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ABSTRACT

SOME TOPICS IN HIGH-DIMENSIONAL ROBUST INFERENCE AND GRAPHICAL

MODELING

In this dissertation, we focus on large-scale robust inference and high-dimensional graphical

modeling. Especially, we study three problems: a large-scale inference method by a tail-robust

regression, model specification tests for dependence structure of Gaussian Markov random fields,

and a robust Gaussian graph estimation.

First of all, we consider the problem of simultaneously testing a large number of general linear

hypotheses, encompassing covariate-effect analysis, analysis of variance, and model comparisons.

The new challenge that comes along with the overwhelmingly large number of tests is the ubiqui-

tous presence of heavy-tailed and/or highly skewed measurement noise, which is the main reason

for the failure of conventional least squares based methods. The new testing procedure is built on

data-adaptive Huber regression, and a new covariance estimator of the regression estimate. Under

mild conditions, we show that the proposed methods produce consistent estimates of the false dis-

covery proportion. Extensive numerical experiments, along with an empirical study on quantitative

linguistics, demonstrate the advantage of our proposal compared to many state-of-the-art methods

when the data are generated from heavy-tailed and/or skewed distributions.

In the next chapter, we focus on the Gaussian Markov random fields (GMRFs) and, by utiliz-

ing the connection between GMRFs and precision matrices, we propose an easily implemented

procedure to assess the spatial structures modeled by GMRFs based on spatio-temporal observa-

tions. The new procedure is flexible to assess a variety of structures including the isotropic and

directional dependence as well as the Matérn class. A comprehensive simulation study has been

conducted to demonstrate the finite sample performance of the procedure. Motivated from the ef-

ii



forts on modeling flu spread across the United States, we also apply our method to the Google Flu

Trend data and report some very interesting epidemiological findings.

Finally, we propose a high-dimensional precision matrix estimation method via nodewise dis-

tributionally robust regressions. The distributionally robust regression with an ambiguity set de-

fined by Wasserstein-2 ball has a computationally tractable dual formulation, which is linked to

square-root regressions. We propose an iterative algorithm that has a substantial advantage in

terms of computation time. Extensive numerical experiments study the performance of the pro-

posed method under various precision matrix structures and contamination models.
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Chapter 1

Introduction

In this chapter, we review the latest development on robust inference and Gaussian graphical

modeling, which serve as the cornerstone of this dissertation.

1.1 Robust Statistics

All statistical procedures rely on assumptions about data generation distributions such as mo-

ments, symmetry, as well as independence, homogeneity, and so on. When the assumptions are

violated, the performance of statistical procedures are usually impaired and result in spurious dis-

coveries and false conclusions. From the seminal work by Huber [1], statisticians have been ex-

ploring robustness of statistical methods for more than a half century, where the robustness is

defined as the insensitivity of statistical methods against deviations between the model assump-

tions and data generation mechanisms [2]. The distributional robustness, which assumes that the

true underlying data generation distribution deviates slightly from the assumptions of statistical

models or methods, has been a primary focus in traditional robust statistics [3]. A few different

notions of robustness have been employed in statistics, optimization, and machine learning.

Huber’s ϵ-contamination model (or contamination model) is of the primary interest in the tra-

ditional robust statistics [1]. Consider the class of data generation distributions

Fϵ = (1− ϵ)F + ϵG (1.1.1)

where F and G are both unknown distributions, and ϵ ∈ (0, 1) models the contamination fraction.

The observations are assumed to be random samples from Fϵ. Under model (1.1.1), the robustness

is measured by the breakdown point [4] or the influence function [5]. Intuitively, the breakdown

point of an estimator is the proportion of contamination that the estimator can tolerate yet still

provides a reasonably accurate estimate of the underlying true distribution, F in (1.1.1), and its

1



(a) Rowwise contamination (b) Cellwise contamination (c) Distributional perturbation

Figure 1.1: Demonstrations of each type of contaminations. Each row represents a multivariate sample.
The blank cells are samples from the true underlying distribution while the red ones are those from the
arbitrary contaminated distribution. The light pink cells in panel (c) are samples from distributions that are
slighlty different to the true underlying distribution, and compared to panels (a) and (b), all data in (c) are
contaminated.

functional. For example, the breakdown point of the median is 0.5, whereas the breakdown point

of the sample mean is 0. The breakdown point cannot exceed 0.5 otherwise it is not possible to

distinguish the underlying true and contamination distributions. In contrast, the influence function

quantifies a limiting influence of a new observation with value x on a statistical procedure. Let

T (F ) be a parameter of interest for the underlying true distribution F . The influence function with

respect to T (F ) is defined by

IC(x, F, T ) : = lim
t→0+

T{(1− t)F + tδx} − T (F )

t
, (1.1.2)

where δx is the probability measure with P(X = x) = 1. The gross error sensitivity, γ∗ :=

supx |IC(x, F, T )|, is then defined for quantifying the robustness [5]. If γ∗ is unbounded, the statis-

tical procedure will fail in the presence of an arbitrarily large outlier. For example, consider the lo-

cation estimation problem in R. The influence function of the sample mean is IC(x, F, T ) = x−µ

where µ is the mean of F , which diverges as |x| → ∞. On the other hand, the influence function

of the median is sgn{x− F−1(0.5)}/[2fX{F−1(0.5)}]. Both the breakdown point and gross error

sensitivity (or the influence function) therefore characterize sort of robustness of statistical meth-

ods against outliers. For the finite sample version of (1.1.2) such as the sensitivity curve and the

jackknife, we refer to [2].
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Cell-wise contamination model is a multivariate generalization of the traditional contamination

model [6]. Let Xi ∈ Rp be an observed vector, Yi be a random sample from the unobserved

true distribution, and Zi be an outlier generated from the contamination distribution. In addition,

denote Bi = diag(Bi1, . . . , Bip) a diagonal matrix whose entries are Bernoulli random variables

with P(Bij = 1) = ϵj for j = 1, . . . , p. Assume Yi, Zi, and Bi are independent. The cell-wise

contamination model is defined by

Xi = (I−Bi)Yi +BiZi, ∀i = 1, . . . , n. (1.1.3)

Model (1.1.3) is called the fully independent contamination model when Bi1, . . . , Bip are indepen-

dent and the fully dependent contamination model when P(Bi1 = · · · = Bip) = 1. Alternatively,

they are also referred as the cellwise contamination model and the rowwise contamination model,

respectively. Figure 1.1 (a)–(b) illustrate the two contamination settings when there are 20% of

contaminated samples or cells.

Tail-robustness is a lately developed notion to study the insensitivity of estimators or statistical

procedures against the heavy-tailedness and/or skewness of the observations. The performance

of majority of statistical estimators or procedures heavily relies on distributional assumptions of

data such as the normality/sub-Gaussianity, the symmetry of underlying error distributions, etc.

However, when these assumptions are violated, which is not uncommon in practice [7], the per-

formance of most widely-used statistical methods, such as least squares-based methods, would

be impaired severely by observations that are rarely observed in lighter-tail distributions. We call

these observations as stochastic outliers. Therefore, we need to develop estimators and proce-

dures that are robust against the stochastic outliers, which have better finite-sample performance

than non-robust methods. We call them tail-robust estimators and tail-robust procedures, respec-

tively. To study finite-sample performance, the theoretical studies on tail-robust estimators focus

on nonasymptotic deviation bounds under weak moment assumptions. Following the pioneering

work in [8], the estimation theories under heavy-tailed models have been developed for mean esti-

mation [9, 10], covariance estimation [11], and regressions [12]. Also, a few inference procedures
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that enjoy tail-robustness for testing hypotheses on high-dimensional mean vectors have been doc-

umented in [7, 13, 14].

Finally, we introduce the distributionally robust optimization. Most statistical estimators can

be formulated by minimizing the empirical risk, that is

θ̂ := argmin
θ

EP̂ℓθ(x) = argmin
θ

1

n

n∑

i=1

ℓθ(xi) (1.1.4)

for some loss function ℓ(·) and empirical distribution P̂. Formulation in (1.1.4) provides an es-

timator that performs well on the training data sampled from a common distribution, but it may

perform poorly on out-of-sample data. This phenomenon, overfitting, is widely observed when

one trains statistical learning models, such as least squares-based method or simple tree models.

To overcome the overfitting issue, the (data-driven) distributionally robust optimizations consider

the following problem:

θ̂ := argmin
θ

sup
Q∈U

EQℓθ(x), (1.1.5)

where U is a set of distributions that is referred as the ambiguity set, which is specified with re-

spect to the empirical distribution P̂. Minimizing the worst-case risk, supQ∈U EQℓθ(x), allows us to

obtain an estimator that performs uniformly well over all probability distributions in U . Conceptu-

ally, the data generation distribution is therefore allowed to be completely different from the model

and the deviation is quantified by set U . See Figure 1.1 (c) for an illustration. The formulation

in (1.1.5) has been employed in machine learning, including the traditional regression models, the

support vector machines, and the generative adversarial networks [15–21].

Directly solving (1.1.5) is often computationally intractable, so that the distributionally robust

optimization focuses on developing equivalent and computationally tractable optimization prob-

lems using the duality argument. The dual formulation depends on the choice of the ambiguity

set. Hence, a natural question from (1.1.5) is how to specify the ambiguity set U . Two discrepancy

measures, the f -divergence [22–24] and the Wasserstein distance [25], have been primarily used

for defining the ambiguity set in the optimization literature. The f -divergence is defined by

4



Df (Q∥P) :=
∫
f

(
dQ

dP

)
dP (1.1.6)

for probability measures P and Q, where f : R → R+ ∪ {+∞} is a convex function satisfying

f(1) = 0 and f(t) = +∞ for any t < 0. It includes a large number of well-known information

metrics, such as the Kullback-Leibler divergence, the Rényi divergence, the χ2-divergence, the

Hellinger distance, and so on. The f -divergence has been used to define the ambiguity set and the

corresponding distributionally robust optimization problems in machine learning [19, 26–29]. On

the other hand, the Wasserstein distance is defined by

Wp(P,Q) : =

[
inf

π∈Π(P,Q)
E(X,Y )∼π{d(X, Y )}p

]1/p
, p ∈ [1,∞) (1.1.7)

for some metric d(·, ·) and p ∈ [1,∞) [25]. The Wasserstein distance is motivated from the optimal

transport theories back in the 18th century, and the Wasserstein-distributionally robust optimization

problems have been studied in both statistics and machine learning [16, 17, 20, 30–33]. We refer

to [34] for more choices of ambiguity set in the distributionally robust optimization such as the

moment based ambiguity sets, the shape-preserving models, and the Kernel-based models.

1.2 Gaussian Graphical Models

For a random vector X = (X1, . . . , Xp)
T ∈ Rp, the probabilistic graphical models aim to cap-

ture the conditional dependence between (Xi, Xj) given all other entries of X, denoted by X−(i,j).

If there exists conditional dependence between Xi and Xj given X−(i,j), nodes i and j are con-

nected by an edge. Assume that X is a multivariate normal random vector with covariance matrix

Σ, then its precision matrix Ω := Σ−1 = {ωij}1≤i,j≤p recovers the corresponding undirected graph

of nodes {i : 1 ≤ i ≤ p} using the support of ωij’s. Specifically, it holds that ωij ̸= 0 if and only if

Xi and Xj are independent given X−(i,j). Therefore, estimating the Gaussian graph is equivalent

to identifying nonzero entries of corresponding Ω.
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For the last decades, the Gaussian graphical model has been extensively studied and applied

in practice. Given n independent and identically distributed (i.i.d.) observations from the Gaus-

sian graphical model, in low-dimensional setting where n ≫ p, the sample covariance matrix

is a consistent estimator of covariance Σ so that the inverse of sample covariance matrix Σ̂
−1

naturally estimates the precision matrix and recovers the underlying graph. However, in the high-

dimensional regime where p ≫ n, the sample covariance is not consistent, neither is it invertible.

Additional structural assumptions on the graph, together with new estimators, are required to esti-

mate the precision matrix and recover the underlying graph. For instance, the sparsity assumption,

which requires the number of edges connecting nodes to be small or slowly growing in the number

of nodes, is a natural and flexible structural condition to be imposed. By imposing this condi-

tion, estimators encouraging sparsity of Ω provide consistent and sometimes optimal estimate to

the precision matrix and therefore accurately recover the underlying graph. Along this line, three

categories of estimations are prevalent in the literature and widely used in practice, including the

neighborhood-based approach (or nodewise regression), the penalized likelihood estimations, and

the constraint optimization.

The nodewise regression was first proposed by [35]. It is a neighborhood set estimation proce-

dure using Lasso [36]. For each j = 1, . . . , p, consider regression of each variable against all other

variables

β̂j = argmin
β∈Rp

(
1

2n
∥Xj −X−jβ∥22 + λj∥β∥1

)
(1.2.1)

where X−j = {X1, . . . , Xj−1, Xj+1, . . . , Xp}. If β̂j,k ̸= 0, the kth node is in the neighborhood set

of the jth node. Note that the estimated regression coefficients do not have to be symmetric, that

is β̂j,k ̸= 0 does not imply β̂k,j ̸= 0. Although the original proposal by [35] does not provide the

precision matrix estimate from the nodewise regression estimator, we can reconstruct it by using

the blockwise matrix inversion formula. Define the jth column of estimator by

Ω̃j = Γ̂j/σ̂
2
j . (1.2.2)
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where Γ̂j := (−β̂j,1, . . . ,−β̂j,j−1, 1,−β̂j,j+1, . . . ,−β̂j,p)T and σ̂2
j = n−1∥Xj −X−jβ̂j∥22.

The graphical Lasso (Glasso), which is a penalized likelihood estimation [37–39], and the

CLIME estimator [40], both estimate Ω directly using optimization procedures involving sam-

ple covariance matrix Σ̂. Motivated from the penalized log-likelihood over non-negative definite

matrix, Glasso solves the following optimization problem

Ω̃ := argmin
Ω

[− log detΩ+ Tr(Σ̂Ω) + λ∥Ω∥1], (1.2.3)

where λ is the tuning parameter, and (1.2.3) can be solved efficiently using the dual form, which

can be further reduced into vector minimization problems [39]. A fast algorithm proposed by

[41] is implemented in glasso R package, and [42, 43] presented glassoFast R package to

improve the computational efficiency and resolve the non-termination issue in glasso package.

In contrast, CLIME is based on the following Dantzig-type optimization problem

Ω̃ := argmin
Ω

∥Ω∥1 subject to ∥Σ̂Ω− I∥∞ ≤ λ, (1.2.4)

where λ is a tuning parameter. It is known that (1.2.4) is equivalent to p coordinate-wise optimiza-

tion problems,

β̂j := argmin
β

∥β∥1 subject to ∥Σ̂β − ej∥∞ ≤ λ,

where ej is j-th basis vector and Ω̃ =

[
β̂1 · · · β̂p

]
. Compared to Glasso, CLIME tends

to recover more sparse graph. CLIME has been efficiently implemented in both clime and

fastclime R packages [44].

We review two refinements to make the preliminary estimate Ω̃ from (1.2.1)–(1.2.4) positive

(semi-)definite. The one is replacing the off-diagonal entries by ω̂jk = ω̂kj = ω̃jkI(|ω̃jk| ≤

|ω̃kj|) + ω̃kjI(|ω̃jk| > |ω̃kj|) from [40], which makes Ω̂ be positive definite with high probability.

The other method is to find nearest approximation to a set of positive definite matrices by solving

an optimization problem argminΩ≻0 ∥Ω̃−Ω∥ where ∥·∥ is some appropriate matrix norm [45–47].
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Inferential methods for high-dimensional Gaussian graphs have been developed over the past

years. To recover the underlying graph and the connectivity among nodes, inference on the preci-

sion matrix has been considered such as the multiple testing problem with p(p− 1)/2 hypotheses

H0,jk : ωj,k = 0 v.s. H1,jk : ωj,k ̸= 0 (1.2.5)

for 1 ≤ j < k ≤ p. [48] proposed a test statistic using the bias correction of the sample co-

variance of residuals from the nodewise regression estimator such as the Dantzig selector [49]

or Lasso. Using the debiased testing statistics, the author also proposed a multiple testing pro-

cedure to control the false discovery rate for p(p − 1)/2 hypotheses. [50] and [51] used (1.2.2)

and (1.2.3) as preliminary estimators, respectively, and obtained a de-sparsified and de-biased es-

timator, Ω̂ = Ω̃ − Ω̃
T
(Σ̂Ω̃ − I), for inference. [52] investigated the asymptotic normality and

minimax optimality for estimating the Gaussian graphical model. They proposed bivariate node-

wise regressions based on the scaled Lasso estimator [53]. The aforementioned inference methods

for Gaussian graphical models have also been implemented in SILGGM R package [54].

Being widely used in spatio-temporal data analysis, ecology, computer vision, and genomics,

Gaussian Markov random fields (GMRFs) are closely related to the Gaussian graphical mod-

els [55]. GMRF is a Markov random field when the underlying distribution is multivariate Gaus-

sian distribution. By the definition of GMRF, there is conditional dependence between two vertices

given all other vertices if and only if ωij ̸= 0. Hence, there is a link between the precision matrix

estimation and recovering the Gaussian Markov random field. Many GMRF-type models impose

additional dependence assumptions such as the isotropic, the directional, and the distance struc-

tures. These assumptions help to reduce the number of parameters to be estimated, and offers both

theoretical and computational convenience. However, the validity of these assumptions rely on

the prior knowledge of dependence structures. Though a few goodness-of-fit type tests for spatial

Markov random fields have been proposed [56, 57], they focus on special classes of structures.

GMRF is a Markov random field when the underlying distribution is multivariate Gaussian distri-

bution. Hence, by definition, the conditional dependence between two vertices given other vertices
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on a Markov random field is specified by the conditional dependence parameters, which is directly

related to the precision matrix under the Gaussianity. Making use of such a link between the pre-

cision matrix and the dependence structure of Markov random field leads to a unified framework

of model specification tests on the dependence structures of a GMRF model.

The aforementioned estimators mostly rely on assumptions of normality and i.i.d. data. How-

ever, these assumptions are usually not satisfied or impossible to verify in practice, which will

lead to spurious discovery. In literature, efforts on tackling this challenge are scattered. To gain

robustness against the violation of Gaussianity assumption, estimators using the copula models

have been explored by [58], where, by applying the Glasso to transformed variables, the estimated

precision matrix of transformed variables has been shown to recover the graph structure of the

original variables accurately under certain sparsity and regularity assumptions. In addition, taking

the advantage of robustness of rank statistics, [46] employed the (Spearman’s or Kendall’s) rank

correlation instead of the sample covariance to estimate the underlying graph. On the other hand,

robust estimations to the precision matrix under the cellwise contamination model (1.1.3) have

been studied in [59–61], where some robust covariance estimate is first obtained, then the sparse

precision matrix is estimated using the Glasso or CLIME with the robust covariance estimate as an

input instead of the sample covariance matrix. Particularly, the breakdown point of the estimator

for the cellwise contamination model was studied [61].

1.3 Outline

The rest of dissertation proceeds as follows. In Chapter 2, we study a large-scale inference

method by employing a novel robust regression that is robust against tail-behavior or asymmetric

distributions. We prove that the proposed procedure provide consistent estimate of the false dis-

covery proportion under mild assumptions. We also obtain the non-asymptotic tail bound for a new

covariate estimator of the regression estimate. In Chapter 3, we focus on the model specification

tests of the Gaussian Markov random fields based on temporally dependent data. The proposed

method is flexible to test a large number of linear and nonlinear dependence structures of GMRF.
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In Chapter 4, we consider the robust estimation of Gaussian graph models via the nodewise regres-

sion method. We employ a distributional robust linear regression with an ambiguity set defined

by Wasserstein-2 distance. We document the properties of the proposed methods and study the

performance of proposed method by numerical simulations under a variety of distributional per-

turbations. We conclude the dissertation in Chapter 5 with discussion of future works. We provide

proofs from theoretical studies, extra results from numerical studies, and additional results from

real data analysis in Appendix A–B.
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Chapter 2

Large-scale Inference of Multivariate Regression for

Heavy-tailed and Asymmetric Data

2.1 Introduction

Multivariate regression is a fundamental statistical tool for data analysis in various fields rang-

ing from biology, financial economics, linguistics, psychology, to social science. By modeling

thousands or tens of thousands of responses and covariates or experimental factors, it provides

statistical decisions on the individual levels by simultaneously testing many general linear hy-

potheses, including covariate-effect analysis, analysis of variance, model comparisons, etc. For

example, multivariate regression has become a standard tool in the differential expression analy-

sis in genomics [62], and has also been commonly used in corpus linguistics for the word usage

comparison [63]. We refer to [64] for a more comprehensive review on relevant applications.

To simultaneously test many general linear hypotheses, a conventional practice is to compute

individual p-values based on F -tests or likelihood ratio tests, and then employ multiple testing

procedures to control the false discovery rate [65–67]. This standard approach and its theoreti-

cal validity, however, often rely on strong distributional assumptions, such as the normality/sub-

Gaussianity or symmetry condition on the error distribution. Its effectiveness in terms of false

discovery rate control and power may be compromised when dealing with heavy-tailed and/or

skewed data with large scales, such as the microarray data [68], the functional magnetic resonance

imaging data [69], and text data [70].

To overcome the above challenge, a procedure that is robust against heavy-tailed and/or skewed

error distribution is desired. Heavy tailedness increases the chance of observing data that are more

extreme than the majority. We refer to these outlying data points as stochastic outliers. A procedure

that is robust against such outliers, evidenced by its better finite sample performance than a non-
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robust method is called a tail-robust procedure [11]. Different from the conventional robustness

under Huber’s ϵ-contamination model [1], the notion of tail-robustness focuses on the challenge

that methods minimizing the empirical risk perform poorly as the empirical risk is not uniformly

close to the population risk given heavy-tailed and/or skewed errors [71]. Lately, a variety of

new methods and estimation theory under heavy-tailed models have been developed [8–10,12,72],

while less progress has been documented in terms of inference, especially in a large-scale setting

[7, 13, 14].

Building on the idea of adaptive Huber regression, we develop a joint robust multiple testing

procedure to test many general linear hypotheses in the presence of heavy-tailed and/or skewed

errors. This general framework includes the large-scale simultaneous mean testing problem as

a special case. First, we employ the adaptive Huber regression to estimate the multivariate re-

gression model parameters, based on which we construct a robust test statistic and compute the

approximated p-values to estimate the false discovery proportion (FDP). Next, we apply Storey’s

false discovery rate controlling procedure [66] to determine a threshold so that hypotheses with p-

values below this threshold are rejected. By allowing the robustification parameter to diverge with

the sample size, the adaptive Huber regression estimator admits tight non-asymptotic deviation

bound and is asymptotically efficient [12]. Theoretically, the non-asymptotic Bahadur represen-

tation is a crucial step for establishing the limiting distribution of the estimator or its functionals.

Practically, the proposed method can be fully data-driven [73], and therefore is computationally

attractive and applicable to real large-scale problems.

The main contributions of this paper are as follows. Methodologically, we develop a tail-robust

multiple testing procedure to simultaneously draw inference on large scale multivariate regressions

in the presence of heavy-tailed and/or skewed errors. Compared to the traditional practice in mul-

tivariate and high-dimensional statistics, our method imposes mild moment conditions on the data,

while the dimension p is allowed to grow exponentially fast with the sample size n. These features

make our method particularly advantageous and appealing for conducting inference on large-scale

multivariate regression models with heavy-tailed and/or asymmetric errors, which is corroborated
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by the comprehensive simulation studies. Also, motivated by [74], we propose a novel covari-

ance estimator of the adaptive Huber regression estimate, and we derive a new exponential-type

deviation bound for the covariance that is of independent interest for studying about the control-

ling of false discovery proportion. For the theoretical analysis of the new procedure, we explore

and develop a couple of interesting new technical results, by which we show that the proposed

method controls the false discovery proportion asymptotically under mild moment and correlation

conditions on the error vector. From computational perspective, the proposed method takes the

advantages of the computational efficiency of data-adaptive Huber regression [73]. In addition

to numerical experiments, we apply the proposed method to analyze the text data from the Stan-

dardized Gutenberg Project Corpus [75]. We identify the genre representative words in works of

William Shakespeare, and also investigate the differences among works of Lewis Carroll, Charles

Dickens, and Arthur Conan Doyle. This empirical study demonstrates that our method is a useful

addition to the existing toolkit for modeling and analyzing text data in quantitative linguistics.

The rest of the paper proceeds as follows. In Section 2.2, we revisit testing general linear hy-

potheses based on the multivariate regression, and introduce our multiple testing procedure based

on the adaptive Huber regression. Particularly, we introduce a novel Huber-type estimator of the

covariance matrix of the regression coefficient in Section 2.2.2. We establish the statistical guar-

antees of our procedure in Section 2.3, and characterize the nonasymptotic performance of the

proposed Huber-type estimator of the covariance matrix of the regression coefficient. Section 2.4

is devoted to simulation studies. In Section 2.5, we apply our method to the well-known quanti-

tative linguistic data set, the Gutenberg Project. Extensions of the proposed method are discussed

in Section 2.6. All the proofs and additional numerical and empirical analysis are provided in the

supplemental material.

2.2 Model and Methodology

Throughout the paper, we write ∥u∥ = (
∑d

i=1 u
2
i )

1/2 as the ℓ2-norm of vector u = (u1, ..., ud)
T ∈

Rd. Let ⟨u,w⟩ be the inner product of vectors u and w and ∥u∥2 = ⟨u,u⟩. Denote Sd−1 = {u ∈
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Rd : ∥u∥ = 1} the unit sphere in Rd. For matrix A ∈ Rd×d, denote ∥A∥ = supu∈Sd−1 ∥Au∥,

λmax(A), and λmin(A) the spectral norm, the maximum eigenvalue, and the minimum eigenvalue,

respectively. Let Φ(z) := P(U < z) with U ∼ N(0, 1) be the cumulative distribution function of

standard normal. Denote I(·) the indicator function.

Suppose we observe independent data vectors {(Yi,Xi)}ni=1, where Yi = (Yi1, . . . , Yip)
T,

Xi = (Xi1, . . . , Xid)
T with d ≥ 1 and d/n→ 0 as n→ ∞. For each j = 1, . . . , p, the conditional

expectation of Yij given the explanatory variables Xi is modeled through E(Yij|Xi) = µj +XT
i βj .

Define data matrices Y = (Y1, . . . ,Yn)
T ∈ Rn×p and X = (X1, . . . ,Xn)

T ∈ Rn×d, so that the

multivariate regression model of interest has the matrix form

Y = 1nµ
T + XB+Ξ, (2.2.1)

where µ = (µ1, . . . , µp)
T is the intercept vector, 1n = (1, . . . , 1)T ∈ Rn, B = (β1, . . . ,βp) ∈

Rd×p consists of the slope coefficients, and Ξ = (ϵT1 , . . . , ϵ
T
n )

T ∈ Rn×p with ϵi = (ϵi1, . . . , ϵip)
T.

Independent of Xi’s, the p-dimensional residual errors ϵi’s are independent and identically dis-

tributed with mean zero and covariance matrix Σϵ = (σϵ,jk)1≤j,k≤p. To ease the notation, let

θj = (µj,β
T
j )

T ∈ Rd+1 and Zi = (1,XT
i )

T ∈ Rd+1, and define the parameter and design matrices

as Θ = (θ1, . . . ,θp) ∈ R(d+1)×p and Z = (Z1, . . . ,Zn)
T, so that (2.2.1) reduces to Y = ZΘ+Ξ.

Based on model (2.2.1), we are interested in making simultaneous inference on the p general linear

hypotheses:

H0j : Cθj = c0j versus H1j : Cθj ̸= c0j for j = 1, . . . , p, (2.2.2)

where matrix C ∈ Rq×(d+1) and vectors c0j ∈ Rq are prescribed, and rank(C) = q ≤ d+ 1. The

linear hypotheses in (2.2.2) encompass a variety of important applications, including the inference

on contrasts in the analysis of variance and testing for treatment effects. Likelihood-based or least

squares-based methods have been employed under the assumption that the covariates and/or errors

follow either normal distributions or some light-tailed symmetric distributions [76–78]. With a

large p, the underlying distributions, by chance alone, may have quite different scales and can be
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highly skewed and heavy-tailed. Therefore, outliers will occur more frequently, challenging the

efficacy of standard inference methods. Throughout this paper, we will not make any parametric

distributional assumptions, such as the normality or elliptical symmetry. Instead, we define mo-

ment parameters vj,δ = {E(|ϵ1j|2+δ)}1/(2+δ) for j = 1, . . . , p and δ > 0. Specifically, set vj = vj,2.

To test the linear hypotheses in (2.2.2), we first estimate the model parameters robustly in the

presence of heavy-tailed skewed errors. For j = 1, . . . , p, define Huber-type M -estimators θ̂j as

θ̂j := (µ̂j, β̂
T

j )
T = argmin

µ∈R,β∈Rd

n∑

i=1

ℓτj(Yij − µ−XT
i β), (2.2.3)

where ℓτ (x) = (x2/2)I(|x| ≤ τ) + (τ |x| − τ 2/2)I(|x| > τ) is the Huber loss [1] parameterized

by τ > 0. Our theoretical analysis suggests that, with τj ≍ n1/(2+δ){log(np) + d}−1/(2+δ) for

some δ > 0, the estimators θ̂j are close to θj uniformly over j = 1, . . . , p with high probability

even when p grows exponentially fast with n. Here, the divergence of τj guarantees θ̂j to be sub-

Gaussian even the error only admits (2+ δ)th finite moment, and more importantly, the order of τj

grants the desired approximation error of Bahadur representation to θ̂j (Theorem 2.3.1) as well as

the uniform non-asymptotic bounds of the estimated covariance of θ̂j (Theorem 2.3.2). As noticed

in the literature [7–9,12,73], the divergent τj is necessary to balance the bias and robustness in the

presence of heavy tailed and/or skewed errors. On the other hand, the order of τj in our setting is

different from the earlier studies on the adaptive Huber regressions. For example, with the finite

(1+ ϵ)th moment of error, [12] focused on the estimation for adaptive Huber regression that corre-

sponds to p = 1 in our setting and considered τj = O(nmax{1/(1+ϵ),1/2}(d+log n)−max{1/(1+ϵ),1/2}),

while [7] used τj = O(n1/2{log(np)}−1/2) for testing p-dimensional mean vectors under the as-

sumption of finite fourth moment of errors, which corresponds to d = 1 in our setting. In practice,

τj can be chosen by either the cross-validation or the recent data-driven method by [73]. The latter

avoids a grid search for each j, and hence is computationally appealing, especially when p is large.

Using these robust estimates θ̂j’s, we then construct test statistics whose approximate p-values

for (2.2.2) are obtained under the null. Partnered with the Benjamini-Hochberg method [65] or
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its variants, e.g., [66], we develop a robust procedure to simultaneously test the p hypotheses in

(2.2.2).

2.2.1 Test procedure for general linear hypotheses

We are in position to detail our test procedure for (2.2.2). Given estimators θ̂j obtained from

(2.2.3) with τj = τ0jn
1/(2+δ){log(np) + d}−1/(2+δ) for τ0j ≥ vj,δ and δ ∈ (0, 2], we consider the

following test statistic

Vj = n(Cθ̂j − c0j)
T(CΣ̂jC

T)−1(Cθ̂j − c0j) (2.2.4)

for j = 1, . . . , p, where Σ̂j is an estimate of Σj := cov(n1/2θ̂j) as we will discuss in Section 2.3.2.

The null hypothesis H0j in (2.2.2) will be rejected whenever Vj is large. As we will show, Vj’s

are asymptotically χ2
q-distributed under H0j uniformly in j. Leveraging this, we can estimate the

false discovery proportion, so as to determine the rejection threshold that makes the estimated false

discovery proportion below a prespecified level α ∈ (0, 1).

Let H0 = {j : 1 ≤ j ≤ p,H0j is true} and p0 := |H0|. Denote the number of discover-

ies and false discoveries by R(z) =
∑p

j=1 I(Vj ≥ z) and V (z) =
∑

j∈H0
I(Vj ≥ z), respec-

tively, for threshold z > 0. The false discovery proportion is defined as FDP(z) = V (z)/R(z)

with the convention 0/0 = 0. According to the law of large numbers, V (z) should be close to

p0P(χ2
q > z) while the number of nulls p0 is not accessible in general. When both p and p0

are large and p1 = p − p0 = o(p) is small, which is known as the sparse setting in the high-

dimensional regime, the approximated false discovery proportion AFDP(z) = V̂ (z)/R(z) with

V̂ (z) = pP(χ2
q > z) is a reasonable and slightly conservative surrogate for the asymptotic ap-

proximation p0P(χ2
q > z)/R(z) and FDP(z). Using AFDP(z), we can determine the threshold

ẑα = inf {z ≥ 0 : AFDP(z) ≤ α} for the nominal level α. For j = 1, . . . , p, H0j will be rejected

whenever Vj ≥ ẑα.

Of note, if π0 = p0/p is bounded away from 1 as p → ∞, AFDP(z) may overestimate

FDP(z). To improve the power, we may combine existing estimations of π0 in the literature
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with our procedure to calibrate the threshold of rejection in a more adaptive fashion. For exam-

ple, [66] estimates V (z) by pπ̂0(η)P(χ2
q > z) for a predetermined η ∈ [0, 1), where π̂0(η) =

{(1 − η)p}−1
∑p

j=1 I(Pj > η) estimates π0 = p0/p, and Pj is the p-value associated with the jth

test statistic. Among a few studies regarding the selection of η, [67] suggest η = 0.5, and [79] rec-

ommend η = α for dependent hypotheses. Using this estimate of V (z), our threshold of rejection

can be refined accordingly by ẑηα = inf{z ≥ 0 : pπ̂0(η)P(χ2
q > z)/R(z) ≤ α}.

2.2.2 A refined Huber-type estimator of Σj

A naive estimator of Σj = cov(n1/2θ̂j) for conducting the test is σ̃ϵ,jjΣ̂
−1

Z , where σ̃ϵ,jj is an

estimate of σϵ,jj , and Σ̂Z = n−1
∑n

i=1 ZiZ
T
i . When d = 1, [7] propose a U -statistic-based variance

estimator, and an adaptive Huber-type estimator of the second moment which, combined with mean

estimator, is used to estimate variance. The computational complexity of calculating a U -statistic-

based estimator is O(n2d), and hence grows fast with d. For the latter, because the square data

is severely right-skewed, the Huber-type truncation will inevitably lead to underestimation of the

second moment and therefore the variance. Motivated by the classical theory of Huber regression,

we propose an alternative estimator Σ̂j based on the asymptotic covariance of the conventional

Huber regression estimator; see Section 7.6 of [2].

Given τ > 0, the classical Huber regression estimator θ̂ of θ admits that n1/2(θ̂−θ) converges

to N(0,Στ ) in distribution, where Στ = {P(|ϵ| < τ)}−2E{ℓ′τ (ϵ)2}Σ−1
Z and ΣZ = E(ZZT) ∈

R(d+1)×(d+1) [74]. Resembling Στ , our estimator Σ̂j consists of three Huber-type estimates and

makes use of the tapering function [80]

I∗τ (x) = I(|x| ≤ τ) + h−1
n (τ + hn − |x|)I(τ < |x| ≤ τ + hn), (2.2.5)

which is h−1
n -Lipschitz continuous with hn > 0 denoting a smoothing parameter. To avoid no-

tational clutter, the dependence of I∗τ on hn will be assumed without displaying. Given a ro-

bustification parameter τj > 0 and the corresponding estimate θ̂j from (2.2.3), define Wj =

n−1
∑n

i=1 I
∗
τj
(eij)ZiZ

T
i and mj = n−1

∑n
i=1 I

∗
τj
(eij), where eij = Yij − ZT

i θ̂j . Respectively, Wj
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and mj are estimates of P(|ϵ1j| ≤ τj)ΣZ and P(|ϵ1j| ≤ τj). Recall that Σ̂Z = n−1
∑n

i=1 ZiZ
T
i .

Inspired by (7.83) of [2], we define the covariance estimator Σ̂j in (2.2.4) as

Σ̂j =

∑n
i=1{ℓ′τj(eij)}2

(n− d− 1)Kj

W−1
j Σ̂ZW

−1
j , (2.2.6)

where Kj = 1 + (nmj)
−1(d+ 1)(1−mj) is a correction factor that benefits finite sample perfor-

mance. The tapering parameter hn, for example, can be set as n−1/4 in practice.

For the conventional Huber regression with τ > 0 fixed, it can be shown that, with I∗τ (x)

replaced by I(|x| ≤ τ), Σ̂j converges in probability to Στ as n → ∞. To legitimize the use of Vj

for testing (2.2.2), we will show in Section 2.3.2 that with adaptive τj , the covariance estimator Σ̂j

in (2.2.6) is close to Σj uniformly over j = 1, . . . , p with high probability.

2.3 Statistical Guarantees

In this section, we establish theoretical guarantees of our method by first assuming a known

Σj , and then exploring the closeness between Σj and Σ̂j in (2.2.6). Hereafter, we focus on Zi

being random (except for the first coordinate), and leave the results under fixed designs to the

supplement.

2.3.1 Approximation of FDP with known Σj

First, we assume the covariance matrices Σj = cov(n1/2θ̂j), j = 1, . . . , p, are known. Con-

sider the oracle test statistic V ◦
j = n(Cθ̂j − c0j)

T(CΣjC
T)−1(Cθ̂j − c0j). Given z ≥ 0, write

R◦(z) =
∑p

j=1 I(V
◦
j > z), V ◦(z) =

∑
j∈H0

I(V ◦
j > z), and the false discovery proportion

FDP◦(z) = V ◦(z)/R◦(z). Heuristically, V ◦
j is approximately χ2

q-distributed under H0j , so that

we can approximate FDP◦(z) by

AFDP◦(z) =
p0 P(χ2

q > z)

R◦(z)
. (2.3.1)
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To show that AFDP◦(z) provides a valid asymptotic (pointwise) approximation of FDP◦(z), we

impose the following technical conditions. Denote Rϵ = (rϵ,jk)1≤j,k≤p the correlation matrix of

ϵ1 = (ϵ11, . . . , ϵ1p)
T, that is, Rϵ = D−1

ϵ ΣϵD
−1
ϵ with D2

ϵ = diag(σϵ,11, . . . , σϵ,pp).

Condition 1. (i) p = p(n) → ∞ and log(p) = o(n1/2) as n→ ∞; (ii) the error vectors ϵ1, . . . , ϵn

are independent, and satisfy E(ϵij|Zi) = 0, E(ϵ2ij|Zi) = σϵ,jj; (iii) there exist constants δ ∈ (0, 2]

and cϵ, Cϵ > 0 such that cϵ ≤ min1≤j≤p σ
1/2
ϵ,jj ≤ max1≤j≤p vj,δ ≤ Cϵ; and (iv) there exist κ0 ∈ (0, 1)

and κ1 > 0 such that max1≤j ̸=k≤p |rϵ,jk| ≤ κ0 and p−2
∑

1≤j ̸=k≤p |rϵ,jk| = O(p−κ1).

In Condition 1, (i) is a commonly assumed asymptotic regime for (n, p) in high-dimensional

statistical inference; (ii) is standard for linear regression models; compared to the traditional set-

tings which presumes the finite fourth or higher order moments of errors, (iii) only assumes the

uniform boundedness of the (2+δ)th moments of error variables; and (iv) allows weak dependence

among ϵ11, . . . , ϵ1p. In addition, we impose the following conditions on the (random) predictor Zi.

Denote Z̃i = Σ
−1/2
Z Zi, where ΣZ = E(ZZT) is assumed to be positive definite.

Condition 2. The predictors Zi are independent and identically distributed, and follow a sub-

Gaussian distribution: there exists A0 > 0 such that for any u ∈ Rd+1 and t ≥ 0, P(|⟨u, Z̃i⟩| ≥

A0∥u∥t) ≤ 2 exp(−t2).

A few examples of the sub-Gaussian random vector in Rd in Condition 2 include Bernoulli

random vectors, Gaussian random vectors, and random vectors uniformly distributed on the sphere

centered at 0 with radius d1/2. We refer to [81] for an overview of sub-Gaussian vectors. Under

Conditions 1 and 2, Theorem 2.3.1 shows that AFDP◦(·) in (2.3.1) provides a consistent (point-

wise) estimator of FDP◦(·). The consistency of false discovery proportion estimation serves as the

cornerstone to the validity of the proposed testing procedure.

Theorem 2.3.1. Assume Conditions 1 and 2 hold, and p0 ≥ ap for some a ∈ (0, 1). Let τj =

τ0jn
1/(2+δ){log(np) + d}−1/(2+δ) with τ0j ≥ vj,δ and δ ∈ (0, 2]. Then, for any z ≥ 0, |FDP◦(z)−

AFDP◦(z)| = oP(1) as n, p→ ∞.
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We conclude this subsection with two remarks. If we strengthen Condition 1-(iii) to uniformly

bounded k-th moments for k ≥ 4, Theorem 2.3.1 remains valid with τj = τ0jn
1/(2+δ){log(np) +

d}−1/(2+δ) and δ ∈ (0, k − 2]. In addition, to prove Theorem 2.3.1, we will show that |FDP◦(z)−

AFDP◦(z)| = OP{p−κ1q1/2 + q7/4n−1/2 + q{log(np) + d}δ/(2+δ)n−δ/(2+δ)}. This explicit rate is

non-trivial and reveals how the parameter q, which corresponds to the dimension of the hypothesis,

affects the difficulty of testing (2.2.2). We will revisit this via numerical studies in Section 2.4.

2.3.2 Statistical guarantees with estimated covariance input Σ̂j

Next, we establish the statistical guarantee of the procedure proposed in Section 2.2.1 using

estimated covariance matrices Σ̂j defined in (2.2.6). To this end, in Proposition 2.3.1, we provide

a mild condition on the (uniform) accuracy of estimated covariances, which is required for the

approximate false discovery proportion to be consistent. Let Σ̃j be a generic estimator of Σj

for each j. The corresponding false discovery proportion and its approximation are F̃DP(z) =

Ṽ (z)/R̃(z) and ÃFDP(z) = p0 P(χ2
q > z)/R̃(z) for z ≥ 0, where Ṽ (z) =

∑
j∈H0

I(Ṽj > z),

R̃(z) =
∑p

j=1 I(Ṽj > z), and Ṽj = n(Cθ̂j − c0j)
T(CΣ̃jC

T)−1(Cθ̂j − c0j) for j = 1, . . . , p.

Proposition 2.3.1. Suppose that the conditions of Theorem 2.3.1 hold. As long as the estimated

covariances {Σ̃j}pj=1 satisfy max1≤j≤p ∥Σ̃j − Σj∥ = oP{(log(np) + d)−1}, we have |F̃DP(z) −

ÃFDP(z)| = oP(1) for any z > 0 as n, p→ ∞.

By verifying that Σ̂j defined in (2.2.6) satisfy the required accuracy in Proposition 2.3.1, to-

gether with Theorem2.3.1, the following theorem establishes the convergence in probability of

the approximated false discovery proportion to the false discovery proportion for any z > 0 as

n, p→ ∞.

Theorem 2.3.2. Suppose that the conditions of Theorem 2.3.1 hold. Let Σ̂j be the covariance

estimators given in (2.2.6) with τj = τ0jn
1/(2+δ){log(np)+d}−1/(2+δ) and τ0j ≥ vj,δ for δ ∈ (0, 2].

Then, with probability at least 1− 16n−1,

max
1≤j≤p

∥∥Σ̂j −Σj

∥∥ ≤ C1 max

[{
log(np) + d

n

}δ/(2+δ)

,
∆

hn

]
, (2.3.2)
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where ∆ = {d1/2 + (2 log n)1/2}[n−1{log(np) + d}]1/2 and C1 > 0 only depends on λmax(ΣZ),

A0, and vj,δ.

Theorem 2.3.2 implies that the required accuracy in Proposition 2.3.1, that is, max1≤j≤p ∥Σ̂j −

Σj∥ = oP{(log(np) + d)−1}, is met if log(p) + d = o(nδ/(2+2δ)) (0 < δ ≤ 2) and ∆/hn =

o{(log(np) + d)−1}, such as hn = n−1/4. Thus far we have focused on Σ̂j given in (2.2.6).

In fact, the conclusion in Theorem 2.3.2 remains valid for some variant of Σ̂j , such as Σ̂
(1)

j =
∑n

i=1{ℓ′τj(eij)}2{(n− d− 1)mj}−1KjW
−1
j .

2.4 Simulation Studies

2.4.1 Model settings

To examine the finite sample performance of the proposed procedure, we consider the follow-

ing methods: (i) the proposed method that employs data-adaptive Huber regression [73]; (ii) the

proposed method with τj’s selected via five-fold cross-validation [12]; (iii) least squares based

multiple testing method; (iv) empirical Bayes based multiple testing procedure implemented via

limma [62]; (v) limma with conventional robust regression; and (vi) empirical Bayes based mul-

tiple testing procedure for count data implemented via edgeR [82]. Specifically, we set δ = 2

in (2.2.3) (i.e., assume the errors have finite fourth moments) and hn = n−1/4 in (2.2.5). For

(ii), we set τj = cv̂jn
1/4{log(np) + d}−1/4 with v̂4j = n−1

∑n
i=1(Yij − Ȳ·j)

4, and choose c from

{0.25, 0.5, 0.75, 1, 1.25, 1.5} based on cross-validation that minimizes the mean-squared predic-

tion error. For (i)–(iii), we employed the FDR controlling procedure by [66] to determine the

threshold.

Both limma and edgeR are widely-used softwares to test a large number of regression mod-

els, and serve as benchmark methods in genomics study. Based on the linear model, limma

employs empirical Bayes methods to shrink individual variances towards a common value in the

hope of better controlling the false discovery rate. Method (v) is a modified version of limma that

employs the traditional robust M -estimation instead of the least squares. edgeR is widely used to
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model count data with large variations via the negative binomial model. To implement edgeR, we

round each response variable Yij to its nearest integer.

We generate data from model (2.2.1) for n = 85, 120, 150, p = 1000, 2000, p1 = 50, and d =

6, 8. Entries of X ∈ Rn×d are independently drawn from N(0, 1), and each column is standardized

to have zero mean and unit variance. We consider three heavy-tailed error distributions: (a) Pareto

distribution with shape parameter 4 and scale parameter 1, (b) log-normal distribution with µ = 0

and σ = 1, and (c) a mixture of the log-normal distribution in (b) and the t2 distribution with

proportion 0.7 and 0.3 respectively. Setting (c) reflects more challenging scenarios in practice as t2

distribution does not even have finite second moment. All settings are also highly skewed. Under

each setting, we first generate E = (ϵij)1≤i≤n,1≤j≤p that has independent entries. To incorporate

dependency, we set Ξ = 100R
1/2
ϵ E, where the correlation matrix Rϵ has one of the following

three structures: Model 1, Rϵ is the identity matrix; Model 2, Rϵ = (rϵ,jk)1≤j,k≤p is sparse with

rϵ,jj = 1 and rϵ,ij = rϵ,ji independently drawn from 0.3 × Bernoulli(0.1) for i ̸= j; and Model

3, Rϵ = (rϵ,jk)1≤j,k≤p with rϵ,jj = 1, rϵ,j,j+1 = rϵ,j+1,j = 0.3, rϵ,j,j+2 = rϵ,j+2,j = 0.1, and

rϵ,j,j+k = rϵ,j+k,j = 0 for k ≥ 3.

For each j = 1, . . . , p, we set µj = 5000 and consider two hypotheses: Hypothesis 1, H0j :

1Tβj = 0 versus Haj : 1Tβj ̸= 0, where q = 1, and Hypothesis 2, H0j : βj = 0 ∈ Rd versus

Haj : βj ̸= 0 (j = 1, . . . , p), where q = d. For Hypothesis 1, we let βjk ∼ Unif(−150, 150) for

1 ≤ j ≤ p and 1 ≤ k ≤ d − 1, βjd = −∑d−1
k=1 βjk for 1 ≤ j ≤ p − p1 so that 1Tβj = 0, and

βjd = δd1/2Wj −
∑d−1

k=1 βjk for p− p1 + 1 ≤ j ≤ p, where Wj are Rademacher random variables.

For Hypothesis 2, let βj = 0 for 1 ≤ j ≤ p− p1, and βjk = (2d−1)1/2δWjk for p− p1+1 ≤ j ≤ p

and 1 ≤ k ≤ d, where Wjk are Rademacher random variables. We take δ = 75η and η = 0.3. The

signal strength is determined by η and d.

2.4.2 Numerical performance

For each model, we take the nominal level α = 0.05, 0.1, 0.15, 0.2, and carry out 250 Monte

Carlo simulations at each α. Figures 2.1 and 2.2 report the empirical false discovery rate and
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power under Model 2 with p = 1000 and d = 6. The results under other model settings are given

in Section A.5 of the supplementary material. Each point corresponds to a nominal level (marked

as a vertical gray dashed line) with x-axis and y-axis representing, respectively, the empirical false

discovery rate and power. Therefore, the closer the point is to the corresponding vertical line, the

more the empirical and nominal false discovery rates coincide.

From Figures 2.1 and 2.2, for different error distributions and hypotheses of interest, the pro-

posed method, with either data-driven Huber regression or cross-validation, is able to control the

false discovery rate in general while maintain high power. The competing methods, especially

when n is small, are either too conservative with a notable power loss or too liberal to control the

false discovery rate. The advantage of our method is more substantial for linear hypotheses with

q > 1; see Figure 2.2. The numerical evidence favors the use of data-adaptive Huber regression

over cross-validation in terms of both statistical accuracy and computational cost. Both limma

and edgeR are fairly conservative, suggesting that researchers should take precautions when us-

ing them for heavy-tailed and skewed data. Method (v) is comparable to the proposed methods

when n is large, but completely fails to control the false discovery rate in the setting of mixture

errors of log-normal and t2. Overall, the empirical power of all methods increases with n, and

drops for larger p as shown in Figures A.1-A.11 in the supplementary material. Since the intrinsic

difficulty of the testing problem increases with q, the empirical power of all methods is lower when

q = d = 8; see Figures A.3 and A.4.

We further examine the power performance with varying signal strengths, determined by η. We

exclude methods (iii) and (v) due to their failure on controlling the false discovery rate. In the above

data generating process, we take n = 100, p = 1000, d = 6, and choose equally spaced η varying

within [0.3, 0.7] for Hypothesis 1 and [0.3, 0.5] for Hypothesis 2. The results are summarized in

Figure 2.3, from which we see that the proposed methods outperform the competitors under all

three error settings. The gains in power are considerable when the error distribution is both heavy-

tailed and skewed. Again, for our method, the data-adaptive approach is slightly more powerful
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(b) n = 120
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Figure 2.1: Plots of empirical false discovery rate (FDR) and power for testing Hypothesis 1 under Model 2 with
p = 1000 and d = 6 by six methods: the proposed method with data-adaptive Huber regression (D-AH, ■); the
proposed method with five-fold cross-validation (AH-cv, ♦); the least squares method (OLS, •); limma (▲); limma
with robust regression (limma-R, ▼); and edgeR (+). Each point corresponds to a nominal level (marked as a
vertical gray dashed line) with x-axis representing the empirical false discovery rate and y-axis denoting the power.

than cross-validation. As the error dependence becomes stronger (Model 3) or the tail gets heavier

(mixture error of log-normal and t2), the power slightly drops for all methods.
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(b) n = 120
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Figure 2.2: Plots of empirical false discovery rate (FDR) and power for testing Hypothesis 2 under Model 2 with
p = 1000 and d = 6 by six methods: the proposed method with data-adaptive Huber regression (D-AH, ■); the
proposed method with cross-validation (AH-cv, ♦); the least squares method (OLS, •); limma (▲); limma with
robust regression (limma-R, ▼); and edgeR (+). Each point corresponds to a nominal level (marked as a vertical
gray dashed line) with x-axis representing the empirical false discovery rate and y-axis denoting the power.

2.5 Real Data Analysis: The Gutenberg Project

Large-scale text data have been collected and used in many applications from linguistics to nat-

ural language processing. Corpus linguistics has arisen along with the technological advancement

to access, store, and process vast amount of text in a short time [83]. Statistical inference on text
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Figure 2.3: Plots of empirical powers for testing Hypothesis 2 with n = 100, p = 1000, d = 6, and
η ∈ {0.30, 0.34, . . . , 0.46, 0.5} by four methods: the proposed method with data-adaptive Huber regression (D-AH,
■); the proposed method with cross-validation (AH-cv, ♦); limma (▲); and edgeR (+).

data from literary publications has drawn great attention in order to provide novel and revealing

linguistic discoveries. As a well-known public accessible digital library to literary publications, the

Project Gutenberg is founded in 1971, and offers 60156 e-books as of September 03, 2019 with var-

ious formats. The Standardized Project Gutenberg Corpus (SPGC, [75]) is a text corpus of Project

Gutenberg, and provides a static version of the corpus (https://doi.org/10.5281/zenodo.2422560).
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It consists of three data types: raw text, sequences of word-tokens, and word counts. In addition,

SPGC also contains metadata about books, such as the author information (name, years of birth

and death), language, subject categories, and type of books (text, sound, etc.), whereas the latter

provides collections such as “science fiction" or “western".

In this section, we apply our method to word counts from SPGC to identify “differentially

represented" words for different hypotheses of interest. That is, to find the idiosyncratic words

to represent an author or a category of publications. Specifically, we consider two problems: a

comparison of works of Lewis Carroll, Charles Dickens, and Arthur Conan Doyle, and the study

of works of William Shakespeare. Table A.1 in the supplementary material displays a snapshot of

the raw data, which is highly skewed. From the histograms of empirical kurtosis of word counts in

Figure A.14, the data is heavy-tailed in both book-wise and word-wise. For data pre-processing,

we first merge word counts from different books, and then remove the words whose total count

is less than half the number of books or those only appear in less than 20% of the books under

consideration. Finally, we normalize the filtered word counts by the total counts [84]. More details

are deferred to the supplementary files.

For the first problem, the three British authors are from the mid 19th to early 20th century,

and have similar vocabulary usage. On the other hand, we also observe separations and clusters

of their 167 works based on the word usage in Figure A.14 in the supplementary file. To identify

differentially represented words in their works, we use model (2.2.1) with

Xi =





(1, 1, 0)T the ith book is written by Lewis Carroll

(1, 0, 1)T the ih book is written by Charles Dickens

(1,−1,−1)T the ith book is written by Arthur Conan Doyle

for i = 1, . . . , 167 books and βj = (µj, α1j, α2j)
T for j = 1, . . . , 6839 words. We consider the

following linear hypotheses:
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(Hypothesis CDD1) H0j :



0 1 0

0 0 1


βj = 0 versus Haj :



0 1 0

0 0 1


βj ̸= 0;

(Hypothesis CDD2) H0j : α1j = 0 versus Haj : α1j ̸= 0; (Hypothesis CDD3) H0j : α2j =

0 versus Haj : α2j ̸= 0; and (Hypothesis CDD4)H0j : (0, 1, 1)
Tβj = 0 versus Haj : (0, 1, 1)

Tβj ̸=

0. Hypothesis CDD1 compares the three authors altogether, while the other hypotheses compare

one author to the remaining two. With a nominal level 0.5%, our method detects 2595, 419, 1388,

and 1445 differentially represented words for each hypothesis. The top 10 differentially repre-

sented words for the three authors, such as “being" and “sprang", are displayed in Figure 2.4(a),

while the overall comparison is reported in the Venn diagram in Figure A.15 in the supplementary

file. It is interesting to notice that Arthur Conan Doyle favored “sprang" while Lewis Carroll and

Charles Dickens barely used it. In Figure 2.4(c), we further report the percentages of differen-

tially represented words (DR) and non-differentially represented words (NDR) within each speech

category [85,86]. Differentially represented words among these three authors have higher percent-

ages in adjectives, adverbs, and pronouns than non-differentially represented words. In contrast,

differentially represented words have lower percentages in nouns, proper nouns, and verbs than

non-differentially expressed words.

Following the above, we next investigate the genre difference among works of William Shake-

speare based on three subject groups: poetry, non-historical drama, and historical drama. We

model the normalized word counts by (2.2.1) with

Xi =





(1, 0, 0)T the ith book is a poetry

(1, 1, 0)T the ith book is a non-historical drama

(1, 1, 1)T the ith book is a historical drama

for i = 1, . . . , 176 books and βj = (µj, αj, γj)
T for j = 1, . . . , 4122 words. We consider (Hypoth-

esis WS1)H0j : (0, 0, 1)
Tβj = 0 versus Haj : (0, 0, 1)

Tβj ̸= 0, which compares the non-historical
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(d) Hypothesis WS1

Figure 2.4: Panels (a) and (b): the top 10 differentially represented words placed in ascending order by
their p-values (from left to right) for hypotheses CDD1 and WS1, respectively, and the vertical axis is
counts under log-scale. Panels (c) and (d): percentages of differentially represented words (DR) and non-
differentially represented words (NDR) within each speech category (https://universaldependencies.org/u/
pos/all.html) for hypotheses CDD1 and WS1, respectively. The nominal level is 0.5%.

and historical dramas, and (Hypothesis WS2) H0j : (0, 2, 1)
Tβj = 0 versus Haj : (0, 2, 1)

Tβj ̸=

0, which distinguishes poetry and all dramas. With a nominal level 0.5%, our method identifies

724 and 225 differentially represented words for each hypothesis. As a vast amount of historical

dramas of Shakespeare are about kings of the Kingdom of England, the words “princely", “Lon-

don", “king", and “crown" appear more in the historical dramas; see Figure 2.4(b). In addition,

Shakespeare used vocabularies such as “march", “forces", “army", “battle", and “war" more fre-

quently in the historical dramas than in the non-historical dramas. Interestingly, the love story

related lexicons, such as “love" and “marry", appear more in his non-historical dramas. From

Figure 2.4(d), the differentially represented words between historical dramas and non-historical
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dramas of Shakespeare have higher percentages in nouns, pronouns, and proper nouns, whereas

their percentages are low in adjectives, adverbs, and verbs.

In summary, our method provides a reliable addition to the existing toolkit in corpus linguistics

and text/literature analysis. It can be employed to study the differences for specific words, which

extends the current state-of-art that focuses on the overall distribution of word counts. An inter-

esting follow-up analysis is to investigate how do the stopping words, such as “being" or “upon",

affect the results and whether their removal will lead to different discovery. We leave this to future

studies.

2.6 Discussions

We conclude this article by discussing several open issues. First, our inference method is based

on normal approximation, which works well for a moderate sample size. Given a relatively small

sample, the multiplier bootstrap may have a better finite sample performance. The pioneering work

of [87] on the Gaussian approximation to the functional of high dimensional empirical processes

sheds light on the multiplier bootstrap applied to the adaptive Huber regression. The validity of

multiplier bootstrap for adaptive Huber regression will require a finite fourth moment condition

on the errors, which is similar to Condition 1. Secondly, it is possible to extend our method to

deal with a mixed-effects model Yi = ΘZi + Afi + ϵi, where Θ = (θ1, . . . ,θp)
T ∈ Rp×(d+1),

A ∈ Rp×K is the loading matrix, fi ∈ RK are zero-mean latent factors that are unobserved, and

ϵi ∈ Rp are uncorrelated with fi and Zi. For multiple mean effects testing, this model has been

studied by [7]. For testing general linear hypotheses, a similar yet more involved procedure can be

developed.

In addition, our framework can be generalized for design matrix with potentially heavy-tailed

entries. In practice, take the mediation analysis involving the RNA-sequencing data for example,

both the responses and entries in the design matrix are potentially heavy-tailed. To tackle this chal-

lenge, we may replace the entries in design matrix by its trimmed versionX ω̄
i = (φω̄(xi1) . . . , φω̄(xid))

T,

where φω̄(u) = min{max(−ω̄, u), ω̄} with tuning parameter ω̄ > 0. Here, the data driven selec-
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tion on ω̄ is largely unknown and cross-validation is therefore mandatory for implementations. At

the cost of extra tuning parameter ω̄ and additional log(np) term in the orders of both τ and ω̄,

results similar to Theorem 2.3.1 can be established while the theoretical guarantee on Σ̂j is more

involved. Lastly, in this paper, we focus on tail-robustness against stochastic outliers caused by

heavy-tailed and/or skewed error distributions. This is different from the classical robustness char-

acterized by the breakdown point [88] under Huber’s ϵ-contamination model, which emphasizes

the tolerance of a statistical method to a fraction of arbitrary outliers. It is of great importance

to develop proper inference methods for large-scale multivariate regression that are robust against

arbitrary contamination. We leave these for future work.
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Chapter 3

Model Specification Tests for Dependence Structures

of Gaussian Markov Random Fields on Temporally

Dependent Data

3.1 Introduction

Last decades have witnessed an ever-increasing capacity of data acquisition technologies in

many areas, including biological domains such as epidemiology and genetics, engineering and in-

dustry such as distributional management, and social sciences such as social networks and human

behavior. As a result, new statistical techniques are demanded to provide better understanding of

the data of both unprecedented size and complex structures. Among many statistical tools, network

models have been commonly employed for abstracting noisy data and providing an insight into

regularities and dependencies among observations. For example, nodes of the network in an epi-

demiology study can represent regions or individuals under exposure, meanwhile edges can model

the associations among regions or individuals [89, 90]. Similarly, in a genetic study, nodes and

edges in a network can model the genes from a particular organism and intra-gene dependencies,

respectively [91–93]. In a social domain, nodes and edges of a network can represent the individ-

uals and human-human interactions [94]. In ecology, social network analysis is a flexible toolbox

to analyze animal social system [95,96]. From both statistical and computational perspectives, the

probabilistic graphical models, specifically the Markov random fields (MRFs), pave a natural path

to model and explore networks. Different from traditional approaches based on covariances, these

models capture the conditional independence between random variables and therefore recover the

intrinsic associations among nodes. With the structure of MRFs estimated, statistical predictions

can be obtained via Kriging or the network can be visioned through connecting nodes that are

conditionally dependent [97–99].

32



Recent popular techniques for modeling network is a probabilistic graphical model such as

MRF and Bayesian network [98, 100, 101]. Bayesian network have been widely employed in so-

cial science, genomics studies, ecology, marketing researches, and public health. On the other

hand, MRF is the most popular model of undirected graphs. Let G = (V,E) be a undirected

graph where V denotes the set of vertices, and E denotes the set of edges over vertices. A node

u ∈ V can represent a gene, an organism, an individual, or a region, and an edge (u, v) ∈ E

can represent a relationship between nodes. MRFs satisfy Markov properties in undirected graph:

global Markov, local Markov, and pairwise Markov property, and it represents conditional inde-

pendence between nodes. Let Y = (Y1, ..., Yp)
′ be a random vector of nodal states. Any MRF

can be written as an exponential family in a canonical form by Hammersley-Clifford theorem,

P (y|θ) = Z−1
∏

c∈C ψc(yc|θc), where C is the set of all the maximal cliques of G, yc is a realiza-

tion of Yc for a maximal clique c, and Z is the partition function, which is a positive real-valued

function. There are various examples of MRFs such as Gaussian MRF (GMRF), Ising model,

Hopfield networks, and Potts model.

GMRFs play a key role in graphical models [55, 101]. An undirected graph defined by GMRF

is equivalent to a precision matrix Ω = (ωl1,l2)1≤l1,l2,≤p, and ωl1,l2 = 0 implies conditional inde-

pendence between nodes. Therefore, testing the dependency structure of a GMRF is equivalent

to testing the structure of a precision matrix. Besides, GMRFs enjoy computational advantages

from numerical methods for sparse matrices because of the sparse structure of Ω. In addition,

applications of GMRF include not only graphical models, but also structural time-series analysis,

longitudinal and survival data analysis, image analysis, and spatial statistics.

Understanding the neighborhood structures, N(vj) for j = 1, . . . , p, and dependency structure

of vertices is a prerequisite for constructing GMRF. However, such neighborhood structures are

usually unknown and non-trivial in real problems, and they may change from case to case. MRF

models with inappropriate neighborhoods could result in misleading results. Therefore, identifying

the neighborhood structures based on data is vital in network studies. [56] considered the hypoth-

esis (3.2.4) of four nearest neighborhood against eight nearest neighborhood by using empirical
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likelihood. However, their method depends on partition the spatial locations into cliques, which is

not trivial to extend to general null hypothesis. Same as the neighborhood structure, GMRF with

inappropriate dependency structure could lead to misleading results. In applications, we often face

a single time-evolving data with unknown dependency structure. However, the existing methods

focused on the two-sample test, specific structures, or non-evolving data. Therefore, a unified

approach for evolving data could serve an important role for scientific researches in different dis-

ciplines.

Many existing methods focus on estimation in both non-evolving and evolving data, but not

on inference in their intrinsic structure. Several estimation methods for high-dimensional sparse

precision matrix or Gaussian graphs have been proposed, which are related to GMRF. For exam-

ple, [35] proposed a neighborhood selection for high-dimensional graphs with Lasso. [37] and [39]

used graphical Lasso for a penalized likelihood estimation. [45] considered the connection between

multivariate linear regression and sparsity of the precision matrix by linear programming. [40] pro-

posed the CLIME estimator. [102] proposed an asymptotically tuning-free approach via square-

root Lasso based nodewise regression. [103] studied the problem of estimating conditional preci-

sion matrix given an indexing variable. [104] studied sparsity and clustering structure of graphs

using a regularized maximum likelihood method. Moreover, much efforts devoted to MRFs. For

instance, [105] proposed ℓ1-regularized logistic regression of each variable on other variable any

MRF. [98] studied estimation of time-evolving Ising model. [106] studied time-varying Gaussian

network with abrupt changes. [107] investigated a change point estimation in high dimensional

MRFs.

On the other hand, a few testing procedures have been proposed for graphical models. For

example, [56] proposed a testing procedure by blockwise empirical likelihood under MRF, whereas

[108] proposed a procedure for testing diagonal spatial precision matrix under GMRFs. [109]

proposed an inference procedure for evolving nonparanormal graphical model. However, all these

models have structural limitation since the null hypothesis is not a general one. In addition, there
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(a) US states and geographical regions by US
Census Bureau

(b) European countries: Austria, Belgium,
France, Germany, Netherlands, Spain, and
Switzerland

Figure 3.1: States or provinces used in Google Flu Trends analysis in Section 3.4.

have been a few papers about two-sample test. For example, [110] proposed a test for differential

networks under GMRF in genomics applications.

In this paper, we consider the hypotheses testing for the dependence structures of GMRFs. The

procedure consists of three parts as follows: We first obtain the residuals from the debiased Lasso

estimates of nodewise regressions [52,111], so we obtain the testing statistic. This ℓ1-type approach

can model the sparsity of precision matrix, which is equivalent to the sparsity of GMRF. Next, we

estimate a long-run covariance matrix to obtain empirical distribution of the test statistic [111],

which allows us to study the asymptotic distribution of the average of time dependent data. In the

last step, we use the wild bootstrap [112] to obtain the empirical distribution of an L∞-type test

statistic, which allows us to test the hypothesis.

We applied our method to Google Flu Trends described in Section 3.4. Figure 3.1 displays

regions in EU and US that we used in our analysis. Our findings via GMRF are as follows:

We found that the number of neighborhood regions in GFT network was larger than one of its

geographical neighbors. Moreover, we observed EU has narrower neighborhood than US. For

dependency structure, it was more likely the distance structure than isotropic structure. Some sub-
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graph had different dependency structure to the overall dependency structure. For example, Spain

had more likely isotropic structure. These findings suggest further investigation on their possible

impact on flu transmission dynamics. See Section 3.4 for more discussions.

The rest of the paper is organized as follows. In Section 3.2, we review the GMRF and explore

a few important local dependence structures based on the GMRF formulation and parameters. In

Section 3.3, we provide the testing procedure for general structure GMRF. In Section 3.4, we apply

our methods on Google Flu Trends to investigate regional network structure. Section 3.5 is devoted

to simulation studies.

3.2 Dependence Structures in GMRF

In this section, we discuss the connection between the model specification tests for conditional

dependence structure and the unified inference procedure on structures of the precision matrix.

Model-specification test for conditional dependence can be formulated through the conditional

dependency parameters {ηj1j2} in GMRF in (3.2.2), and hypotheses in functions of {ηj1j2} are

equivalent to those in the functions of precision coefficients. Taking advantage of such a connec-

tion, assessing the GMRF’s structures can be formulated as a hypothesis testing problem. A few

examples are presented in details to elaborate this.

Let the response be yt = (y1,t, . . . , yp,t)
′ for t = 1, . . . , n, where yj,t denotes the response

variable at location sj and time t. Let V = {sj}pj=1 is the set of locations. For each time point

t, suppose {yt} follows a GMRF model, where the full conditional distribution of yj,t given all

the other responses at time t is equal to the condition distribution given the responses in N(sj),

where N(sj) is a subset of V denoting the neighborhood of sj . This means equivalence between

the global and the local Markov properties that

fj1(yj1,t|{yj2,t : sj2 ∈ V }, θj1) = fj1(yj1,t|{yj2,t : sj2 ∈ N(sj1)}, θj1)

= (2πσ2)−1/2 exp{−(yj1,t − Aj1)
2/(2σ2)} (3.2.1)
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for j1 = 1, . . . , p, where fj1(·|·, θj1) is the conditional normal density of yj1,t with parameter θj1 ,

Aj1 = Aj1({yj1,t : sj1 ∈ N(sj1)}, θj1) = µj1 +
∑

sj2∈N(sj1 )

ηj1j2(yj2,t − µj2) (3.2.2)

is the conditional mean of yj1,t given its neighborhood, µj is the marginal mean of yj,t, and θj =

{σ2, µj, κj, ηjj : vj ∈ N(vj)}. Under such a model, yj1,t is conditional independent with {yj3,t :

sj3 /∈ N(sj1)} given {yj2,t : sj2 ∈ N(sj1)}, and the parameters {ηj1j2} reflect the conditional

dependence among yt.

Let Eh ⊂ {1, · · · , p}2 for h = 1, · · · , H be the sets of interest, where Ehi
∩ Ehj

= ∅. We are

interested in testing the conditional dependence structure of GMRF through {ηjj}:

H0 : g̃h,j1j2(ηj1,j2) = ch for all (j1, j2) ∈ Eh and all h vs. Ha : Not H0 (3.2.3)

for h = 1, · · · , H , where g̃h,j1j2(·) is known functions which may depend on the indices (j1, j2),

and {ch} are unknown constants. To simplify the notation, we drop the subscript j1, j2 in g̃h,j1j2(·)

when there is no confusion. In the following, we provide several common dependency structures

in spatial statistics which are included in the framework of (3.2.3). Suppose we observe a data on

vertices V = {v1, . . . , vp} ⊂ R2 on a regular grid over time, where vi ∈ {(m1,m2) : 1 ≤ m1 ≤

k1, 1 ≤ m2 ≤ k2} for p = k1k2.

• Detection of neighborhood sizes is of great importance in GMRF models. One example

is the four nearest and eight nearest neighborhood structures which are commonly used in

practice, where for j = (m1 − 1)k1 +m2,

N4(sj) = {(m1,m2 − 1), (m1,m2 + 1), (m1 − 1,m2), (m1 + 1,m2)} and

N8(sj) = N4(sj) ∪ {(m1 − 1,m2 − 1), (m1 − 1,m2 + 1), (m1 + 1,m2 − 1),

(m1 + 1,m2 + 1)}

respectively. To assess the validity of the neighborhood, we consider to test
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H0 : Nw(sj) is the neighborhood for any j = 1, · · · , p,

Ha : Nw(sj) is not the neighborhood for all j = 1, · · · , p,
(3.2.4)

where w = 4 or 8. For four nearest and eight nearest neighborhoods, the supports of Ω are

EN4
= {(j, j), (j − 1, j), (j + 1, j), (j + k1, j), (j − k1, j) : 1 ≤ j ≤ p} and

EN8
= EN4

∪ {(j − k1 + 1, j), (j + k1 − 1, j), (j + k1 + 1, j), (j − k1 − 1, j) : 1 ≤ j ≤ p},

respectively. Therefore, (3.2.4) is a special case of (3.2.3) with g̃(ηj1,j2) = ηj1,j2 and E1 =

Ec
Nw

:

H0 : ηj1,j2 = 0 for (j1, j2) ∈ Ec
Nw

vs. Ha : Not H0. (3.2.5)

• Given the neighborhood sizes, we are interested in the conditional dependence structures

within each neighborhood. For isotropic dependence structures, the conditional dependence

of yj,t between each variable in its neighborhood {yj,t : sj ∈ N(sj)} are the same. Under

this case, ηj1j2 in (3.2.2) are constant for all vertices sj ∈ N(sj).

Testing for the isotropic structure under four nearest neighborhood is equivalent to hypothe-

sis (3.2.3) with g̃1(ηj1,j2) = g̃2(ηj1,j2) = ηj1,j2 , E1 = EN4
, E2 = Ec

N4
, c1 = c and c2 = 0:

H0 : ηj1,j2 =





c (j1, j2) ∈ ENw

0 (j1, j2) ∈ Ec
Nw

vs. Ha : Not H0. (3.2.6)

• In the case that the dependence structures are directional, the dependence parameters ηjj

may be different between the horizontal and vertical neighborhoods of yij . We have

Directional: Aj1 = µj1 + ηu
∑

sj2∈Nu(sj1 )

(yj2,t − µj2) + ηv
∑

sj2∈Nv(sj1 )

(yj2,t − µj2), (3.2.7)
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where Nu(sj1) = {sj2 : |j1 − j2| = k1} and Nv(sj1) = {sj2 : |j1 − j2| = 1} are the

neighborhoods of sj in horizontal and vertical directions, respectively. Therefore, setting

g̃1(ηl1,j2) = g̃2(ηl1,j2) = g̃3(ηl1,j2) = ηl1,j2 , E1 = {(j1, j2) : |j1 − j2| = 1}, E2 = {(j1, j2) :

|j1 − j2| = k1} and E3 = Ec
N4

with c3 = 0 in the hypothesis (3.2.3) is for testing the

directional dependence structure under four nearest neighborhood:

H0 : g̃(ηj1,j2) =





ηu = c1 (j1, j2) ∈ E1

ηv = c2 (j1, j2) ∈ E2

η{Nu∪Nv}c = 0 (j1, j2) ∈ E3

vs. Ha : Not H0 (3.2.8)

• Another structure is based on the distance between two vertices, where ηj1j2 is reciprocal to

the distance between sj1 and sj2 . The corresponding expression of Aj1 in (3.2.2) is

Distance: Aj1 = µj1 +
η

dj1j2

∑

sj2∈N(sj1 )

(yj2,t − µj2), (3.2.9)

where dj1j2 = ∥sj1 − sj2∥ is the Euclidean distance between sj1 and sj2 . It is clear that

testing for the distance based dependence structure coincides with the hypothesis (3.2.3)

with g̃1(ηj1,j2) = ηj1,j2/dj1j2 , g̃2(ηj1,j2) = ηj1,j2 , E1 = ENw and E2 = Ec
Nw

:

H0 : g̃(ηj1,j2) =





ηj1,j2/dj1,j2 = c (j1, j2) ∈ E1

ηj1,j2 = 0 (j1, j2) ∈ E2
vs. Ha : Not H0 (3.2.10)

It can be shown that the joint distribution of yt under (3.2.1) and (3.2.2) isN(µ, (Ip−C)−1M),

where µ = (µ1, · · · , µp)
′, C = (ηj1j2), M = diag(σ2) and Ip is the p × p identity matrix. Let

Σ = (σj1,j2) be the covariance of yt, and Ω = (ωj1,j2) = Σ−1 = M−1(Ip − C) be the precision

matrix of yt. Note that C is a symmetric matrix with zero diagonal entries and ωj1,j2 = −σ−2ηj1,j2

for j1 ̸= j2. If all ηj1,j2 = 0, then the joint distribution of yt is N(µ,M) which corresponds to

an independence model. Testing neighborhood dependence structures as in (3.2.5), (3.2.6), (3.2.8)
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and (3.2.10) are equivalent to testing the structure of the precision matrix Ω as

H0 : gh,j1j2(ωj1,j2) = ch for all (j1, j2) ∈ Eh and all h vs. Ha : Not H0 (3.2.11)

for some known function gh,j1j2(·) and unknown constants {ch}.

The above hypotheses (3.2.11) on the precision matrix can be also applied to other covari-

ance classes. One of the most popular variogram model in geostatistics is the Matérn covariance

class.The Matérn covariance function between vertices sj1 and sj2 is defined as

σj1j2 = Cov(yj1,t, yj2,t) =
σ2

2ν−1Γ(ν)
(ρdj1j2)

νKν(ρdj1j2). (3.2.12)

Here, Kν(·) is the modified Bessel function of the second kind and order ν > 0, ρ is a scaling

parameter and σ2 is the marginal variance. [99] showed that the inverse of the Matérn covariance

is approximately sparse, and the Gaussian fields with Matérn covariance (3.2.12) can be well ap-

proximated by GMRF models. Due to the sparsity of the precision matrix brought by the Markov

property, they suggested to use GMRF representation to compute the Gaussian fields with Matérn

covariance. Meanwhile, we could test the structure of the precision matrix that serves a way to

check the Matérn covariance structure. When ν = 1, [99] showed that GMRF representation

for the Matérn fields have the precision matrix in the form that ωjj = 4 + c2, ωj1j2 = −2c for

|j1− j2| = 1 or k where c = 4+8/r2 for the range parameter r > 0, ωj1j2 = 2 for |j1− j2| = k±1

and ωj1j2 = 1 for |j1 − j2| = 2 or 2k. To test for the Matérn covariance with ν = 1, we set the

hypothesis (3.2.3) in such a way that

g1(ωj1,j2) =
√
ωj1,j2 − 4 for E1 = {(j1, j2) : j1 = j2} with c1 = c;

g2(ωj1,j2) = −ωj1,j2/2, for E2 = {(j1, j2) : |j1 − j2| = 1 or k} with c2 = c;

g3(ωj1,j2) = ωj1,j2 , for E3 = {(j1, j2) : |j1 − j2| = k ± 1} with c3 = 2;

g4(ωj1,j2) = ωj1,j2 , for E4 = {(j1, j2) : |j1 − j2| = 2 or 2k} with c4 = 1.
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The hypothesis of interest is a special case of (3.2.11) that

H0 : g(ωj1,j2) =





√
ωj1,j2 − 4 = c (j1, j2) ∈ E1

−ωj1,j2/2 = c (j1, j2) ∈ E2

ωj1,j2 = 2 (j1, j2) ∈ E3

ωj1,j2 = 1 (j1, j2) ∈ E4

ωj1,j2 = 0 otherwise

vs. Ha : Not H0. (3.2.13)

3.3 Methodology

In this section, we propose a testing procedure for hypothesis (3.2.11) that is adaptive to the

time dependence among observations. Let Yn = {yt}nt=1 be a stationary p-dimensional time series,

where each observation yt follows the GMRF model (3.2.1) and (3.2.2). Let ȳ = (ȳ1, . . . , ȳp)
′ be

the sample mean of {yt}nt=1. Notice that the sample version of (3.2.2) is the p node-wise linear

regressions

yj1,t = ȳj1 +
∑

j2 ̸=j1

αj1,j2(yj2,t − ȳj2) + ϵj1,t (3.3.1)

for t = 1, . . . , n and j1 = 1, . . . , p. Let ϵ = (ϵ1, . . . , ϵp)
T and V = Cov(ϵ) = (vj1,j2)p×p. Denote

αj = (αj,1, . . . , αj,j−1,−1, αj,j+1, . . . , αj,p)
T, and let α̂j be the Lasso estimator [36] for αj as

α̂j = argmin
α∈Θj

[
1

n

n∑

t=1

{αT(yt − ȳ)}2 + 2λj|α|1
]
, (3.3.2)

where Θj = {α = (α1, . . . , αp)
T ∈ Rp : αj = −1} and λj is the tuning parameter at the order

√
log(p)/n. Let

ϵ̂t = (ϵ̂1,t, . . . , ϵ̂p,t)
T with ϵ̂j,t = −α̂

T

j (yt − ȳ) (3.3.3)

be the residuals from fitting (3.3.1) by Lasso. Let Ṽ = (ṽj1,j2)p×p be the sample covariance of

{ϵ̂t}nt=1, where ṽj1,j2 = n−1
∑n

t=1 ϵ̂j1,tϵ̂j2,t. Following [111], we employ the de-biased estimator
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v̂j1,j2 =





− 1

n

n∑

t=1

(ϵ̂j1,tϵ̂j2,t + α̂j1,j2 ϵ̂
2
j2,t

+ α̂j2,j1 ϵ̂
2
j1,t

), j1 ̸= j2;

1

n

n∑

t=1

ϵ̂j1,tϵ̂j2,t, j1 = j2.

(3.3.4)

for the error variance V. We then estimate g(ωj1,j2) as

ĝ(ωj1,j2) = g(ω̂j1,j2) for ω̂j1,j2 =
v̂j1,j2

v̂j1,j1 v̂j2,j2
(3.3.5)

for any j1 and j2.

To construct the test statistic, we also need to estimate the unknown constants {ch} under H0

of (3.2.11). For any h = 1, · · · , H , let

ĉh =
∑

(j1,j2)∈Eh

g(ω̂j1,j2)/qh,

where qh = |Eh| is the cardinality of Eh. The test statistic for the hypothesis (3.2.11) is constructed

as

Tn = max
h

max
(j1,j2)∈Eh

√
n|g(ω̂j1,j2)− ĉh|. (3.3.6)

Under some regularity conditions, by using the similar argument of [111], it gives the asymp-

totic expansion of g(ω̂j1,j2) for any first order continuous function g(·).

g(ω̂j1,j2)− g(ωj1,j2) = −g′(ωj1,j2)
δj1,j2

vj1,j1vj2,j2
+ op{(n log p)−1/2},

and ĉh − ch = op{s1/2(nqh)−1/2} = op(n
−1/2) for any h = 1, · · · , H if qh ≫ s, where δj1,j2 =

n−1
∑n

t=1(ϵj1,tϵj2,t − vj1,j2), and op{(n log p)−1/2} is a uniform higher order term for all j1 and j2.

Those results imply that Tn =
√
n|Ψ|∞ + op(1), where Ψ = G ◦ {diag(V)}−1∆{diag(V)}−1,

∆ = −n−1
∑n

t=1 ∆t, G = (g′(ωj1,j2))p×p and ∆t = ϵtϵ
T

t − V. Let ς t be the vectorization of

G ◦ {diag(V)}−1∆t{diag(V)}−1, where each element of ς t takes the form
g′(ωj1,j2

)

vj1,j1vj2,j2
(ϵj1,tϵj2,t −
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vj1,j2). Then, Tn is asymptotically equally distributed as
√
n|∑n

t=1 ς t/n|∞. Due to the form of

partial sum, we can approximate the distribution of Tn via Gaussian approximation.

Let W be the long run covariance of {ς t}nt=1, which takes the form

W = E

{(
1

n1/2

n∑

t=1

ς t

)(
1

n1/2

n∑

t=1

ς t

)
T
}
. (3.3.7)

It is clear the distribution of Tn is related to the long run covariance W. In practice, we estimate

ς t by plugging in ω̂j1,j2 , v̂j1,j2 and residuals ϵ̂j,t. Denote this estimator by

ς̂ t = Vec{( g
′(ω̂j1,j2)

v̂j1,j1 v̂j2,j2
(ϵ̂j1,tϵ̂j2,t − v̂j1,j2))p×p}.

We propose a kernel-type estimator suggested by [113] for W as

Ŵ =
n−1∑

k=−n+1

K
(
k

Sn

)
Γ̂k for Γ̂k =





1

n

n∑

t=k+1

ς̂ tς̂
T

t−k, k ≥ 0;

1

n

n∑

t=−k+1

ς̂ t+kς̂
T

t , k < 0.

(3.3.8)

where Sn is the bandwidth, K(·) is a symmetric kernel function that is continuous at 0 and satisfy-

ing K(0) = 1, |K(u)| ≤ 1 for any u ∈ R, and
∫∞

−∞
K2(u)du <∞.

Let ξ̂ ∼ N(0,Ŵ) for Ŵ specified in (3.3.8). Recall that Yn = {yt}nt=1 denotes the data of the

sample. By Gaussian approximation results, it can be shown that

sup
x>0

∣∣P
(
Tn > x

)
− P

(
|ξ̂|∞ > x|Yn

)∣∣ p−→ 0 as n→ ∞, (3.3.9)

which indicates that the distribution of Tn can be approximated by that of |ξ̂|∞.

Monte Carlo simulation can be used to obtain the distribution of |ξ̂|∞ given the data Yn. Let

ξ̂1, . . . , ξ̂M be i.i.d. drawn from N(0,Ŵ). Let

F̂M(x) =
1

M

M∑

m=1

I
{
|ξ̂m|∞ ≤ x

}
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be the empirical distribution of {|ξ̂1|∞, . . . , |ξ̂M |∞}. Based on the result (3.3.9),

q̂α = inf{x : F̂M(x) ≥ 1− α}. (3.3.10)

is an estimate of the upper α quantile of Tn. The α level test rejects the null hypothesis of (3.2.11)

if Tn > q̂α.

The proposed inference procedure is summarized as the following algorithm.

Algorithm

Input: Observations yt = (y1,t, ..., yp,t)
T ∈ Rp for t = 1, ..., n and a pre-specified level

α ∈ (0, 1).

Procedure:

Step 1. Perform p node-wise regressions (3.3.1)

yj1,t = ȳj1 +
∑

j2 ̸=j1
αj1,j2(yj2,t − ȳj2) + ϵj1,t by Lasso, where t = 1, . . . , n. Then, get

residuals ϵ̂t = (ϵ̂1,t, ..., ϵ̂p,t)
T where ϵ̂j,t = −α̂

T

j (yt − ȳ). Obtain the de-biased estimator V̂

of cov(ϵt) as (3.3.4), and estimate the precision matrix Ω of yt by

Ω̂ = {diag(V̂)−1}V̂{diag(V̂)−1}.

Step 2. Obtain the test statistic Tn = maxh max(j1,j2)∈Eh
√
n|g(ω̂j1,j2)− ĉh| in (3.3.6),

where ω̂j1,j2 = v̂−1
j1,j1

v̂j1,j2 v̂
−1
j2,j2

and ĉh =
∑

(j1,j2)∈Eh
g(ω̂j1,j2)/qh.

Step 3. Let A be an n× n matrix whose (ℓ1, ℓ2) element is K(|ℓ1 − ℓ2|/Sn), and

generate n-dimensional Gaussian random vector (g1, . . . , gn)T with mean zero and

covariance A.

Step 4. Calculate ς̂ t = Vec{( g′(ω̂j1,j2
)

v̂j1,j1 v̂j2,j2
(ϵ̂j1,tϵ̂j2,t − v̂j1,j2))p×p} and

ξ̂ = n−1/2
∑n

i=1 gtς̂ t.

Step 5. Repeat Steps 3 and 4 M times to obtain i.i.d. samples ξ̂1, ..., ξ̂M from

N(0,Ŵ) for Ŵ given in (3.3.8). Calculate q̂α = inf{x : F̂M(x) ≥ 1− α}, where F̂M(x)

is the empirical distribution of (|ξ̂1|∞, ..., |ξ̂M |∞)T. Reject H0 in (3.2.11) if Tn > q̂α.
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3.4 Application to the Google Flu Trend

We applied our inference procedure in Algorithm 1 to study data from the Google Flu Trend

to explore the intrinsic geographical dependency among regions and to provide some interesting

epidemiology insights. Specifically, for both United States and European data, we considered

different neighborhood sizes and also investigated different types of dependence structures such as

isotropic and distance-based in Section 3.2.

3.4.1 Backgrounds

Understanding of disease transmission is the key question in epidemiology to recognize pattern

of health events and develop prevention systems. A good example of studies is about flu pandemic.

The 1918 H1N1 flu pandemic was uniquely fatal, which infected one third of world populations and

caused 50 millions deaths [114]. Back in 2009, H1N1 flu virus involved another epic pandemic,

which caused hundreds of thousands deaths [115]. Besides, annual influenza outbreak caused

multiple deaths [116]. For these reasons, public health organizations offer influenza surveillance

information. For example, the Centers for Disease Control Prevention (CDC) and the European

Influenza Surveillance Scheme (EISS) have released weekly influenza surveillance reports for a

few decades. However, these reports have 1-2 week reporting lag, so there have been attempts to

create faster flu detection system. A particular example is GFT.

GFT was a web service operated by Google to offer flu activities estimation available at https:

//www.google.org/flutrends/about/. GFT uses individual Google search queries to provide faster

detection, while the traditional weekly based benchmarks by CDC and EISS used on both virologic

and clinical data. GFT is able to report influenza-like illness (ILI) 1-2 weeks ahead of the official

ILI data from CDC [117]. To identify locations of inquires, users’ IP address were used.

The original model in GFT was the following:

logitP (t) = β0 + β1 logitQ(t) + ϵ
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where P (t) is the percentage of ILI Physician visits, and Q(t) is ILI-related Query Fraction. Q(t)

is calculated by 45 top scoring queries, determined by cross validation, among 50 millions queries.

Those queries do not have to be ILI-related [117].

GFT has attracted many researchers’ attention. [117] claimed GFT prediction were 97% ac-

curate comparing with GFT ILI. [118] examined that GFT tracked information about the 2009

flu pandemic in the United States. In February 2010, the CDC identified influenza cases spik-

ing in the mid-Atlantic region of the United States. Surprisingly, Google search queries about

flu symptoms was able to show that same spike two weeks prior to the CDC report being re-

leased. Moreover, GFT has been used in applied statistical papers. For example, [119] used GFT

to understand effects of spatial parameters on influenza’s transmission by the susceptible-infected-

recovered-susceptible (SIRS) model, and [120] used GFT to develop influenza forecasting model

using generalized ARMA model. [121] applied a humidity driven SIRS model jointly with either

the ensemble adjustment Kalman filter or a particle filter to estimate key epidemiology parameters.

Our testing procedure can be applied in GFT. The key difference from the papers above is

whether the network model framework is employed or not. Specifically, both [119] and [121]

focused on estimating parameters in SIRS model under Bayesian framework, and [120] focused on

time-series model selection and forecasting. The models in [119] focused on separating intrastate

dynamics from interstate dynamics using time-varying covariates. [121] focused on estimating

parameters in SIRS model. On the other hand, by employing our procedure, we can do inference

on any type of interstate dependence structure in feasible time.

3.4.2 Data Pre-processing

Similar to [119], we focused on data from the 48 mainland states plus Washington D.C. for the

United States. Data from these 49 areas have complete weekly records from Dec 2nd, 2007 to Aug

9th, 2015. We also studied data from the 73 areas from 7 European countries: Austria, Belgium,

France, Germany, Netherlands, Spain, and Switzerland. These 73 areas possess complete weekly

records from Dec 2nd, 2007 to Aug 9th, 2015. The geographical regions under considerations were
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displayed in Figure 3.1 in Section 3.1. In summary, data for the United States can be abstracted as

a network with 49 vertices evolving for 402 time points, while the data for Europe can be modeled

as a network with 73 vertices evolving for 360 time points.

For data pre-processing, we regressed the log-transformed data against time to detrend and

employed the first order difference procedure to remove the seasonality [122]. Specifically, for

data at the area r and time t, xt,r, we regressed log(xt,r + 1) against t to obtain detrended data yt,r

and took ϵt,r = yt,r − yt−1,r. Inspecting the autocorrelation and partial autocorrelation plots of ϵt,r

for each area, the stationary assumption was reasonably satisfied. See Figure 3.2 as an example

of state of Colorado. In addition, we standardized ϵt,r within each area and applied our proposed

Algorithm 1 to the processed data.

3.4.3 Data Analysis

Our goal is to explore and learn the structures of dependency among the 49 areas in the United

States and the 73 areas in the Europe based on the temporal data from Google Flu Trend. In

addition, we also studied the dependency structures within some pre-defined regions to gain more

insights. Specially, we considered the four US Census regions: West, Mid-West, South, and North-

east; and for Europe, we focused on four regions: Belgium-Netherlands, France, Germany, and

Spain. Three types of dependency structures were studied. Those are the neighborhood, isotropic

and distance as defined in Section 3.2.

Knowing the neighborhood size is a key to investigate interstate transmission in epidemiology.

Furthermore, it is not uncommon to investigate whether interstate effect is identical by regions

and the effects depends on the distance between two locations. For these reasons, we first per-

formed neighborhood test for five different size of neighborhoods, then we performed isotropic

and distance tests if we failed to reject the neighborhood test. The null hypotheses are:
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(a) GFT for Colorado and its neighboring states
(From 2007-2015). Green dashed lines indicate the
first week of December and the last week of Febru-
ary.

(b) Detrended data of log-transformed GFT (From
2007-2015)

(c) Auto correlation function for detrended data
(From 2007-2015)

(d) Auto correlation function for first order differ-
enced detrended data (From 2007-2015)

Figure 3.2: Plots displaying the pre-processing of Google Flu Trend data for the state of Colorado, USA.
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(Neighborhood) H0 : ωi,j = 0 ∀(i, j) /∈ N

(Isotropic) H0 : ωi,j =





c ∀(i, j) ∈ N

0 ∀(i, j) /∈ N

(Distance) H0 : ωi,j =





c/di,j ∀(i, j) ∈ N

0 ∀(i, j) /∈ N

and their alternatives are Ha : Not H0 where N indicates a set of neighborhoods. Similarly, we

performed neighborhood and isotropic tests with geographical neighborhoods on sub-regions. We

used the significance level α = 0.01.

We used the following settings for this analysis. We used the tuning parameter λ for de-biased

Lasso from our empirical sizes simulation in Section 3.5, specifically, λ =
√
2cn−1 log p where

c was determined by the simulation for (D2) structure in Section 3.5 on a 10 × 10 regular grid,

which represented the dependency structure of 100×100 GMRF. For example, Figures 3.3 and 3.4

display the square root of absolute value of precision matrix estimate entries,
√

|ωi,j|. The tests

were performed by the wild bootstrap with 5000 replications.

Neighborhoods of Different Size

We considered five different sizes of neighborhood: the geographical neighborhood and four

“distance-based” neighborhoods. These are commonly considered in epidemiology. For example,

[119] estimated an interstate susceptibility from neighboring states. Similarly, distance could be an

important factor in disease transmission because of indirect transmission by air particles, vehicles,

and vectors [123].

First of all, the geographical neighborhood, denoted by Ngeo, includes its neighboring regions

on maps. For example, Figure 3.5 displays neighboring states of Colorado and neighboring re-

gions of Îll-de-France: The neighboring states of Colorado are Arizona, Kansas, Oklahoma, Ne-

braska, New Mexico, Utah, and Wyoming, while the neighboring regions of Îll-de-France are

upper-Normandy, Picardy, Champagne-Ardenne, Burgundy, and Centre-Val de Loire.
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Figure 3.3: Estimated precision matrix of USA states (From 2007-2015): square root of absolute values of
each entry,

√
|ωi,j |.
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Figure 3.4: Estimated precision matrix of European provinces (From 2007-2015): square root of absolute
values of each entry,

√
|ωi,j |.
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(a) Colorado (b) Îll de France

Figure 3.5: Neighboring Regions (red) of selected state and region (blue). French map displays départments
of France, which is a subdivision of regions of France.

On the other hand, the “distance based” neighborhood, denoted byNd,α, defined by the distance

between the geographic center of two regions:

Nd,α = {(i, j) : di,j < 2.5dα where dα is αth percentile of {di,j}i ̸=j}. (3.4.1)

We considered Nd,5, Nd,7.5, Nd,10, and Nd,15. We calculated regional distances using their geo-

graphical centers by geosphere::distm function in R. The coordinates of the US states’ cen-

ters were acquired from state.center data set, whereas the coordinates for European regions

were obtained from Dutch, English, French, German, and Spanish Wikipedia. Figure 3.6 displays

adjacency matrices of Ngeo and Nd,5 for both US and Europe. Table 3.1 displays the distance limit

of Nd,α.

3.4.4 Main Findings

In this section, we summarize the testing results from GFT. We observed a few interesting

findings for overall US and Europe. Table 3.2 displays p-values of the tests for both US and

Europe. For US, it was likely to have Nd,10 or Nd,15. We found the GFT of US states may connect
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(a) NUS
geo (b) NUS

d

(c) NEU
geo (d) NEU

d

Figure 3.6: Adjacency Matrices by the geographical neighboring regions and distance based definition
(3.4.1).

Table 3.1: Distance limit for Nd,α (km)

Neighborhood US Europe
Nd,5 939.64 390.68
Nd,7.5 1168.92 474.67
Nd,10 1303.49 559.41
Nd,15 1648.05 712.39
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Table 3.2: p-values of tests for Ngeo and Nd,α (Overall dependency)

The United States of America Europe
NBD Isotropic Distance NBD Isotropic Distance

Ngeo 0.0002 N/A N/A 0.0046 N/A N/A
Nd,5 0.0002 N/A N/A 0.0032 N/A N/A
Nd,7.5 0.0000 N/A N/A 0.0302 0.0008 0.0032
Nd,10 0.0688 0.0002 0.0000 0.1086 0.0004 0.0106
Nd,15 0.0642 0.0002 0.0002 0.8354 0.0000 0.0958

Table 3.3: p-values of tests for Ngeo (Substructure)

Regions Neighborhood Isotropic
West 0.0050 N/A
Mid-West 0.0532 0.0024
South 0.0148 0.0320
Northeast 0.0010 N/A
BEL-NLD 0.0002 N/A
France 0.0020 N/A
Germany 0.0016 N/A
Spain 0.0698 0.0858

even though they are far from each other since the distance limit of NUS
d,10 is 1303.49km, which

is close to the distance between Nebraska and Tennessee. Moreover, we rejected both isotropic

and distance tests. On the other hand, we found European countries had narrower neighborhood

than US. The distance limit of NEU
d,7.5 is only 474.67km, which is close to the distance between

Schleswig-Holstein and Sachsen in Germany. The distance test also failed to reject for NEU
d,10 and

NEU
d,15.

Furthermore, we observed that some sub-region had different neighborhood structure to over-

all US and Europe. Table 3.3 displays p-values of the tests for sub-domains of both US and

Europe. US mid-west, US south, and Spain might have the geographical neighborhood structure.

These regions have lower population density, so their network structures have different features to

other regions. Moreover, US south and Spain failed to reject the isotropic test. Lower population

densities in these regions may be a reason of these dependency structure, and further scientific

investigations require.
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There are possible explanations about the results above. First, high population density in Euro-

pean countries may be a reason of these results. As we observed above, lower population density

might be a reason of Ngeo. Second, difference on the mode of transportation in US and European

countries may be a reason. It is well-known that long-distance trip and air travel are correlated

with flu epidemic events [124]. US has higher percentage of air travel and lower percentage of

railway travel than European countries. To verify these hypothesis, further epidemiological studies

are required.

We compared our findings to [119]. They studied the susceptible parameter in SIRS model for

both interstate transmission from neighboring states and intrastate transmission. They performed

the model selection procedure based on the deviance information criterion, then they used the

model omitting the air travel component of transmission although air travel may play a significant

role in the spread of ILI. We found US south had Ngeo as its neighborhood. From Figure 4 and 5 of

[119], US south may be susceptible to interstate transmission, which is consistent with our finding.

They also found that many of the mid-west states are less susceptible to interstate transmission

than the states in the northwest, which is different to ours.

In summary, our inference procedure can give a new perspective to analyze network. Our

analysis could be good for scientific studies as an analysis with epidemiological covariates even

though the data is time-evolving. Further scientific studies require to verify whether our findings

have epidemiological meaning.

3.5 Simulation studies

Using the numerical experiments, this section is devoted to investigate the finite sample perfor-

mance of our proposed method under different settings.

3.5.1 Settings

We considered the following settings for our simulation studies. We set the regular grids with

varying sizes among 10×10, 30×20, and 50×40, so that the number of vertices p = 100, 600, and
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2000, respectively. For the number of time points, we let n = 100, 300, and500. We report the em-

pirical sizes and powers of our method for different scenarios based on 500 numerical replications,

and 1000 bootstrap were drawn for each replication. The significance level is set as α = 0.05. Let

ϵ1, · · · , ϵn be i.i.d. p-dimensional samples from N(0,Σ). For a p-dimensional time-evolving data

{yt}nt=1, we considered the following three different data generation mechanisms.

• (D1) IID: Let yt = ϵt ∼ N(0,Σ).

• (D2) AR(1): Let the components of {yt} be the part of p independent AR(1) process.

More precisely, yt = (y1,t, · · · yp,t)T , yi,t = ρyi,t−1 +
√

1− ρ2ϵi,t for 1 ≤ i ≤ p, ϵt =

(ϵ1,t, · · · , ϵp,t)T , and ϵt ∼ N(0,Σ) where ρ = 0.3.

• (D3) Latent ARCH(1): Let the components of {yt} be the part of p dimensional latent

ARCH(1) process. More precisely, yt = (y1,t, · · · yp,t)T , yt|zt = zt + ρϵt, zt|yt−1 ∼

N(0,Γ0 + Γ1 ◦ yt−1y
T
t−1), ϵt = (ϵ1,t, · · · , ϵp,t)T , and ϵt ∼ N(0,Σ) where Γ0 = Γ1 =

128−1Ip, ρ = 1− 128−1.

Motivated from the disucssion on learning the Gaussian graphical model using the scaled Lasso

in [52], we set the tuning parameter λ =
√

(2c log p)/n in (3.3.2) for each j where 0 < c < 0.5.

It has been known that the recovered graph is not sensitive to the choice of c in practice and we let

c = 0.25 in simulations.

3.5.2 Empirical Size

For each of the dependence structures above, we examined the sizes of the proposed tests. We

generated data from the following GMRFs as the null structures of tests in Section 3.2.

• (T1) Neighborhood: Let Ω be a GMRF with four nearest neighborhood where η = 0.15 in

(3.2.6). That is, EN4
is the support of Ω, and ηj,l are constant for all the pair in N4.

• (T2) Directional (Anisotropic): Let Ω be the precision matrix of directional dependence

structure with four nearest neighborhood where ηu = 0.15 and ηv = 0.1 in (3.2.7).
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– (T2a) Isotropic: Let Ω be the precision matrix of directional dependence structure with

four nearest neighborhood where η = 0.15 in (3.2.6).

• (T3) Distance: Let Ω be the precision matrix of the distance dependence structure where

η = −0.2 in (3.2.9).

• (T4) Approximated Matérn: Let Ω = (ωk,l)1≤k,l≤p be the dependence structure from [99]

with the range parameter, r = 2. More precisely, ωl,l = 40, ωl,l±1 = ωl±1,l = −12,

ωl±1,l±1 = 2, and ωl±2,l = ωl,l±2 = 1.

The empirical sizes of the proposed tests are controlled with respect to the nominal level in

all of the scenarios as displayed in Table 3.4. With our choice of the tuning parameter λ from the

procedure in Section 3.5.1, we observe that most of the empirical size in Table 3.4 were between

2.5% and 7.5%. The size are consistently controlled for all settings in (D1)–(D3), which provides

numerical evidences that the proposed method performs well with temporally dependent data.

3.5.3 Empirical Power

We next report the empirical powers of our procedure against different alternatives, including

the graph whose corresponding precision matrix has exponentially decaying off-diagonals and

therefore admits a bandable structure, a sparse GMRFs with small perturbations, and three nested

GMRF structures as follows.

• (A1) Exponential decay structure: Ωa = (ω∗
k,l)1≤k,l≤p is the exponential decay precision

matrix: ω∗
k,l = C · 0.4|k−l|1/3 where C = 1 for (T1)-(T3) and C = 40 for (T4).

• (A2) Sparse GMRF with perturbation: Ωa = (ωk,l)1≤k,l≤p = Ω0 + δΩ∗ where Ω0 is the

null structure, and δ = 0.075 for (T1)-(T3), and δ = 2 for (T4). Ω∗ = (ω∗
k,l)1≤k,l≤p is a sparse

GMRF as follows: Let τ =
√
4 log p, and Ω(1) = (ω

(1)
k,l )1≤k,l≤p. Diagonal elements ω1

k,k =

3τ/2. We randomly picked twenty non-diagonal elements, B20. For (k, l) ∈ B20, ω(1)
k,l =

ω
(1)
l,k ∼ Unif(τ/2, 3τ/2). Let λmin be the smallest eigenvalue of Ω(1). Ω∗ = (ω∗

k,l)1≤k,l,≤p,

ω∗
k,k = ω1

k,k −min(0, λmin), and ω∗
k,l = ω

(1)
k,l for k ̸= l.
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Table 3.4: The empirical size (%) of the tests (T1)-(T4) for assessing different GMRFs at the 5% nominal
level. T1, T2, T2a, T3, and T4 are neighborhood, anisotropic directional, isotropic, distance, approximated
Matérn structure defined in Section 3.2. D1, D2, and D3 are IID, AR(1), and latent ARCH(1).

Model n Grid Size T1 T2 T2a T3 T4

D1

200
10× 10 6.6 4.8 7.0 5.2 4.0
30× 20 4.4 5.0 5.4 5.0 3.6
50× 40 2.2 5.6 2.4 3.6 5.2

300
10× 10 5.0 4.8 5.2 5.6 3.4
30× 20 6.4 7.8 7.8 5.0 6.8
50× 40 3.2 3.2 5.6 3.6 4.2

500
10× 10 5.0 5.0 5.4 3.6 3.6
30× 20 4.4 6.6 3.8 5.0 3.6
50× 40 4.6 6.4 4.4 6.2 7.4

D2

200
10× 10 4.8 5.0 3.8 3.8 2.2
30× 20 4.6 3.0 3.0 3.0 3.2
50× 40 3.8 3.8 3.8 3.4 4.2

300
10× 10 4.4 4.0 5.0 5.4 3.4
30× 20 4.4 3.6 5.2 5.4 4.4
50× 40 7.0 5.6 6.0 3.0 7.6

500
10× 10 4.2 5.8 5.2 5.4 5.6
30× 20 4.8 3.8 5.2 2.6 3.2
50× 40 3.6 4.0 3.6 3.8 5.2

D3

200
10× 10 4.8 6.2 5.4 6.8 3.6
30× 20 6.4 8.2 6.6 5.6 7.8
50× 40 6.2 3.2 4.8 5.2 3.8

300
10× 10 4.8 6.8 5.6 8.2 6.0
30× 20 6.2 5.0 4.4 4.8 3.8
50× 40 3.0 4.2 4.2 3.6 3.8

500
10× 10 5.0 6.0 5.4 6.4 7.2
30× 20 5.6 5.2 5.4 5.6 3.4
50× 40 6.8 6.2 5.0 6.6 5.0
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• (A3) Four nearest vs Eight nearest neighborhood structures: We considered the four

nearest neighborhood structure N4 as the null. The data was generated by the eight nearest

neighborhood isotropic structure with η = 0.125.

• (A4) Eight nearest vs Twelve nearest neighborhood structures: We considered eight

nearest neighborhood as the null. The data was generated by twelve nearest neighborhood

isotropic structure with η = −0.125.

• (A5) Isotropic vs Anisotropic Directional: We set isotropic structure with four nearest

neighborhood as the null. The data was generated by an anisotropic directional GMRF with

ηu = −0.12 and ηv = 0.12.

Then, we applied the same tests in empirical size simulation for (A1) and (A2), the neighborhood

test for (A3) and (A4), and the isotropic test for (A5).

Notice that the dimensionality of the problem grows exponentially fast. For example, to exam-

ine whether ωi,j = 0 for ∀(i, j) /∈ SN4
, |SN4

| is 9540, 357100, and 3990180 for p = 100, 600, and

2000, respectively. However, as observed in Tables 3.5, 3.6, and 3.7, the empirical powers quickly

approach to 1 as the number of time points increase. Our procedure is therefore consistent against

sparse signals, which reflects the expected advantage of the L∞-type testing statistic.

The empirical powers are affected by the precision matrix structure. We observed this phe-

nomenon that one test was easier to detect specific structure than other tests. For instance, (A1)

structure had higher power for the distance test because of entries on the edges of regular grids;

ω1,2 = ω10,11 = 0.4 in 10 × 10 A1, but ω1,2 ̸= ω10,11 in a distance structured 10 × 10 GMRF.

However, the test has no significant power for (A2) structure than other tests.

We conclude the section with a discussion on for extra simulation studies for comparison of

two tests that one is nested to the other such as a four-nearest neighborhood test versus an eight-

nearest neighrobhod test on a twelve-nearest neighborhood dataset. From Table 3.7, we observed

(A4) has lower powers than (A3). It is worth noting that (A3) uses more entries ω̂j1.j2 than (A4)

to construct the test statistic (3.3.6). However, since we used different structures of dataset in the
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Table 3.5: The empirical power (%) of the tests (T1)-(T4) for data generated by (A1), exponential preci-
sion matrix, at the 5% nominal level. T1, T2, T2a, T3, and T4 are neighborhood, anisotropic directional,
isotropic, distance, approximated Matérn structure defined in Section 3.2. D1, D2, and D3 are IID, AR(1),
and latent ARCH(1).

Model n Grid Size T1 T2 T2a T3 T4

D1

200
10× 10 94.2 95.2 97.0 47.0 100.0
30× 20 38.0 36.6 64.8 34.4 100.0
50× 40 13.6 21.6 28.2 13.2 100.0

300
10× 10 100.0 100.0 100.0 70.8 100.0
30× 20 99.8 100.0 100.0 70.0 100.0
50× 40 89.8 83.4 98.4 66.4 92.4

500
10× 10 100.0 100.0 100.0 100.0 100.0
30× 20 100.0 100.0 100.0 100.0 100.0
50× 40 100.0 100.0 100.0 100.0 100.0

D2

200
10× 10 91.8 97.8 95.6 55.4 100.0
30× 20 85.2 61.2 64.2 38.2 43.6
50× 40 54.2 56.0 75.0 43.8 100.0

300
10× 10 100.0 100.0 100.0 84.4 100.0
30× 20 99.8 100.0 100.0 95.8 100.0
50× 40 100.0 99.8 100.0 75.6 82.2

500
10× 10 100.0 100.0 100.0 100.0 100.0
30× 20 100.0 100.0 100.0 100.0 100.0
50× 40 100.0 100.0 100.0 100.0 100.0

D3

200
10× 10 94.0 88.2 92.4 56.2 100.0
30× 20 44.8 55.8 74.4 29.8 86.8
50× 40 29.0 22.2 33.8 22.6 69.0

300
10× 10 100.0 100.0 100.0 79.0 100.0
30× 20 100.0 99.2 99.2 78.8 100.0
50× 40 95.6 96.2 98.6 66.2 100.0

500
10× 10 100.0 100.0 100.0 100.0 100.0
30× 20 100.0 100.0 100.0 100.0 100.0
50× 40 100.0 100.0 100.0 100.0 100.0
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Table 3.6: The empirical power (%) of the tests (T1)-(T4) for data generated by (A2), sparse GMRF with
perturbation, at the 5% nominal level. T1, T2, T2a, T3, and T4 are neighborhood, anisotropic directional,
isotropic, distance, approximated Matérn structure defined in Section 3.2. D1, D2, and D3 are IID, AR(1),
and latent ARCH(1).

Model n Grid Size T1 T2 T2a T3 T4

D1

200
10× 10 84.8 81.8 83.2 28.8 51.8
30× 20 73.2 67.2 76.8 11.2 34.2
50× 40 52.8 55.4 58.8 4.8 3.6

300
10× 10 99.8 99.6 99.8 55.4 92.4
30× 20 99.4 98.8 99.6 15.2 86.6
50× 40 98.6 98.0 99.2 7.8 71.0

500
10× 10 100.0 100.0 100.0 82.4 100.0
30× 20 100.0 100.0 100.0 40.6 100.0
50× 40 100.0 100.0 100.0 24.8 100.0

D2

200
10× 10 83.0 83.2 85.4 32.6 44.2
30× 20 78.6 72.0 73.6 10.4 18.8
50× 40 75.0 67.2 77.4 8.8 3.6

300
10× 10 99.6 99.6 98.4 54.6 88.8
30× 20 99.0 99.8 99.4 19.4 76.6
50× 40 100.0 99.0 99.2 9.0 47.6

500
10× 10 100.0 100.0 100.0 79.6 100.0
30× 20 100.0 100.0 100.0 41.2 100.0
50× 40 100.0 100.0 100.0 25.2 99.8

D3

200
10× 10 86.0 83.4 82.0 32.6 49.8
30× 20 73.8 70.2 72.2 9.8 100.0
50× 40 64.8 57.8 65.0 6.2 41.2

300
10× 10 99.6 99.0 99.8 53.8 55.2
30× 20 98.8 99.4 99.8 17.4 100.0
50× 40 98.0 98.0 99.0 7.8 77.0

500
10× 10 100.0 100.0 100.0 79.8 98.8
30× 20 100.0 100.0 100.0 38.8 100.0
50× 40 100.0 100.0 100.0 22.6 99.2
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Table 3.7: The empirical power (%) of the corresponding tests for data generated by (A3)-(A5) at the 5%
nominal level. (A3) is comparing four nearest neighborhood with eight nearest neighborhood, whereas (A4)
is comparing eight nearest neighborhood with twelve nearest neighborhood. (A5) is comparing anisotropic
directional with isotropic. D1, D2, and D3 are IID, AR(1), and latent ARCH(1).

Model n Grid Size A3 A4 A5

D1

200
10× 10 68.2 38.4 46.2
30× 20 76.6 18.0 30.2
50× 40 73.0 7.8 13.0

300
10× 10 93.2 68.8 80.4
30× 20 94.6 60.6 78.2
50× 40 96.2 38.8 62.6

500
10× 10 100.0 99.6 100.0
30× 20 100.0 99.8 100.0
50× 40 100.0 99.4 100.0

D2

200
10× 10 68.6 32.4 48.2
30× 20 68.6 47.8 28.8
50× 40 72.0 35.8 54.6

300
10× 10 91.8 68.6 83.8
30× 20 95.0 64.2 84.4
50× 40 98.8 82.6 82.4

500
10× 10 100.0 99.8 100.0
30× 20 100.0 99.8 100.0
50× 40 100.0 99.8 100.0

D3

200
10× 10 67.2 37.0 40.6
30× 20 66.0 21.0 33.0
50× 40 54.2 16.8 17.8

300
10× 10 92.4 71.2 79.8
30× 20 94.4 62.2 65.4
50× 40 94.2 51.8 61.2

500
10× 10 100.0 99.4 100.0
30× 20 100.0 99.6 100.0
50× 40 100.0 99.6 100.0
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settings of (A3) and (A4), the direct comparison of the two results is not meaningful. Nevertheless,

for the same dataset, testing twelve-nearest neighborhood would be easier to capture signals than

testing eight-nearest neighborhood since the latter is a nested structure of the former. To verify

this intuition, it would be interesting to study the power of the four-nearest neighborhood test on

twelve-nearest isotropic structured data by comparing the results from (A3) and (A4).
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Chapter 4

Learning Gaussian Graphical Model with Uniform

Performance via Distributional Robust Optimization

4.1 Introduction

The Gaussian graphical model is a convenient and powerful tool for studying network structure

among large number of variables. It has been used in various scientific applications including gene

network analysis, image analysis, and functional brain network analysis. Let G = (V,E) be an

undirected graph with vertices V and edges E, and each vertex corresponds to the each component

of a random vector. Two vertices vi and vj are connected by an edge (i, j) if and only if there is

a conditional dependence between the two random variables Xi and Xj given all other variables

of X. Meanwhile, the inverse of its covariance matrix, the precision matrix, is of great interest

in statistics. Let Ω be the precision matrix of a Gaussian random vector X = (X1, . . . , Xp) ∼

N(0,Ω−1), then Ω provides the graph structure of X. To be specific, for a Gaussian random

vector X, each entry of the precision matrix satisfies that ωij ̸= 0 if and only if there is an edge

between vi and vj . In high-dimensional setting (n ≪ p), various methods using ℓ1 penalty have

been proposed under sparsity conditions from pioneering works including the nodewise regression

method [35], Glasso [37–39], CLIME [40].

However, Gaussian graphical models rely on normality or sub-Gaussianity assumption in the-

ory. If a dataset violates the distributional assumptions, we encounter performance loss of statis-

tical procedures in some sense. For example, micro RNA or RNA-seq data do not follow normal

distributions, so gene network estimates from the data might have more false negatives or false

positives. A practical remedy is log-transformation, but it does not guarantee that the transformed

dataset follows a multivariate normal distribution. Besides, the data itself can be contaminated

in data processing. Non-Gaussian graphical approaches also rely on another distributional as-
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sumption, and it is not a remedy of the contamination. In practice, we do not know the type of

contamination and how much the data is deviated from the distributional assumption.

If a procedure can endure distributional assumption violation than other methods, we can call

the procedure is robust. This idea is from [1, 3], which is called distributional robustness. It

studies the case where the true underlying distribution is slightly different from the distributional

assumption. It would be quantified by a discrepancy measure or distance between two distribu-

tions. From the concept of robustness, statisticians have tackled various contamination models to

consider small distributional perturbation. The most popular choice is Huber’s ϵ-contamination

model [1]. Statisticians also consider the deviation of estimators to study another type of robust-

ness, called tail-robustness, even the underlying distribution has finite small order moments [8, 9].

Recently, statistical learning and machine learning communities consider various model setups

such as adversarial contamination settings [21, 125–127] and covariate shifts [15, 128, 129].

In the past years, several precision matrix estimation methods have been proposed to weaken

normality assumption or to achieve robustness under various settings. [59–61] proposed robust

precision matrix estimators under cellwise contamination by the combination of robust covariance

matrix estimators and standard high dimensional precision matrix estimation procedures. [46, 58]

proposed estimators for Gaussian copula using nonparanormal transformation so that the trans-

formed random vector follows a multivariate normal distribution. [130] proposed robust precision

matrix estimators under the finite (2 + ϵ)th moments assumption for ϵ ∈ (0, 2) rather than sub-

Gaussianity assumption. [131] extended CLIME to transfer learning by combining information

from auxiliary studies—these samples are independently drawn from slightly different distribu-

tions of the target study—to improve the performance of estimation and prediction.

Precision matrix estimations with different penalty term have been studied. Lasso provides

sparsity of estimates from the ℓ1 penalty geometry, but it is difficult to capture highly correlated

variables. On the other hand, ridge penalty provides a closed form like ridge regressions and re-

duces variance of estimator, whereas it does not provide sparsity. There are a few studies on the

graphical ridge estimator for precision matrix when sparsity is not required [132, 133]. Elastic
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net type penalties motivated by elastic net regression [134] have also considered to obtain sparsity

of the estimator and capture the highly correlated variables together. To the best of our knowl-

edge, [135] was the first attempt to use the elastic net penalty for exponential family Markov

Random Field (MRF) estimation. For Gaussian MRF, they used the original elastic net regression

for nodewise regression. Recently, [136, 137] considered methods called graphical elastic net, but

their motivations are not from distributionally robustness.

Distributionally robust optimization aims to find the minimizer of the worst-case expected loss

with an ambiguity set or uncertainty set of probability distributions or parameters, denoted by U :

θ̂ = argmin
θ

sup
P∈U

EPℓ(θ;X) (4.1.1)

for some function ℓ(·). (4.1.1) is often computationally intractable, but there exists an equivalent

or asymptotic equivalent tractable dual formulation under mild conditions. The dual form is often

a well-known problems in statistics with extra regularization term. For example, distributionally

robust linear regression with Wasserstein ball is equivalent to penalized linear regressions [17,

20]. Distributionally robust square-root Lasso problem with an ambiguity set defined by ℓ2 ball

to constrain the sketch of data matrix, a low-rank approximation of data matrix, is equivalent to

square-root elastic net [138]. In the past decade, there are several papers combining methods in

classical statistics or statistical learning with distributionally robust optimization. For regressions,

[15] considered distributionally robust linear regression with least square loss under covariate shift

scenario. [16] studied distributionally logistic regressions with Wasserstein ball. [17, 20] provided

properties of distributionally robust regressions. It is worth noting that the dual formulation of

(4.1.1) depends on the ambiguity set U , which is to consider all distributions that are slightly

different to a specific distribution. The popular choices of probability metrics for ambiguity sets

include Wasserstein distance [16, 17, 20], f -divergence [19, 28, 139], and Lp norm [138]. In this

paper, we consider Wasserstein-2 distance defined by Euclidean norm, which is used for both

statistical procedures and distributionally robust optimization [32, 140].
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We propose a graph estimation method named DRAGON (Distributionally Robust grAph es-

timation via nodewise reGressiON) that aims to be robust against certain amount of distributional

perturbation of the data. To this end, we employ distributionally robust regressions on Gaussian

graph estimation using nodewise regression. Nodewise regression idea allows us to detour compu-

tation burden of p×pmatrix optimization problem by solving p parallel sparse regression problems.

Our distributionally robust regression formulation is equivalent to a square-root regression with a

strictly convex penalty, which is related to square-root elastic net.

The rest of the paper proceeds as follows. In Section 4.2, we revisit graph and precision matrix

estimation methods by nodewise regression, and introduce our method based on the distributionally

robust regression. Especially, we revisit a computationally tractable dual form of distributinally ro-

bust regression. Section 4.3 is devoted to simulation studies. We provide the proofs and additional

numerical analysis in the supporting information.

4.2 Method

4.2.1 Background

We first define some notation and introduce Gaussian graph and precision matrix estimation

via nodewise regression. For a vector v = (v1, . . . , vd) ∈ Rd, we define a vector norm ∥v∥q =

(
∑d

i=1 v
q
i )

1/q for q ∈ [1,∞) and ∥v∥∞ = max1≤i≤d |vi|. For a matrix A, we define ∥A∥q =

sup∥u∥q=1 ∥Au∥q and ∥A∥F = (
∑

i,j a
2
ij)

1/2. We denote the trace of A by Tr(A). We denote a

data matrix by X ∈ Rn×p and its column vectors by Xj = (X1j, . . . , Xnj) ∈ Rn for j = 1, . . . , p.

We denote a submatrix of X without the jth column by X−j . We denote the ith row vector of X−j

by Xi,−j = (Xi,1, . . . , Xi,j−1, Xi,j+1, . . . , Xi,p) ∈ Rp−1. For an index set A, we denote a submatrix

of X without the jth columns for j ∈ A by X−A. We denote the subvector of βj except βj,k by

βj,−k. We use X
d
=Y when X and Y have the same distribution.

Nodewise regression method proposed by [35] is to estimate the neighborhood set of a vertice

vi in high-dimensional setting, {vk ∈ V : β̂jk ̸= 0, k ̸= j}, where β̂jk is estimated by ℓ1-penalized

linear regression
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β̂j = (β̂j,1, . . . , β̂j,j−1, β̂j,j+1, . . . , β̂j,p)
T

= argmin
β∈Rp−1

(
1

n

n∑

i=1

(Xij −XT

i,−jβ)
2 + λ∥β∥1

)

= argmin
β∈Rp−1,∥β∥1≤c

(
1

n

n∑

i=1

(Xij −XT

i,−jβ)
2

)
,

(4.2.1)

for some c ≥ 0 and λ ≥ 0 where Xi ∈ Rp is a random sample from a normally distributed random

vector X ∼ N(0,Ω−1). An intuitive explanation on the nodewise regression is that the linear

regression estimator provides information on conditional dependence between predictor variables

and the response variable, and the graphical models aim to capture the conditional dependence

among edges. Thus, if β̂jk ̸= 0, there is a conditional dependence between Xj and Xk given

X−{j,k}.

We can apply another regression method for estimating Gaussian graphs or precision matri-

ces. [50] and [102] considered square-root Lasso [141] in the nodewise regression approach for

Gaussian graph estimation:

β̂j = argmin
β∈Rp−1





(
1

n

n∑

i=1

(Xij −XT

i,−jβ)
2

)1/2

+ λ∥β∥1



 , (4.2.2)

for some λ ≥ 0. One advantage of the nodewise regression with square-root Lasso is its asymptot-

ically tuning-free property, which inherits the property of square-root Lasso. This reduces compu-

tation burdens from cross-validation.

To estimate the precision matrix from p nodewise regression results, the block matrix inversion

formula is used [142]. Let σ̂2
j = n−1

∑n
i=1(Xij − Xi,−jβ̂j)

2. Then, the preliminary estimate

Ω̃ = {ω̃jk}1≤j,k≤p is defined by

ω̃jj = σ̂−2
j , Ω̃−j,j = −σ̂−2

j β̂j. (4.2.3)
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for j = 1, . . . , p. Following that, we symmetrize the preliminary estimate to obtain the final

estimate Ω̂. In this paper, we use the symmetrized matrix Ω̂ = {ω̂jk}1≤j,k,≤p where ω̂jk =

ω̃jkI(|ω̃jk| ≤ |ω̃kj|) + ω̃kjI(|ω̃jk| > |ω̃kj|) proposed by [40].

4.2.2 Wasserstein distance and distributional perturbation

Wasserstein distance is originated from optimal transport theory starting from late 18th cen-

tury [25]. Wasserstein distance have received much attention in optimization, statistics, and deep

learning communities. One of its famous application is Wasserstein generative adversarial net-

work [143]. We refer to [140] for a review of Wasserstein distance in statistics.

In this paper, we consider Wasserstein-2 distance with Euclidean norm d(x, y) = ∥x− y∥2.

Definition 4.2.1 (Wasserstein-2 Distance with Euclidean norm). For the Euclidean norm ∥ · ∥2 on

Rp, Wasserstein-2 distance is defined by

W2(P,Q) :=

[
inf

π∈Π(P,Q)
E(X,Y )∼π∥X−Y∥22

]1/2
(4.2.4)

where Π(P,Q) denote the set of all joint distributions π(X, Y ) whose marginal distributions are P

and Q, respectively.

Throughout this paper, we call (4.2.4) Wasserstein-2 distance for convenience. Quantifying

the distributional perturbation by Wasserstein-2 distance is the next question. To this end, we

consider examples that provide bounds of Wasserstein distance between the true distribution and

the perturbed distributions to quantify the distributional perturbation under various scenarios. We

first introduce the closed form of Wasserstein-2 distance with Euclidean norm between two normal

distributions.

Proposition 4.2.1 (Proposition 7 in [144]). The Wasserstein-2 distance with Euclidean norm in

Definition 4.2.1 between two multivariate normal distributions P1 ∼ N(µ1,Σ1) and P2 ∼ N(µ2,Σ2)

satisfies

W 2
2 (P1,P2) = ∥µ1 − µ2∥22 + Tr

{
Σ1 +Σ2 − 2

(
Σ

1/2
2 Σ1Σ

1/2
2

)1/2}
, (4.2.5)
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where Σ1 and Σ are non-singular matrices.

It is worth noting that Wasserstein-2 distance between two elliptical distributions with the same

density generator has the same closed form [145]. Also, this closed form serves as a lower bound

of the Wasserstein-2 distance [146], which is often called Gelbrich bound.

Proposition 4.2.2 ( [146]). Consider Wasserstein-2 distance with Euclidean norm in Definition

4.2.1. Suppose P1 and P2 are distributions with mean vectors µ1,µ2 ∈ Rp and invertible covari-

ance matrices Σ1,Σ2, respectively. Then, it holds that

W 2
2 (P1,P2) ≥ ∥µ1 − µ2∥22 + Tr

{
Σ1 +Σ2 − 2

(
Σ

1/2
2 Σ1Σ

1/2
2

)1/2}
. (4.2.6)

The equality holds when P1 and P2 are elliptical distributions the same density generator.

Throughout this paper, we consider µ1 = µ2 = 0 for simplicity, so we can use simpler form

of (4.2.5) and (4.2.6). It is natural to think that Wasserstein distance depends on the contamination

level α under a specific contamination model. With Propositions 4.2.1 and 4.2.2, we check the

bounds for Wasserstein distance from a distribution under selected settings. With these building

blocks, we check the bound for the rowwise contamination setting, which is a generalized version

of Huber’s ϵ-contamination model [1].

Example 4.2.1 (Rowwise contamination with a normal contaminant). Consider X ∼ N(0,ΣX)

and Y ∼ N(0,ΣY ) in Rp where X and Y are independent. Let W = (1 − ϵ)X + ϵY where

ϵ ∼ Bernoulli(α), and ϵ is independent of X and Y.

By Gelbrich bound, it holds that

W 2
2 (X,W) ≥ Tr {ΣX + (1− α)ΣX + αΣY }

− 2Tr

[[
Σ

1/2
X {(1− α)ΣX + αΣY }Σ1/2

X

]1/2]

= Tr {(2− α)ΣX + αΣY }

− 2Tr

[{
(1− α)Σ2

X + αΣ
1/2
X ΣYΣ

1/2
X

}1/2
]
.

(4.2.7)
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By the definition of Wasserstein-2 distance, it holds that

W 2
2 (X,W) := inf

Π(X,W)
E∥X−W∥22 ≤ E∥X−W∥22 = αTr(ΣX +ΣY ). (4.2.8)

where Π(X,W) denotes the set of joint probability distributions whose marginal distributions are

X and W.

Combining (4.2.7) with (4.2.8), we have

Tr

[
(2− α)ΣX + αΣY − 2

[
(1− α)Σ2

X + αΣ
1/2
X ΣYΣ

1/2
X

]1/2]

≤ W 2
2 (X,W) ≤ αTr(ΣX +ΣY ),

(4.2.9)

which provides a rough bound.

In Example 4.2.1, we considered a normal contaminant with zero mean. If the contaminant

does not follow multivariate normal distribution, the bound changes since the result above relies

on ∥X∥22
d
=
∑p

j=1 λXjZ
2
j where λXj is the jth largest eigenvalue of ΣX for j = 1, . . . , p.

Using the same argument, we can obtain a bound for the cellwise contamination model [6].

Example 4.2.2 (Cellwise contamination with a normal contaminant). Consider X ∼ N(0,ΣX)

and Y ∼ N(0,ΣY ) in Rp where X and Y are independent. Let X1, . . . ,Xn are i.i.d. sample from

X, and Y1, . . . ,Yn are i.i.d. sample from Y.

Let Wi = (I − Di)Xi + DiYi where Di = diag(di1, . . . , din) is a diagonal matrix, and

dik ∼ Bernoulli(αk) for k = 1, . . . , n, and {dik}nk=1 are independent of X and Y. Let A =

diag(α1, . . . , αn) be a diagonal matrix. We compute Wassderstein-2 distance between X and Wi.

Using the same argument as Example 4.2.1 with careful algebra, we have

Tr

[
(2I−A)ΣX +AΣY − 2

[
Σ

1/2
X {(I−A)ΣX +AΣY }Σ1/2

X

]1/2]

≤ W 2
2 (X,W) ≤ Tr{A(ΣX +ΣY )}.

(4.2.10)

71



It is worth noting that both the rowwise contamination and the cellwise contamination models are

special case of the contamination model considered in [6] when di1 = · · · = din and ,dik are fully

independent, respectively. We can also derive (4.2.9) from (4.2.10) when α1 = · · · = αn = α.

From Examples 4.2.1 and 4.2.2, we observe the contamination levels affects the bound for

Wasserstein-2 distance. For the rowwise and cellwise contamination models, the upper bound

of Wasserstein-2 distance increases as the contamination level increases. The lower bound also

depends on the contamination level.

4.2.3 Wasserstein distributionally robust regression

Before introducing our method, we discuss the regression formulation motivated from Wasser-

stein distributionally robust regression. For the data matrix X ∈ Rn×p, we consider a regression

where jth column Xj as a response variable and the sub-matrix except jth column, X−j , as predic-

tor variables. The goal of distributionally robust regression is to obtain an estimate that minimizes

worst-case loss among distributions in an uncertainty set.

For a Wasserstein-2 ball centered at the empirical distribution P̂ with radius ρ, it follows from

the proof of Proposition 2 in [20] when q = 2 and δ = ρ2.

Proposition 4.2.3 (Corollary of Proposition 2 in [20]). Consider the least square loss, ℓ(x;βj) =

(xj − xT

−jβ)
2, and c(x,x′) = ∥x− x′∥22. Then, it holds that

sup
X∼Q,Q∈Bρ(P̂)

EQ

(
Xj −X−jβj

)2
=
(
n−1/2∥Xj −X−jβj∥2 + ρ∥(1,−βj)∥2

)2
. (4.2.11)

That is, we can interpret the worst-case risk among the distributions inBρ(P̂) by the empirical risk

plus extra term depending on ρ.

Using (4.2.11), we can derive a computationally tractable dual form of distributionally robust

linear regression. We consider the distributionally robust formulation of Lasso regression [36]:

β̂j = argmin
β∈Rp−1

{
λ∥βj∥1 + sup

X∼Q,Q∈Bρ(P̂)

EQ

(
Xj −X−jβj

)2
}
. (4.2.12)
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Figure 4.1: Geometries of penalty terms in R2.

Plugging (4.2.11) into (4.2.12), we obtain

β̂j = argmin
βj∈R

p−1

{(
n−1/2∥Xj −X−jβj∥2 + ρ∥(1,−βj)∥2

)2
+ λ∥βj∥1

}

= argmin
βj∈R

p−1

{n−1∥Xj −X−jβj∥22 + ρ2∥(1,−βj)∥22 + λ∥βj∥1

+ 2n−1/2ρ∥Xj −X−jβj∥2∥(1,−βj)∥2}.

(4.2.13)

It is worth noting that (4.2.13) is the same as LASSO (4.2.1) when ρ→ 0.

Although (4.2.12) is a distributionally robust version of standard Lasso, its dual form (4.2.13)

is not straightforward to interpret due to ∥Xj −X−kβj∥2∥(1,−βj)∥2 term. Without this term, it

looks similar to the elastic net [134], but they are not exactly the same. For this reason, we consider

another regression formulation for given ρ, which is related to (4.2.13) and easier to interpret.

β̂j = argmin
βj∈R

p−1

{
n−1/2∥Xj −X−jβj∥2 + λ∥βj∥1 + ρ∥(1,−βj)∥2

}
, (4.2.14)

which is similar to “square-root" elastic net since ∥(1,−βj)∥2 has similar geometry to ∥β∥22 around

0 and ∥β∥2 otherwise. Figure 4.1 displays geometry of the penalty term in (4.2.14). The term

λ∥β∥1 + ρ∥(1,−βj)∥2 looks similar to the elastic net penalty, so it would provide similar advan-

tages of the elastic net. We present the relationships between (4.2.13) and (4.2.14).
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Proposition 4.2.4. Given ρ ≥ 0, the two optimization problems (4.2.13) and (4.2.14) are related

to each other. Specifically, let λ and λ′ be the tuning parameters of (4.2.13) and (4.2.14). Denote

a common solution of the two optimization problems by β̂j , then it holds that λ′ = {n−1/2∥Xj −

X−jβ̂j∥2 + ρ∥(1,−β̂j)∥2}−1λ.

Interestingly, we observe that (4.2.14) is equivalent to the following distributionally robust

regression form by (4.2.11):

β̂ = argmin
β∈Rp−1

[
λ∥β∥1 + sup

X∼Q,Q∈Bρ(P̂)

{
EQ (Xj −X−jβ)

2}1/2
]
, (4.2.15)

which is the distributionally robust version of square-root Lasso [141]:

β̂ := argmin
β∈Rp−1



{
1

n

n∑

i=1

(Xij −XT

i,−jβ)
2

}1/2

+ λ∥β∥1


 . (4.2.16)

The difference between (4.2.14) and square-root elastic net formulation [138, 147] is that we use

∥(1,−β)∥2 = (1 + ∥β∥22)1/2 rather than ℓ2 norm ∥β∥2. This allows us to utilize the radius of

Wasserstein-2 ball ρ directly in the formulation, so it is straightforward to understand the role

of ρ. In addition to this, [138] aims to speed-up square-root Lasso using the robust sketching

of the matrix of predictor variables where the sketch is constrained by ℓ2 norm of the difference

between the original data and its sketch. On the other hand, we consider a Wasserstein-2 ball

for the ambiguity set. [147] used the penalty term as a convex combination of ∥β∥1 and ∥β∥2,

λ{(1 − α)∥β∥2 + α∥β∥1} for α ∈ [0, 1], and we use ℓ1 norm as a penalty term to obtain sparsity

of estimate and have ρ∥(1,−β̂j)∥2 term as a part of worst-case risk.

Remark 4.2.1. The ℓ2 penalty term ∥(1,−βj)∥2 can be reformulated by ∥β∥22 since

∥(1,−βj)∥2 = ∥(1,−βj)∥−1
2 (1 + ∥β∥22).

Therefore, (4.2.14) is related to square-root elastic net like problems:

74



β̂j = argmin
β∈Rp−1

{
n−1/2∥Xj −X−jβj∥2 + λ∥β∥1 + ρ′∥β∥2

}
, (4.2.17)

β̂j = argmin
β∈Rp−1

{
n−1/2∥Xj −X−jβj∥2 + λ∥β∥1 +

ρ′′

2
∥β∥22

}
, (4.2.18)

for some ρ′ ≥ 0 and ρ′′ ≥ 0.

From Propositions 4.2.4, these optimization problems are related. The rest of the paper con-

siders (4.2.14) to emphasize the radius of the ambiguity set in the optimization problem. It is also

easier to understand.

To obtain intuition, we consider toy examples to study the rule of λ and ρ. First, we provide an

example for bivariate normal vector to illustrate the properties of ρ in (4.2.14) with λ = 0.

Example 4.2.3. Considering a bivariate random vector (X1, X2) ∼ N(0,Σ) where var(X1) = 1,

var(X2) = 1, and cov(X1, X2) = r. For β ∈ R, β∗ = r is the minimizer of E{(X1 −X2β)
2} =

(1 − r2) + (β − r)2. Consider the ridge regression with the ridge penalty term ρ∥β∥22 = ρβ2.

βridge = r/(1+ ρ) is the minimizer of E{(X1−X2β)
2}+ ρβ2. This shows the shrinkage property

of ridge regression. Similarly, the optimization problem

argmin
β

[E{(X1 −X2β)
2}]1/2 + ρ(1 + β2)1/2 (4.2.19)

has no simple closed form as ridge regression, but we observe the shrinkage property due to

ρ∥(1,−β)∥2 in (4.2.14). Let β∗,ρ be the minimizer of (4.2.19). For large ρ or r ̸= 0 with small

magnitude, the solution β∗,ρ is close to r/(1 + ρ).

We investigate the role of ρ in this example. The next two Lemmas reveal that ρ provides

shrinkage of the regression estimator, which is similar to the ridge regression. We first study a

population version of optimization problem.

Lemma 4.2.3.1. Under the setting in Example 4.2.3, the solution of (4.2.19), denoted by β∗,ρ =

β∗(ρ, r), satisfies (i) sgn(β∗,ρ) = sgn(r); (ii) 0 ≤ |β∗,ρ| ≤ |r|, β∗,ρ = r only if ρ = 0, and β∗,ρ = 0
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only if r = 0; (iii) β∗,1 = r−1{1 − (1 − r2)1/2} when r ̸= 0; (iv) sgn(∂β∗,ρ/∂ρ) = − sgn(β∗,ρ),

that is, ρ provides shrinkage on β∗,ρ; (v) As ρ→ ∞, β∗,ρ → 0.

Following that, we consider the empirical version of (4.2.19). We observe a similar behavior

from ρ.

Lemma 4.2.3.2. Assuming we draw n random samples from N(0,Σ) in the setting of Exam-

ple 4.2.3, the solution of the optimization problem,

argmin
β

{
1

n

n∑

i=1

(X1i −X2iβ)
2

}1/2

+ ρ(1 + β2)1/2. (4.2.20)

denoted by β̂ρ, satisfies (i) β̂0 = β̂OLS := (n−1
∑n

i=1X
2
2i)

−1(n−1
∑n

i=1X1iX2i); (ii) 0 ≤ |β̂ρ| ≤

|β̂0|; (iii) sgn(∂β̂ρ/∂ρ) = − sgn(β̂ρ); (iv) As ρ→ ∞, β̂ρ → 0.

From Example 4.2.3, we observe that ρ provides shrinkage on nodewise regression in the bi-

variate example. The next result provides a generalized result for higher dimensional.

Proposition 4.2.5. Consider the optimization problem (4.2.14). For given λ, the solution of this

problem satisfies the following properties:

i) If β̂j,k ̸= 0, then sgn(∂β̂j,k/∂ρ) = − sgn(β̂j,k),

ii) As ρ→ ∞, β̂j → 0.

In the following example, we investigate the behavior of β̂ by different λ and ρ value from

independently generated design matrix X.

Example 4.2.4. We generate Xij ∼ N(0, 1) for i = 1, . . . , 100, j = 1, . . . , 150 and ϵi ∼ N(0, 1).

We obtain Yi = XT

i β + ϵi where

β = (1, 1, 1, 0.5, 0.5,−1,−1,−1,−0.5,−0.5, 0, 0, . . . , 0) ∈ R150.

Figure 4.2 displays the solution paths from (4.2.14) when we replace Xj and X−j by Y and X,

respectively. The solution paths of (4.2.14) show knowledge on ℓ1 and ℓ2 penalty parameters on
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(c) ρ = 1

Figure 4.2: Solution paths of the optimization problem (4.2.14) by λ and ρ.

the elastic net are applicable. As λ increases, the estimate is getting sparse. On the other hand, as

ρ increases, we observe shrinkage of estimates.

Another characteristic of elastic net is to capture highly correlated variables simultaneously.

We observe the that (4.2.14) can handle grouping effect like elastic net.

Example 4.2.5. With the sample size n = 100, we consider two settings forZ1, Z2, ϵ, ξ1, ξ2, . . . , ξ6:

i) All of them are generated from N(0, 1) [148];

ii) ϵ ∼ t3, and the rest of them are generated from N(0, 1);

To generate highly correlated variables, we obtain Xj = Z1+ ξj/5 for j = 1, 2, 3, Xj = Z2+ ξj/5

for j = 4, 5, 6, and Y = 3Z1 − 1.5Z2 + 2ϵ. In addition to this two settings, we consider one more

setting:

iii) All of them are generated from N(0, 1) as i), and obtain X1, . . . , X6, Y as the above. Then,

we add random noises generated from N(0, 0.2) to X1i, . . . , X6i, Yi for i = 1, . . . , 20.

We fit the linear model Y against Xj for j = 1, . . . , 6 with no intercept. Figure 4.3 displays the

solution paths of Lasso, elastic net with α = 0.3, and (4.2.14) with ρ = 0.5. We observe that the

estimate from (4.2.14) captures the group structure of highly correlated predictor variables.
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Figure 4.3: Solution paths of Lasso (left), Elastic net with α = 0.3 (middle), (4.2.14) with ρ = 0.5 (right)
for highly correlated predictor variables. We generate (a) Xk, ξk for k = 1, . . . , 6, Z1, Z2, and ϵ from
N(0, 1) as (4.1) from [148], (b) generate ϵ ∼ t3 and others are from N(0, 1), (c) generate contaminated
(X, Y ) by adding N(0, 0.2) noise on 20% of (X,Y ) from (a).
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4.2.4 DRAGON for precision matrix estimation

For Gaussian sparse graphs in high-dimensional setting, we assume P ∼ N(0,Ω−1) whose

precision matrix is sparse. We want to construct a robust graph estimator against distributional

perturbation in Wasserstein-2 ball around P̂ with a few restrictions. To acquire the sparsity in

high-dimensional Gaussian graphs theory and make the optimization problem be convex, we use

an ℓ1-regularization term ∥βj∥1. To this end, we consider (4.2.14) for each column, which is the

Wasserstein distributionally robust regression version of (4.2.16):

β̂j = argmin
β∈Rp−1

[
λ∥β∥1 + sup

X∼Q,Q∈Bρ(P̂)

{
EQ (Xj −X−jβ)

2}1/2
]

= argmin
β∈Rp−1

{
n−1/2∥Xj −X−jβ∥2 + λ∥β∥1 + ρ∥(1,−β)∥2

}
,

(4.2.21)

for j = 1, . . . , p where Bρ(P̂) = {Q : W2(Q, P̂) ≤ ρ}, a Wasserstein-2 ball with radius ρ centered

at the empirical distribution P̂.

To solve (4.2.14) numerically, we introduce iterating equations for DRAGON. Similar to the

relationship between the scaled Lasso [53] and the square-root Lasso [141], (4.2.14) has the fol-

lowing equivalent form: For j = 1, . . . , p,

β̂j = argmin
β∈Rp−1

{∥Xj −X−jβ∥22
2nσj

+
σj
2

+ λ∥β∥1 + ρ∥(1,−β)∥2
}
, (4.2.22)

where σ2
j = n−1∥Xj −X−jβ∥22. With a careful algebra, we have the following algorithm based on

iterating equations: We set the initial values β(0)
j = 0 and (σ2

j )
(0) = n−1∥Xj∥22 in the implemen-

tation, but we could use an estimate from other methods or algorithms as an initial value for warm

start. For a selected λ > 0 and given ρ ≥ 0,

β
(t)
j,k =

1

d
(t−1/2)
jk

Sλ

(
1

nσ
(t−1)
j

⟨Xk, r
(t−1/2)
jk ⟩

)
, k ̸= j

σ
(t)
j = n−1/2∥Xj −X−jβ

(t)
j ∥2

(4.2.23)
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where

d
(t−1/2)
jk :=

∥Xk∥22
nσ

(t−1)
j

+
ρ

∥(1,−β
(t−1)
j )∥2

,

r
(t−1/2)
jk := Xj −

k−1∑

l=1,l ̸=j

β
(t)
j,l Xl −

p∑

l=k+1,l ̸=j

β
(t−1)
j,l Xl,

and Sλ(·) is the soft-thresholding operator, and r
(t−1/2)
jk is a partial residual vector. It seems that

d
(t−1/2)
j term provides shrinkage when ρ > 0. We provide derivation details in Appendix B.1.

From (4.2.23), we deduce properties of β̂j regarding λ and ρ. The solution of jth regression

β̂j satisfies

β̂j,k =

(
∥Xk∥22
n

+
ρσ̂j

∥(1,−β̂j)∥2

)−1

Sλσ̂j

(
1

n
⟨Xk, rjk⟩

)
, k ̸= j.

where σ̂j = n−1/2∥Xj − X−jβ̂j∥2 and rjk = Xj −
∑p

l∈{j,k} β̂j,lXl is a partial residual. First,

λ provides selection of non-zero coefficients in β̂j that is apparent from the soft-thresholding

operator. Second, ρ provides shrinkage of β̂ as ρ increases.

In our implementation, we use Rcpp [149] and RcppArmadillo [150] for speeding-up and

ease of implementation since the algorithm requires multiple levels of loop and matrix-vector op-

erations. We also store constant values to reduce computation time further. For example, we store

G = XTX = {gj,k}1≤j,k≤p outside of the loop since ∥Xj∥2 = gj,j and ⟨Xk,Xj − X−jβ⟩ =

gk,j − gT

k,−jβ are used in every iteration to update βj,k in level 3 loop. We check the relative error

of β, ∥β(t)
j − β

(t−1)
j ∥2/∥β(t−1)

j ∥2, for the convergence criterion. We use 10−6 as the default value

of the tolerance, and users can change it if needed.

There are a couple of algorithms related to the implementation of DRAGON. [102] provides the

relationship between the scaled Lasso and square-root Lasso, which is a key to reduce computation

time for square-root like optimization problem. They use standardized data for p regressions. [147]

provide an algorithm for the scaled elastic net and square-root elastic net. They also used the

cyclic coordinate descent with iterating equations to update each component of β, but they only
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considered the convex combination of ∥β∥1 and ∥β∥2 for the penalty term in their square-root

elastic net formulation.

4.3 Simulation Studies

We conduct simulation studies to compare the computation speed and the estimation perfor-

mance of the proposed procedure with competing methods. We compare the proposed methods

with the following methods: i) Glasso [37–39]; ii) CLIME [40]; iii) TIGER [102]; iv) non-

paranormal graph estimator (npn) proposed by [58]; and v) the robust precision matrix estima-

tor (LT) proposed by [61]. For implementation, DRAGON implementation relies on Rcpp and

RcppArmadillo. We also use the following R packages: huge [46] for TIGER and the non-

paranormal transformation step of npn, fastclime [44] for CLIME, and glassoFast [42,43]

for Glasso, npn, and LT.

4.3.1 Simulation setting

We consider three precision matrix structures for the first stage of data generation procedure

taken from [137]. Construct the precision matrix by Ω = DΩ̃D where Ω̃ = {ω̃j,k}1≤j,k≤p and D

is a diagonal matrix with elements dj,j:

1. Model 1 (Banded) Set ω̃j,j = 1, ω̃j,j+1 = ω̃j+1,j = 0.6, ω̃j,j+2 = ω̃j+2,j = 0.3, ω̃j,k = 0 for

|j − k| ≥ 3. Generate dj,j ∼ uniform(1, 5).

2. Model 2 (Block diagonal) Set a block diagonal matrix with block size p/10 such that the

diagonal entries are 1 and the off-diagonal entries are 0.5, then we permute the matrix by

rows/columns to get Ω̃. We use dj,j = 1 for j = 1, . . . , p/2 and dj,j = 1.5 for j =

p/2 + 1, . . . , p to obtain the final product Ω.

3. Model 3 (Erdös-Rényi) Generate Ω̃ = {ω̃jk}1≤j,k≤p ω̃1,jj = 1, ω̃1,jk = δjkujk for j < k

where δjk ∼ Ber(0.05) and ujk ∼ uniform(0.4, 0.8), and ω̃1,kj = ω̃1,jk. Generate dj,j ∼
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(a) Banded (b) Erdös-Rényi (c) Block-diagonal

(d) Banded (e) Erdös-Rényi (f) Block-diagonal

Figure 4.4: For p = 100, an illustration of the heatmaps of precision matrices and graph structures from the
simulation settings. Darker blue color cells in the heatmap implies that the element of the precision matrix
has larger magnitude.

uniform(1, 5). Then set Ω = D{Ω̃+ (|λmin(Ω̃)|+ 0.05)I}D where λmin(·) is the smallest

eigenvalue of the matrix.

We consider three distributional perturbation scenarios on the data generation. We consider

(n, p) ∈ {(100, 150), (200, 150), (200, 300)}. For each pair of (n, p), (i) Row-wise contamination-

We Generate n1 = ⌈n × (1 − α)⌉ samples from N(0,Ω−1) where Ω is the precision matrix

specified above and α ∈ {0.1, 0.2, 0.3}. Then, we generate n − n1 samples from the multivariate

t3-distribution with the true precision matrix Ω; (ii) Cell-wise contamination- Generate n samples

from N(0,Ω−1). We randomly select αnp indices to add cell-wise contaminants drawn from

N(0, 1) where 1 ≤ i ≤ n, 1 ≤ j ≤ p, and α ∈ {0.1, 0.2, 0.3}; (iii) Tail deviation; we draw n

samples from the multivariate t3-distribution to have its true precision matrix be Ω.

82



Table 4.1: Average timing performance (in milliseconds) with standard errors in parentheses for a single fit
with n = 100 and λ = 0.75(n−1 log p)1/2 on the banded structured true precision matrix.

Method Implementation p = 100 p = 200
DRAGON RcppArmadillo 16.61 (2.66) 94.30 (6.48)
CLIME C++ 678.98 (22.63) 2707.05 (149.38)
Glasso FORTRAN 2.54 (0.38) 9.50 (1.38)
LT FORTRAN + R 296.34 (8.86) 1170.33 (69.43)
npn FORTRAN + R 95.14 (8.27) 100.93 (4.52)
TIGER RcppEigen 371.43 (20.18) 390.42 (21.67)

4.3.2 Computation speed

We compare the timing performance of DRAGON for sparse precision matrix estimation with

the competing methods. We set n = 100 and p = {100, 200}. We focus on banded graph structure,

Model 1 in Section 4.3.1, using a fixed λ = 0.75(n−1 log p)1/2 and ρ = 1 without tuning parameter

selection step. All comparisons are made on a computer with MacBook Pro 2019, 1.4 GHz Quad-

core Intel Core i5 and 8GB RAM on R version 4.0.5. We use single thread to run the experiment.

Our implementation for DRAGON is built on Rcpp and RcppArmadillo. glassoFast

R package used for Glasso, LT, and npn is based on Glasso original algorithm with technical mod-

ifications to reduce computation time and resolve non-termination issue in glasso R package,

which is written in FORTRAN. It means Glasso should be the fastest due to the advantage of FOR-

TRAN and its formulation. fastclime R package is written in C for the core functions. TIGER

in huge R package is implemented on Rcpp and RcppEigen. Robust covariance estimation for

LT is implemented in R.

Table 4.1 displays the summary of timing performance. We observe DRAGON achieves good

timing performance for a single fit. Due to the difficult formulation, CLIME is the slowest one

among the competing methods. Glasso shows the best timing performance from FORTRAN. Tim-

ing performances of LT and npn are due to robust covariance estimation and nonparanormal trans-

formation, respectively.
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4.3.3 Numerical performance

We demonstrate the numerical performance of the proposed method by comparing with ex-

isting methods. In this experiment, we use the following tuning parameter selections. We use

λ = c(n−1 log p)1/2 for DRAGON where c = 0.5 for Erdös-Rényi graph and c = 0.75 for banded

and block diagonal structures. We use λ = (n−1 log p)1/2 for TIGER as their claim. For all other

competing methods, we use 5-fold cross-validation to select λ. For DRAGON, we consider the

pre-specified radius of the ambiguity set, ρ = {10−1, 10−0.5, 1}, to check the effect of ρ in both

selection and estimation performance. We use DRAGON_0.1, DRAGON_0.32, DRAGON_1 to

distinguish the simulation results of DRAGON from different ρ values in summary figures.

We consider measures for selection and estimation performance evaluation. We define the

following quantities for the true adjacency matrix A = {ajk}1≤j,k,≤p where ajk = I(ωjk ̸= 0) and

the estimated adjacency matrix Â = {âjk}1≤j,k,≤p where âjk = I(ω̂jk ̸= 0):

• True positives: TP = |{(j, k) : ajk = 1, âjk = 1, j < k}|

• False positives: FP = |{(j, k) : ajk = 0, âjk = 1, j < k}|

• True negatives: TN = |{(j, k) : ajk = 0, âjk = 0, j < k}|

• False negatives: FN = |{(j, k) : ajk = 1, âjk = 0, j < k}|

where |S| is the number of elements of a set S. We consider F1 score, 2TP/(2TP + FP + FN),

for the graph recovery measure. We also consider Frobenius norm ∥Ω̂ − Ω∥F to compare the

estimation performance.

Figures 4.5–4.7 display boxplots of F1-scores and Frobenius norms from 100 repetitions of

experiments when (n, p) = (100, 150). Each of the them corresponds to the contamination set-

ting and consists of six sub-figures. Each row of Figures 4.5–4.7 corresponds to three precision

matrix structures. The left and right side of figures present F1 scores and Frobenius norm re-

sults by estimation methods, respectively. Higher F1 score implies better selection performance,

and smaller Frobenius norm indicates better estimation performance. We provide extra figures for

(n, p) = (200, 150) and (200, 300) in Appendix B.5.
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(f) Block diagonal, Frobenius norm

Figure 4.5: F1 score (left) and Frobenius norm (right) under the rowwise contamination setting when
(n, p) = (100, 150). Each boxplot summarizes the results from 100 repetitions of experiment.
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Figure 4.6: F1 score (left) and Frobenius norm (right) under the cellwise contamination setting when
(n, p) = (100, 150). Each boxplot summarizes the results from 100 repetitions of experiment.
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Figure 4.7: F1 score (left) and Frobenius norm (right) under the tail deviation setting when (n, p) =
(100, 150). Each boxplot summarizes the results from 100 repetitions of experiment.
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We observe DRAGON has smaller Frobenius norm than competing methods in almost all cases.

On the other hand, DRAGON provides good selection performance, but it shows difficulties on

Erdös-Rényi graph even we use smaller λ. An intuitive explanation for this phenomenon is that

Erdös-Rényi graph does not have clear grouping structure, while the banded and block diagonal

structures have correlated chains or blocks of variables. Our formulation (4.2.14) is related to

square-root elastic net, and it would be able to handle grouping effect as Example 4.2.5. Hence,

DRAGON has the best selection performance on block diagonal structure over the competing

methods.

Besides, DRAGON is not always dominated by one of the competing methods over all settings.

For example, CLIME shows comparable selection performance with DRAGON under rowwise

contamination with the banded structure, but DRAGON shows better selection and estimation

performance in the tail deviation setting. TIGER shows higher F1-score than DRAGON for Erdös-

Rényi graphs, but DRAGON provides better selection and estimation performance in banded and

block diagonal structures. Especially, DRAGON is more stable than TIGER for block diagonal

case. LT shows the smallest Frobenius norm under cellwise contamination for Erdös-Rényi graph,

but DRAGON shows better or comparable estimation performance than LT for all other settings.

We observe similar behavior for (n, p) = (200, 150) and (200, 300); see Figures B.1–B.6 in the

supplementary material.

We discuss the effect of ρ on the performance of DRAGON. We observe that the performance

is getting worse as a trade-off from larger ρ in the most of the settings. There are exceptions in

this observation that we observe better selection and estimation performance as ρ increases in tail

deviation settings for Erdös-Rényi and block diagonal structure. We do not have good explanation

for this at this moment. It would be of interest to check the distance between the multivariate

normal distribution and the multivariate t distribution with our precision matrix settings.
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Chapter 5

Discussion and Future Works

We conclude the dissertation with discussions on potential extensions of the proposed meth-

ods and future works. First, it is common that the text analysis will benefit from authorships’

connections, such as citations, and the publication’s information such as the resource of the text

and the publication date. These naturally suggest to combine the multivariate regression frame-

work in Section 2 with network information from authors and publications, and therefore leads

to a framework on drawing robust inference of text-topic associations. This extension, however,

will face a few challenges including the more sophisticated false discovery controlling procedure

due to the existence of network structures, the large size of design matrix (d > n, potentially) that

may require regularization-adaptive Huber estimates, and the extra sparsity in data due to the large

number of topics. We will defer these to the future works.

We will investigate the theoretical properties of our model specification tests for GMRFs based

on temporally dependent data proposed in Section 3. We will show the validity and consistency of

the proposed tests. Also, motivated from the functional false discovery rate and the associated test

on continuum, we will generalize the proposed global test to multiple testing problems, which will

detect the local region on random field that violates the model assumptions. In addition, we plan

to develop an R package for the proposed method.

Several additional studies will focus on the open questions about DRAGON to better under-

stand its superior performance over competing methods. First, it is interesting and necessary to

investigate the relationship between λ and ρ. For fixed ρ, one may expect that the optimal λ de-

pends on ρ as in the elastic net [134], and a careful characterization of such dependence is important

for tuning λ in practice. In terms of tuning λ, the standard approach such as cross-validation is

computationally expensive for nodewise regressions. Other than the cross-validation, a variety of

information criteria have been proposed [37, 151–153], and we would like to generalize them for

tuning λ in DRAGON. Furthermore, the data-adaptive selection of the radius of Wasserstein-2 ball
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ρ is a long standing challenge in distributional stochastic optimization. This depends on quanti-

fying/estimating the deviation between the assumed data generation distribution and the empirical

distribution from data, which may be resolved using the lately developed concentration results on

the Wasserstein distance in high-dimensional regime. We plan to investigate the performance of

DRAGON in analyzing the Genotype-Tissue Expression (GTEx) data, which is known to possess

multiple potentially heterogeneous sub-populations. [131] analyzed this dataset to recover the gene

network in a target brain tissue under the transfer learning setting, which assume the full knowledge

of sub-populations. We will leave these to the immediate future works.

Theoretically, we will study the consistency of DRAGON under different contamination set-

tings and investigate the gain of DRAGON in terms of robustness compared to the traditional

methods, such as the vanilla nodewise regression estimator and Glasso. Inference based on the

DRAGON estimator will be a separate and important question. Similar to the Lasso-based Gaus-

sian graphical model methods, it is expected that the de-biasing step [48, 50, 51] will be needed to

draw DRAGON-based inference on edges. However, the shrinkage effect of ρ will make the de-

biasing nontrivial and requires the understanding of the relationship between ρ and λ, as mentioned

above. These will be studied in separate works.

Lastly, extending the proposed methods in both Sections 3 and 4 to non-Gaussian graphical

model is highly relevant to real scientific problems. Particularly, DRAGON can be easily gen-

eralized via combining the exponential graphical model with distributionally robust generalized

linear regressions. Several nodewise regression-based exponential family graph estimations have

flourished in the literature such as the high-dimensional Ising models [105, 154]. On the other

hand, distributionally robust regressions for the generalized linear model have also been studied,

such as the distributionally robust logistic regression [16] and the general maximum likelihood es-

timation under the distributionally robust framework [155]. These help shed light on generalizing

DRAGON for non-Gaussian graphical models and will be studied in the future.
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Appendix A

Supplementary materials for Chapter 2

A.1 Proofs of Main Theorems

A.1.1 Proof of Theorem 2.3.1

For ease of exposition, we use z2 in place of z in this proof. To prove Theorem 2.3.1, we will

prove a stronger result that

p−1
0 V ◦(z2) = P(χ2

q > z2) +OP(q
1/2p−κ1 + n−1/2q7/4 + q[n−1{log(np) + d}]δ/(2+δ)) (A.1.1)

uniformly over z ≥ 0 as n, p → ∞. Denote Aj := CΣjC
T ∈ Rq×q the true covariance matrix

of n1/2C(θ̂j − θj), and A
1/2
j the square root of Aj . The proof consists of two steps: first, we

sandwich the number of false discoveries using the Bahadur representation of

T◦
j = n1/2A

−1/2
j C(θ̂j − θj), (A.1.2)

where V ◦
j = ∥T◦

j∥2; then we will show that the bounds converge to P(χ2
q > z2) as n, p→ ∞.

First, we will show that T◦
j can be approximated by a q-dimensional multivariate normal dis-

tribution, so that V ◦
j can be approximated by the χ2

q distribution due to Lemma A.2.2.5. Let

Sj = n−1/2(CΣ−1
Z CT)−1/2CΣ

−1/2
Z

n∑

i=1

Σ
−1/2
Z

[
ℓ′τj(ϵij)Zi − E{ℓ′τj(ϵij)Zi}

]
,

Rj = n−1/2(CΣ−1
Z CT)−1/2CΣ

−1/2
Z

n∑

i=1

Σ
−1/2
Z E{ℓ′τj(ϵij)Zi}.

(A.1.3)

Note that Rj is negligible by Conditions 1 and Proposition A.2.1. By Corollary A.2.2,

∥T◦
j − σ

−1/2
ϵ,jj (Sj +Rj)∥ ≤ C2τ0j

d+ t

(nσϵ,jj)1/2
(A.1.4)
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with probability 1− 3 exp(−t) as long as n ≥ C3(d+ t). For j = 1, . . . , p, let E1j(t) be the event

on which (A.1.4) holds. Set E1(t) =
⋂p

j=1E1j(t), on which

∑

j∈H0

I{∥σ−1/2
ϵ,jj Sj∥ ≥ z + C2τ0j(nσϵ,jj)

−1/2(d+ t)} ≤ V ◦(z2)

≤
∑

j∈H0

I{∥σ−1/2
ϵ,jj Sj∥ ≥ z − C2τ0j(nσϵ,jj)

−1/2(d+ t)}.
(A.1.5)

with probability 1− 3p exp(−t) as long as n ≥ C4(d+ t).

Define Dj = I(∥σ−1/2
ϵ,jj Sj∥ ≥ z) and Pj = P(∥σ−1/2

ϵ,jj Sj∥ ≥ z) for j = 1, . . . , p and z ≥

0. Under Condition 1, D1, . . . , Dp are weakly correlated. Recall that H0 = {j : 1 ≤ j ≤

p,H0j is true}, it holds

var

(
p0

−1
∑

j∈H0

Dj

)
=

1

p20

∑

j∈H0

var(Dj) +
1

p20

∑

j,k∈H0;j ̸=k

cov(Dj, Dk)

≤ 1

4p0
+

1

p20

∑

j,k∈H0;j ̸=k

{E(DjDk)− PjPk}.
(A.1.6)

We first study Pj . Note that Sj is a sum of independent random vectors with E(Sj) = 0 and

cov(Sj) = s2jI where s2j = E[{ℓ′τj(ϵij)}2]. Let G ∼ N(0, I) be a standard normal random vector.

Lemmas A.2.2.1 and A.2.2.2 imply that

max
1≤j≤p

|Pj − P(∥G∥ ≥ z)| ≾ n−1/2q7/4 + q1/2
2

δσϵ,jj

v2+δ
j,δ

τ δ0j

(
d+ t

n

)δ/(2+δ)

(A.1.7)

holds uniformly over z ≥ 0.

Following that, we consider E(DjDk) for each pair (j, k) with 1 ≤ j ̸= k ≤ p. Set S =

(s−1
j Sj, s

−1
k Sk)

T. Let G = (G1,G2) = (G11, . . . , G1q, G21, . . . , G2q)
T ∈ R2q be a Gaussian vector

with E(G) = 0 and cov(G) = cov(S). The block-structured matrix cov(S) has unit diagonal

entries with cov(s−1
j Sj) = I. Also, cov(s−1

j Sj, s
−1
k Sk) = (nsjsk)

−1
∑n

i=1 cov(ℓ
′
τj
(ϵij), ℓ

′
τk
(ϵik))I

and
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∣∣∣∣∣(nsjsk)
−1

n∑

i=1

cov(ℓ′τj(ϵij), ℓ
′
τk
(ϵik))− rϵ,jk

∣∣∣∣∣ ≾
vjk
τ δ0

(
d+ t

n

)δ/(2+δ)

(A.1.8)

by Corollary A.2.1 and Proposition A.2.2, where τ0 = min(τ0j, τ0k) and

vjk = max{E(|ϵj|2+δ),E(|ϵk|2+δ)} < ∞ for some δ ∈ (0, 2] and 1 ≤ j ̸= k ≤ p. Putting together

(A.1.8), Condition 1 iv), Corollary A.2.1, and Lemmas A.2.2.1 and A.2.2.4 with our choice on τj

yield

|P(∥σ−1/2
ϵ,jj sjG1∥ ≥ x, ∥σ−1/2

ϵ,kk skG2∥ ≥ x)− P(∥Z1∥ ≥ x)P(∥Z2∥ ≥ x)|

≤|P(∥G1∥ ≥ σ
1/2
ϵ,jjs

−1
j x, ∥G2∥ ≥ σ

1/2
ϵ,kks

−1
k x)− P(∥Z1∥ ≥ σ

1/2
ϵ,jjs

−1
j x)P(∥Z2∥ ≥ σ

1/2
ϵ,kks

−1
k x)|

+ |P(∥σ−1/2
ϵ,jj sjZ1∥ ≥ x)P(∥σ−1/2

ϵ,kk skZ2∥ ≥ x)− P(∥Z1∥ ≥ x)P(∥Z2∥ ≥ x)|

≾ q1/2|rϵ,jk|+ q{n−1(d+ t)}δ/(2+δ).

It follows that

|P(∥G1∥ ≥ s−1
j σ

1/2
ϵ,jjz, ∥G2∥ ≥ s−1

k σ
1/2
ϵ,kkz)− {P(∥Z∥ ≥ z)}2| ≾ q1/2|rϵ,jk|+ q

(
d+ t

n

)δ/(2+δ)

(A.1.9)

for Z ∼ Nq(0, I). In addition, Lemma A.2.2.3 gives

sup
x,y∈R

|P(∥s−1
j Sj∥ ≥ x, ∥s−1

k Sk∥ ≥ y)− P(∥G1∥ ≥ x, ∥G2∥ ≥ y)| ≾ n−1/2q7/4,

which implies

|E(DjDk)− P(∥G1∥ > s−1
j σ

1/2
ϵ,jjz, ∥G2∥ > s−1

k σ
1/2
ϵ,kkz)| ≾ n−1/2q7/4. (A.1.10)

Putting (A.1.9), (A.1.10), and Lemma A.2.2.1 together, we obtain

|E(DjDk)− {P(∥Z1∥ > z)}2| ≾ q1/2|rϵ,jk|+ n−1/2q7/4 + q

(
d+ t

n

)δ/(2+δ)

. (A.1.11)

Consequently, it follows from (A.1.6), (A.1.7), (A.1.11), Condition 1, and Lemma A.2.2.5 that
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E[{p−1
0 V ◦(z2)− {P(χ2

q > z2)}2] ≾ q1/2p−κ1 + n−1/2q7/4 + q

(
d+ t

n

)δ/(2+δ)

(A.1.12)

on E1(t). Recall that P{E1(t)} = 1 − 3p exp(−t) as long as n ≥ C3(d + t). Taking t = log(np)

in (A.1.5) and (A.1.12) proves (A.1.1).

A.1.2 Proof of Proposition 2.3.1

For statistic Ṽj = n(Cθ̂j − c0j)
T(CΣ̃jC

T)−1(Cθ̂j − c0j), it holds

|Ṽj − V ◦
j | = |n(Cθ̂j − c0j)

T(CΣ̃jC
T)−1(Cθ̂j − c0j)− n(Cθ̂j − c0j)

T(CΣjC
T)−1(Cθ̂j − c0j)|

≤ n∥Σ1/2
Z (θ̂j − θj)∥2∥Σ−1/2

Z CT{(CΣ̃jC
T)−1 − (CΣjC

T)−1}CΣ
−1/2
Z ∥

≤ n∥Σ1/2
Z (θ̂j − θj)∥2∥CΣ

−1/2
Z ∥2∥(CΣ̃jC

T)−1 − (CΣjC
T)−1∥

≾ n∥Σ1/2
Z (θ̂j − θj)∥2∥(CΣ̃jC

T)−1 − (CΣjC
T)−1∥.

Given max1≤j≤p ∥Σ̃j −Σj∥ = oP[{log(np) + d}−1], Lemmas A.2.1.1 and A.2.3.2 imply that

max
j∈H0

∥Ṽj − V ◦
j ∥ ≾ {log(np) + d} max

1≤j≤p
∥Σ̃j −Σj∥ (A.1.13)

with probability 1 − 2n−1 and the right hand side of (A.1.13) is oP(1). Combining this with the

proof of Theorem 2.3.1 and Condition 1, we obtain p−1
0 Ṽ (z) = P(χ2

q > z) + oP(1). Similarly,

R(z) can be replaced by R̃(z). Consequently, |F̃DP(z)− ÃFDP(z)| = oP(1) as n, p→ ∞.

A.1.3 Proof of Theorem 2.3.2

Recall that mj = n−1
∑n

i=1 I
∗
τj
(eij), Wj = n−1

∑n
i=1{I∗τj(eij)ZiZ

T
i }, and

Kj = 1 + (nmj)
−1(d + 1)(1 −mj). Denote Ajn := {W−1

j (n−1
∑n

i=1 ZiZ
T
i )W

−1
j }−1. For each

j = 1, . . . , p,
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∥Σ̂j −Σj∥ =

∥∥∥∥∥
1

Kj

[
1

n− d− 1

n∑

i=1

{ℓ′τj(eij)}2
]
A−1

jn − σϵ,jjΣZ
−1

∥∥∥∥∥

≤
∣∣∣∣∣
1

Kj

[
1

n− d− 1

n∑

i=1

{ℓ′τj(eij)}2
]∣∣∣∣∣ ∥A

−1
jn −ΣZ

−1∥

+

∣∣∣∣∣
1

Kj

[
1

n− d− 1

n∑

i=1

{ℓ′τj(eij)}2
]
− σϵ,jj

∣∣∣∣∣ ∥Σ
−1
Z ∥.

(A.1.14)

Note n/(n − d − 1) → 1 as n → ∞. Denote K−1
j n−1

∑n
i=1{ℓ′τj(eij)}2 by f(mj, yj), where

yj = n−1
∑n

i=1{ℓ′τj(eij)}2. That is, f [mj, n
−1
∑n

i=1{ℓ′τj(eij)}2] = K−1
j n−1

∑n
i=1{ℓ′τj(eij)}2 with

f(1, σϵ,jj) = σϵ,jj . It holds that f(mj, yj) is twice differentiable at (1, σϵ,jj), where

∂

∂yj
f(mj, yj) = K−1

j ,
∂

∂yj
f(mj, yj)|(mj ,yj)=(1,σϵ,jj) = 1,

∂

∂mj

f(mj, yj) =
n(d+ 1)

{nmj + (d+ 1)(1−mj)}2
yj,

∂

∂mj

f(mj, yj)|(mj ,yj)=(1,σϵ,jj) =
d+ 1

n
σϵ,jj

and
∂2

∂y2j
f(mj, yj) = 0,

∂2

∂mj∂yj
f(mj, yj) =

n(d+ 1)

{nmj + (d+ 1)(1−mj)}2
,

∂2

∂m2
j

f(mj, yj) =
−2n(d+ 1)(n− d− 1)

{nmj + (d+ 1)(1−mj)}3
yj.

Apply Taylor’s theorem on f [mj, n
−1
∑n

i=1{ℓ′τj(eij)}2] with respect to mj and n−1
∑{ℓ′τj(eij)}2

at 1 and σϵ,jj , it follows that

1

Kj

[
1

n

n∑

i=1

{ℓ′τj(eij)}2
]
− σϵ,jj =

[
1

n

n∑

i=1

{ℓ′τj(eij)}2 − σϵ,jj

]
+
d+ 1

n
σϵ,jj(mj − 1)

+R1(1 + h1, σ
2
ϵ,jj + h2),

where R1(·, ·) is the remainder and satisfies limh→0R1(1 + h1, σ
2
ϵ,jj + h2)/∥h∥ = 0 for h =

(h1, h2) = c{(mj, yj)−(1, σϵ,jj)} and c ∈ (0, 1) since f is twice differentiable [156]. On the event

A∆ defined in Lemma A.2.3.3 with P(A∆) ≥ 1− 4n−1, Lemmas A.2.3.4 and A.2.3.5 imply
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max
1≤j≤p

∣∣∣∣∣
1

Kj

[
1

n

n∑

i=1

{ℓ′τj(eij)}2
]
− σϵ,jj

∣∣∣∣∣

≤C5

{
log(np) + d

n

}δ/(2+δ)

+ C6
d+ 1

n
max

[{
log(np) + d

n

}1/2

,
∆

hn

]

+R1

[
1 + h1, σ

2
ϵ,jj + h2

]

≤C
{
log(np) + d

n

}δ/(2+δ)

(A.1.15)

with probability at least 1−8n−1, where C is a constant depending on A0. Note that the remainder

in (A.1.15) is dominated by other terms as long as mj − 1 and n−1
∑n

i=1{ℓ′τj(eij)}2 − σ2
ϵ,jj are

small given d≪ n.

By Lemma A.2.3.1, it follows that

∥A−1
jn −Σ−1

Z ∥ ≤ ∥Σ−1
Z ∥2

1− ∥Σ−1
Z ∥∥Ajn −ΣZ∥

∥Ajn −ΣZ∥

= ∥Σ−1
Z ∥2∥Ajn −ΣZ∥

∞∑

k=0

(∥Σ−1
Z ∥∥Ajn −ΣZ∥)k.

(A.1.16)

Note that ∥Σ−1
Z ∥∥Ajn −ΣZ∥ ≪ 1 as long as ∥Ajn −ΣZ∥ ≪ λmin(ΣZ). Hence, we only need to

focus on ∥Ajn−ΣZ∥. Denote the sample covariance of Zi by Σ̂n = n−1
∑n

i=1 ZiZ
T
i . Decompose

Ajn as

Ajn = WjΣ̂
−1

n Wj = Σ̂n + 2(Wj − Σ̂n) + (Wj − Σ̂n)Σ̂
−1

n (Wj − Σ̂n)

so that

Ajn − Σ̂n = 2(Wj − Σ̂n) + (Wj − Σ̂n)Σ̂
−1

n (Wj − Σ̂n)

= 2(Wj − Σ̂n) + (Wj − Σ̂n)(Σ̂
−1

n −Σ−1
Z )(Wj − Σ̂n)

+ (Wj − Σ̂n)Σ
−1
Z (Wj − Σ̂n).

Hence, the bound for the operator norm of Ajn − Σ̂n is obtained by bounding ∥Wj − Σ̂n∥ and

∥Σ̂−1

n −Σ−1
Z ∥. By Lemmas A.2.3.1 and A.2.3.6,
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∥Ajn − Σ̂n∥ ≤ 2∥Wj − Σ̂n∥+ ∥Wj − Σ̂n∥2
[
∥Σ̂−1

n −Σ−1
Z ∥+ {λmin(ΣZ)}−1

]

≤ Cmax

[{
log(np) + d

n

}1/2

,
∆

hn

]
,

(A.1.17)

where C is a constant depending on A0, λmax(ΣZ), and vj,δ since the first term on the right hand

side of the first inequality dominates the others as long as n ≥ C3{log(np) + d}. By the triangle

inequality, the concentration of sample covariance matrices [81], and (A.1.17), it holds that

∥Ajn −ΣZ∥ ≤ ∥Ajn − Σ̂n∥+ ∥Σ̂n −ΣZ∥ ≤ Cmax

[{
log(np) + d

n

}1/2

,
∆

hn

]
(A.1.18)

with probability 1 − 4n−1 as long as n ≥ C3{log(np) + d} where C is a constant depending on

λmax(ΣZ), vj,δ, and A0.

Putting together (A.1.14)-(A.1.18), for δ ∈ (0, 2], it follows that

max
1≤j≤p

∥Σ̂j −Σj∥ ≤ Cmax

[{
log(np) + d

n

}δ/(2+δ)

,
∆

hn

]

with probability at least 1 − 16n−1 for some positive constant C depending only on λmin(ΣZ),

λmax(ΣZ), A0, and vj,δ.

A.2 Auxiliary results

Recall that the first order derivative of the Huber loss is

ℓ′τ (x) =





x |x| ≤ τ,

τ sgn(x) |x| > τ

and its second order derivative is ℓ′′τ (x) = I(|x| < τ) when |x| ≠ τ .
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A.2.1 Some auxiliary lemmas

We first state a few auxiliary lemmas. Proposition A.2.1 is Proposition A.2 from [157]. It

quantifies the difference between the first two moments of ℓ′τ (ϵj) and ϵj given the existence of

higher moments of ϵj .

Proposition A.2.1. Let z be a real-valued random variable with E(z) = 0 and σ2 = E(z2) > 0.

Assume that E(|z|κ) <∞ for some κ > 2. Then

|Eℓ′τ (z)| ≤ min

{
σ2

τ
,
E(|z|κ)
τκ−1

)

}
and |E{ℓ′τ (z)}2 − σ2| ≤ 2E(|z|κ)

(κ− 2)τκ−2
.

The following corollary from [157] reveals the bias of s2j = E{ℓ′τj(ϵij)2} with respect to the

true error variance σϵ,jj . It implies that, with the adaptive robustification parameter τj , s2j → σϵ,jj

as n→ ∞.

Corollary A.2.1. For 1 ≤ j ≤ p and vj,δ = {E(|ϵj|2+δ)}1/(2+δ) <∞, it holds that

σϵ,jj −
2

δ

v2+δ
j,δ

τ δj
≤ s2j ≤ σϵ,jj.

Proof. Applying Proposition A.2.1 with κ = 2 + δ for some δ > 0 yields the first inequality. The

second inequality follows ℓ′τj(x)
2 ≤ x2.

Next, Proposition A.2.2 implies that the covariance of ℓ′τj(ϵj) can be approximated by the

covariance of true errors. It is employed to prove the main theorems.

Proposition A.2.2. Assume τ = min(τj, τk) and vjk = max{E(|ϵj|2+δ),E(|ϵk|2+δ)} < ∞ for

1 ≤ j ̸= k ≤ p and δ > 0. Then

| cov{ℓ′τj(ϵj), ℓ′τk(ϵk)} − cov(ϵj, ϵk)| ≲ max(τ−δvjk, τ
−2−2δv2jk).

Proof. By definition,
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cov(ϵj, ϵk) =E{ϵjϵkI(|ϵj| ≤ τj, |ϵk| ≤ τk)}+ E[ϵjϵk{I(|ϵj| > τj) + I(|ϵk| > τk)}]

− E{ϵjϵkI(|ϵj| > τj, |ϵk| > τk)},

E{ℓ′τj(ϵj)} =E{ϵjI(|ϵj| ≤ τj)}+ τjE{sgn(ϵj)I(|ϵj| > τj)},

and

E{ℓ′τj(ϵj)ℓ′τk(ϵk)} =E{ϵjϵkI(|ϵj| ≤ τj, |ϵk| ≤ τk)}+ τkE{ϵj sgn(ϵk)I(|ϵj| ≤ τj, |ϵk| > τk)}

+ τjE{sgn(ϵj)ϵkI(|ϵj| > τj, |ϵk| ≤ τk)}

+ τjτkE{sgn(ϵjϵk)I(|ϵj| > τj, |ϵk| > τk)}

=cov(ϵj, ϵk)− E[ϵjϵk{I(|ϵj| > τj) + I(|ϵk| > τk)}]

+ τkE{ϵj sgn(ϵk)I(|ϵj| ≤ τj, |ϵk| > τk)}

+ τjE{sgn(ϵj)ϵkI(|ϵj| > τ, |ϵk| ≤ τk)}

+ E[{ϵjϵk + τjτk sgn(ϵjϵk)}I(|ϵj| > τj, |ϵk| > τk)].

Note that

|E{ϵjϵkI(|ϵj| > τj}| = |E{ϵ1+δ
j ϵkϵ

−δ
j I(|ϵj| > τj)}|

≤ (E|ϵ1+δ
j ϵk|)max |ϵ−δ

j I(|ϵj| > τj)|

≤ τ−δ
j {E(|ϵj|2+δ)}(1+δ)/(2+δ){E(|ϵk|2+δ)}1/(2+δ)

≤ τ−δ
j vjk ≤ τ−δvjk.

Similarly,

|E{ϵjϵkI(|ϵj| > τj, |ϵk| > τk}| = |E{ϵ1+δ/2
j ϵ

1+δ/2
k ϵ

−δ/2
j ϵ

−δ/2
k I(|ϵj| > τj, |ϵk| > τk)}|

≤ E(|ϵ1+δ/2
j ϵ

1+δ/2
k |)max |ϵ−δ/2

j ϵ
−δ/2
k I(|ϵj| > τj, |ϵk| > τk)|

≤ τ
−δ/2
j τ

−δ/2
k {E(|ϵj|2+δ)}(1+δ)/(2+δ){E(|ϵk|2+δ)}1/(2+δ)

≤ τ
−δ/2
j τ

−δ/2
k vjk ≤ τ−δvjk.
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|E{ϵjI(|ϵj| ≤ τj, |ϵk| > τk)}| = |E{ϵjϵ1+δ
k ϵ−1−δ

k I(|ϵj| ≤ τj, |ϵk| > τk}|

≤ E(|ϵjϵ1+δ
k |)max |ϵ−1−δ

k I(|ϵk| > τk)|

≤ τ−1−δ
k vjk ≤ τ−1−δvjk,

and

|E{I(|ϵj| > τj, |ϵk| > τk}| = |E{ϵ1+δ/2
j ϵ

1+δ/2
k ϵ

−1−δ/2
j ϵ

−1−δ/2
k I(|ϵj| > τj, |ϵk| > τk)}|

≤ E(|ϵ1+δ/2
j ϵ

1+δ/2
k |)max |ϵ−1−δ/2

j ϵ
−1−δ/2
k I(|ϵj| > τj, |ϵk| > τk)|

≤ τ
−1−δ/2
j τ

−1−δ/2
k vjk ≤ τ−2−δvjk.

Therefore, we have

|E{ℓ′τj(ϵj)ℓ′τk(ϵk)} − cov(ϵj, ϵk)| ≲ τ−δvjk

as max1≤j≤p vj,δ ≤ Cϵ. Hence, it yields

| cov{ℓ′τj(ϵj), ℓ′τk(ϵk)} − cov(ϵj, ϵk)|

≤ |E{ℓ′τj(ϵj)ℓ′τk(ϵk)} − cov(ϵj, ϵk)|+ |E{ℓ′τj(ϵj)}E{ℓ′τk(ϵk)}|

≲ τ−δvjk +min

{
σϵ,jj
τj

,
E(|ϵj|2+δ)

τ 1+δ
j

}
min

{
σϵ,kk
τk

,
E(|ϵk|2+δ)

τ 1+δ
k

}

≲ max(τ−δvjk, τ
−2−2δv2jk)

by Proposition A.2.1.

The following result on the non-asymptotic bound for the adaptive Huber regression estimator

is borrowed from Theorem 7 in [12]. It provides an exponential-type concentration inequalities for

θ̂j’s with adaptive robustification parameter τj , and also gives a non-asymptotic Bahadur represen-

tation under the finite moment condition on the errors.

Lemma A.2.1.1. Under Condition 2, for any t > 0, τ0j ≥ vj,δ := (E|ϵ|2+δ)1/(2+δ), j = 1, . . . , p,

θ̂j with τj = τ0j{n(d+ t)−1}1/(2+δ) satisfies
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P[∥Σ1/2
Z (θ̂j − θj)∥ ≥ C2τ0j{n−1(d+ t)}1/2] ≤ 2e−t

and

P[∥Σ1/2
Z (θ̂j − θj)−

1

n

n∑

i=1

{ℓ′τ (ϵi)Σ−1/2
Z Zi}∥ ≥ C3τ0jn

−1(d+ t)] ≤ 3e−t

as long as n ≥ C4(d+ t), where C1–C4 are positive constants depending only on A0 from Condi-

tion 2.

A.2.2 Technical results for proving Theorem 2.3.1

From Lemma A.2.1.1, we expect the following approximation of our testing statistics.

Corollary A.2.2. For T◦
j , Sj , and Rj in (A.1.2) and (A.1.3), respectively, it holds

∥T◦
j − σ

−1/2
ϵ,jj (Sj +Rj)∥ ≤ C2τ0j

d+ t

(nσϵ,jj)1/2

with probability at least 1− 2 exp(−t) under the random design.

Proof. By Lemma A.2.1.1,

∥T◦
j − σ

−1/2
ϵ,jj (Sj +Rj)∥

≤ (nσϵ,jj
−1)1/2

∥∥∥∥∥(CΣ−1
Z CT)−1/2CΣ

−1/2
Z

{
Σ

1/2
Z (θ̂j − θj)−

1

n

n∑

i=1

ℓ′τ (ϵij)Σ
−1/2
Z Zi

}∥∥∥∥∥

≤ C2τ0j
d+ t

(nσϵ,jj)1/2

(A.2.1)

with probability at least 1− 3 exp(−t).

The following results show that the distribution of the Bahadur representation in (A.2.1) is close

to N(0, I). We decompose |P(∥σ−1/2
ϵ,jj Sj∥ ≥ x) − P(∥G∥ ≥ x)| into two parts. Lemma A.2.2.1

quantifies the difference between the cumulative distribution functions of ∥σ−1/2
ϵ,jj sjG∥ and ∥G∥,

and Lemma A.2.2.2 characterizes the difference between the cumulative distribution functions of

∥σ−1/2
ϵ,jj sjG∥ and ∥σ−1/2

ϵ,jj Sj∥.
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Lemma A.2.2.1. Let G ∼ N(0, I) ∈ Rq. Let τj = τ0j{n(d + t)−1}1/(2+δ) for some δ > 0 where

τ0j ≥ vj,δ. Then, it holds that

sup
x∈R+

∣∣∣P(∥σ−1/2
ϵ,jj sjG∥ ≥ x)− P(∥G∥ ≥ x)

∣∣∣ ≤ q1/2
2

δσϵ,jj

v2+δ
j,δ

τ δ0j

(
d+ t

n

)δ/(2+δ)

.

Proof. It holds

∥σ−1
ϵ,jjs

2
jI− I∥ = |σ−1

ϵ,jjs
2
j − 1| ≤ 2

δσϵ,jj

v2+δ
j,δ

τ δj

tr{(σ−1/2
ϵ,jj sjI− I)2} ≤ q

(
2

δσϵ,jj

v2+δ
j,δ

τ δj

)2

.

(A.2.2)

With τj = τ0j{n(d+ t)−1}1/(2+δ), (A.2.2) satisfies the conditions of Lemma A.7 in the supplement

of [158] whenever n ≥ C3(d+ t). Combining Corollary A.2.1 with Lemma A.7 in the supplement

of [158], we get the desired result.

Lemma A.2.2.2. Let G ∼ N0, I) ∈ Rq.

sup
x∈R+

∣∣∣P(∥σ−1/2
ϵ,jj Sj∥ ≥ x)− P(∥σ−1/2

ϵ,jj sjG∥ ≥ x)
∣∣∣ ≾ n−1/2q7/4. (A.2.3)

Proof. Denote C the class of convex subsets of Rq. Recall that cov(Sj) = σ−1
ϵ,jjs

2
jI for Sj in (A.1.3).

By Theorem 1.1 in [159],

sup
A∈C

|P(σ−1/2
ϵ,jj Sj ∈ A)− P(σ−1/2

ϵ,jj sjG ∈ A)| ≾ q1/4
n∑

i=1

E∥n−1/2ℓ′τj(ϵij)A
−1/2
j CΣ

−1/2
Z Z̃i∥3

=
q1/4

n1/2

E{|ℓ′τj(ϵij)|3}
σϵ,jj

E∥A−1/2
j CΣ

−1/2
Z Z̃i∥3

≾
q7/4

n1/2
.

Take A = {v ∈ Rd+1 : ∥v∥ ≤ x, x > 0}, we obtain (A.2.3).

The following coupling result compares P(∥σ−1/2
ϵ,jj Sj∥ > x, ∥σ−1/2

ϵ,kk Sk∥ > y) and its Gaussian

counterpart for each (j, k) pair.
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Lemma A.2.2.3. Assume Condition 1 holds. Let G = (G1,G2) ∈ R2q be a Gaussian vector with

E(G) = 0 and cov(G) = cov(S), which is given in Section A.1. It satisfies that

sup
x,y∈R

|P(∥s−1
j Sj∥ > x, ∥s−1

k Sk∥ > y)− P(∥G1∥ > x, ∥G2∥ > y)| ≾ n−1/2q7/4.

Proof. Notice that

P(∥s−1
j Sj∥ > x, ∥s−1

k Sk∥ > y) = 1− P(∥s−1
j Sj∥ ≤ x)− P(∥s−1

k Sk∥ ≤ y)

+ P(∥s−1
j Sj∥ ≤ x, ∥s−1

k Sk∥ ≤ y)

and

P(∥G1∥ > x, ∥G2∥ > y) = 1− P(∥G1∥ ≤ x)− P(∥G2∥ ≤ y)

+ P(∥G1∥ ≤ x, ∥G2∥ ≤ y).

Take A(x, y) = {v = (v1,v2)
T ∈ R2q,v1,v2 ∈ Rq : ∥v1∥ ≤ x and ∥v2∥ ≤ y and x, y ∈

R+
⋃{∞}} in Theorem 1.1 in [159], we have

sup
x,y

|P(∥s−1
j Sj∥ > x, ∥s−1

k Sk∥ > y)− P(∥G1∥ > x, ∥G2∥ > y)| ≾ q7/4

n1/2
,

which is the desired result.

Lemma A.2.2.4 below provides a coupling between multivariate normal distributions. We pro-

vide two versions of proof. One uses the properties of bivariate chi-square distribution, and the

other uses the total variation distance between two multivariate normal distributions.

Lemma A.2.2.4. Let G = (G1,G2) ∈ R2q be a Gaussian vector with E(G) = 0, cov(Gi) = I

for i = 1, 2, and corr(G1,G2) = rI where |r| ≤ k0 < 1. Let Z1,Z2 ∼ N(0, I) be independent

and identically distributed q-dimensional standard normal vectors. Then

∣∣P(∥G1∥ > z, ∥G2∥ > z)− P(∥Z1∥ > z)2
∣∣ ≤ Cq|r|
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for some constant Cq > 0 only depending on q.

Proof. For q = 1, it holds

P(|G1| > x, |G2| > x)− P(|Z1| > x)P(|Z2| > x)

= {P(G1 < −x,G2 < −x)− P(Z1 < −x)P(Z2 < −x)}

− {P(G1 < −x,G2 < x)− P(Z1 < −x)P(Z2 < x)}

− {P(G1 < x,G2 < −x)− P(Z1 < x)P(Z2 < −x)}

+ {P(G1 < x,G2 < x)− P(Z1 < x)P(Z2 < x)} ,

so that |P(|G1| > x, |G2| > x)−P(|Z1| > x)P(|Z2| > x)| ≤ |r| follows Corollary 2.1 from [160].

Set C1 = 1.

For q ≥ 2, notice that (∥G1∥2, ∥G2∥2) is a bivariate chi-squared distribution with correlation

r2, and ∥Z1∥2 and ∥Z2∥2 are independent χ2
q distributions. Let V1 = ∥G1∥2/2 ∼ Gamma(q/2, 1)

and V2 = ∥G2∥2/2 ∼ Gamma(q/2, 1). Given |r| < 1, the joint distribution of V1 and V2 is the

Wicksell-Kibble’s bivariate Gamma distribution with corr(V1, V2) = r2, whose joint probability

density function can be represented by an infinite series [161, 162] that

f(v1, v2; q/2) : = f(v1; q/2)f(v2; q/2)
∞∑

m=0

r2m
m!Γ(q/2)

Γ(m+ q/2)
L(q/2−1)
m (v1)L

(q/2−1)
m (v2). (A.2.4)

Here,

L(q/2−1)
m (v) =

(d/dv)m{vmf(v; q/2)}
m!f(v; q/2)

is the generalized Laguerre polynomial of order m as defined by Rodrigue’s formula, and

f(v; q/2) = vq/2−1 exp(−v){Γ(q/2)}−1 is the probability density function of Gamma(q/2, 1) dis-

tribution.

Rewrite (A.2.4) as
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f(v1, v2; q/2)− f(v1; q/2)f(v2; q/2)

= f(v1; q/2)f(v2; q/2)
∞∑

m=1

r2m
m!Γ(q/2)

Γ(m+ q/2)
L(q/2−1)
m (v1)L

(q/2−1)
m (v2).

By Lebesgue’s dominated convergence theorem, integrate the above equality from z2/2 to ∞ to

yield

P(V1 > z2/2, V2 > z2/2)− P(V1 > z2/2)P(V2 > z2/2)

=

∫ ∞

z2/2

∫ ∞

z2/2

f(v1; q/2)f(v2; q/2)
∞∑

m=1

r2m
m!Γ(q/2)

Γ(m+ q/2)
L(q/2−1)
m (v1)L

(q/2−1)
m (v2)dv1dv2

=
∞∑

m=1

r2m
m!Γ(q/2)

Γ(m+ q/2)

{∫ ∞

z2/2

L(q/2−1)
m (v)f(v; q/2)dv

}2

,

(A.2.5)

which is a special case of Theorem 2 in [163] when ν = q/2, ρ21 = · · · = ρ2m := r2, c1 = z2/2, and

c2 = +∞. Let Cm = r2mm!Γ(q/2){Γ(m+q/2)}−1 and Tm(z2/2) =
∫∞

z2/2
L
(q/2−1)
m (v)f(v; q/2)dv

for positive integer m. It follows that

Tm(z
2/2) =

∫ ∞

z2/2

d

dv

dm−1

dvm−1

{
vmf(v; q/2)

m!

}
dv

=
q

2m

∫ ∞

z2/2

d

dv

dm−1

dvm−1

{
vm−1f(v; q/2 + 1)

(m− 1)!

}
dv

=
q

2m

∫ ∞

z2/2

d

dv
L
(q/2)
m−1(v)f(v; q/2 + 1)dv

= − q

2m
L
(q/2)
m−1(z

2/2)f(z2/2; q/2 + 1)

= − q

2m
L
(q/2)
m−1(z

2/2)
(z2/2)q/2

Γ(q/2 + 1)
exp(−z2/2)

= − 1

m

{
L
(q/2)
m−1(z

2/2)
(z2/2)q/2

Γ(q/2)
exp(−z2/2)

}
.

Therefore, in (A.2.5)
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Cm{Tm(z2/2)}2 = r2m
m!Γ(q/2)

Γ(m+ q/2)

1

m2

{
L
(q/2)
m−1(z

2/2)
(z2/2)q/2

Γ(q/2)
exp(−z2/2)

}2

= r2m
[

1

m2

m!

Γ(m+ q/2)

(z2/2)q

Γ(q/2)
exp(−z2)

{
L
(q/2)
m−1(z

2/2)
}2
]

= r2m

[
1

m2

m!

Γ(m+ q/2)
f(z2/2; q/2)

{(
z2

2

)q/2+1

e−z2/2

}{
L
(q/2)
m−1(z

2/2)
}2
]
.

(A.2.6)

By Theorem 1 in [164] for the orthonormal Laguerre polynomials,

Γ(m)

Γ(m+ q/2)

(
z2

2

)q/2+1

e−z2/2
{
L
(q/2)
m−1(z

2/2)
}2

≤ 6(m− 1)1/6(m+ q/2)1/2 (A.2.7)

for all z > 0 and positive integer m. Putting together (A.2.6), (A.2.7), and f(z2/2; q/2) ≤ 1 for

q ≥ 2,

Cm{Tm(z2/2)}2 ≤ r2m
1

m2

m!

Γ(m+ q/2)

Γ(m+ q/2)

Γ(m)
6(m− 1)1/6(m+ q/2)1/2

= 6r2m
(m− 1)1/6(m+ q/2)1/2

m

≤ 3r2m(2 + q/2)1/2 =: Cqr
2m,

where the inequality in the last line is due to the fact (m− 1)1/6(m+ q/2)1/2m−1 is maximized at

m = 2 for any q. Therefore,

∞∑

m=1

Cm{Tm(z2/2)}2 ≤
∞∑

m=1

Cqr
2m = Cq

r2

1− r2
≤ Cq

k0
1− k20

|r|. (A.2.8)

Combining (A.2.8) with (A.2.5), we prove the desired result with Cq,k0 = Cqk0/(1 − k20). In fact

Cq,k0 ≾ q1/2. This completes the first version of proof with bivariate chi-square distribution.

We also provide a simpler proof using the inequality of the total variation distance between

two multivariate normal distribution. For q ≥ 2, let Σ1 = I and Σ2 be the covariance matrices of

(Z1,Z2) and (G1,G2), respectively. By the definition of the total variation distance and Theorem

1.1 in [165], it follows that
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∣∣P(∥G1∥ > z, ∥G2∥ > z)− P(∥Z1∥ > z)2
∣∣

≤ sup
A:measurable sets

|P{(G1,G2) ∈ A} − P{(Z1,Z2) ∈ A}|

≤ 3

2
∥Σ−1/2

1 Σ2Σ
−1/2
1 − I∥F

=
3

2

∥∥∥∥∥∥∥



0 rI

rI 0




∥∥∥∥∥∥∥
F

=
3

2
(2q)1/2|r| =: Cq|r| ≾ q1/2|r|

where ∥ · ∥F is the Frobenius norm.

The following lemma characterizes the distribution of quadratic form of the multivariate normal

distribution, which appears in many textbooks (for example, [166]).

Lemma A.2.2.5. Consider X ∼ Nk(0,Σ). Let λ1, . . . , λk be the eigenvalues of Σ. Then ∥X∥2

is distributed as
∑k

i=1 λiZ
2
i for independent and identically distributed random variables Zi ∼

N(0, 1).

Proof. There exists an orthogonal matrix A such that AΣAT = diag(λ1, . . . , λk). Then AX is

Nk(0, diag(λ1, . . . , λk)). Hence, ∥AX∥2 = ∥X∥2 implies that ∥X∥2 has the same distribution as
∑k

i=1 λiZ
2
i .

A.2.3 Technical results for Section 2.3.2

Lemma A.2.3.1 implies that the operator norm of the difference between two inverse matrices

is bounded by a non-decreasing function (f(x) = x/(1−x)) of the operator norm of the difference

between two matrices. It appears in many linear algebra textbooks (for example, see [167], Chapter

5.8), and is used in the proof of Proposition 2.3.1.

Lemma A.2.3.1. For d × d invertible matrices A and B = A + ∆A such that ρ(A−1∆A) < 1

where ρ(·) is the spectral radius, it follows that

∥A−1 −B−1∥ ≤ ∥A−1∆A∥
1− ∥A−1∆A∥∥A

−1∥ ≤ ∥A−1∥2
1− ∥A−1∆A∥∥∆A∥. (A.2.9)
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Moreover, if ∥A−1∥∥∆A∥ < 1, it follows that

∥A−1 −B−1∥ ≤ ∥A−1∥
1− ∥A−1∥∥∆A∥∥A

−1∥∥∆A∥. (A.2.10)

Proof. Notice that A−1 −B−1 = A−1(B−A)B−1 = A−1∆AB−1, so

∥A−1 −B−1∥ = ∥A−1∆AB−1∥ ≤ ∥A−1∆A∥∥B−1∥.

Since ∥B−1∥ ≤ ∥A−1∥+ ∥A−1∆A∥∥B−1∥, it holds

∥B−1∥ ≤ ∥A−1∥
1− ∥A−1∆A∥ .

Hence, we prove the first part of (A.2.9). The second inequality of (A.2.9) is straightforward from

the first part since ∥A−1∆A∥ ≤ ∥A−1∥∥∆A∥. Inequality (A.2.10) is a direct result from (A.2.9)

and ∥A−1∆A∥ ≤ ∥A−1∥∥∆A∥.

Lemma A.2.3.2. Under the conditions in Proposition 2.3.1,

max
1≤j≤p

∥(CΣ̃jC
T)−1 − (CΣjC

T)−1∥ ≾ max
1≤j≤p

∥Σ̃j −Σj∥.

Proof. Without loss of generality, as rank(C) = q, we assume CCT = Iq×q by considering

(CCT)−1/2C in (2.2.2). It follows that
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∥(CΣCT)−1∥∥(CΣ̃jC
T −CΣjC

T)∥ ≤ ∥(CΣjC
T)−1∥∥Σ̃j −Σj∥∥CCT∥

≤ ∥Σ̃j −Σj∥
λmin(CΣjCT)

· 1

≤ ∥Σ̃j −Σj∥
λmin(Σj)

≤ ∥Σ̃j −Σj∥
σϵ,jj

∥ΣZ∥

≤ ∥Σ̃j −Σj∥
c2ϵ

∥ΣZ∥F

≾ ∥Σ̃j −Σj∥d1/2,

where ∥ · ∥F is the Frobenius norm. The last line in the above inequality is less than 1 as long as

∥Σ̃j − Σj∥ ≾ d−1/2, which holds for sufficiently large n and p by the assumptions in Proposi-

tion 2.3.1. Therefore, (A.2.10) in Lemma A.2.3.1 holds.

By the assumptions in Proposition 2.3.1,

∥CΣ̃jC
T −CΣjC

T∥ ≤ ∥Σ̃j −Σj∥. (A.2.11)

Set A = CΣjC
T, B = CΣ̃jC

T, and ∆A = CΣ̃jC
T − CΣjC

T. Note that ∥(CΣjC
T)−1∥ =

1/λmin(CΣjC
T) is bounded. Putting Lemma A.2.3.1 and (A.2.11) together,

∥(CΣ̃jC
T)−1 − (CΣjC

T)−1∥

≤ ∥(CΣjC
T)−1∥2∥CΣ̃jC

T −CΣjC
T∥

1− ∥(CΣjCT)−1(CΣ̃jCT −CΣjCT)∥

≤ ∥(CΣjC
T)−1∥2

1− ∥(CΣjCT)−1∥∥(CΣ̃jCT −CΣjCT)∥
∥CΣ̃jC

T −CΣjC
T∥

≤ ∥(CΣjC
T)−1∥2

1− ∥(CΣjCT)−1∥∥Σ̃j −Σj∥
∥Σ̃j −Σj∥,

so that the desired result is obtained.

The following results characterize the non-asymptotic bounds for the proposed covariance es-

timators. We provide proofs under the random design only as those under the fixed design are
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almost identical. First, we study an event on which the maximum of |eij− ϵij| over all i = 1, . . . , n

and j = 1, . . . , p is small with an overwhelming probability.

Lemma A.2.3.3. Let τj = τ0j[n/{log(np) + d}]1/(2+δ) and τ0j ≥ vj,δ with δ ∈ (0, 2]. Under

Conditions 2,

max
1≤i≤n,1≤j≤p

|eij − ϵij| ≤ C5

{
d1/2 + (2 log n)1/2

}{ log(np) + d

n

}1/2

with probability at least 1− 4n−1, where C4 is a constant depending on vj,δ and A0 only.

Proof. For each i and j, it follows that

max
1≤i≤n,1≤j≤p

|eij − ϵij| = max
1≤i≤n,1≤j≤p

|ZT
i (θ̂j − θj)|

≤ max
1≤i≤n

∥Z̃i∥
{
max
1≤j≤p

∥Σ1/2
Z (θ̂j − θj)∥

}

≤ C4(d
1/2 + t1/2)

(
d+ s

n

)1/2

(A.2.12)

with probability at least 1 − 2n exp(−t) − 2p exp(−s) for t > 0 and s > 0, where C4 is a

constant depending on vj,δ and A0. The third inequality above holds by Theorem 3.1 in [81] and

Lemma A.2.1.1. Let t = log(n2) and s = log(np), (A.2.12) implies that

max
1≤i≤n,1≤j≤p

|eij − ϵij| ≤ C4

{
d1/2 + (2 log n)1/2

}{ log(np) + d

n

}1/2

with probability at least 1− 4n−1.

Denote the event in Lemma A.2.3.3 byA∆, where ∆ = C4

{
d1/2 + (2 log n)1/2

}
[n−1{log(np)+

d}]1/2. Next, we derive the non-asymptotic bound of {ℓ′τj(ϵij)}2.

Lemma A.2.3.4. Let τj = τ0j[n{log(np) + d}−1]1/(2+δ), where τ0j ≥ vj,δ for δ ∈ (0, 2]. On the

event A∆,

max
1≤j≤p

∣∣∣∣∣
1

n

n∑

i=1

{ℓ′τj(eij)}2 − σϵ,jj

∣∣∣∣∣ ≤ C6

{
log (np) + d

n

}δ/(2+δ)
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holds with probability at least 1− 6n−1, where C5 is a constant depending on A0, vj,δ, and vj .

Proof. First, by the triangle inequality,

∣∣∣∣∣
1

n

n∑

i=1

{ℓ′τj(eij)}2 − σϵ,jj

∣∣∣∣∣ ≤
∣∣∣∣∣
1

n

n∑

i=1

{ℓ′τj(eij)}2 − {ℓ′τj(ϵij)}2
∣∣∣∣∣

+

∣∣∣∣∣
1

n

n∑

i=1

{ℓ′τj(ϵij)}2 − s2j

∣∣∣∣∣+ |s2j − σϵ,jj|.
(A.2.13)

The last term on the right hand side of (A.2.13) is bounded using Corollary A.2.1. That is, σϵ,jj −

s2j ≤ 2δ−1τ−δ
j v2+δ

j,δ .

For the first term on the right hand side of (A.2.13), it holds that

1

n

n∑

i=1

{ℓ′τj(eij)}2 =
1

n

n∑

i=1

{ℓ′τj(ϵij)}2 +
2

n

n∑

i=1

{ϵijI(|ϵij| ≤ τj)}(eij − ϵij)

+
1

n

n∑

i=1

I(|ϵij| ≤ τj)(eij − ϵij)
2 +

1

n

n∑

i=1

R2j(eij)

for ϵij ̸= ±τj and i = 1, . . . , n by Taylor’s theorem with the Peano form of remainder

R2j(x) = {ℓ′τj(x)}2 − {ℓ′τj(ϵij)}2 − 2ϵijI(|ϵij| ≤ τj)(x− ϵij)− I(|ϵij| ≤ τj)(x− ϵij)
2,

where limx→ϵij{R2j(x)/(x − ϵij)
2} = 0. Thus, on the event A∆, the remainder is oP(∆2) and

dominated by other terms. Then, by Hoeffding’s inequality and Proposition A.2.1, on the event

A∆,

∣∣∣∣∣
1

n

n∑

i=1

{ℓ′τj(eij)}2 −
1

n

n∑

i=1

{ℓ′τj(ϵij)}2
∣∣∣∣∣

≤
∣∣∣∣∣
2

n

n∑

i=1

{ϵijI(|ϵij| ≤ τj)}(eij − ϵij)

∣∣∣∣∣+
∣∣∣∣∣
1

n

n∑

i=1

I(|ϵij| ≤ τj)(eij − ϵij)
2

∣∣∣∣∣+
∣∣∣∣∣
1

n

n∑

i=1

R2j(eij)

∣∣∣∣∣

≤2∆

∣∣∣∣∣
1

n

n∑

i=1

{ϵijI(|ϵij| ≤ τj)}
∣∣∣∣∣+∆2

∣∣∣∣∣
1

n

n∑

i=1

I(|ϵij| ≤ τj)

∣∣∣∣∣+
∣∣∣∣∣
1

n

n∑

i=1

R2j(eij)

∣∣∣∣∣

≤2∆

[
|E{ϵijI(|ϵij| ≤ τj)}|+ τj

{
log(np)

2n

}1/2
]

(A.2.14)
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+∆2

[
P(|ϵij| ≤ τj) +

{
log(np)

2n

}1/2
]
+

∣∣∣∣∣
1

n

n∑

i=1

R2j(eij)

∣∣∣∣∣

≤2∆

[∣∣∣E{ℓ′τj(ϵij)}
∣∣∣+ τj

{
log(np)

2n

}1/2
]
+∆2

[
P(|ϵij| ≤ τj) +

{
log(np)

2n

}1/2
]

+

∣∣∣∣∣
1

n

n∑

i=1

R2j(eij)

∣∣∣∣∣ (A.2.15)

≤C{d1/2 + (2 log n)1/2}
{
log(np) + d

n

}(1+δ)/(2+δ)

holds with probability at least 1 − 4n−1 as long as n ≥ C3{log(np) + d}, where C is a constant

depending on A0, σϵ,jj , vj,δ, and vj .

For the second term, let Qij = ℓ′τj(ϵij)/sj with E(Q2
ij) = 1. Then,

E(Q4
ij) =

E[{ℓ′τj(ϵij)}4]
s4j

≤ v4j
s4j

and

E(Q2k
ij ) ≤

v4j
s4j

(
τ 2j
s2j

)k−2

for all k ≥ 3. It follows from Bernstein’s inequality that for any t > 0,

∣∣∣∣∣
1

n

n∑

i=1

Q2
ij − 1

∣∣∣∣∣ ≤
(v4j )

1/2

s2j

(
2t

n

)1/2

+
τ 2j
s2j

t

n
(A.2.16)

with probability at least 1 − 2 exp(−t). Plugging (A.2.14), (A.2.16), and Corollary A.2.1 into

(A.2.13) with τj = τ0j[n{log(np) + d}−1]1/(2+δ) and t = log(np), we yield
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max
1≤j≤p

∣∣∣∣∣
1

n

n∑

i=1

{ℓ′τj(eij)}2 − σϵ,jj

∣∣∣∣∣

≤ C
{
d1/2 + (2 log n)1/2

}{ log(np) + d

n

}(1+δ)/(2+δ)

+ v2j

{
2 log(np)

n

}1/2

+ τ 20j
t

n

{
n

log(np) + d

}2/(2+δ)

+
2v2+δ

j,δ

δ

{
log(np) + d

n

}δ/(2+δ)

≤ C5

{
log (np) + d

n

}δ/(2+δ)

as long as n ≥ C3{log(np) + d} with probability at least 1− 6n−1 for δ ∈ (0, 2].

The next lemma provides the non-asymptotic bound for mj .

Lemma A.2.3.5. On the event A∆, for τj = τ0j[n{log(np) + d}−1]1/(2+δ) where τ0j ≥ vj,δ for

δ ∈ (0, 2],

max
1≤j≤p

∣∣∣∣∣
1

n

n∑

i=1

I∗τj(eij)− 1

∣∣∣∣∣ ≤ C7 max

[{
log(np) + d

n

}1/2

,
∆

hn

]

holds with probability at least 1− 2n−1, where C6 is a constant only depending on vj,δ and vj .

Proof. On the event A∆, |I∗τj(eij)− I∗τj(ϵij)| ≤ ∆hn
−1 due to the Lipschitz continuity of I∗τj(x). It

follows that ∣∣∣∣∣
1

n

n∑

i=1

I∗τj(eij)− 1

∣∣∣∣∣ ≤
∣∣∣∣∣
1

n

n∑

i=1

I∗τj(ϵij)− 1

∣∣∣∣∣+
∆

hn
(A.2.17)

For the first term on the right hand side of (A.2.17), it follow Hoeffding’s inequality and

Markov’s inequality that

∣∣∣∣∣
1

n

n∑

i=1

I∗τj(ϵij)− 1

∣∣∣∣∣ ≤ E{1− I∗τj(ϵij)}+
(
t

2n

)1/2

≤ P (|ϵij)| ≥ τj) +

(
t

2n

)1/2

≤
v2+δ
j,δ

τ 2+δ
j

+

(
t

2n

)1/2

with probability at least 1− 2 exp(−t). Therefore,
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max
1≤j≤p

∣∣∣∣∣
1

n

n∑

i=1

I∗τj(ϵij)− 1

∣∣∣∣∣ ≤
v2+δ
j,δ

τ0j

log(np) + d

n
+

{
log(np)

2n

}1/2

(A.2.18)

with probability at least 1− 2n−1. The lemma is therefore proved.

Lemma A.2.3.6. Let τj = τ0j[n{log(np) + d}−1]1/(2+δ) where τ0j ≥ vj,δ for δ ∈ (0, 2]. On the

event A∆, we have

max
1≤j≤p

∥∥∥∥∥Wj −
1

n

n∑

i=1

ZiZ
T
i

∥∥∥∥∥ ≤ C8 max

[{
log(np) + d

n

}1/2

,
∆

hn

]

with probability at least 1 − 2n−1, where C7 > 0 is a constant depending only on λmax(ΣZ), A0,

and vj,δ as long as n ≥ C3{log(np) + d}.

Proof. For Z̃i = Σ
−1/2
Z Zi, we have

∥∥∥∥∥Wj −
1

n

n∑

i=1

ZiZ
T
i

∥∥∥∥∥ =

∥∥∥∥∥Σ
1/2
Z

[
1

n

n∑

i=1

{I∗τj(eij)− 1}Z̃iZ̃
T
i

]
Σ

1/2
Z

∥∥∥∥∥

≤ ∥ΣZ∥
∥∥∥∥∥
1

n

n∑

i=1

{I∗τj(eij)− 1}Z̃iZ̃
T
i

∥∥∥∥∥ .

On the event A∆, for each unit vector u ∈ Rd+1,

∣∣∣∣∣u
T

[
1

n

n∑

i=1

{I∗τj(eij)− 1}Z̃iZ̃
T
i

]
u

∣∣∣∣∣ ≤
∣∣∣∣∣
1

n

n∑

i=1

{
I (|ϵij| ≥ τj) +

∆

hn

}
⟨u, Z̃i⟩2

∣∣∣∣∣

≤ E(⟨u, Z̃i⟩2)
[
E {I (|ϵij| ≥ τj)}+

∆

hn
+ Cmax(ρ, ρ2)

]

with probability at least 1− 2 exp(−t) where ρ = {n−1(d + t)}1/2 and C > 0 is an absolute con-

stant. From properties of the sub-Gaussian random variable [81], E(|uTZ̃i|k) ≤ Ak
1(ek/2)Γ(k/2)

for all k ≥ 1, where A1 ≥ e−1/2 is a constant depending only on A0. Thus,

E(⟨u, Z̃i⟩2) ≤ A2
1e

and
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E {I (|ϵij| ≥ τj)} = P (|ϵij| ≥ τj) ≤
v2+δ
j,δ

τ 2+δ
0j

d+ t

n
.

Take t = log(np). Putting together the obtained bounds yields

∥∥∥∥∥
1

n

n∑

i=1

{
I∗τj(eij)− 1

}
ZiZ

T
i

∥∥∥∥∥ ≤ C7 max

[{
log(np) + d

n

}1/2

,
∆

hn

]

with probability at least 1−2n−1 as long as n ≥ C3{log(np)+d}, whereC7 is a constant depending

on A0, λmax(ΣZ), and vj,δ.

A.3 Testing hypotheses of the linear combinations of θj’s

A.3.1 Method

In this section, we briefly discuss testing hypotheses of the linear combinations of regression

coefficients, which is a special case of (2.2.2) in the main article with q = 1. For j = 1, . . . , p,

c ∈ Rd+1, and c0j ∈ R, the two-sided and one-sided hypotheses of interest are

H0j : c
Tθj = c0j versus H1j : c

Tθj ̸= c0j, (A.3.1)

and

H0j : c
Tθj ≤ (≥)c0j versus H1j : c

Tθj > (<)c0j, (A.3.2)

respectively. For each j, define

Uj = n1/2(cTΣ̂jc)
−1/2(cTθ̂j − c0j),

where θ̂j and Σ̂j are estimated by (2.2.3) and (2.2.6) in the main paper. Notice U2
j = Vj . For

threshold z > 0, we estimate the number of false discoveries V (z) by
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V̂ (z) =





2pΦ(−z) (two-sided),

pΦ(−z) (one-sided).

Let the number of discoveries by R(z) =
∑p

j=1 I(Uj ≥ z). Then, we compute

ẑα = inf {z ≥ 0 : AFDP(z) ≤ α} ,

where AFDP(z) = V̂ (z)/R(z). For j = 1, . . . , p, H0j in (A.3.1) or (A.3.2) is rejected whenever

Uj ≥ ẑα.

A.3.2 Theoretical guarantees

The following result for testing (A.3.1) is a straightforward corollary of Theorem 2.3.1. De-

note U◦
j = n1/2(cTΣjc)

−1/2(cTθ̂j − c0j) with known covariance Σj . For H0 = {j : 1 ≤

j ≤ p,H0j is true}, let V ◦(z) =
∑

j∈H0
I(U◦

j ≥ z) and R◦(z) =
∑p

j=1 I(U
◦
j ≥ z). Define

AFDP◦
c1(z) = 2p0Φ(−z)/R◦(z) to be the counterpart of (2.3.1).

Theorem A.3.1. Consider testing (A.3.1). Assume Conditions 1 and 2 hold, and p0 ≥ ap for some

a ∈ (0, 1). Let τj = τ0jn
1/(2+δ){log(np) + d}−1/(2+δ) with τ0j ≥ vj,δ and δ ∈ (0, 2]. Then, for any

z ≥ 0, |FDP◦(z)− AFDP◦
c1(z)| = oP(1) as n, p→ ∞.

Next, we provide the corresponding result for testing (A.3.2). Similarly, let AFDP◦
c2(z) =

p0Φ(−z)/R◦(z).

Theorem A.3.2. Consider testing (A.3.2). Assume Conditions 1 and 2 hold, and p0 ≥ ap for some

a ∈ (0, 1). Let τj = τ0jn
1/(2+δ){log(np) + d}−1/(2+δ) with τ0j ≥ vj,δ and δ ∈ (0, 2]. Then, for any

z ≥ 0, |FDP◦(z)− AFDP◦
c2(z)| = oP(1) as n, p→ ∞.

Proof. The proof is similar to that of Theorem 2.3.1. Let z ≥ 0. We will show the stronger result

that on event {p−1R◦(z) ≥ c} for some c > 0,

p−1
0 V ◦(z) = Φ(−z) +OP(p

−κ1 + n−1/2 + [n−1{log(np) + d}]δ/(2+δ)), (A.3.3)
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which leads to the conclusion immediately.

Let σ2
j = cTΣjc = σϵ,jj(c

TΣ−1
Z c) ∈ R, U◦

j = n1/2σ−1
j (cTθ̂j − cTθj), and

Sj = n−1/2∥cTΣ−1/2
Z ∥−1cTΣ−1

Z

n∑

i=1

[ℓ′τ (ϵij)Zi − E{ℓ′τ (ϵij)Zi}],

Rj = n−1/2∥cTΣ−1/2
Z ∥−1cTΣ−1

Z

n∑

i=1

E{ℓ′τ (ϵij)Zi}].

For every j ∈ H0j and t ≥ 1, it follows from Lemma A.2.1.1 that

|U◦
j − σ

−1/2
ϵ,jj (Sj +Rj)| =

∣∣∣∣∣n
1/2σ−1

j (cTθ̂j − cTθj)− n−1/2σ−1
j cTΣ−1

Z

n∑

i=1

ℓ′τ (ϵij)Zi

∣∣∣∣∣

≤ n1/2σ
−1/2
ϵ,jj

∥∥∥∥∥Σ
1/2
Z (θ̂j − θj)−

1

n

n∑

i=1

ℓ′τj(ϵij)Σ
−1/2
Z Zi

∥∥∥∥∥

≤ C2
τ0(d+ t)

(nσϵ,jj)1/2

(A.3.4)

with probability greater than 1 − 3 exp(−t) as long as n ≥ C4(d + t) with τj = τ0j{n(d +

t)−1}1/(2+δ).

For j = 1, . . . , p, denote E1j(t) on which event (A.3.4) holds, and define E1 =
⋂p

j=1E1j(t).

On E1,

∑

j∈H0j

I

{
σ
−1/2
ϵ,jj Sj ≥ z + C2

τ0(d+ t)

(nσϵ,jj)1/2

}
≤ V (z) ≤

∑

j∈H0j

I

{
σ
−1/2
ϵ,jj Sj ≥ z − C2

τ0(d+ t)

(nσϵ,jj)1/2

}

(A.3.5)

with probability 1− 3pe−t. For x ∈ R, define

V +(x) =
∑

j∈H0j

I(σ−1/2
ϵ,jj Sj ≥ x). (A.3.6)

Hence, (A.3.5) can be written as

p−1
0 V +

{
z + C2

τ0(d+ t)

(nσϵ,jj)1/2

}
≤ p−1

0 V ◦(z) ≤ p−1
0 V +

{
z − C2

τ0(d+ t)

(nσϵ,jj)1/2

}
. (A.3.7)
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Therefore, we only need to derive the orders of V +(x). The rest of the proof is almost identical

to that of Theorem 2.3.1 by replacing Lemma A.2.2.4 by Lemma 2.1 from [160]. We can easily

obtain a similar bound for E[{p−1
0 V +(z)− Φ(−z)}2] that

E[{p−1
0 V +(z)− Φ(−z)}2] ≾ p−κ1 + n−1/2 +

(
d+ t

n

)δ/(2+δ)

. (A.3.8)

Recall that P(A1) ≤ 1 − 3pe−t whenever n ≳ d + t. Taking t = log(np) in (A.3.7) and (A.3.8)

proves (A.3.3).

Remark A.3.1. For testing H0j : cTθj ≥ c0 versus H1j : cTθj < c0, we can use the same

argument with (A.3.5) and (A.3.6) replaced by

∑

j∈H0j

I

{
σ
−1/2
ϵ,jj Sj ≤ −z − C2

τ0(d+ t)

(nσϵ,jj)1/2

}
≤ V ◦(z) ≤

∑

j∈H0j

I

{
σ
−1/2
ϵ,jj Sj ≤ −z + C2

τ0(d+ t)

(nσϵ,jj)1/2

}

and V −(x) =
∑

j∈H0j
I(σ−1/2

ϵ,jj Sj ≤ −x), respectively.

A.4 Results under the fixed design

In this section, we consider our testing procedure in Section 2.2 for model (2.2.1) under the

fixed design. Denote zTi =

[
1 xT

i

]
the ith row of design matrix Z. We first impose the following

regularity condition, which is similar to that in [12].

Condition 3. The Gram matrix Sn = n−1
∑n

i=1 ziz
T
i is positive definite and there exist constants

cl and cu such that cl ≤ λmin(Sn) ≤ λmax(Sn) ≤ cu. As n → ∞, Sn → ΣZ which is also positive

definite.

The following condition is similar to the finite fourth order moment condition under the random

design.

Condition 4. There exist constants κ,M > 0 such that, for z̃i = S
−1/2
n zi,

sup
u∈Sd

1

n

n∑

i=1

(uTz̃i)
4 exp(κ|uTz̃i|2) ≤M.
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We start with the counterpart of Theorem 2.3.1 to show that our procedure controls the false

discovery proportion given the covariances of regression coefficients under the fixed design.

Theorem A.4.1. Assume Conditions 1, 3, and 4 hold, and p0 ≥ ap for some a ∈ (0, 1). Let

τj = τ0j{n/ log(np)}1/(2+δ) where τ0j ≥ vj,δ for some δ ∈ (0, 2]. Then, for any z ≥ 0, |FDP◦(z)−

AFDP◦(z)| = oP(1) as n, p→ ∞.

Proof. For ease of exposition, we use z2 instead of z in this proof. The proof is similar to that of

Theorem 2.3.1. First, define

sj = n−1/2(CS−1
n CT)−1/2CS−1/2

n

n∑

i=1

S−1/2
n Zi[ℓ

′
τ (ϵij)− E{ℓ′τ (ϵij)}],

rj= n−1/2(CS−1
n bCT)−1/2CS−1/2

n

n∑

i=1

S−1/2
n ZiE{ℓ′τj(ϵij)}.

(A.4.1)

By Proposition A.2.1, ∥rj∥ is a small order term. Together with Corollary A.4.1, it implies that

∥T◦
j − σ

−1/2
ϵ,jj (sj + rj)∥ ≤ Aτ0j(d+ t)1/2

(
dt

σϵ,jjn

)1/2

(A.4.2)

with probability 1 − 2d exp(−t) as long as n ≥ max{32L4
∞d

2t, 2κ−2(2d + t)}, where ∆n,δ =

n−1
∑n

i=1 vδz̃iz̃
T
i . The rest of the proof are almost identical to that of Theorem 2.3.1. DefineE1j(t)

the event on which (A.4.2) holds and letE1(t) =
⋂p

j=1E1j(t) where P{E1(t)} = 1−2dp exp(−t).

One can obtain the counterparts of (A.1.5) and (A.1.12),

∑

j∈H0

I

[
∥σ−1/2

ϵ,jj sj∥ ≥ z + Aτ0j(d+ t)1/2
(

dt

σϵ,jjn

)1/2
]
≤ V ◦(z2)

≤
∑

j∈H0

I

[
∥σ−1/2

ϵ,jj sj∥ ≥ z − Aτ0j(d+ t)1/2
(

dt

σϵ,jjn

)1/2
]

and

E{p−1
0 V ◦(z2)− P(χ2

q > z2)}2 ≾ q1/2p−κ1 + n−1/2q7/4 + q(t/n)δ/(2+δ).

Using Lemmas A.4.1.4 and A.4.1.5, we can obtain the desired result by taking t = log(np).
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Counterparts of Theorems A.3.1 and A.3.2 remain true under the assumptions for Theorem

A.4.1. Their statements and proofs are identical to those of Theorems A.3.1 and A.3.2 and therefore

are omitted.

A.4.1 Technical lemmas under the fixed design

In this subsection, for the sake of completeness, we collect some auxiliary lemmas used for

proving Theorem A.4.1. Most proofs, except that for Lemma A.4.1.2, are omitted given their

similarities to those in Section A.2.2. We start with three technical lemmas, which are modified

from results in [12]. Lemmas A.4.1.1-A.4.1.3 provide general conclusions for the adaptive Huber

regression with dimension d under the fixed design, and we suppress index j in their statements

for ease of presentation.

Let Lτ (θ) := n−1
∑n

i=1 ℓτ (yi − zTi θ). Lemma A.4.1.1 provides the lower bound of

λmin{S−1/2
n ∇2Lτ (θ̃)S

−1/2
n }, which can be shown by slightly modifying similar arguments in [12]

under Condition 3.

Lemma A.4.1.1. Assume Condition 3 holds and vδ := {E(|ϵ|2+δ)}1/(2+δ) <∞ for δ ∈ (0.2]. Then

for any t, r > 0, the matrix S
−1/2
n ∇2Lτ (θ̃)S

−1/2
n with τ > 2L2r satisfies that

min
θ̃∈Rd+1:∥S

1/2
n (θ̃−θ)∥≤r

λmin{S−1/2
n ∇2Lτ (θ̃)S

−1/2
n }

≥ 1− (2L2r/τ)
2 − L2

2{(2vδ/τ)2+δ + (2n)−1/2t1/2},

with probability at least 1− exp(−t) where L2 = max1≤i≤n ∥z̃i∥.

Proof. It follows that

S−1/2
n ∇2Lτ (θ)S

−1/2
n = n−1

n∑

i=1

z̃iz̃
T
i I(|yi − zTi θ| ≤ τ)

= I − n−1

n∑

i=1

z̃iz̃
T
i I(|yi − zTi θ| > τ).

Define θ̃0 = θ̃ − θ so that yi − zTi θ̃ = ϵi − zTi θ̃0., then it follows that
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I(|yi − zTi θ̃| > τ) ≤ I(|ϵi| > τ/2) + I(|zTi θ̃0| > τ/2).

For any u ∈ Sd and θ̃ ∈ Rd+1 satisfying ∥S1/2
n θ̃0∥2 ≤ r,

⟨u, S−1/2
n ∇2Lτ (θ)S

−1/2
n u⟩

≥ 1− n−1

n∑

i=1

⟨z̃i, u⟩2I(|ϵi| > τ/2)− n−1

n∑

i=1

⟨z̃i, u⟩2I(|zTi θ̃0| > τ/2)

≥ 1− max
1≤i≤n

∥z̃i∥22

{
n−1

n∑

i=1

I(|ϵi| > τ/2) + 4τ−2∥S1/2
n θ̃0∥22

}

≥ 1− (2L2r/τ)
2 − L2

2n
−1

n∑

i=1

I(|ϵi| > τ/2),

provided that τ > 2L2r where the inequality in the third line holds by

n−1

n∑

i=1

⟨z̃i, u⟩2I(|zTi θ̃0| > τ/2) ≤ n−1

n∑

i=1

⟨z̃i, u⟩2
|zTi θ̃0|2
|zTi θ̃0|2

I(|zTi θ̃0| > τ/2)

≤ 4τ−2

(
n−1

n∑

i=1

⟨z̃i, u⟩2|z̃Ti S1/2
n θ̃0|2

)

≤
(
max
1≤i≤n

∥z̃i∥2
)
4τ−2∥S1/2

n θ̃0∥22

(
n−1

n∑

i=1

⟨z̃i, u⟩2
)

=

(
max
1≤i≤n

∥z̃i∥2
)
4τ−2∥S1/2

n θ̃0∥22

{
uT

(
n−1

n∑

i=1

z̃iz̃
T
i

)
u

}

=

(
max
1≤i≤n

∥z̃i∥2
)
4τ−2∥S1/2

n θ̃0∥22

By Hoeffding’s inequality, for any z ≥ 0, we have

n−1

n∑

i=1

I(|ϵi| > τ/2) ≤ n−1

n∑

i=1

P(|ϵi| > τ/2) + z

with probability at least 1 − exp(−2nz2). Putting this together with P(|ϵi| > τ/2) ≤ (2vδ/τ)
2+δ

and Condition 3,
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⟨u, S−1/2
n ∇2Lτ (θ)S

−1/2
n u⟩ ≥ 1− (2L2r/τ)

2 − L2
2{(2vδ/τ)2+δ + z}.

Taking z =
√
t/(2n) gives the desired result.

The following lemma is a variation of Theorem 1 in [12] under the fixed design. The original

theorem assumes finite (1 + δ) order moment of ϵi for some δ > 0. Using Lemma A.4.1.1, the

proof of Lemma A.4.1.2 is similar to that of Theorem 1 in [12], while the major technical challenge

focuses on deriving the sharp non-asymptotic rate using our adaptive robustification parameter.

Lemma A.4.1.2. Assume Conditions 1 and 3 hold and vδ < ∞ for δ ∈ (0.2]. Then, for any

t > 0 and τ0 ≥ vδ, the adaptive Huber regression estimator θ̂ = (µ̂, β̂
T
)T ∈ Rd+1 in (2.2.3) with

τ = τ0(n/t)
1/(2+δ) satisfies

∥S1/2
n (θ̂ − θ)∥ ≤ C(L∞, δ, vδ)d

1/2

(
t

n

)1/2

with probability at least 1− (2d+ 3) exp(−t) as long as n ≥ 32L4
∞d

2t, where

L∞ = max1≤i≤n ∥z̃i∥∞ and C(L∞, δ, vδ) is a constant only depending on L∞, δ, and vδ.

Proof. Recall that τ = τ0(n/t)
1/(2+δ). Let θ̂η = θ + η(θ̂ − θ) with η ∈ (0, 1] so that ∥S1/2

n (θ̂η −

θ)∥ ≤ r. Lemma 2 from [12] gives

⟨∇Lτ (θ̂η)−∇Lτ (θ), θ̂η − θ⟩ ≤ η⟨∇Lτ (θ̂)−∇Lτ (θ), θ̂ − θ⟩,

where ∇Lτ (θ̂) = 0 by the Karush-Kuhn-Tucker condition. By the mean value theorem for vector-

valued functions, the equality

∇Lτ (θ̂η)−∇Lτ (θ) =

[∫ 1

0

∇2Lτ{(1− t)θ + tθ̂η}dt
]
(θ̂η − θ)

holds, where the integral of a matrix is component-wise integrals. If there exists a constant a0 > 0

such that
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min
θ̃∈Rd+1:∥S

1/2
n (θ̃−θ)∥≤r

λmin{S−1/2
n ∇2Lτ (θ̃)S

−1/2
n } ≥ a0, (A.4.3)

then

a0∥S1/2
n (θ̂η − θ)∥22

≤ λmin

[
S−1/2
n ∇2Lτ{(1− t)θ + tθ̂η}S−1/2

n

]
∥S1/2

n (θ̂η − θ)∥22

=
(θ̂η − θ)TS

1/2
n

∥S1/2
n (θ̂η − θ)∥2

[
S−1/2
n ∇2Lτ{(1− t)θ + tθ̂η}S−1/2

n

] S
1/2
n (θ̂η − θ)

∥S1/2
n (θ̂η − θ)∥2

∥S1/2
n (θ̂η − θ)∥22

= (θ̂η − θ)T
[
∇2Lτ{(1− t)θ + tθ̂η}

]
(θ̂η − θ)

and

a0∥S1/2
n (θ̂η − θ)∥22 ≤

∫ 1

0

(θ̂η − θ)T
[
∇2Lτ{(1− t)θ + tθ̂η}

]
(θ̂η − θ)dt

= (θ̂η − θ)T
{
∇Lτ (θ̂η)−∇Lτ (θ)

}

≤ η(θ̂ − θ)T {−∇Lτ (θ)}

≤ η∥S−1/2
n ∇Lτ (θ)∥∥S1/2

n (θ̂ − θ)∥

by putting together all the results above. Setting η = 1 yields

a0∥S1/2
n (θ̂ − θ)∥2 ≤ ∥S−1/2

n ∇Lτ (θ)∥2. (A.4.4)

Denote the kth entry of ξ = S
−1/2
n ∇Lτ (θ) by ξk = −n−1

∑n
i=1 ℓ

′
τ (ϵi)z̃ik. By the triangle inequal-

ity, |ξk| ≤ |ξk − E(ξk)| + |E(ξk)| . By Proposition A.2.1, as long as n ≥ (σ−2v2+δ
δ )(2+δ)/δt, it

follows that |Eℓ′τ (ϵ)| ≤ τ−(1+δ)v2+δ
δ . By the definition of ℓ′τ (·),

∣∣E{n−1ℓ′τ (ϵi)z̃ik}
∣∣ ≤ v2+δ

δ

nτ 1+δ
L∞,

∣∣∣∣
1

n
ℓ′τ (ϵi)z̃ik − E

{
1

n
ℓ′τ (ϵi)z̃ik

}∣∣∣∣ ≤ |z̃ik|
(
τ

n
+

v2+δ
δ

nτ 1+δ

)
≤ L∞

(
τ

n
+

v2+δ
δ

nτ 1+δ

)
, and

E
[
{n−1ℓ′τ (ϵi)z̃ik − n−1E{ℓ′τ (ϵi)}z̃ik}2

]
≤ n−2s2z̃2ik

By Bernstein’s inequality [81],
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|ξk| ≤ f(n, t) +
v2+δ
δ

τ 1+δ
L∞ ≤ C

(
t

n

)1/2

with probability at least 1 − 2 exp(−t) as long as τ ≥ vδ(n/t)
1/(2+δ) and n > t where C is a

constant depending on L∞, δ and vδ, and

f(n, t) =
L∞

3

t

n

(
τ +

v2+δ
δ

τ 1+δ

)
+

1

3

{
L2
∞

9

t2

n2

(
τ +

v2+δ
δ

τ 1+δ

)2

+ 18s2
t

n

1

n

n∑

i=1

z̃2ik

}1/2

≤ L∞

3

t

n

(
τ +

v2+δ
δ

τ 1+δ

)
+
L∞

3

{
1

9

t2

n2

(
τ +

v2+δ
δ

τ 1+δ

)2

+ 18s2
t

n

}1/2

≾

(
t

n

)1/2

.

Then, for any t > 0,

P(∥ξ∥2 ≥ C(d+ 1)1/2n−1/2t1/2) ≤ P(∥ξ∥∞ ≥ Cn−1/2t1/2)

≤
d+1∑

k=1

P(|ξk| ≥ Cn−1/2t1/2)

≤ 2(d+ 1) exp(−t).

(A.4.5)

By Lemma A.4.1.1, (A.4.3) holds for a0 = 1/2 and r = τ/(4L2) with probability at least 1 −

exp(−t) since

min
∥S

1/2
n (θ̃−θ)∥≤τ/(4L2)

λmin{S−1/2
n ∇2Lτ (θ̃)S

−1/2
n } ≥ 3

4
− L2

2

{(
2vδ
τ0

)2+δ
t

n
+

(
t

2n

)1/2
}

≥ 1

2
,

holds as long as n ≥ max(32L4
2, 2

5+δL2
2)t = 32max(L4

2, 2
δL2

2)t. By (A.4.4) and (A.4.5), we have

∥S1/2
n (θ̂ − θ)∥ ≤ 2Cd1/2n−1/2t1/2

with probability at least 1− (2d+ 3) exp(−t).
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Lemma A.4.1.3 provides a nonasymptotic Bahadur representation under the fixed design, and

it implies that
√
nS

1/2
n (θ̂ − θ) can be approximated by the multivariate normal distribution. It is a

variation of Theorem 3.3 in the first version of [12], which is available on ArXiv:1706.06991v1. It

can be proved using Lemma A.4.1.2 with τ = τ0(n/t)
1/(2+δ).

Lemma A.4.1.3. Assume that Conditions 3 and 4 hold, and that vδ < ∞ for δ ∈ (0.2]. Then, for

any t > 0 and τ0 ≥ vδ, the estimator θ̂ given in (2.2.3) with τ = τ0(n/t)
1/(2+δ) satisfies that

P

{∥∥∥∥∥S
1/2
n (θ̂ − θ)− 1

n

n∑

i=1

ℓ′τ (ϵi)S
−1/2
n Zi

∥∥∥∥∥ ≥ Aτ0(d+ t)1/2
(dt)1/2

n

}
≤ 2(d+ 2)e−t,

whenever n ≥ max{32L4
∞d

2t, 2κ−2(2d+ t)}, where A > 0 is a constant depending only on M in

Condition 4, C(L∞, δ, vδ) from Lemma A.4.1.2, and τ−2
0 ∥∆n,δ∥ with ∆n,δ = n−1

∑n
i=1 v

2
δ z̃iz̃

T
i .

We conclude this subsection with the counterparts of results in Section A.2.2. From Lemma

A.4.1.3, the adaptive Huber regression estimator is expected to be approximated by a Bahadur

representation under the fixed design.

Corollary A.4.1. For T◦
j and its Bahadur representation in (A.4.1), it holds

∥T◦
j − σ

−1/2
ϵ,jj (sj + rj)∥ ≤ Aτ0j(d+ t)1/2

dt

(nσϵ,jj)1/2

with probability at least 1− 2(d+ 2) exp(−t).

The following lemmas show that the distribution of the Bahadur representation in (A.4.1) is

close to N(0, σ2
ϵ,jjI). We decompose |P(∥σ−1/2

ϵ,jj sj∥ ≥ x) − P(∥G∥ ≥ x)| into two parts. Lemma

A.4.1.4 quantifies the difference between the cumulative distribution functions of ∥σ−1/2
ϵ,jj sjG∥ and

∥G∥, and Lemma A.4.1.5 quantifies the distinction between the cumulative distribution functions

of ∥σ−1/2
ϵ,jj sjG∥ and ∥σ−1/2

ϵ,jj sj∥. Their proofs are similar to those of Lemmas A.2.2.1-A.2.2.2 and

therefore are omitted.
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Lemma A.4.1.4. Let G ∼ N(0, I) ∈ Rq. For τj = τ0j(n/t)
1/(2+δ) for some δ ∈ (0, 2] where

τ0j ≥ vj,δ,

sup
x∈R+

∣∣∣P(∥σ−1/2
ϵ,jj sjG∥ ≥ x)− P(∥G∥ ≥ x)

∣∣∣ ≤ q1/2
v2+δ
δ

δτ δ0jσϵ,jj

(
t

n

)δ/(2+δ)

.

Lemma A.4.1.5. Let G ∼ N(0, I) ∈ Rq.

sup
x∈R+

|P(∥σ−1/2
ϵ,jj sj∥ ≥ x)− P(∥σ−1/2

ϵ,jj sjG∥ ≥ x)| ≾ n−1/2q7/4.

A.5 Additional results from simulation studies

In this section, we report additional numerical results for simulations detailed in Section 2.4

in the main paper. For ease of presentation, we revisit the simulation settings. We generate data

from (2.2.1) in the main paper for n = 85, 120, 150, p = 1000, 2000, p1 = 50, and d = 6, 8. We

consider three heavy-tailed error distributions:

(a) Pareto distribution with shape parameter 4 and scale parameter 1,

(b) log-normal distribution with µ = 0 and σ = 1, and

(c) a mixture of the log-normal distribution in (b) and the t2 distribution with proportion 0.7 and

0.3 respectively.

To incorporate dependence, we set Ξ = 100R
1/2
ϵ E, where the correlation matrix Rϵ has one of the

following three structures:

• Model 1, Rϵ is the identity matrix;

• Model 2, Rϵ = (rϵ,jk)1≤j,k≤p is sparse with rϵ,jj = 1 and rϵ,ij = rϵ,ji independently drawn

from 0.3× Bernoulli(0.1) for i ̸= j; and

• Model 3, Rϵ = (rϵ,jk)1≤j,k≤p with rϵ,jj = 1, rϵ,j,j+1 = rϵ,j+1,j = 0.3, rϵ,j,j+2 = rϵ,j+2,j = 0.1,

and rϵ,j,j+k = rϵ,j+k,j = 0 for k ≥ 3.
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For each j = 1, . . . , p, we set µj = 5000 and consider two hypotheses:

• Hypothesis 1, H0j : 1
Tβj = 0 versus Haj : 1

Tβj ̸= 0, where q = 1, and

• Hypothesis 2, H0j : βj = 0 ∈ Rd versus Haj : βj ̸= 0 (j = 1, . . . , p), where q = d.

For Hypothesis 1, we let βjk ∼ Unif(−150, 150) for 1 ≤ j ≤ p and 1 ≤ k ≤ d − 1, βjd =

−∑d−1
k=1 βjk for 1 ≤ j ≤ p − p1 so that 1Tβj = 0, and βjd = δd1/2Wj −

∑d−1
k=1 βjk for p −

p1 + 1 ≤ j ≤ p, where Wj are Rademacher random variables. For Hypothesis 2, let βj = 0 for

1 ≤ j ≤ p− p1, and βjk = (2d−1)1/2δWjk for p− p1 + 1 ≤ j ≤ p and 1 ≤ k ≤ d, where Wjk are

Rademacher random variables. We take δ = 22.5 for results in Figures A.1 to A.11.

Results for testing different hypotheses under Model 1 are presented in Figures A.1-A.4, and

those under Model 3 are depicted in Figures A.8-A.11. The simulation results for Model 2 with

different d’s are displayed in Figures A.5-A.7. Similar observations to Section 2.4 are made from

these extra numerical results. The proposed method that employs data-adaptive Huber regression

or selects τj via five-fold cross-validation outperforms other competing methods in general with

satisfactory control of the empirical false discovery rate and good powers. When n is small and p

is large (as p = 2000), the control of empirical false discovery rate is challenging for all methods.

However, as n increases, our method preserves the nominal level of false discovery rate and is

more powerful than edgeR and limma. Similar observations are made when the dependence is

strong (Model 3) and d is large.

Similar to Figure 2.3 in the main paper, Figure A.12 compares the powers of different methods

for testing Hypothesis 1, the linear contrast, with varying signal strengths as defined in Section 2.4.

Similar to Figure 2.3 in the main paper, the proposed method with either adaptive Huber regression

or cross validation-selected τj’s outperforms limma and edgeR for all error settings.
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Figure A.1: Empirical false discovery rate (FDR) and power for testing Hypothesis 1, a single contrast, under Model 1 (independent and identically distributed
errors) with d = 6 by our procedure with the fully data adaptive Huber regression (D-AH, ■); our procedure with the adaptive Huber regression and the five-fold
cross-validation (AH-cv, ♦); the ordinary least square estimator (OLS, •); limma (▲); limma with the robust regression (limma-R, ▼); and edgeR (+). Each
point on the figures displays the empirical false discovery rates and power of the corresponding method at a nominal false discovery rate, which is marked as a
vertical gray dashed line. The pre-specified false discovery rates are 0.05, 0.1, 0.15, 0.2. Error distributions are displayed in the plot captions.
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Figure A.2: Empirical false discovery rate (FDR) and power for testing Hypothesis 1, a single contrast, under Model 1 (independent and identically distributed
errors) with d = 8 by our procedure with the fully data adaptive Huber regression (D-AH, ■); our procedure with the adaptive Huber regression and the five-fold
cross-validation (AH-cv, ♦); the ordinary least square estimator (OLS, •); limma (▲); limma with the robust regression (limma-R, ▼); and edgeR (+). Each
point on the figures displays the empirical false discovery rates and power of the corresponding method at a nominal false discovery rate, which is marked as a
vertical gray dashed line. The pre-specified false discovery rates are 0.05, 0.1, 0.15, 0.2. Error distributions are displayed in the plot captions.
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Figure A.3: Empirical false discovery rate (FDR) and power for testing Hypothesis 2 under Model 1 (independent and identically distributed errors) with d = 6
by our procedure with the fully data adaptive Huber regression (D-AH, ■); our procedure with the adaptive Huber regression and the five-fold cross-validation
(AH-cv, ♦); the ordinary least square estimator (OLS, •); limma (▲); limma with the robust regression (limma-R, ▼); and edgeR (+). Each point on the figures
displays the empirical false discovery rates and power of the corresponding method at a nominal false discovery rate, which is marked as a vertical gray dashed
line. The pre-specified false discovery rates are 0.05, 0.1, 0.15, 0.2. Error distributions are displayed in the plot captions.
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Figure A.4: Empirical false discovery rate (FDR) and power for testing Hypothesis 2 under Model 1 (independent and identically distributed errors) with d = 8
by our procedure with the fully data adaptive Huber regression (D-AH, ■); our procedure with the adaptive Huber regression and the five-fold cross-validation
(AH-cv, ♦); the ordinary least square estimator (OLS, •); limma (▲); limma with the robust regression (limma-R, ▼); and edgeR (+). Each point on the figures
displays the empirical false discovery rates and power of the corresponding method at a nominal false discovery rate, which is marked as a vertical gray dashed
line. The pre-specified false discovery rates are 0.05, 0.1, 0.15, 0.2. Error distributions are displayed in the plot captions.
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Figure A.5: Empirical false discovery rate (FDR) and power for testing Hypothesis 1 (H1) and Hypothesis 2 (H2) under Model 2 (sparsely dependent errors) with
p = 2000 and d = 6 by our procedure with the fully data adaptive Huber regression (D-AH, ■); our procedure with the adaptive Huber regression and the five-fold
cross-validation (AH-cv, ♦); the ordinary least square estimator (OLS, •); limma (▲); limma with the robust regression (limma-R, ▼); and edgeR (+). Each
point on the figures displays the empirical false discovery rates and power of the corresponding method at a nominal false discovery rate, which is marked as a
vertical gray dashed line. The pre-specified false discovery rates are 0.05, 0.1, 0.15, 0.2. Error distributions are displayed in the plot captions.
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Figure A.6: Empirical false discovery rate (FDR) and power for testing Hypothesis 1, a single contrast, under Model 2 (sparsely dependent errors) with d = 8
by our procedure with the fully data adaptive Huber regression (D-AH, ■); our procedure with the adaptive Huber regression and the five-fold cross-validation
(AH-cv, ♦); the ordinary least square estimator (OLS, •); limma (▲); limma with the robust regression (limma-R, ▼); and edgeR (+). Each point on the figures
displays the empirical false discovery rates and power of the corresponding method at a nominal false discovery rate, which is marked as a vertical gray dashed
line. The pre-specified false discovery rates are 0.05, 0.1, 0.15, 0.2. Error distributions are displayed in the plot captions.
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Figure A.7: Empirical false discovery rate (FDR) and power for testing Hypothesis 2 under Model 2 (sparsely dependent errors) with d = 8 by our procedure with
the fully data adaptive Huber regression (D-AH, ■); our procedure with the adaptive Huber regression and the five-fold cross-validation (AH-cv, ♦); the ordinary
least square estimator (OLS, •); limma (▲); limma with the robust regression (limma-R, ▼); and edgeR (+). Each point on the figures displays the empirical
false discovery rates and power of the corresponding method at a nominal false discovery rate, which is marked as a vertical gray dashed line. The pre-specified
false discovery rates are 0.05, 0.1, 0.15, 0.2. Error distributions are displayed in the plot captions.
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Figure A.8: Empirical false discovery rate (FDR) and power for testing Hypothesis 1, a single contrast, under Model 3 (banding dependence in errors) with d = 6
by our procedure with the fully data adaptive Huber regression (D-AH, ■); our procedure with the adaptive Huber regression and the five-fold cross-validation
(AH-cv, ♦); the ordinary least square estimator (OLS, •); limma (▲); limma with the robust regression (limma-R, ▼); and edgeR (+). Each point on the figures
displays the empirical false discovery rates and power of the corresponding method at a nominal false discovery rate, which is marked as a vertical gray dashed
line. The pre-specified false discovery rates are 0.05, 0.1, 0.15, 0.2. Error distributions are displayed in the plot captions.
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Figure A.9: Empirical false discovery rate (FDR) and power for testing Hypothesis 2 under Model 3 (banding dependence in errors) with d = 6 by our procedure
with the fully data adaptive Huber regression (D-AH, ■); our procedure with the adaptive Huber regression and the five-fold cross-validation (AH-cv, ♦); the
ordinary least square estimator (OLS, •); limma (▲); limma with the robust regression (limma-R, ▼); and edgeR (+). Each point on the figures displays the
empirical false discovery rates and power of the corresponding method at a nominal false discovery rate, which is marked as a vertical gray dashed line. The
pre-specified false discovery rates are 0.05, 0.1, 0.15, 0.2. Error distributions are displayed in the plot captions.
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Figure A.10: Empirical false discovery rate (FDR) and power for testing Hypothesis 1, a single contrast, under Model 3 (banding dependence in errors) with d = 8
by our procedure with the fully data adaptive Huber regression (D-AH, ■); our procedure with the adaptive Huber regression and the five-fold cross-validation
(AH-cv, ♦); the ordinary least square estimator (OLS, •); limma (▲); limma with the robust regression (limma-R, ▼); and edgeR (+). Each point on the figures
displays the empirical false discovery rates and power of the corresponding method at a nominal false discovery rate, which is marked as a vertical gray dashed
line. The pre-specified false discovery rates are 0.05, 0.1, 0.15, 0.2. Error distributions are displayed in the plot captions.
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Figure A.11: Empirical false discovery rate (FDR) and power for testing Hypothesis 2 under Model 3 (banding dependence in errors) with d = 8 by our
procedure with the fully data adaptive Huber regression (D-AH, ■); our procedure with the adaptive Huber regression and the five-fold cross-validation (AH-cv,
♦); the ordinary least square estimator (OLS, •); limma (▲); limma with the robust regression (limma-R, ▼); and edgeR (+). Each point on the figures displays
the empirical false discovery rates and power of the corresponding method at a nominal false discovery rate, which is marked as a vertical gray dashed line. The
pre-specified false discovery rates are 0.05, 0.1, 0.15, 0.2. Error distributions are displayed in the plot captions.
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Figure A.12: Empirical powers for testing Hypothesis 1, a single contrast, with η = {0.30, 0.34, . . . , 0.66, 0.7},
n = 100, d = 6, and p = 1000 by our procedure with the fully data adaptive Huber regression (D-AH, ■); our
procedure with the adaptive Huber regression and the five-fold cross-validation (AH-cv, ♦); limma (▲); and edgeR
(+). Columns (a)-(c) are results for Models 1-3, respectively.

A.6 Additional results for the analysis on Project Gutenberg

In this section, we present addition details for analyzing data from the Standardized Project

Gutenberg Corpus (SPGC) as described in Section 2.5 in the main article. Table A.1 displays a
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Table A.1: Snapshot of the raw data in SPGC. PG id’s represent different books: Alice’s Adventures in Won-

derland (PG19033) by Lewis Carroll, Oliver Twist (PG730), Great Expectations (PG1400), and A Christmas

Carol (PG24022) by Charles Dickens, and A Study in Scarlet (PG244), The Sign of the Four (PG2097), and
The Hound of the Baskervilles (PG2852) by Arthur Conan Doyle.

word/PG id PG19033 PG730 PG1400 PG24022 PG244 PG2097 PG2852
the 636 9493 8143 1595 2569 2335 3330
and 337 5239 7071 1046 1368 1179 1628
of 201 3852 4433 696 1215 1122 1594
to 249 3852 5071 676 1093 1079 1408
a 277 3702 4040 709 1005 1092 1306
i 160 1357 6632 280 938 1219 1497
jolly 0 7 20 3 0 0 0
king 25 4 14 0 0 0 0
loss 0 20 12 1 4 3 4
colour 0 5 0 4 5 0 6
oliver 0 859 0 0 0 0 1
shaded 0 0 5 0 0 2 1
alice 172 0 0 0 5 0 0
murder 1 19 19 0 18 10 6
christmas 0 1 9 85 0 0 0

snapshot of the raw word count data. The empirical kurtosis of the normalized data is reported in

Figure A.13, which provides the evidence of heavy tailedness of the data.

The word counts displayed in Table A.1 agrees with the Zipf’s law [70], that is the frequency

of a word in a corpus is inversely proportional to its rank in the frequency table. A few topic-

related words or proper nouns are more frequently encountered in certain works. For example,

A Christmas Carol has more “Christmas" than other books, and Oliver Twist has a substantially

higher frequency of “Oliver" than others. In addition, the raw word count data matrix is sparse and

consists of 62751 unique English words. Most of the words have zero counts, 89% of them are

removed by the filtering process in Section 2.5 in the main paper accordingly. Upon filtering, 51%

of all the entries in the normalized count matrix are zero, and 82% of them are below 5.

Figure A.14 (a) displays a hierarchical clustering result for 23 authors from U.K. and U.S. in

the original SPGC data. We observe that Charles Darwin and Thomas H. Huxley were closely

related and, as a matter of fact, they are both English biologists in the nineteenth century who

focused on the evolution theory. Hence, in terms of the word count distributions, their writings
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Figure A.13: The empirical kurtosis of words counts for 167 books (panel (a)) and the empirical kurtosis
of counts for 6839 words (panel (b)) from the works of Lewis Carroll, Charles Dickens, and Arthur Conan
Doyle. The normalized counts are used.

are more similar to each other and distinguishable compared to other authors. In addition, Lewis

Carroll, Arthur Conan Doyle, and Charles Dickens are closely related from Figure A.14 (a). From

Figure A.14 (b), we notice that the works among Lewis Carroll, Arthur Conan Doyle, and Charles

Dickens are separated in general.

The Venn diagram in Figure A.15 displays the number of differentially represented words for

hypotheses considered in the first application in Section 2.5 in the main paper. For example,

Dickens has 949 differentially represented words that distinguish him from the other two authors.

Among those 949 words, “catch" and “curious" appear to be the most significant whereas “clock",

“horseback", and “present" are the least significant ones. Further quantitative linguistic or literature

investigations are required to uncover more insights on these identified differentially represented

words.
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(a) Hierarchical clustering for splitting 23 authors
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Figure A.14: Exploratory displays of the data.
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Figure A.15: Comparing word counts of books of Lewis Carroll, Charles Dickens, and Arthur Conan Doyle
by our method with the nominal false discovery rate controlled at 0.5%. The Venn diagram displays the
number of differentially represented words for Hypothesis CDD2 (Carroll), Hypothesis CDD3 (Dickens),
and Hypothesis CDD4 (Doyle).
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Appendix B

Supplementary materials for Chapter 4

B.1 Derivation of DRAGON

In this subsection, we provide the derivation of (4.2.23). We first check the relationship between

(4.2.14) and (4.2.22). This argument is also employed to verify the relationship between scaled

Lasso and square-root Lasso [102].

Lemma B.1.0.1. (4.2.14) has the same β̂j as (4.2.22) when σj = n−1/2∥Xj −X−jβ̂j∥2.

Proof. It holds by the inequality of arithmetic-geometric mean:

∥Xj −X−jβj∥22
2nσj

+
σj
2

≥ ∥Xj −X−jβj∥2
n

,

where the equality holds when σ2
j = n−1∥Xj − X−jβj∥22. Hence, σj = n−1/2∥Xj − X−jβ̂j∥2

holds for the common solution β̂j .

Hence, we can use (4.2.22) for the algorithm derivation, which provides simplicity in algebra.

Following that, we derive (4.2.23) from (4.2.22) by using similar argument in [147]. By the

Karush-Kuhn-Tucker condition, for k ̸= j,

− 1

nσj
⟨Xk,Xj −X−jβj⟩+ λ sgn(βj,k) + ρ

βj,k
∥(1,−βj)∥2

= 0, (β ̸= 0) (B.1.1)

where ∂|βj,k| is a sub-gradient of |βj,k|.

If βj,k ̸= 0, it holds that

− 1

nσj
⟨Xk,Xj −X−jβj⟩+ λ sgn(βj,k) + ρ

βj,k
∥(1,−βj)∥2

= 0,

then it holds that
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(∥Xk∥22
nσj

+
λ

|βj,k|
+

ρ

∥(1,−βj)∥2

)
βj,k =

1

nσj
⟨Xk,Xj −

p∑

l=1,l ̸=j

βj,lXl⟩. (B.1.2)

By taking the absolute value of the second equation above, we obtain

|βj,k| =
(∥Xk∥22

nσj
+

ρ

∥(1,−βj)∥2

)−1
(

1

nσj
⟨Xk,Xj −

p∑

l=1,l ̸=j

βj,lXl⟩ − λ

)

+

. (B.1.3)

where (x)+ = max(0, x). Plugging (B.1.3) into (B.1.2), we have

βj,k =

(∥Xk∥22
nσj

+
ρ

∥(1,−βj)∥2

)−1

Sλ

(
1

nσj
⟨Xk,Xj −

p∑

l=1,l ̸=j

βj,lXl⟩
)
. (B.1.4)

We conclude this subsection with code implementation. Our implementation is based on

RcppArmadillo, which allows our implementation is faster than pure Rimplementation. Given

β
(t−1)
j , we compute and store XTX in the initialization step and ∥(1,−β

(t−1)
j )∥2 for updating β(t)

j,k

to reduce computation time.

B.2 Proofs of main theorems

B.2.1 Proof of Proposition 4.2.4

When ρ = 0, it holds by the relationship between LASSO and square-root LASSO [168].

Assuming ρ > 0. For notation simplicity, we use β̃ := (1,−β). Let λ∗ is the tuning parameter

of (4.2.13). The KKT condition of (4.2.13) is

2

(
1√
n
∥Xβ̃∥2 + ρ∥β̃∥2

)(
− 1√

n

XT

−jXβ̃

∥Xβ̃∥2
+ ρ

β

∥β̃∥2

)
+ λ∗∇∥β∥1 = 0;

∥β∥1 ≤ c for some c > 0;

λ∗(∥β∥1 − c) = 0

λ∗ ≥ 0.

(B.2.1)

Let λ∗ is the tuning parameter of (4.2.13). The KKT condition of (4.2.14) is
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− 1√
n

XT

−jXβ̃

∥Xβ̃∥2
+ ρ

β

∥β̃∥2
+ λ∗∗∇∥β∥1 = 0;

∥β∥1 ≤ c for some c > 0;

λ∗∗(∥β∥1 − c) = 0

λ∗∗ ≥ 0.

(B.2.2)

By Lemma B.3.2.2, for the unique solution of (4.2.13) β̂, the two optimization problems have the

same solution when

λ∗∗ =

(
1√
n
∥Xj −X−jβ̂∥2 + ρ∥(1,−β̂)∥2

)−1
λ∗

2

holds.

B.2.2 Proof of Proposition 4.2.5

Let σ̂j = n−1/2∥Xj −X−jβ∥2 and γ̂jk := n−1⟨Xk,Xj −X−jβ⟩. i) and ii) can be proved by

using the argument of Lemmas 4.2.3.1 and 4.2.3.2. We provide the proof of i) only for readers’

convenience. For ρ > 0 and β̂j,k ̸= 0, the solution of the optimization problem (4.2.14) satisfies

− γ̂jk
σ̂j

+ ρ
β̂jk

∥(1,−β̂j)∥2
+ λ sgn(β̂jk) = 0,

ρ =
∥(1,−β̂j)∥2

β̂jk

(
γ̂jk
σ̂j

− λ sgn(β̂jk)

)
.

This implies sgn{γ̂jkσ̂−1
j − λ sgn(β̂jk)} = sgn(β̂jk). Then, the partial derivative,

∂ρ

∂β̂jk
=
β̂2
jk − ∥(1,−β̂j)∥22
β̂2
jk∥(1,−β̂j)∥2

(
γ̂jk
σ̂j

− λ sgn(β̂jk)

)

−
∥(1,−β̂j)∥2(n−1∥Xk∥22σ̂2

j − γ̂2jk)

σ̂3
j

1

β̂jk
,
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has the same sign as −β̂jk since ∥n−1/2Xk∥22σ̂2
j ≥ γ̂2jk by Cauchy-Schwartz inequality and β̂2

jk −

∥(1,−β̂j)∥22 < 0. This proves i).

B.3 Auxiliary results

B.3.1 Proofs of Lemmas for the bivariate example

In this subsection, we provide proofs for Lemmas 4.2.3.1 and 4.2.3.2 from the bivariate exam-

ple to study properties of (4.2.14). We first present the proof of Lemma 4.2.3.1, which is about the

population version optimization problem (4.2.19).

proof of Lemma 4.2.3.1. The minimizer β∗,ρ satisfies

β∗,ρ − r

{1− r2 + (β∗,ρ − r)2}1/2 + ρ
β∗,ρ

(1 + β2
∗)

1/2
= 0. (B.3.1)

When ρ = 0, β∗,0 = r. For the rest of the proof, we assume ρ > 0. If β∗,ρ > 0, then β∗,ρ−r < 0. If

β∗,ρ < 0, then β∗,ρ−r > 0. This proves (i) and (ii). When ρ = 1, it holds that r2β2
∗,1−2rβ∗,1+r

2 =

0. Combining this with (ii), we prove (iii).

From (B.3.1), we obtain

ρ =
r − β∗,ρ
β∗,ρ

{
1 + β2

∗,ρ

1− r2 + (β∗,ρ − r)2

}1/2

,

∂ρ

∂β∗,ρ
=

1

β2
∗,ρ{1− r2 + (β∗,ρ − r)2}2

{
1− r2 + (β∗,ρ − r)2

1 + β2
∗,ρ

}1/2

f(β∗,ρ),

f(β∗,ρ) := −(r − β∗,ρ){1− r2 + (β∗,ρ − r)2} − β∗,ρ(1− r2)(1 + β2
∗,ρ).

(B.3.2)

Since the sign of f(β∗,ρ) is opposite to the one of β∗,ρ, and it has the same sign as ∂ρ/∂β∗,ρ and

∂β∗,ρ/∂ρ. This proves (iv).

By (iv), |β∗,ρ| shrinks as ρ increases. If β∗,ρ → c ̸= 0 as ρ → ∞, the first equation in (B.3.2)

does not hold. Hence, β∗,ρ → 0 as ρ→ ∞.
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Following this, we present the proof of Lemma 4.2.3.2, which is the empirical version of

(4.2.19).

proof of Lemma 4.2.3.2. Let σ̂2 = n−1
∑n

i=1(X1i−X2iβ)
2 and γ̂ := n−1

∑n
i=1{(X1i−X2iβ)X2i}.

The minimizer satisfies

− γ̂
σ̂
+ ρ

β

(1 + β2)1/2
= 0. (B.3.3)

It is easy to prove (i) and (ii) from (B.3.3). β̂0 = β̂OLS is straightforward. ii) is proved by the

similar argument as Lemma 4.2.3.1.

To prove (iii) and (iv), we rearrange (B.3.3),

ρ =
(1 + β2)1/2

σ̂

γ̂

β
. (B.3.4)

For ρ > 0, (B.3.4) implies the followings:

sgn(β) = sgn(γ̂),

∂ρ

∂β
=

1

σ̂β2(1 + β2)1/2

{
−γ̂ − (1 + β2)

(
1

n

n∑

i=1

X2
2i −

γ̂2

σ̂2

)
β

}
.

Note that σ̂2n−1
∑
X2

2i ≥ γ̂2 by Cauchy-Schwartz inequality. This proves (iii) by sgn(∂β/∂ρ) =

sgn(∂ρ/∂β) = − sgn(β). We can prove (iv) using the same argument as Lemma 4.2.3.1.

B.3.2 Technical lemmas for Proposition 4.2.4

We provide lemmas as building blocks for the main proofs.

Lemma B.3.2.1. For β̃ = (1,−β) ∈ Rp, it follows that

1. ∥β∥1 is convex but not strictly convex;

2. ∥β̃∥2 is strictly convex;

3. ∥Xj −X−jβ∥2 = ∥Xβ̃∥2 is convex;

for all β.
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Proof. Through out the proofs, set α ∈ [0, 1] and β1 ̸= β2.

By the definition of vector norms, it is straightforward that ∥β∥1 is convex. The equality

α∥β1∥1 + (1 − α)∥β2∥1 = ∥αβ1 + (1 − α)β2∥1 holds when β1 = cβ2 for any c ∈ R+, which

proves the first one.

For β1 ̸= β2, it follows that

∥α(1,−β1) + (1− α)(1,−β2)∥2 ≤ ∥α(1,−β1)∥2 + ∥(1− α)(1,−β2)∥2

= α∥β̃1∥2 + (1− α)∥β̃2∥2

thus ∥β̃∥2 is convex. The equality holds when (1,−β1) = c(1,−β2) for any c ∈ R+, which

implies c = 1 and β1 = β2. Therefore, ∥β̃∥2 is strictly convex.

Lastly, ∥Xj −X−jβ∥2 is convex by the triangle inequality:

∥Xj −X−j{αβ1 + (1− α)β2}∥2 = ∥α(Xj −X−jβ1) + (1− α)(Xj −X−jβ2)∥2

≤ α∥Xj −X−jβ1∥2 + (1− α)∥Xj −X−jβ2∥2.

In the following result, we prove the uniqueness of (4.2.13), which is similar to the uniqueness

of the elastic net solution [169].

Lemma B.3.2.2. (4.2.13) has a unique solution.

Proof. Since (4.2.13) is a convex problem, there exists a solution. By Lemma B.3.2.1, f(β) :=
(
n−1/2∥Xj −X−jβ∥2 + ρ∥β̃∥2

)2
+ λ∥β∥1 is strictly convex. This implies the uniqueness the

solution.

We can also prove the uniqueness of the solution of (4.2.14).

Lemma B.3.2.3. (4.2.14) has a unique solution.
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Proof. Since (4.2.14) is a convex problem, there exists a solution. By Lemma B.3.2.1, f(β) :=

n−1/2∥Xj−X−jβ∥2+λ∥β∥1+ρ∥β̃∥2 is strictly convex. This implies the uniqueness the solution.

B.4 More on Algorithm

B.4.1 ADMM algorithm for (4.2.14)

In addition to Algorithm in Section 4.2.4, we introduce another algorithm by the alternating

direction methods of multipliers (ADMM) algorithm [170]. ADMM algorithm is an algorithm

well fitted for distributed convex optimization.

We reformulate the optimization problem (4.2.14) for ADMM algorithm by introducing an

equality constraint:

argmin
β,θ

{
1

n1/2
∥θ∥2 + λ∥β∥1 + ρ∥β̃∥2

}

subject to θ = Xβ̃,

(B.4.1)

which can be solved by

θ
(t+1)
i =

(
1 +

1

n1/2γ

1

∥θ∗
i ∥2

)−1

(µ
(t)
i +Xij −XT

i,−jβ
(t))

β
(t+1)
k =

(
ρ

∥(1,−β∗
k)∥2

+ γ∥Xk∥22
)−1

Sλ (γ ⟨Xk,vjk⟩)

µ(t+1) = µ(t) + (Xj −X−jβ
(t+1) − θ(t+1))

(B.4.2)

for i = 1, . . . , n and k ∈ {1, . . . , j − 1, j + 1, . . . , d} where

θ∗
i := (θ

(t+1)
1 , . . . , θ

(t+1)
i−1 , θ

(t)
i , . . . , θ

(t)
n ),

β∗
k = (β

(t+1)
1 , . . . , β

(t+1)
k−1 , β

(t)
k , . . . , β(t)

p ),

vjk := µ(t) +Xj −
j−1∑

l=1,l ̸=k

β
(t+1)
l Xl −

d∑

l=j+1,l ̸=k

β
(t)
l Xl − θ(t+1),

Sλ(·) is the soft-thresholding operator. We call this algorithm DRAGON-ADMM.
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We provide derivation of (B.4.2). ADMM algorithm for (B.4.1) is the iterating scheme by

solving the scaled form [170]:

θ(t+1) = argmin
θ

{
n−1/2∥θ∥2 +

γ

2
∥µ(t) +Xj −X−jβ

(t) − θ∥22
}

β(t+1) = argmin
β

{
λ∥β∥1 + ρ∥β̃∥2 +

γ

2
∥µ(t) +Xj −X−jβ − θ(t+1)∥22

}

µ(t+1) = µ(t) + (Xj −X−jβ
(t+1) − θ(t+1))

(B.4.3)

for some γ > 0. The minimizer of the first problem in (B.4.3) satisfies

n−1/2 θ

∥θ∥2
+ γ(θ − µ(t) −Xj +X−jβ

(t)) = 0

⇒
(
n−1/2 1

∥θ∥2
+ γ

)
θ = γ(µ(t) +Xj −X−jβ

(t)).

Hence, we update θ by solving iterating equations

θ
(t+1)
i =

(
1 +

1

n1/2γ

1

∥θ∗
i ∥2

)−1

(µ
(t)
i +Xij −XT

i,−jβ
(t)) (B.4.4)

for i = 1, . . . , n where θ∗
i := (θ

(t+1)
1 , . . . , θ

(t+1)
i−1 , θ

(t)
i , . . . , θ

(t)
n ). The minimizer of the second

problem in (B.4.3) satisfies

λ · sign(βk) + ρ
βk

∥β̃∥2
− γXT

k(µ
(t) +Xj −X−jβ − θ(t+1)) = 0

⇒
(

ρ

∥β̃∥2
+ γ∥Xk∥22

)
βk = γ⟨Xk,µ

(t) +Xj −X−(j,k)β−k − θ(t+1)⟩ − λ · sign(βk).

Thus, we update β by

β
(t+1)
k =

(
ρ

∥β̃∗

k∥2
+ γ∥Xk∥22

)−1

Sλ (γ ⟨Xk,vjk⟩)

vjk := µ(t) +Xj −
j−1∑

l=1,l ̸=k

β
(t+1)
l Xl −

d∑

l=j+1,l ̸=k

β
(t)
l Xl − θ(t+1)

(B.4.5)
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for all k ∈ {1, . . . , j − 1, j + 1, . . . , p} where Sλ(·) is the soft-thresholding operator, β∗
k =

(β
(t+1)
1 , . . . , β

(t+1)
k−1 , β

(t)
k , . . . , β

(t)
p ), and β̃

∗

k = (1,−β∗
k).

DRAGON-ADMM is derived from (B.4.2) directly. However, it is slower than DRAGON. First

and foremost, ADMM algorithm uses augmentation parameter, which also need to be selected by

user and affect the convergence speed. Second, it requires more computations from vector and

matrix operations.

B.5 Additional results from simulation studies

In this section, we report additional numerical results for simulations detailed in Section 4.3

in the main paper. We report the results from (n, p) = {(200, 150), (200, 300)}. For ease of

presentation, we revisit the precision matrix structure settings and contamination settings.

We consider three precision matrix structures for the first stage of data generation procedure.

Construct the precision matrix by Ω = DΩ̃D where Ω̃ = {ω̃j,k}1≤j,k≤p and D is a diagonal matrix

with elements dj,j:

1. Model 1 (Banded) Set ω̃j,j = 1, ω̃j,j+1 = ω̃j+1,j = 0.6, ω̃j,j+2 = ω̃j+2,j = 0.3, ω̃j,k = 0 for

|j − k| ≥ 3. Generate dj,j ∼ uniform(1, 5).

2. Model 2 (Block diagonal) Set a block diagonal matrix with block size p/10 such that the

diagonal entries are 1 and the off-diagonal entries are 0.5, then we permute the matrix by

rows/columns to get Ω̃. We use dj,j = 1 for j = 1, . . . , p/2 and dj,j = 1.5 for j =

p/2 + 1, . . . , p to obtain the final product Ω.

3. Model 3 (Erdös-Rényi) Generate Ω̃ = {ω̃jk}1≤j,k≤p ω̃1,jj = 1, ω̃1,jk = δjkujk for j < k

where δjk ∼ Ber(0.05) and ujk ∼ uniform(0.4, 0.8), and ω̃1,kj = ω̃1,jk. Generate dj,j ∼

uniform(1, 5). Then set Ω = D{Ω̃+ (|λmin(Ω̃)|+ 0.05)I}D where λmin(·) is the smallest

eigenvalue of the matrix.

We consider three distributional perturbation scenarios on the data generation. For each pair of

(n, p), (i) Row-wise contamination- We Generate n1 = ⌈100× (1− α)⌉ samples from N(0,Ω−1)
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where Ω is the precision matrix specified above and α ∈ {0.1, 0.2, 0.3}. Then, we generate n −

n1 samples from the multivariate t3-distribution with the true precision matrix Ω; (ii) Cell-wise

contamination- Generate n samples from N(0,Ω−1). We randomly select αnp indices to add cell-

wise contaminants drawn from N(0, 1) where 1 ≤ i ≤ n, 1 ≤ j ≤ p, and α ∈ {0.1, 0.2, 0.3}; (iii)

Tail deviation; we draw n samples from the multivariate t3-distribution to have its true precision

matrix be Ω.

Figures B.1–B.3 displays results when (n, p) = (200, 150), and Figures B.4–B.6 displays re-

sults when (n, p) = (200, 300). We observe the similar phenomenon as the result from (n, p) =

(100, 150). DRAGON provides good selection performance and the smallest Frobenius norm in

the most of the settings. Erdös-Rényi graph is the most difficult structure for DRAGON in terms

of selection performance. On the other hand, DRAGON outperforms the competing methods in

block diagonal structure. DRAGON is not dominated by one of the competing methods over all

settings.
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(f) Block diagonal, Frobenius norm

Figure B.1: F1 score (left) and Frobenius norm (right) under the rowwise contamination setting when
(n, p) = (200, 150). Each boxplot summarizes the results from 100 repetitions of experiment.
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(f) Block diagonal, Frobenius norm

Figure B.2: F1 score (left) and Frobenius norm (right) under the cellwise contamination setting when
(n, p) = (200, 150). Each boxplot summarizes the results from 100 repetitions of experiment.
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Figure B.3: F1 score (left) and Frobenius norm (right) under the tail deviation setting when (n, p) =
(200, 150). Each boxplot summarizes the results from 100 repetitions of experiment.
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Figure B.4: F1 score (left) and Frobenius norm (right) under the rowwise contamination setting when
(n, p) = (200, 300). Each boxplot summarizes the results from 100 repetitions of experiment.
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Figure B.5: F1 score (left) and Frobenius norm (right) under the cellwise contamination setting when
(n, p) = (200, 300). Each boxplot summarizes the results from 100 repetitions of experiment.
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Figure B.6: F1 score (left) and Frobenius norm (right) under the tail deviation setting when (n, p) =
(200, 300). Each boxplot summarizes the results from 100 repetitions of experiment.

176


