from Eq. (1.9). Additional factors

like robustness and cost are also commonly included. Similar to Eq. (1.9), the control system

design uses a model that depends on the control input and the state trajectories. An open-loop

control design problem can be formulated as:

min
u(t)

φc =Mc(ξ(t0), t0, ξ(tf ), tf ) +

∫ tf

t0

Lc(u(t), ξ(t), t)dt (1.10a)

subject to: ξ̇(t)− fc(u(t), ξ(t), t) = 0 (1.10b)

hc(u(t), ξ(t), t) = 0 (1.10c)

gc(u(t), ξ(t), t) ≤ 0 (1.10d)

ψc(ξ(t0),u(t0), t0, ξ(tf ),u(tf ), tf ) ≤ 0 (1.10e)

Solving the plant and control design optimization problems sequentially produces system-

optimal results only if there exist no coupling between the two disciplines. However, if there

exist a coupling then the sequential approach does not produce system-optimal results. To achieve

system-optimal performance, this coupling must be accounted for, and the physical and control

design optimization must be done in a integrated optimization problem [24].

Optimal control and open-loop control trajectories assume all information, past and future

about all possible disturbances are known apriori. This information could also be an estimation

based on predicted values. Although it is challenging to incorporate these considerations in imple-

mentable controllers, this approach will provide an upper limit on what is physically achievable

for the control system [29]. This is aligned with the goal of early-stage design studies, where we

want to understand what is theoretically the best possible performance the system can achieve.

1.2.3 Simultaneous CCD

The simultaneous CCD approach optimizes the physical system design and control system

design in a single formulation. The formulation for simultaneous CCD problem has been presented
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in Eq. (1.8). This formulation is a combination of Eq. (1.10) and Eq. (1.9). The dynamic model

used in this problem incorporates the effects of both the plant variables and the control variables

on the system states. This model can be used to identify system-optimal results as it takes into

account the design coupling between the physical system design and control system design.

Grouping all the elements into single formulation has its benefits and drawbacks. On a positive

note, it guarantees that the obtained solution is a system-level optimal solution under the condition

that a global solution can be found. But, a single formulation increases the problem size and

complexity. As the problem size and model/constraint complexity increase, it becomes much

harder to solve the problems. For example, in some cases of FOWT design when a full model

of the system is used, the problem contains a hundred states! For such problems, it is not always

possible to construct and solve a single formulation of all problem elements. Sec. 4.3 provides a

much deeper discussion on the advantages and disadvantages of the simultaneous CCD problem.

Nested co-design is a specific reformulation of the simultaneous co-design problem. Nested

co-design uses nested or bilevel optimization where the outer loop solves the plant optimization

problem and the inner loop solves for control optimization problem. The outer-loop optimization

problem is:

min
xp

o(I(xp, ξ,u),xp) (1.11a)

subject to: ho(xp) = 0 (1.11b)

go(xp) ≤ 0 (1.11c)

where I(xp, ξ,u) is the solution to the following inner-loop optimization problem:

min
ξ,u

o(ξ,u,x†
p) (1.12a)

subject to: ξ(t)− fi(ξ(t),u(t),x
†
p, t) = 0 (1.12b)

hi(ξ(t),u(t),x
†
p, ξ(t0), ξ(tf ), t) = 0 (1.12c)

gi(ξ(t),u(t),x
†
p, ξ(t0), ξ(tf ), t) ≤ 0 (1.12d)

ψ(ξ(t0),u(t0), t0, ξ(tf ),u(tf ), tf ) ≤ 0 (1.12e)
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where x†
p is a candidate plant design from the outer loop in Eq. (1.11). References [23, 26] show

that the under certain conditions the solution of the nested problem is equivalent to the simultane-

ous problem’s solution.

One major advantage with nested CCD is that it allows the problem to be broken into dif-

ferent parts, and facilitates easier solution. For example, in the breakup of variables considered

in Eqs. (1.11,1.12), the plant design optimization, which is a static optimization problem, can be

solved using a specific NLP solver while the inner loop which solves for the states and controls

can be solved using a DO solver. If the control design problem is in a specific form like the linear-

quadratic regulator (LQR), then optimality conditions can be applied to obtain a practical solution.

Such a approach is not feasible when solving a simultaneous CCD problem. Additionally, for

large-scale problems where multiple subsystems are considered, the nested method can help de-

crease the difficulty in solving the problem. Sec. 4.3 again provides a much deeper discussion on

the advantages and disadvantages of the nested CCD formulation.

Even though there are other methods for solving CCD problems, nested and simultaneous

CCD methods are the most common strategies used [30]. However, only a few studies offer de-

tailed comparisons between the nested and simultaneous CCD methods. A critical comparison

study is paramount as CCD is being applied to increasingly complex problems. Such a study

could help decide an appropriate strategy for solving a given problem instead of domain-specific

suggestions, and elucidate much needed early insights into the appropriate choice of strategy and

implementation techniques.

1.3 Research Questions

The primary focus of this thesis is to find efficient methods to solve certain DO and CCD

problem classes. As the behavior of the system under consideration becomes more complex, highly

nonlinear models need to be used to capture this behavior [5, 7, 31]. Using these detailed models

in design optimization studies and solving them becomes computationally intensive. Many design

optimization studies use simplified models of the system dynamics or construct surrogate models
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of the system behavior in order to simplify and solve the design problem [32–34]. However, these

simplified models cannot capture the complex system behavior and do not provide sufficient design

insights. There is a pressing need to find efficient methods and strategies to solve these complex

problems.

The CCD problems discussed in this thesis are posed as DO problems. In the context of CCD,

the use of these simplified models can be counterproductive as the use of these simplified mod-

els will result in certain quantities being overpredicted or underpredicted. Efficient methods to

solve DO problems will also help in solving CCD more efficiently while capturing the different

interactions in the system.

The choice of CCD method used to solve a given problem has been based on the ease of

implementation and literature-based recommendations. As of now, there is not a comprehensive

or even a partial set of heuristics that provide clear, evidence-based guidelines on how to choose

between nested and simultaneous CCD strategies for a given problem. It is crucial to keep in mind

that the guidelines can be based on different aspects of a given strategy. For example, the choice

of the method can vary based on the complexity of the physics involved, the nature of the coupling

between the plant and control variables, how the model is constructed, and the efficient numerical

implementation. A common denominator among these different categories is efficient numerical

implementation. A study that can provide guidelines based on efficient implementation of nested

and simultaneous CCD methods will provide insights that can be broadly applicable to different

types of CCD problems.

1.4 Thesis Overview

Based on the previous discussions about the possible difficulties in solving CCD and DO prob-

lems, three studies have been carried out to find efficient strategies to solve them.
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1.4.1 Study 1: Using LQDO Elements in Solving NLDO Problems

The first study aims to leverage the problem structure of dynamic optimization problems to

develop efficient methods and tools to solve them. We start with a subclass of NLDO problems,

namely linear-quadratic dynamic optimization problems (LQDO). For this class of problems, the

objective function is quadratic, and the constraints are linear. Highly efficient and accurate com-

putational tools have been developed for solving LQDO problems on account of their linear and

quadratic problem elements. We identify the factors that enable creating these efficient tools and

leverage them towards solving NLDO problems. We discuss three different strategies to solve

NLDO problems using LQDO elements and analyze the requirements and limits of each approach.

1.4.2 Study 2: Comparison of Nested and Simultaneous CCD

In the first study, we identify the factors that lead to efficient solutions of simultaneous and

nested optimization problems. We use these results and solve a CCD problem of an active vehicle

suspension design first presented in Ref. [7], using both the nested and simultaneous CCD methods.

We look at the impact of derivative methods, tolerances, and the number of discretization points

on the solution accuracy and computational times. We use the solution approach and the results

from this study to form some much needed early insights into the appropriate choice of strategy

and implementation techniques. While guidelines applicable to broad classes of CCD problems

will not be made, the existing literature-based comparisons and a detailed case study will better

demonstrate the state-of-the-art understanding and how a thorough investigation can be conducted

to yield the desired implementation insights.

1.4.3 Study 3: CCD of Floating Offshore Wind Turbines

In the third study, we leverage the insights gained from the first two studies and solve a large and

complex engineering problem of the design of floating offshore wind turbines (FOWT). FOWT is

a concrete example of a system where the coupling between the plant and controller must be taken

into account to obtain an optimal design. Traditional FOWT design has followed a sequential

12



process where the physical plant parameters are designed first and a controller is then designed

for this plant [35]. Not accounting the strong interactions in FOWTs between the plant systems

and control system yields sub-optimal and unstable systems, reducing the economic viability of

offshore wind systems [36]. Recent studies have identified the need for integrated design of FOWT

systems [3, 35]. We study the effect of CCD and optimal control strategies on the design of the

system.

The rest of the thesis is organized as follows:

1. Chapter 2 discusses and establishes the elements of NLDO and LQDO problems and ex-

plains how the direct transcription method can be used to solve DO problems.

2. Chapter 3 explores the uses of LQDO problem elements in solving NLDO problems.

3. Chapter 4 provides comparison between nested and simultaneous CCD methods using a the

CCD problem of an active vehicle suspension.

4. Chapter 5 defines and solves a CCD of a floating offshore wind turbine (FOWT).

5. The final chapter summarizes thesis and provides directions for future work.
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Chapter 2

Dynamic Optimization and Direct Transcription

This chapter explains the different solution approaches for solving dynamic optimization prob-

lems. The topics covered in this chapter will set up the arguments for the studies previously men-

tioned. We start with the general nonlinear dynamic optimization (NLDO) problems, then discuss

the direct transcription (DT) method and how it is used to solve the NLDO problem. We then

talk about linear-quadratic dynamic optimization problems (LQDO), a subclass of NLDO, and the

factors that facilitate the development of efficient solvers for LQDO problems.

2.1 Dynamic Optimization

Dynamic optimization (DO), or the optimization of systems with time-varying behavior, has

proven to be instrumental to the advancement of many domains, including aerospace [37,38], agri-

cultural [39], chemical [20, 21], energy [40], financial [41], mechanical [7, 34], and medical [42]

applications. Also, frequently termed optimal control problems, the infinite-dimensional nature of

DO necessitates specialized solution strategies. A variety of numerical approaches have been de-

veloped, including those based on the optimality conditions [37, 43–45] and direct methods based

on transcribing the DO problem into a finite-dimensional optimization problem. Consider the gen-

eral NLDO problem given by Eq. (1.8). There are two main families of methods that are used to

solve DO problems. Direct methods and indirect methods [7, 14, 19, 21].

2.1.1 Indirect Methods

Indirect methods use optimality conditions derived from Pontryagins’ maximum principle to

find the optimal trajectory for the problem [46]. The application of these optimality conditions

results in a two-point boundary value problem (TPBVP). These TPBVP problems are then solved

analytically or numerically. The solution of this BVP will yield the extremal trajectories, but under
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some conditions, these trajectories can be optimal [47]. The numerical indirect methods follow the

“optimize-then-discretize” approach.

To understand the approach, consider a simple example of an optimal control problem without

inequality constraints of the form:

min
u

J =

∫ tf

0

L(x(t),u(t))dt+M(x(tf )) (2.1a)

ẋ− f(x,u) = 0 (2.1b)

x(t0) = x0 (2.1c)

where (x,u) are the states and controls.

The quantity H , known as the Hamiltonian is defined as:

H(x,u,λ) = L(x,u) + λTf(x,u) (2.2)

where λ is known as costate vector or adjoint.

If (x∗,u∗,λ∗) are the optimal trajectories, the first order optimality conditions states that:

∂H(x∗,u∗,λ∗)

∂u
= 0 (2.3a)

λ̇∗(t) = −
∂H(x∗,u∗,λ∗)

∂x
(2.3b)

λ(tf ) =

[

∂M

∂x

]T

t=tf

(2.3c)

ẋ∗(t) =
∂H(x∗,u∗,λ∗)

∂λ
(2.3d)

λTf(x,u) = 0 (2.3e)

the state values have specified initial conditions, and the costate values have final conditions, re-

sulting in a TPBVP. The solution of these sets of equations will yield the optimal trajectories.

There are several issues with indirect methods that make them unsuitable for solving com-

plex problems. The equations given by the first-order optimality conditions can rarely be solved

analytically, and therefore require numerical methods to solve the BVP. Evaluation of the par-

tial derivatives of the Hamiltonian is complicated and requires extensive experience with optimal

control. Additionally, in some problems, black-box functions and lookup tables are used, and de-
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termining the derivative information for such problems is highly complex [14,19]. An initial guess

value for the costate vector λ is required to solve these problems. These quantities are not physical,

and therefore providing accurate estimates is a process of trial and error. Even with a good guess,

the problem can be ill-conditioned. The addition of inequality constraints to the problem increases

the difficulty in finding the initial guess of the states, costates, and the appropriate switching struc-

ture [21]. When using direct methods, all these difficulties are avoided, as direct methods do not

use these optimality conditions.

2.1.2 Direct Methods

There are two variants in the paradigm of direct methods, based on the optimization variable(s)

that are discretized: sequential methods and simultaneous methods. The direct methods follow a

“discretize-then-optimize” approach. The continuous time problem is first discretized to form a

NLP, and this NLP is solved to obtain the optimal variables.

Sequential methods.

In sequential methods, only the control variables are discretized. For this reason, this approach

is also known as control vector parameterization [21]. The control trajectory is discretized using

piecewise polynomial functions, and the coefficients for these polynomials are the optimization

variables. Given an initial condition and control input, the differential equation with algebraic

constraints is solved using forward numerical simulation to obtain the trajectories. Even though

sequential solvers are easy to set up, there are several issues. For every iteration of the optimization

problem, a DAE must be solved. This becomes expensive for large scale problems [48]. Addition-

ally, sequential approaches cannot handle open-loop instabilities, and path constraints can only be

handled approximately [14].

Simultaneous methods.

Simultaneous methods discretize both the state and control trajectories using collocation at

finite number of time points. These methods are also known as direct transcription (DT) meth-
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ods [49]. This results in the creation of a large-scale NLP problem, as opposed to solving DAE for

each simulation.

2.2 Direct Transcription

The following section elaborates on the DT method and shows how it can be used to solve a DO

problem. Consider the NLDO problem given by Eq. (1.8). The given problem is solved through

DT by using the following steps:

2.2.1 Discretization

The first step in the DT process is to discretize the continuous-time horizon t ∈ [t0, tf ] into

nt finite-time points, where nt is the number of discretization points. These discretized points are

also known as the mesh:

t = [t0, t1, t2, . . . , tnt−1, tnt ] (2.4)

There are different methods for choosing the discretization points. One straightforward way is to

have an equidistant mesh, i.e., the points in the horizon [t0, tf ] are equally spaced.

h =
tf − t0
nt

(2.5)

and,

t1 = t0 + h, t2 = t1 + h, . . . , tf = tnt−1 + h (2.6)

Legendre-Gauss-Lobatto (LGL) points, Legendre-Gauss (LG) points, and Legendre-Gauss-

Radau (LGR) points are examples of these schemes. The location of these points correspond to the

roots of an orthogonal polynomial [14, 19, 21].
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Based on the discretized time points, the state and control trajectories are also discretized as:

Ξ =

























Ξ1

Ξ2

Ξ3

...

Ξnξ

























=

























ξ1(t1) ξ2(t1) ξ3(t1) . . . ξnξ
(t1)

ξ1(t2) ξ2(t2) ξ3(t2) . . . ξnξ
(t2)

ξ1(t3) ξ2(t3) ξ3(t3) . . . ξnξ
(t3)

...
...

...
. . .

...

ξ1(tnt) ξ2(tnt) ξ3(tnt) . . . ξnξ
(tnt)

























(2.7a)

U =

























U1

U2

U3

...

Unu

























=

























u1(t1) u2(t1) u3(t1) . . . unu(t1)

u1(t2) u2(t2) u3(t2) . . . unu(t2)

u1(t3) u2(t3) u3(t3) . . . unu(t3)

...
...

...
. . .

...

u1(tnt) u2(tnt) u3(tnt) . . . unu(tnt)

























(2.7b)

where (nξ, nu) are the number of states and control variables, respectively.

Since the plant variables xp are considered static, they are not discretized with respect to the

mesh:

xp = [p1, p2, p3, . . . pnp ]
T (2.8)

where np denotes the number of plant variables.

2.2.2 Dynamic Constraints

The continuous-time dynamics represented by the state derivative functions in Eq. (1.2) are

then discretized using the discretized state and control matrices and a specific method. The dis-

cretized dynamic equation is called the defect constraint. There are different ways to construct the

defect constraints using various local or global collocation schemes. In local collocation schemes,

the state and control trajectories are approximated using low-degree polynomials. Global collo-

cation schemes, also called pseudospectral methods, use global trial functions with orthogonal

collocations to approximate the trajectories [7, 8, 10, 19, 21, 22].

In this work, we concentrate mainly on local collocation or single-step methods to form de-

fect constraints. Consider the time interval t ∈ [tk, tk+1]. In this interval, the dynamics can be
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approximated using the trapezoidal rule as:

ζ(tk, tk+1) = Ξk+1 −Ξk −
h

2
[fk+1 + fk] ∀k = 1, . . . , nt − 1 (2.9)

where fk = f(tk,Ξk,Uk,xp).

Combining ζ for all time points we have:

ζt =



















ζ(t1)

ζ(t2)

...

ζ(tnt−1)



















(2.10)

For a given interval, the derivative function is evaluated at only two time points. As the number

of mesh points increases, the final defect constraint matrix will be large and sparse. This sparsity

facilitates efficient solution methods [19].

Additional constraints.

The algebraic equality and inequality constraints in Eqs. (1.5,1.3) are evaluated at each mesh

point tk to ensure that the constraints are satisfied at each point:

hk = h(tk,Ξk,Uk,xp,Ξ1,Ξnt) = 0 ∀k = 1, . . . , nt (2.11a)

gk = g(tk,Ξk,Uk,xp,Ξ1,Ξnt) ≤ 0 ∀k = 1, . . . , nt (2.11b)

These are combined as:

ht =

[

h1 h2 · · · hnt

]T

(2.12a)

gt =

[

g1 g2 · · · gnt

]T

(2.12b)

2.2.3 Objective Function

Similar to the constraints, the Lagrange and Mayer terms in Eq. (1.7) are also reevaluated in

terms of the discretized optimization variables (Ξ,U ) from Eq. (2.7). The Mayer term can be eval-

uated exactly as it is dependent on the discretized values of the variables [22]. The Lagrange term,

however, needs to be evaluated using numerical quadrature. In this thesis, we use the composite
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trapezoidal rule to evaluate the Lagrange term:

o =

∫ tf

t0

L(t, ξ,u,xp)dt ≈
tf − t0
nt

(

L(t0) + L(tf )

2
+

nt−1
∑

k=1

L(tk)

)

(2.13)

2.2.4 Fully Discretized Form

Using the transformations discussed in the previous sections, the DO problem is given by

Eq. (1.8) can be converted to the following nonlinear programming problem:

min
Ξ,U ,xp

o(t,Ξ,U ,xp) (2.14a)

subject to: ζt(t,Ξ,U ,xp) = 0 (2.14b)

ht(t,Ξ,U ,xp,Ξ1,Ξnt) = 0 (2.14c)

gt(t,Ξ,U ,xp,Ξ1,Ξnt) ≤ 0 (2.14d)

To solve the nonlinear programming problem, various algorithms have been developed. Com-

mercial solvers like fmincon, SNOPT, and IPOPT have all been used to solve the nonlinear pro-

gramming problem generated by transcribing a DO problem [22, 45]. In this thesis, we use fmin-

con [50], the inbuilt constrained nonlinear optimization algorithm in MATLAB to solve the NLP

problem. The insights and solutions obtained are generally independent of the solver.

2.3 Linear Quadratic Dynamic Optimization

This section discusses a particular subclass of NLDOs, namely linear-quadratic dynamic opti-

mization (LQDO) problems. LQDO problems have a quadratic objective function subject to linear

constraints.
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2.3.1 Problem Formulation

The LQDO problem is represented as:

min
x=[ξ,u,xp]

∫ tf

t0

(xTQx+ F Tx+ c)dt+R(ξ(t0), ξ(tf ),xp) (2.15a)

subject to: ξ̇(t)− [A(t)ξ(t) +B(t)u(t) +G(t)xp + d(t)] = 0 (2.15b)

hL(t, ξ, u, xp, ξ(t0), ξ(tf )) = 0 (2.15c)

gL(t, ξ, u, xp, ξ(t0), ξ(tf )) ≤ 0 (2.15d)

where (hL(·), gL(·)) are linear in terms of the optimization variables and R(·) is the linear-

quadratic Mayer term. The elements of the LQDO problem only need to be linear/quadratic with

respect to the optimization problem variables (ξ,u,xp).

2.3.2 Quadratic Programming

Applying DT to the LQDO problem Eq. (2.15) yields a quadratic programming (QP) prob-

lem [8]. A QP problem formulation follows as:

min
x

1

2
xTHx+ fTx+ c (2.16a)

subject to: Aeqx = beq (2.16b)

Ainx ≤ bin (2.16c)

LQDO and QP problems have a predictable structure that facilitates the development of au-

tomated and efficient solvers [8, 22]. For QP/LQDO problems without inequality constraints, the

optimal solution can be obtained with matrix inversion [9]. The QP that is encountered after the

problem is discretized has problem elements that are large and sparse for the reasons explained in

the previous section. There are many efficient algorithms for solving QPs including interior-point,

active-set, augmented Lagrangian, conjugate gradient, and alternating direction method of multi-

pliers [9,20,51,52]. For large-scale sparse QPs, certain algorithms can utilize sparse linear algebra

to efficiently find optimal solutions [21, 52, 53].
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In this work, we will be using DTQP, which is a MATLAB-based tool for efficiently construct-

ing the matrices/vectors for all LQDO and NLDO problem elements using user-friendly, structure-

based definition [54]. To solve the formulated QP, DTQP uses quadprog, MATLAB’s inbuilt

quadratic programming solver. While there are a variety of other general DT-based tools [55–57],

the initial focus only on LQDO problems in the DTQP has led to a number of focused advance-

ments. The sparse matrices are constructed using vectorized computations and direct creation of

the row, column, and value sequences [58] that define the required matrices resulting in good scal-

ability for both small and large meshes. A variety of defect constraint methods, including several

single-step and pseudospectral schemes, as well as the common quadrature schemes, discussed in

Sec. 2.2.3 are available. The main algorithms are described in Ref. [8].
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Chapter 3

Linear-Quadratic Methods in Solving Nonlinear

Dynamic Optimization Problems with Direct

Transcription

In this chapter, we discuss the use of LQDO elements in solving NLDO problems. These three

strategies are discussed and used to solve different dynamic optimization problems as case studies.

Using these case studies, the advantages and drawbacks of these strategies are discussed2.

3.1 Introduction

As is the case with the advancement of many numerical methods, exploiting specific mathemat-

ical problem structure can lead to developments that both increase the efficiency and robustness

of the underlying techniques. This has undoubtedly been the case in DT research, such as with

problem sparsity and derivatives [20, 37]. Here we will be exploring methods for exploiting a

particular class of DO problems where the objective function is quadratic, and the constraints are

linear, i.e., linear-quadratic dynamic optimization (LQDO). Because of the considerable degree

of problem structure, there are many advantages to developing numerical methods that specif-

ically exploit these patterns. This has historically included explicit matrix construction [8, 54],

two-level [24, 26, 34, 59], quasilinearization [38, 44, 46, 53, 60–64], and sequential quadratic pro-

gramming methods [20, 37, 53, 64, 65], which will be discussed in Sec. 3.3. Furthermore, many

relevant DO problems contain linear or quadratic problem elements [42, 51, 60–62], such as is the

case in model-predictive control [51, 64, 66]. Therefore, generalizing the uses of LQDO-based

methods will allow for this structure to be exploited when needed and is the primary purpose of

this article.

2This chapter is based on the following publication [22].
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Many dynamic optimization problems contain both nonlinear and linear elements. It is dif-

ficult to process/evaluate nonlinear problem elements as compared to linear elements. However,

many DT solvers do not treat linear elements differently than nonlinear elements. Thus, they do

not leverage the unique properties of linear-quadratic elements that make them easier to process.

Additionally, it is possible to create robust and efficient solvers for LQDO problems, and we can

pinpoint the factors that contribute to their efficiency, and leverage them for developing efficient

tools.

With all these points in favor of LQDO tools, we seek to answer the following questions:

1. How can we leverage the factors that contribute to the efficiency of LQDO problems to solve

NLDO problems?

2. If an NLDO has both linear-quadratic and nonlinear elements, can we separate them to solve

each problem efficiently?

3. Even if there are no linear quadratic elements in a problem, is there a way to use linear

quadratic elements still and solve the original NLDO problem?

3.2 Reference Linear-Quadratic Dynamic Optimization Prob-

lems

As discussed previously, linear-quadratic dynamic optimization (LQDO) problem is a subclass

of NLDO problem given in Eq. (1.8) where the objective function is limited to quadratic terms and

the constraints have only linear terms. To completely characterize the reference LQDO problem

class, we first need to define the Jacobian matrix of a vector-valued function e of size m in variables

x of size n:

Je
x(x) =













∂e1(x)
∂x1

· · · ∂e1(x)
∂xn

...
. . .

...

∂em(x)
∂x1

· · · ∂em(x)
∂xn













(3.1)

24



which is a matrix of all its first-order partial derivatives, and the Hessian matrix of a scalar-valued

function e in variables x of size n:

He
x(x) =













∂2e(x)

∂x2
1

· · · ∂2e(x)
∂x1∂xn

...
. . .

...

∂2e(x)
∂xn∂x1

· · · ∂2e(x)
∂x2

n













(3.2)

which is a square matrix of second-order partial derivatives.

Now consider some reference solution x̄ comprised of reference control trajectories ū, state

trajectories ξ̄, and parameter values x̄p. Using the derivative matrices, we can construct the best

local approximations of the NLDO problem elements about x̄. The best linear approximation of e

around point x̄ is:

e(x) ≈ eL(x, x̄) = e (x̄) + Je
x (x̄) [x− x̄] (3.3)

which is the first-order multivariate Taylor expansion of e. The best quadratic approximation of e

around x̄ is:

e(x) ≈ eQ (x, x̄) = e (x̄) + [J e
x (x̄)]

T [x− x̄] +
1

2
[x− x̄]THe

x (x̄) [x− x̄] (3.4a)

which is the second-order Taylor polynomial.

Now, we apply these approximations on the appropriate problem elements of Eq. (1.8), result-

ing in the following DO problem:

min
x=[u,ξ,xp]

oQ (t,u, ξ,xp, ξ0, ξf , x̄) (3.5a)

subject to: ξ̇(t)− fL (t,u, ξ,xp, x̄) = 0 (3.5b)

hL (t,u, ξ,xp, ξ0, ξf , x̄) = 0 (3.5c)

gL (t,u, ξ,xp, ξ0, ξf , x̄) ≤ 0 (3.5d)

where: ξ0 = ξ(t0), ξf = ξ(tf ) (3.5e)

which is an LQDO problem by construction because the highest-order terms in the objective func-

tion are quadratic and the highest-order terms in the constraints are linear3.

3The dynamic constraint could be written in the same form as hL and gL but this form is equivalent because [ξ̇(t)]x̄ =

ξ̇(t) and J ξ̇
x(x̄) = 0.
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For the linearized constraints, it is common to express the resulting expression stratified by

optimization variable type. For example, fL is a linear time-varying (LTV) dynamic system about

the reference trajectory x̄:

fL (t,u, ξ,xp, x̄) = A (t, x̄) ξ +B (t, x̄)u+G (t, x̄)xp + d (t, x̄) (3.6a)

where: A (t, x̄) = Jf
ξ (x̄) (3.6b)

B (t, x̄) = Jf
u (x̄) (3.6c)

G (t, x̄) = Jf
xp

(x̄) (3.6d)

d (t, x̄) = f
(

t, ū, ξ̄, x̄p

)

− Jf
x (x̄) x̄ (3.6e)

Similar representations can be made for the additional path and boundary constraints, as well as

the objective function.

As an example, consider one of the dynamic equations for the Van der Pol Oscillator problem

(cf. Eq. (3.15b)):

e(x) = −p1ξ1 + ξ2
[

1− p2ξ
2
1

]

+ u1 (3.7)

Now we have the LTV dynamic system defined in Eq. (3.6):

eL(x, x̄) =







−p̄1 − 2p̄2ξ̄1ξ̄2

1 + p̄2ξ̄
2
1







T 





ξ1

ξ2






+ u1 −







ξ̄1

ξ̄21 ξ̄2







T 





p1

p2






+ p̄1ξ̄1 + 3p̄2ξ̄

2
1 ξ̄2 (3.8)

3.2.1 Ordinary vs. Reference LQDO Problems

The current definition of an LQDO problem depends on the reference trajectory x̄, now termed

a reference LQDO (RLQDO) problem.

It is quite common to have quadratic and linear problem elements in the NLDO problem; thus,

the derivative matrices for those elements are constant and do not depend on x̄. These are termed

ordinary linear-quadratic (OLQ) elements. Common problem elements such as linear dynamic

systems, simple state bounds, initial and final conditions, quadratic Lagrange terms, and linear

Mayer terms are all OLQ elements. Here we define an OLQ problem as one where there are only

OLQ elements, and Eq. (1.8) and Eq. (3.5) are equivalent.

26



For example, these four constraints are all OLQ elements:

ξ̇1 + 4ξ1 − 2u1 + sin(t) = 0, ξ1(0) = 0ξ1 − 1 ≤ 0, tu1 − 2p1 + 1 ≤ 0

noting that linear time-varying quantities are admissible. However, this objective function term is

not an OLQ element even though it contains a quadratic term (however, it can be partitioned as is

discussed in Sec. 3.3.1):
∫ tf

t0

[

ξ22 + sin(u1)
]

dt

There are some standard LQDO problems such as the finite-horizon linear-quadratic regula-

tor [43].

3.3 Methods for Solving NLDO Problems Using LQDO Prob-

lem Elements

In this section, we will discuss several methods for effectively utilizing LQDO problems and

OLQ elements to solve NLDO problems.

3.3.1 Direct Incorporation of OLQ Elements

The first method is perhaps the most self-evident. For a given NLDO problem, we can treat

the OLQ elements differently than the general nonlinear elements. In many DT-based software

implementations, most of the problem elements are assumed to be nonlinear, and there is no way

to specify if a particular constraint or objective term is an OLQ element (with the primary ex-

ception being linear constraints for the initial and final values of the trajectories and simple box

constraints).
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Consider the following partitioning of the NLDO problem in Eq. (1.8):

min
x=[u,ξ,xp]

∫ tf

t0

[

ℓOL (·) + ℓNL (·)
]

dt+mOL (·) +mNL (·) (3.9a)

subject to: ξ̇(t)− f (·) =







ξ̇OL(t)− fOL (·)

ξ̇NL(t)− fNL (·)






= 0 (3.9b)

h (·) =







hOL (·)

hNL (·)






= 0 (3.9c)

g (·) =







gOL (·)

gNL (·)






≤ 0 (3.9d)

where the superscript OL indicates an OLQ element and superscript NL indicates a non-OLQ

element. There are a few methods for determining the correct partitioning. First is a manual

specification by the user, assuming it is supported by the selected tool. Second are the automated

methods using either exact methods, such as symbolic or automatic differentiation, or a careful

numerical procedure that checks the finite-difference values at several diverse points (because the

result for OLQ elements would be the same for every point).

There are several potential advantages to this approach. First, most gradient-based NLP solvers

require the computation of the problem’s derivatives, which can be expensive. Running these

computations for the OLQ elements within the NLP solver is an additional computational bur-

den because results are independent of the current iteration. Therefore, computing the matrices

once before starting the NLP solver will reduce the overall computational cost of computing the

derivatives. If analytic derivatives are provided, the difference might be relatively small. If finite-

difference methods are being utilized for computation, the gap can be much more pronounced,

even if a sparsity pattern is provided. Additionally, because of the numerical errors introduced

through finite-difference schemes, the derivatives for the OLQ elements may be more accurate.

Second, many NLP algorithms have special methods for handling linear constraints that may

be more numerically accurate and computationally efficient. For example, MATLAB’s fmincon

directly allows for the inclusion of the linear constraints and simple upper and lower bounds [50].
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Derivatives are then known for these problem elements, and certain options can be enabled such

as “honor bounds”. More specifically, many NLP solvers utilize the Lagrangian function:

L (x,λ,σ) = v(x) + λ · h(x) + σ · g(x) (3.10)

where λ and σ are the multipliers for the equality and inequality constraints, respectively [9].

Second derivative computations for HL
x (x) may be required. Direct incorporation of the hOL

constraints will result in a linear system hOL(x) = AhOLx − bhOL . Now, observing only the

contribution of equality constraint terms:

HL
x (x) =

∑

j

λOL
j ·✘✘✘✘✘✘✘✿0[

H
hOL
j

x (x)
]

+
∑

j

λNL
j ·

[

H
hNL
j

x (x)
]

+ · · · (3.11)

Therefore, we see that no Hessian computations are required for linear equality constraints. This

is also true for the other linear OLQ constraints.

Finally, both linear variable scaling and constraint row scaling can be efficiently implemented

for the OLQ matrices. The extent of the advantages of direct incorporation of the OLQ elements

can depend on the number and type of OLQ elements and mesh size, but generally, there are few

disadvantages.

3.3.2 Two-Level Methods

Two-level optimization problems consider some partitioning of the optimization variables into

upper xu and lower xl variables (sometimes termed outer and inner variables) [67]. These prob-

lems are represented as:

min
xu

o
(

xu,xl
)

(3.12a)

subject to: xu ∈ Ω (3.12b)

xl ∈ L(xu) (3.12c)

where Ω is the feasibility region of xu, and L(xu) is a set defined by the solution to an appropriate

optimization problem. Determining a feasible xl for a particular candidate xu is solving the lower-

level problem (LLP), while Prob. (3.12) is termed the upper-level problem (ULP). The two-level

method is only one type of decomposition-based optimization strategy. Alternative decomposition-
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based formulations and solvers may also utilize the properties and methods for LQDO problems

and OLQ elements [51,68,69]. Here we will discuss two common partitioning schemes for NLDO

problems with DT that incorporate LQDO LLPs.

Shooting.

The first partitioning scheme considers only ξ in the LLP, while u and xp are optimized in the

ULP. This is a version of the direct shooting approach [20] where feasible dynamics are determined

in the LLP. Reducing the state dynamic analyses to a sparse system of linear equations can be

computationally attractive, permit computation of ULP derivatives, and still leverage the global

stability and robustness properties of DT methods that are lacking in forward simulation-based

methods [21]. Additionally, it is straightforward to include a low-dimensional parameterization of

u. In many cases, the LLP is effectively a feasibility problem. However, care must be taken to

ensure that there exists a solution to LLP or some coordination/penalty method is utilized.

Fixed parameters.

The second scheme is applicable to the class of NLDO problems where for fixed values of xp,

the resulting subproblem is a convex LQDO problem. The two-level architecture is constructed

with only the parameters and associated problem elements in ULP, while the LLP with respect to

u and ξ is an LQDO problem. This partitioning allows for the LLP to utilize LQDO-based tools

and QP solvers. Typically the set of parameters and associated ULP constraints are relatively small

compared to the size of the mesh-dependent control and state DT variables, as well as the number

of defect and path constraints. Furthermore, while general NLDO problems are non-convex, many

common LQDO formulations are convex. Therefore, we can implement efficient solution strategies

in the LLP and focus global search procedures in the ULP which has a much smaller design space

to consider. However, this approach may still have issues with feasibility of the LLP, derivative

computations in the ULP, and may be less efficient computationally depending of the particular

problem [59].
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ALGORITHM 1: Quasilinearization.
Input : x0 – initial reference solution

kmax – maximum number of iterations
ǫ – convergence tolerance

Output: x∗ – final (optimal) solution

1 k← 0 // initialize iteration counter

2 v
(

x
k−1
)

←∞ // initialize objective value

3 while
∣

∣v
(

x
k
)

− v
(

x
k−1
)
∣

∣ ≤ ǫ or k ≤ kmax do

4 k← k + 1 // update iteration counter

5 {f ,H,Ah,bh,Ag,bg} ← Construct QP matrices using the RLQDO problem and selected DT
method with x

k−1

6 x
k ← Solve QP defined by {f ,H,Ah,bh,Ag,bg}

7 end

8 x
∗ ← x

k
// final solution (optimal if k < kmax)

This approach has been studied previously under the term nested (control) co-design [24, 26,

34, 59], and the aforementioned class of problems have been termed LQDO-amendable co-design

problems [34] and discussed in Eqs. (1.11,1.12). References [59] include comparisons showing

that the nested method as described here had lower computational expense than a simultaneous

approach, i.e., Eq. (1.8). There are several co-design studies that have effectively utilized the

nested approach including attitude control of a distributed actuation system on a satellite [70],

active vehicle suspensions [34], and horizontal-axis wind turbines [40].

3.3.3 Quasilinearization Methods

The methods described in the previous two sections did not utilize the RLQDO problem dis-

cussed in Sec. 3.2. Here we will discuss a class of methods, frequently termed quasilineariza-

tion [44, 60–62, 71], that utilizes reference trajectories to solve the original NLDO problem. Gen-

erally, these methods construct RLQDO subproblems that are successively solved where the previ-

ous iteration’s solution is the reference trajectory for the next iteration. Under certain conditions,

convergence of the solutions of the RLQDO subproblems implies that the result is good approx-

imation of a feasible minimizer in both RLQDO and original NLDO problems [38, 44]. A basic

quasilinearization algorithm for NLDO is shown in Alg. 1.
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In general, a good initial reference solution is preferred, otherwise, there may be slow con-

vergence, convergence to an undesirable local minima, or divergence [38, 44, 61, 64]. Because of

the LQDO-nature of the subproblems, sparse Hessians and Jacobians are readily determined [61].

Quasilinearization can be implemented for a variety of different defect constraint and quadrature

schemes [38, 62]. Typically, parameters xp are not directly studied, but their inclusion is fairly

straightforward with the primary difference being a reference value rather than a reference trajec-

tory. Now four different variations of quasilinearization will be discussed.

Dynamics only.

Perhaps the most commonly used form of quasilinearization is when only the dynamics are lin-

earized as in Eq. (3.6). In many NLDO problems, the dynamics are the most challenging problem

element because of their non-convex structure [38]. Frequently, assumptions are made so that other

problem elements are OLQ [60]. In these cases, the OLQ elements can be directly incorporated in

the same manner as Sec. 3.3.1, while LQDO-based methods for constructing the defect constraints

can be used at each iteration to efficiently update the matrices based on the previous iteration’s so-

lution. This successive linear approximation of the dynamics results in a particularly advantageous

constraint form that can be effectively utilized in specialized solvers, such a sequential convex

programming [38] and Riccati difference equations [46].

All constraints.

In this case, all constraints are linearized with Eqs. (3.5b)–(3.5d), including terminal state con-

straints [61] and state-control path constraints [62]. Generally, the same methods can be applied

as the dynamics-only case, but an issue of inconsistencies of the RLQDO constraints can be ex-

acerbated. Constraint relaxation and trust-region methods could be utilized to prevent this failure

condition (and many require the solution of additional QPs) [37, 52].
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Feasible point.

Here we ignore the objective function in order to find a point x that satisfies all constraints in

the NLDO problem [53]. In this form, we are attempting to solve a sequence of linear systems po-

tentially with inequalities. However, these are frequently under-determined equations so additional

measures should be taken to ensure convergence and uniqueness [37]. The result can be used as

the initial point for the basic quasilinearization algorithm or any general NLP solver.

Entire NLDO problem.

The RLQDO in Prob. (3.5) constructed an LQDO problem with respect to the reference solu-

tion x̄. Therefore, a solution strategy for the entire NLDO problem is Alg. 1. However, in addition

the potential inconsistencies in the constraints, the RLQDO problem might result in a non-convex

QP. Quasi-Newton methods can be alternative strategy, and defines a different QP problem than the

one created from Prob. (3.5) [20, 37]. Alternative linear approximations other than a Taylor series

can be used [63]. If only linear approximations are used in the objective function, the problem is a

linear program.

All the previously discussed implementations of quasilinearization have ignored an important

fact that because we are solving a constrained finite-dimensional optimization problem when using

DT methods, the optimality conditions are the Karush-Kuhn-Tucker conditions [9], which include

the Lagrange multipliers as shown in Eq. (3.10). Utilizing the Lagrangian instead of v(·) provides

curvature information from both objective and constraints [52]. Sequential quadratic programming

(SQP) is a popular family of methods that directly incorporate the Lagrangian and previous solution

estimates for λ and σ [20, 37, 52, 72]. The SQP subproblem for Prob. (2.14) is:

min
s

v (x̄) + [Jv
x (x̄)]

T
s+

1

2
sTHL

x

(

x̄, λ̄, σ̄
)

s (3.13a)

subject to: h (x̄) +
[

Jh
x (x̄)

]T

s = 0 (3.13b)

g (x̄) + [Jg
x (x̄)]T s ≤ 0 (3.13c)

where: s = x− x̄ (3.13d)

SQP methods have been long studied in the context of DT methods [20, 37, 53, 64, 65].
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Now an interesting connection can be made between the QP generated for a RLQDO problem

and the SQP subproblem for the original NLDO problem in Eq. (2.14). Consider the case when

the discretization matrices in Eq. (2.7) are the same for x̄ and an appropriately interpolated x̄.

If we introduce a linear transformation s = x − x̄ to the RLQO problem, then the resulting

QP will have the same constraints as the SQP subproblem. This is due to the linear summation

structure of the defect constraints. This implies that SQP methods on DT-based NLPs are really

quasilinearization methods based on a RLQDO problem that utilize additional Hessian information

from the constraints (as well as the other techniques that make SQP methods so effective). Because

of this, LQDO-based methods for defining the problem elements for the SQP subproblems can be

directly used. Exact computations for the additional Hessian information can also be incorporated

with modifications to the LQDO discretization methods (considering the additional terms have the

same sparsity structure as the original Hessian) [64, 73]. Full implementation of SQP methods

using DTQP is left as future work.

3.4 Method Options

In this section, we summarize the methods that we implemented and compared. The four option

fragments are now described.

1. NLDO algorithm. IP denotes use of the interior-point method in fmincon to solve the NLDO

problem. QLIN denotes the quasilinearization method presented in Alg. 1. The RLQDO prob-

lem is automatically created using symbolic differentiation. TLFP denotes a two-level fixed

parameter method in Sec. 3.3.2 was used to solve the NLDO problem (i.e., the nested control

co-design solution strategy). The LQDO LLP is created and solved using DTQP, while the ULP

is solved using fmincon with the interior-point algorithm. Finite-difference methods are used

to obtain derivatives in ULP.

2. OLQ elements. OLQ denotes the OLQ elements are directly incorporated as discussed in

Sec. 3.3.1. NL denotes all problem elements were treated as nonlinear except the simple bounds.
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3. Derivatives. SD denotes symbolic derivatives are provided. Problem element derivatives are

automatically determined using symbolic differentiation and used to construct the required dif-

ferentiation matrices for the select DT method. FD denotes a forward finite-difference scheme

was used to compute any required derivatives.

4. DT methods. TR denotes defect constraints constructed using the trapezoidal rule (a SS DT

method), and the composite trapezoidal rule was used for quadrature. PS denotes defect con-

straints constructed using the single-interval Legendre pseudospectral method on a Lagrange-

Gauss-Lobatto mesh and Gaussian quadrature weights [74]. For both methods, the catenated

number indicates the number of points in the mesh.

These four options are combined to create a complete NLDO solution strategy. For example,

IP-SD-OLQ-TR200 indicates that the NLP problem is constructed using the trapezoidal rule with

200 time points and symbolic derivatives with direct incorporation of OLQ elements and solved

using an interior-point method. The computational cost is measured in several parts. Tsym indi-

cates the time spent determining the symbolic derivatives. The total time is denoted T , which the

combination of the initialization time Tint (which includes the time to create the OLQ element

matrices) and optimizer time Topt. The symbolic computations are not included in the total time

so a fair comparison can be made between the methods. All the method and case study details are

available in the free and open-source DTQP software tool [54]. The computer architecture used for

all case study results was a desktop workstation with an AMD 3970X CPU at 3.7 GHz, 128 GB

DDR4 2666 MHz RAM, MATLAB 2020a update 4, and Windows 10 build 17763.1397.

3.5 Case Studies

In this section, four different case studies are presented to demonstrate how various LQDO-

based methods can be incorporated to solve NLDO problems.
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3.5.1 Container Crane

Problem description.

In this problem, we want to optimally transfer the states of a container crane subject to linear

path constraints. Please see Ref. [75] and is also known as cran in Ref. [42]. The NLDO problem

is:

min
u,ξ

1

2

∫ tf

0

[

ξ23 + ξ26 + ρ
[

u2
1 + u2

2

]]

dt (3.14a)

subject to: ξ̇ =

































ξ4

ξ5

ξ6

u1 + c4ξ3

u2

− [u1 + c5ξ3 + 2ξ5ξ6] /ξ2

































(3.14b)

ξ(0) = (0, 22, 0, 0,−1, 0) (3.14c)

ξ(tf ) = (10, 14, 0, 2.5, 0, 0) (3.14d)

− c6 ≤ ξ4 ≤ c6, c7 ≤ ξ5 ≤ c7 (3.14e)

− c1 ≤ u1 ≤ c1, c2 ≤ u2 ≤ c3 (3.14f)

Note that all parts except for ξ̇6 are OLQ elements. The constants are c1 = 2.83374, c2 =

−0.80865, c3 = 0.71265, c4 = 17.2656, c5 = 27.0756, c6 = 2.5, c7 = 1, tf = 9, and ρ = 0.01.

The initial guess used for all methods was a linear solution between the specified initial and final

states values and maximum and minimum control values (see Fig. 3.1).

Results.

The results for this case study are summarized in Table 3.1.

We will first focus on the effectiveness of the quasilinearization method. In most of the cases,

QLIN had a lower computational cost than the best IP method while converging to nearly the same

solution. For example, QLIN was 2.6× faster for the TR20 and 1.9× faster for the PS40 variant.
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Table 3.1: Results for the Container Crane case study.

Method v Iter. Tsym Tint Topt T
QLIN-TR20 0.0380 3 0.57 0.007 0.03 0.03
IP-SD-OLQ-TR20 0.0380 20 1.42 0.002 0.08 0.08
IP-SD-NL-TR20 0.0380 20 2.17 0.003 0.16 0.16
IP-FD-OLQ-TR20 0.0380 22 0.00 0.003 0.22 0.22
IP-FD-NL-TR20 0.0380 22 0.00 0.001 0.24 0.24
QLIN-TR200 0.0375 3 0.56 0.010 0.31 0.32
IP-SD-OLQ-TR200 0.0375 29 1.41 0.002 0.41 0.41
IP-SD-NL-TR200 0.0375 29 2.17 0.003 0.58 0.59
IP-FD-OLQ-TR200 0.0375 30 0.00 0.003 0.88 0.89
IP-FD-NL-TR200 0.0375 29 0.00 0.002 0.95 0.95
QLIN-TR2000 0.0375 3 0.56 0.033 8.23 8.26
IP-SD-OLQ-TR2000 0.0375 35 1.42 0.008 7.21 7.21
IP-SD-NL-TR2000 0.0375 35 2.18 0.004 8.25 8.26
IP-FD-OLQ-TR2000 0.0375 39 0.00 0.003 13.92 13.92
IP-FD-NL-TR2000 0.0375 35 0.00 0.003 13.95 13.95
QLIN-PS10 0.0376 4 0.55 0.009 0.03 0.04
IP-SD-OLQ-PS10 0.0376 24 1.42 0.002 0.08 0.08
IP-SD-NL-PS10 0.0376 28 2.17 0.003 0.21 0.21
IP-FD-OLQ-PS10 0.0376 29 0.00 0.003 0.25 0.26
IP-FD-NL-PS10 0.0376 31 0.00 0.002 0.31 0.31
QLIN-PS40 0.0375 3 0.56 0.008 0.18 0.18
IP-SD-OLQ-PS40 0.0375 29 1.42 0.002 0.34 0.34
IP-SD-NL-PS40 0.0375 29 2.18 0.002 0.46 0.46
IP-FD-OLQ-PS40 0.0375 29 0.00 0.002 0.53 0.53
IP-FD-NL-PS40 0.0375 31 0.00 0.002 0.62 0.62

(a) States. (b) Controls.

Figure 3.1: Quasilinearization results for the Container Crane problem (QLIN-TR2000).
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There was some additional cost to create the OLQ matrices, but the overall solver time was faster.

However, when the number of time points was large in the TR2000 variant, the QLIN method was

1.2× slower (but still competitive with all other variants). This indicates that further studies are

needed to determine what the best uses are, especially since this problem was a prime candidate for

the QLIN method with many OLQ elements. The different QLIN-TR2000 iterations are shown in

Fig. 3.1 where the darker lines indicate later iterations. We note that the initial guess was quite poor

for the controls, but reasonable for the states. However, only after a single iteration, all trajectories

were nominally similar to their final convergence counterparts.

Now let us turn our focus to the impact of the direct incorporation of OLQ elements. As was

anticipated, in all cases, the computational cost was lower when the OLQ matrices were included

for the appropriate problem elements, and each variant converged to the same solution with the

same DT method specification. In some cases, the iterations were different, potentially due to

the differences in the calculated derivatives. The benefit of the OLQ option with the symbolic

derivatives provided was between 15–163%, while for the tested finite-difference variants, it was

between 0–19% faster. The wide range with SD can be attributed to the fact that the optimization

algorithm computational cost starts to dominate when the problem size grows; thus, the marginal

gains recorded with TR2000. The minor benefit for the FD variants is because there is generally

a high fixed cost with computing the finite differences for this relatively small problem. This

illustrates the point that there are clear advantageous to allowing the user of a DT-based tool to

define the OLQ elements directly and create the underlying methods that leverage these elements.

A final point of emphasis is the fact that computational costs of direct incorporation of the

OLQ elements were minimal. All values of Tint were quite small when compared to the other

computational costs. Even the QLIN methods, which had to create large matrices with time-varying

elements, had a much lower cost than the actual optimization algorithms and symbolic operations.

Therefore, there are limited disadvantages in OLQ when properly implemented.
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3.5.2 Van der Pol Oscillator

Problem description.

The Van der Pol oscillator is a common test problem for many numerical optimal control

methods (see vpol in Ref. [42]), including quasilinearization [60, 61]. Here we consider two

variations: V1 = {tf = 5, c1 = −∞, c2 = −0.3, c3 = 1, c4 = 1, c5 = 1} which has fixed

parameter values [76], and V2 = {tf = 5, c1 = −0.4, c2 = −0.5, c3 = 1, c4 = 0.1, c5 = 5} which

must determine two parameter values [5]. The NLDO problem is:

min
u,ξ,xp

∫ tf

0

[

ξ21 + ξ22 + u2
1

]

dt (3.15a)

subject to: ξ̇ =







ξ2

−p1ξ1 + ξ2 [1− p2ξ
2
1 ] + u1






(3.15b)

ξ(0) = (1, 0) (3.15c)

c1 ≤ ξ2, c2 ≤ u(t) ≤ c3 (3.15d)

c4 ≤ p1 ≤ c5, c4 ≤ p2 ≤ c5 (3.15e)

Note that all problem elements except for ξ̇2 are OLQ elements. The linearized form for ξ̇2 was

shown in Eq. (3.8). The initial guess for both variations and all methods can be seen in Fig. 3.3.

Results.

For V1, similar results to Container Crane are observed. This problem has been well studied

as a convergent quasilinearization example [60, 61]. More interesting observations can be made

for V2, and the results are summarized in Table 3.2. A very accurate solution is obtained using IP-

SD-OLQ-PS40 in only 0.07 s, and is shown in Fig. 3.2 with optimal parameter values of 0.15206

and 1.5374, respectively.

Here, the basic quasilinearization method fails to converge (and was tested with many different

initial guesses). The iteration behavior is shown in Fig. 3.3 where after a few iterations, the solution

oscillates between two trajectories. Both state and path constraints enter and exit activity as well

as the parameters’ simple bound constraints. The inclusion of more advanced techniques such as
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Table 3.2: Results for the Van der Pol Oscillator V2 case study.

Method v Iter. Tsym Tint Topt T
IP-SD-OLQ-TR20 1.9809 15 0.85 0.001 0.04 0.04
IP-SD-NL-TR20 1.9809 15 1.14 0.001 0.06 0.06
IP-FD-OLQ-TR20 1.9809 21 0.00 0.001 0.10 0.10
IP-FD-NL-TR20 1.9809 18 0.00 0.001 0.09 0.09
IP-SD-OLQ-TR200 1.9652 23 0.86 0.002 0.12 0.12
IP-SD-NL-TR200 1.9652 23 1.22 0.001 0.16 0.16
IP-FD-OLQ-TR200 1.9652 26 0.00 0.001 0.18 0.18
IP-FD-NL-TR200 1.9652 27 0.00 0.001 0.25 0.25
IP-SD-OLQ-TR2000 1.9650 26 0.86 0.003 1.10 1.10
IP-SD-NL-TR2000 1.9650 26 1.17 0.002 1.21 1.21
IP-FD-OLQ-TR2000 1.9650 27 0.00 0.002 1.52 1.52
IP-FD-NL-TR2000 1.9650 28 0.00 0.002 2.22 2.22
IP-SD-OLQ-PS10 1.9649 17 0.85 0.002 0.04 0.04
IP-SD-NL-PS10 1.9649 17 1.15 0.001 0.06 0.06
IP-FD-OLQ-PS10 1.9649 22 0.00 0.001 0.07 0.07
IP-FD-NL-PS10 1.9649 29 0.00 0.001 0.12 0.12
IP-SD-OLQ-PS40 1.9650 16 0.86 0.002 0.07 0.07
IP-SD-NL-PS40 1.9650 16 1.15 0.001 0.09 0.09
IP-FD-OLQ-PS40 1.9650 17 0.00 0.001 0.09 0.09
IP-FD-NL-PS40 1.9650 19 0.00 0.001 0.13 0.13
QLIN-TRX — did not converge
QLIN-PSX — did not converge

Figure 3.2: Results for the Van der Pol Oscillator problem V2 (IP-SD-OLQ-PS40).
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(a) States.

(b) Controls. (c) Parameters.

Figure 3.3: Quasilinearization results for the Van der Pol Oscillator problem V2 QLIN-PS40).

line searches and trust regions could improve convergence, but, as was discussed in Sec. 8, the

modified approach would be similar to existing methods for solving NLPs.

Again, the use of the OLQ option resulted in faster overall solving times in all cases. Compu-

tational costs were decreased between 10–50% with SD and between −10% and 71% with FD.

The small negative performance hit was due to the increased iterations needed by the OLQ option

vs. NL, again indicating that the derivatives are different between the two.
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Table 3.3: Results for the Co-Design Transfer case study.

Method v Iter. Tsym Tint Topt T

TLFP-TR2000 23.6228 6 — — — 0.31
QLIN-TR2000 23.6228 8 0.25 0.031 0.17 0.20
IP-SD-OLQ-TR2000 23.6228 6 0.31 0.002 0.14 0.14
IP-SD-NL-TR2000 23.6228 6 0.47 0.001 0.16 0.16
IP-FD-OLQ-TR2000 23.6228 8 0.00 0.003 0.58 0.58
IP-FD-NL-TR2000 23.6228 8 0.00 0.003 0.61 0.61

3.5.3 Co-Design Transfer

Problem description.

This is a control co-design test problem with a known solution [59]. It has been previously

used to study the TLFP method. The NLDO problem is:

min
u,ξ,xp

∫ tf

0

u2
1dt (3.16a)

subject to: ξ̇ =







ξ2

−p1ξ1 + u1






(3.16b)

ξ(0) = (x0, v0) (3.16c)

ξ(tf ) = (0, 0) (3.16d)

0 ≤ p1 (3.16e)

Note that all parts except for ξ̇2 are OLQ elements. The constants are tf = 1, x0 = 1, and v0 = 2.

A poor initial guess of one was used for all optimization variables.

Results.

The results for this case study are summarized in Table 3.3. This is the first of the case study

problems that is an LQDO-amenable co-design problem; thus, TLFP is applicable. In Table 3.3,

this strategy is slower than QLIN and IP-SD-OLQ. However, it can be argued that comparisons

to FD are more appropriate because TLFP does not require any symbolic operations. Therefore,

comparing TLFP and IP-FD-OLQ, we see that the two-level method is faster or only slightly

slower. Even if all OLQ elements are being directly incorporated, there are still some problem
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(a) States.

(b) Controls. (c) Parameters.

Figure 3.4: Two-level fixed parameter results for the Co-Design Transfer problem (TLFP-TR2000).

elements with nonlinear behavior. If a user identifies that their problem is appropriate for the

TLFP method, then there still might be some place for the nested co-design method when analytic

derivatives are unavailable. This will be further studied in the next example.

The iteration sequences of TLFP-TR2000 and QLIN-TR2000 are shown in Figs. 3.4 and

3.5, respectively. Each method requires the solution of a different sequence of QP subproblems

(LQDO problems). Note that each iteration of TLFP has feasible dynamics with respect to the

original problem, while this is not necessarily true for QLIN. The finite-difference nature of the

TLFP method can also be observed.
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(a) States.

(b) Controls. (c) Parameters.

Figure 3.5: Quasilinearization results for the Co-Design Transfer problem (QLIN-TR2000).

3.5.4 Vehicle Suspension Co-design

Problem description.

This is a simplified quarter-car vehicle suspension problem, illustrated in Fig. 3.6. Similar

versions of this problem have been studied in Refs. [7, 34, 77]. The four states represent: 1) the

difference in the unsprung mass and road elevation z0, 2) velocity of the unsprung mass, 3) dif-

ference in the mass positions, and 4) velocity of the spring mass. The single open-loop control

variable represents the active force actuator in the suspension, and the two parameters are for the

suspension damper and spring constants, respectively.
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Table 3.4: Results for the Active Suspension Problem case study.

Method v Iter. Tsym Tint Topt T
TLFP-TR200 1.977 17 — — — 1.10
IP-SD-OLQ-TR200 1.977 12 6.46 0.003 0.3 0.31
IP-SD-NL-TR200 1.977 12 6.47 0.003 0.3 0.33
IP-FD-OLQ-TR200 2.048 598 0.00 0.003 21.8 21.80
IP-FD-NL-TR200 2.048 598 0.00 0.003 21.9 21.92
TLFP-TR2000 1.996 22 — — — 9.18
IP-SD-OLQ-TR2000 1.996 13 6.49 0.005 1.6 1.63
IP-SD-NL-TR2000 1.996 13 6.51 0.004 1.7 1.74
IP-FD-OLQ-TR2000 1.997 599 0.00 0.006 216.7 216.68
IP-FD-NL-TR2000 1.997 599 0.00 0.004 216.4 216.43
QLIN-TRX — did not converge

Figure 3.6: Quarter car suspension
.
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Briefly:

min
u,ξ,xp

∫ tf

0

[

w1ξ
2
1 + w2ξ̇

2
4 + w3u

2
]

dt (3.17a)

subject to: ξ̇(t) =



















0 1 0 0

−kt
mus/4

−[p1+ct]
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p1
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0 −1 0 1
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−p2
ms/4

−p1
ms/4
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0
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0

1
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u(t) +



















−1

ct
mus/4

0

0



















ż0(t)

(3.17b)

ξ(0) = 0 (3.17c)

|ξ3(t)| ≤ rmax (3.17d)

xpmin ≤ xp ≤ xpmax (3.17e)

where objective in Eq. (3.17a) is a weighted sum of handling, comfort, and control effort metrics,

and Eq. (3.17d) represents a rattle space path constraint. The constants are:

w1 = 105, w2 = 0.5, w3 = 10−5, kt = 232500, ct = 0,mus/4 = 65,ms/4 = 325, rmax = 0.04

xpmin =
[

102, 102
]

,xpmax =
[

105, 106
]

The rough road profile used is from Refs. [7, 34] and is shown in Fig. 3.7a. The TLFP method is

applicable [34].

Results.

The results for this case study are summarized in Table 3.4. The optimal solution using TLFP-

TR2000 for select states and the control are shown in Figs. 3.7a and 3.7b, respectively. Optimal

parameter values were found to be 101.12 and 21558. Because a large mesh is needed to accu-

rately solve this problem, the single-interval PS methods were not tested. Similar to Van der Pol

Oscillator V2, this problem did not converge when using QLIN.

The main takeaway from this example is the relative effectiveness of the TLFP method. The

cases using the symbolic derivatives were significantly faster (3.5–5.6×) than TLFP, but as was

stated in Sec. 3.5.3, a fairer comparison is to the FD methods. Now the two-level approach is 20–
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(a) Select states and road elevation profile.

(b) Control.

Figure 3.7: Results for the Active Suspension Problem (TLFP-TR2000).

24× faster! Furthermore, the FD methods results have noticeably poorer final solutions, especially

for TR200, as well as much slower convergence rates. Therefore, for certain LQDO-amendable

co-design problems where the symbolic derivatives are not feasible, the TLFP approach might

perform better than the simultaneous approach [34, 59].

Finally, the difference between OLQ and NL was relatively small. In one case it was 7% faster,

while in other cases the effect within the margin of error. Only two of the state derivative func-

tions were OLQ elements, and the objective function was nonlinear, so there was little difference

between the two options.

The main takeaway for solving DO problems from this chapter is that the NL method with high-

quality derivative information produces the fastest results, but the bilevel approach is preferred
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when this derivative information is not available. In the next chapter, we apply these insights to a

more comprehensive case of the suspension problem presented above.
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Chapter 4

Fair Comparisons between the Nested and

Simultaneous Control Co-Design Methods

This chapter explores Study 2 proposed in Sec. (1.4.2), and applies the insights developed in

Chapter. 3: Using LQDO Elements in solving NLDO Problems from Chap. 3, to carry out a fair

comparison between the nested CCD and simultaneous CCD methods4.

4.1 Introduction

Control co-design (CCD) is the term for a class of integrated design methods that concurrently

treat the dynamic system’s physical and control aspects, overcoming some of the limitations of tra-

ditional sequential and siloed approaches [11, 24]. Because of the broad applicability and promise

of improved integrated system performance [28], CCD has been adopted by researchers in sev-

eral areas including automotive [5, 7], thermal management systems [4], spacecraft [70], wave

energy [14], and wind energy [31, 36].

There are various solution strategies for CCD that have been studied, but only relatively few

studies have made detailed comparisons. Without thorough investigations utilizing state-of-the-art

methods and modern design problems, the existing domain-specific suggestions might not apply

to today’s problems and methods. Such broad and up-to-date investigations are critical as CCD is

being used to solve increasingly complex and large-scale system design problems. Such studies

could elucidate needed early insights into the appropriate choice of strategy and implementation

techniques. The goal of this article is to make a contribution towards this end for a subset of popular

CCD coordination and solution strategies on a complex CCD problem. While guidelines applicable

to broad classes of CCD problems will not be made, the existing literature-based comparisons and

4This chapter is based on the following publication [78].
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(a) Simultaneous. (b) Nested.

Figure 4.1: Two common CCD coordination strategies.

a detailed case study will better demonstrate the state-of-the-art understanding and how a thorough

investigation can be conducted to yield the desired implementation insights.

4.2 Control Co-Design Strategies and Solution Methods

Here we are considering coordination strategies for CCD problems that can be represented as

a deterministic nonlinear dynamic optimization problem (NLDO) [7, 14]. Of late there have been

studies that look into coordination strategies for CCD problems with stochastic problem elements

as well. Please refer Ref. [79] for more details regarding stochastic CCD formulations. Because

of the multidisciplinary nature of these problems, different multidisciplinary design optimization

(MDO) architectures can be considered [7, 11, 80]. However, suppose we are limited to single-

system problems and architectures that do not partition the system across trajectories. In that

case, there are a limited number of appropriate MDO methods suitable for CCD [11, 23]. Because

of these reasons and more, the two leading coordination strategies for CCD are 1) simultaneous

analysis and design or simultaneous, and 2) the nested control problem formulation or simply

nested [26].
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4.2.1 Simultaneous Formulation

In the simultaneous CCD formulation, a single optimization problem is put forth, and the op-

timizer simultaneously analyzes and designs the plant, state, and control variables, as shown in

Fig. 4.1a [7, 30]. The general NLDO problem form is shown in Eq. (1.8), but is shown here again

in a form more conducive to discussions in this chapter:

min
x=[ξ,xc,xp]

o =

∫ tf

t0

ℓ (t, ξ,xc,xp) dt+m (ξ0, ξf ,xc,xp) (4.1a)

subject to: ξ̇(t)− f(t, ξ,xc,xp) = 0 (4.1b)

h =







ho (xp)

hi (t, ξ,xc,xp, ξ0, ξf )






= 0 (4.1c)

g =







go (xp)

gi (t, ξ,xc,xp, ξ0, ξf )






≤ 0 (4.1d)

where: ξ0 = ξ(t0), ξf = ξ(tf ) (4.1e)

where t ∈ [t0, tf ] is the fixed time horizon, {ξ,xc,xp} are the collections of the selected states,

control design variables, and plant design variables, respectively. The objective function o(·) is

composed of the Lagrange term ℓ(·) and Mayer term m(·) [19]. The first-order differential equation

ξ̇(t)− f(·) = 0 represents the system dynamics. The equality constraints h(·) are partitioned into

two sets {ho(·),hi(·)} where ho(·) depends only on xp. A similar partitioned form is used for the

inequality constraints g(·).

4.2.2 Nested Formulation

The nested CCD formulation is an intentional reorganization of the simultaneous CCD problem

in Prob (4.1) as a two-level optimization problem with an outer and inner problem hierarchy, as

shown in Fig. 4.1b. This has been discussed in the previous chapters in Eqs. (1.11,1.12). For the
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outer-loop problem, we solve only with respect to the plant design variables:

min
xp

o (I (xp) ,xp) (4.2a)

subject to: ho(xp) = 0 (4.2b)

go(xp) ≤ 0 (4.2c)

where: I (xp) = argmin
ξ,xc

(Prob. (4.3) with xp) (4.2d)

where I (xp) is the solution to the following inner-loop problem:

min
ξ,xc

o
(

ξ,xc,x
†
p

)

(4.3a)

subject to: ξ̇(t)− f
(

t, ξ,xc,x
†
p

)

= 0 (4.3b)

hi

(

t, ξ,xc,x
†
p, ξ0, ξf

)

= 0 (4.3c)

gi
(

t, ξ,xc,x
†
p, ξ0, ξf

)

≤ 0 (4.3d)

where x†
p is the candidate plant design from the outer loop. This nested strategy was termed

nested control problem formulation because Prob. (4.3) is now in the standard optimal control

form where the optimal states and controls are desired. In Refs. [23, 26], it is shown that the

solution to Prob. (4.2) is mathematically equivalent to the simultaneous form in Prob. (4.1) under

the condition that a solution exists for the inner-loop problem for every considered xp by the outer

loop.

4.3 Comparing the Strategies

With both the considered CCD coordination strategies and solution methods described, we can

now start comparing the nested and simultaneous strategies.

4.3.1 Literature-Based Discussions

In many studies, there is a brief statement on the coordination selection (likely supported by

work not directly shown). In Refs. [31, 70, 81, 82], the authors state that the nested approach is

better suited for their problem, while Refs. [5, 7, 83] assert the simultaneous approach. For the
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studies that selected the nested approach, the main motivating reasons can be summarized as the

impractical size and complexity of the simultaneous formulation [27], ability to use tailored inner-

loop methods (e.g., LQR and LQDO) [34, 70, 81, 82], and reduction of calls to computationally-

expensive plant models [31, 70]. In Ref. [7], the simultaneous approach was selected because the

nested implementation used was very computationally inefficient. However, the CCD problem

in that study (and the one considered in this article) is an LQDO-amenable CCD problem but

was not treated as such in Ref. [7], among other implementation improvements that would reduce

computational expense.

Several studies have shown quantitative comparisons between a simultaneous and nested im-

plementation of the same CCD problem. In Ref. [31], the two strategies converged to the same

solution (as expected if all equivalency assumptions are met). The main computational complexity

comparison was in the form of function evaluations of f , which was a costly black-box function.

The nested approach had about half of the number of function calls. However, without also com-

paring computation times, it may have been the case that the simultaneous approach had a lower

CPU time because there is more involved with the two coordination strategies than function calls

(although in this study, it may indeed have been the dominating factor).

In Ref. [77], the simultaneous approach produced a lower objective function value, even using

a QP for the nested inner-loop problem. However, the implementation details and computation

times are lacking, so it is challenging to generalize the outcomes. Similar statements can be made

for Ref. [30] (and the simultaneous and nested approaches are much better than the other con-

sidered strategies). In Ref. [23], comparisons were made on a very simple CCD problem, and

results showed that the nested approach was much better for large nt. However, the simultaneous

implementation was extremely inefficient, not considering sparsity or accurate derivative computa-

tions. In Ref. [22], a moderately-complex LQDO-amendable CCD problem was considered using

both approaches. It was shown that there are several factors that impact which method is superior.

However, the conclusions were relatively limited scope because the sensitivity to the convergence

tolerances and other means for reducing runtime were not explored.
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4.3.2 Potential Trade-offs

We now summarize the potential trade-offs between the coordination strategies as found in the

CCD and MDO literature.

Advantages (+) of the simultaneous strategy

• Can potentially find the solution quickly by letting the optimizer explore regions that are

infeasible [80].

• Naturally handles bidirectional coupling between the plant and control design variables [7,

23].

• Supports fine-grained parallelization [7].

• Better supports advanced derivative methods (e.g., complete problem analytic derivatives

and the complex-step method).

• Only a single problem to construct and manage.

Advantages (+) of the nested strategy

• Each subproblem’s structure is simplified and size reduced from the original simultaneous

formulation (e.g., dynamics now considered with fixed xp).

• Tailored optimization algorithms (and tolerances) can be used in the different subproblems

that can leverage the simplified subproblem structure (e.g., QP or LQR) or outer-loop global

search [23, 34, 70, 81, 82].

• If the inner loop is always feasible, this approach naturally handles bidirectional coupling

between the plant and control design variables [23].

• Results from intermediate iterations are feasible.

• In some cases, potentially fewer function calls for certain elements (e.g., if f(·) is a linear

dynamic system) [31, 34, 70].

Disadvantages (−) of the simultaneous strategy

• Large problem size [80].
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• Requires many function calls to potentially expensive problem elements such as f(·) [31,

34, 70].

• Results from intermediate iterations are not guaranteed to be feasible [80].

Disadvantages (−) of the nested strategy

• Issues when the inner-loop problem is not defined at a particular xp [23].

• Challenging to compute accurate outer-loop derivatives (e.g., accuracy of the subproblem

impacts accuracy of outer-loop derivative information [80], and analytical derivatives some-

times impossible to construct).

• Only supports coarse-grained parallelization [7].

4.3.3 Towards a Fair Comparison

From the discussion above and existing CCD literature, there does not seem to be a consensus

or even good, purposeful guidelines on when to use either strategy. This shortcoming may be due

to CCD problems and design goals diversity, but clear case studies could be quite insightful.

One of the main challenges in making a fair comparison is the fact that different optimization

and analysis architectures are typically used when implementing the two coordination strategies

on the same problem. Furthermore, if ineffective implementations of some parts of a coordina-

tion/solution method are used, then the comparison may be biased. For example, in Ref. [23],

no fair comparisons were made because the simultaneous did not leverage the problem’s sparsity.

While complete optimization of the implementation strategy may not be useful in every case, a

good case study should put forth the effort to compare multiple implementations. More universal

metrics such as the number of function calls can be useful [11,31], but often, the function calls are

significantly different between the coordination strategies, including the use of different models

and code vectorization, obscuring totals (and a similar case can be made for iterations).

In Ref. [23], runtime benchmarking was used to compare the strategies, but this approach may

have issues with generalizability due to its dependence on computer architecture and the envi-

ronment [84]. However, this approach does try to normalize the utility of the two strategies where
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lowered measured runtime cost (for the same outcome) is desirable. Yet, solution quality is another

dimension that could be argued. Generally, better solution quality implies lower objective function

value but also can include closer satisfaction of the constraints and more alternative feasible solu-

tions. Additionally, it can be argued that in (early-stage) CCD problems, the optimal plant design

variables may only need to be determined to a few decimal places. In contrast, state variables need

many more to model the system dynamics accurately and not have accumulated errors. Therefore,

the commonplace solution quality vs. computational expense trade-off should be considered.

The results presented in Sec. 4.5 will be towards making better comparisons considering the

many factors enumerated in this section.

4.4 Active Suspension Problem

Active vehicle suspension CCD problems have been used to show the efficacy of the CCD

methodology and compare the trade-offs between different strategies [11, 26, 34, 77]. The consid-

ered quarter-car suspension system and components are illustrated in Fig. 3.6 [11,77]. The system

consists of two masses (sprung mass ms/4 and unsprung mass mus/4), and the suspension between

them is consists of a force actuator u(t), a linear spring ks(xp), and a linear damper cs(xp). The

remainder of the system consists of a linear tire spring kt and damper ct and road input z0(t). A

simplified version of this problem has been solved in the previous chapter in Sec. 3.5.4.

4.4.1 System Dynamics

There are four states in the system:

ξ(t) =

[

zus − z0 żus zs − zus żs

]T

(4.4)

where zus−z0 is the displacement between mus/4 and z0, żus is the velocity of the mus/4, zs−zus is

the relative displacement between the masses, and żs is the velocity of ms/4. The initial conditions
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for the states are assumed to be zero, i.e., ξ(0) = 0. The differential equation is:

ξ̇(t) = A(xp)ξ(t) +Bu(t) +Eż0(t) (4.5a)

A =
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(4.5b)

4.4.2 System Objective

The performance measure for a design load case is a combination of quadratic penalties on

handling (zus − z0), passenger comfort z̈s, and control effort u:

o =

∫ tf

t0

[

w1ξ
2
1 + w2[ξ̇4(t, ξ, u,xp)]

2 + w3u
2
]

dt (4.6)

with w1 = 105, w2 = 0.5, and w3 = 10−5 from Ref. [7].

Here we consider two load cases: 1) a ramp input conditions (road grade at 25% speed of 10

m/s), 2) rough road profile using IRI737 data [7]. The two are combined using a weighted sum as

follows:

min
ξ,u,xp

10−2o(ξramp, uramp,xp) + o(ξrough, urough,xp) (4.7)

where xp is naturally shared between the two cases.

4.4.3 Spring Design

The spring physical design variables are the wire diameter d ∈ [0.005, 0.02] [m], helix diameter

D ∈ [0.05, 0.4] [m], pitch p ∈ [0.02, 0.5] [m], and number of active coils Na ∈ [3, 16]. The spring

constant ks is computed by:

ks(xp) =
d4G

8D3Na

[

1 + d2

2D2

] (4.8)

where G is the shear modulus. The quantity L0 = pNa + 2d is the free length of the spring.

Ls = d(Na + Q − 1) represents the solid height of the spring with Q = 1.75. C = D/d is the

spring index. The following constraints are included for manufacturability, antitangling, buckling,
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minimum pocket length, and minimum pocket width:

go,1(xp) = 4− C ≤ 0 (4.9)

go,2(xp) = C − 12 ≤ 0 (4.10)

go,3(xp) = L0 − 5.26D ≤ 0 (4.11)

go,4(xp) = L0 − 0.40 ≤ 0 (4.12)

go,5(xp) = d+D − 0.25 ≤ 0 (4.13)

The axial force is Fs = ks(L0 − Ls), and the shear yield stress is related to the ultimate shear

stress by Ssy = 0.65Sut, where Sut = 1974d−0.108 × 106. The shear stress is:

τ(F ) =

(

4C + 2

4C − 3

)

8FD

πd3
(4.14)

Now, we enforce that the maximum shear stress must not be higher than Ssy:

go,6(xp) = 1.2τ(Fs)− Ssy ≤ 0 (4.15)

There are also constraints that depend on the dynamic nature of the states. A rattlespace con-

straint depends on the maximum displacement of the spring:

gi,1(xp, ξ) = max
t
|ξ3(t)| − L0 + Ls + 0.02 + δg ≤ 0 (4.16)

where δg = ms/4g/ks is the static suspension deflection with g = 9.81 m/s2. To ensure the spring

linearity assumption, we include:

gi,2(xp, ξ) = 0.15 + 1−
L0 − Ls

δg + 1.1ξ3(t)
≤ 0 (4.17)

The maximum and minimum axial forces are Fmax = ks(maxt|ξ3(t)| + δg) and Fmin = ks(δg −

maxt|ξ3(t)|), respectively. Then, the mean axial force and force amplitude are defined by Fm =

(Fmax+Fmin)/2 and Fa = (Fmax−Fmin)/2, respectively. Soderberg fatigue criterion and Zimmerli

limit are considered with:

gi,3(xp, ξ) =
1.2τ(Fa)

0.24Sut

+
τ(Fm)

Ssy

− 1 ≤ 0 (4.18)

gi,4(xp, ξ) =
1.2τ(Fa)

241× 106
− 1 ≤ 0 (4.19)
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4.4.4 Damper Design

There are three parameters for damper design including the valve diameter Do ∈ [0.003, 0.012]

[m], working piston diameter Dp ∈ [0.03, 0.08] [m], and damper stroke Ds ∈ [0.1, 0.3] [m]. The

damper constant cs is:

cs(xp) =
D4

p

8CdC2(Do)D2
o

√

πkvρ1
2

(4.20)

where Cd, C2(Do), ρ1, and kv are parameters in Ref. [7]. The damper must fit inside the spring,

thus constraints on its size and range of motion are included:

go,7(xp) = d−D +Dp + 0.022 ≤ 0 (4.21)

go,8(xp) = 2Ds − 0.394 ≤ 0 (4.22)

go,9(xp) = L0 − Ls −Ds ≤ 0 (4.23)

The dynamic constraints depend on the suspension’s relative velocity ξ̇3 = ξ4−ξ2 and are meant

to limit the heat generated by the working fluid. These constraints restrict the maximum pressure

on the damper fluid, the maximum allowable velocity, and the spool valve lift, respectively:

gi,5(xp, ξ) =
4cs(Do)maxt|ξ̇3(t)|

πD2
p

− 4.75× 106 ≤ 0 (4.24)

gi,6(xp, ξ) = max
t
|ξ̇3(t)| − 5 ≤ 0 (4.25)

gi,7(xp, ξ) =
4πD2

ocs(Do)maxt|ξ̇3(t)|

4kvπD2
p

− 0.03 ≤ 0 (4.26)

ξ xc xp

o(·)

f(·)

hi(·)

gi(·)

ho(·)

go(·)
X

Legend:

Linear

x†
p Linear

Quadratic

x†
p Quadratic

Nonlinear

I II

III IV

V
Increasing

Complexity

Figure 4.2: Allowable dependency matrix form for an LQDO-amendable CCD problem.
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ξ xc xp

ξ1 ξ2 ξ3 ξ4 u d D p Na Do Dp Ds

Eq. (4.6), o(·)

Eq. (4.5),f(·)

ξ(0) = 0,hi,1(·)

Eq. (4.16),gi,1(·)

Eq. (4.17),gi,2(·)

Eq. (4.18),gi,3(·)

Eq. (4.19),gi,4(·)

Eq. (4.24),gi,5(·)

Eq. (4.25),gi,6(·)

Eq. (4.26),gi,7(·)

Eq. (4.9),go,1(·)

Eq. (4.10),go,2(·)

Eq. (4.11),go,3(·)

Eq. (4.12),go,4(·)

Eq. (4.13),go,5(·)

Eq. (4.15),go,6(·)

Eq. (4.21),go,7(·)

Eq. (4.22),go,8(·)

Eq. (4.23),go,9(·)

X

Figure 4.3: Dependency matrix for suspension CCD problem.

4.4.5 Analysis of the CCD Problem

With the entire problem defined, it can be helpful to analyze the CCD problem structure. To this

end, a dependency matrix visualization template is provided in Fig. 4.2 where rows are problem

elements from Prob. (4.1), and the columns are for design variable dependence. A similar analysis

was performed in Refs. [70] without the detail provided here. Additionally, this is similar to

the Jacobian matrix shown in Ref. [7] with a few key differences. First, the dependencies are

categorized as linear, quadratic, and nonlinear, and a specialized qualifier is added for the case

when the plant design is fixed (denoted x†
p). For example, the optimization variable dependence

for f(·) in Eq. (4.5) is only linear if the plant design is fixed. By filling in all the appropriate

entries, one can determine if their CCD problem is an LQDO-amendable CCD problem by merely
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verifying the complexity is lower than the level shown in Fig. 4.2. It also facilitates the partitioning

of the inner- and outer-loop constraints. Because of the definitionally disallowed X region, any

constraints that do not only depend on xp must be in the inner-loop.

For this case study, the dependency matrix is shown in Fig. 4.3. All gi(·) can be transformed

into a linear state form, potentially needing two constraints. Comparing with Fig. 4.2, this is an

LQDO-amendable CCD problem. There are additional uses for this representation. Regions II

and IV provide insights into when the inner-loop problem needs to be solved. Here Ds doesn’t

change the inner-loop problem. Furthermore, dominated inner-loop constraints are observed in

Eqs. (4.16)–(4.19) because they have the same row properties with only a single linear state vari-

able. Therefore, only one can be active at a time, and this constraint can be easily determined. The

same can be said for Eqs. (4.24)–(4.26), again reducing three path constraints to only one. Finally,

it helps determine in Region V which plant constraints are linear (if the entire row is linear).

This discussion highlights the potential advantage of the nested strategy to structure and sim-

plify the subproblem. Effective nested and simultaneous implementations should take advantage

of all of this information.

4.5 Results

In this section, we solve the LQDO-amenable CCD problem defined in Sec. 4.4 using a variety

of coordination strategies, computational methods, and tunable parameters. The case study is

available at and solved using the free and open-source DTQP software tool (based on commit

33c2f24) [54]. The computer architecture used for the results was a desktop workstation with an

AMD 3970X CPU at 3.7 GHz, 128 GB 3200 MHz RAM, Matlab 2020a update 5, and Windows

10 build 17763.1432.

4.5.1 Complete Solution

Before we begin comparing different instances of the CCD solution strategies, we first want

to present a single complete and accurate solution to the CCD problem. The optimal trajectories
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(a) Optimal states for ramp case.

(b) Optimal states for rough road case. (c) Optimal controls.

Figure 4.4: Optimal trajectories with nt = 5000.

for select states and controls under the ramp and rough road load cases are shown in Fig. 4.4. The

optimal objective function value o∗ was 2.0677, and the ramp and rough road constituents were

56.340 and 1.504, respectively. These performance values were obtain using both the simultaneous

(S) and nested (N) CCD strategies using nt = 5000 and small tolerances to ensure high quality

solutions. Interestingly, the plant designs from the two implementations were slightly different as

noted in Fig. 4.4. However, the key intermediate variable values found using S of k∗
s = 2.366×104

N/m and c∗s = 839.8 Ns/m were within 2% of N so the optimal state and control trajectories were

nearly indistinguishable. In Ref. [7], a solution was demonstrated with o∗ = 2.12 using a much

coarser mesh, but the overall the values of k∗
s and c∗s and the optimal trajectories were generally

similar.

62



(a) Different nt. (b) Different derivative methods.

Figure 4.5: Run time vs. relative objective function error for various solution implementations.

4.5.2 Solution Implementation Variations

There are various key decisions to be made when attempting to find a solution to a CCD prob-

lem numerically. In this section, we will explore several implementation variations to gain insights

into best practices.

The S architecture used fmincon with the built-in interior point algorithm where all deriva-

tives are provided utilizing the sparsity pattern for DT problems. The variations tested were com-

posed of permutations of the following:

• Three different values of nt = [200, 600, 2000]

• Three optimality tolerance values [10−3, 10−5, 10−7]

• Three feasibility tolerance values [10−4, 10−8, 10−12]

• Four derivative methods (symbolic, complex-step differentiation, real-central finite differ-

ence (FD), and real-forward FD)

The N architecture used fmincon with the built-in interior point algorithm for the outer loop

and quadprog for the inner-loop QP. Parallel computing was utilized in the outer loop for FD.

The variations tested were composed of permutations of the following:

• Three different values of nt = [200, 600, 2000]

• Three outer-loop optimality tolerances values [10−1, 10−3, 10−5]

• Three inner-loop optimality and feasibility tolerance values [10−4, 10−8, 10−12]
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• Two outer-loop derivative methods (real-central and real-forward FD)

• If a hybrid approach was used where a genetic algorithm was first run for one iteration (for

global search and to find a point with a feasible inner loop). Otherwise a starting point with

a feasible inner loop was used.

Simultaneous vs. Nested

All the variations are shown in Fig. 4.5 comparing the relative error of the objective value

found above and the optimization runtime on the prescribed computer architecture. In Fig. 4.5a,

the results indicate S is the superior approach when using enough points for an accurate time

discretization, i.e., nt ≥ 600.

However, it is important to look at the specific implementation that achieved this result. Fig-

ure 4.5b labels the points by the derivative method used. Now we can see why S was superior;

it was using symbolic derivatives! Accurate derivative information is shown to be a critical factor

for efficient S implementations. The implementations using the complex-step method, which is

nearly as accurate as symbolic derivatives (second-order derivatives are less accurate), was on av-

erage 10× slower. Therefore, these results indicate that N is superior when symbolic derivatives

are unavailable and potentially by an order of magnitude or more in runtime.

Additional Simultaneous Insights

The real-central and real-forward FD methods were about 5 to 10× slower than the complex-

step implementations. This result also explains why the reported runtimes in Ref. [11] where so

much higher than the values reported here, which used the low-order derivative method with a large

step size. Not shown in the figure, several instances of S using the low-order derivative methods

did not converge within a large iteration limit. Many models do not readily support symbolic

derivatives or complex numbers, so one would need to use another derivative strategy shown to be

quite inefficient, even when requesting low accuracy solutions (recalling that many variations on

the tolerances were tested). Solutions with O(10−2, 10−3, 10−4) accuracy were obtained in (7, 16,

144) s, respectively.
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(a) Outer-loop problem optimality tolerance.
(b) Inner-loop problem feasibility and optimality toler-
ance.

Figure 4.6: Tolerance study results for the nested strategy.

Additional Nested Insights

Figure 4.6 shows only the N implementations highlighting the different inner and outer loop

tolerances. In Fig. 4.6a, the outer-loop tolerance shows clear trade-off between accuracy and run-

time. Loss in outer-loop accuracy is commonplace when the inner-loop tolerance is not small

enough (cf. Fig. 4.6b). Balancing these tolerances can permit efficient CCD solution implemen-

tations that achieve the desired accuracy with extra computational cost. Solutions with tolerances

set for O(10−2, 10−3, 10−4) accuracy were obtained in (8, 31, 287) s, respectively.

A fundamental assumption for equivalence between the nested and simultaneous formulations

is consistent inner-loop feasibility. However, uniform random sampling of plant designs within

the simple upper and lower bounds indicate 44% have infeasible inner loops, and approximately

0.033% are infeasible with respect to all constraints! The starting point used in Ref. [7] is one

of those infeasible points, so a simple nested implementation would not converge. In this case,

infeasible inner loops are when some of the additional inequalities are not well-posed. In fact, the

inner-loop QP is immediately declared infeasible by quadprog.

A possible deterrent against this issue is a hybrid optimization scheme. In this study, the hybrid

scheme consisted of a genetic algorithm and then a derivative-based optimizer. Additionally, im-
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plementing the five linear go(·) constraints appropriately (so not as nonlinear constraints) was quite

helpful in finding better populations and search directions because many optimization algorithms

can directly avoid linear constraint infeasibility regions. Also, including appropriate outer-loop

feasibility constraints, as suggested in Ref. [23], could help guide the outer-loop towards a feasible

inner-loop region and would take the form of positive bound coefficients in gi,1(·) through gi,4(·)

in this case.

These additions help in curbing infeasible results and help solve the problem faster as well. If

a candidate is infeasible for one scenario, then the inner-loop terminates and the outer-loop solver

is forced to find a better candidate.

This chapter provides a fair comparison between the nested and simultaneous CCD of an active

vehicle suspension design problem. As presented above, the simultaneous strategy using symbolic

derivatives was generally superior, while the nested strategy was preferable when any other deriva-

tive method was used. However, special care is needed to handle potentially infeasible inner loops

in the nested method. In the next chapter, we will investigate the use of nested CCD on a consid-

erably larger FOWT design problem.
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Chapter 5

Control Co-Design of a Floating Offshore Wind

Turbine

This chapter applies the heuristics developed from the previous studies on efficient CCD im-

plementations and considerations to CCD of a floating offshore wind turbine5.

5.1 Introduction

As mentioned previously, the design of floating offshore wind turbines (FOWT) has followed

a sequential pattern, where the physical plant parameters are designed first, and a controller is then

optimized for this particular plant [12, 13, 36, 86]. However, in FOWTs, there are strong interac-

tions between the dynamic response of the system to environmental excitations and the controller.

Unfortunately, a sequential design process can produce unstable systems as it does not account for

this coupling [35, 87]. As a consequence of this, the turbine will not be able to generate enough

power to make it economically feasible. Optimizing both the physical plant and the controller si-

multaneously enables identification of stable, system-level optimal results. This integrated design

approach has been studied extensively under the term control co-design (CCD) [8,12,26,29,88,89].

Recently the importance of these integrated design approaches for energy system design has been

recognized by domain experts. References [3, 35, 90] have explored the application of integrated

design to offshore wind turbines, and Refs. [14, 91] discuss the application of CCD to the design

of wave energy converters. Integrated design approaches have also found applications in design of

mixed renewable/nonrenewable power generation systems [92].

The primary design goal of any wind-based energy system is to capture as much power from

the incoming wind while minimizing the structure’s dynamic loads. In the case of FOWT systems,

the system dynamic loads and its power production are heavily dependent on both the physical

5This chapter is based on the following publication [85].
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Figure 5.1: Floating offshore wind turbine (illustration courtesy of NREL).

plant specification and the control strategy used. In order to design a system, the objective must

capture to capture the economic impact of the plant and control decisions, along with physical

response. For energy production systems, these goals are captured by the levelized cost of energy

(LCOE) [93]:

LCOE =
Total Lifetime Cost

Total Lifetime Energy Output
(5.1)

The total lifetime costs of the FOWT system are a combination of the initial cost needed to build the

system (capital cost) and the maintenance costs over its lifetime. The capital costs are often directly

linked to the plant design decisions [1, 94]. The maintenance costs and the total lifetime energy

output are dependent on how the system operates and, consequently, depend on the environment

and how it is controlled [95]. Recent studies have shown that advanced control strategies for

offshore wind applications can increase the power extracted from the turbine, and minimize the

levelized cost [96]. Traditional LCOE estimates have not used such novel control methods, nor

have they considered their physical and economic impact. In the case of highly coupled systems

like FOWTs, such considerations are imperative, considering the amount of effort that goes into
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making these systems economically viable [2]. Additionally, overlooking the impact of control

decisions on the physical design is a pitfall of sequential design approaches.

5.2 Design of FOWT

5.2.1 Plant Design of Floating Offshore Wind Turbines

The plant design of a FOWT involves optimizing the physical response of the system in order

to reduce fatigue and dynamic loads while keeping the cost of the system competitive. The primary

elements of a FOWT are the rotor, drive train, nacelle, tower, and support structure, and are labeled

in Fig. 5.1.

Stability of the FOWT about its natural equilibrium is required in all manner of wind, wave,

and current excitations that the system might experience [97]. Reference [98] provides information

about the standard industry requirements of a FOWT. Generally, increasing the mass of the support

structure will make the FOWT more stable, but this would also raise the capital and other costs.

Therefore, it is essential to optimize the system for cost while ensuring stability [99]. As the devel-

opment cycle progresses, additional practical considerations like assembly costs and procedures,

maintenance costs, and ease of transportation may also be incorporated into the plant design.

5.2.2 Wind Turbine Control of Floating Offshore Wind Turbines

The control system for a FOWT is instrumental in achieving the design goals stated in the

previous sections. The power generated by a FOWT and the physical loads on its structure is

heavily dependent on the loading conditions induced by the wind, waves, and currents. Operating

the system in such a way so that it can remain stable while producing maximal power is the primary

goal of the FOWT control system. Similar to the control of land-based wind turbines, the control

strategy selected depends heavily on the system’s input excitations, as these inputs produce the

dynamical responses we seek to optimize.

The primary mode of control for any wind turbine depends heavily on the wind, so specific

operating regions are often defined based on the wind speed [100, 101]. Typically, there are four
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wind speed-based regions of interest, visualized in Fig. 5.2. At the lower, below-rated wind speeds,

the system produces limited power. Above the rated wind speed, the turbine is designed to operate

at its maximum power level. In between these regions, there is a transition behavior, and at ex-

tremely fast, above-rated wind speeds, the system is shut down as there can be permanent structural

damage.

Figure 5.2: Controller regulation trajectory from Ref. [3].

The two primary control inputs for wind turbines are the pitch angle of the turbine blades (com-

monly called blade pitch) and the torque produced by the generator. In below-rated wind speeds,

varying the generator torque is the primary mode of control of the turbine [3]. At rated wind

speeds, the generator torque is held constant, and the blade pitch is varied in a process called max-

imum power point tracking where the rotor’s angular velocity is continuously adjusted to extract

the maximum possible power from the incoming wind.

5.2.3 Modeling Considerations

It is often necessary to conduct early-stage design studies to understand the desired funda-

mental system properties and behaviors that inform critical decisions that need to be made as the
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system-of-interest is realized. The use of high-fidelity modeling tools in early-stage design stud-

ies is not always needed to achieve the desired design insights and can be prohibitive due to their

complexity and computational expense.

To facilitate these design and control (both closed- and open-loop) studies, it is common to

develop reduced or lower-order models that capture the system’s essential physics. Results from

these reduced-order models are validated against the simulations from high-fidelity tools to un-

derstand their veracity in studying the system’s behavior. After validation, these models are then

linearized around predetermined set-point values in distinct operating regions. These linearized

models are then used to understand the system dynamics and design controllers in these operating

regions.

However, there are some drawbacks in developing these lower-order models. The develop-

ment of these lower-order models is complicated as they require extensive subject knowledge of

FOWTs and the associated physics/engineering disciplines. Additionally, the lower-order models

are developed to study a specific aspect of the system’s behavior, e.g., the floating structure re-

sponse, controller response, aerodynamic wake, etc. As such, the results from these models cannot

be easily generalized. The highly-coupled nature of a FOWT can create further complications in

modeling the system accurately [35, 102–105].

One way to mitigate these difficulties is by using linearized models obtained directly from high-

fidelity (e.g., computational fluid dynamics) modeling tools [106,107]. These models are obtained

by linearizing the nonlinear system around specific operating points, often stationary points where

the system exhibits steady state dynamics. A linear time-invariant state-space dynamic model

about the static operating point (ξo,uo) typically has the following form:

dξ∆(t)

dt
= Aoξ∆(t) +Bou∆(t) (5.2a)

y(t) = Coξ∆(t) +Dou∆(t) + go (5.2b)

where t is time, ξ∆(t) are the relative states related to the original states ξ with ξ(t) = ξ∆(t) + ξo,

u∆(t) are the relative inputs related to the original inputs u with u(t) = u∆(t) + uo, y(t) are the

outputs, and the matrices (Ao,Bo,Co,Do, go) are associated with the linearization process.
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A significant drawback with any kind of linearized model is their accuracy in capturing the sys-

tem’s dynamic response diminishes quickly as the system’s behavior moves away from the initial

operating point. Thus, it becomes difficult to work with many diverse design load cases, where

the wind speed continuously changes. Some studies that have used linearized models leveraged

them in gain scheduling approaches to account for nonlinearities. However, this approach does not

guarantee stability and performance for all possible values of the wind speed [108].

In this chapter, we will discuss the use of linear parameter-varying (LPV) models to help over-

come the drawbacks of distinct linear models [108, 109]. These LPV models show good accuracy

when capturing the original nonlinear dynamics, and can be used to generate open-loop optimal

control trajectories [110]. Additionally, they have been used to develop closed-loop controllers for

wind turbines [108, 110].

5.2.4 Integrated Design with Control Co-Design

The CCD approach provides a rigorous framework that can naturally handle the coupling be-

tween the plant and control drivers present in FOWTs.

There are certain advantages for nested CCD approach, as discussed in the previous chapters,

for problems where the inner loop is a linear-quadratic dynamic optimization (LQDO) problem.

The use of open-loop control during early-stage design studies can show the maximum achievable

performance of the system and provide the desired insights into the optimal system dynamics and

controller behavior [31, 78, 91]. Additionally, nested CCD is often necessary when black-box

models of the dynamics are used (as will be the case in this work) [29, 32].

5.2.5 Use of OpenFAST and WEIS Models

The wind energy with integrated servo-control (WEIS) is an open-source project that is cur-

rently being developed by the National Renewable Energy Laboratory (NREL) and partners, that

will allow users to perform CCD of FOWT systems [6, 111]. The WEIS toolbox is built on Open-

FAST, another open-source toolbox developed by NREL, that generates a full-system dynamic

response of FOWTs under wind, wave, and current excitations. The OpenFAST tool is built on
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independent modules that capture the important physical phenomena of the different FOWT sub-

systems and couplings between them. There are different modules to capture the aerodynamic,

hydrodynamic, servodynamic, and mooring dynamics response of the system to these excitations.

A variety of plant design decisions can be explored within these tools as well [6].

In this chapter, the dynamic models of FOWTs will be generated using the linearization capa-

bilities of the WEIS/OpenFAST tools, and the original nonlinear dynamics simulation capabilities

being used for validation of the results. A detailed discussion regarding the linearization capabil-

ities of OpenFAST and the entire tool can be found in Refs. [106, 107, 111, 112]. Wind speed is

used to select the state and control operating points for this linearized model.

5.3 Linear Parameter-Varying Models

As mentioned previously in Sec. 5.2.3, linearized models, like the one defined in Eq. (5.2),

can accurately describe the system’s behavior for small perturbations about the operating point

from which they were derived. For the design and optimization activities of a FOWT system, it

is essential to understand the system behavior over multiple input excitations, and consequently

over multiple operating points. While there are additional drivers for modeling variations, the

primary one in wind energy systems, including FOWTs, is the wind speed in the direction of

the turbine-blade system. Under different wind conditions, the stationary operation points for the

FOWT system greatly varies as do the matrices defining the dynamic model in Eq. (5.2). Therefore,

here we will consider models that are dependent on this important parameter andcan be useful in

generating open-loop optimal control trajectories for the CCD approach.

5.3.1 Linear Parameter-Varying Model Derivation

LPV models are a special case of linear time-varying (LTV) systems where the system matrices

are continuous and are a function of a set of parameters [109]. Here we will consider the single

parameter case where the parameter is denoted by w, and indicates the current wind speed value.
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Now, consider the following nonlinear parameter-dependent model:

Σ =















dξ

dt
= f(ξ,u, w)

y = g(ξ,u, w)

(5.3)

Our goal is to linearize this model about the w-varying operating point functions (ξo(w),uo(w))

where stationary or steady-state models characterize their values:

f(ξo(w),uo(w), w) = 0, ∀w ∈ [wmin, wmax] (5.4)

where wmin is the minimum parameter value considered and wmax the maximum.

Now the relationship between the linearization states and the original states depends on the

parameter w:

ξ(t) = ξ∆(t) + ξo(w), u(t) = u∆(t) + uo(w) (5.5)

Assuming that w is time varying, the time derivative relationship of the states is:

dξ

dt
=

dξ∆
dt

+
d

dt
ξo(w(t)) (5.6a)

=
dξ∆
dt

+
∂ξo
∂w

dw

dt
(5.6b)

Now we use the following notation for the derivatives of the nonlinear model:

A(w) := Jf
ξ (ξo(w),uo(w), w) , B(w) := Jf

u (ξo(w),uo(w), w)

C(w) := Jg
ξ (ξo(w),uo(w), w) , D(w) := Jg

u (ξo(w),uo(w), w)

where Jf
x denotes the Jacobian of f with respect to x, and the values of these functions are

dependent on the operating points and are denoted as:

f(w) := f (ξo(w),uo(w), w) , g(w) := g (ξo(w),uo(w), w)

With this derivative relationship in Eq. (5.6) and the notation above, the nonlinear system Σ in

Eq. (5.3) is linearized about (ξo(w),uo(w)) yielding the following LPV system:

Σw =















dξ∆
dt

=✟✟✟✟✯0
f(w) +A(w)ξ∆ +B(w)u∆ −

∂ξo(w)

∂w

dw

dt

y = g(w) +C(w)ξ∆ +D(w)u∆

(5.8)
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Note, if only a single time-invariant value of the parameter denoted wo is considered, then we

have the following system:

dξ∆
dt

= A(wo)ξ∆ +B(wo)u∆ −
∂ξo(wo)

∂w ✓
✓
✓✓✼
0

dw

dt
(5.9a)

y = g(wo) +C(wo)ξ∆ +D(wo)u∆ (5.9b)

which gives us:

Σo =















dξ∆
dt

= A(wo)ξ∆ +B(wo)u∆

y = g(wo) +C(wo)ξ∆ +D(wo)u∆

(5.10)

which is the same LTI system defined in Eq. (5.2) for a single operating point characterized by the

parameter wo.

5.3.2 Construction using Multiple Linearized Models

The system Σw with continuous dependence on the parameter w generally will not be directly

available because linearized models are often realized through numeric methods for specific oper-

ating points (i.e., Σo). Therefore, it may be necessary to construct Σw from a strategic finite set

of Σo models. To accomplish this goal, the matrix entries of Σw are determined by element-wise

matrix interpolation from a set of given denoted Ω = {Σo1,Σo2, · · · ,Σon} each created using the

parameters valuesW = [w1, w2, · · · , wn]. Derivatives of the polynomial interpolating function as

computed directly when needed.

Now there are several properties to consider to ensure such an interpolation scheme has rea-

sonable chance of meaningfully capturing the nonlinear dynamics including:

(P1) The states, inputs, and outputs are unchanging for all considered Σo.

(P2) The sparsity patterns (nonzero entries in the system matrices) are generally similar between

analogous matrices.

(P3) The stationary condition in Eq. (5.4) holds for the given interpolation scheme and W ,

i.e., (ξo(w),uo(w)) can be found through interpolation such that the condition holds.
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(P4) The element-wise relationships between different matrices can be reasonably interpolated

using a selected W (note that this is hard to quantify because errors in these coefficients

might not result in large errors in the key outputs).

(P5) At various validation points not in W , the error between the actual linearized system at wo

and the interpolated system Σw quantified by the H∞ norm is below a tolerance ǫ:

‖Go(s)−Gw(s)‖H∞

≤ ǫ (5.11)

whereGo(s) andGw(s) are the transfer function matrices for Σo and Σw, respectively. Note

that this error metric better captures the input/output error in the system.

(P6) Time-domain simulations between the nonlinear Σ and LPV Σw should be similar.

At this time, the selection ofW was informed by expert intuition and figures like Fig. 5.2 that

characterize the different regions of operation and their transition points. Future work will consider

automated sampling strategies that try to optimally sample points for constructing an accurate LPV

using the condition in Eq. (5.11).

5.4 LPV Model Validation for IEA-15 MW Turbine

The International Energy Agency (IEA) 15 MW offshore wind turbine is a reference turbine

model jointly developed by NREL and Danish Technical University (DTU) [3, 113], visualized in

Fig. 5.1. The turbine is supported by a floating semisubmersible platform, and a chain catenary

mooring system, and the details of the support structure is available in Ref. [114]. It is meant to

serve as an open benchmark for the offshore wind community. All the studies in this work are done

on the linearized models derived from this reference turbine.

5.4.1 WEIS Toolbox

Wind Energy with Integrated Servo-control (WEIS) enables the co-design of the physical plant

and control system of FOWT systems, under three different modeling fidelities. The Level 1 mod-

ules aim to perform CCD with frequency-domain models of the system. Level 2 used the linearized
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time-domain models to perform CCD. Level 3 module aims to perform CCD with closed-loop con-

trol trajectories of the full nonlinear system [6]. This work concentrates solely on Level 2, CCD

with linearized models.

The WEIS toolbox is built on OpenFAST, another open-source toolbox developed by NREL

that generates a full-system dynamic response of FOWTs for wind, wave, and current excitation.

The OpenFAST toolbox is built on independent modules that capture the important physical phe-

nomena of the different FOWT subsystems and couplings between them. There are different mod-

ules to capture the effects of aerodynamic, hydrodynamic, servodynamic, and mooring dynamic

response of the system to these excitations.

The linearization capabilities of WEIS come from linearization capabilities built within Open-

FAST. Briefly, this process involves

1. Identifying a suitable operating point

2. Linearizing the nonlinear physics of each module around this point

3. Linearizing the module to module input-output coupling relationships about the operating

point

4. Combining all the linearized matrices into the full-system linear state-space model

A detailed discussion regarding the linearization capabilities of OpenFAST and the code for it can

be found in the following references [106, 107, 112].

5.4.2 Processing the Linearized Models

Wind speed is used to select the state and control operating points for this linearized model.

The standard model is then linearized using the linearization capabilities of OpenFAST. With lin-

earized models, it is common practice to time average them, before using the models for analysis.

However, direct time averaging eliminates the periodic terms that contribute to system dynamics

and leads to inaccurate results. Thus, after linearizing, it is crucial to perform an operation called
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multi-blade coordinate (MBC) transformation. MBC captures the cumulative dynamics of the ro-

tor blades and the interaction of the rotor with the tower-nacelle subsystem. It makes the system

matrices well conditioned by eliminating nonessential periodicity and performing the filtering op-

eration. More details about this process and the code are available at Ref. [115]. The final output

is a state-space model, with state, control, output and disturbance matrices corresponding to the

operating point, given byAo,Bo,Co,Do respectively.

Two keys states in this system are the generator speed ωg and platform pitch Θp. In its current

form, the model is excited by wind inputs only; wave and current disturbances are not considered.

Correspondingly, the total inputs to the system are the wind speed w, the generator torque τg, and

the blade pitch β:

u(t) =

[

w τg β

]T

(5.12)

For the considered system, the OpenFAST tool can provide accurate simulations of the non-

linear dynamics of the system (i.e., the outputs of Σ). To alleviate the concerns expressed in the

previous sections, a LPV model is a less computationally-expensive and structured alternative to

these expensive simulations. The natural choice for the parameter used to construct the LPV model

Σw is the wind speed. The operating region of a wind turbine is between the cut-in wind speed

(wmin = 3 [m/s] in this study) and the cut-out wind speed (wmax = 25 [m/s]). The system ex-

hibits highly nonlinear behaviour in the transition region and to ensure accuracy while modeling,

more points were sampled in the region between rated wind speed and below-rated wind speed.

To understand the accuracy of the LPV modeling approach for this system and to test if the model

satisfies the given properties, several comparison studies were made.

5.4.3 State-Space Model Comparisons

With a selected W (56 distinct wind speeds in this study), the set of linearized state-space

models Ω at each of the wind speed values are obtained. To construct the continuous Σw usingW

and Ω, direct element-wise interpolation of the matrices (Ao,Bo,Co,Do) was used. To reduce the
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(a) Select stationary operating point values.

(b) One eigenvalue ofA(w). (c) Interpolated matrix entries ofB(w).

Figure 5.3: Select stationary points, eigenvalues, and input matrix for Σw for the IEA-15.

interpolation costs, the sparsity pattern of the matrices were considered. Only entries with nonzero

values were interpolated (and the sparsity pattern remained similar (P2)).

To understand the predictive accuracy of this approach, and check if these models satisfy (P4),

the following test is carried out. Every alternate point in W was chosen as a training data for the

interpolation procedure, and the values in-between are selected as validation points. This allows us

to assess if the interpolation approach can predict matrix properties by comparing to the validation

systems. In Fig. 5.3a, several key ξo(w) anduo(w) are shown and there is good agreement between

the interpolated LPV system and the validation points, even in the transition region. In Fig. 5.3b,

one of the eigenvalues of A(w) that changes with the wind is shown. Again, the eigenvalues

generally are well predicted with the largest errors in the transition region. Finally, the normalized
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(a) L∞ error using validation points.

(b) Close prediction at w = 23 [m/s] between
blade pitch and generator speed.

(c) Largest H∞ error at w = 11.5 [m/s] be-
tween blade pitch and generator speed.

Figure 5.4: Transfer function-based comparisons using the validation wind speed values for the IEA-15.

nonzero entries of B(w) are shown in Fig. 5.3c, and there are some validation points with high

error in the transition region but good agreement in the other regions.

5.4.4 Frequency-Domain Verification

The transfer function matrix of the LPV models was studied to better understand if the in-

put/output relationship is accurately predicted and to compute the error in Eq. (5.11) in (P5). Here,

we consider the six relationships between the two key states ωg and Θp and the inputs u.

The H∞ norm error between the training and validation systems and the interpolated systems

is shown in Fig. 5.4a. The errors at the training points is near zero, as expected using interpolation.

However, the systems derived from the transition region (8–12 [m/s]) have the highest error when

compared to the other regions. This figure shows how advanced sampling strategies could be used
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Figure 5.5: Two different wind inputs used in the Time-Domain Verification simulations.

to better sample from regions of high error. Additionally, the transfer functions between β and ωg

are shown in Figs. 5.4b and 5.4c with a close prediction and largest H∞ error, respectively.

5.4.5 Time-Domain Verification

The final comparisons were based on (P6) using OpenFAST to determine the nonlinear re-

sponse of Σ. Using the same input trajectories, three different models (Σ, Σw, and Σo using the

average wind speed wavg) are simulated, and then the resulting state trajectories are compared.

Two different input sets were simulated. The wind inputs (step-like and turbulent) are shown in

Fig. 5.5 (and the nonzero trajectories for β and τf are not shown).

From the results, we see that Σw captures the nonlinear response from OpenFAST more accu-

rately that Σo using wavg. In the first study (S1), wavg = 12.8 [m/s]. Early in the simulation, when

the wind speed value is far away from wavg, we see that the Σo using wavg produces inaccurate

results for Θp in Fig. 5.6a and ωg in Fig. 5.6b. In the second study (S2), wavg = 15.7 [m/s], and

the wind profile is generally in a region where the dynamics are more predictable between wind

speeds (cf. Figs. 5.3 and 5.4). Because of this property, all the model responses are similar, but

again Σw more closely follows Σ. The simulation results for Θp and ωg are in Figs. 5.6c and 5.6d,
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(a) Platform pitch (S1). (b) Generator speed (S1).

(c) Platform pitch (S2). (d) Generator speed (S2).

Figure 5.6: Model validation simulations between nonlinear Σ, LPV Σw, and LTI Σo using wavg models.

respectively. Using all the different comparisons, it was concluded that the LPV model Σw can

with reasonable accuracy, capture the dynamics of the considered FOWT.

5.4.6 Interpolation Based on Platform Mass

The model Σw just presented was obtained using a particular instance of the system’s plant

design, denoted by xp in Sec. 5.2.1. However, we also want to consider the design impacts of

a single plant design parameter, namely the platform mass. For such an investigation, using a

collection of various values of the platform mass M , a full set of linear models Ω corresponding

to W are obtained. A similar interpolation scheme and analysis are carried out in this additional

dimension.
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(a) Select stationary operating point values .

(b) One eigenvalue ofA(mr) . (c) H∞ error using validation points.

Figure 5.7: Select stationary points, eigenvalues , and H∞ error for all elevenmr for the IEA-15.

Similar tests to the ones outlined in the previous sections were carried out to check the predic-

tive accuracy of interpolation based on the platform’s mass. Denoting the nominal platform mass

as mr = 1, a total of eleven mass value fractions between 0.2 and 1.2 were used in this study. The

nominal platform specifications are available at Ref. [114]. Stationary operating points, eigenval-

ues ofA(w) for w = 11.4 [m/s], and the H∞ norm error between the training and validation mass

points for wind speeds in the three different regions are shown in Fig. 5.7. From these results, we

see that interpolation based on M is generally well behaved, potentially more so than the wind

speed dimension.
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5.5 Control Co-Design Problem Formulation

This section describes the nested CCD problem constructed using the LPV models from Sec. 5.3

to study the impact of various stability constraints on the LCOE for the considered single device

FOWT.

5.5.1 Outer-Loop Plant Design Problem Formulation

The outer-loop plant optimization problem in the nested CCD approach employed here is cen-

tered around the LCOE calculation in Eq. (5.1). In this calculation, the total lifetime cost is esti-

mated as follows:

Cn =
I(xp)

(1 + r)
+

n
∑

k=1

O

(1 + r)k
(5.13)

where I(xp) is the investment cost that depends on the plant design, O are the annual operating

costs, r is the annual discount rate, and n is the expected lifetime of the system in years.

Modelling the cost of different wind turbine elements along with the balance of system cost is

a specialization in itself. Commonly, these estimates are made with inputs from different vendors

and component manufacturers. For this study, we created a low-fidelity cost and scaling model for

the blades, generator, nacelle, and tower from Refs. [116–119].

Here, we will be considering platform mass as the key plant design variable. Different plat-

form studies use different cost models, and these cost models depend on the cost per tonne of

the materials used to construct the platform. The IEA-15 turbine used in this study is a semisub-

mersible platform. The constituent materials used for constructing the platform are steel, fixed

ballast, and outfitting, and their nominal masses and costs per tonne are from Ref. [114], The cost

of the platform relative to the nominal platform design is:

Cplatform = MsteelCsteel +MFBCFB +MoutfitCoutfit (5.14a)

I(xp) = Csys +mrCplatform(xp) (5.14b)

where mr is a unitless ratio between the platform’s mass and the nominal platform mass.

The weights are obtained from Ref. [114].
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Table 5.1: Nominal platform cost per unit weight and mass for the constituent materials [1, 2].

Material Cost [$/t] Mass [t]
Steel 3600 3914

Fixed Ballast 150 2540
Outfitting 7250 100

The total lifetime energy output is determined using a representative year long energy produc-

tion calculation using m operational scenarios:

E =
m
∑

k=1

τkP̄
∗
k (xp) (5.15)

where k is the operational scenario, P̄ ∗
k (xp) is the expected average power, and τk is the expected

amount of time over one year for scenario k. The expected average power for scenario k is de-

termined by optimizing the dynamics and control for the given plant design. This control-focused

subproblem of the nested CCD coordination strategy will be defined in the next section. The

discount rate is accounted for in a similar manner as Eq. (5.13):

Finally, the annual energy production (AEP) is computed with:

AEP = ηuE (5.16)

where 0 ≤ ηu ≤ 1 is the expected uptime ratio.

Then the expected total energy output over n years is:

En =
n
∑

k=1

E

(1 + r)k
(5.17)

Therefore, LCOE = Cn/En, and the complete outer-loop optimization problem is:

min
xp

LCOE(xp) (5.18a)

subject to: Lp ≤ xp ≤ Up (5.18b)

where only simply upper and lower bounds on the plant variables are considered at this time (al-

though more complex plant-only constraints can be readily incorporated).
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Note that for a fixed plant, the solution for each P̄ ∗
k (xp) can be determined through independent

minimization problems. Therefore, the control subproblems can be solved in parallel, reducing

computational costs.

5.5.2 Control Subproblem for a given Design Load Case

The main outcome from the control subproblem is to understand the impact of the control

decisions on system response, power production, and ultimately the LCOE design objective. An

open-loop optimal control problem is constructed to maximize the power produced for a given op-

erational scenario or design load case (DLC). The optimization formulation is presented using the

original (ξ,u), but the linear time-varying transformation in Eq. (5.5) based on the wind-dependent

operating point is applied so that (ξ∆,u∆) are the states and controls for this subproblem.

The energy produced by the turbine is:
∫ tf

0

P (t)dt =

∫ tf

0

ηgτg(t)ωg(t)dt (5.19)

where ηg is the generator efficiency. Note, the control term τg appears linearly in the objective term

Eq. (5.19). The presence of linear control terms in the objective function with linear dynamics can

give rise to singular arcs [19] as the control trajectory cannot be uniquely determined. To help

mitigate this issue, a quadratic penalty term is introduced in the objective term:

Π(t) = uT







10−8 0

0 108






u (5.20)

where values in this penalty matrix were identified according to the method discussed in Ref. [14].

The linear dynamic constraints included using Σw from Eq. (5.8) are:

dξ∆
dt

= A(w)ξ∆ +B(w)u∆ −
∂ξo(w)

∂w

dw

dt
(5.21)

where the initial state values correspond to the state operating points for w(0):

ξ(0) = ξo(w(0)), or equivalently ξ∆(0) = 0 (5.22)

In order to protect the generator components from excess electrical loads and the nacelle from

the dynamic loads, an upper bound for generator speed ωg is set constraining the generator speed
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to the rated speed of the turbine:

ωg(t) ≤ ωg,max (5.23)

To account for the stability of the system, an upper bound on the platform pitch tilt Θp is included:

Θp(t) ≤ Θp,max (5.24)

Maximum and minimum value constraints are placed on the controls blade pitch β and the gener-

ator torque τg, according to the values prescribed in Ref. [3] :

0 ≤ τg(t) ≤ τg,max (5.25a)

0 ≤ β(t) ≤ βmax (5.25b)

An additional constraint on the pitch rate is included to ensure that the rate of change of the blade

pitch is within practical limits:

dβ

dt
≤ β̇max (5.26)

Another constraint is included to ensure the power generated by the turbine does not exceed the

rated power. Here we approximate the nonlinear power constraint τgωg ≤ Pmax with the following

linear path constraint:

τgωg,max + τg,maxωg ≤ Pmax + τg,maxωg,max (5.27)

Now, the complete control subproblem formulation is:

min
u∆,ξ∆

∫ tf

0

(−P (t) + Π(t)) dt (5.28a)

subject to: Eqs. (5.21)− (5.27) (5.28b)

which will yield the average power P̄ ∗ =
∫ tf
0

P (t)dt/tf needed in Eq. (5.15). It can be observed

that Problem (5.28) has only quadratic objective function terms and linear constraints; therefore,

can be classified as a LQDO problem (see Sec. 5.2.4).

The linear-quadratic optimal control problem was solved using DTQP [54].

The values for the parameters in the constraints are given in the table Tab. 5.2:
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Table 5.2: Problem parameters.

Variable Value Units
ωg,max 0.7913 [rad/s]
Θp,max 6 [deg]
Pmax 15 [MW]
τg,max 19.62 [MNm]
βmax 0.3948 [rad]

ηg 96.55 %

5.6 Results

In this section, we describe the results of an LCOE-focused CCD study using the IEA-15 tur-

bine [3] supported by a floating semisubmersible platform [114]. The values for the CCD problem

parameters defined in Sec. 5.5.2 are given in Table 5.2. Here, we consider six design load cases

(DLCs) based on the input wind speed trajectories shown in Fig. 5.8. The average power values

are combined using Eq. (5.15), with the weights (in days):

τ =

[

23.0 92.2 115.3 54.0 46.1 34.6

]

(5.29)

which correspond to an average wind speed of 13.4 [m/s], and the wind distribution is approxi-

mately a Weibull distribution.

The LQDO optimal control problems based on Problem (5.28) are solved using DTQP, an

open-source Matlab-based toolbox using the direct transcription (DT) method and quadratic pro-

gramming [8, 54]. Each problem was discretized using 5000 mesh points.

A single critical plant design variable was considered as this time, namely the platform’s mass.

A sensitivity approach was used to explore how the plant design decisions impact the system cost

and performance. More interpolated mass values were added near the lower bound ofmr. In order

to understand the impact of platform mass on the system stability, power production, and subse-

quently the LCOE, several constraint bounds on the platform pitch tilt Θp were explored. More

specifically, Θp was constrained to four different values between 3−6◦. Although no wave/current
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Figure 5.8: Design load cases considered based on an input wind speed trajectory.

forces are included as disturbances at this time, these different constraint values on Θp will roughly

indicate performance in more dynamic wave and current conditions.

Overall, there were 32 × 6 × 4 = 768 inner-loop control subproblems solved for each com-

bination of mass, DLC, and Θp,max. The computational cost was 37 minutes on a desktop work-

station with an AMD 3970X CPU, 128 GB DDR4 2666 MHz RAM, Matlab 2021a update 1,

and Windows 10 build 17763.1790. The code for inner loop studies mentioned in the previous

sections is available at Ref. [54].

5.6.1 Results for a Single Control Subproblem

Figure 5.9 summarizes the optimal control results for 1 of the 264 problems with mr = 0.7,

DLC 6, and Θp ≤ 4◦. The optimal trajectories for the generator speed and platform pitch are in

Fig. 5.9a. We see that the constraint Θp ≤ 4◦ and others in Table 5.2 are satisfied. DLC 6 is in the

rated-power region, so we might expect pitch control to be active and the generator torque to be

held roughly constant in Fig. 5.9b [100]. However, to satisfy the platform pitch constraints, we see

that the generator speed does need to decrease when the pitch constraint becomes active.
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(a) Select states ωg and Θp.

(b) Controls β and τg . (c) Power τgωg .

Figure 5.9: Optimal control results with mr = 0.7, DLC 6, and Θp ≤ 4◦.

To better understand the optimal control results in other operating regions, Fig. 5.10 was con-

structed to show the behavior with nominal mass mr = 1 and the largest pitch constraint value

Θp ≤ 6◦. We see in Figs. 5.10b and 5.10c that the results generally follow the expected trends

when compared to the controller regulation from Fig. 5.2. Overall, the optimization-based ap-

proach seems to favor larger torque values and slower speeds than the regulation curves. The

results from the DLCs in the below-rated and transition regions are encouraging, as a combination

of torque and pitch control is utilized. In some regions, the pitch control is active while torque is

held constant and vice versa. Therefore, the optimizer identifies results for all regions in agree-

ment with traditional wind turbine controls. Overall, these results, in combination with the model

validation in Sec. 5.4, demonstrate the validity of the considered LPV models in FOWT open-loop

control studies.
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(a) Windspeed vs. generator power.

(b) Windspeed vs. β. (c) Windspeed vs. τg .

Figure 5.10: Select optimal control results using LPV model vs. controller regulation curves with mr = 1
and Θp ≤ 6◦.

5.6.2 Average Output Power vs. Platform Mass

In Fig. 5.11, the trends between the average power P̄ ∗
6 (mr) for DLC 6 are shown for the four

tested values of Θp,max. The primary method used to control the platform pitch and ensure system

stability is the blade pitch β, but β is also tightly coupled to the generator speed. To satisfy

smaller, more challenging values of Θp,max, the optimal control solution has higher values of blade

pitch, sacrificing generator speed. Thus, for these more challenging constraint values, the power

produced is lower on average.

Additionally, the platform mass has a significant effect on the average power production. We

see that heavier platforms satisfy the stability constraints with little to no compromise on power

generation (i.e., average power is nearly at 15 MW). In comparison, lighter platforms have to
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Figure 5.11: Average output power for DLC 6 vs. platform mass.

sacrifice power generation. Furthermore, in Fig. 5.11 several points are marked in a lighter shade

to indicate that at least one infeasible DLC was identified, i.e., under the constraints imposed in the

control subproblem and with the given platform mass, no feasible solution was found6. Two trends

are observed for these infeasible cases; they happen predominantly for platforms with lower masses

and DLCs in the transition region, e.g., DLCs 2 and 3 from Fig. 5.8. As mentioned previously, the

blade pitch is used to control the platform pitch. For platforms with lower masses, the pitch control

needs to be close to or at its maximum value to satisfy the tighter platform pitch constraints. For

the infeasible cases, the maximum allowable pitch value is not sufficient to satisfy the constraints.

5.6.3 LCOE vs. Platform Mass

Now, combining the DLCs using the weighting scheme in Eq. (5.15), we can determine the total

energy output. In addition, utilizing the total cost model from Sec. 5.5.1, LCOE can be estimated.

These estimates of LCOE have been calculated for n = 30 years with a r = 7% discount rate. It

is important to emphasize that this estimate of LCOE only considers the capital cost of the turbine

and platform components and maintenance cost. Other “balance of system” costs [117] are not

considered for this study as we are only looking at a single turbine. As mentioned previously,

6These infeasible cases are being further investigated, as we believe that infeasibility may be due to several factors
including the physical constraints and the selected DT discretization.
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(a) LCOE vs. platform mass. (b) LCOE vs. platform mass for lower mass percentages.

Figure 5.12: LCOE vs. platform mass.

some values of the constraints are infeasible, and the infeasible results are included with zero

generated energy. The summarized LCOE results are shown in Fig. 5.12.

From these results, we see that the optimal value for LCOE depends on the stability constraint;

for large values of Θp,max, the optimal mass decreases. This is because as the platform mass

increases, the capital cost increases. But, as indicated in Fig. 5.11, lower mass values can still result

in nearly maximum average power production. Therefore, there is some optimal mass point where

the conflicting decisions of increasing energy production are balanced with increasing platform

capital costs.

For the considered reference IEA-15 turbine described in Refs. [3,114], Θp was constrained to

6◦ using the nominal platform mass. While keeping the other plant parameters constant, we see

that the lowest LCOE, in this case, is achieved using 40% of the nominal platform mass. However,

this result is subject to modeling assumptions, optimal control operation, and lack of safety factors,

but it can still help guide the final design. Additionally, the hydrodynamic and hydrostatic stability

of the different platforms has not been evaluated in this study. These investigations will also limit

the bounds on the platform mass and impact the final design.

This study highlighted the importance of taking into account the effect of advanced control

strategies and integrated design approaches on LCOE-based design studies. We see that optimal
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control strategies can help reduce the plant’s overall cost, making FOWTs more economically

feasible. Additionally, CCD proves to be a rigorous integrated design approach that can be used to

design complex coupled systems like a FOWT.
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Chapter 6

Summary and Conclusion

This thesis concentrated on finding efficient methods to construct and solve DO problems with

linear-quadratic elements and simultaneous and nested CCD problems using direct transcription.

There are three main studies undertaken in this thesis. They are summarised individually in the

following sections.

6.1 Summary for Study 1: Using LQDO Elements in Solving

NLDO Problems

The first study presented in Chapter 3 explored the various uses of linear-quadratic dynamic

optimization (LQDO) and ordinary linear-quadratic (OLQ) elements in the context of nonlinear

dynamic optimization (NLDO) and how these elements can be used to efficiently solve NLDO

problems. In this study three general classes of strategies for the use of LQDO elements in solv-

ing NLDO problems were discussed. The first was the direct incorporation of OLQ elements into

DT-based NLDO tools with the appropriate matrices. The case studies demonstrated that there

is some computational benefit of their direct incorporation using either symbolic derivatives or

finite-difference methods. There was generally decreasing improvements as the problem’s mesh

size increased and select instances where performance was slightly worse because of the differ-

ences in the derivative calculations. Additionally, different two-level optimization problems that

have LQDO subproblems were discussed, including the popular nested control co-design method.

This particular nested scheme is applicable to the class of NLDO problems where for fixed values

of xp, the resulting subproblem is a convex LQDO problem and was investigated in the final two

case studies. The nested method was compared to solutions which use finite-difference derivative

methods, and was shown to be faster. Finally, the quasilinearization method was presented where

the linearization of the constraints and quadratization of the objective function are performed with
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respect to some reference trajectory, creating a reference LQDO problem. In the first case study, the

quasilinearization method was shown to be faster than the interior-point NLP method for smaller

mesh sizes. However, this approach did not converge for some of the case study problems, which

included parameters. Therefore, care must be taken when utilizing the quasilinearization for solv-

ing NLDO problems.

There are a variety of potential future work items. Investigating methods that improve the

convergence properties of the quasilinearization without sacrificing the observed benefits could

lead to more efficient and robust NLDO tools. The impetus of the methods discussed in this article

is to further exploit the specific mathematical problem structure of NLDO problems with limited

or no disadvantages.

6.2 Summary for Study 2: Comparison of Nested and Simulta-

neous CCD

The second study in Chapter 4 built on the results from the previous study and established

the methods and results for a fair comparison between simultaneous and nested control co-design

methods. In Chapter 3 we identified that all-at-once or simultaneous optimization is computation-

ally efficient and accurate when using symbolic derivatives, and if such high quality derivative

information is not available, then bi-level or nested optimization problems are preferred. These

insights were then applied to the problem of CCD of active suspension using both simultaneous

and nested CCD. The implementation and results from these studies were then the basis of a fair

comparison between these methods. The varied results of the case study showed that the simul-

taneous strategy using symbolic derivatives was generally superior while the nested strategy was

preferable when any other derivative method was used with the simultaneous strategy. However,

special care is needed to handle potentially infeasible inner loops.

It is important to highlight that this case study uses an LQDO-amendable CCD problem so

the structure of the inner-loop problem permits efficient solution methods. For other general CCD

problems, the observed trends might be different. In general, these results indicate the potential
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advantages of capitalizing on problem structure, selecting the most effective implementation, and

understanding the goals of a particular CCD study.

Furthermore, it is imperative to understand the trade-offs and goals of a particular CCD study

(e.g., desired accuracy) and use sound judgment to make informed decisions on how to solve a

chosen CCD problem. Future work will seek to understand these trade-offs and best practices in

more diverse set of CCD problem scenarios moving towards a robust set of CCD implementation

guidelines. Detailed theoretical and numerical investigations and approachable and effective CCD

tools are critical to increasing the applicability and impact of the CCD methodology.

6.3 Summary for Study 3: CCD of Floating Offshore Wind

Turbines

In this study, we discussed the use of linear parameter-varying (LPV) models for control co-

design (CCD) of floating offshore wind turbines (FOWTs). High-fidelity models of FOWTs are

described by highly complex and nonlinear models. Unfortunately, these models are often too

costly to use in early-stage system design and evaluation. Using linearized models based on these

nonlinear systems is a popular method to offset the computational costs involved. Here, we de-

scribe a class of linear parameter-varying (LPV) models that realize more accurate predictions of

a system’s dynamic behavior over a large range of operating points and are shown to be useful for

early-stage CCD studies of FOWTs.

The LPV models based on the wind speed parameter showed good general agreement in both

nonlinear simulation comparisons and general optimal control trends. The primary study investi-

gated the system’s dynamic stability, power production, and ultimately the levelized cost of energy

(LCOE). The single plant decision in this study was the platform’s mass, and the optimal LCOE

results indicated that the platform mass could be reduced to 30–60% of its nominal value and still

satisfy the platform pitch constraints. However, several additional factors should be investigated

before making a specific recommendation.
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It remains future work to incorporate more detailed and sophisticated outer-loop plant design

optimization, including the impact of plant decisions like tower hub height and blade length on

platform stability and power production in the context of the LCOE. With additional plant deci-

sions, the LCOE calculation should also be amended to reflect the omitted factors. Additionally,

we hope to study the effect of wave and current excitations. Finally, in order to address the realiz-

ability of the open-loop optimal control solutions, work is needed to realize robust, implementable

control systems, which may be informed by the optimal operation identified in this study [6, 31].
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