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ABSTRACT

MRNA LOCALIZATION IN CAENORHABDITIS ELEGANS EMBRYOGENESIS

From guiding cell specification to regulating protein output, post-transcriptional regulation of

mRNA is essential for life. As a result, many mechanisms underlying post-transcriptional regula-

tion are highly conserved across the kingdoms of life. As the spatial resolution of microscopy

and sequencing assays has increased, mRNA localization has emerged as a prevalent form of

post-transcriptional regulation directing various cellular processes. Perhaps most notably, our un-

derstanding of post-transcriptional mRNA regulation and cellular function as a whole has been

revolutionized by the discovery that many well-studied mRNA foci, such as germ granules, P-

bodies, and stress granules, do not follow the lock-and-key principle of stoichiometric complex

formation, but are actually phase-separated, biomolecular condensates. Due to their liquid-like

nature, biomolecular condensates can aggregate or disperse component transcripts and proteins

with exquisite environmental and temporal sensitivity. As a result, biomolecular condensates can

regulate myriad processes as varied as co-translationally organizing protein components for com-

plex assembly (Budding yeast translation factor mRNA granules), reinforcing translation inhibition

(Germ granules) or activation (Neuronal granules), and facilitating the organization of other or-

ganelles (Axonemal dynein foci/kl-bodies). While an influx of studies have provided insights into

the function of well-studied and novel biomolecular condensates alike, much remains unknown.

What factors govern assembly and disassembly of condensates? How do they interact with one

another? Is condensation the cause or consequence of the functional regulation of any particular

mRNA? To begin to answer these questions, this thesis defines Caenorhabditis elegans as a model

organism for exploring mRNA localization, its mechanisms, and its functions with a focus on con-

densate transcripts. Thus, the discoveries made have contributed to the fields of post-transcriptional

gene regulation, mRNA localization, and condensate biology by elucidating mechanisms of local-
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ization, improving on methods of observing localization patterns, and establishing C. elegans as a

tractable model for exploration of mRNA localization.
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Chapter 1

Introduction; It’s just a Phase: Exploring the

relationship between mRNA, biomolecular

condensates, and translational control
1

1.1 Introduction

1.1.1 mRNAs on the move

The spatial organization of cells has fascinated scientists since the advent of the microscope.

Observations as early as the 1890s documented dyes concentrating within cytoplasmic aggregates

of insect germ cells, structures now known as germ granules [1, 2]. Even as those structures re-

mained mysterious, scientists found evidence of mRNA localization in embryogenesis, neurobiol-

ogy, and yeast mating-type switching [3–6]. The mRNAs localized in those studies are now classic

models of mRNA transport and localization.

In 1983, Jeffery et al. first documented mRNA localization in sea squirt embryos (Styela pli-

catea) when they reported β-actin mRNA concentrating within myoplasm (progenitor muscle tis-

sue) [7]. Later, observation of chicken embryonic fibroblasts found β-actin mRNA polarization,

this time to the leading edge of motile cells [8]. Subsequent studies found a conserved RNA se-

quence, or “zip code,” in its 3’UTR sufficient to direct its localization and repress its translation

when bound by the RNA binding protein (RBP) ZBP1 [9–11]. β-actin has since served as a foun-

dational example of the relationship between mRNA localization and translational control.

Subsequent studies in various fields have highlighted a diversity of localized mRNA. In the

mid-1980s, studies first in Xenopus and later Drosophila illustrated some maternally-deposited

transcripts partition asymmetrically in oocytes to establish cell fate [3,4]. The maternally-inherited

1This chapter is a modified version of a manuscript under review
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transcripts bicoid, oskar, nanos, and gurken in Drosophila were instrumental in determining how

mRNA transport, tethering, and localized protection from degradation contribute to spatial pat-

terning, ultimately directing cell fate specification and morphogenesis during embryonic develop-

ment [12–14].

In neurobiology, the discovery of ribosomes in dendritic spines led researchers to search for

distally localized RNAs [15]. Soon after, a transcript instrumental to synapse formation, Map2

(microtubule-associated protein 2), was found sequestered in rat hippocampal dendrites [5]. Iden-

tifying localized neuronal transcripts demonstrated that mRNA localization could extend beyond

just maternally-inherited transcripts in large egg cells. These discoveries suggested mRNA local-

ization may be a more common feature of biology than previously imagined.

As RNA detection methods have improved, so have observations of mRNA localization in

finer structures and within smaller cells. mRNA localization has been discovered in organisms

as varied as bacteria, fungi, plants, and animals [16–19]. For instance, the bglG-bglF operon

localizes to the cell membrane in E. coli [20], the ASH1 RNA localizes to the daughter cell bud

tip in yeast [6], genes essential for chloroplast function enrich at the chloroplast in Arabidopsis

thaliana [21, 22], and characterization of region- and organelle-specific transcriptomes in humans

is occurring rapidly [23–26]. In a noteworthy study, researchers surveyed the localization of 8000

transcripts by in situ hybridization within Drosophila embryos. They found that, depending on

developmental stage, up to 90% were spatially restricted [27, 28]. By combining genomics assays

with subcellular dissection, fractionation (subRNA-seq), or proximity labeling (APEX-seq), an

expanding catalog of subcellular transcriptomes has exploded into view leading to discoveries of

many localized mRNAs [23–26]. To organize the newfound knowledge, the RNALocate database

has manually curated 190,000 RNAs with 44 subcellular localizations in 65 species (as of January

25, 2021) [29].

Together, these advances have shifted our understanding of RNA localization from a phe-

nomenon exclusive to specialized cells to a common feature of cell biology. The widespread
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nature of mRNA localization demonstrates the need to better understand mRNA localization, its

mechanisms, and its functions.

1.1.2 Functions of mRNA localization

Why do mRNAs concentrate in different regions of the cell? The known functions of localiza-

tion vary. In the cytoplasm, mRNA localization often correlates with translational control but with

diverse relationships.

mRNA localization can direct translation to occur in an environment that fosters proper protein

processing, folding, or assembly [30, 31]. Local translation, such as at a synapse, facilitates rapid

protein synthesis in response to local stimuli [32]. Additionally, linking translation repression with

mRNA localization reduces potentially adverse protein-protein interactions that impede function or

cause damage [33]. Ensuring protein synthesis occurs in the appropriate location is also important

during early embryonic development, where ectopic translation can disrupt cell fate [34, 35].

mRNA localization can also be associated with the environmental regulation of translation. In

intestinal enterocytes, refeeding after starvation changes the polarization of many mRNAs and

ribosomal protein-encoding RNAs to facilitate a positive feedback loop, thereby upregulating

metabolism [36]. Further, the translation of some mRNAs at distinct subcellular locales aids in

differentiating cellular proteomes. For instance, ASH1 mRNA localization to the daughter-bud-tip

in budding yeast results in bud-specific protein expression [6]. The ASH-1 encoded transcription

factor then allows the daughter cell to express a unique proteome from its mother and ultimately

determines its cell state.

mRNA localization can underlie cellular structure. Similar to long non-coding RNAs (lncR-

NAs) that can have structural roles in the cell, mRNAs too have been shown to act as scaffolds for

organelle formation [37]. The structural role of RNA extends beyond simply acting as a scaffold

as well. Emerging evidence suggests that localization of transcripts can form an “assembly line”

type organization where assembly of specific proteins occurs in a spatially ordered manner. For in-

stance, the spatial organization of transcripts important for dynein complex assembly are spatially
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distinct but in close proximity [38, 39]. Disruption of this organization leads to malfunctioning

dynein complexes [38–40].

Fascinatingly, one distinct form of mRNA localization can mediate diverse functions: the con-

centration of mRNA in biomolecular condensates. My thesis covers various aspects of mRNA

localization, with a focus on mRNA concentration in biomolecular condensates, from recent find-

ings in well-studied condensates to newly discovered condensates, and how concentration within

condensates affects translation regulation and protein output.

In many instances, the functions and consequences of mRNA condensation are just beginning

to be understood. It is tempting to hypothesize that RNA condensation always occurs for some

purpose or promotes a given expression outcome. However, mRNA localization can also occur as

the downstream result of regulatory processes such as translational repression, RNA interference,

processing, or decay.

1.2 Biomolecular condensates can link translation repression

and mRNA localization

1.2.1 RNAs can concentrate in biomolecular condensates

Many mRNA molecules concentrate within biomolecular condensates, membraneless or-

ganelles that phase separate from the surrounding substrate when weak, multivalent interactions of

their components create liquid-liquid, liquid-gel, or liquid-crystalline partitioning [41–43]. Within

condensates, specialized biological processes can occur. In recent years, many biological fields

have been surprised to find examples of biomolecular condensates in their systems. However, it

was the study of RNA biology that heralded this paradigm shift. Biomolecular condensates of the

nucleus – the nucleolus, Cajal bodies, and paraspeckles – coordinate ribosome assembly, RNA

processing, or still uncharacterized functions, respectively [44–47]. Those of the cytoplasm –

P-bodies, stress granules, germ granules, and Balbiani bodies – are sites of mRNA metabolism,
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sequestration, regulatory control, or serve to bring mRNAs, proteins, and organelles together, re-

spectively [48–54].

The initial experiments that define phase-separated condensation are straightforward, typically

involving characterization of their liquid-like properties, dissolution using solvents, and mixing

with the exterior environment [42, 55]. However, the interpretation of these experiments takes

careful consideration as other types of interactions can appear deceptively similar to phase separa-

tion [56]. Even once established, determining the functional roles a condensate plays is challenging

due to the difficulty differentiating the effects of their physical disruption from the perturbation of

their components. For this reason, biomolecular condensates of tractable model systems are of

great utility.

1.2.2 P granules: a model condensate

The P granules of Caenorhabditis elegans were among the first membraneless organelles rec-

ognized as phase-separated condensates [57]. P granules, the nematode germ granules, con-

centrate through the progenitor germ lineage contributing to gamete production and fertility in

adults [53,58]. First observed through inadvertent cross-reactivity against a mouse secondary anti-

body, they were termed “P granules” for their progressive accumulation in the P (posterior) lineage

culminating its development in the germline (Figure 1.1) [59]. Immediately after fertilization, P

granules are free-floating and cytoplasmic but later amalgamate around the nucleus, where they

extend the nuclear pore complex environment into the cytoplasm and branch into substructures

hypothesized to contribute to RNA interference [59–62].

Because the function of P granules has been mysterious, researchers looked to their components

for insight. The P granule proteome contains proteins associated with RNA binding, degradation,

splicing, small RNA-mediated processing, and translational control [63–65]. Additionally, many

P granule proteins form multivalent interactions characteristic of condensate formation [64, 66]. P

granules notably appear to have at least two distinct phase behaviors: an internal liquid-like core

characterized by the PGL and GLH proteins and an external, gel-like shell composed of the MEG
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Figure 1.1: P granules accumulate RNA in the C. elegans germline. C. elegans P granules are germ
granules that successively concentrate in the posterior P cells eventually giving rise to the germline. nos-2

mRNA is found in the cytoplasm of 2-cell stage embryos in a translationally repressed state. From the 4-cell
stage to the 28-cell stage, nos-2 mRNA concentrates into P granules though many nos-2 mRNA molecules
also reside in the cytoplasm. nos-2 mRNA in P cells is spared from the degradation seen in somatic cells
accounting for its concentration down the P lineage. At the 28-cell stage, nos-2 mRNA emerges from P
granules and is translated. chs-1 mRNA also accumulates in P granules in a manner similar to nos-2 but is
rapidly degraded.
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proteins. The MEG-phase appears to allow P granules to form a Pickering emulsion, a solid-phase-

stabilized emulsion, in the cytoplasm [65, 67, 68].

It was first appreciated that P granules contain specific mRNAs when hybridization experiments

demonstrated P granule enrichment of polyA RNA and C. elegans-specific 5’ sequences. They

were also depleted of or unconcentrated for rRNA [69–71]. Initial efforts identified half a dozen

mRNAs associated with P granules [71]. Of these, a homolog of Drosophila nanos, nos-2, has

emerged as a model transcript illustrating how P granules may function to sequester mRNA for

germline-specific expression [72–74].

Why is it useful during germline development to organize RNAs into these structures? In the

P granule field, the major historical hypotheses have suggested mRNAs are brought to P granules

for translational repression, small RNA mediated silencing, or to enrich transcripts in the P lineage

prior to the onset of zygotic transcription.

1.2.3 The P granule transcriptome is comprised of translationally quiescent

transcripts with distinct functional categories

The model transcript, nos-2, accumulates in P granules in the early stages of embryogenesis

[72]. In these stages, nos-2 is translationally repressed by a series of RNA binding proteins (RBPs)

that directly interact with its 3’ UTR (Figure 1.1) [73, 74]. Through its RNA binding partners,

nos-2 becomes enriched in P granules and depleted in somatic cells as it concentrates within the

P lineage [72]. Once the primordial germ cell has been specified, nos-2 mRNA emerges from P

granules coincident with relief of its translational repression, resulting in NOS-2 protein production

exclusively in the germ lineage [72–74]. For these reasons, the hypothesis emerged that RBPs

usher nos-2 mRNA to P granules for the purpose of restricting its protein production in both space

and time.

It was long unclear how representative nos-2 was of P granule transcripts generally. Recently,

Lee et al. characterized the P granule transcriptome in early embryos by genome-wide pull-down

assay (Figure 1.2) [75]. This was striking as several groups had attempted to characterize P granule

7



transcriptomes with little success. Those attempts typically relied on RIP-seq of liquid-phase P

granule components (personal communication), whereas Lee et al. targeted the gel-phase protein,

MEG-3::GFP, using an iCLIP protocol (Figure 1.2). In a complementary approach, my thesis work

also expanded the list of P granule transcripts by screening a set of mRNAs that partition through

the P lineage in single-cell RNA-seq data (Chapter 2) [76, 77].

The expanded atlas of P granule transcripts affords exploration of their characteristics, func-

tions, and comparisons to nos-2. MEG-3::GFP preferentially pulled down messenger RNA and

was enriched at 3’UTRs. Indeed, 3’UTRs are sufficient for P granule localization of reporter

transcripts [77]. To determine which types of genes associate with MEG-3, we performed gene

ontology (GO) analysis on the list of 492 P granule mRNAs identified by Lee et al. (Figure 1.2).

We found P granule mRNAs are associated with the terms: “P granules,” “germ cell development,”

“mRNA binding,” and “negative regulation of translation.” Interestingly, “mitotic cell cycle,” “cy-

tokinesis,” “microtubule organizing center,” and “chaperonin-containing T-complex” terms are also

enriched in the P granule transcriptome. It is possible that post-transcriptional regulation of these

mRNAs plays a role in timing the comparatively slow cell cycle of the P lineage and leads to their

sequestration in P granules in a translationally repressed state [78, 79]. P-body-related transcripts

were also prevalent, illustrating the similarity between these ribonucleoprotein (RNP) condensates

(see Chapter 1.2.6).

Both Lee et al. and Parker et al. highlight a key observation – mRNAs that concentrate in

P granules are associated with low translational status. A comparison of the P granule transcrip-

tome with ribosome profiling data revealed low ribosome occupancy transcripts were enriched in

P granules in a sequence-non-specific manner. In contrast, high ribosome occupancy transcripts

were depleted from P granules [75].

Whether the function of P granules is to concentrate, asymmetrically localize, surveil, or reg-

ulate the translation of their constituent RNAs, P granules can achieve this function by containing

only a minority population of any transcript at any given time. While lowly translated mRNAs are

enriched in P granules, only between 21 – 75% of any particular transcript were observed within
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them at any given time [75, 77]. Curiously, many P granule-localized transcripts undergo degra-

dation and do not re-emerge for translation representing a complex regulatory control that is not

understood. Nonetheless, these findings highlight a perennial question: are mRNAs brought to

P granules for the purpose of promoting translational repression, or does inhibition of translation

promote recruitment to P granules?

Figure 1.2: The C. elegans P granule transcriptome has been characterized. (A) Lee et al. identified
492 transcripts enriched in P granules using an individual nucleotide resolution UV- crosslinking and im-
munoprecipitation (iCLIP) [75]. (B) GO terms enriched in the C. elegans P granule transcriptome. We
used Lee et al’s expanded list of 492 MEG-3-associated P granule transcripts to identify enriched categories
using the GO::TermFinder [80]. Transcripts with greater than 10 transcripts per million at any embryonic
stage from a previous single-cell resolution RNA-seq study [81] were used as a background gene set. The
negative log10 of each p-value is shown.

1.2.4 Linking translational status to P granules – repression leads the way

The hypothesis that transcripts are brought to P granules to establish their translationally re-

pressed state is logical given the paucity of ribosomes in P granules [71]. However, observations
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from stress granules suggest most transcripts only maintain long-term associations with stress gran-

ules if their translational state is already low [82]. Which of these two models occurs in P granules?

Single-molecule observations illustrate several natural circumstances where nos-2 translation re-

pression occurs independently of P granule localization, such as the 1-cell and 2-cell stages of

development [77]. Further, depletion of the RBP PIE-1 (Pharynx and Intestine in Excess) prevents

nos-2 from accumulating in P granules but does not lead to precocious NOS-2 protein produc-

tion [77]. Even when nos-2 accumulates in P granules, only a fraction of transcripts concentrate

there while the majority remain as single, translation-repressed transcripts dispersed in the cyto-

plasm [77]. Together these findings illustrate that nos-2 translational repression is independent

of P granule localization and may occur prior to it. At the transcriptome-wide scale, depletion

of MEG-3 and -4 results in P granule dissolution but fails to increase ribosome occupancy of P

granule transcripts [75], illustrating that releasing transcripts from P granules does not result in

their translation. Finally, impeding the translation of cytoplasmic transcripts ectopically promotes

recruitment to P granules, further implicating mRNA localization as a downstream step following

translation regulatory control [75, 77]. Together, these lines of evidence demonstrate that trans-

lational repression likely precedes and is sufficient to direct mRNAs to germ granules, not the

reverse. However, it is still possible that P granules function in the reinforcement or maintenance

of translational repression after transcripts arrive there, but that is yet to be determined.

Though mRNAs are not directed to P granules to repress translation, it should be noted that

P granules still regulate gene expression through two major mechanisms. P granules concen-

trate transcripts in the germ lineage during stages prior to the maternal-to-zygotic transition when

RNA Polymerase II transcription is paused [83, 84]. In addition, P granules function to coordinate

RNA interference pathways as disruption by meg-3/4 mutation leads to aberrations in the pool

of WAGO-class endo-siRNA, progressive loss of RNAi, and sterility over the course of several

generations [85, 86]. Support for the organizational role for P granules comes from similar find-

ings in Drosophila. In both C. elegans and Drosophila, the establishment of translation repression

precedes germ granule localization [75, 77, 87, 88], the concentration of particular components in
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the germ plasm/germ granules is essential for normal germ cell development [89–92], and RNA

interference components concentrate in germ granules [93–95]. These roles are also supported by

findings from germ granules of other organisms, suggesting these roles likely conserved among

germ granules generally [2].

In summary, P granules function to accumulate translationally repressed transcripts, sequester

key mRNAs down the germ lineage, and ultimately coordinate small RNA-mediated regulatory

control. Their relative ease of accessibility compared to many other types of germ cells and germ

granules has led to their prominence as a quintessential model.

1.2.5 Germ granules serve similar functions

Germ granules across the animal kingdom play widespread roles in RNA regulation. Of these,

P granules of C. elegans and germ granules of Drosophila have been investigated with the greatest

scrutiny owing to the ease of imaging these structures microscopically and their facile genetic

manipulation. Though the specific names of germ granules, their individual components, and their

posited functions are diverse across the animal kingdom, they share several features.

The role of germ granules as hubs of RNA regulatory activity and organization is universal [93–

97]. Many of their proteins and RNAs are conserved, with germ granules from all species examined

containing Vasa helicases, argonautes, Xrn1, Nanos protein and RNA, and piRNAs, among others

[2]. In germ granules of both species, there is a clear structural organization. Germ granules

assemble around nucleating proteins (although they differ between species, see below) and are

typically near mitochondria [70, 98–100]. Once germ granules nucleate, constituent proteins can

oligomerize and RNAs form homotypic clusters, which appear as distinct “domains” within germ

granules by microscopy; however, the implications these germ granule domains have on gene

regulation are incompletely understood [77, 101, 102].

Differences do exist. Germ granule nucleating factors diverge quickly at the sequence level

and are highly species-specific [103]. Moreover, while argonautes are important for germ gran-

ule function in both species, their reported roles differ. In C. elegans, the argonaute PRG-1 is
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implicated in piRNA regulation and germ granule structure, while the Drosophila homologue has

an additional role in recruiting mRNA to germ granules through a piRNA-dependent templating

mechanism [104–106]. Notably, in Drosophila, some germ-granule-associated mRNAs are trans-

lationally repressed outside the granules and only become translated in association with the germ

plasm or germ granules at the posterior pole of the embryo [87, 88].

Further experimentation may reconcile some apparent differences. While germ granule nucle-

ators diverge rapidly, their functions are highly conserved. In fact, many germ granule nucleators

from highly divergent species are functionally equivalent. When the Xenopus germ granule nu-

cleator, Bucky Ball, is replaced with Drosophila Oskar, germ granules assemble, and germ cell

specification occurs normally [107]. This functional equivalence indicates even though the pri-

mary sequence of germ granules nucleators is not conserved, their functions are.

Recent studies have demonstrated that germ granules in C. elegans are composed of spatially

separated condensates with distinct functional roles. Some transcripts are thought to transit from

P granules to Z granules before being transported to mutator foci to coordinate transgenerational

epigenetic inheritance of small RNAs or to SIMR foci to regulate exogenous RNAi [61, 62, 85,

108]. Perturbing the functional organization of P granule-associated condensates by preventing the

interaction of PRG-1 and DEPS-1 causes generational loss of P granules [106]. Similarly, when

Drosophila Aubergine is lost, germ granules fail to form, resulting in sterility [109]. Notably,

Aubergine forms a peripheral shell surrounding Tudor labeled germ granules analogous to the

various condensates coating P granules [110]. Thus, the generational loss of P granules when

PRG-1 association is lost may be due to a loss of piRNA templated recruitment of mRNA to P

granules.

Additionally, while C. elegans germ granules are associated with translational repression, some

transcripts are known to translate only after a period of association with P granules. For instance,

translational repression of nos-2 and Y51F10.2 occurs even externally to germ granules [75, 77].

They only become translationally activated after a period of association with P granules and com-

ponents of the germ plasm, similar to the germ plasm-associated activation of specific genes in
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Drosophila [87, 88]. Further experiments will determine the degree of conservation among germ

granule regulation and organization and which functions are truly distinct to specific animals.

1.2.6 Germ granules share features with stress granules and P-bodies

Germ granules demonstrate striking similarity to two other cytoplasmic biomolecular conden-

sates, stress granules and P-bodies. Stress granules form under stress conditions to store and reg-

ulate temporarily translationally repressed mRNA [49, 111, 112]. This reprograms the proteome

for stress recovery functions. Processing-bodies, or P-bodies (in contrast to P granules), are asso-

ciated with translational repression, mRNA metabolism, and mRNA decay [51, 111,112]. Each of

these condensates shows similarities in their behaviors and compositions while also maintaining

unique functions (Figure 1.3). These condensates are all rich in RNA content and the concentra-

tion and conformation of the RNAs within each condensate also modulates their formation and

dissolution [101, 113–116]. They also share protein components. For example, each condensate

contains DEAD-box helicases, translation initiation factors, and Argonaute proteins [2, 117, 118]

while also housing unique proteins that differentiate their functions, such as the PGL and MEG

proteins (P granules), GW182 scaffolding protein (P-bodies), or small ribosomal subunits (stress

granules) [2, 48, 65, 111, 112, 118, 119].

What features specify the transcriptomes of these cytoplasmic RNP condensates? Excluding

a slight bias for longer RNAs, no specific mRNA attribute results in stress granule, P-body, or

P granule localization [75, 120, 121]. These condensates seem only to share the property that

they are composed of RNAs that must be post-transcriptionally regulated under various conditions

[48, 49, 51, 122–124]. The primary unifying trait of these condensates is their association with

predominantly lowly translated transcripts for either temporary storage or eventual decay [77,125,

126].

It appears that some transcripts may transfer between germ granules, stress granules, and P-

bodies, further demonstrating their shared or coordinated functions in gene regulation [48,49,127].

Experiments using purified proteins have demonstrated the directional transfer of transcripts from

13



Figure 1.3: Biomolecular condensates organize RNA. Three cytoplasmic RNP condensates– P granules
(germ granules), P-bodies, and stress granules – share key components and have some overlapping functions.
Some proteins are distinct to each condensate. The components here represent results assimilated from
diverse fields of study and are not exhaustive.
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Dhh1 condensates to Ded1 condensates, the prototypical helicases of yeast P-bodies and stress

granules, respectively [127]. Similarly, stress granule and germ granule components intermix in

C. elegans normally and grow concurrently under stress [118, 128]. Meanwhile, P-bodies are

known to physically associate and partially overlap with both germ granules and stress granules

[118, 129]. While the complete roles of these condensates and their interactions are not known,

their complexities, functions, and relationships are being studied intently. Recent advances in

technology and theory are elucidating surprising modes of regulation and functions in condensates,

proving they are more nuanced in their function than simply supporting translation inhibition.

1.3 Condensate mRNAs undergo diverse forms of post-

transcriptional regulation

1.3.1 Unlikely translational fates in “repressive” condensates

Most well-studied condensates, including those discussed above, are associated with transla-

tional repression. Excluding a small selection of mRNAs, the general theme is that the concen-

tration of mRNA in condensates indicates low translation status. However, recent studies in both

well-studied and novel condensates are expanding the diversity and complexity of the functional

relationship between the concentration of mRNA in condensates and the regulation of their protein

output.

New insights in model condensates are revealing more complex relationships with translation

regulation than previously thought. Stress granules and P-bodies have long been thought to house,

sequester, and in some instances, degrade translationally repressed transcripts (see Chapter 1.2.1).

Several single-molecule studies support a role for these condensates in housing translationally inac-

tive transcripts. Individual transcripts typically associate with stress granules for extended periods

only when translation is repressed [82,125,130]. Additionally, various translational reporters, pro-

tein reporters, proteomics assays, and sequencing assays have yielded significant insight into the

RNA, protein, and polysome composition of well-studied condensates like P granules, P-bodies,
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and stress granules [75, 77, 120, 121, 131–133]. Due to the enrichment of translation repressive

factors and inclusion of only a subset of translation factors as constituents of condensates, these

studies have supported the model of condensate-associated translation repression.

However, because these experiments consist of bulk assays, they lack the resolution to de-

termine the translation status of single molecules. Recent advances in in vivo single-molecule

visualization of translation have suggested that translation of some stress response mRNAs may

occur in condensates typically associated with translation repression [134]. Mateju et al. used an

in vivo single-molecule translation reporter to demonstrate active translation of a stress response

mRNA in G3BP1-labeled stress granules. While they support the widely accepted hypothesis that

most stress granule-localized mRNAs are stalled preinitiation complexes, their results show there

are exceptions. These results also further support the germ granule models where translationally

inactive mRNAs are recruited to condensates rather than causing translational repression.

1.3.2 Translation-associated “Translation factory” condensates and foci

Beyond the occasional translation of mRNA in germ granules, P-bodies, and stress granules,

mRNA foci distinct from these generally repressive condensates have been reported. Live ob-

servations of these foci have revealed the existence of ribosome-rich, actively-translating puncta,

or “translation factories” [135, 136]. These include β-catenin foci, some transcripts in neuronal

granules, G-bodies or CoFe granules, and axonemal dynein foci [38–40, 137–141]. Preliminary

evidence suggests many of these translation factories behave as biomolecular condensates, al-

though more rigorous studies will be required to confirm whether they are all true phase-separated

organelles. It is also likely that the components of specific translation factories vary. Variations in

components could lead to some translation factories acting as bona fide biomolecular condensates,

while others may be highly-ordered ribonucleoprotein complexes. Regardless of whether they are

true biomolecular condensates, it is clear that some transcripts associate with ribosomes and other

factors to form translationally active membraneless organelles that perform diverse functions.
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Why do some transcripts associate with translation factories and translate in a specific region,

while others seem to translate throughout the cytoplasm? As with the repressive condensates dis-

cussed above, separating cause and consequence for transcript localization to translation factories

is challenging and incompletely understood; however, we can speculate about the various functions

of condensate-associated translation based on the data that exists.

In neurons, translation-associated condensates facilitate rapid response to stimuli in distal re-

gions of the cell. Condensates composed of translation factors, translation regulators, and tran-

scripts stalled after translation initiation are quickly switched to a translation promoting fate

upon stimulation and are essential for neuronal function [141–145]. This spatial organization

of translation-associated condensates appears to be thematic. In yeast, mRNAs encoding trans-

lation factors form translation-dependent condensates at regions of growth to support increased

translational demand [146]. Translation-associated condensates also support metabolic function

by coordinating metabolic pathways. Fermentative conditions in yeast promote the translation

of glycolytic mRNAs in condensates termed glycolytic-bodies (G-bodies) or Core Fermentation

granules (CoFe granules) [137,138]. Translation-associated condensates are also being implicated

in the misregulation of translation. Recent data has provocatively suggested that solid-like amy-

loid condensates may facilitate stress-response-induced translation in the nucleus to preserve cell

viability [147].

While more rigorous examination is required to prove the condensate behavior of many trans-

lation factories and more comprehensive screening is needed to define the breadth of translation

factory-associated RNAs, their regulation is interesting nonetheless. Understanding what coor-

dinates the spatial organization of mRNAs and their relationship to the translation state within

these clusters/condensates will provide a deeper understanding of the mechanisms regulating gene

expression.
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1.3.3 mRNA localization in novel condensates highlight diverse condensate

functions

In addition to the coordinated, local translational response mediated by translation factories,

some novel condensates serve more nuanced functions. Condensates can promote RNA/protein

effector interactions, spatial and temporal regulation of organelle assembly, and even cell-cycle-

dependent protein turnover. Recent studies are uncovering the mechanisms by which condensates

can mediate these myriad functions.

Extensive ER-localized translation has been characterized and typically correlates with the lo-

cal translation of mRNAs encoding secreted or membrane proteins [148–151]. Recent discoveries

have added nuance to this model, however. A novel ER-associated condensate called the TIS

granule facilitates local translation and protein-effector assembly near the ER [152]. TIS granules

appear as an extraluminal, space-filling condensate interleaved with the ER. TIS granules form

from the RBP TIS11B and its RNA targets. TIS11B binds the model transcript CD47 at AU-rich

elements present only in the longer of two alternatively-spliced 3’UTR isoforms resulting in local-

ization to the TIGER (TIs Granule ER) domain. This distinct environment promotes CD47 protein

interaction with the effector protein, SET, in a splice-variant-specific manner. Ultimately, this

condensate-mediated complex formation promotes increased membrane localization of the CD47

protein compared to protein translated from the short, non-TIS granule localized CD47 isoform.

The TIS granule condensate environment demonstrates how transcript localization in condensates

can mediate specific protein-protein interactions and protein function purely based on mRNA se-

quence.

Additionally, post-transcriptional regulation in condensates can transcend protein-effector in-

teractions and contribute to the organization of entire organelles. One example is the PCNT RNA.

At the onset of mitosis, the PCNT protein is vital for the successful condensation of pericentriolar

material (PCM) surrounding the centrosome [153, 154]. This condensation is in part organized by

the localization of PCNT mRNA to centrosomes in a translation- and dynein-dependent manner

during centrosome maturation [154]. Due to the short span in which the PCM must form, PCNT
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RNA condensation appears important to combat the kinetic challenge of transporting and synthe-

sizing this large (3336 amino acids in human) protein to direct PCM and centrosome formation

during the short period of early mitosis.

Similarly, axonemal dynein foci, otherwise known as Dynein Axonemal Particles (DynAPs) or

kl granules in Drosophila, are essential for the assembly of dynein complexes [38–40,140]. These

condensates aid in spatially organizing different dynein components and partners, some of which

translate within this translation factory condensate environment [38, 39, 140]. Disruption of these

condensates by depleting specific components results in the loss of axonemal dynein complexes

[39, 140]. In turn, this loss of axonemal dynein causes defects in cilial beating, cell motility, and

in some instances, sterility. These defects demonstrate the importance of translationally active

condensates in promoting proper protein function, complex assembly, and the ultimate function of

organelles and the cell [40, 140].

One particularly fascinating and complex form of condensate-mediated post-transcriptional

regulation is the β-catenin “destruction complex.” Throughout the cell cycle, the β-catenin mRNA

is perpetually translated, predominantly in translation factory foci [139]. Surprisingly, the β-

catenin protein rapidly degrades in these translation factories until mitosis, when sequestration

of the “destruction complex” proteins at the cell membrane dissolves the foci [139]. At this point,

β-catenin can safely transit to the nucleus to perform Wnt signaling. This constant cycle of protein

synthesis and degradation allows for the rapid and specific response required for functional Wnt

signaling as the cell cycle progresses. This complex regulation demonstrates how concentrating

transcripts can overcome kinetic challenges and facilitating rapid post-translational to meet the

needs of the cell.

Overall, cytoplasmic RNP condensate organelles represent dynamic environments. Germ gran-

ules, stress granules, and P bodies are enriched for translationally inactive transcripts, but newly

discovered roles for biomolecular condensates in post-transcriptional regulation adds complexity

to these models. Even condensates long thought to house translationally repressed RNAs can

facilitate the translation of a subset of their constituents. As a result, the functional purpose of
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organizing RNA and protein into tightly condensed biomolecular condensates is a field of active

research with many recent insights and many remaining questions. As the field moves forward,

we are interested to see whether RNA accumulation in these granules occurs for the purpose of

generating a molecular outcome or as a consequence of their regulatory control.

1.4 Conclusions

mRNA localization and translational control are intimately linked. It is essential to translate

proteins when and where they are required and maintain repression when translation would be

hazardous to cell viability. It is becoming increasingly apparent that mRNA condensation is an

integral contributor to the functional success of the proteins many mRNAs encode.

A recent burst in technologies capable of identifying and characterizing local transcriptomes

has led to a surge in the number of known localized condensate RNAs. Genomics approaches, such

as RIP-seq, HITS-CLIP/CLIP-seq, iCLIP, irCLIP, and iPAR-CLIP, can capture cohorts of mRNAs

that associate with individual RNA Binding Proteins within condensates [155]. Proximity labeling

assays, such as APEX2-seq, RNA BioID, and nucleobase oxidation can characterize transcrip-

tomes close to cellular landmarks or distinct locales, which is particularly useful considering the

transient structure of many condensates [25, 26, 131]. High-throughput microscopic-sequencing

approaches can visualize the localization of the entire transcriptome in fixed cells, or even entire

tissues, at single-molecule resolution [156–158]. Complementarily, microscopy-based techniques

are now capable of assessing mRNA localization and abundance with unprecedented resolution.

In situ hybridization techniques, expansion microscopy, and super-resolution microscopy allow

for the visualization of transcripts at or beyond the single-molecule level. The advent of nascent

chain tracking and viral coat protein-based approaches (MS2 and PP7), Cas13-mediated labeling,

riboflour labeling, and other advances in in vivo imaging provide a deeper understanding of the

constitution, distribution, and dynamics of the transcriptome [82, 159–163]. As these and other

technological advances continue, we can visualize just how widespread RNA localization within
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condensates is. In doing so, our understanding of the central dogma of biology is becoming more

comprehensive.

Many unanswered questions remain. A key challenge will be to determine how essential RNA

condensation is. In some classic examples, such as the germ granule RNAs in Drosophila, it is clear

that this localization is essential for development. However, the functional effects of removing any

particular transcript from a condensate are challenging to study. Disruption of condensates can

result in the misregulation of many transcripts. Even when experimenting with one transcript,

the localization and translation regulatory elements are often difficult to separate or inseparable,

leading to pleiotropic effects when inducing their mislocalization [11, 73, 74, 77, 164, 165]. Thus,

it is uncertain in many instances whether RNA condensation is a causative, redundant, reinforcing,

or symptomatic effect of regulatory control.

Another remaining challenge is understanding the relationships between the cytoplasmic RNP

condensates such as stress granules, P-bodies, and germ granules. Do they share an evolution-

ary origin? Do they communicate with one another? Are there pathways that transfer mRNAs

from condensate to condensate? How do these largely repressive condensates relate to translation-

associated condensates like translation factories? Decreased reliance on in situ microscopy and

application of in vivo imaging will reveal which mRNAs are true long-term residents of conden-

sates, which are merely migrating through them, and how this correlates with their translational

regulation.

Additionally, it will be interesting to continue exploring the structural role of RNA itself in

mediating condensation. Long non-coding RNAs are now appreciated for their role in scaffolding

structures in both the cytoplasm and nucleus. Several studies have demonstrated that messenger

RNA can also scaffold the recruitment of other molecules such as RPS28B RNA that recruits its

own protein to scaffold P-bodies and the triad of mRNAs CLN3, BNI1, and SPA4 that nucleate

Whi3 droplets in Ashbya gossypia [37, 166]. Incredibly, some mRNA sequences appear to have

intrinsic localization cues. The BglG mRNA in E. coli may localize to cell membranes through a

PolyU tract, which can interact electrostatically with membranes in vitro [20, 167]. Further, some
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RNAs form homotypic clusters in vivo or self-segregate in vitro [101,166,168]. Understanding the

underlying physics of RNA interactions with cellular components will inevitably provide insight

into how condensates form, their internal dynamics, and their ultimate functional effects.

Though a complete understanding of these condensates remains elusive, defects in condensates

can result in pronounced phenotypes or even human disease. Defects in mouse germ granule com-

ponents impair spermatogenesis [169]. In Drosophila and Xenopus, defects in germ granules pre-

vent germline development, while in C. elegans, loss of P granules causes germline transcriptomic

changes and can result in immediate, temperature-sensitive, or multi-generational progressive on-

set of sterility. Stress granules regulate nucleocytoplasmic transport that misfunctions in amy-

otrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These transport defects are

rescued by perturbing stress granule components, indicating a functional link between them [170].

Neurological disorders are also associated with P-body dysregulation as mutations in the DDX6

helicase prevent proper assembly of P-bodies and ultimately result in intellectual disability in hu-

mans [171]. Further, mutants for the P-body proteins DCP-1 and DCP-2 exhibit phenotypes in

pattern-triggered immunity resulting in pathogen susceptibility [172].

By understanding the components and mechanisms cells use to localize RNA and regulate local

translation we can begin to better design experiments or treat human diseases. It is not difficult to

envision applications stimulated by understating the cues regulating RNA localization and transla-

tion. Developing nuanced tools to control the temporal availability of proteins could provide new

tunable or inducible expression systems. Further, identifying cis-acting elements sufficient for se-

questration of transcripts away from their usual destination will allow for dissecting the functions

of RNA localization in vivo. Understanding mechanisms underlying the misregulation of con-

densates implicated in neurological disorders can impact human health by supporting the search

for treatments. Perhaps more importantly, it may reveal the underlying genetics and environmen-

tal conditions that contribute to the progression of these diseases allowing for more preventative

measures to be taken.
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As this field matures, insights will continue to emerge. The theme that multiple modes of

mRNA regulation can occur concurrently within condensates is likely to continue. The inter-

relatedness between mRNA localization, translation regulation, decay, and small RNA-mediated

regulation will continue to come into focus. Discoveries of highly specialized biomolecular con-

densates are likely to accelerate as we determine how the biophysical properties of these structures

impact the biochemistry of mRNA regulatory control. Further, the linkages between coordinated

translational control at each distinct level of initiation, elongation, termination, and recycling are

all likely to be important. The field is rich for potential discoveries as mRNA condensation and

translation regulatory control emerge from a niche field, studied in a few systems, to a generaliz-

able feature of cell biology.

1.5 Author contributions

This chapter was originally written as a review on RNA localization generally and is cur-

rently under review. The original manuscript was co-authored by Dylan M. Parker, Lindsay P.

Winkenbach, and Erin Osborne Nishimura. All authors made roughly equal contributions to con-

ceptualization, writing, figure generation, revising, and formatting for the initial submission. All

revisions between the original submission and the version presented here were generated by Dylan

M. Parker for the purpose of improving the manuscript and tailoring for this chapter.
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Chapter 2

mRNA localization is linked to translation regulation

in the Caenorhabditis elegans germ lineage
2

2.1 Summary

Caenorhabditis elegans early embryos generate cell-specific transcriptomes despite lacking

active transcription, thereby presenting an opportunity to study mechanisms of post-transcriptional

regulatory control. We observed that some cell-specific mRNAs accumulate non-homogenously

within cells, localizing to membranes, P granules (associated with progenitor germ cells in the P

lineage) and P-bodies (associated with RNA processing). The subcellular distribution of transcripts

differed in their dependence on 3’UTRs and RNA binding proteins, suggesting diverse regulatory

mechanisms. Notably, we found strong but imperfect correlations between low translational status

and P granule localization within the progenitor germ lineage. By uncoupling translation from

mRNA localization, we untangled a long-standing question: Are mRNAs directed to P granules to

be translationally repressed, or do they accumulate there as a consequence of this repression? We

found that translational repression preceded P granule localization and could occur independently

of it. Further, disruption of translation was sufficient to send homogenously distributed mRNAs

to P granules. These results implicate transcriptional repression as a means to deliver essential

maternal transcripts to the progenitor germ lineage for later translation.

2This chapter was published in July 2020 under the same title

Dylan M. Parker, Lindsay P. Winkenbach, Sam Boyson, Matthew N. Saxton, CamrynDaidone, Zainab A. Al-
Mazaydeh, Marc T. Nishimura, Florian Mueller, and Erin Osborne Nishimura. mRNA localization is linked to
translation regulation in the Caenorhabditis elegans germ lineage. Development, 147(13):dev186817, 2020.
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2.2 Introduction

The progression of life from two gametes to an embryo involves the transfer of gene expres-

sion responsibilities from the parental to zygotic genomes. In animals, this maternal-to-zygotic

transition requires a pause in transcription during late oogenesis, fertilization and the first stages of

zygotic development [84, 173–175]. Until zygotic transcription resumes, cell-type transcriptome

differences in the early embryo arise through post-transcriptional mechanisms acting on mRNAs

inherited from the parental gametes.

In Caenorhabditis elegans, transcriptional repression initiates in late oogenesis by an unknown

mechanism [176, 177], but is sustained in post-fertilization stages by sequestration of transcrip-

tional machinery to the cytoplasm [178]. Transcription resumes 2 h post-fertilization, initiating in

the somatic cells of four-cell embryos and culminating in the P4 cell of the primordial germ lineage

(P lineage) at the 28-cell stage [69, 179].

Even in the absence of de novo zygotic transcription, the transcriptomes of early C. elegans

blastomeres diversify. Single-cell resolution RNA-seq (scRNA-seq) assays have determined that

the first two daughter cells (AB and P1) contain 80 AB-enriched and 201 P1-enriched transcripts

distinguishing them [180]. Similar approaches have identified additional maternally-inherited tran-

scripts with biased representation in different lineages through the first four cell divisions [76].

These cell-specific transcripts likely arise through post-transcriptional mechanisms of mRNA de-

cay, mRNA stabilization or by movement (active or passive) of transcripts into distinct regions of

dividing cells.

Interestingly, there is no reason a priori for transcriptome diversification to be required for cell-

specific protein production. Translational control plays a major role in driving protein production

during germline development [181] and into early embryogenesis. Indeed, a major class of mutants

that affect early cell fate development are cell-specific RNA binding proteins (RBPs), the target

transcripts of which are translated with spatiotemporal specificity [73, 74, 182, 183].

Still, the mRNA encoding Negative Effect on Gut development (NEG-1; a cell fate determi-

nant) has an anterior bias preceding anterior NEG-1 protein production, suggesting that patterns in
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mRNA localization can precede or even be amplified at the translation step [180, 184]. Therefore,

maternal asymmetric mRNAs appear to be important for cellular diversification in early develop-

ment. In this study, we explore the mechanisms and functions of this patterning.

We report that several maternally-inherited transcripts localize to subcellular regions within

individual cells. In general, the anterior-biased (AB cell-enriched) transcripts tended to localize to

cell-peripheral regions, often where the proteins they encode function. In contrast, posterior-biased

(P1 cell-enriched) transcripts formed clustered granules overlapping with P granules, membrane-

less compartments of RNAs and proteins that form liquid-liquid phase separated condensates or

hydrogels that mark the progenitor germ lineage [53, 65].

Understanding the functional roles of P granules (and other phase-separated condensates) is a

current major challenge. In early embryos, P granules are dispersed in the cytoplasm and highly

dynamic [59, 60], but later grow into larger granules that coalesce around the nucleus [185]. Here,

they extend the nuclear pore complex environment and branch into more specialized condensates

such as mutator foci [186] and Z-granules [61]. Worms can recover from P granule disruption in

early embryonic stages to properly specify the germline [187], but later or sustained dysregulation

leads to perturbations in germ-cell development [188], disruption of gene expression regulatory

control [189–191] and fertility defects [91, 188, 192]. The reasons why mRNAs associate with

P granules may depend on the individual transcript or developmental stage, but functions such

as translational repression, RNA processing, small RNA-based regulation or piRNA licensing are

possibilities, based on the functions of the proteins that compose P granules.

Here, we identify several new mRNA transcripts associated with P granules and observe that

many are lowly translated. Indeed, the well-studied P granule-resident mRNA nos-2 is also trans-

lationally repressed at early embryonic stages. Later, this repression is relieved when NOS-2

becomes essential for germline development [72–74]. It is possible that mRNA transcripts, such

as nos-2 and others, associate with P granules to promote translational repression. Alternatively,

transcripts may accumulate in P granules after repression as a downstream step. In this study,

we find that translational repression of nos-2 mRNA precedes nos-2 mRNA accumulation in P
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granules and can persist without P granule localization, supporting the second model. Further, we

found that loss of translation can direct homogenously distributed transcripts to P granules, again

suggesting that localization is a downstream step.

Overall, our work expands the list of membrane-associated mRNAs (from 0 to 5) and P granule-

associated mRNAs (from roughly 10 to 16). Our findings also suggest that the subcellular pattern-

ing of maternally-inherited transcripts is a common feature of early embryogenesis. By identifying

and studying additional mRNAs with subcellular localization in the C. elegans early embryo, we

can better determine mechanisms and purposes of their localization in early development.

2.3 Results

2.3.1 Maternally-inherited mRNA transcripts display subcellular localiza-

tion

scRNA-seq assays have identified transcripts that are differentially abundant between cells be-

fore the onset of zygotic transcription in C. elegans [76,81,180,193]. To verify the cell-specificity

of these mRNAs and visualize their localization, we selected several to image in fixed C. elegans

embryos using single-molecule resolution imaging [single-molecule fluorescence in situ hybridiza-

tion (smFISH) or single-molecule inexpensive fluorescence in situ hybridization (smiFISH)]. We

chose eight AB-enriched transcripts, eight P1-enriched transcripts, four uniformly distributed (ma-

ternal) transcripts and eight zygotically expressed transcripts. Single-molecule resolution imaging

confirmed the cell-specific patterning predicted by RNA-seq for seven out of eight AB-enriched,

seven out of eight P1-enriched transcripts, and four out of four symmetric transcripts. Strikingly,

many maternally-inherited transcripts yielded subcellular localization patterns beyond cell-specific

patterning (Table 2.1, Figure 2.1, Figure 2.2).

AB-enriched transcripts tended to localize to cell peripheries (Table 2.1). Specifically, AB-

enriched erm-1 (Ezrin/Radixin/Moesin), lem-3 (LEM domain protein), ape-1 (APoptosis Enhancer)

and tes-1 (TEStin homolog) mRNAs accumulated there. ERM-1 protein also accumulates at cell-

to-cell contacts where it functions in the remodeling of apical junctions [194]. Similarly, LEM-3,
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Table 2.1: A survey of early embryonic mRNA transcripts for localization patterns. Twenty maternally-
inherited mRNA imaged by smFISH (or smiFISH). Eight transcripts identified as AB-enriched, eight P1-
enriched and four symmetrically-distributed in scRNA-seq data at the two-cell stage were surveyed [180].
Rankings represent the rank-order cell-enrichment of each transcript in their respective scRNA-seq dataset.
Eight zygotically expressed transcripts were also surveyed [76]. A control for P granule localization, nos-2

mRNA, was included [71, 72]. Note: Clustering of mex-3 transcripts was observed only in the P lineage;
they remained diffuse in somatic cells. *Transcripts that are explored in further detail in this paper.

!

 

 

mRNA 

 

maternal 

v. zygotic 

 

2-cell enrichment 

by RNA-seq (ranking) 

 

2-cell enrichment 

by smFISH 

 

patterning at 1-cell 

to 16-cell by smFISH 

 

 

notes 

erm-1 maternal AB-enriched (1) AB-enriched cell periphery  

C50E3.13 maternal AB-enriched (3) AB-enriched no  

neg-1 maternal AB-enriched (4) AB-enriched no  

lem-3 maternal AB-enriched (7) AB-enriched cell periphery  

era-1 maternal AB-enriched (10) AB-enriched no  

ape-1 maternal AB-enriched (26) symmetric cell periphery  

mex-3 maternal AB-enriched (42) AB-enriched granular granules are in the P lineage 

tes-1 maternal AB-enriched (75) AB-enriched cell periphery variable 

chs-1 maternal P1-enriched (1) P1-enriched granular  

clu-1 maternal P1-enriched (4) P1-enriched granular  

Ipgm-1 maternal P1-enriched (25) P1-enriched granular also known as F57B10.3 

T24D1.3 maternal P1-enriched (40) P1-enriched granular  

puf-3 maternal P1-enriched (75) symmetric granular  

cpg-2 maternal P1-enriched (30) P1-enriched granular  

pgl-3 maternal P1-enriched (32) P1-enriched no  

bpl-1 maternal P1-enriched (170) P1-enriched no  

set-3 maternal symmetric symmetric no granular in posterior cells at later 

stages 

gpd-2 maternal symmetric symmetric no  

B0495.7 maternal symmetric symmetric no  

imb-2 maternal symmetric symmetric nuclear periphery  

elt-2 zygotic   no  

end-1 zygotic   no  

hlh-27 zygotic   no  

hsp-60 zygotic   no  

ref-1 zygotic   no  

tbx-32 zygotic   no  

tbx-38 zygotic   no  

Y75B12A.2 zygotic   no  

nos-2 maternal symmetric symmetric granular previously reported P granule 

mRNA 
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Figure 2.1: Subcellular localization patternsof maternally-inherited mRNAs. (A) mRNA localization
patterns for erm-1, chs-1, clu-1, cpg-2, imb-2 and nos-2 are shown (Table 2.1). They represent AB-enriched
(blue), P1-enriched (green) and symmetric (orange) maternal mRNA and a known P granule control (yel-
low). Left column shows the pattern of mRNA abundance through the first four cell divisions as previously
reported using scRNA-seq data [76], illustrated as a proportionally colorized pictograph. Normalized tran-
script abundance values are indicated below each pictograph. Center column shows mRNA imaging using
smFISH of a representative four-cell embryo, showing the mRNA of interest (green), DNA (DAPI; blue),
and set-3 [SET (trithorax/polycomb) domain containing; red] as a symmetric control. set-3 was co-probed
in each embryo but only shown once for simplicity. mRNAs were found concentrated at cell peripheries
(erm-1, blue arrows), into clusters (chs-1, clu-1 and cpg-2, green arrows), at nuclear peripheries (imb-2,
orange arrows) or at known P granules (nos-2, yellow arrow). Inset white numbers represent the number of
times the pattern was observed out of the total four-cell-stage embryos surveyed over a minimum of five bio-
logically replicated experiments. Right column shows cartoon depictions of each mRNA of interest (green),
shown to summarize subcellular distribution patterns. Scale bars: 10 µm.
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Figure 2.2: Subcellular localization patterns of surveyed transcripts. 8 AB-enriched, 8 P1-enriched,
and 4 symmetric transcripts were selected for verification and examination by smFISH with all transcripts
in green and DAPI in blue. (A) AB-enriched transcripts erm-1 (Ezrin/Radixi/Moesin), C50E3.12, neg-1

(Negative Effect on Gut development, lem-3 (LEM domain protein), era-1 (Embryonic mRna Anterior), ape-

1 (APoptosis Enhancer), mex-3 (Muscle EXcess), and tes-1(TEStin homolog) are shown. (B) P1-enriched
transcripts chs-1 (CHitin Synthase), clu-1 (yeast CLU related), ipgm-1 (cofactor Independent Phospho-

Glycerate Mutase homolog), T24D1.3, puf-3 (PUF domain containing), cpg-2 (Chondroitin ProteoGlycan),

pgl-3 (P-GranuLe abnormality), and bpl-1 (Biotin Protein Ligase) are shown. (C) Uniformly distributed
transcripts set-3 (SET domain containing), gpd-2 (Glyceraldehyde 3-Phosphate Dehydrogenase), B0495.7,

and imb-2 (IMportin Beta family) are shown. Tabulation of the results are in Table 2.1. Scale bars: 10 µm.
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a nucleic acid metabolizing enzyme, localizes to cell membranes and cytoplasmic foci [195]. The

localization of APE-1 and TES-1 proteins are uncharacterized, but they contain domains known to

associate with membranes (ankyrin-repeat domain in APE-1 and PET domain in TES-1) [196,197].

For this chapter, we focused on erm-1 as a representative of this group (Figure 2.1).

P1-enriched transcripts primarily aggregated in RNA granules in the P lineage (Table 2.1,

Figure 2.1, Figure 2.2). This included transcripts important in eggshell formation such as chs-1

(CHitin Synthase) and cpg-2 (Chondroitin ProteoGlycan), mitochondrial distribution and stress re-

sponse such as clu-1 [yeast CLU-1 (CLUstered mitochondria) related], as well as the carbohydrate-

metabolizing enzyme F57B10.3 (recently renamed ipgm-1; cofactor-Independent PhosphoGlycer-

ate Mutase homolog) [198–201].

Of the maternally-inherited transcripts that distribute symmetrically at the two-cell stage, only

one of four tested showed subcellular patterning (Table 2.1, Figure 2.2). The transcript imb-2

(IMportin Beta family) localized to nuclear peripheries, coincident with its encoded protein, an

Importin-β homolog that facilitates nuclear pore complex import (Figure 2.1). In no cases did we

observe subcellular localization for mRNAs expressed zygotically, suggesting that subcellular pat-

terning is more common among maternally-inherited transcripts that those zygotically transcribed.

However, because zygotically dividing cells subdivide successively, beyond the 16-cell stage their

reduced size could potentially obscure our ability to call their localization accurately (Table 2.1).

In addition to these surveyed transcripts, we also used smFISH to image nos-2, a previously

reported mRNA resident of P granules required for germline maintenance and fertility [72] (Table

2.1, Figure 2.1). smFISH verified P granule localization of nos-2 mRNA and showed that granular

patterning was coincident with P lineage enrichment – both beginning at late four-cell stage (Figure

2.3F).

To explore the dynamics of subcellular patterning through embryogenesis, we imaged key tran-

scripts from the one-cell stage through hatching. The onset and persistence of subcellular mRNA

localization varied depending on the transcript and its biology (Figure 2.3). chs-1 mRNA first lo-

calized to posterior clusters at the one- or two-cell stage but degraded over successive cell divisions
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until dissipating by the 48-cell stage (Figure 2.3), whereas imb-2 appeared at or near nuclear mem-

branes in all stages assayed. This is consistent with the roles of the proteins as CHS-1 is essential

primarily for deposition of chitin in the eggshell between oogenesis and egg-laying [202], whereas

the IMB-2 protein is required throughout the life of the worm for nuclear import [203]. In contrast

to chs-1, nos-2 mRNA distributed homogenously before the four-cell stage and then began cluster-

ing in the P lineage, coincident with its degradation in somatic cells. nos-2 mRNA clusters grew

in size until the 28-cell stage (Figure 2.3). At the 28-cell stage, nos-2 transcripts became visible

as individuals in the cytoplasm, concurrent with a decrease in the size of nos-2 mRNA clusters.

Translational regulation of nos-2 is dynamic during these stages. nos-2 mRNA is translationally

repressed before the 28-cell stage, at which point translation repression is relieved [73,74]. There-

fore, the transition in RNA localization accompanies this transition in regulatory status. What was

more surprising is that nos-2 mRNA could both be observed as individual mRNAs and localized

into granules before the 28-cell stage during its phase of translational repression. During the one-

, two-, and early 4-cell stages, nos-2 mRNA fails to produce protein, but also does not localize

to clusters, illustrating that these processes can be uncoupled. Altogether, subcellular transcript

localization appears transient or persistent depending on the encoded function of the mRNA.

2.3.2 Quantification strategies to characterize mRNA patterning

To better describe the subcellular mRNA patterns we observed, we detected individual mRNA

molecules in 3D images using FISH-quant [204] and developed metrics to describe their localiza-

tions at membranes or within clusters.

erm-1 mRNA localized to cell peripheries. To characterize this propensity in an unbiased man-

ner, we calculated the frequency with which erm-1 transcripts accumulated at increasing distances

from cell membranes (Figure 2.4). After normalizing for the decreasing volumes of each concen-

tric space, we determined that erm-1 mRNA were twice as likely to occur within 5 µm of a cell

membrane than more than 5 µm from one. In contrast, homogenously distributed set-3 (SET do-
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Figure 2.3: Localization patterns of mRNA over developmental time. smFISH microscopy localizations
of erm-1 (A), chs-1 (B), clu-1 (C), cpg-2 (D), imb-2 (E), and nos-2 (F) shown from 1-cell stage zygotes to
the 16-cell stage. mRNA signal is in green. DAPI is in blue. Below each seriesof images is single-cell
RNA-seq data from the same transcript [76]. Scale bars: 10 µm.
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Figure 2.4: Quantification of membrane RNA localization The number of mRNA molecules (green dots)
located within binned distances from the cell cortex (blue lines) were tabulated and normalized against the
total volume of each concentric space. The frequencies with which erm-1 mRNA and set-3 mRNA occurred
at varying distances in one embryo are shown.

main containing) transcripts were equally likely to be present at all distances (both measured using

10 µm bin sizes) (Figure 2.4).

Similarly, we calculated the frequency of imb-2 mRNA at increasing distances from the nuclear

periphery (Figure 2.5). imb-2 transcripts were twice as abundant within 10 µm from the nuclear

membrane than at 10 µm or more from a nuclear membrane, again adjusting for volumes of these

spaces. The more ubiquitous set-3 transcripts showed no nuclear peripheral-enrichment.

In developing metrics of mRNA clustering, we found that overlapping mRNA signals compli-

cated the ’single molecule’ nature of smFISH, which relies on sufficient spacing between individual
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Figure 2.5: Quantification of nuclear peripheral RNA localization The number of mRNA molecules
(green dots) located within binned distances from the nuclear periphery (blue lines) were tabulated and
normalized against the total volume of each concentric space. The frequencies with which mRNA appeared
in relation to the nuclear peripheries in one embryo were similarly calculated for imb-2 mRNA and set-3

mRNA.

transcripts. To overcome this, we used a tiered approach, first identifying individual mRNAs [204]

before estimating the number of molecules contributing to signal overlap by fitting a Gaussian mix-

ture model (GMM) to the average fluorescence intensities and volumes of the individual molecules

(see Chapter 2.5 Materials and Methods). Deconvolved mRNA molecules could then be separated

into clusters using a geometric nearest neighbor approach [205].

To characterize mRNA clusters, we quantified total number of mRNA molecules per embryo,

total number of mRNA clusters per embryo, fraction of total mRNAs that localize into clusters (as

opposed to individuals), and estimated number of mRNAs within each cluster. We calculated these

measurements for four clustered transcripts (chs-1, clu-1, cpg-2 and nos-2) at six stages of em-

bryonic development (Figure 2.6). cpg-2 and nos-2 were the most abundant transcripts (∼10,000

molecules per embryo) in contrast to chs-1 or clu-1 (∼2500 molecules per embryo) at the same

time point (two-cell stage). The number of cpg-2 and nos-2 mRNA molecules comprising each

cluster increased over time, whereas chs-1 and clu-1 did not. For nos-2, mRNA accumulated to a

maximum of 20 molecules per cluster at the 24-cell stage, just before nos-2 translational activation.

After this point, nos-2 mRNA clusters decreased in size, appearing dispersed in the cytoplasm. All

clustered transcripts exhibited marked differences in clustering statistics from the homogenously

distributed set-3 transcripts.
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Figure 2.6: Quantification of mRNA clustering patterns Several metrics of clustering were quantified
for: chs-1 (red), clu-1 (ochre), cpg-2 (green), the P granule mRNA of nos-2 (blue) and for comparison set-3

(purple). We calculated the total number of RNAs in each embryo, the total number of clusters identified
in each embryo, the fraction of total mRNAs located within clusters, and the average estimated number
of mRNA molecules per cluster within a given embryo. The average of each metric and their standard
deviation (shading) for each transcript at six cell stages are shown, representing a minimum of five em-
bryos for each type and time point over a minimum of three replicates. Significance indicates P-values
derived from multiple test corrected t-tests comparing the transcript of interest versus the control tran-
script set-3 for the metric of interest at the given stage. Adjusted p-value legend: NS>0.05;0.05>*>0.005;
0.005>**>0.0005;0.0005>***>0.00005; 0.00005>****.
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Figure 2.7: P granules are distinct from P-bodies A schematic illustration demonstrating similarities and
differences between P granules and P-bodies

2.3.3 Clustered transcripts chs-1, clu-1, cpg-2 and nos-2 colocalize with

markers of P granules and, less frequently, with markers of P-bodies

mRNA clustering is typically indicative of localization into granules. Many types of conden-

sates exist, such as stress granules (associated with translationally repressed transcripts that ac-

cumulate during stress), P-bodies (processing bodies, associated with RNA processing enzymes)

and germ granules (associated with regulatory control in animal germ cells). In C. elegans, germ

granules are specifically called P granules in the early embryo (Figure 2.7) [53, 65] and they seg-

regate to the P lineage with each successive cell division. Dual mechanisms of preferential co-

alescence/segregation in the P lineage and disassembly/degradation in somatic cells drives their

concentration in the P lineage [57, 188, 206].

Given that we observed chs-1, clu-1 and cpg-2 mRNAs clustered and progressing down the

P lineage, we hypothesized that they might be within P granules. To test this, we imaged chs-

1, clu-1, cpg-2 and, for comparison, nos-2 by smFISH in worms expressing P granule markers

GLH-1::GFP (Figure 2.8) or PGL-1::GFP (Figure 2.9). mRNA clusters overlapped with both P

granule markers. Indeed, 23% (cpg-2) to 75% (chs-1) of identified mRNA clusters overlapped

with GLH-1::GFP-marked P granules at the four-cell stage (Figure 2.8), and their co-occurrence

increased thereafter. Larger mRNA clusters were more likely to co-occupy space with P granules

(Figure 2.10). Conversely, 13-57% of GLH-1::GFP marked P granules contained an mRNA cluster

of any specific transcript, suggesting some heterogeneity in their content. Together, these findings

illustrate that P-lineage-enriched mRNA clusters in this study are P granule-associated RNAs.
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Figure 2.8: P1-enriched clustered transcripts overlap with the P granule marker GLH-1::GFP. Left)

Fixed embryos were imaged for the P granule marker GLH-1::GFP (green) and chs-1, clu-1, cpg-2, or nos-2

transcripts (magenta). DNA (DAPI, blue) and differential interference contrast microscopy (DIC) are also
shown. Right) The fraction of mRNA clusters overlapping with P granules (dark gray) and P granule-
independent clusters (light gray) in four-cell embryos was calculated by assessing spatial overlap between
mRNA clusters and GLH-1::GFP-marked P granules. Scale bars: 10 µm.

Figure 2.9: P1-enriched, clustered transcripts co-localize with the P granule marker PGL-1::GFP.

In addition to co-localizing with GFP signal in the P granule marker strain containing GLH-1::GFP (Figure
2.8), chs-1, clu-1, cpg-2, and nos-2 mRNAs (all in magenta) also co-localize with a second P granule marker
protein, PGL-1::GFP (green). DAPI is illustrated in blue to visualize nuclei and illustrate the 4-cell stage of
development. Scale bars: 10 µm.
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Figure 2.10: Quantification of mRNA cluster overlap with the P granules. mRNA cluster overlap with
GLH-1::GFP labeled P granules is calculated using micrographs of GLH-1::GFP and clustered RNAs (clu-

1 shown) (A, left), computationally identifying P granules and RNA clusters (A, middle), and comparing
the 3D masks for overlap to identify independent P granules and RNA clusters (magenta) or colocalized
clusters (green) (A, right). (B) A Venn-Euler diagram illustrating the number of independent clu-1 mRNA
clusters (magenta), independent P granules (light green), and overlapping P granules and mRNA clusters
(dark green) in a single embryo (from A). (C) Box plots comparing the size of non-over-lapping mRNA
clusters and P granules to those overlapping shows larger mRNA clusters more commonly overlap with P
granules (left) and brighter P granules more commonly overlap with mRNA clusters (right).
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Figure 2.11: Immunofluorescence control images for anti-GFP antibody staining. The anti-GFP anti-
body reports PATR-1::GFP localization (green, right) in PATR-1::GFP containing strains as compared to
N2 wild type control strains (green, left). DAPI staining is shown in blue to visualize nuclei and illustrate
the 4-cell stage of development. Scale bars: 10 µm.

Depending on the transcript, 25-75% of RNA clusters were distinct from P granule markers at

the four-cell stage. These occurred in P cells and their sisters (most evidently in the EMS cell).

Because many of the clustered mRNAs (chs-1, clu-1, cpg-2 and nos-2) degrade in early embryo-

genesis (Figure 2.5), we hypothesized that the RNA clusters that did not overlap with P granule

markers were P-bodies. P-bodies – as opposed to P granules – are associated with RNA decay

as they contain high concentrations of RNA degrading proteins (DCAP-1, Argonaute, and Xrn-

1) [207] (Figure 2.7). In C. elegans, P granules and P-bodies share some protein components, but

specific proteins distinguish each [2, 118]. To test our hypothesis, we imaged chs-1, clu-1, cpg-2

and nos-2 using smFISH concurrently with PATR-1::GFP (yeast PAT-1 Related) amplified by im-

munofluorescence to mark P-bodies (Figure 2.11, Chapter 2.5 Materials and Methods, Chapter 3).

chs-1 and clu-1 transcripts were enriched in posterior cells whereas PATR-1::GFP predominantly

localized to somatic cells. However, within their regions of overlap, we identified co-localized

clusters, indicating that some clusters of chs-1 and clu-1 mRNAs reside within P-bodies (Figure

2.12). Some chs-1 and clu-1 mRNA clusters failed to overlap with P granule or P-body markers,

leaving their identity unknown. Whether these mRNA clusters are stable or short-lived is currently

unclear, as fixed smFISH assays cannot resolve their dynamics.
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Figure 2.12: Posterior clustered mRNAs partially colocalize with P-bodies. Fixed embryos were imaged
for the P-body protein marker PATR-1::GFP amplified using immunofluorescence (green) with smFISH
imaging of chs-1 mRNA or clu-1 mRNA (magenta), and DNA (DAPI; blue). Enlargements of boxed areas
illustrate regions of co-localization. Dashed white lines indicate cell boundaries. Scale bars: 10 µm.

Figure 2.13: mRNA clusters display homotypic clustering within P granules. chs-1 mRNA (magenta)
tend to homotypically cluster in the core of P granules while clu-1 mRNA (green) also cluster homotypically,
but near the peripheries of P granules. Scale bars: 10 µm.

Curiously, we noticed that transcripts did not mix homogenously within P granules but oc-

cupied discrete regions within granules. For example, clu-1 mRNA typically surrounded a chs-1

mRNA core (Figure 2.13). These observations are echoed by other reports of homotypic mRNA

spatial separation within germ granules [101,208] and suggest a complex organization to granules

and the mRNAs they contain.
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2.3.4 3’UTRs were sufficient to direct mRNAs to P granules but not mem-

branes

The 3’ untranslated regions (UTRs) of transcripts have been implicated in driving subcellu-

lar localization of mRNAs in many organisms [209]. To determine whether 3’UTRs of tran-

scripts in our study were sufficient to direct mRNA localization, we appended 3’UTRs of interest

onto mNeonGreen reporters expressed from the mex-5 promoter in transgenic strains. We gener-

ated single-copy chromosomal integrations using Cas9-mediated insertion into MosSCI integration

sites. We imaged mNeonGreen mRNA localization using mNeonGreen smFISH probes alongside

probe sets for endogenous mRNA in the same embryos.

3’UTRs of erm-1 and imb-2 were not sufficient to drive mRNA subcellular localization. En-

dogenous erm-1 and imb-2 mRNAs localize to the cell or nuclear peripheries, respectively, but

mNeonGreen mRNA appended with erm-1 or imb-2 3’UTRs failed to recapitulate those patterns

(Figure 2.14). However, the imb-2 3’UTR did show evidence of mRNA destabilization as Pmex-

5::mNeonGreen::imb-2 3’UTR yielded fewer mNeonGreen mRNA than endogenous imb-2 tran-

scripts or Pmex-5::mNeonGreen::erm-1 3’UTR expressed under the same promoter. This suggests

that sequences within the body of the imb-2 mRNA and/or its successful localization are important

for mRNA stability. Ultimately, we did not identify sequences within erm-1 or imb-2 mRNAs suf-

ficient to direct transcript localization. Either the 5’ regions of the mRNA, the coding sequence of

the mRNA, the full mRNA, a short N-terminal signal peptide or some larger aspect of the translated

protein direct mRNA localization.

In contrast, 3’UTRs of chs-1, clu-1, cpg-2 and nos-2 were sufficient to direct mNeonGreen

mRNA to P granules. Each of the Pmex-5::mNeonGreen::3’UTR-of-interest strains yielded

mNeonGreen mRNA localized to P granules coincident with the localization of their endogenous

mRNA (Figure 2.15). The chs-1 3’UTR did exhibit hallmarks of transcript destabilization given

the comparative low abundance of mNeonGreen::chs-1 3’UTR transcripts.
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Figure 2.14: The 3’UTRs of membrane associated transcripts are not sufficient for subcellular mRNA

localization. The 3’UTRs of erm-1 (A) and imb-2 (C) were appended to monomeric NeonGreen (mex-

5p::mNeonGreen::3’UTR of interest) and transgenically introduced as a single-copy insert into otherwise
wild-type worms. Wild-type control strains (top panels) and transgenic strains (bottom panels) were im-
aged by smFISH using probes hybridizing to the endogenous mRNA of interest (left) and to mNeonGreen

mRNA (middle) and merged (right). Representative four-cell stage embryos are shown. (B,D) Quantifi-
cation of images shown in A and C indicating the normalized frequency of erm-1 (B) or imb-2 (D) mRNA
and mNeonGreen mRNA at increasing distances from cell peripheries or nuclear boundaries, respectively,
in a single embryo. p-values from multiple test corrected t-tests are shown (NS>0.05; 0.05>*>0.005). Scale
bars: 10 µm.
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Figure 2.15: The 3’UTRs of posterior-enriched, clustered transcripts are sufficient for subcellular

mRNA localization.The 3’UTRs of cpg-2 (A) and nos-2 (C) were appended to monomeric NeonGreen
(mex-5p::mNeonGreen::3’UTR of interest) and transgenically introduced as a single-copy insert into other-
wise wild-type worms. Wild-type control strains (top panels) and transgenic strains (bottom panels) were
imaged by smFISH using probes hybridizing to the endogenous mRNA of interest (left) and to mNeon-

Green mRNA (middle) and merged (right). Representative four-cell stage embryos are shown. (B,D)

The estimated mRNA content per cluster from a minimum of five embryos at each of five binned stages
of development from three biological replicates are reported for endogenous cpg-2 (B) or nos-2 (D) (ma-
genta) and mNeonGreen reporters (green). P-values from multiple test corrected t-tests are shown (NS>0.05;
0.05>*>0.005). Scale bars: 10 µm.
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2.3.5 RNA localization trends with translational status

NOS-2 protein is translationally repressed in germline and early embryonic stages before

becoming translationally active in the P4 cell at the 28-cell stage, with both repression and de-

repression being mediated by the nos-2 3’UTR [73]. NEONGREEN protein under control of the

nos-2 3’UTR in our study phenocopied this reported pattern (Figure 2.16A). NEONGREEN fused

to 3’UTRs of other transcripts (erm-1, imb-2, chs-1, clu-1 or cpg-2) produced low levels of diffuse

fluorescence, preventing interpretation of translational status of these reporter transcripts (Figure

2.16B).

GFP fusions to full-length ERM-1, CHS-1 and CPG-2 proteins were more informative in illus-

trating the endogenous expression patterns of the proteins encoded by these localized transcripts.

ERM-1::GFP localized to the cell cortex throughout embryogenesis, consistent with the role of

the ERM-1 protein in linking the cortical actin cytoskeleton to the plasma membrane [194, 210]

(Figure 2.17A). CHS-1 and CPG-2 play a transient role in development, evidenced by GFP fusion

reporters showing highest signal in the early cell stages followed by their decline (Figure 2.17B,

Figure 2.17C). CHS-1 and CPG-2 work together to form two different layers of the trilaminar

eggshell. CHS-1 encodes a multipass membrane protein that is exocytosed upon fertilization to

polymerize chitin [199, 200]. CHS-1 proteins then internalize, stimulating exocytosis of CPG-1

and CPG-2 proteins that nucleate chondroitin molecules to form the inner eggshell layer – the

CPG layer. Indeed, CHS-1::GFP fluoresces at the one-cell stage, but rapidly disappears thereafter

(Figure 2.17B). CPG-2::GFP appears to be external to the cells and persists within the extracellular

space but declines within cells (Figure 2.17C). mRNAs encoding both chs-1 and cpg-2 cluster in

P granules and decline in number as development progresses, as evidenced by our smFISH data.

Overall, this shows a trend in which transcripts with repressed, declining or low expression tended

to accumulate in P granules.
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Figure 2.16: Pmex-5::mNeonGreen::nos-2 3’UTR RNA recapitulates endogenous translation repres-

sion and activation. (A, left) A Pmex-5::mNeonGreen::nos-2 3’UTR embryo at the 16-cell stage. sm-
FISH for mNeonGreen RNA demonstrated normal RNA localization. Epifluorescent microscopy of living
Pmex-5::mNeonGreen::nos-2 3’UTR embryos at the 16-cell stage showed no expression of the mNeon-
Green reporter protein. (A, right) As in (A) at the 28-cell stage. Epifluorescent microscopy of living
Pmex-5::mNeonGreen::nos-2 3’UTR embryos at the 28-cell stage showed P lineage specific expression of
the mNeonGreen reporter protein. (B) Epifluorescent microscopy of wildtype N2 embryos demonstrates
no apparent fluorescence while Pmex-5::mNeonGreen::3’UTR of Interest embryos show low levels of cell-
non-specific mNeonGreen fluorescence. Scale bars: 10 µm.
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Figure 2.17: erm-1::gfp RNA localizes like endogenous erm-1. (A) smFISH microscopy of Perm-1::erm-

1 ORF::GFP::erm-1 3’UTR RNA (green) colocalizes with endogenous erm-1 RNA (red). (B) Epifluorescent
microscopy of CHS-1::GFP embryos at the 1-, 2-, and 16-cell stages of embryogenesis show gradual deple-
tion of the CHS-1::GFP protein puncta. (C) As in (B) imaging CPG-2::GFP embryos. CPG-2::GFP protein
can be seen in the extracellular space of the embryo, but not within cells. Scale bars: 10 µm.
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2.3.6 Translational repressors of nos-2 are required for mRNA degradation

of multiple transcripts and are required for P granule localization of

nos-2 mRNA

nos-2 is one of three nanos-related genes in the C. elegans genome and a member of the evo-

lutionarily conserved nanos family. Similar to Drosophila nanos mRNA, C. elegans nos-2 mRNA

is contributed maternally, concentrates in the progenitor germ lineage, is translationally repressed

in oocytes and during early embryogenesis, is translated with spatial specificity and produces a

protein that is expressed only in germ cells [72]. C. elegans nos-2 is required for proper develop-

ment of the germ cells and is necessary with zygotically-expressed nos-1 for germ-cell prolifera-

tion. Translational repression of nos-2 is coordinated by four sequential RBPs – OMA-1, OMA-2,

MEX-3 and SPN-4 – that directly interact with the nos-2 3’UTR [73,74] (Figure 2.18). In oocytes,

OMA-1 and OMA-2 are redundantly required to repress translation through direct interactions with

the nos-2 3’UTR before they are degraded in the zygote. The RBPs MEX-3 and SPN-4 next re-

press nos-2 translation throughout the embryo, with SPN-4 being most effective in posterior cells.

MEX-3 and SPN-4 both interact with either of two directly repeated RNA sequences in the nos-2

3’UTR and function non-redundantly in the early embryo, as RNAi or mutants of either result in

premature translation of a nos-2 reporter. This baton-passing of translational control has been doc-

umented for other maternally-inherited transcripts including zif-1 (an E3 ubiquitin ligase specific

to somatic cells) [182] and mom-2 (the Wnt ligand in P2) [183].

Though the requirement for OMA-1, OMA-2, MEX-3, and SPN-4 to repress translation of

nos-2 mRNA is clear, owing to a lack of single-molecule resolution FISH data under knockdown

conditions it is not known whether they are required to localize nos-2 mRNA to P granules. To

rectify this and to expand the question, we tested how depletion of these RBPs, individually or

in combination, impacted the abundance and/or localization of four clustered mRNA transcripts

(chs-1, clu-1, cpg-2 and nos-2) (Figure 2.18). True to published reports, individual knockdowns

of OMA-1 and OMA-2 had minimal phenotypes, but in combination yielded too few embryos to

credibly test as development arrests during oogenesis [211,212]. Depletion of MEX-3 and/or SPN-
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Figure 2.18: A model of nos-2 mRNA repression by RNA binding proteins. A succession of RBPs
cooperatively repress nos-2 translation from oogenesis through to the 28-cell stage.

4 led to an overabundance of embryo-wide chs-1, cpg-2 and nos-2 transcripts compared with mock

RNAi control, suggesting that MEX-3 and SPN-4 have a direct or indirect role in mRNA degrada-

tion (Figure 2.19, Figure 2.20A, Figure 2.21). MEX-3 and SPN-4 are not required independently

to accumulate chs-1, clu-1, or cpg-2 mRNAs in P granules; however, double knockdown of MEX-3

and SPN-4 resulted in a loss of chs-1 localization to P granules (Figure 2.21). Only the localization

of nos-2 mRNA to P granules was severely disrupted by MEX-3 or SPN-4 loss independently or in

combination, as evidenced by the missing nos-2 clusters in smFISH images (Figure 2.20B, Figure

2.20C) and corresponding decrease in the average number of mRNA molecules per cluster (Figure

2.20A). Together, these findings suggest that MEX-3 and SPN-4 are required for both translational

repression and P granule localization of nos-2 [73, 74]. Further, the role of MEX-3 and SPN-4 in

RNA degradation is separable from their role in mRNA localization to P granules, as chs-1, cpg-2

and nos-2 require MEX-3 and SPN-4 for RNA clearance, whereas only nos-2 and chs-1 rely on

them for P granule localization.
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Figure 2.19: Knockdown of the RBP mex-3 impacts nos-2 mRNA, but not chs-1. chs-1 mRNA (ma-

genta, top) and nos-2 mRNA (magenta, bottom) were imaged by smFISH in a P granule marker strain
(GLH-1::GFP, green) under mock (L4440) and mex-3 RNAi conditions. Scale bars: 10 µm.

2.3.7 RBPs that relieve NOS-2 translational repression impact nos-2 local-

ization differently

nos-2 mRNA is translationally repressed in the germline, through fertilization, and is only

released from repression at the 28-cell stage of development when NOS-2 protein is exclusively

produced in the P4 cell [73,83]. nos-2 mRNA localizes to P granules in the adult germline [71], but

appears distinct from P granules at the one- and two-cell stages (this study). Between the four-cell

and 28-cell stages, nos-2 progressively re-accumulates into P granules, reaching a maximum aver-

age density of 20-30 mRNA molecules per P granule before the 28-cell stage (Figure 2.3, Figure

2.5). At the 28-cell stage of development, when NOS-2 translation begins [72], we observed nos-2

mRNA becoming dispersed in the cytoplasm external to P granules (Figure 2.22A). This could

suggest that nos-2 mRNA emerges from P granules when it becomes actively translated, supported

by the fact that P granules are devoid of key ribosomal components required for translation [71].
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Figure 2.20: Knockdown of maternal RBPs has a variable effect on the regulation of posterior-

enriched clustered transcripts. The total number of mRNA molecules (A) and average number of mRNA
molecules per cluster (B) for four different RBP knockdown conditions on five mRNAs at five different
developmental stages are shown graphically, compared with the L4440 empty vector RNAi control. At least
four embryos were assayed for each data point from three biological replicates. Standard deviations are
shown as shaded ribbon regions. # indicates data analyzed in C. (C) Distributions of nos-2 mRNA cluster
size under mex-3, spn-4 (ts), and dual mex-3/spn-4 depletion conditions at the 16- to 24-cell stage demon-
strate decreased cluster sizes when compared with mock (L4440) depletion. Significance indicates P-values
derived from multiple test corrected t-tests comparing the knockdown condition of interest with vector-only
RNAi control (L4440) (0.005>**>0.0005; 0.0005>***>0.00005; 0.00005>****).
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Figure 2.21: Knockdown of spn-4 and mex-3 simultaneously resulted in embryonic defects and mis-

localization of RNA. GLH-1::GFP and GLH-1::GFP spn-4(or191) temperature sensitive embryos raised at
25 ◦C (GLH-1::GFP shown in green) were treated with L4440 or mex-3 RNAi and probed for chs-1 (A)

and nos-2 (B) mRNAs by smFISH (magenta). DNA was also stained with DAPI (blue). GLH-1::GFP spn-

4(or191) embryos raised at 15 ◦C and treated with either L4440 or mex-3 RNAi phenocopied GLH-1::GFP
embryos raised at 25 ◦C with the same RNAi treatment. Scale bar: 10 µm

Because the translational repression of nos-2 mRNA correlated with its localization to P gran-

ules (Figure 2.18, Figure 2.19, Figure 2.20, Figure 2.21), we sought to determine the effects of

prolonged nos-2 translational repression beyond the 28-cell stage when this repression is typically

relieved. We imaged nos-2 mRNA by smFISH under pie-1 and pos-1 RNAi knockdown conditions

in which nos-2 translational repression has been shown to persist [73, 83]. Interestingly, the two

knockdown conditions yielded different results. Upon POS-1 depletion, nos-2 mRNA failed to ap-

pear in the cytoplasm after the 28-cell stage and instead remained associated predominantly with P

granules (Figure 2.22A), as predicted by its translationally inactive status. In contrast, depletion of

PIE-1 had the opposite effect. PIE-1 plays a threefold role by contributing to nos-2 stabilization,

NOS-2 translational activation and germline transcriptional repression [73,83]. Upon disruption of

PIE-1, nos-2 mRNA molecules undergo progressive degradation in the P lineage due to the inap-

propriate transcription of somatic genes within the P lineage [179]. If this degradation phenotype

is abrogated by concurrently blocking somatic gene expression [pie-1 and ama-1 (encoding RNA
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Figure 2.22: RBPs that regulate translation of NOS-2 differentially impact nos-2 mRNA subcellular

localization. (A, B) The impact of depleting POS-1 (A) or PIE-1 (B), two RBPs important for translation
activation of nos-2 mRNA at the 28-cell stage, was assayed. chs-1 mRNA (magenta, top) and nos-2 mRNA
(magenta, bottom) were imaged in knockdown and control conditions using smFISH in a GLH-1::GFP-
expressing strain. DAPI-stained DNA illustrates developmental stage. The 28-cell stage, when nos-2 nor-
mally becomes translationally active, is shown for pos-1 RNAi conditions. The 8-cell-stage embryo is shown
for pie-1 RNAi conditions to illustrate a stage when nos-2 is normally repressed. (C) Pictograph demonstrat-
ing nos-2 behavior under conditions where translation repression is never relieved. (D) Schematic showing
a summary of localization and translation phenotypes exhibited in knockdown of nos-2 RBPs. Scale bars:
10 µm.
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Figure 2.23: Knockdown of RBPs important for nos-2 transcript localization results in perturbed

cpg-2 and clu-1 transcript localization. GLH-1::GFP (green) embryos were treated with L4440, mex-3,

pie-1, or pos-1 RNAi and probed for clu-1 (A) and cpg-2 (B) mRNAs by smFISH (magenta). DNA was also
stained with DAPI (blue). Scale bars: 10 µm

Polymerase II) double knockdown], nos-2 mRNA molecules survive but fail to produce NOS-2

protein (unlike ama-1 knockdown alone). The fact that nos-2 mRNA fails to properly translate af-

ter the 28-cell stage under dual pie-1/ama-1 knockdown conditions illustrates that PIE-1 is required

to activate the translation of NOS-2 in the P lineage [83]. Upon pie-1 depletion, we confirmed pre-

mature nos-2 mRNA degradation; however, we were surprised to see a complete loss of nos-2

localization to P granules, despite nos-2 being translationally inactive at these stages [83] (Figure

2.22B). Initially, we suspected that P lineage identity was dysfunctional in these embryos, lead-

ing to the loss of wild-type P granule function. However, P granules are clearly present in these

embryos (using GLH-1::GFP marker proteins) and they accumulate other mRNAs such as clu-1

(Figure 2.22, Figure 2.23). As nos-2 mRNA is not translated upon pie-1 disruption [83], this sug-

gests that the translational repression of nos-2 and its localization to P granules can be uncoupled,

perhaps mimicking a somatic-cell-like state in the P lineage.
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Taken together, RBP knockdown conditions that disrupt nos-2 mRNA translational repression

also disrupt nos-2 mRNA P granule association [mex-3 (RNAi) and spn-4 (ts)] (Figure 2.18, Fig-

ure 2.19, Figure 2.20, Figure 2.21, Figure 2.24). In contrast, an RBP knockdown condition that

prolongs nos-2 translational repression [73, 74] fails to release nos-2 transcripts from P granules

[pos-1 (RNAi)]. Therefore, the localization of nos-2 mRNA in P granules is largely coincident

with a translationally repressed state (Figure 2.22C, Figure 2.22D). It is not a perfect association,

however. We observed several cases where nos-2 mRNA remains translationally repressed without

localizing to P granules: (1) in one- to two-cell stage embryos; (2) in somatic cells of the early

embryo; and (3) in pie-1 mutants in which nos-2 fails to localize to P granules (pie-1 depletion re-

tains nos-2 repression in Tenenhaus et al., 2001). These findings illustrate that nos-2 translational

repression can occur independently of transcript localization and translational repression is not de-

pendent on P granule residency. Further, it illustrates an order of operations in which translational

repression precedes P granule localization during development.

2.3.8 Disrupting translation promotes P granule localization

We speculated whether P granule localization was a natural consequence that befalls tran-

scripts experiencing low rates of translation or complete repression. To determine whether altering

the translational status of mRNAs could change their localization within the cell, we disrupted

translational initiation through heat exposure. Embryos exposed to 30 ◦C for 25 min repress pro-

tein synthesis at the level of translational initiation [213, 214]. We observed that three transcripts

that are normally homogenously distributed throughout the cytoplasm coalesced into P granules in

response to heat stress (Figure 2.25, Figure 2.26): set-3, gpd-2 (Glycerol-3-Phosphate Dehydroge-

nase) and B0495.7 (predicted metalloprotease). Therefore, loss of protein synthesis was sufficient

for otherwise homogenous transcripts to accumulate in P granules.
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Figure 2.24: Quantification of mRNA clustering under RBP knockdown conditions. Statistical metrics
characterizing mRNA clustering are shown: 1) the total number of RNAs in each embryo, 2) the total number
of clusters identified in each embryo, 3) the fraction of total mRNAs located within clusters (as opposed to
cluster-independent), and 4) the average estimated number of mRNA molecules per cluster within a given
embryo. Four transcripts were assayed in five knockdown conditions over 5 developmental time points. The
average of each metric (line) and their standard deviation (shading) are shown representing a minimum of 5
embryos assayed over a minimum of 3 biological replicates.
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Figure 2.25: Homogenously distributed transcripts form clusters when subjected to heat shock stress.

(A) The transcripts gpd-2, set-3, and B0495.7 (magenta) are homogenously distributed in four-cell embryos
at 20 ◦C (left). These transcripts become recruited to GLH-1::GFP labeled P granules (green) and other
uncharacterized mRNA clusters following a 25 min 30 ◦C heat shock (right). DAPI-stained DNA illustrates
developmental stage. Insets show enlarged views of P granules, demonstrating recruitment of RNA to P
granules after heat shock. (B) The degree of gpd-2, set-3, and B0495.7 transcript overlap with the P granule
marker, GLH-1::GFP, was quantified for embryos cultured at 20 ◦C or heat-shocked at 30 ◦C for 25 min. Box
plots show the percentage of RNA clusters overlapping with the P granule marker for each transcript, which
was found to significantly increase under heat-shock conditions. Median, and first and third quartile ranges,
are indicated by the middle bar and box boundaries, respectively. Whiskers indicate 1.5X the interquartile
ranges. All included data points are shown as jittered dots. Welch’s two sample t-test P-values are shown:
0.05>*>0.005; 0.005>**>0.0005; ***<0.0005. Scale bars: 10 µm.
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Figure 2.26: Upon heat shock, a greater number of mRNAs clusters co-localize with P granules.

Quantification of smFISH assays of B0495.7, gpd-2, and set-3, three transcripts that are typically not P
granule localized. (A) Upon heat shock (30 ◦C), larger and more numerous clusters formed. (B) Upon heat
shock, more numerous RNA clusters co-localized with the P granule marker protein (GLH-1::GFP). The
percentages of clusters overlapping P granule markers are shown in Figure 2.24B. Here, the raw numbers
of co-localized clusters are tabulated. Statistics were performed using Welch’s Two Sample t-test p-values:
0.05 > * ≥ 0.005; 0.005 > ** ≥ 0.0005; *** < 0.0005.
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2.4 Discussion

2.4.1 Translational repression of mRNA is necessary and sufficient for P

granule localization

In this study, we report several maternally-inherited mRNAs with subcellular localization in

early C. elegans embryos. Localization patterns were often associated with translational status.

P granule transcripts, for example, had repressed or declining translation. We hypothesized that

either mRNAs are actively brought to P granules for the purpose of translational repression, or they

are translationally repressed in the cytoplasm leading to their accumulation in P granules. In the

case of nos-2, three lines of evidence support the second model. First, translational downregulation

occurred before P granule localization. Second, in situations where nos-2 translational repression

and P granule localization were uncoupled (one-cell stage, somatic cells and upon pie-1 depletion),

translational repression occurred independently of P granule localization. Finally, heat stress-

induced translational repression was sufficient to direct P granule localization. Together, these

findings support the model that mRNAs of low translational status accumulate in P granules as a

downstream step.

A recent publication by Lee et al. corroborates our findings [75]. They identified 492 P gran-

ule transcripts that precipitate with the intrinsically-disordered P granule factor MEG-3, and they

found them to be of low ribosomal occupancy. Indeed, the P granule transcripts they identified

depend both on translational repression and on MEG-3 for nucleation into P granules. Loss of P

granule association (through meg-3 meg-4 disruption) did not lead to loss of translational repres-

sion. They also illustrated that translational disruption of homogenous transcripts stimulates their

ectopic localization into P granules in a MEG-3-dependent manner. Together, our combined works

reinforce the interpretation that P granule accumulation occurs as a secondary step preceded and

directed by low translational status.
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2.4.2 P granules functionally echo stress granules and P bodies by accumu-

lating transcripts of low translational status

mRNAs that localize to P granules could still be observed as individuals within the cytoplasm,

as only 7% (clu-1, 26- to 48-cell stage) to 53% (clu-1, eight-cell stage) of total mRNAs localized

to clusters. This echoes stress granules in which 10% of bulk mRNA and up to 95% of specific

transcripts move into stress granules only returning to the cytoplasm after the stress has passed

[121]. Though stress granules and germ granules (like P granules) are distinct, they appear to have

some functionality in common.

2.4.3 Different transcripts accumulate in P granules through different

mechanisms

We identified six new P granule-enriched transcripts. Of the three (chs-1, clu-1 and cpg-2) we

selected for further study, all localized to P granules in 3’UTR-dependent manners. However, these

transcripts did not rely on the same RBPs for localization into granules as nos-2 did (MEX-3, SPN-

4 and PIE-1). What, then, directs them to P granules? The answer may lie in their biology. CHS-1

and CPG-2 are translationally activated by fertilization but their mRNA and protein levels decline

shortly thereafter. Therefore, whether translation is repressed temporarily (nos-2) or permanently

and followed by degradation (chs-1 or cpg-2), P granule accumulation results. Different sets of

RBPs likely interpret the 3’UTR sequence information of each transcript to direct regulation.

2.4.4 mRNA degradation plays a role in shaping transcript localization pat-

terns

Transcripts of chs-1, clu-1, cpg-2 and nos-2 accumulate in the P granules of progenitor germ

cells at the same time they disappear from somatic cells. These linked mechanisms concentrate

transcripts down the P lineage. All transcripts tested required MEX-3 and SPN-4 for degradation

in somatic cells, yet nos-2 (and to a lesser extent chs-1 and cpg-2) specifically required both RBPs

for strong accumulation in P granules. Together, these findings suggest a mechanism in which
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P granule localization protects mRNAs from MEX-3 and SPN-4-dependent degradation. Local

protection coupled to generalized degradation has also been evoked to explain how Drosophila

nanos concentrates at posterior regions of the embryonic syncytium [12]. Similarly, we found

the 3’UTR of imb-2 fused to mNeonGreen elicited mNeonGreen mRNA decay, suggesting that

imb-2 localizes to nuclei by a 3’UTR-independent mechanism that protects it from its own 3’UTR-

dependent degradation. Together, these findings illustrate how subcellular localization can preserve

mRNAs in specific regions of the cell and embryo.

Altogether, translational status directs P granule residency of key transcripts, and P granule

residency, in turn, directs enrichment down the P lineage. This explains how mRNAs may be re-

tained and concentrated in specific lineages even in the absence of de novo transcription. Indeed,

we found that nos-2 mRNAs within P granules were exceptionally numerous. Whereas other P

granule associated transcripts were estimated at 8-12 molecules per granule, nos-2 mRNAs accu-

mulated to >20 molecules per granule just before the onset of nos-2 translation. This suggests a

possible functional reason why transcripts important for germ cell biology accumulate in P gran-

ules – to direct cell-specific protein production even in the absence of de novo transcription.

2.4.5 Peripheral transcripts often encode membrane-associated proteins

Half of the anterior AB-enriched transcripts we surveyed by smFISH accumulated at the cell

periphery. Of these, ERM-1 and LEM-3 proteins also localize to apical plasma membranes [194,

195]. The localizations of APE-1 and TES-1 are currently uncharacterized, but these proteins

harbor domains associated with membrane localization [196, 197]. In addition, symmetrically-

distributed imb-2 mRNA localized preferentially at nuclear membranes, the same localization at

which the protein it encodes functions [203]. The concordance between localization of mRNA

and the proteins they encode suggest that either the transcripts are directed to membranes for

the purpose of local translation or they are passively dragged along behind the growing peptide

as it localizes to its final destination. Current genomics assays have illustrated that mRNAs can

associate with the endoplasmic reticulum in both translationally-dependent and -independent ways
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[215], suggesting that both models are possible. Although erm-1 and imb-2 lack discernible signal

peptides at their N-termini, they both contain membrane-associated domains. Future studies will

determine whether these could act to co-translationally direct transcripts to membranes, possibly

for the purpose of efficiently generating secondary rounds of translation.

2.4.6 mRNA localization is a widespread feature of cell biology

Diverse examples of transcript-specific mRNA localization have been described across the tree

of life ranging from bacteria [18] to humans [216]. Although early discoveries of localized mR-

NAs were thought to represent exceptional cases, recent advances in mRNA proximity labeling

suggest that mRNA localization may be more widespread than previously thought [23, 25]. A

new perspective is emerging to encompass mRNA localization control as a general feature of cell

biology.

2.5 Materials and Methods

2.5.1 Ethics and oversight

All experiments were subject to oversight by the Colorado State University Institutional

Biosafety Committee and were conducted in accordance with National Institutes of Health guide-

lines.

2.5.2 C. elegans maintenance

C. elegans strains were maintained using standard procedures [217]. Worms were grown at 20

◦C and reared on nematode growth medium (NGM: 3 g/l NaCl; 17 g/l agar; 2.5 g/l peptone; 5 mg/l

cholesterol; 1 mM CaCl2; 1 mM MgSO4; 2.7 g/l KH2PO4; 0.89 g/l K2HPO4). C. elegans strains

generated in this study were derived from the standard laboratory strain, Bristol N2. Strains used

in this study are listed in Table 2.2.
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Table 2.2: Worm strains used in this study.

Strain Description Genotype Reference/Source Verification

N2 N2 C. elegans wildtype CGC

DUP64
GLH-1::
GFP

glh-1(sam24

[glh-1::gfp::

3xFlag]) I

Andraloje et al.,
2017; obtained
from Dustin Updike

verified by true
breeding GFP
fluorescence pattern

DUP75
PGL-1::
GFP

pgl-1(sam33

[pgl-1::gfp::

3xFlag]) IV

Andraloje et al.,
2017; obtained
from Dustin Updike

verified by true
breeding GFP
fluorescence pattern

DUP98
PATR-1::
GFP

patr-1(sam50

[patr-1::gfp::

3xFlag])II

Andraloje et al.,
2017; obtained
from Dustin Updike

verified by true
breeding GFP
fluorescence pattern

LP306 GFP::PH

cpIs53 [mex-5p::

GFP-C1::PLC

(delta)-PH::tbb-2

3’UTR + unc-119

(+)] II

Heppert JK, et al.
Mol Biol Cell. 2016;
obtained from
Jason Lieb Lab

verified by true
breeding GFP
fluorescence pattern

wDMP014
erm-1::
GFP

erm-1 [Perm-1::

erm-1::GFP::erm-1

3’UTR] I

Personal Com.,
Mike Boxem Lab;
obtained from
Mike Boxem

verified by true
breeding GFP
fluorescence pattern

EU923 spn-4 TS spn-4(or191) V

CGC (Isolated in
the Bowerman Lab);
obtained from CGC

sequence verified &
phenotype verified

wDMP005
NG::erm-1
3’UTR

ttTi5605 [Pmex-5::

mNeonGreen::

erm-1 3’UTR] II

This study
verified by PCR &
sequencing

wDMP006
NG::imb-2
3’UTR

ttTi5605 [Pmex-5::

mNeonGreen::

imb-2 3’UTR] II

This study
verified by PCR &
sequencing

wDMP047
NG::clu-1
3’UTR

ttTi5605 [Pmex-5::

mNeonGreen::

clu-1 3’UTR] II

This study
verified by PCR &
sequencing

wDMP038
NG::cpg-2
3’UTR

ttTi5605 [Pmex-5::

mNeonGreen::

cpg-2 3’UTR] II

This study
verified by PCR &
sequencing

wDMP039
NG::chs-1
3’UTR

ttTi5605 [Pmex-5::

mNeonGreen::

chs-1 3’UTR] II

This study
verified by PCR &
sequencing

wDMP011
NG::nos-2
3’UTR

ttTi5605 [Pmex-5::

mNeonGreen::

nos-2 3’UTR] II

This study
verified by PCR &
sequencing
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2.5.3 3’UTR reporter constructs

The plasmid pMTNCSU7 was generated to express mNeonGreen as an N-terminal flu-

orescent reporter. Starting with a Pmex-5::neongreen::neg-1::neg-1-3’UTR plasmid de-

rived from the MosSCI-based plasmid pCFJ150, we replaced the neg-1 sequences with

an NheI/BglII/EcoRV multiple cloning site using inverse PCR. 3’UTRs were PCR am-

plified and cloned into the NheI site of pMTNCSU7 using Gibson cloning (New Eng-

land Biolabs) to create pDMP45 (Pmex-5::mNeonGreen::nos-2 3’UTR), pDMP47 (Pmex-

5::mNeonGreen::cpg-2 3’UTR), pDMP48 (Pmex-5::mNeonGreen::chs-1 3’UTR), pDMP91

(Pmex-5::mNeonGreen::clu-1 3’UTR), pDMP111 (Pmex-5::mNeonGreen::imb-2 3’UTR) and

pDMP112 (Pmex-5::mNeonGreen::erm-1 3’UTR). Plasmids used in this study are listed in Table

2.3. Primers used for 3’UTR amplification can be found in Table 2.4.

Table 2.4: Oligonucleotide primers used in this study.

Primer Name Primer Sequence Target Gene ID Isoform Usage/Goal

oMTNCSU

_0001b

GTCTTGATGG

TTGTGCGCAT

TG

pEO98 NA NA

Remove neg-1

gene fragment

from pEO98

oMTNCSU

_0004

gatatcagatctgctag

CTTGTACAGCT

CGTCCATTCC

pEO98 NA NA

Remove neg-1

gene fragment

from pEO98

oMTNCSU

_0003b

ctagcagatctgatatc

GTCTTGATGGT

TGTGCGCATTG

pEO98 NA NA

Remove neg-1

gene fragment

from pEO98

oMTNCSU

_0002

CTTGTACAGCT

CGTCCATTCC
pEO98 NA NA

Remove neg-1

gene fragment

from pEO98
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Table 2.4: Oligonucleotide primers used in this study.

Primer Name Primer Sequence Target Gene ID Isoform Usage/Goal

oMTNCSU

_0007

tatgggaatggacgagc

tgtacaagtaaAAGA

TCCAATTTCTC

AATACTTTTTT

ATATCG

nos-2

3’UTR

WBGene

00003784
ZK1127.1.1

Amplify nos-2

3’UTR for

Gibson assembly

oMTNCSU

_0008b

caaccatcaagacgata

tcagatctgctagCGA

ATTGTAAATTTT

TATTTTCAGAG

CTAT

nos-2

3’UTR

WBGene

00003784
ZK1127.1.1

Amplify nos-2

3’UTR for

Gibson assembly

oMTNCSU

_0015

tgggaatggacgagctg

tacaagtaaTTGTAC

CCATTTTTTTTA

CAAAATTACAC

ACTAA

cpg-2

3’UTR

WBGene

00015102
B0280.5.1

Amplify cpg-2

3’UTR for

Gibson assembly

oMTNCSU

_0016b

cacaaccatcaagacga

tatcagatctgctagTC

AGAGTTCTAGT

CAGGCAGTTTC

ATTT

cpg-2

3’UTR

WBGene

00015102
B0280.5.1

Amplify cpg-2

3’UTR for

Gibson assembly
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Table 2.4: Oligonucleotide primers used in this study.

Primer Name Primer Sequence Target Gene ID Isoform Usage/Goal

oMTNCSU

_0017

gggaatggacgagctgt

acaagtaaTGCTAA

AATTGATTTTTA

TTTTTTATTTATT

GCAT

chs-1

3’UTR

WBGene

00000496
T25G3.2.1

Amplify chs-1

3’UTR for

Gibson assembly

oMTNCSU

_0018b

aatgcgcacaaccatca

agacgatatcagatctgc

tagAGAATGACC

CTGCAAACGTG

CT

chs-1

3’UTR

WBGene

00000496
T25G3.2.1

Amplify chs-1

3’UTR for

Gibson assembly

DMP175

accatcaagacgatatca

gatctgctagagattttca

gattttattattggagaaa

gaac

clu-1

3’UTR

WBGene

00000550
F55H2.6.1

Amplify clu-1

3’UTR for

Gibson assembly

DMP176

tgatgttatgggaatggac

gagctgtacaagaattgat

tagatatcacccaattttttg

g

clu-1

3’UTR

WBGene

00000550
F55H2.6.1

Amplify clu-1

3’UTR for

Gibson assembly

oMTNCSU

_0009

ttatgggaatggacgagc

tgtacaagtaaGGAA

AAACGAGTATCT

AGATATGCAATT

TTC

imb-2

3’UTR

WBGene

00002076
R06A4.4a.1

Amplify imb-2

3’UTR for

Gibson assembly
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Table 2.4: Oligonucleotide primers used in this study.

Primer Name Primer Sequence Target Gene ID Isoform Usage/Goal

oMTNCSU

_0010b

caaccatcaagacgatatc

agatctgctagCATGA

ATCATTAAAAAA

TGAAGGATAGAA

A

imb-2

3’UTR

WBGene

00002076
R06A4.4a.1

Amplify imb-2

3’UTR for

Gibson assembly

oMTNCSU

_0013

tatgggaatggacgagc

tgtacaagtaaTTATT

TGTTCTATCGTA

TTTCCTTTTATT

TTT

erm-1

3’UTR

WBGene

00001333
C01G8.5

Amplify erm-1

3’UTR for

Gibson assembly

oMTNCSU

_0014b

ccatcaagacgatatcag

atctgctagCATGTC

ACGTATTCATAT

TTATCATAATAT

CAT

erm-1

3’UTR

WBGene

00001333
C01G8.5

Amplify erm-1

3’UTR for

Gibson assembly

2.5.4 C. elegans single-copy transgenesis by CRISPR

Pmex-5::mNeonGreen::3’UTR strains were generated from N2 worms by CRISPR targeting

to the ttTi5605 MosSCI site [218]. Guide RNA targeting the ttTi5605 MosSCI site and Cas9

protein were co-expressed from the plasmid pDD122, whereas plasmids pDMP45, pDMP47,

pDMP48, pDMP91, pDMP111 and pDMP112 were used as repair templates. Three vectors con-

taining mCherry-tagged pGH8 (Prab-8::mCherry neuronal co-injection marker), pCFJ104 (Pmyo-

3::mCherry body wall muscle co-injection marker) and pCFJ90 (Pmyo-2::mCherry pharyngeal

co-injection marker) as well as one containing the heat-shock activated PEEL-1 counter-selectable

marker (pMA122) were co-injected. mNeonGreen- and mCherry-positive animals were identified
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Table 2.3: E.coli strains and plasmids used in this study.

Strain description Plasmid description Detailed description Reference

OP50 NA OP50

L4440 pPD129.36
empty worm
RNAi plasmid

Fire Lab C.

elegans Vector
Kit 1999
(unpublished)

oma-1 RNAi
IV-4F01 from the
Ahringer library

worm RNAi plasmid +
oma-1 gene fragment

Fraser et al,
2000, Nature

oma-2 RNAi
V-5D12 from the
Ahringer library

worm RNAi plasmid +
oma-2 gene fragment

Fraser et al,
2000, Nature

mex-3 RNAi
I-1A23 from the
Ahringer library

worm RNAi plasmid +
mex-3 gene fragment

Fraser et al,
2000, Nature

pie-1 RNAi
III-6E08 from the
Ahringer library

worm RNAi plasmid +
pie-1 gene fragment

Fraser et al,
2000, Nature

pos-1 RNAi
V-6A23 from the
Ahringer library

worm RNAi plasmid +
pos-1 gene fragment

Fraser et al,
2000, Nature

pEO98 mNeonGreen::neg-1

ttTi5605 Pmex-5::

mNeonGreen::neg-1::

neg-1 3’UTR

This study

pDMP112 mNeonGreen::erm-1

ttTi5605 Pmex-5::

mNeonGreen::erm-1

3’UTR

This study

pDMP111 mNeonGreen::imb-2

ttTi5605 Pmex-5::

mNeonGreen::imb-2

3’UTR

This study

pDMP48 mNeonGreen::chs-1

ttTi5605 Pmex-5::

mNeonGreen::chs-1

3’UTR

This study

pDMP91 mNeonGreen::clu-1

ttTi5605 Pmex-5::

mNeonGreen::clu-2

3’UTR

This study

pDMP47 mNeonGreen::cpg-2

ttTi5605 Pmex-5::

mNeonGreen::cpg-2

3’UTR

This study

pDMP45 mNeonGreen::nos-2

ttTi5605 Pmex-5::

mNeonGreen::nos-2

3’UTR

This study
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as F1 progeny and singled to new plates until starvation. Starved plates were then subjected to a

4 h incubation at 34 ◦C to counterselect, followed by an overnight recovery at 25 ◦C. Plates were

then screened for living worms that did not express the mCherry co-injection markers. Worms that

showed no fluorescence from the presence of extrachromosomal arrays were singled to establish

lines, which were confirmed for single-copy insertion by PCR using the primers in Table 2.4.

2.5.5 smFISH

smFISH was performed based on the TurboFish protocol, with updates specific to

C. elegans and using new Biosearch reagents [180, 219–222]. Custom Stellaris FISH

Probes were designed against target transcripts (Table A.1) using the Stellaris RNA FISH

Probe Designer (Biosearch Technologies; www.biosearchtech.com/stellarisdesigner; version

4.2). The embryos were hybridized with Stellaris RNA FISH Probe sets labeled with

CalFluor 610 or Quasar 670 (Biosearch Technologies) following the manufacturer’s instructions

(www.biosearchtech.com/stellarisprotocols). Briefly, young adult worms were bleached for em-

bryos, suspended in 1 ml -20 ◦C methanol, quickly vortexed and freeze cracked in liquid nitrogen.

Embryos were stored in methanol at -20 ◦C for 1-24 h. After fixation, embryos were equilibrated

briefly in Stellaris Wash Buffer A (Biosearch Technologies, SMF-WA1-60) before hybridization

in 100 µl Stellaris Hybridization buffer (Biosearch Technologies, SMF-HB1-10) containing 10%

formamide and 50 pmol of each primer set. The hybridization reaction was incubated at 37 ◦C

overnight. Hybridized embryos were then washed twice for 30 min in Stellaris Wash Buffer A,

with the second wash containing 1 µg/ml of DAPI. Following counterstaining, a final wash in Stel-

laris Wash Buffer B (Biosearch Technologies, SMF-WB1-20) was carried out before storage with

N-propyl gallate antifade [10 ml 100% glycerol, 100 mg N-propyl gallate, 400 µl 1 M Tris (pH 8.0),

9.6 ml DEPC-treated H2O] before slide preparation. Embryos were mounted based on original de-

scriptions in Ji and van Oudenaarden (2012) [223], using equal volumes of hybridized embryos

resuspended in N-propyl gallate antifade and Vectashield antifade (Vector Laboratories, H-1000).

smFISH image stacks were acquired on a Photometrics Cool Snap HQ2 camera using a DeltaVi-
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sion Elite inverted microscope (GE Healthcare), with an Olympus PLAN APO 60X (1.42 NA,

PLAPON60XOSC2) objective, an Insight SSI 7-Color Solid State Light Engine and SoftWorx soft-

ware (Applied Precision) using 0.2 µm z-stacks. Representative images were deconvolved using

Deltavision (SoftWorx) deconvolution software. Images were further processed using FIJI [224].

Initial characterization of subcellular localization for the transcripts erm-1, imb-2, chs-1, clu-1,

cpg-2 and nos-2 was performed in conjunction with the homogenous transcript set-3 as a negative

control for subcellular localization (data not shown; see http://dx.doi.org/10.25675/10217/201623

for raw microscopy images). In all instances, a minimum of five embryos, but often many more,

were imaged for each genetic condition and time point. All raw microscopy images are deposited

on Mountain Scholar, a digital, open access data repository associated with Colorado State Uni-

versity Libraries (http://dx.doi.org/10.25675/10217/201623).

2.5.6 smiFISH

smiFISH was performed as in Tsanov et al. [225] using FLAPY primary probe extensions and

secondary probes. Briefly, between 12 and 24 primary probes were designed using Oligostan [225]

and ordered in 25 nmol 96-well format from Integrated DNA Technologies diluted to 100 µM in

IDTE buffer (pH 8.0). Secondary FLAPY probes were ordered from Stellaris LGC with dual 5’

and 3’ fluorophore labeling using either Cal Fluor 610 or Quasar 670 (Biosearch Technologies,

BNS-5082 and FC-1065, respectively). Individual probes were combined to a final concentration

of 0.833 µM, and 2 µl of primary probe mixture were mixed with 1 µl 50 µM FLAPY secondary

probe, 1 µl NEB buffer 3 and 6 µl DEPC-treated H2O. The primary and secondary probe mixtures

were then incubated in a thermocycler at 85 ◦C for 3 min, 65 ◦C for 3 min and 25 ◦C for 5 min to

anneal. Then 2 µl of annealed probe mixtures were used as normal smFISH probe sets as above.

smiFISH probe sequences are listed in Table A.1.

2.5.7 smFISH plus immunofluorescence

smFISH combined with immunofluorescence was performed similarly to smFISH with slight

modifications. N2 and DUP98 patr-1(sam50[patr-1::GFP::3xFLAG])II [226] embryos were har-
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vested as above with the exception that they were resuspended in methanol, freeze cracked in liquid

nitrogen for 1 min, and transferred to acetone after ∼5 min total in methanol. Embryos were then

incubated in acetone for 25 min before proceeding to hybridization/immunofluorescence. smFISH

was then performed as above with the exception that a final concentration of 2.37 µg/ml Janelia

Fluor 549 (Tocris, 6147) conjugated anti-GFP nanobody (Chromotek, gt-250) was incubated with

the embryos overnight in hybridization buffer.

2.5.8 Initial quantification of smFISH micrographs

Initial characterization of mRNA counts from smFISH micrographs was performed using a

standard FISH-quant analysis [204]. Briefly, embryos were manually outlined, 3D LoG filtered

using default FISH-quant parameters (size=5, s.d.=1), spots were pre-detected using a local maxi-

mum fitting and RNAs were detected using a manually determined image-dependent intensity and

quality threshold, with sub-region fitting of 2 pixels in the x- and y-axes and 3 pixels in the z-axis.

Post-processing to calculate the different location metrics was performed as described below

with custom-written Matlab and Python code. The Python code is implemented as plugins for

the image processing platform ImJoy [227]. Source code and detailed description are provided at

https://github.com/muellerflorian/parker-rna-loc-elegans.

2.5.9 Quantification of cortical RNA localization

Quantification of transcript localization to the cell cortex was performed using the web appli-

cation ImJoy [227]. RNAs were first detected as above using FISH-quant. Individual cell outlines

were then manually annotated in FIJI for each z-stack in the micrograph, excluding the uppermost

and lowermost stacks where cells are flattened against the slide or coverslip. The distance of each

RNA was then measured from the nearest annotated membrane and binned in 10 µm increments.

The total number of RNAs per bin was then normalized by the volume of the concentric spheres

they occupied. After this normalization, values larger than 1 indicate that for this distance more

RNAs are found compared with a randomly distributed sample.
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2.5.10 Quantification of nuclear peripheral RNA localization

Quantification of transcript localization to the nuclear periphery was also performed using

ImJoy. RNAs were first detected as above using FISH-quant. Embryos were then manually out-

lined to create an upper limit for RNA distance from the nucleus. Individual nuclei were then

annotated by binarizing DAPI micrographs to create a nuclear mask. The distance of each RNA

was then measured from the nearest annotated nuclear membrane and binned in 10 µm increments.

Negative distance indicates positioning within the nuclear mask. The total number of RNAs per

bin was then normalized for volume as described above for cell membrane localization.

2.5.11 Quantification of RNA clustering

Detection of RNA molecules was performed in the 3D image stacks using FISH-quant [204].

Positions of individual RNA molecules within dense clusters were determined with a recently de-

veloped approach using the signal of isolated RNAs to decompose these clusters [228]. Post-

processing to calculate the different location metrics was performed as described below with

custom-written Matlab and Python code. The Python code is implemented in user-friendly plu-

gins for the image processing platform ImJoy [227]. Source code and all scripts used for analysis

and figure generation are available at https://github.com/muellerflorian/parker-rna-loc-elegans.

To quantify the number of individual mRNAs in mRNA clusters, the total number of clusters

per embryo and the fraction of mRNAs in clusters, a custom MATLAB script was implemented.

FISH-quant detection settings were used to identify candidate mRNA clusters from smFISH mi-

crographs using GMM. The GMM differentiates independent, single mRNAs from groups of clus-

tered mRNAs by probabilistically fitting a predicted RNA of average intensity and size over each

FISH-quant detected RNA. GMM fitting then provided coordinates of both independent RNAs and

the modeled coordinates of each RNA that composes a cluster. The decomposed coordinates of

each RNA in the embryo were then used by a density-based spatial clustering of applications with

noise (DBSCAN) algorithm to quantitatively analyze cluster size and number. Quantifying RNA

cluster overlap with GLH-1::GFP
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To determine the degree of overlap between RNA clusters and P granules labeled with GLH-

1::GFP a hybrid Matlab-ImJoy pipeline was implemented. RNA clusters were identified as de-

scribed above. The occupied volume of these clusters in the image was calculated as the convex

hull around all RNA positions within a cluster with the SciPy function ConvexHull. The location

of P granules was determined in 3D with a Laplacian of Gaussian (LoG) blob detection method

(with the scikit-image function blog_log). RNA clusters and P granules were considered to co-

localize when their 3D volumes at least partly overlap. This allowed quantification of the number

of independent P granules, RNA clusters, and RNA clusters that overlap with P granules.

2.5.12 RNAi feeding for smFISH microscopy

dsRNA feeding was executed as previously described [229]. Mixed-stage worms were

bleached to harvest and synchronize embryos. Harvested embryos were deposited on RNAi feed-

ing plates and grown at 25 ◦C until gravid. Embryos were harvested and smFISH was conducted.

For each gene targeted by RNAi, we performed at least three independent replicates of feeding and

smFISH using L4440 empty vector as a negative control and pop-1 RNAi as a 100% embryonic

lethal positive control. For experiments using the spn-4 temperature sensitive allele, spn-4(or191)

V, worms were grown at 15 ◦C until gravid, bleached for embryos, and split into 15 ◦C negative

control and 25 ◦C query conditions while plating on L4440, mex-3 or pop-1 RNAi conditions.

2.6 Author contributions

This chapter was a collaborative project originally written for publication. Dylan M. Parker

and Erin Osborne Nishimura led the project. Marc T. Nishimura designed the original cloning

strategy to produce 3’UTR reporter plasmids and produced several of the final plasmids. Marc

also contributed feedback on the conceptualization of many experiments performed in this chapter.

Florian Mueller collaboratively and iteratively designed the Matlab and ImJoy RNA localization

analysis pipelines with Dylan and Erin and generated the code to perform the analysis. Lindsay P.

Winkenbach optimized the RNAi feeding followed by smFISH protocol and performed many of
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the initial replicates of those experiments. Lindsay also performed multiple replicates of heatshock

experiments. Sam Boyson optimized smiFISH and screened several transcripts for subcellular

localization using this method. Matt N. Saxton, Camryn Daidone, and Zainab A. Al-Mazaydeh

all screened transcripts for subcellular localization using either smFISH or smiFISH. All authors

contributed to manuscript editing. All other work performed in this chapter was solely performed

by Dylan M. Parker.
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Chapter 3

Improved methods for protein and single-molecule

RNA detection in C. elegans embryos
3

3.1 Summary

Visualization of gene products in Caenorhabditis elegans has provided insights into the molec-

ular and biological functions of many novel genes in their native contexts. Single-molecule Flu-

orescence In Situ Hybridization (smFISH) and Immunofluorescence (IF) visualize the abundance

and localization of mRNAs and proteins, respectively, allowing researchers to elucidate the lo-

calization, dynamics, and functions of many genes. Here, we describe several improvements

and optimizations to existing IF and smFISH approaches specifically for use in C. elegans em-

bryos. We present 1) optimized fixation and permeabilization steps to preserve cellular morphol-

ogy while maintaining probe and antibody accessibility, 2) a streamlined, in-tube approach that

negates freeze-cracking, 3) the smiFISH (single molecule inexpensive FISH) adaptation that re-

duces cost, 4) an assessment of optimal anti-fade products, and 5) straightforward quantification

and data analysis methods. Most importantly, published IF and smFISH protocols have predom-

inantly been mutually exclusive, preventing exploration of relationships between an mRNA and

a relevant protein in the same sample. Here, we present methods to combine IF and smFISH

protocols in C. elegans embryos including an efficient method harnessing nanobodies. Finally,

we discuss tricks and tips to help the reader optimize and troubleshoot individual steps in each

protocol.

3This chapter was published as a preprint in May 2021 under the same title pending manuscript submission

Dylan M. Parker, Lindsay P. Winkenbach, Annemarie Parker, Sam Boyson, Erin Osborne Nishimura, Improved
methods for protein and single-molecule RNA detection in C. elegans embryos, bioRxiv 2021.05.07.443170; doi:
https://doi.org/10.1101/2021.05.07.443170
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3.2 Introduction

3.2.1 1.1 Microscopic methods for RNA and protein visualization in C. ele-

gans

The spatial and temporal patterns of gene expression in C. elegans can provide fundamental

insights into their function and importance. By querying the abundance and spatial patterning

of mRNA and their protein products in whole animals it is possible to gain insight to their tran-

scription and translation, mRNA stability, modification states of protein, developmental regulation,

and their functional roles [77, 230–233]. Visualizing RNA and protein in the same intact animal

requires methods that are sensitive, non-perturbative, and, most importantly, compatible with one

another. Traditional approaches to visualizing mRNA and protein simultaneously have either relied

on the visibility of a GFP-tagged protein to persist under RNA labeling conditions; or they involve

combining IF with low resolution FISH protocols. Here, we introduce methods that improve upon

existing in situ RNA and protein visualization protocols allowing for concurrent imaging of a wide

array of proteins and mRNA with state-of-the-art resolution.

The current gold standard for in situ single-molecule RNA detection is single-molecule Flu-

orescence in situ hybridization (smFISH). In smFISH, single-molecule RNA visualization occurs

by annealing a series of 24-48 fluorescently-labeled short antisense oligonucleotide probes to a

transcript of interest in fixed animals [219, 221, 234]. Annealing multiple fluorescent probes to an

RNA produces a discrete, punctate signal for each individual molecule of RNA in situ. Labeling

each RNA in this manner permits quantification of both the abundance and localization of indi-

vidual molecules of RNA. Conventional smFISH protocols have successfully characterized RNA

expression in C. elegans; however, they are challenged by low signal due to poor photostability for

some fluorophores and high background [223]. The probes are also costly. We remedy these issues

by optimizing the standard smFISH protocol for C. elegans, including comparisons of commer-

cial and homemade reagents, rigorous testing of various antifade compounds, and implementation
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of a recently developed protocol, single molecule inexpensive Fluorscence In Situ Hybridization

(smiFISH) to reduce cost [225].

Visualization of endogenous protein expression by immunofluorescence (IF) has also proved

to be an indispensible biological tool in C. elegans. IF has several benefits in contrast to other

protein detection assays. For instance, western blots provide protein abundance and biochemical

information but lack any spatial resolution. However, worm embryos pose a challenge for IF

experiments due to their strong eggshell and robust permeability barrier [200, 235]. Ultimately,

this has resulted in adapted protocols requiring harsh fixatives (aldehydes, picric acid), reducing

reagents (β-mercaptoethanol, DTT), enzymatic treatments (collagenase), and demanding a high

degree of finesse for freeze-crack permeabilization [235, 236]. To overcome these challenges,

we have adapted strategies for use in the C. elegans embryo with comparatively mild chemical

treatments allowing antibody penetrance while leaving protein epitopes intact using a simple one-

tube protocol.

Perhaps most importantly, we provide a protocol that combines both IF and smFISH in C.

elegans embryos. While it is sometimes possible to visualize RNA and protein simultaneously

with a standard smFISH protocol through the use of fluorescently tagged proteins, tags like GFP

can often bleach during fixation. Moreover, conventional methods of smFISH and IF in worms

have been challenging to perform in the same sample, resulting in few published protocols. By

optimizing the combined protocol, we have co-imaged single-molecules of RNA in conjunction

with the proteins they produce in situ in whole animals. Our approach is to first perform im-

munofluorescence followed by smFISH, with key modifications. RNA quality and FISH probe

permeability are maintained by using mild fixation conditions and chemical treatments compatible

with immunofluorescence while employing RNAse free reagents throughout the protocol. Notably,

for some antibody variants, such as nanobodies, a simplified protocol can sometime be utilized.

We present the technical details for each protocol individually, in combination, user-friendly

ways to analyze the data, standard controls, and some options for troubleshooting. We present

several related protocols for the reader to choose between (Figure 3.1). This includes a compre-
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hensive protocol to perform sample prep, immunofluorescence, smFISH, and slide preparation

in series (Figure 3.1, Protocol 1). Additional protocols also describe smFISH or smiFISH alone

(Protocol 2), immunofluorescence alone (Protocol 3), or an alternative simultaneous immunofluo-

rescence/smFISH approach using nanobodies (Protocol 4).

3.3 Experimental design, considerations, and data analysis

3.3.1 Sample preparation and fixation

IF and smFISH have been performed using various fixation conditions in C. elegans and other

model systems. Common fixatives include formaldehyde/formalin or organic solvents such as

methanol, ethanol, and acetone. Formaldehyde/formalin acts by creating crosslinked, covalent

chemical bonds in the sample, primarily at lysine residues. Formalin can also cause C-T and G-A

mutations on DNA sequences as characterized by PCR [237]. Moreover, formaldehyde/formalin-

fixation affects tertiary amines in RNA sequences resulting in modification of up to nearly 40 %

of As and Cs in formalin-fixed tissues [238]. Due to the high degree of alteration that occurs on

nucleic acids, formaldehyde/formalin-fixation is not an ideal fixative for nucleic acid visualization.

As an alternative to crosslinking-fixatives, alcohols and other organic solvents have been identified

as superior nucleic acid-fixatives [239]. Alcohols and organic solvents, such as ethanol, methanol,

and acetone, function by dehydrating clathrate water molecules around proteins and nucleic acids,

thus precipitating biological molecules into a fixed state without significant chemical alteration.

As with crosslinking fixatives, alcohols and organic solvents have their detriments. These fixatives

can disrupt cell membrane structures, cytoplasmic organelles, and soluble cell structural elements

such as microtubules [240, 241]. However, due to their preservation of nucleic acid composition,

they are ideal fixatives for single-molecule RNA detection assays. Further, we have found that

short fixations using these types of fixatives allow efficient antibody penetration and do not appear

to cause disruption to the protein epitopes we have targeted through IF as some previous studies

have shown [242].
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Figure 3.1: Schematic illustration of IF, FISH, and IF/FISH protocols An overview illustrating the
workflow of the sequential IF/FISH (Protocol 1), RNA FISH (Protocol 2), IF (Protocol 3), and simultaneous
IF/FISH (Protocol 4) protocols from sample preparation to slide preparation.
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3.3.2 Immunofluorescence

IF has been a staple of C. elegans experimentation for decades. As a result, a variety of methods

for performing IF have been developed, providing information and protocols for antigen produc-

tion, peptide coupling, antibody purification, fixation conditions, and protocols related to IF in C.

elegans [59, 235, 243]. However, the majority of these methods have focused on the use of larval

stages of development, and are not optimized for embyos. Most protocols use some combination of

reducing reagents, enzymatic treatments, formaldehyde fixation, and “Freeze-Cracking” mechani-

cal disruption — compressing samples between slides, not to be confused with freeze-cracking of

the eggshell in liquid nitrogen — [236]. Here we present a single-tube protocol requiring no re-

ducing reagents or enzymatic treatments and utilizing a light methanol/acetone fixation and liquid

nitrogen cracking to permeabilize the eggshell. We demonstrate this protocol using the anti-PGL-1

antibody K76 [59] (DHSB, Antibody registry ID AB_531836) and the anti-ELT-2 antibody 455-

2A4 [244] (DHSB, Antibody Registry ID: AB_2618114) (Figure 3.2).

3.3.3 smFISH and smiFISH

Single-molecule RNA Fluorsecence In Situ Hybridization (smFISH) has provided insights into

the regulation of transcripts in C. elegans at all stages of development. smFISH probes can be

designed and synthesized in the lab [221, 223] or ordered as a set from Biosearch Technologies

(Novato, CA). Some typical fluorophores include Cy5, Quasar 670, Alexa 594, Cal Fluor 610,

and Fluorescein, among many others. In general, we have had the best signal to noise and most

photostable fluorescence using Quasar 670 and Cal Fluor 610, which also work well in experiments

probing for two RNAs. Fluorescein tends to have very low signal-to-noise ratios.

Because each probe in a set requires chemical conjugation with fluorophores for each specific

transcript to be imaged, smFISH probe sets are relatively expensive [219,225,234]. Targeting a sin-

gle RNA typically costs in the range of ∼$500. Recently, Tsanov et al. outlined a straightforward,

flexible method for reducing the cost of single-molecule RNA detection: single-molecule inex-

pensive Fluorescence In Situ Hybridization (smiFISH). smiFISH brings down the cost of single
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Figure 3.2: Simplified immunofluorescence in C. elegans embryos. Immunofluorescence was performed
on N2 embryos as described (Protocol 3). Embryos were incubated with 1:20 dilutions of K76 (DHSB, An-
tibody registry ID AB_531836) (A) or 1:1000 dilutions 2A4 (DHSB, Antibody Registry ID: AB_2618114)
(B) primary antibodies followed by incubation with 1:250 dilutions of Alexa Fluor Goat Anti-Mouse sec-
ondary antibody (Jackson ImmunoResearch, Antibody Registry ID: AB_2338840) (green). In the presence
of K76 (anti-PGL-1), P granules are observed (A, top), while 2A4 (anti-ELT-2) stained the intestine-specific
ELT-2 transcription factor (B, top). Non-specific binding of the secondary was not observed in either in-
stance (A, B, bottom). Three biological replicates were performed for each experiment. Scale bars represent
10 µm.
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molecule RNA detection by taking advantage of a single, universal fluorophore-labeled secondary

probe annealed in vitro to gene-specific primary probes (Figure 3.3A). Primary smiFISH probes

contain two main parts facilitating efficacy and cost reduction: the gene-specific region comple-

mentary to the transcript of interest and the FLAP region complementary to the fluorescently-

labeled secondary probe. In situ, the complementary region of the primary probes bind to the

target RNA while it’s FLAP region is annealed to a fluorophore-labeled secondary FLAP probe.

This regime significantly reduces the cost of single-molecule RNA visualization by eliminating the

need to create chemically conjugated probe sets for each specific target RNA. To test whether smi-

FISH performs as well as traditional smFISH in C. elegans embryos, we compared nos-2 or imb-2

smFISH and smiFISH probes in the same sample (Figure 3.3). We found that smiFISH faithfully

reproduces the sensitivity, spatial resolution, and reliability of smFISH probes. We have found that

in larval stages smiFISH is less effective than smFISH using our standard protocols, possibly due

to lower larval permeability preventing smiFISH probe entry.

3.3.4 smiFISH probe design

smiFISH primary probes can be designed as described Tsanov et al. 2016 using the R script

Oligostan. Primary probes can be ordered in 96-well plates from IDT on the 25 nmol scale predi-

luted to 100 µM in IDTE buffer pH 8.0. Alternatively, if ordering 96 or more individual probes,

oligos can be ordered on the 500 pm scale, which still provides ample primary probes for hun-

dreds of experiments. For most experiments, 12-16 primary probes per transcript is sufficient,

although testing as few as 8 primary probes has produced discernable single-molecule spots in C.

elegans embryos. An increased number of primary probes typically increases the signal-to-noise

ratio for any given transcript. Secondary FLAP probes (see smiFISH below) can also be ordered

as 5’ and/or 3’ single- or dual-fluorophore-labeled oligos from either Biosearch Technologies or

IDT (Coralville, Iowa).

82



Figure 3.3: smFISH and smiFISH in C. elegans embryos. (A) Schematic illustration of smFISH probes.
(B) Schematic illustration of smiFISH probes. (C) nos-2 RNA was visualized using smiFISH (magenta)
and smFISH (green). nos-2 smiFISH primary probes used FLAP-Y sequences and the secondary FLAP-Y
probe was 5’ and 3’ dual-conjugated with Quasar 670 fluorophores. nos-2 smFISH probes were 3’ single-
conjugated with Cal Fluor 610. (D) imb-2 RNA was visualized using smFISH (magenta) and smiFISH
(green). imb-2 smFISH probes were 3’ single-conjugated with Quasar 670 fluorophores. imb-2 smiFISH
primary probes used FLAP-Y sequences and the secondary FLAP-Y probe was 5’ and 3’ dual-conjugated
with Cal Fluor 610. Embryos were counterstained with DAPI in blue (C, D). Three biological replicates
were performed for each experiment using newly annealed smiFISH probes for each replicate. Scale bars
represent 10 µm.
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3.3.5 Optimizing signal-to-noise in smFISH and smiFISH samples

In RNA FISH experiments, it is crucial to obtain the highest possible signal-to-noise ratio

(SNR) to ensure reliable interpretation of the data. One common question surrounding smFISH

is whether commercial reagents (i.e., Stellaris) are superior to homemade reagents [219, 234]. By

comparing the signal-to-noise ratio of four transcripts imaged by smFISH using homemade buffers

or Stellaris buffers, we found Stellaris buffers perform significantly better for all four transcripts,

ranging from 15-25% improvement in average SNR compared with homemade buffers. (Figure

3.4). Another common concern with smFISH experiments is photolability. Due to the relatively

low signal, high laser powers, and small number of fluorophores (24-48) utilized in smFISH ex-

periments, photobleaching can occur rapidly. Photobleaching is of particular concern with thick

samples that must be imaged through many Z-stacks, as is the case with C. elegans embryos ( 12-

20 µm thickness as prepared in Protocol 1: 3.1.4, or 60-100 stacks per embryo at 0.2 µm spacing

between Z-stacks). One of the primary causes of photobleaching is degradation of fluorophore

molecules by oxygen radicals produced upon laser excitation [245]. Therefore, free-radical scav-

enging antifades are commonly used to reduce the degree of experimentally-induced photobleach-

ing. We tested combinations of antifades to determine the optimal reagents for maintaining high

signal-to-noise throughout an experiment. Through these experiments, we found that the optimal

antifade solution can vary depending on the probe set or fluorophore (Figure 3.5). In our hands,

VECTASHIELD, N-propyl gallate, or a mixture of the two, provided the best signal stability for

Cal Fluor 610 and Quasar 670 labeled RNAs in C. elegans embryos.

3.3.6 Sequential IF/FISH protocol

Simultaneous detection of an RNA and its cognate protein reveals a wealth of information

regarding the expression patterns, regulation, and functions of genes. However, the combination of

IF and FISH is often challenging due to slight incompatibilities in traditional protocols. Typically

combined IF/FISH protocols require specific tailoring to the system of interest [246–248]. This

includes one protocol designed for the extruded C. elegans gonad, which requires hand dissection
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Figure 3.4: Stellaris buffers provide higher signal-to-noise ratios than homebrew buffers. Signal-to-
noise ratios were calculated for each RNA puncta identified when smFISH was performed using homebrew
(red) or commercial Stellaris (blue) buffers. The signal-to-noise ratio was calculated by identifying RNA
spots using FISHquant [204] before using the ImJoy SNR plugin. In short, the SNR plugin compares the
intensity at the coordinates of RNA puncta identified by FISHquant to the average intensity of a sphere
surrounding the spot to calculate SNR. Four Stellaris smFISH probe sets were used, erm-1 conjugated to
Cal Fluor 610, imb-2 conjugated to Quasar 670, nos-2 conjugated to Quasar 670, and set-3 conjugated
to Cal Fluor 610. Individual dots represent the average SNR in one embryo. Three biological replicates
were performed for each experiment, and 15 embryos were quantified for each condition. P values from
Benjamini-Hochberg corrected t-tests are shown (0.05 > * > 0.005 > ** > 0.0005 > *** > 0.00005).
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Figure 3.5: Effect of anti-fade composition on smFISH signal intensity. The mean fluorescence intensity
of smFISH signal over 100 exposures was measured in embryos using various antifades and their combina-
tions. Experiments were performed using four different smFISH probe sets: erm-1 conjugated to Cal Fluor
610, imb-2 conjugated to Quasar 670, nos-2 conjugated to Quasar 670, and set-3 conjugated to Cal Fluor
610). (A) The average mean intensity throughout imaging was normalized to the intensity of first acquisi-
tion for each embryo. The shaded region represents the standard error of the mean for each exposure. Three
biological replicates were performed for each experiment, and no less than nine embryos were quantified
for each condition. (B) Representative images of the first and final acquisitions for imb-2 (top) and erm-

1 (bottom) RNAs using VECTASHIELD and N-propyl gallate (left), VECTASHIELD only (middle), and
ProLong Diamond (right) anti-fades. Scale bars represent 10 µm.
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of individual animals and careful slide preparation [249]. When immunofluorescence is performed

in series with smFISH all reagents must be RNAse free where possible. Steps containing BSA

must be treated with an RNAse inhibitor to prevent RNA degradation. We demonstrate a sequential

IF/FISH protocol using the anti-PGL-1 antibody, K76 and smFISH probes against the P granule

RNAs nos-2 (Figure 3.6A) and cpg-2 (Figure 3.6B). Additionally we show IF/FISH results in

embryos stained with the ELT-2 antibody, 2A4 and hybridized with smFISH probes targeting elt-2

RNA (Figure 3.6C)

3.3.7 Simultaneous IF/FISH protocol

If performing IF with a high-affinity nanobody or single chain variable fragment (ScFv), a sim-

plified protocol can often be utilized. Under these circumstances, the FISH protocol (Protocol 3)

can be followed with the caveat that fluorescently labeled nanobody or ScFv can be added directly

to the hybridization buffer in step 4 and incubated with the FISH probes and sample overnight to

perform IF. It is unclear why some nanobodies and ScFv work with this simplified protocol, but it

is possible that their small size compared to traditional antibodies allows better permeation during

hybridization while the high-affinity of some common nanobodies/ScFv facilitate antigen recog-

nition at the higher temperatures required for RNA FISH probe hybridization. Here we present

results for simulataneous IF/FISH from embryos containing PATR-1::GFP (Figure 3.7). The em-

bryos were stained with a Janelia Fluor 549 (Tocris cat. no. 6147) labeled anti-GFP nanobody

(Chromotek, gt-250) in hybridization buffer along with smFISH probes targeting nos-2 RNA.

3.3.8 smFISH and smiFISH data analysis

Depending on the biological questions at hand, there are several routes for the interpretation of

smFISH data. These analyses range from simply characterizing the quality of the data, counting

the number of RNAs in the samples, or even identifying spatial distributions of RNA within cells

of interest.

The most common method for quantification of smFISH data is counting the number of

RNAs within the sample. Some commonly used tools for this purpose are FISH-quant [204] and
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Figure 3.6: Sequential IF/FISH. Immunofluorescence followed by smFISH was performed on N2 em-
bryos. IF was performed using K76 (A and B) or 2A4 (C) primary antibodies to identify PGL-1 containing
P granules and ELT-2 protein (magenta), respectively. smFISH was used to simultaneously detect the P
granule constituent RNAs nos-2 (A) and cpg-2 (B), or elt-2 mRNA (C), all in magenta. Embryos were
counterstained with DAPI (blue). Three biological replicates were performed for each experiment. Scale
bars represent 10 µm.
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Figure 3.7: Simultaneous IF/FISH. smFISH was performed on N2 embryos with the addition of anti-GFP
nanobody to hybridization buffer. nos-2 mRNA (magenta) was probed using smFISH probes conjugated to
Quasar 670. PATR-1::GFP (green) signal was visualized using 2.37 µg/ml Janelia Fluor 549 (Tocris 6147)
conjugated anti-GFP nanobody (Chromotek, gt-250) (top). A no nanobody control is also shown (bottom).
DNA was counterstained with DAPI (blue). Three biological replicates were performed for each experiment.
Scale bars represent 10 µm.
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StarSearch [221]. These algorithms function by enhancing spot signals through various filtering

methods, setting a threshold for RNA spot detection, and identifying individual spots. Thresholds

are often set manually by testing a range of intensity values. When plotting these values against

the number of detected spots, a plateau can often be seen corresponding to threshold values sepa-

rating RNA spots from lower intensity noise. When performing spot detection analysis of smFISH

data, it is imperative to ensure the SNR of the data is sufficient to identify spots unambiguously.

SNR can be calculated using an ImJoy plugin, which compares the intensity of a detected spot to

the surrounding background intensities (https://github.com/fish-quant). In our experience, if SNR

values are below ∼3-4, spot detection becomes less reliable. When analyzing smFISH data using

FISH-quant or StarSearch, if there is no clear plateau of RNA counts over various threshold values,

the SNR is likely too low for accurate RNA spot detection.

As smFISH has become more widely utilized, novel methods of analysis beyond spot counting

are rapidly developing. For instance, FISH-quant has been ported from Matlab to an open-source

implementation in Python and successfully applied to two large-scale screening projects [139,250].

This package includes methods for detecting, deconvolving overlapping RNAs to increase the

counting accuracy of highly abundant or clustered RNAs [77, 139], measuring the signal-to-noise

ratio of an image (https://github.com/fish-quant), and even identifying diverse subcellular localiza-

tion patterns of RNA [139, 228]. Further, to facilitate its usage by non-specialists, several plugins

providing user-interfaces for the data analysis platform ImJoy [227] were developed. As more

labs adopt smFISH methodologies and more high-throughput methods of in situ RNA detection

develop [158, 251–254], more sophisticated analysis methods are likely to arise. An exciting ini-

tiative is Starfish, an open-source software suite with the goal to build a unified data-analysis tool

and file format for several spatial transcriptomic techniques [255].

3.3.9 IF data analysis

Standard methods of analysis for IF experiments include measuring the total internal fluo-

rescence and measuring colocalization between different markers. These methods require that
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imaging conditions, such as laser intensity and exposure times, are held constant across samples

and replicates. We will highlight publicly available tools for analysis here; however, most mi-

croscopes ship with instrument-specific software packages capable of performing these analyses.

Total internal fluorescence compares the intensity of a protein visualized by IF in a control sample

and an experimental condition, such as an RNAi knockdown or protein knockout. Total inter-

nal fluorescence can be measured over the total volume of the embryo, or regions of interest can

be masked either automatically or manually if specific regions must be analyzed. Regardless of

whether particular segmentations are required, these analyses can be performed relatively quickly

in FIJI Is Just ImageJ (FIJI) [224,256]. Additionally, several FIJI plugins are available to analyze a

protein of interest’s colocalization with another fluorescent marker. It is crucial when performing

colocalization analyses to consider optimal uses for any given colocalization metric, as there are

well-documented circumstances where these metrics can be misleading [257]. Helpful instructions

for segmentation, colocalization analysis, and much more can be found at https://imagej.net/.

3.3.10 Combined IF/FISH data analysis

As with the analysis of IF data, colocalization analyses may be performed on combined

IF/FISH data. However, due to the punctate nature of FISH signal, RNA spots may not over-

lap with a colocalization marker as well as expected, resulting in deceptively low colocalization

coefficients. This can occur for several reasons. First, the small total volume of RNA puncta

can lead to high variability in colocalization. This variability is compounded by the low temporal

resolution of fixed cell experiments and the stochastic movements of RNA in the cell, even for

tightly localized transcripts. Moreover, because it is often not known what proteins an RNA may

be directly interacting with, it can be more desirable to compare RNA distributions to a nearby

landmark rather than an overlapping component. For these reasons, several groups are developing

novel metrics for comparing RNA and protein data and analyzing the spatial relationships between

them. For instance, by spatially modeling the coordinates of each RNA puncta and comparing

their distributions to other RNAs or organelles, it is possible to identify RNA patterning at vari-
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ous cellular features such as cortical membranes, nuclear membranes, condensates/puncta, cellular

protrusions, centrosomes, and more [77, 139, 228, 250].

3.4 Procedures

3.4.1 Protocol 1: Sequential IF/smFISH Protocol (Embryo preparation +

fixation, immunofluorescence, smFISH, slide preparation)

This protocol describes methods for isolating C. elegans embryos and fixing them in a manner

compatible with both immunofluorescence and RNA FISH. Steps for performing immunofluores-

cence subsequently followed by smFISH are then outlined. Finally, slide preparation is described.

This approach can be used for simultaneous visualization of RNA transcripts and a protein of inter-

est in the same sample provided the FISH probes and fluorescent antibody are selected in distinct

channels.

3.4.1.1 Embryo preparation and fixation

Reagents:

1. 100% reagent grade acetone (Fisher cat. no. A18-500)

2. 100% reagent grade methanol (Fisher cat. no. A412-500)

3. Bleaching solution for use when imaging embryos (per 50 ml, make fresh):

a. 40 ml deionized, distilled water

b. 7.2 ml 5 M NaOH (Fisher cat. no. S318-400)

c. 4.5 ml 5% NaHOCl (Ricca cat. no. 7495.5-32)

4. M9 buffer

a. 3 g KH2O4 (Sigma cat. no. P0662-500G)

b. 6 g Na2HPO4 (Sigma cat. no. RDD022-500G)

c. 5 g NaCl (Fisher cat. no. S271-500)

Deionized, distilled water (ddH2O) to 1 l final volume

Sterilize by autoclaving.
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d. Add 1 ml 1 M MgSO4 (Millipore cat. no. MX0075-1) using sterile technique

Wait until the solution cools to prevent precipitation.

Embryo Preparation and Fixation Protocol:

1. Grow worms to gravidity on OP50 seeded NGM plates.

• Synchronize by bleaching if necessary.

• We typically harvest one or two gravid 10 cm NGM plates seeded with 2 ml OP50 for each

slide to be made.

• Other bacterial stocks, such as inducible RNAi vector containing E. coli, can be used if

desired.

2. Harvest gravid worms by washing them off of plates using M9 and collect in a 15 ml conical

tube in 15 ml total volume.

• Aggressive pipetting will increase yield by releasing more worms from the plates. Be sure

not to pierce the plate’s surface as agar carried into the sample will persist.

3. Spin conical at 2000 x g for 1 minute to pellet gravid worms.

• Alternatively, allow gravid worms to settle over time.

4. Remove supernatant using a pipette or aspirator, being careful not to disturb worm pellet.

5. Resuspend worm pellet in 15 ml M9.

6. Spin to pellet again as above (3).

7. Repeat steps 4 - 6 until the supernatant is clear, removing supernatant after the final wash.

8. Add ∼15 ml of bleaching solution to the worms and nutate or hand-shake for 6-8 minutes until

embryos are released from the mothers.

• Check on the condition of worms periodically throughout bleaching. The gravid adults

should be broken into about two pieces before continuing. If worms are bleached for too

long, some early-stage embryos may be damaged.

• For tips on harvesting embryos, see Porta-de-la-Riva et al., 2012 [258].

9. Centrifuge conical at 2000 x g for 1 minute to pellet. Immediately remove supernatant and

quench bleaching with 15 ml M9.

93



• At this point, embryos typically stick to the tube, and the supernatant can be carefully de-

canted to decrease the time before quenching.

10. After adding M9, vortex the pellet to release remaining worm fragments before centrifuging at

2000 x g for 1 minute.

11. Wash with 15 ml M9 two more times (for a total of 3 washes), vortexing the pellet after the

addition of M9 each time.

• The aroma of bleach should be completely gone by the end of washing.

12. Transfer remaining embryos to a 1.7 ml microcentrifuge tube and pellet in a tabletop centrifuge

for 30 seconds at 2000 x g. Turn tube 180◦ and repeat until a pellet has formed. Remove any

remaining M9.

13. Add 1 ml pure methanol cooled to -20 ◦C, vortex to break up the pellet, and immediately

submerge in liquid nitrogen for 1 minute to crack the eggshell and promote permeabilization.

14. Remove the tube from liquid nitrogen and immediately begin pelleting at 2000 x g in 30 sec

intervals, rotating the tube 180◦ between each spin.

• The sample will still be partially frozen for the first spins, but it is best to get the sample

pelleting early to prevent over-fixation.

15. Once the embryos are pelleted, and the sample has been in methanol for 5 min, remove the

methanol and replace it with 1 ml pure acetone cooled to -20 ◦C. Store the sample at -20 ◦C for ∼3

min.

16. Pellet embryos by centrifugation as in step 14.

17. After embryos have fixed in acetone for 5 min, remove the acetone and immediately continue

to IF, smFISH, smiFISH, or IF/FISH protocol.

3.4.1.2 Immunofluorescence

Reagents:

1. 10X PBST

a. 80 g NaCl (Fisher cat. no. S271-500)

b. 2 g KCl (Sigma cat. no. P3911-500G)
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c. 14.2 g Na2HPO4 (Sigma cat. no. RDD022-500G)

d. 2.4 g KH2PO4 (Sigma cat. no. P0662-500G)

e. 1% Tween 20 detergent (w/v) (Sigma cat. no. P1379-500ML)

Deionized, distilled water to 1 l final volume

Sterilize by autoclaving

Dilute to 1X in sterile deionized, distilled water

2. Bovine Serum Albumin (Sigma cat. no. A9418-5G)

a. RNAse free BSA can be used if issues with RNA degradation occur with sequential

IF/smFISH protocols; however, it is much more expensive.

3. Primary antibody or fluorescently labeled nanobody/ScFv

4. Fluorescent secondary antibody (if using an unlabeled primary antibody)

5. DAPI, 4’,6-Diamidino-2-Phenylindole, Dihydrochloride (Invitrogen cat. no. D1306)

6. RNasin Ribonuclease Inhibitor (If performing IF/FISH) (Promega cat. no. N2111)

7. 20X SSC (If performing IF/FISH)

a. 800 ml deionized, distilled water

b. 175.2 g NaCl (Fisher cat. no. S271-500)

c. 88.2 g sodium citrate tribasic dihydrate (Sigma cat. no. S4641-500G)

pH to 7.0 with 1 M HCl.

Deionized, distilled water to 1 l and autoclave.

Dilute to 2X in sterile deionized, distilled water.

PRELIMINARY NOTES: If performing IF/FISH, all reagents must be RNAse free where

possible. Steps containing BSA must be treated with an RNAse inhibitor to prevent RNA degrada-

tion (see step 6 and 8). Once a fluorescent antibody has been added (either primary or secondary)

all subsequent steps should be carried out in the dark, ie covered in foil, to minimize fluorophore

bleaching.
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Immunofluorescence Protocol:

1. Prepare fixed embryo samples as described in Chapter 3.4.1.1 steps 1-17.

2. Add 1 ml 1X PBST to sample and nutate for 5 min to wash.

3. Pellet embryos by centrifuging at 2000 x g in 30 sec intervals, rotating the tube 180◦ between

each spin until pellet forms.

4. Pipet or aspirate as much of the supernatant PBST as possible without disrupting the pellet.

5. Repeat steps 2-5 two more times (3 washes total).

6. Block for 30 min. at 37 ◦C in 50-250 µl 1X PBST containing 1% w/v BSA with nutation.

IMPORTANT: If FISH will be performed subsequently, it is essential to add 1 unit/µl

RNasin (Promega) to prevent RNA degradation during steps where BSA is included.

7. Centrifuge embryos at 2000 x g in 30 sec intervals, rotating the tube 180◦ between each spin

until pellet forms.

8. Pipet or aspirate as much of the supernatant as possible without disrupting the pellet.

9. Apply 25-100 µl 1◦ antibody diluted in 1X PBST with 1% w/v BSA (and 1 unit/µl RNasin if

FISH will be performed subsequently). Nutate at room temperature for at least 1-2 hrs, or overnight

at 4 ◦C.

• Overnight incubations will give better IF signal, but can increase RNA degradation.

• Optimal antibody concentrations must be determined for each antibody.

10. Add 1 ml 1X PBST directly to sample and nutate for 5 min to wash out free antibody.

11. Centrifuge embryos at 2000 x g in 30 sec intervals, rotating the tube 180◦ between each spin

until pellet forms.

12. Pipet or aspirate as much of the supernatant PBST as possible without disrupting the pellet.

13. Repeat steps 9-11 two more times (3 washes total).

14. Apply 25-250 µl fluorescently labeled 2◦ antibody diluted in 1X PBST and incubate for 1-2

hrs in the dark at room temperature with nutation.

• Optimal antibody concentrations must be determined for each antibody.
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15. Add 1 ml 1X PBST and nutate for 5 min to wash out excess antibody.

16. Centrifuge embryos at 2000 x g in 30 sec intervals, rotating the tube 180◦ between each spin

until pellet forms.

17. Pipet or aspirate as much of the supernatant PBST as possible without disrupting the pellet.

18. Repeat steps 15-17.

19. Add 1 ml 2X SSC and nutate for 5 min to equilibrate embyros in an smFISH compatible

solution.

20. Centrifuge embryos at 2000 x g in 30 sec intervals, rotating the tube 180◦ between each spin

until pellet forms.

21. Pipet or aspirate as much of the supernatant SSC as possible without disrupting the pellet.

22. Repeat steps 19-21.

23. Continue to 3.4.1.3, smFISH protocol

3.4.1.3 smFISH

Reagents:

1. Wash Buffer A (10% volume/volume formamide)

a. 600 µL Stellaris Wash Buffer A (Biosearch Technologies cat. no. SMF-WA1-60)

b. 2.1 mL DEPC treated RNAse free water (Invitrogen cat. no. AM9922)

c. 300 µL deionized formamide (Millipore cat. no. S4117)

Prepare 3 mL for each sample to be hybridized.

Prepare Wash Buffer A fresh for each experiment.

2. Wash Buffer B

a. Stellaris Wash Buffer B (Biosearch Technologies cat. no. SMF-WB1-20

Add 88 ml RNAse free water (Invitrogen cat. no. AM9922) to Wash Buffer B stock before use.

3. Hybridization Buffer (10% volume/volume formamide)

Prepare 110 µl for each sample in an experiment

Prepare hybridization buffer fresh for each experiment

a. 99 µl Stellaris Hybridization Buffer (Biosearch Technologies cat. no. SMF-HB1-10)
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b. 11 µl deionized formamide (Millipore cat. no. S4117)

4. Mounting Medium (5 mL)

a. 2.5 mL 100% glycerol (Sigma cat. no. G5516-100ML)

b. 100 mg N-propyl gallate (Sigma cat. no. 02370-100G)

c. 400 µl 1 M Tris pH 8.0 (Sigma cat. no. 10708976001)

N-propyl gallate is toxic.

Vortex until N-propyl gallate has dissolved.

Store mounting medium in amber tubes or covered in foil at either 4 or -20 ◦C.

The solution is light sensitive.

Throw mounting medium away if it begins to yellow or crystalize.

5. smFISH probes and/or annealed smiFISH probes

6. DAPI, 4’,6-Diamidino-2-Phenylindole, Dihydrochloride (Invitrogen cat. no. D1306)

7. RNAse free water (Invitrogen cat. no. AM9922)

smFISH Protocol:

1. Prepare fresh buffers by adding formamide to Wash Buffer A and Hybridization Buffer.

• Wash Buffer A and Hybridization Buffer should always have formamide added immediately

preceding the experiment. Formamide can decompose over time, particularly at higher tem-

peratures, leading to less stringent probe binding. It can also acidify when exposed to air

resulting in fluorophore quenching.

• Formamide stocks should be stored frozen and their pH monitored periodically (pH 7-8 is

ideal)

2. Add 2 µl 1.25 µM smFISH probes (1:20 dilution of 25 µM stocks) to 110 µl hybridization

buffer. If performing experiments using multiple probe sets with different fluorophores, add 2 µL

of each probe set.

• Mix well. Hybridization buffer is viscous.
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Optional step: If performing Protocol 4 (simultaneous IF/FISH) using a compatible ScFv

or nanobody, additionally add the appropriate concentration of ScFv or nanobody to the

hybridization buffer.

Note: Although 2 µL has worked well for most of the probe sets we have used, it is helpful

to perform a titration over ∼1 order of magnitude of concentrations to identify optimal probe

concentrations on an individual probe set basis.

3. Centrifuge embryos at 2000 x g in 30 sec intervals, rotating the tube 180◦ between each spin

until pellet forms.

4. Pipet or aspirate as much supernatant as possible without disturbing the pellet.

5. Prehybridize sample in 1 mL Wash Buffer A and incubate at room temperature for ∼5 minutes.

6. Centrifuge embryos at 2000 x g in 30 sec intervals, rotating the tube 180◦ between each spin

until pellet forms.

7. Pipet or aspirate as much supernatant as possible without disturbing the pellet.

8. Add 100 µL hybridization buffer with probes to the pelleted embryos and hybridize at 37 ◦C in

the dark for 8-48 hours.

• Store prepared Wash Buffer A at room temperature or 37 ◦C during this incubation. Warm

buffer will increase the stringency of probe binding and decrease background and non-

specific binding.

• If available, use a thermomixer to shake the hybridization solution and all subsequent washes

at 450 rpm during incubation to ensure even probe penetration.

9. Add 1 mL Wash Buffer A directly to the embryos in hybridization solution.

10. Incubate at 37 ◦C in the dark for 30 minutes.

11. Centrifuge embryos at 2000 x g in 30 sec intervals, rotating the tube 180◦ between each spin

until pellet forms.

12. Pipet or aspirate as much supernatant as possible without disturbing the pellet.

13. Add 1 mL Wash Buffer A containing 1 ng/µL DAPI to the sample.

14. Incubate at 37 ◦C in the dark for 30 minutes.

15. Centrifuge embryos at 2000 x g in 30 sec intervals, rotating the tube 180◦ between each spin
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until pellet forms.

16. Pipet or aspirate as much supernatant as possible without disturbing the pellet.

17. Add 1 mL Wash Buffer B and incubate for ∼5 minutes.

18. Repeat step 15 and 16.

19. Resuspend in 50 µL of mounting medium (or less if the sample is small) and incubate at 4 ◦C

for 30 minutes to ensure antifade penetrance.

20. Move to slide preparation.

3.4.1.4 Slide preparation

Reagents:

1. VECTASHIELD mounting medium (Vector Laboratories cat. no. H-1000-10)

2. 8mm 1.5 thickness round cover glass (Electron Microscopy Sciences, cat. no. 72296-08)

3. Glass microscope slides (VWR cat. no. 48312-401)

4. 1.5 thickness, 22X22 mm coverglass (VWR cat. no. 48366-227)

5. Grace Bio-Lab Press-To-Seal silicon isolator (Sigma cat. no. GBL664504-25ea)

Slide preparation protocol:

1. Working at a dissecting microscope, drop 2 – 6 µl of embryos suspended in mounting medium

onto a single 8 mm 1.5 thickness round cover glass resting on a glass slide.

• Always wear gloves when handling slides and cover slips to prevent smudging and contam-

ination.

2. Add the same volume of VECTASHIELD antifade solution and pipet up and down to mix

thoroughly.

• Try to keep the final volume to 4-6 µl by removing some of the mixture.

• This is a good time to break up any large clumps of embryos by pipetting.

3. Place a 1.5 thickness 22 mm x 22 mm square cover glass on top trying to avoid bubbles.

• Do not let the coverslip touch the slide. The sample solution will pour over the edge of the

round coverslip and seal it to the slide beneath through surface tension. Having the round
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coverslip close to the edge of the slide can provide some extra working height. Additionally,

gently lowering the square coverslip from front to back over the round coverslip until surface

tension pulls the round cover slip up will help prevent spillover.

4. Flip the coverslips so the square coverslip is on the bottom. Remove as much liquid as possible

from between the two cover glasses using a torn kimwipe placed against the round one.

• The aim is to flatten the embryos as much as possible without damaging them.

• Samples can be firmly pressed on with a pipette tip as long as the coverslip doesn’t slide

from side to side.

• The ideal depth of an embryo on the slide is ∼12-20 µm. Signal-to-noise ratio will decrease

and photobleaching will increase with increasing thickness due to out-of-focus light and

more image acquisitions, respectively.

5. Affix the cover slip sandwich to a microscope slide using a Grace Bio-Lab Press-To-Seal silicon

isolator such that the embryos will be imaged through the square coverslip.

6. Head off to the microscope!

3.4.2 Protocol 2: smFISH or smiFISH alone (Embryo preparation + fixa-

tion, smFISH or smiFISH, slide preparation)

This protocol describes the workflow for performing smFISH or smiFISH in embryos, from

sample preparation to slide preparation.

3.4.2.1 Embryo preparation and fixation

Perform Embryo prep and fixation as in Chapter 3.4.1.1

3.4.2.2 smFISH

Perform smFISH as in Chapter 3.4.1.3

3.4.2.3 smiFISH

Perform smiFISH as in 3.4.1.3 with the following considerations/exceptions: The following

reagents and protocol is required to generate annealed primary + secondary smiFISH probes.
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Reagents:

1. 8-24 gene specific primary probes resuspended at 100 µM in IDTE pH 8.0 (or Tris pH 8.0)

2. 1 Fluorophore-labeled FLAP probe resuspended at 50 µM in Tris pH. 8.0

3. New England Bio Labs Buffer 3 (or 3.1) (NEB cat. no. B7203S)

smiFISH probe annealing:

i. Combine primary probes at equimolar ratio and dilute to 0.833 µM in Tris pH 8.0.

In a PCR tube, prepare a solution of:

ii. 2 µL primary probe set

iii. 1 µL 50 µM FLAP secondary probe

iv. 1 µL NEB Buffer 3 (or 3.1)

v. 6 µL RNAse free water

Anneal primary probe set to fluorophore-labeled secondary probes using the following ther-

mocycling conditions:

vi. 1 cycle at 85 ◦C for 3 minutes

vii. 1 cycle at 65 ◦C for 3 minutes

viii. 1 cycle at 25 ◦C for 5 minutes

The primary probe mixture is stable at -20 ◦C indefinitely.

Annealed smiFISH probes are viable at -20 ◦C for up to at least a week.

Treat annealed smiFISH probes as diluted smFISH probes.

2 µl annealed smiFISH probe works well for most hybridizations

3.4.2.4 Slide preparation

Prepare slides as in 3.4.1.4

3.4.3 Protocol 3: Immunofluorescence alone (Embryo preparation + fixa-

tion, immunofluorescence, slide preparation)

This protocol describes the steps to perform immunofluorescence in C. elegans embryos from

harvesting embryos to preparing slides.
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3.4.3.1 Embryo preparation and fixation

Perform Embryo preparation and fixation as in 3.4.1.1

3.4.3.2 Immunofluorescence

Perform immunofluorescence as in 3.4.1.2 with the following exceptions:

1. At step 15, nutate the sample in 1X PBST for 10 minutes instead of 5.

2. Pellet embryos by centrifuging at 2000 x g in 30 sec intervals, rotating the tube 180◦ between

each spin until pellet forms.

3. Pipet or aspirate as much of the supernatant PBST as possible without disrupting the pellet.

4. Counterstain with 1X PBST containing 2 µl 500 ng/mL DAPI for 10 min.

5. Pellet embryos by centrifuging at 2000 x g in 30 sec intervals, rotating the tube 180◦ between

each spin until pellet forms.

6. Pipet or aspirate as much of the supernatant PBST as possible without disrupting the pellet.

7. Add 1 ml 1X PBST directly to sample and nutate for 10 min to wash out excess DAPI.

8. Repeat steps 5-7, followed by steps 5 and 6 (for two 1X PBST washes).

9. Resuspend in 50 µL of mounting medium (or less if the sample is small) and incubate at 4 ◦C

for 30 minutes to ensure antifade penetrance.

3.4.3.3 Slide preparation

Prepare slides as in 3.4.1.4

3.4.4 Protocol 4: Abreviated protocol for IF/smiFISH for use with nanobod-

ies. (Embryo preparation + fixation, simultaneous IF/smiFISH, slide

preparation)

This protocol describes a simplified method for performing immunofluorescence at the same

time as smFISH with select antibodies
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3.4.4.1 Embryo preparation and fixation

Perform Embryo prep and fixation as in 3.4.1.1.

3.4.4.2 Simultaneous immunofluorescence and smFISH

Perform smFISH as in 3.4.1.3 with the following exceptions and considerations:

1. At step 2, when preparing the hybridization buffer mix, incorporate the appropriate concentra-

tion of antibody and proceed normally.

• This protocol only works with a subset of antibodies.

• We have had the best results using high-affinity nanobodies, ScFv, or fragmented antibodies

[259]. High-affinity, small sized antibodies have improved the success of this simplified

protocol in our hands.

• We have only had success with primary staining using this protocol. Immunofluorescence

using secondary antibody amplification during wash steps has not succeded.

3.4.4.3 Slide preparation

Prepare slides as in 3.4.1.4

3.5 Controls and Troubleshooting

3.5.1 Validating new probe sets

There are several ways to validate new probe sets for target specificity and labeling efficiency.

The most straightforward test for target specificity is to use the probes in a wildtype and deletion

strain for the target of interest to ensure the probe set is binding only when the RNA is present. If

a deletion allele is not available, RNAi can be utilized to a similar end. However, it is important

to note that residual fluorescent signal may be present after RNAi because the knockdown may

be incomplete or may only partially degrade the targets. Target specificity can also be determined

by targeting a gene with two separate probe sets in different colors, which should colocalize if the

probes are specific. Labeling efficiency of a probe set can be determined by comparing transcript
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abundance found using smFISH data to other sources, such as qRT-PCR, digital-droplet PCR, or

quantitative sequencing data.

3.5.2 Positive controls

Positive control smFISH probe sets should be consistently employed to ensure the protocol is

working. These probe sets have the added benefit of marking specific cell lineages or developmen-

tal stages and thereby identify the embryo’s orientation or stage. By comparing the performance

across replicates, researchers can identify outliers or problems in protocol execution. When trou-

bleshooting, the use of smFISH probe sets that anneal to highly abundant RNAs, such as the polyA

sequence of mRNA, or using previously validated probes can be useful to ensure the FISH protocol

is successful.

3.5.3 Photobleaching

Due to the small number of fluorophores on any single RNA, the photolabile nature of common

fluorophores, and the common use of widefield microscopy for FISH experiments, FISH can often

suffer from rapid photobleaching. If a sample has clear puncta that disappear throughout imaging

or the mean intensity of the sample drops rapidly during acquisition, photobleaching is likely

reducing the data’s quality. Anti-fade should always be included in slide preparation and given

time to permeate the sample before imaging to prevent photobleaching. Further, imaging from

long, low energy wavelength lasers to short, higher-energy (i.e., from far-red to UV) can help

preserve fluorescence.

3.5.4 Low Signal to Noise

Since C. elegans embryos are relatively thick (∼20-30 µm), the use of widefield microscopy

will capture a large amount of out-of-focus signals from non-focal Z-planes in the sample. Em-

bryos can be flattened during slide preparation to improve SNR. We have found that samples from

∼12-20 µm thick have an optimal signal-to-noise ratio without obviously perturbing sample mor-

phology. While pressing down on embryos does not seem to affect their morphology, any lateral
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motion during slide preparation will shear embryos, so it is essential to press directly down when

making slides.

3.5.5 Crosstalk of smiFISH secondary probes

Tsanov et al. demonstrated that multiple primary probe sets containing the same FLAP se-

quence could be utilized in the same experiment without observable mislabeling by annealing

them to secondary probes labeled with distinct fluorophores (i.e., probe-set-1 FLAP-Y-Cal Fluor

610, probe-set-2 FLAP-Y-Quasar 670). We have validated this in the C. elegans embryo.

3.5.6 Probing for short transcripts

If a transcript is too short to design ample FISH probes, it can be worrisome to order probe

sets. We have obtained clear punctate signal for probe sets using as few as eight smiFISH probes.

If a transcript is too short for even eight probes, it is worth considering amplification-based FISH

methods [254,260–262], which have been utilized in C. elegans [263]. However, quantification of

amplification-based FISH is far less accurate due to variability in signal strength from single RNA

molecules.

3.5.7 smiFISH secondary aggregates

In some instances, we and other groups (personal comm) have observed large aggregates of

fluorescently labeled secondary smiFISH probes on the surface of cells or adhered to slides. In our

experience, vortexing annealed smiFISH probes followed by a quick centrifugation in a microfuge

before hybridization and vigorous vortexing of samples after hybridization are sufficient to remove

these large aggregates.

3.5.8 Validation of antibodies

With any IF experiment, it is essential to validate the antibodies’ function and specificity. Pri-

mary antibodies can be validated using null or RNAi strains to ensure that the antibody is binding

specifically to the target antigen. Secondary antibodies can be tested for specificity by incubating
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them in the absence of primary antibodies to ensure that there is no staining of endogenous anti-

gens. Should an antibody have some non-specific binding, it may be possible to increase specificity

by depleting the antibody using a null allele [235]. It is also necessary to test every antibody’s

sensitivity over a range of concentrations to identify the optimal concentration for detecting the

antigen of interest without promoting non-specific staining, typically over at least one to two or-

ders of magnitude. Most commercial antibodies have a range of suggested optimal concentrations

for immunofluorescence that can be used as a starting point. It is wise to test these concentrations

for each experiment or experimental condition because changes in protein concentration or antigen

accessibility can lead to different optimal concentrations of antibodies on a case-by-case basis. It

is important to be aware that this can make downstream quantification inaccurate; however, so it is

beneficial to use identical staining conditions when possible.

3.5.9 Low yield

If embryo yield is low after performing IF, ensure that detergent is being used in the wash steps

as it strongly reduces adherence to pipette tips and plastic tubes.

3.5.10 Positive controls

If a protein can not be detected using a validated antibody, it is crucial to ensure that IF is

working correctly. Staining common cytoskeletal components such as actin or microtubules can

both verify the efficacy of the IF protocol in a sample while simultaneously demonstrating the

sample is morphologically intact. Alternatively, a fluorescent protein, such as GFP, can be targeted

for immunofluorescence using a different color and colocalization analyzed to ensure effective

staining.

3.5.11 RNA degradation

The most common issue in performing combined IF/FISH is RNA degradation. It is essential

to use RNase-free reagents throughout the protocol and, when necessary, to add RNase inhibitors

such as RNasin. In our experience, RNase inhibitor was only necessary during steps where BSA
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is present (which contains RNases). However, if RNA is not visible after performing IF/FISH, it

is likely due to RNase contamination. Remaking reagents with RNase-free components or adding

RNase inhibitors at each step will likely remedy this issue. As RNase inhibitor is relatively expen-

sive, it is best to ensure the purity of reagents where possible. If RNA degradation continues to

be an issue, reducing the duration of the IF steps of the protocol tends to improve RNA signal at

the cost of protein signal. For example, performing a two-hour incubation with primary antibody

instead of overnight can reduce RNA degradation.

3.5.12 Permeabilization and fixation

C. elegans embryos are highly effective at preventing environmental contaminants from en-

tering. This is in part due to the permeability barrier, a membranous barrier that prevents fluid

exchange between the embryo and the environment [200]. The choice of fixative and fixation

duration appear to be highly important for permeabilizing the embryo to antibodies, which are

roughly 20X the mass and radius of smFISH probes (Ab ∼ 150 kDa and ∼ 60 Å, 20mer oligo

∼ 7.5 kDa and ∼ 3 Å [264, 265]. In our experience, a brief methanol fixation, liquid nitrogen

freeze cracking, followed by a quick acetone fixation, was most effective at allowing antibodies to

pass through the eggshell and permeability barrier while maintaining antigen recognition and FISH

probe accessibility. The use of acetone was necessary for antibody staining. We interpret this re-

sult as acetone solubilizing permeability barrier components, thus increasing the size of molecules

that can enter the embryo, although we have not rigorously examined the effective pore size un-

der different fixation conditions. Our experiments with longer fixation times with both methanol

and acetone reduced antigen recognition by antibodies (as well as GFP fluorescence for protein

fusions). Moreover, the use of formalin/formaldehyde reduces the binding and photostability of

FISH probes. Some antigens are likely more compatible with different fixatives, however. Should

the fixation conditions presented here be incompatible with an antigen of interest, Duerr 2006 de-

scribes alternative fixation strategies. If alternative fixation strategies must be pursued, it is crucial

to keep in mind the effect they will have on the permeability of the eggshell and permeability bar-
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rier. If IF still fails, it may be worth using 150kDa fluorescent dextran to determine whether the

embryo is permeable to antibodies.

3.5.13 Clumps

For reasons unknown, in our experiments, C. elegans embryos that have undergone IF/FISH

form aggregates of embryos that do not occur with either protocol alone. While some clumping

seems inevitable, vigorous vortexing after fixation and every wash/pelleting step, as well as con-

stant rocking during incubations, reduces the number and size of clumps. Clumps can also be

disrupted by pipetting when preparing slides.

3.6 Author contributions

This chapter was a collaborative project originally written for publication. Dylan M. Parker

and Erin Osborne Nishimura led the project. Sam Boyson optimized the smiFISH method used

in this chapter. Lindsay P. Winkenbach performed smFISH for antifade optimization experiments.

Annemarie Parker performed image analysis for antifade optimization experiments. All authors

contributed to manuscript editing. All other work performed in this chapter was solely performed

by Dylan M. Parker.
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Chapter 4

Conclusions

4.1 mRNA localization is a widespread form of post-

transcriptional regulation

Since subcellular mRNA localization was first characterized in 1983 [7], nearly 200,000 tran-

scripts from diverse species have been annotated as having subcellular localization [29]. These

localized transcripts have been identified in virtually every imaginable region of the cell, from

the cortical membrane to the nuclear membrane, to centrosomes, and even in intercellular com-

partments [29, 266]. The explosion in the number of identified localized RNAs and patterns they

can adopt has led to a corresponding growth in understanding the regulatory functions of mRNA

localization.

Many of the first studies identifying mRNA localization were performed in embryos where

localized transcripts function to set up embryonic polarity and define cell fates in the absence of

zygotic transcription by controlling the spatial and temporal translation of mRNAs [12]. As the

functions of mRNA localization became clear in systems aside from embryogenesis, this theme

of spatially and temporally regulating translation continued. In neurons, mRNA localization con-

tributes to neuronal function by preventing the expression of proteins when and where they would

be toxic to the cell [33]. Moreover, mRNA localization in neurons also facilitates the rapid re-

sponse to stimuli by rapidly synthesizing proteins required for synaptic plasticity [141–145]. The

spatial and temporal control mediated through mRNA localization is best illustrated in intestinal

epithelial cells. In these cells, the presence of food after a period of starvation repolarizes the

mRNA content of the cell, resulting in a positive feedback loop of ribosomal biogenesis to pro-

mote a rapid increase in protein output and nutrient uptake [36]. While much has been learned

from the abundance of localized transcripts that have been identified and the mechanisms that have

been characterized, many questions remain. In this thesis, I set out to further our understanding of
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mRNA localization by developing C. elegans as a tractable, whole-animal model for characteriz-

ing the diversity of mRNA localization patterns, dissecting the mechanisms that lead to patterning,

and identifying the ultimate functions of mRNA localization.

4.2 C. elegans is a tractable model for exploring mRNA local-

ization patterns, mechanisms, and functions

In Chapter 2, we set out to use C. elegans as a model organism for exploring the patterns,

mechanisms, and functions of mRNA localization. Prior to this work, instances of subcellular

mRNA localization in C. elegans were sparse. Roughly six transcripts had been shown to have

distinct localization patterns, all in P granules [71].

Using single-cell RNA-sequencing data from 2-cell embryos [180] and 1- to 16-cell em-

bryos [76], we developed a candidate approach to screen C. elegans transcripts for subcellular

localization using single-molecule microscopy. By performing single-molecule Fluorescence In

Situ Hybridization on transcripts that were enriched in the anterior or posterior cell of the 2-cell

stage embryo, symmetrically distributed between those cells, or zygotically activated later in de-

velopment by single-cell RNA-sequencing data, we found that maternally-loaded transcripts were

enriched for subcellular localization compared to zygotic transcripts.

The identification of subcellular mRNA localization in C. elegans was striking for two reasons.

First, our observations from this initial screen more than doubled the number of transcripts known

to have subcellular localization in C. elegans and demonstrated localization patterns that had never

been reported in this animal. Second, and more strikingly, these observations demonstrated that

localization of maternally-loaded mRNAs is likely to be a widespread feature of embryos. The

majority of studies exploring subcellular mRNA localization in embryos have been performed in

Drosophila. It has long been posited that mRNA localization in the development of Drosophila is

only prevalent because early embryogenesis in Drosophila occurs in a syncytial environment. This

led researchers to hypothesize that mRNA localization was required for development in the absence

of cellularization, while in the development of cellularized organisms like C. elegans partitioning
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transcripts in a cell-specific manner without subcellular localization could be sufficient to guide cell

fate decisions. We definitively proved that subcellular localization to diverse locales is prevalent in

embryogenesis, even in those with cellularized development.

In Chapter 3, we further developed C. elegans embryos as a model for exploring mRNA lo-

calization by improving methods for detecting single-molecules of RNA and generating simplified

protocols for fluorescent staining of proteins in situ. With the knowledge that mRNA localization is

common in C. elegans embryos, these protocols will allow other researchers to determine whether

subcellular localization plays a role in the post-transcriptional regulation of their gene of interest.

These methodological improvements have already spurred collaborations between our lab and oth-

ers. For instance, we found that the erm-1 transcript localizes to the cell cortex in embryos, where

its encoded protein functions in organizing the cytoskeleton and cellular structure. The discovery

of erm-1 RNA localization has led to an ongoing collaboration aimed at determining how localiza-

tion of the erm-1 transcript can regulate its protein function and ultimately guide cell structure and

organogenesis.

In addition to optimizing smFISH and immunofluorescence, in Chapter 3, we also developed

a protocol to combine these two assays. By analyzing the localization of a transcript in relation

to the protein it encodes it is possible to gain much deeper insights into the regulation of mRNA

localization, its effects on protein production, and the functional effects of localizing any given

transcript. The distribution of this protocol allows researchers to better define the role of mRNA

localization as a means of post-transcriptional regulation in this model organism.

In addition to the work presented in this thesis, C. elegans more generally makes for a strong

model organism for several reasons. It is inexpensive, easy to culture, and one of the few animals

capable of surviving indefinitely as a frozen stock, making it highly accessible. The developmental

lineage of C. elegans is invariable and mapped from the 1-cell stage to the final stage of develop-

ment. Combined with the well-annotated genome and ease of genetic manipulation, this allows

the effects of genetic perturbation to be characterized by changes in cell fates. C. elegans is also

transparent and embryos can survive outside of the mothers, making microscopy of early embryos
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favorable. Together, these advantages and the developments presented in this thesis position C.

elegans as a highly favorable model for the study of mRNA localization moving forward.

4.3 mRNA accumulates in P granules as a consequence of

translation repression

In addition to developing C. elegans as a model organism for the study of mRNA localization,

in Chapter 2, we aimed to answer a long-standing question in the P granule field: Do P gran-

ules recruit transcripts to repress their translation or as a downstream consequence of translation

repression by other factors.

We performed several experiments to determine the directionality of translation repression and

transcript accumulation in P granules. We first determined what cis-acting elements are sufficient

to direct P granule localization. We found that the 3’UTRs, where translation regulatory elements

are commonly housed, were sufficient for the P granule localization of every transcript we tested.

We then identified trans-acting factors that are necessary for P granule recruitment. In these ex-

periments, we demonstrated that loss of trans-acting RBPs that mediate translation repression also

results in a failure to accumulate in P granules. These results indicate that translation repression

is likely required for recruitment to P granules. This is supported by the fact that many P granule-

associated transcripts do not exist solely in P granules but maintain a translationally-repressed state

even when they are distinct from P granules. Finally, by ectopically inducing a translationally in-

active state through heat stress, we showed that otherwise diffuse transcripts become recruited to

P granules. These findings were bolstered by a contemporary study demonstrating that P granules

predominately accumulate transcripts with low ribosome occupancy [75]. Ultimately, these lines

of evidence demonstrate that translation repression precedes and is sufficient for the accumulation

of transcripts in P granules.

That translation repression precedes P granule localization is of particular importance for sev-

eral reasons:
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1) In C. elegans defects in P granule assembly and function are known to cause defects in

transgenerational epigenetic inheritance, transgenerational sterility, temperature-sensitive sterility,

and in some instances transdifferentiation of the germ lineage into neuron-like cells [190]. These

defects all occur even while P granules are not strictly required for viability and fertility [188].

Understanding that these phenotypes do not result from a failure to initiate translation repression

of maternally-loaded transcripts is informative. It indicates that ectopic translation of somatic

proteins in the germline is likely not the only cause of these phenotypes. Moreover, that P granule

defects result from a failure to accumulate repressed transcripts suggests that P granules play a

multifaceted role in germ cell biology.

2) P granules are known to recruit two general classes of translationally repressed transcripts:

those destined for degradation and those required for germ lineage development [77]. Knowing

that translation repression is the cause of P granule localization narrows the search for factors

that differentiate the fates of P granule localized transcripts. As the translational repression of P

granule transcripts is mediated through interactions with trans-acting RBPs that first occur in the

cytoplasm, we can start identifying components that promote degradation or preservation once a

transcript arrives at a P granule.

3) P granules are highly similar to, and partially overlap with, two other condensate environ-

ments: stress granules and P-bodies [118]. Demonstrating that P granules recruit transcripts after

translation repression adds to the similarities between these condensate environments. Importantly,

stress granules and P-bodies are tightly linked to several neurological disorders. Often these dis-

orders manifest as runaway accumulation of component proteins and RNAs, which disrupts the

phase state of the condensates. Understanding the physical and biological principles that underlie

the assembly and disassembly of these highly homologous condensates will aid in the development

of treatments and prophylactic measures to reduce the toll of these diseases.

Thanks in part to the work in this thesis we now have a better understanding of the form and

function of P granules. With this knowledge, studies are beginning to dissect the multifaceted role

P granules have on their translationally-repressed constituent RNAs. Current hypotheses suggest
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that P granules function to concentrate and protect transcripts required for germline development,

mediate the degradation of somatic transcripts in the germline, reinforce the translationally inac-

tive state of their constituent RNAs, structurally organize both the nuclear pore environment and

the small RNA machinery, and ultimately facilitate the temporal activation of a subset of germline

required genes in the primordial germ cells. However, more experiments are required to defini-

tively characterize the extent to which P granules actively function in each of these processes,

whether they are a passive hub where the products of these processes accumulate, or if they serve

to reinforce and strengthen the effects of each of these processes.

4.4 Perspectives and future directions

In this thesis, we have developed the C. elegans embryo as a model for the study of RNA lo-

calization, developed and optimized protocols to expand the repertoire of localized transcripts and

understand their functions, characterized diverse mRNA localization patterns in C. elegans, and

unraveled long-standing questions surrounding P granule biology. These discoveries and contem-

porary advances in the fields of mRNA localization, condensate biology, sequencing technologies,

and microscopy have opened new doors for the continued exploration of this fascinating form of

post-transcriptional regulation.

Moving forward, continuing to screen maternally-loaded transcripts for subcellular localiza-

tion will continue to provide deeper insights into the diversity of patterns occurring in embryonic

development. Already, we have discovered many more transcripts with subcellular localization

than are discussed in this thesis, including some with patterns we have not observed previously.

Characterizing the spatial organization of the complete maternal transcriptome will provide a rich

source of data for future researchers to develop hypotheses around.

It will also be deeply insightful to dissect the roles of various RNA binding proteins in the

function and organization of P granules. For instance, in Chapter 2, we found that knockdown of

the RBP PIE-1 results in a loss of P granule localization for the nos-2 transcript while maintaining

translation repression. How this protein contributes to the assembly of P granules and recruitment
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of translationally repressed RNAs will further elucidate the modes of regulation occurring there.

Further, the RBP POS-1 is required for the translational activation of nos-2 upon the development

of the primordial germ cell [73, 74]. How this occurs, however, unknown. Identifying the mech-

anism by which POS-1 can promote translation in the repressive environment of P granules will

provide insights into how transcripts can escape these organelles to perform their functions.

Some of the P granule-associated RBPs are also associated with other condensates or protein

complexes. The RBP TIAR-1 localizes to both P granules and stress granules and simultaneously

accumulates in both under stress conditions [118]. Characterizing the overlap between different

condensate compartments, their shared functions, and their divergent functions will help define

their true roles in post-transcriptional regulation and put long-standing questions regarding their

specific functions to rest. Of interest in this regard is the RBP SPN-4. SPN-4 is a known P granule

component, which has recently been shown to interact with the entire CCR4/NOT deadenylation

complex, a known P-body component (Data not published). We are currently working to define

the role this RBP has in defining whether P granule transcripts undergo degradation or temporary

repression within P granules and how its functions differ in somatic and germ cells.

Finally, the advent of live-cell RNA imaging techniques will provide an unprecedented tem-

poral resolution for exploring RNA localization. Visualizing an RNA in real-time as it transits to

its destination will expose never-before-seen details of the localization mechanisms. Do P gran-

ule transcripts diffuse in and out of the condensate? Do certain classes of transcripts use specific

cytoskeletal components? How long does it take for a transcript to be recruited to P granules af-

ter translation is repressed? All of these questions and many more will be answered with these

revolutionary technologies.

Ultimately, the field of mRNA localization is rich for discovery. The work presented here

provides a new platform for researchers around the world to explore questions surrounding this

exciting and beautiful form of post-transcriptional regulation.
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Appendix A

FISH probes

Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

erm-1 C01G8.5
WBGene

00001333
gtttgaactgctggaccaat Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
ccgcaaccatttttctattt Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
gacacgcacattgatatcgc Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
aaaagttgctttcctgtggt Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
cggagaccaatggttttgac Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
gtcagtgtactgaagtccaa Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
ttcttgttcaatttcagcca Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
cttcttaacgtcctgagaca Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
ggatagaatttggcgcggaa Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
attccatctttcacttggag Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

erm-1 C01G8.5
WBGene

00001333
aagaacagaggtttccggtg Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
atttagcttgcatcgcgtaa Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
gtgtctctggaacatagtct Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
gatcagcagtaagacatccg Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
agaacgcgttgaggaagcag Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
acgtgtagttgcacgatgat Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
gactccatacatctcgagat Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
tagagatcagttcccttttt Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
cgactttcggcgaaagacga Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
gccttcttatcaattggttt Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
cgtttgttgatacggagtcg Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
tcgtgatttcccatacacaa Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

erm-1 C01G8.5
WBGene

00001333
caatggtatctggctttctt Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
cggcaatcttaagagcacga Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
tgcttcagccaattcaagac Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
tgcaattgcttgagttgagc Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
tctgttccaatgcttgttta Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
tgaagttgagcagtgagctc Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
atcactcattgctttttcgg Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
gtctctcaaatgacgtctct Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
ttcacgttcacgagcatcaa Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
cgacttcttctctcatcgaa Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
tctgtgtctgaagttgtctt Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
gtagtgttgagtgtgttgtt Cal Fluor 610

154



Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

erm-1 C01G8.5
WBGene

00001333
gtgtccattggaaacgtgat Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
tatcttcatcatcagtggca Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
catttgtgagttcagttgct Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
ttgtggcacattctgatcag Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
atccagcttattcttgatct Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
ttaacactgtcaagctcgcg Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
ccatatgcagaacgtcgtag Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
cacggatttgacggagagtc Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
attcttcgttttgtgtttcc Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
tttggaagttggtgggagac Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
gtaaaaggcactgatggggt Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
tttggcggcggatttaacaa Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

erm-1 C01G8.5
WBGene

00001333
gtctttgcgcgagaaattcg Cal Fluor 610

erm-1 C01G8.5
WBGene

00001333
gtttgatggggagagagagg Cal Fluor 610

neg-1 F32D1.6
WBGene

00017985
ctgaggtgaagaaggtcaca Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
gcagtgctggatgagaatac Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
caaaagattcggagttcccg Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
gtggactgtacgcagtgtat Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
cgggaatcattgaagatcga Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
gttatttaccgaagaagccg Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
ccgatttctggaatgaattg Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
ttgaatggagcattgcaatc Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
cgtcattggaaaggatgtgc Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
tactgctctccgttgtcgag Cal Fluor 590
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

neg-1 F32D1.6
WBGene

00017985
gatgaatttccggcgtgctc Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
tcttctttgcaggtgcattg Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
ccgatatcaacacaagtgga Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
cttgtcacattcctcatcgg Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
gaatcctccgttttctgctt Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
gcgagacttcttcgaagatt Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
gtttcctgctcttacggatc Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
tctttcggtagtctgatgct Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
ctgccttcaaaagttcccag Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
catcagcttcagcacgattt Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
aagcgactattcagctttgt Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
atccagcttatattggggtt Cal Fluor 590
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

neg-1 F32D1.6
WBGene

00017985
gctttctatcattccaagtg Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
ttcccgatgatgaatgatct Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
agtacgggcgttgttgtcaa Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
tcgacacgaagatgaggaat Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
agaaaagagaagagctccag Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
tcggaagaagagaagtcgtc Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
acgagagaaacggagagaac Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
cgcagaaagcgagatgatcg Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
ccgaagtgcgtctggagatc Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
acgtcttccagaagacatag Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
tggagaacgagaatcggatc Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
gcccacatagagatagagac Cal Fluor 590
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

neg-1 F32D1.6
WBGene

00017985
cggaagcgatcccgatcaag Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
tgaggagagaagaagctccc Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
tttcgacggttagtgatgac Cal Fluor 590

neg-1 F32D1.6
WBGene

00017985
gaagtctcatgggatctggt Cal Fluor 590

ape-1 F46F3.4
WBGene

00000146
cgtacagaatccgacgagtg Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
ggtatattggggcagttgaa Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
cgtagatgccattgatgacg Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
ggagccgtcgaagatttatg Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
cattcgttgatttgcggaga Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
tgggacaatgcttgtggatg Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
tggtgcggaatacatcatca Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
cggaataacgtgtggtcgtg Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

ape-1 F46F3.4
WBGene

00000146
agggttctgaaactgtgcat Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
cgtaatcggcgatcatttca Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
ttctactgactgcggtttta Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
gaacagctcgaactctttgc Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
tcttattttgaagctgtgcc Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
atggatccttgcacattcaa Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
cctcattgaagcatttctca Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
ccggtacatttcttccaaat Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
atttttcgttgttccacgag Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
gtggatacttgatttgcagc Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
gacagaagcacgaggtctta Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
tcgatagcatcataactgcc Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

ape-1 F46F3.4
WBGene

00000146
ccgtcggtattttttgatga Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
ctttacatggtgccaagtac Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
tgccattttacttaactccg Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
agaatcccgagtcattgtag Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
attcgtctagactatcacca Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
aatcagtctttccacttctc Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
ttcgtagctttcagggaatc Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
ttgaagtaccttcggaagca Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
tcttcttgtgatgttggcaa Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
tgtttctgatgttattgccg Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
ccgaacttgtagcaacttgt Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
catttgttcggttggcaatt Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

ape-1 F46F3.4
WBGene

00000146
gaacttgcatcttcttctgt Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
agattctgtccatcatcaga Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
cagttcttctttcaatcgca Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
aggtcttctcaaaatgcctt Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
gacctttgttcatcttttca Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
ttctaaagcagcatcgagca Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
caaatcgcattgtgcaacgc Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
aaccatcggaatcttgagca Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
ggttattacaggaagctgca Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
tccacaagttgtctaaccat Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
tagtgtcgaagcgagaacgc Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
tccagtattaattgatcccg Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

ape-1 F46F3.4
WBGene

00000146
tcatatccataagcagcgta Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
tcacatgtccaccaattttt Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
ttaacgatgggtacaacgcc Cal Fluor 610

ape-1 F46F3.4
WBGene

00000146
gacattgttgttcgattcca Cal Fluor 610

mex-3 F53G12.5
WBGene

00003229
gcgatttgttcttccttcat Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
ccaagcccctggcaatttat Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
gatcgctgactggagagcac Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
agaaactgcgcaatatcctc Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
gcctatcgacgttctgtagt Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
acggactctgtgacattttg Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
cttgacgaccaacaatctcg Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
cgcagtgccttaattttgca Cal Fluor 590
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

mex-3 F53G12.5
WBGene

00003229
gaaccggtgtcttgatgtag Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
tgaccacgaaaattggatct Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
cagtcgatctctcgtttcgc Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
cggatctgtgtgaagtgctc Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
ctcctggaacaacttgtgta Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
tctgacatagctcgtgatct Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
gagtccgacaactcttaacg Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
gatagtcgctcctttcggtc Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
tgggtgtcctgttgaattcg Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
ggctcggcgtaatgatgtac Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
tcaaaaacgggctccctttc Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
aagatgtgcgtctcgatctc Cal Fluor 590
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

mex-3 F53G12.5
WBGene

00003229
gtttctggaagatttccggt Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
aactgtccggcaaagtcatt Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
cttctgcaccatcaacgaga Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
catttgttgttgagcctgtt Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
agaacatcgattgttgctga Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
gattactgttgccgaatgct Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
cgacgacatctccttctgat Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
gagctctccattccgaatgg Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
caacgaactacgcatcgatg Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
cagtaccggaaagagattcc Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
aacgatggacgagaagacag Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
gtttcgccgattgtcctcct Cal Fluor 590
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

mex-3 F53G12.5
WBGene

00003229
tagtcgtaggttggcagatc Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
ttaagcgagttgttggttcc Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
gctgagaatttcgttctcca Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
cggacagggcatcgtacttg Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
gattcctcgcgtttctccaa Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
ggacatgagcccattggttg Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
cagattgtgctgagaagacc Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
gggctcagattcatgtttcc Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
agatgctgaagccaacgatc Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
gtatgatcgttgtgatcgca Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
cttatccattgatcggcacg Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
ggaatgatgaatggatccac Cal Fluor 590
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

mex-3 F53G12.5
WBGene

00003229
gctagatgagagtctacacg Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
cgtacaccgatgaacaaagt Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
ccaaaaaaacctactgtagg Cal Fluor 590

mex-3 F53G12.5
WBGene

00003229
tgagttggtcgtcctatcat Cal Fluor 590

chs-1 T25G3.2
WBGene

00000496
cttgctgtttcgttgattga Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
gttcatcctggtaacgaacg Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
cagatcttttgtgcgatcga Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
gtcgcctgtaaaactgtgac Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
tagcgacagatatattcccg Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
tgacttgacgagttgaccac Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
ccgattgctcgaagagattc Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
ttcggaatgatcttcctgtt Cal Fluor 610

167



Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

chs-1 T25G3.2
WBGene

00000496
agaatgcgttgtgtcaatcc Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
cttccgtacagcatatttga Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
acgatgcgcatgagggaaac Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
agtagaagaagcctcgtgtg Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
tgaaatccctcgcatgacaa Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
gggtgcacgaaagagaacgg Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
gggtgattggcaagcataac Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
gctttggaaccattgatcac Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
aaagtccggagatgcgattc Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
ttcttgccgattcagtgaat Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
tcatccgatatgtcttcttc Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
tcgtttcgaattcgtagctc Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

chs-1 T25G3.2
WBGene

00000496
atctcggtttctgtttcatg Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
cttgttgttcatacgtgtcg Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
cttccaatcggtatcgaagt Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
ttctctattccatcttcttc Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
catgtacataacttggctcc Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
taaacgtgttgtcagccatc Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
gaaaacatgttcagcagcct Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
gaaacatccaggcgcacaaa Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
ttgtcatccatcaatgcaga Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
ggtcttagtatacttgtgca Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
taggcgatgtaggcatatga Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
aaagcagcaacttgggcgaa Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

chs-1 T25G3.2
WBGene

00000496
cacatcagatcctcgaagtt Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
tacgaacgcgtacgcaatcg Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
taaattgttccataggcgct Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
atctgaatccctttttcaca Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
ttcttttccattttctctcg Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
tctgcagtttgagtttcttc Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
ctacgttctcttcaatcgga Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
atgacttgtcatccacacat Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
gttttcctcgttcacaaact Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
gaaaaccttttccgcacttt Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
tttcgtagagaagccaatcc Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
ttggcgagaacttgatgctg Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

chs-1 T25G3.2
WBGene

00000496
ttaatggttcatcggtttcc Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
cttcttggaaagctcctatc Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
ggtgaaactccgtattcgta Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
gagacgagccttttgaagtt Cal Fluor 610

chs-1 T25G3.2
WBGene

00000496
cttgctgtttcgttgattga Quasar 670

chs-1 T25G3.2
WBGene

00000496
gttcatcctggtaacgaacg Quasar 670

chs-1 T25G3.2
WBGene

00000496
cagatcttttgtgcgatcga Quasar 670

chs-1 T25G3.2
WBGene

00000496
gtcgcctgtaaaactgtgac Quasar 670

chs-1 T25G3.2
WBGene

00000496
tagcgacagatatattcccg Quasar 670

chs-1 T25G3.2
WBGene

00000496
tgacttgacgagttgaccac Quasar 670

chs-1 T25G3.2
WBGene

00000496
ccgattgctcgaagagattc Quasar 670

chs-1 T25G3.2
WBGene

00000496
ttcggaatgatcttcctgtt Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

chs-1 T25G3.2
WBGene

00000496
agaatgcgttgtgtcaatcc Quasar 670

chs-1 T25G3.2
WBGene

00000496
cttccgtacagcatatttga Quasar 670

chs-1 T25G3.2
WBGene

00000496
acgatgcgcatgagggaaac Quasar 670

chs-1 T25G3.2
WBGene

00000496
agtagaagaagcctcgtgtg Quasar 670

chs-1 T25G3.2
WBGene

00000496
tgaaatccctcgcatgacaa Quasar 670

chs-1 T25G3.2
WBGene

00000496
gggtgcacgaaagagaacgg Quasar 670

chs-1 T25G3.2
WBGene

00000496
gggtgattggcaagcataac Quasar 670

chs-1 T25G3.2
WBGene

00000496
gctttggaaccattgatcac Quasar 670

chs-1 T25G3.2
WBGene

00000496
aaagtccggagatgcgattc Quasar 670

chs-1 T25G3.2
WBGene

00000496
ttcttgccgattcagtgaat Quasar 670

chs-1 T25G3.2
WBGene

00000496
tcatccgatatgtcttcttc Quasar 670

chs-1 T25G3.2
WBGene

00000496
tcgtttcgaattcgtagctc Quasar 670

172



Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

chs-1 T25G3.2
WBGene

00000496
atctcggtttctgtttcatg Quasar 670

chs-1 T25G3.2
WBGene

00000496
cttgttgttcatacgtgtcg Quasar 670

chs-1 T25G3.2
WBGene

00000496
cttccaatcggtatcgaagt Quasar 670

chs-1 T25G3.2
WBGene

00000496
ttctctattccatcttcttc Quasar 670

chs-1 T25G3.2
WBGene

00000496
catgtacataacttggctcc Quasar 670

chs-1 T25G3.2
WBGene

00000496
taaacgtgttgtcagccatc Quasar 670

chs-1 T25G3.2
WBGene

00000496
gaaaacatgttcagcagcct Quasar 670

chs-1 T25G3.2
WBGene

00000496
gaaacatccaggcgcacaaa Quasar 670

chs-1 T25G3.2
WBGene

00000496
ttgtcatccatcaatgcaga Quasar 670

chs-1 T25G3.2
WBGene

00000496
ggtcttagtatacttgtgca Quasar 670

chs-1 T25G3.2
WBGene

00000496
taggcgatgtaggcatatga Quasar 670

chs-1 T25G3.2
WBGene

00000496
aaagcagcaacttgggcgaa Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

chs-1 T25G3.2
WBGene

00000496
cacatcagatcctcgaagtt Quasar 670

chs-1 T25G3.2
WBGene

00000496
tacgaacgcgtacgcaatcg Quasar 670

chs-1 T25G3.2
WBGene

00000496
taaattgttccataggcgct Quasar 670

chs-1 T25G3.2
WBGene

00000496
atctgaatccctttttcaca Quasar 670

chs-1 T25G3.2
WBGene

00000496
ttcttttccattttctctcg Quasar 670

chs-1 T25G3.2
WBGene

00000496
tctgcagtttgagtttcttc Quasar 670

chs-1 T25G3.2
WBGene

00000496
ctacgttctcttcaatcgga Quasar 670

chs-1 T25G3.2
WBGene

00000496
atgacttgtcatccacacat Quasar 670

chs-1 T25G3.2
WBGene

00000496
gttttcctcgttcacaaact Quasar 670

chs-1 T25G3.2
WBGene

00000496
gaaaaccttttccgcacttt Quasar 670

chs-1 T25G3.2
WBGene

00000496
tttcgtagagaagccaatcc Quasar 670

chs-1 T25G3.2
WBGene

00000496
ttggcgagaacttgatgctg Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

chs-1 T25G3.2
WBGene

00000496
ttaatggttcatcggtttcc Quasar 670

chs-1 T25G3.2
WBGene

00000496
cttcttggaaagctcctatc Quasar 670

chs-1 T25G3.2
WBGene

00000496
ggtgaaactccgtattcgta Quasar 670

chs-1 T25G3.2
WBGene

00000496
gagacgagccttttgaagtt Quasar 670

cpg-2 B0280.5
WBGene

00015102
caaaagccaggagtgtgagt Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
tgaaggaactgtccattggc Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
catcgagagcgtttgtacag Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
gcattcaccaagagcgtaaa Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
tcccgagcaagtcagaaatt Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
tgggcaatccatgattcttg Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
gctcgttgtagatgagatca Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
cgccagtcgcagataagaag Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

cpg-2 B0280.5
WBGene

00015102
cttcgcaaccaatcacgttg Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
tgaggtctcaccagatgatt Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
gaagattcaccagatccttc Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
aacattttcgactgtctcct Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
taagtggtacaaccacctga Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
ccgtgtttgttgtacagaag Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
agaagagtggagttgggcaa Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
gcacttctgagaatcagcat Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
ttgcattcctcgacaagaga Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
cagatccttcaccagaagtc Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
cagaagattctccagatgct Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
gcaaactccatttggatgga Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

cpg-2 B0280.5
WBGene

00015102
gagcaagtgaggaagttggt Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
catgatgcgagcaattccac Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
gaagacgagagaagctgggc Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
gtggccagtcacaaacaaga Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
gaatgagaagtatccgtcct Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
gcagtgaatgacgatgagca Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
agaacatgacgatggcacgg Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
agactcggagaacttgagtc Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
gactcgtagtcgcaacgtac Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
tctcttggcattcggaaaca Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
gaagcttctccagattcttc Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
agatccttctccagattgtt Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

cpg-2 B0280.5
WBGene

00015102
acgcattgattttgctcttc Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
gatagcatgaagtccattgt Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
gagagaacacgtggagagca Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
tatcaacgtgtccattctgg Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
atcgttgaaaaccaggctgg Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
atgtttgtgggtaatcgcag Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
tgtcttcgatgaggcatttc Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
cagcaattggagtctcatca Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
aaaggccatcggagaagagg Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
tgcactgatgataagtggca Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
aagttaatgagttgtccggc Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
tgttggcagctgagaagacg Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

cpg-2 B0280.5
WBGene

00015102
cattgaagcagggtcgatga Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
cggggttagtcaattagtgt Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
tctatgggggcaatagtttt Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
caggcagtttcatttctcaa Cal Fluor 610

cpg-2 B0280.5
WBGene

00015102
caaaagccaggagtgtgagt Quasar 670

cpg-2 B0280.5
WBGene

00015102
tgaaggaactgtccattggc Quasar 670

cpg-2 B0280.5
WBGene

00015102
catcgagagcgtttgtacag Quasar 670

cpg-2 B0280.5
WBGene

00015102
gcattcaccaagagcgtaaa Quasar 670

cpg-2 B0280.5
WBGene

00015102
tcccgagcaagtcagaaatt Quasar 670

cpg-2 B0280.5
WBGene

00015102
tgggcaatccatgattcttg Quasar 670

cpg-2 B0280.5
WBGene

00015102
gctcgttgtagatgagatca Quasar 670

cpg-2 B0280.5
WBGene

00015102
cgccagtcgcagataagaag Quasar 670

179



Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

cpg-2 B0280.5
WBGene

00015102
cttcgcaaccaatcacgttg Quasar 670

cpg-2 B0280.5
WBGene

00015102
tgaggtctcaccagatgatt Quasar 670

cpg-2 B0280.5
WBGene

00015102
gaagattcaccagatccttc Quasar 670

cpg-2 B0280.5
WBGene

00015102
aacattttcgactgtctcct Quasar 670

cpg-2 B0280.5
WBGene

00015102
taagtggtacaaccacctga Quasar 670

cpg-2 B0280.5
WBGene

00015102
ccgtgtttgttgtacagaag Quasar 670

cpg-2 B0280.5
WBGene

00015102
agaagagtggagttgggcaa Quasar 670

cpg-2 B0280.5
WBGene

00015102
gcacttctgagaatcagcat Quasar 670

cpg-2 B0280.5
WBGene

00015102
ttgcattcctcgacaagaga Quasar 670

cpg-2 B0280.5
WBGene

00015102
cagatccttcaccagaagtc Quasar 670

cpg-2 B0280.5
WBGene

00015102
cagaagattctccagatgct Quasar 670

cpg-2 B0280.5
WBGene

00015102
gcaaactccatttggatgga Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

cpg-2 B0280.5
WBGene

00015102
gagcaagtgaggaagttggt Quasar 670

cpg-2 B0280.5
WBGene

00015102
catgatgcgagcaattccac Quasar 670

cpg-2 B0280.5
WBGene

00015102
gaagacgagagaagctgggc Quasar 670

cpg-2 B0280.5
WBGene

00015102
gtggccagtcacaaacaaga Quasar 670

cpg-2 B0280.5
WBGene

00015102
gaatgagaagtatccgtcct Quasar 670

cpg-2 B0280.5
WBGene

00015102
gcagtgaatgacgatgagca Quasar 670

cpg-2 B0280.5
WBGene

00015102
agaacatgacgatggcacgg Quasar 670

cpg-2 B0280.5
WBGene

00015102
agactcggagaacttgagtc Quasar 670

cpg-2 B0280.5
WBGene

00015102
gactcgtagtcgcaacgtac Quasar 670

cpg-2 B0280.5
WBGene

00015102
tctcttggcattcggaaaca Quasar 670

cpg-2 B0280.5
WBGene

00015102
gaagcttctccagattcttc Quasar 670

cpg-2 B0280.5
WBGene

00015102
agatccttctccagattgtt Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

cpg-2 B0280.5
WBGene

00015102
acgcattgattttgctcttc Quasar 670

cpg-2 B0280.5
WBGene

00015102
gatagcatgaagtccattgt Quasar 670

cpg-2 B0280.5
WBGene

00015102
gagagaacacgtggagagca Quasar 670

cpg-2 B0280.5
WBGene

00015102
tatcaacgtgtccattctgg Quasar 670

cpg-2 B0280.5
WBGene

00015102
atcgttgaaaaccaggctgg Quasar 670

cpg-2 B0280.5
WBGene

00015102
atgtttgtgggtaatcgcag Quasar 670

cpg-2 B0280.5
WBGene

00015102
tgtcttcgatgaggcatttc Quasar 670

cpg-2 B0280.5
WBGene

00015102
cagcaattggagtctcatca Quasar 670

cpg-2 B0280.5
WBGene

00015102
aaaggccatcggagaagagg Quasar 670

cpg-2 B0280.5
WBGene

00015102
tgcactgatgataagtggca Quasar 670

cpg-2 B0280.5
WBGene

00015102
aagttaatgagttgtccggc Quasar 670

cpg-2 B0280.5
WBGene

00015102
tgttggcagctgagaagacg Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

cpg-2 B0280.5
WBGene

00015102
cattgaagcagggtcgatga Quasar 670

cpg-2 B0280.5
WBGene

00015102
cggggttagtcaattagtgt Quasar 670

cpg-2 B0280.5
WBGene

00015102
tctatgggggcaatagtttt Quasar 670

cpg-2 B0280.5
WBGene

00015102
caggcagtttcatttctcaa Quasar 670

pgl-3 C18G1.4
WBGene

00003994
aatttcttcattgcttgggc Quasar 670

pgl-3 C18G1.4
WBGene

00003994
agtcatttggcaggatcatc Quasar 670

pgl-3 C18G1.4
WBGene

00003994
atccccgagaataaggcaaa Quasar 670

pgl-3 C18G1.4
WBGene

00003994
atcgaactttggtcgcaacg Quasar 670

pgl-3 C18G1.4
WBGene

00003994
tcatcgatgattggagccaa Quasar 670

pgl-3 C18G1.4
WBGene

00003994
ctttagctttgtttttcggg Quasar 670

pgl-3 C18G1.4
WBGene

00003994
agaatcttggcgtcattcga Quasar 670

pgl-3 C18G1.4
WBGene

00003994
ctcgacaaacttctcttccg Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

pgl-3 C18G1.4
WBGene

00003994
gccaagacatagacgtcgaa Quasar 670

pgl-3 C18G1.4
WBGene

00003994
cgatgcaaatccaagcagtt Quasar 670

pgl-3 C18G1.4
WBGene

00003994
tttcaatttcttcctggagc Quasar 670

pgl-3 C18G1.4
WBGene

00003994
aaacgcatctgtgacgttgt Quasar 670

pgl-3 C18G1.4
WBGene

00003994
acagaatcaatcttcggtcc Quasar 670

pgl-3 C18G1.4
WBGene

00003994
cagaagttgggtgaatgggt Quasar 670

pgl-3 C18G1.4
WBGene

00003994
tgggatacagctttttcgat Quasar 670

pgl-3 C18G1.4
WBGene

00003994
ttcttcgaagcgagcaacga Quasar 670

pgl-3 C18G1.4
WBGene

00003994
agtgattcatcatcctcgac Quasar 670

pgl-3 C18G1.4
WBGene

00003994
atcctagctgagatttcagg Quasar 670

pgl-3 C18G1.4
WBGene

00003994
tcagcaagtgagcgaacgac Quasar 670

pgl-3 C18G1.4
WBGene

00003994
cgattggattgtcctggaag Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

pgl-3 C18G1.4
WBGene

00003994
tgcaatccgggaaacacttc Quasar 670

pgl-3 C18G1.4
WBGene

00003994
atatggcttgcgaggaacac Quasar 670

pgl-3 C18G1.4
WBGene

00003994
tcctcgaatgacttcatgga Quasar 670

pgl-3 C18G1.4
WBGene

00003994
caattcagcgattgctcttc Quasar 670

pgl-3 C18G1.4
WBGene

00003994
aagcactgctcgagaacaga Quasar 670

pgl-3 C18G1.4
WBGene

00003994
ttcaactcgctttgagggag Quasar 670

pgl-3 C18G1.4
WBGene

00003994
attctcgatgacagtttcgt Quasar 670

pgl-3 C18G1.4
WBGene

00003994
gtagaactctgtgatccaca Quasar 670

pgl-3 C18G1.4
WBGene

00003994
gagtgatttcttctcactct Quasar 670

pgl-3 C18G1.4
WBGene

00003994
gggcttaggaattgaagctg Quasar 670

pgl-3 C18G1.4
WBGene

00003994
tgggcgaactttttgaagct Quasar 670

pgl-3 C18G1.4
WBGene

00003994
cagaaggttccgacgaactg Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

pgl-3 C18G1.4
WBGene

00003994
tggaagttgtggtctgtttt Quasar 670

pgl-3 C18G1.4
WBGene

00003994
acagttactacttgagctgc Quasar 670

pgl-3 C18G1.4
WBGene

00003994
gacgactgaatggcatcttt Quasar 670

pgl-3 C18G1.4
WBGene

00003994
tgttccttcacatggaatcg Quasar 670

pgl-3 C18G1.4
WBGene

00003994
gaattgagcacattcgccaa Quasar 670

pgl-3 C18G1.4
WBGene

00003994
cactttctccgatgatcttt Quasar 670

pgl-3 C18G1.4
WBGene

00003994
agtttctccggaatgacatc Quasar 670

pgl-3 C18G1.4
WBGene

00003994
gaggcagttgatggagtatt Quasar 670

pgl-3 C18G1.4
WBGene

00003994
cccaaccatcgctagaaaat Quasar 670

pgl-3 C18G1.4
WBGene

00003994
ggcagagcaacagattttgt Quasar 670

pgl-3 C18G1.4
WBGene

00003994
ctccaaagtcgagatcttcg Quasar 670

pgl-3 C18G1.4
WBGene

00003994
tggtgatcgttgtatcttct Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

pgl-3 C18G1.4
WBGene

00003994
tcttgtggttgcggagaaac Quasar 670

pgl-3 C18G1.4
WBGene

00003994
tcgttaaccggagtagcaag Quasar 670

pgl-3 C18G1.4
WBGene

00003994
aaactgtccgaatcccgaag Quasar 670

pgl-3 C18G1.4
WBGene

00003994
acgggatccaccaaagaatc Quasar 670

set-3 C07A9.7
WBGene

00007403
aagacggaacttccaccata Quasar 670

set-3 C07A9.7
WBGene

00007403
agagctgtgggaaatgttca Quasar 670

set-3 C07A9.7
WBGene

00007403
catttgaccgtgactttgtc Quasar 670

set-3 C07A9.7
WBGene

00007403
gcttctacaaatcttccacg Quasar 670

set-3 C07A9.7
WBGene

00007403
gtttccacacagacaacagt Quasar 670

set-3 C07A9.7
WBGene

00007403
ttgtggatcaacgttcacgg Quasar 670

set-3 C07A9.7
WBGene

00007403
cgcattttcggttattttca Quasar 670

set-3 C07A9.7
WBGene

00007403
gcagtttttgcagtatgcaa Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

set-3 C07A9.7
WBGene

00007403
ttcgtctggctcgtaaaact Quasar 670

set-3 C07A9.7
WBGene

00007403
agctcatcaaattctccaca Quasar 670

set-3 C07A9.7
WBGene

00007403
gatgcgcagcgagtttgaaa Quasar 670

set-3 C07A9.7
WBGene

00007403
agcgatgcaatatccgcaaa Quasar 670

set-3 C07A9.7
WBGene

00007403
gttctggatcactcgattga Quasar 670

set-3 C07A9.7
WBGene

00007403
tatcctgagtggaaagtgct Quasar 670

set-3 C07A9.7
WBGene

00007403
ggtgtcaactggaagattgc Quasar 670

set-3 C07A9.7
WBGene

00007403
agcttctccaatttctggaa Quasar 670

set-3 C07A9.7
WBGene

00007403
tattgcattttgaatcgccg Quasar 670

set-3 C07A9.7
WBGene

00007403
aatcttccccaattttcatc Quasar 670

set-3 C07A9.7
WBGene

00007403
agatctttcggccattattc Quasar 670

set-3 C07A9.7
WBGene

00007403
atgctgtatattgtgtgtgc Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

set-3 C07A9.7
WBGene

00007403
cttcttggctttctatttgt Quasar 670

set-3 C07A9.7
WBGene

00007403
gaaaagtccagtagccatcg Quasar 670

set-3 C07A9.7
WBGene

00007403
tgttccggacaaagaatcca Quasar 670

set-3 C07A9.7
WBGene

00007403
ccctggctgacaaagatgaa Quasar 670

set-3 C07A9.7
WBGene

00007403
atcaagaagctcctctcttg Quasar 670

set-3 C07A9.7
WBGene

00007403
gttgatgatatgtgactcca Quasar 670

set-3 C07A9.7
WBGene

00007403
atcctgatacacttgcaagg Quasar 670

set-3 C07A9.7
WBGene

00007403
ggtttttcgagtaccttcaa Quasar 670

set-3 C07A9.7
WBGene

00007403
cgtcgcaatagtttcaggat Quasar 670

set-3 C07A9.7
WBGene

00007403
tgtcggtaaagcaacttgca Quasar 670

set-3 C07A9.7
WBGene

00007403
acgtggtatattctcagtgt Quasar 670

set-3 C07A9.7
WBGene

00007403
agttctcaagttccttcgat Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

set-3 C07A9.7
WBGene

00007403
ctccgagcgaatgcaatgat Quasar 670

set-3 C07A9.7
WBGene

00007403
cgtgtaggtttctgaatcgg Quasar 670

set-3 C07A9.7
WBGene

00007403
cgcattttccacaaacttct Quasar 670

set-3 C07A9.7
WBGene

00007403
ggatcataagtgattccacg Quasar 670

set-3 C07A9.7
WBGene

00007403
atctcgacatagggacgtac Quasar 670

set-3 C07A9.7
WBGene

00007403
cttgttccatgcaagtatcg Quasar 670

set-3 C07A9.7
WBGene

00007403
agcaattccgaagaagtcga Quasar 670

set-3 C07A9.7
WBGene

00007403
gaacatactccgagagtgga Quasar 670

set-3 C07A9.7
WBGene

00007403
tttttctgcgtctccataat Quasar 670

set-3 C07A9.7
WBGene

00007403
gagtttgacgacgagccaaa Quasar 670

set-3 C07A9.7
WBGene

00007403
tcagcattctgattggcaac Quasar 670

set-3 C07A9.7
WBGene

00007403
agtttttctagcgttctgtt Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

set-3 C07A9.7
WBGene

00007403
acagcattcttgctcgtaat Quasar 670

set-3 C07A9.7
WBGene

00007403
ctctgattgttccgagtatt Quasar 670

set-3 C07A9.7
WBGene

00007403
agggtggagatcagttttga Quasar 670

set-3 C07A9.7
WBGene

00007403
gaactagttcaatggcggga Quasar 670

set-3 C07A9.7
WBGene

00007403
aagacggaacttccaccata Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
agagctgtgggaaatgttca Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
catttgaccgtgactttgtc Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
gcttctacaaatcttccacg Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
gtttccacacagacaacagt Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
ttgtggatcaacgttcacgg Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
cgcattttcggttattttca Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
gcagtttttgcagtatgcaa Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

set-3 C07A9.7
WBGene

00007403
ttcgtctggctcgtaaaact Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
agctcatcaaattctccaca Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
gatgcgcagcgagtttgaaa Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
agcgatgcaatatccgcaaa Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
gttctggatcactcgattga Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
tatcctgagtggaaagtgct Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
ggtgtcaactggaagattgc Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
agcttctccaatttctggaa Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
tattgcattttgaatcgccg Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
aatcttccccaattttcatc Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
agatctttcggccattattc Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
atgctgtatattgtgtgtgc Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

set-3 C07A9.7
WBGene

00007403
cttcttggctttctatttgt Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
gaaaagtccagtagccatcg Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
tgttccggacaaagaatcca Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
ccctggctgacaaagatgaa Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
atcaagaagctcctctcttg Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
gttgatgatatgtgactcca Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
atcctgatacacttgcaagg Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
ggtttttcgagtaccttcaa Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
cgtcgcaatagtttcaggat Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
tgtcggtaaagcaacttgca Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
acgtggtatattctcagtgt Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
agttctcaagttccttcgat Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

set-3 C07A9.7
WBGene

00007403
ctccgagcgaatgcaatgat Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
cgtgtaggtttctgaatcgg Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
cgcattttccacaaacttct Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
ggatcataagtgattccacg Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
atctcgacatagggacgtac Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
cttgttccatgcaagtatcg Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
agcaattccgaagaagtcga Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
gaacatactccgagagtgga Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
tttttctgcgtctccataat Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
gagtttgacgacgagccaaa Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
tcagcattctgattggcaac Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
agtttttctagcgttctgtt Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

set-3 C07A9.7
WBGene

00007403
acagcattcttgctcgtaat Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
ctctgattgttccgagtatt Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
agggtggagatcagttttga Cal Fluor 610

set-3 C07A9.7
WBGene

00007403
gaactagttcaatggcggga Cal Fluor 610

nos-2 ZK1127.1
WBGene

00003784
acccagagacatctttcaag Quasar 670

nos-2 ZK1127.1
WBGene

00003784
gattcgagagtcgaagtcgg Quasar 670

nos-2 ZK1127.1
WBGene

00003784
gtggcggaaaggaatacatc Quasar 670

nos-2 ZK1127.1
WBGene

00003784
aatcaaatgttggcgacggc Quasar 670

nos-2 ZK1127.1
WBGene

00003784
atccgaaagtgatggatccg Quasar 670

nos-2 ZK1127.1
WBGene

00003784
ggtgaccattcactgtcaaa Quasar 670

nos-2 ZK1127.1
WBGene

00003784
gtctttctattgagcatgga Quasar 670

nos-2 ZK1127.1
WBGene

00003784
ttgatgatgttgaggtctcc Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

nos-2 ZK1127.1
WBGene

00003784
gggtctagcttcaaacgaga Quasar 670

nos-2 ZK1127.1
WBGene

00003784
agattttcttaccgttttga Quasar 670

nos-2 ZK1127.1
WBGene

00003784
ggtggcggctaaataatatt Quasar 670

nos-2 ZK1127.1
WBGene

00003784
ggaagtcgaagatattcggc Quasar 670

nos-2 ZK1127.1
WBGene

00003784
tccggaattattcgttgaca Quasar 670

nos-2 ZK1127.1
WBGene

00003784
ccgaagcgacaactgaatcg Quasar 670

nos-2 ZK1127.1
WBGene

00003784
gaacttcccgtacaaattga Quasar 670

nos-2 ZK1127.1
WBGene

00003784
tgctgtcattcaaccaatca Quasar 670

nos-2 ZK1127.1
WBGene

00003784
cgcaaacgatccactgcgag Quasar 670

nos-2 ZK1127.1
WBGene

00003784
gagctcttcagcagattcaa Quasar 670

nos-2 ZK1127.1
WBGene

00003784
agcgagtttctcttggattc Quasar 670

nos-2 ZK1127.1
WBGene

00003784
gccttttgaacaatgatggc Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

nos-2 ZK1127.1
WBGene

00003784
taccagcaaacttactccat Quasar 670

nos-2 ZK1127.1
WBGene

00003784
cgacagtatccacactggaa Quasar 670

nos-2 ZK1127.1
WBGene

00003784
catcgcatatatccaacgga Quasar 670

nos-2 ZK1127.1
WBGene

00003784
ttcttacgtgtatgcgtttc Quasar 670

nos-2 ZK1127.1
WBGene

00003784
aatgagctgagcttgtcgca Quasar 670

nos-2 ZK1127.1
WBGene

00003784
ccacaaattttacatggagc Quasar 670

nos-2 ZK1127.1
WBGene

00003784
gtgattcatttcaccgcgag Quasar 670

nos-2 ZK1127.1
WBGene

00003784
tatttcaactcacgtctcgg Quasar 670

nos-2 ZK1127.1
WBGene

00003784
agtacctgaaatgctcacgt Quasar 670

nos-2 ZK1127.1
WBGene

00003784
aacaactggctcgacggctt Quasar 670

nos-2 ZK1127.1
WBGene

00003784
cggctgaaatcctcattgaa Quasar 670

nos-2 ZK1127.1
WBGene

00003784
aatcgtcggttttcgaagtc Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

nos-2 ZK1127.1
WBGene

00003784
aattgataacgactgcgctg Quasar 670

nos-2 ZK1127.1
WBGene

00003784
cggatgatgcgtagatcttc Quasar 670

nos-2 ZK1127.1
WBGene

00003784
aaataaacgggttggacccg Quasar 670

nos-2 ZK1127.1
WBGene

00003784
atctgtttgtgaaagcttgt Quasar 670

nos-2 ZK1127.1
WBGene

00003784
ggctatgaacgggtaactca Quasar 670

nos-2 ZK1127.1
WBGene

00003784
gtgtgagatgggaaatttgg Quasar 670

nos-2 ZK1127.1
WBGene

00003784
gaggaccattatacggtatt Quasar 670

nos-2 ZK1127.1
WBGene

00003784
cttctacaactattcctttc Quasar 670

B0495.7 B0495.7
WBGene

00015206
atcatcttctggttggtttt Quasar 670

B0495.7 B0495.7
WBGene

00015206
gtctgaatccaatcgactct Quasar 670

B0495.7 B0495.7
WBGene

00015206
ggcatctttctgtgtaaagc Quasar 670

B0495.7 B0495.7
WBGene

00015206
aagatgttccatctcgtact Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

B0495.7 B0495.7
WBGene

00015206
tacacgagctctttgttcac Quasar 670

B0495.7 B0495.7
WBGene

00015206
ggatcattccaaaggctttt Quasar 670

B0495.7 B0495.7
WBGene

00015206
cgagacgattcacaccaact Quasar 670

B0495.7 B0495.7
WBGene

00015206
cttcggaccaattctcacaa Quasar 670

B0495.7 B0495.7
WBGene

00015206
gtatctggcatcgtatcgaa Quasar 670

B0495.7 B0495.7
WBGene

00015206
caagcaactgcatcatcagt Quasar 670

B0495.7 B0495.7
WBGene

00015206
acttcgagtacatccatcat Quasar 670

B0495.7 B0495.7
WBGene

00015206
ttcagttttggaatgagcca Quasar 670

B0495.7 B0495.7
WBGene

00015206
aaagttctcttcagcaccat Quasar 670

B0495.7 B0495.7
WBGene

00015206
atgaatccatgagcagcttg Quasar 670

B0495.7 B0495.7
WBGene

00015206
atgacgccaaggatgttgat Quasar 670

B0495.7 B0495.7
WBGene

00015206
tcttgagcaagaacggagca Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

B0495.7 B0495.7
WBGene

00015206
gggattattccggattggaa Quasar 670

B0495.7 B0495.7
WBGene

00015206
cccggaaaatacggaagtct Quasar 670

B0495.7 B0495.7
WBGene

00015206
gtatatgcgatatcgagtcc Quasar 670

B0495.7 B0495.7
WBGene

00015206
tctgtgtgatagaaccatcc Quasar 670

B0495.7 B0495.7
WBGene

00015206
agaacattttcaccagctct Quasar 670

B0495.7 B0495.7
WBGene

00015206
aaacccatctgttttcttca Quasar 670

B0495.7 B0495.7
WBGene

00015206
aatgcgatagccaaatctcc Quasar 670

B0495.7 B0495.7
WBGene

00015206
gatttcaggcattttgtacc Quasar 670

B0495.7 B0495.7
WBGene

00015206
gaatgaacgattgctccagc Quasar 670

B0495.7 B0495.7
WBGene

00015206
ccgaatacgattgttgtcgg Quasar 670

B0495.7 B0495.7
WBGene

00015206
ggatcaggttattgagcaca Quasar 670

B0495.7 B0495.7
WBGene

00015206
taacaccaaacagtccgagc Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

B0495.7 B0495.7
WBGene

00015206
aggcaggaagcagaagagtt Quasar 670

B0495.7 B0495.7
WBGene

00015206
gtcaacacattggctgatgg Quasar 670

B0495.7 B0495.7
WBGene

00015206
tcttcccattactggaacaa Quasar 670

B0495.7 B0495.7
WBGene

00015206
ggcccataataaactcagga Quasar 670

B0495.7 B0495.7
WBGene

00015206
gagtactcgtatggatttcc Quasar 670

B0495.7 B0495.7
WBGene

00015206
gtagatcgtacgattggcat Quasar 670

B0495.7 B0495.7
WBGene

00015206
gcattgtccttttgtgttaa Quasar 670

B0495.7 B0495.7
WBGene

00015206
cctctgtagtcgagtgaatg Quasar 670

B0495.7 B0495.7
WBGene

00015206
acaactcctgtgcaatttgg Quasar 670

B0495.7 B0495.7
WBGene

00015206
atggcatacgacagtactca Quasar 670

B0495.7 B0495.7
WBGene

00015206
cagctcgtgaatagctgtat Quasar 670

B0495.7 B0495.7
WBGene

00015206
gatgggacaggaacccaaag Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

B0495.7 B0495.7
WBGene

00015206
atcatatccaccacgaatct Quasar 670

B0495.7 B0495.7
WBGene

00015206
atctacgaacttctggagct Quasar 670

B0495.7 B0495.7
WBGene

00015206
agccactccatttttatttt Quasar 670

B0495.7 B0495.7
WBGene

00015206
ggatagctctatgttctcat Quasar 670

B0495.7 B0495.7
WBGene

00015206
tatcctgatagattccgtga Quasar 670

B0495.7 B0495.7
WBGene

00015206
ctctcaattgcctcaatgtt Quasar 670

B0495.7 B0495.7
WBGene

00015206
taacaacgatctcggagcgt Quasar 670

B0495.7 B0495.7
WBGene

00015206
aaatgctacacccatagtca Quasar 670

mNeonGreen N/A N/A agagaagccatgttgtcttc Quasar 670

mNeonGreen N/A N/A gtgaagctcgtgagttgctg Quasar 670

mNeonGreen N/A N/A ctccgttgatggatccgaaa Quasar 670

mNeonGreen N/A N/A ctgtccaaccatatcgaaat Quasar 670

mNeonGreen N/A N/A cgtcatttggatttccagtt Quasar 670

mNeonGreen N/A N/A ttttaagttgagctcttcgt Quasar 670

mNeonGreen N/A N/A agaattgaaggtctcccttc Quasar 670

mNeonGreen N/A N/A gtggggcactaaaatccatg Quasar 670

202



Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

mNeonGreen N/A N/A attgatgaaatccgtatcca Quasar 670

mNeonGreen N/A N/A tcattccatctggatatgga Quasar 670

mNeonGreen N/A N/A accatagcggcttgaaaagg Quasar 670

mNeonGreen N/A N/A aacttggtatccggatccat Quasar 670

mNeonGreen N/A N/A cttcgaattgcattgttcga Quasar 670

mNeonGreen N/A N/A tttacagtaagggaagctcc Quasar 670

mNeonGreen N/A N/A cccctcataggtatatcgat Quasar 670

mNeonGreen N/A N/A aatccagttcccttgacttg Quasar 670

mNeonGreen N/A N/A gactgttggtcataactggt Quasar 670

mNeonGreen N/A N/A ttggataggtcttcttggag Quasar 670

mNeonGreen N/A N/A gttgaaatgatggtcttgtc Quasar 670

mNeonGreen N/A N/A ccagttgtgtaagaccattt Quasar 670

mNeonGreen N/A N/A ctgtcgatcggtatcttttt Quasar 670

mNeonGreen N/A N/A tttggcgaacgtgtacgttg Quasar 670

mNeonGreen N/A N/A tcaaatagttggcagccatt Quasar 670

mNeonGreen N/A N/A tacggaacacgtacattggc Quasar 670

mNeonGreen N/A N/A tttagagtgcttaagctcgg Quasar 670

mNeonGreen N/A N/A gccactccttgaagtttaat Quasar 670

mNeonGreen N/A N/A cattcccataacatcagtga Quasar 670

mNeonGreen N/A N/A agagaagccatgttgtcttc Cal Fluor 610

mNeonGreen N/A N/A gtgaagctcgtgagttgctg Cal Fluor 610

mNeonGreen N/A N/A ctccgttgatggatccgaaa Cal Fluor 610

mNeonGreen N/A N/A ctgtccaaccatatcgaaat Cal Fluor 610

mNeonGreen N/A N/A cgtcatttggatttccagtt Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

mNeonGreen N/A N/A ttttaagttgagctcttcgt Cal Fluor 610

mNeonGreen N/A N/A agaattgaaggtctcccttc Cal Fluor 610

mNeonGreen N/A N/A gtggggcactaaaatccatg Cal Fluor 610

mNeonGreen N/A N/A attgatgaaatccgtatcca Cal Fluor 610

mNeonGreen N/A N/A tcattccatctggatatgga Cal Fluor 610

mNeonGreen N/A N/A accatagcggcttgaaaagg Cal Fluor 610

mNeonGreen N/A N/A aacttggtatccggatccat Cal Fluor 610

mNeonGreen N/A N/A cttcgaattgcattgttcga Cal Fluor 610

mNeonGreen N/A N/A tttacagtaagggaagctcc Cal Fluor 610

mNeonGreen N/A N/A cccctcataggtatatcgat Cal Fluor 610

mNeonGreen N/A N/A aatccagttcccttgacttg Cal Fluor 610

mNeonGreen N/A N/A gactgttggtcataactggt Cal Fluor 610

mNeonGreen N/A N/A ttggataggtcttcttggag Cal Fluor 610

mNeonGreen N/A N/A gttgaaatgatggtcttgtc Cal Fluor 610

mNeonGreen N/A N/A ccagttgtgtaagaccattt Cal Fluor 610

mNeonGreen N/A N/A ctgtcgatcggtatcttttt Cal Fluor 610

mNeonGreen N/A N/A tttggcgaacgtgtacgttg Cal Fluor 610

mNeonGreen N/A N/A tcaaatagttggcagccatt Cal Fluor 610

mNeonGreen N/A N/A tacggaacacgtacattggc Cal Fluor 610

mNeonGreen N/A N/A tttagagtgcttaagctcgg Cal Fluor 610

mNeonGreen N/A N/A gccactccttgaagtttaat Cal Fluor 610

mNeonGreen N/A N/A cattcccataacatcagtga Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
agacgtgacgtcggtcatta Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

tes-1 B0496.8
WBGene

00015217
cgagtcccagcttgaaaatt Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
cgtgtgcaagaatgtgttgc Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
aaatttctgcattgtgagcc Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
aagtccttcgcatctacaag Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
ttgcacattttcctccaaaa Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
atccattcgacatccacaat Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
tcggcaaaacgacatcatgc Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
tccaattacaatttgtgcgt Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
gttctcgtgctccaaataac Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
tttcgtgagcactttttcga Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
catttggtttatacattccc Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
gttttctttcgtttcatttt Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

tes-1 B0496.8
WBGene

00015217
tgttggctgagatcttgttg Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
ttctgaatcacttgatgcca Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
attgttagaacctcctcttt Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
cacgcatactggacgttttc Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
aggtttttgtctggaagtgg Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
gggctttcatgtatcgagaa Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
tctccttttgagccaacaag Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
gtagtcttgactttctgttc Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
tcataaagcgggagctggaa Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
tcgcgcatcttcaacattac Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
tcacatctttttcttccaca Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
cttccaactccaatcacatt Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

tes-1 B0496.8
WBGene

00015217
atcttttccgatttctacga Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
tgtattctcattgtctccat Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
taatcctttcaatgcggcag Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
cttgcaatctgtttctccaa Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
ccagtttccatcatttcatt Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
gatgacattctaccccaata Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
acgacatgtttcacaacgga Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
agcataatgtctaccacagt Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
ccgcacatcttggataaagt Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
ttggcgaagatgagctcatc Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
ctcttcggcaaatgtgtact Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
cctcgatcctcctaatttaa Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

tes-1 B0496.8
WBGene

00015217
tggattttcatctcttgtca Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
tcgcaggtctttgcgaaatg Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
ggtccgatttttgattgaca Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
tgtagtttagacgcttctcg Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
tgaaaacatcgttcctcggc Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
gagcatgaatttctttccga Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
ctttacactgggatgagcac Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
atccggattcgctgaattat Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
gtcccgcacaaaacagagaa Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
atcaacaggaagcgcatgaa Cal Fluor 610

tes-1 B0496.8
WBGene

00015217
atgcttcgtctgcgcaaaaa Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
ggtacttgacgaactgtgga Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

bpl-1 F13H8.10
WBGene

00000259
tcttgatgtcaggaactggt Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
ggtttacacattgccttgaa Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
cctccggtatatacgagaac Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
gtgatctcatctggaggtaa Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
aaaccgttgatttttctgcc Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
ttcatcgtccaaatcgttcg Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
tatgcttgaattttctccca Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
atagcttattctggcagaca Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
tcacaacctgtgatacttgc Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
tagaagcgttcgctttactc Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
ctgtcgatttcggaagcttt Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
atttgctccaacactgacat Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

bpl-1 F13H8.10
WBGene

00000259
catctggttctttcttgagt Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
acaatgctgaagcatgcagg Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
tgttgagttgttgcatcaga Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
tcacagacgtttactcctac Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
tggttaatggaggcattgtc Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
ccagcgatgctttctataat Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
aatttcttcgcccaatcgaa Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
aacatcacttttcctgagca Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
gcttcaggaagtcctaattc Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
cctcgattggaagaagcttc Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
atttttactggttccagcat Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
acaagcagtacgacttgacc Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

bpl-1 F13H8.10
WBGene

00000259
atccattgtagttgttgcta Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
ttcgagtgatggaattccgg Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
tccgctgatttgacgatttg Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
ccacgtggacaaaggaactc Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
tgcgattctgctcttttttg Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
gtgccacacagaaaatgtgc Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
ggatatccagatagattccg Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
cagatcatttggccatttga Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
agcattccaccaactttatg Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
cggaatgaatcatccctagt Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
attcattccacatccgatac Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
aagcacatcgtcggtttatc Cal Fluor 610
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

bpl-1 F13H8.10
WBGene

00000259
cttctttaggcagcatatca Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
gttcttttgtaatccgtgtt Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
gtttattgtttccgcaatca Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
tatcctcatagtccttcatg Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
ttctttttgaaggtttccgg Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
cttcttgttgtgaatgcagc Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
attcctcgaatcgttactcg Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
atattttatccgggttggac Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
aaggtatttccatcatcacc Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
acgaattagacccttcatca Cal Fluor 610

bpl-1 F13H8.10
WBGene

00000259
gtatccgctacaatcctaat Cal Fluor 610

imb-2 R06A4.4
WBGene

00002076
taattcgtgttggtctggtt Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

imb-2 R06A4.4
WBGene

00002076
tgaacatctctgtctgtgga Quasar 670

imb-2 R06A4.4
WBGene

00002076
attgagctgtaccaattgca Quasar 670

imb-2 R06A4.4
WBGene

00002076
tcaatcatctccttcatgtc Quasar 670

imb-2 R06A4.4
WBGene

00002076
tttttaagcaacaagccggc Quasar 670

imb-2 R06A4.4
WBGene

00002076
acttattccattttgctcga Quasar 670

imb-2 R06A4.4
WBGene

00002076
aaaaacttcacgtcctgcgg Quasar 670

imb-2 R06A4.4
WBGene

00002076
caatgatacctactgtcgca Quasar 670

imb-2 R06A4.4
WBGene

00002076
cttctgaagtgctccaagag Quasar 670

imb-2 R06A4.4
WBGene

00002076
attggccgaagaaattccga Quasar 670

imb-2 R06A4.4
WBGene

00002076
gcagcatgatgctcatagaa Quasar 670

imb-2 R06A4.4
WBGene

00002076
gtcattgtggcgagcgaaaa Quasar 670

imb-2 R06A4.4
WBGene

00002076
agcgtcagcgatctacataa Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

imb-2 R06A4.4
WBGene

00002076
attcggcaaatgaggcatca Quasar 670

imb-2 R06A4.4
WBGene

00002076
actcgttgtgatcttgagtc Quasar 670

imb-2 R06A4.4
WBGene

00002076
aaaactcgcaggcctctaag Quasar 670

imb-2 R06A4.4
WBGene

00002076
gagatgtggaagcaccattg Quasar 670

imb-2 R06A4.4
WBGene

00002076
agcagaactggtatgagctt Quasar 670

imb-2 R06A4.4
WBGene

00002076
ctcagaatatcgcatggagc Quasar 670

imb-2 R06A4.4
WBGene

00002076
cattagctttcaacgcagga Quasar 670

imb-2 R06A4.4
WBGene

00002076
aaacctaggcttgatatcct Quasar 670

imb-2 R06A4.4
WBGene

00002076
gaacaccttctgatattcca Quasar 670

imb-2 R06A4.4
WBGene

00002076
tccaacagatcctttccaaa Quasar 670

imb-2 R06A4.4
WBGene

00002076
tcatcaatgtgtccttgagg Quasar 670

imb-2 R06A4.4
WBGene

00002076
gcaagtattccagactcttt Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

imb-2 R06A4.4
WBGene

00002076
catgaatggtatgagctcgc Quasar 670

imb-2 R06A4.4
WBGene

00002076
gtggcttcttgtcaaacatc Quasar 670

imb-2 R06A4.4
WBGene

00002076
cagcacgtgatcgatcgaac Quasar 670

imb-2 R06A4.4
WBGene

00002076
cgtcggatgcaatatgcgaa Quasar 670

imb-2 R06A4.4
WBGene

00002076
aacagcggagaagattggcg Quasar 670

imb-2 R06A4.4
WBGene

00002076
tgaactttcttgtttccgtc Quasar 670

imb-2 R06A4.4
WBGene

00002076
tcttcttcgagagttgcgaa Quasar 670

imb-2 R06A4.4
WBGene

00002076
ttgaccagttgatcgaggat Quasar 670

imb-2 R06A4.4
WBGene

00002076
gactacagcaccttgtgaat Quasar 670

imb-2 R06A4.4
WBGene

00002076
gagccataatgtgttgttgg Quasar 670

imb-2 R06A4.4
WBGene

00002076
tgataaagtccgtttcggga Quasar 670

imb-2 R06A4.4
WBGene

00002076
catatgttccggtaacgact Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

imb-2 R06A4.4
WBGene

00002076
cgtcacatctaacgagcaga Quasar 670

imb-2 R06A4.4
WBGene

00002076
gtaacgcgaagcacgattgt Quasar 670

imb-2 R06A4.4
WBGene

00002076
ggacacgctttcgtcaaatc Quasar 670

imb-2 R06A4.4
WBGene

00002076
aatcgcattgttgcacacac Quasar 670

imb-2 R06A4.4
WBGene

00002076
cccgatgaactgtttcattg Quasar 670

imb-2 R06A4.4
WBGene

00002076
attctgctggctattgatga Quasar 670

imb-2 R06A4.4
WBGene

00002076
tccgcgttatccttaatatt Quasar 670

imb-2 R06A4.4
WBGene

00002076
cgacgggattcatgttgatc Quasar 670

imb-2 R06A4.4
WBGene

00002076
tactgtccacgaagcgatag Quasar 670

imb-2 R06A4.4
WBGene

00002076
gccgacttgttgtttgaatg Quasar 670

imb-2 R06A4.4
WBGene

00002076
agagagacgttcacgcaacg Quasar 670

gpd-2 K10B3.8
WBGene

00001684
gaatccgttgattccgacac Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

gpd-2 K10B3.8
WBGene

00001684
gaggacaagacgtccgattc Quasar 670

gpd-2 K10B3.8
WBGene

00001684
ttgacactgtccttctcgac Quasar 670

gpd-2 K10B3.8
WBGene

00001684
tggatcgttgacggcaacaa Quasar 670

gpd-2 K10B3.8
WBGene

00001684
ccatgtagtcgatggagatg Quasar 670

gpd-2 K10B3.8
WBGene

00001684
gtggagtcgtactggaacaa Quasar 670

gpd-2 K10B3.8
WBGene

00001684
gagcaacggttcccttgaag Quasar 670

gpd-2 K10B3.8
WBGene

00001684
tggcgacaagaaggtagtct Quasar 670

gpd-2 K10B3.8
WBGene

00001684
ttgatcttgtgctgcgactt Quasar 670

gpd-2 K10B3.8
WBGene

00001684
tgggtctcttgagttgtaga Quasar 670

gpd-2 K10B3.8
WBGene

00001684
ggtggactcaacgacatagt Quasar 670

gpd-2 K10B3.8
WBGene

00001684
ttctcgatggtggtgaagac Quasar 670

gpd-2 K10B3.8
WBGene

00001684
gagatgatgaccttcttggc Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

gpd-2 K10B3.8
WBGene

00001684
tggagcatcagcagatggag Quasar 670

gpd-2 K10B3.8
WBGene

00001684
ggttgactccgacgacgaac Quasar 670

gpd-2 K10B3.8
WBGene

00001684
ttggcatgatcgtacttctc Quasar 670

gpd-2 K10B3.8
WBGene

00001684
agcattggagatgatgtggt Quasar 670

gpd-2 K10B3.8
WBGene

00001684
caaggcagttagtggtgcag Quasar 670

gpd-2 K10B3.8
WBGene

00001684
attgatgaccttggcaagtg Quasar 670

gpd-2 K10B3.8
WBGene

00001684
ccctcaataattccgaagtt Quasar 670

gpd-2 K10B3.8
WBGene

00001684
ggcgtggacagtggtcataa Quasar 670

gpd-2 K10B3.8
WBGene

00001684
cgtcaacagtcttttgggtg Quasar 670

gpd-2 K10B3.8
WBGene

00001684
tctccagagctttcctgatg Quasar 670

gpd-2 K10B3.8
WBGene

00001684
tagaggctgggatgatgttc Quasar 670

gpd-2 K10B3.8
WBGene

00001684
gagctttccattgagctctg Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

gpd-2 K10B3.8
WBGene

00001684
tgggacacggaaagccattc Quasar 670

gpd-2 K10B3.8
WBGene

00001684
caacaacagacacatctggg Quasar 670

gpd-2 K10B3.8
WBGene

00001684
ttctcaagacgagcagtgag Quasar 670

gpd-2 K10B3.8
WBGene

00001684
gatgtcatcgagggaagctg Quasar 670

gpd-2 K10B3.8
WBGene

00001684
cggcagccttgataactttc Quasar 670

gpd-2 K10B3.8
WBGene

00001684
gagaattcccttcattggtc Quasar 670

gpd-2 K10B3.8
WBGene

00001684
acaacttgatcctcagtgta Quasar 670

gpd-2 K10B3.8
WBGene

00001684
atcggagacaaagtcggtgg Quasar 670

gpd-2 K10B3.8
WBGene

00001684
gcatcgaagatggaagagtt Quasar 670

gpd-2 K10B3.8
WBGene

00001684
gttgagtgagatggatgctc Quasar 670

gpd-2 K10B3.8
WBGene

00001684
agacgagcttgacgaagtgt Quasar 670

gpd-2 K10B3.8
WBGene

00001684
ccgaactcgttatcgtacca Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

gpd-2 K10B3.8
WBGene

00001684
atcaacaactctgttggagt Quasar 670

gpd-2 K10B3.8
WBGene

00001684
tggtggcgatgtacgagatg Quasar 670

gpd-2 K10B3.8
WBGene

00001684
taggatgagacagcttaggc Quasar 670

gpd-2 K10B3.8
WBGene

00001684
acaagcagttaactaggtga Quasar 670

gpd-2 K10B3.8
WBGene

00001684
atacttgtaagcttctagga Quasar 670

gpd-2 K10B3.8
WBGene

00001684
cctttattgagaagagacca Quasar 670

clu-1 F55H2.6
WBGene

00000550
ctgatgagtctggagtgttt Quasar 670

clu-1 F55H2.6
WBGene

00000550
tcctcttgaggaatttcgtg Quasar 670

clu-1 F55H2.6
WBGene

00000550
cttgtcgacttgcttatctg Quasar 670

clu-1 F55H2.6
WBGene

00000550
cgaaagcgtctccacaagat Quasar 670

clu-1 F55H2.6
WBGene

00000550
atgacaagtagcttcacggt Quasar 670

clu-1 F55H2.6
WBGene

00000550
ggaatagcacggacttcaga Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

clu-1 F55H2.6
WBGene

00000550
agacgagcatcacgaatggt Quasar 670

clu-1 F55H2.6
WBGene

00000550
gagtaattcacggacttggc Quasar 670

clu-1 F55H2.6
WBGene

00000550
tcggaaggttttggttcttt Quasar 670

clu-1 F55H2.6
WBGene

00000550
ctttaagggcaatgagctct Quasar 670

clu-1 F55H2.6
WBGene

00000550
aaacctctagtgcaacaggt Quasar 670

clu-1 F55H2.6
WBGene

00000550
gccgcttcaaaatttgagga Quasar 670

clu-1 F55H2.6
WBGene

00000550
tctgaagctcttcattccaa Quasar 670

clu-1 F55H2.6
WBGene

00000550
gcagcatttacgtaatcagc Quasar 670

clu-1 F55H2.6
WBGene

00000550
tatgagttttcttgtcctct Quasar 670

clu-1 F55H2.6
WBGene

00000550
cctagagtgttgagttttgg Quasar 670

clu-1 F55H2.6
WBGene

00000550
gcagttcgtgatacttttca Quasar 670

clu-1 F55H2.6
WBGene

00000550
ttcaactcttccttaactcc Quasar 670

221



Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

clu-1 F55H2.6
WBGene

00000550
caattattcccttagcttcg Quasar 670

clu-1 F55H2.6
WBGene

00000550
tggatatcccagtgttttag Quasar 670

clu-1 F55H2.6
WBGene

00000550
cgaaagcttgtgcgggaatt Quasar 670

clu-1 F55H2.6
WBGene

00000550
cggctgcttgcttaatcaaa Quasar 670

clu-1 F55H2.6
WBGene

00000550
acgactttgtttttggcttc Quasar 670

clu-1 F55H2.6
WBGene

00000550
tgttggtgcatgtttgacat Quasar 670

clu-1 F55H2.6
WBGene

00000550
agacgctgttttcaagacgt Quasar 670

clu-1 F55H2.6
WBGene

00000550
tgctttgcagatctagcaac Quasar 670

clu-1 F55H2.6
WBGene

00000550
atgtacttgcggagagttga Quasar 670

clu-1 F55H2.6
WBGene

00000550
cttcttattggctttcttcg Quasar 670

clu-1 F55H2.6
WBGene

00000550
gttaacgaagaccaggcaga Quasar 670

clu-1 F55H2.6
WBGene

00000550
tcttcacggatactattcca Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

clu-1 F55H2.6
WBGene

00000550
tcgggtatccataatagctg Quasar 670

clu-1 F55H2.6
WBGene

00000550
ctttgcaaatgcggcggaaa Quasar 670

clu-1 F55H2.6
WBGene

00000550
ccaattggtaatctcttgct Quasar 670

clu-1 F55H2.6
WBGene

00000550
catcagcagtgaatggttca Quasar 670

clu-1 F55H2.6
WBGene

00000550
agtgattcgccaatacactc Quasar 670

clu-1 F55H2.6
WBGene

00000550
ggcatatctggatgcattac Quasar 670

clu-1 F55H2.6
WBGene

00000550
cgtgggacaatcttgcaaga Quasar 670

clu-1 F55H2.6
WBGene

00000550
ccttatgctggttgttcaaa Quasar 670

clu-1 F55H2.6
WBGene

00000550
tccaggaatgagaagtgctc Quasar 670

clu-1 F55H2.6
WBGene

00000550
atgagatatctcgcacggta Quasar 670

clu-1 F55H2.6
WBGene

00000550
attacaggatgtttctctcc Quasar 670

clu-1 F55H2.6
WBGene

00000550
agtccaatgttggcatcaat Quasar 670
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Table A.1: smFISH and smiFISH probe sets used in this thesis

Transcript_name Sequence_ID Wormbase_ID Probe_sequence Fluorophore

clu-1 F55H2.6
WBGene

00000550
atgtttccttttcagcaact Quasar 670

clu-1 F55H2.6
WBGene

00000550
gtgatttggtccatagagtt Quasar 670

clu-1 F55H2.6
WBGene

00000550
tgagcctggaacaattcagt Quasar 670

clu-1 F55H2.6
WBGene

00000550
tccaggaacaccaatgatca Quasar 670

clu-1 F55H2.6
WBGene

00000550
aacatctgtagtcttgctct Quasar 670

clu-1 F55H2.6
WBGene

00000550
cgagagtctcattgtcaagc Quasar 670
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