

University of Bath

MPHIL

Interactive Formfinding for Optimised Fabric-Cast Concrete

Bak, Andreas

Award date:
2021

Awarding institution:
University of Bath

Link to publication

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

Copyright of this thesis rests with the author. Access is subject to the above licence, if given. If no licence is specified above,
original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC-ND 4.0) Licence (https://creativecommons.org/licenses/by-nc-nd/4.0/). Any third-party copyright
material present remains the property of its respective owner(s) and is licensed under its existing terms.

Take down policy
If you consider content within Bath's Research Portal to be in breach of UK law, please contact: openaccess@bath.ac.uk with the details.
Your claim will be investigated and, where appropriate, the item will be removed from public view as soon as possible.

Download date: 08. Jun. 2022

https://researchportal.bath.ac.uk/en/studentthesis/interactive-formfinding-for-optimised-fabriccast-concrete(a54c45f4-6c53-472f-8e52-28393b398992).html

Interactive Formfinding For
Optimised

Fabric-Cast Concrete

by

Andreas Bak

Supervised by

Dr. Paul Shepherd
Prof. Paul Richens

A thesis submitted for the degree of Master of Philosophy
University of Bath

Department of Architecture and Civil Engineering
October 2011

Attention is drawn to the fact that copyright of this thesis rests with its author. A copy of this thesis has
been supplied on condition that anyone who consults it is understood to recognise that its copyright
rests with the author and they must not copy it or use material from it except as permitted by law or
with the consent of the author.

2 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

This page is intentionally left blank.

3

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

ACKNOWLEDGEMENTS

I give my thanks to all that participated or helped me during this thesis. Special thanks go to my two

supervisors Dr. Paul Shepherd and Professor Paul Richens for the many hours they spent on

supervision. And also thanks for the inspirational conversations and discussions with Dr. Chris

Williams.

I also give my thanks to Mark West for providing unpublished material.

4 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. 3!
TABLE OF CONTENTS .. 4!
LIST OF FIGURES ... 5!
LIST OF TABLES .. 6!
ABSTRACT ... 7!
CHAPTER 1! INTRODUCTION ... 8!

1.1! CONTEXT ... 8!
1.2! CONTEMPORARY DRIVERS .. 10!
1.3! STRUCTURE OF THESIS .. 11!

CHAPTER 2! LITERATURE REVIEW ... 12!
2.1! FABRIC FORMED SLABS ... 12!
2.2! TOPOLOGY OPTIMISATION .. 13!

SOLID ISOTROPIC MICROSTRUCTURE WITH PENALIZATION .. 13!
BI-DIRECTIONAL EVOLUTIONARY STRUCTURAL OPTIMISATION ... 14!
TOPOLOGY OPTIMISATION IN ARCHITECTURE ... 14!

2.3! FABRIC SIMULATION .. 16!
SIMULATING DYNAMIC BEHAVIOUR ... 17!
MATERIAL MODEL ... 17!

2.4! COLLISION HANDLING ... 18!
BOUNDING GEOMETRIES .. 18!
DIVIDING SPACE .. 19!

CHAPTER 3! SOFTWARE ... 21!
3.1! PROGRAMMING PLATFORM ... 21!
3.2! CLASSES .. 22!

MESH ... 22!
OPTIMISATION .. 23!
STRUCTURAL ANALYSIS .. 24!
FABRIC ... 26!
INTERACTION .. 27!
COLLISION ... 28!
UTILITIES .. 28!

3.3! SOFTWARE STRUCTURE AND FLOW ... 29!
CHAPTER 4! METHODS & IMPLEMENTATION ... 31!

4.1! FINITE ELEMENT ANALYSIS .. 31!
METHOD OUTLINE .. 31!
ADDING A NEW ELEMENT .. 31!
VALIDATION .. 35!

4.2! OPTIMISATION ALGORITHM ... 36!
METHOD OUTLINE .. 37!
SENSITIVITY VALUES ... 38!
ADDING AND SUBTRACTING ELEMENTS ... 40!
CUSTOMISATION OF ALGORITHM .. 43!
VALIDATION OF CUSTOMISED ALGORITHM ... 46!

4.3! CLOTH SIMULATION .. 50!
INTEGRATING NEWTON SECOND LAW OF MOTION .. 50!
MATERIAL MODEL ... 51!

4.4! COLLISION HANDLING ... 57!
VOXEL ADDRESS .. 57!
COLLISION HANDLING .. 59!

CHAPTER 5! CASE STUDY ... 62!
5.1! THE MODEL .. 62!

5

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

5.2! INITIAL RUN .. 65!
OPTIMISATION .. 65!
DRAPING .. 67!

FURTHER MANIPULATION .. 67!
SCALE MODELS .. 68!

5.3! FINAL RUN .. 72!
OPTIMISATION .. 72!

CHAPTER 6! CONCLUSIONS .. 76!
REFERENCES ... 79!
APPENDIX A – DVD .. 82!

LIST OF FIGURES

FIGURE 1.1: RENDER OF CONOPY AT THE WOMEN’S HOSPITAL IN WINNIPEG (WEST, 2011) 8!
FIGURE 1.2: PLASTER MODEL OF FABRIC CAST COLUMNS SUPPORTING THE SLAB (WEST, 2011) 8!
FIGURE 1.3: SCALE MODEL OF FABRIC ARRANGED AND PRE-STRESSED ON A FLAT SURFACE AND

PINNED DOWN (WEST, 2011) ... 8!
FIGURE 1.4: CUT-OUT PATTERN FOR FABRIC MOULD (WEST, 2011) ... 9!
FIGURE 1.5: FABRIC PLACED ON TOP OF CUT-OUT PATTERN (WEST, 2011) .. 9!
FIGURE 1.6: FABRIC IS PRE-STRESSED AND VACUUM APPLIED (WEST, 2011) ... 9!
FIGURE 1.7: FINISHED PLASTER MODEL OF STAR CAPITAL SLAB (WEST, 2011) 9!
FIGURE 2.1: AKUTAGAWA RIVER SIDE OFFICE BUILDING (OHMORI ET AL., 2005) 15!
FIGURE 2.2: PROPOSAL FOR NEW TRAIN STATION IN FLORENCE (CUI ET AL., 2003) 15!
FIGURE 2.3: QATAR CONVENTION CENTRE (HTTP://WWW.QATARCONVENTION.COM) 16!
FIGURE 2.4: BOUNDING VOLUMES (ERICSON, 2005) .. 19!
FIGURE 3.1: OVERVIEW OF THE PACKAGES INCLUDED IN THE FE SOURCE CODE (NIKISHKOV, 2010) 25!
FIGURE 3.2: DEPENDENCIES OF THE FINITE ELEMENT PROCESSOR. THE CLASSES MARKED WITH

DASHED LINES ARE NOT USED BY THE SOFTWARE. FIGURE IS FROM NIKISHKOV (2010), BUT
EDITED BY THE AUTHOR ... 26!

FIGURE 3.3: INTERACTIVE TOOLS. FROM LEFT TO RIGHT: HANDLEBOX, REPELINGFORCE AND

SPHERE .. 27!
FIGURE 3.4: INTERACTIVEFRAME PLACED AT VERTEX POSITIONS ... 28!
FIGURE 3.5: DEPENDENCY DIAGRAM OF FABRICCAST .. 29!
FIGURE 3.6: SOFTWARE FLOW .. 30!
FIGURE 4.1: (A) LINEAR EIGHT-NODE ELEMENT. (B) QUADRATIC TWENTY-NODE ELEMENT. (C) LOCAL

COORDINATE SYSTEM. (NIKISHKOV, 2010) .. 33!
FIGURE 4.2: COMPARISON BETWEEN FINITE ELEMENT SOLUTION AND EXACT SOLUTION OF A SYSTEM

WITH TWO 2-NODE LINEAR ELEMENTS. (NIKISHKOV, 2010) .. 33!
FIGURE 4.3: LINE ADDED TO JFEM SOURCE CODE .. 35!
FIGURE 4.4: DEFORMED CANTILEVER WITH COLOUR MAP FROM ROBOT ... 35!
FIGURE 4.5: DEFORMED CANTILEVER FROM FABRICCAST WITH COLOUR MAP 36!
FIGURE 4.6: SENSITIVITY VALUE SMOOTHING ... 39!
FIGURE 4.7: EXAMPLE: SORTED SENSITIVITY VALUES OF 100 VOID ELEMENTS 42!
FIGURE 4.8: EXAMPLE: SORTED SENSITIVITY VALUES OF 900 SOLID ELEMENTS 42!
FIGURE 4.9: CANDIDATES ... 43!
FIGURE 4.10: TOGGLING SORTED CANDIDATE VOXELS .. 45!
FIGURE 4.11: OSCILLATION STATE WITHOUT (LEFT) AND WITHOUT (RIGHT) DAMPING 46!
FIGURE 4.12: BESO FLOWCHART .. 46!
FIGURE 4.13: CASE 1 (HUANG AND XIE, 2007) ... 47!
FIGURE 4.14: BENCHMARK TOPOLOGY (HUANG AND XIE, 2007) ... 47!
FIGURE 4.15: TOPOLOGY FROM FABRICCAST ... 47!
FIGURE 4.16: PERFORMANCE GRAPH (HUANG AND XIE, 2007) ... 48!
FIGURE 4.17: PERFORMANCE GRAPH FROM FABRICCAST ... 48!
FIGURE 4.18: CASE 2 ... 48!
FIGURE 4.19: FABRICCAST TOPOLOGY TURNED UPSIDE DOWN. ... 49!
FIGURE 4.20: PERFORMANCE GRAPH FROM FABRICCAST ... 49!

6 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

FIGURE 4.21: PERFORMANCE INDEX .. 49!
FIGURE 4.22: MASS-SPRING SYSTEM .. 51!
FIGURE 4.23: TRIANGLE WITH PARAMETRIC COORDINATES (LEFT) AND DEFORMED TRIANGLE WITH

WORLD COORDINATES (RIGHT) (VOLINO ET AL., 2009) ... 53!
FIGURE 4.24: FABRIC SUPPORTED AT TWO CORNERS UNDER INFLUENCE OF GRAVITY. 55!
FIGURE 4.25: SIMULATION OF FABRIC SUPPORTED AT TWO CORNERS AND DRAPED OVER A SPHERE

WITH (RIGHT) AND WITHOUT (LEFT) BENDING STIFFNESS. ... 56!
FIGURE 4.26: COLLISION DETECTION .. 57!
FIGURE 4.27: NUMBERING OF ELEMENTS .. 58!
FIGURE 4.28: DETERMINING VOXEL ADDRESS ... 58!
FIGURE 4.29: HALF-SPACE .. 59!
FIGURE 4.30: COLLISION EXAMPLE .. 60!
FIGURE 4.31: COLLISION HANDLING FLOWCHART .. 61!
FIGURE 4.32: FABRIC DRAPED OVER ARBITRARY SHAPE. ... 61!
FIGURE 5.1: SLAB DIMENSIONS ... 62!
FIGURE 5.2: SYMMETRY PLANES ... 63!
FIGURE 5.3: ASYMMETRIC (LEFT) AND SYMMETRIC (RIGHT) SOLUTION. .. 63!
FIGURE 5.4: MODEL SETUP ... 64!
FIGURE 5.5: CHECKERBOARD PATTERNING .. 65!
FIGURE 5.6: OPTIMISATION PROCESS .. 66!
FIGURE 5.7: ITERATION NUMBER 391 .. 66!
FIGURE 5.8: FABRIC DRAPED OVER OPTIMISED SHAPE .. 67!
FIGURE 5.9: BOTTOM VIEW OF FULL MODEL OF FABRIC INSIDE RHINOCEROS 68!
FIGURE 5.10: CUT-OUT PATTERN .. 68!
FIGURE 5.11: PERSPECTIVE VIEW FROM RHINOCEROS OF INTERSECTING PLANE AND FABRIC 68!
FIGURE 5.12: FORMWORK DIMENSIONS .. 69!
FIGURE 5.13: CASTING PROCESS .. 70!
FIGURE 5.14: PLASTER MODELS ... 71!
FIGURE 5.15: INITIAL GUESS OF TOPOLOGY (B) ... 73!
FIGURE 5.16: OPTIMISATION PROCESS OF (A) .. 73!
FIGURE 5.17: OPTIMISATION PROCESS OF (B) .. 74!
FIGURE 5.18: FABRIC DRAPED OVER TOPOLOGY (A) .. 75!
FIGURE 5.19: FABRIC DRAPED OVER TOPOLOGY (B) .. 75!

LIST OF TABLES

TABLE 3.1: OUTLINE OF CLASSES DEVELOPED FOR THE SOFTWARE. .. 22!
TABLE 3.2: CLASSES INCLUDED IN THE SOFTWARE. CLASSES WITH STRIKETHROUGH WERE NOT USED

IN THE SOFTWARE, BUT STILL EXIST TO AVOID COMPILE ERRORS. SHORT DESCRIPTIONS

COURTESY (NIKISHKOV, 2010) ... 25!
TABLE 4.1: GLOBAL DISPLACEMENT OF CANTILEVER IN MM ... 36!

7

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

ABSTRACT

Producing organic shapes in concrete has been a challenging problem since complex freeform buildings

became a major trend in contemporary architecture. Many different techniques for casting doubly

curved shapes have been proposed. Most of them produce elements which exactly match a

preconceived design, but at a high cost in manufacture. Fabric formwork techniques (such as those

pioneered at the Centre of Architectural Structures and Technology at the University of Manitoba

(CAST)) are relatively economical, but require a form-finding approach which takes into account the

physics of casting, as well as structural and functional requirements of the finished element.

This thesis presents a specialised methodology for the design and manufacture of optimized concrete

elements cast in fabric formwork. Using a novel software tool, the approach proposed in this thesis lies

in between the largely intuitive methods reported by CAST and the precise but expensive

manufacturing methods normally used in practice. Combining topological optimisation with

computational formfinding, the software guides the designer towards a shape that is economical in both

material and manufacturability.

By combining knowledge of computational structural analysis, optimisation algorithms, fabric

simulation and the practical casting techniques of fabric formwork; this thesis bridges the gap between

structurally optimized forms, and those developed intuitively by fabric casting.

A prototype software tool (FabricCast) specialized for the design of centrally supported slabs is

presented in detail, with a few design studies realised using plaster scale models.

8 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

CHAPTER 1 INTRODUCTION

This chapter describes the motivation and background for this thesis. The need for a method of

optimising the shape of concrete slabs cast using fabric formwork techniques is explained. Finally it

contains a short description of the outcome of this thesis.

1.1 CONTEXT

Producing organic shapes with concrete has been a key issue since complex freeform architecture

became a major trend in contemporary architecture. Many different techniques of casting doubly

curved shapes have been proposed (Jepsen et al., 2010). Common to many of them is that they force

the shape to mimic the desired design, but at a high price in the cost of manufacture.

At the other end of the scale is the research in fabric formwork conducted by Mark West and his

architectural students at the Centre for Architectural Structures and Technology (CAST) at the

University of Manitoba in Canada.

CAST have been exploring the natural shapes of a fabric under the influence by forces such as

supports, self-weight of concrete and pre-stress and the use of this natural shape as a formwork for

casting concrete elements.

Precast Concrete Canopy Structure: Winnipeg Women’s Hospital

ELEVATION (partial): showing the 4 m. tall branching precast concrete columns supporting four 9 m. long precast concrete slabs

PLAN (partial): showing ten branching “V-Columns” supporting four 9 m. (30 ft.) by 3.5 m. (11.5 m.) canopy slabs

Figure 1.1: Render of conopy at the
Women’s hospital in Winnipeg (West, 2011)

Precast Concrete Canopy Structure: Winnipeg Women’s Hospital

ELEVATION (partial): showing the 4 m. tall branching precast concrete columns supporting four 9 m. long precast concrete slabs

PLAN (partial): showing ten branching “V-Columns” supporting four 9 m. (30 ft.) by 3.5 m. (11.5 m.) canopy slabs

Figure 1.2: Plaster model of fabric cast
columns supporting the slab (West, 2011)

Figure 1.3: Scale model of fabric arranged and pre-stressed
on a flat surface and pinned down (West, 2011)

Mold Deck

Fabric-Covered Mold Deck

CHAPTER 1 INTRODUCTION 9

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

Many well-defined structural elements have been investigated over the past several years. The focus of

this research has lately turned towards concrete slabs.

A fabric formed slab has recently been designed for a canopy at the new Women’s Hospital in

Winnipeg (Figure 1.1, Figure 1.2 and Figure 1.3).

The slab was designed by placing fabric on a flat base then rearranging it in to the desired shape taking

into account the support conditions. The driving force for the design using this method was aesthetics

and the structural experience and intuition of the manufacturer.

A different technique was used to create a capital star slab. In this case the fabric was placed over a

predefined cut-out pattern, pre-tensioned and forced in to shape by a vacuum (Figure 1.4, Figure 1.5,

Figure 1.6 and Figure 1.7). The shapes created using the casting techniques conducted by CAST can

be aesthetically pleasing but are only structurally optimised to the extend of the designers intuition.

This thesis proposes a way of optimising the shapes of slabs cast using fabric formwork.

Figure 1.4: Cut-out pattern for fabric mould
(West, 2011)

Figure 1.6: Fabric is pre-stressed and vacuum
applied (West, 2011)

Figure 1.7: Finished plaster model of star
capital slab (West, 2011)

Figure 1.5: Fabric placed on top of cut-out
pattern (West, 2011)

10 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

1.2 CONTEMPORARY DRIVERS

Demands from the aeronautic and automobile industry have pushed the development of several

topology optimisation techniques over the last couple of decades. The demands are driven by the desire

for lightweight elements with high performance in term of different parameters such as stiffness, natural

frequency, strength etc. These algorithms are now widely used in the field of mechanical engineering.

Despite the big advantages of these algorithms they have never gained ground in the building industry.

The reason for this is that Architecture and Civil Engineering differs from Mechanical Engineering in

many ways. One of the differences is the need for aesthetically pleasing design. The optimal design in

regards to stiffness etc. might not be aesthetically pleasing and therefore unwanted. The scale of the

design is also a huge difference that should be considered when using topology optimisation as design

tool. In mechanical engineering the optimisation techniques are often used on small parts with a very

well defined domain and boundary conditions. When increasing the scale to, for example, a slab, one

has to consider different materials and manufacturing techniques. Suddenly the domain and boundary

conditions become a design parameter (Dombernowsky and Søndergaard, 2010).

Common to the already well-known topology optimisation techniques is that they produce organic

looking shapes that usually cannot be cast using conventional techniques. This thesis proposes an

optimisation algorithm that produces results that can be approximated by casting concrete using fabric

formwork. This algorithm is based on the Bi-Directional Structural optimisation algorithm (Huang and

Xie, 2007). The algorithm is based on an engineering intuition that an optimal shape of a structure can

be found by removing unutilised material from the design. The word ‘bi-directional’ refers to the fact

that material can also be added back to the design if it is determined that the structure would benefit

from this.

The proposed customisation of the method takes certain manufacturing constraints into account when

determining where material should be removed or added. Instead of considering the full design

domain, a sub domain is used. Only material within this sub domain is considered when deciding what

to remove or add. The domain is updated at every iteration step of the optimisation. Using this

method, a topology that can be approximated using fabric formwork is derived.

This method can produce aesthetically pleasing concrete slabs whilst saving a huge amount of material

with the fewest consequences in respect to manufacturability and structural integrity.

The optimised shape is used to determine the constraints of the fabric formwork by digitally draping a

fabric over it. This is done by simulating the dynamic behaviour of the fabric in real-time by numerical

integrating Newton’s second law of motion.

The shape of the draped fabric is used to produce a cut-out pattern in a flat surface. This cut-out can

be used as a guide when draping a “real life” fabric through it, thus creating an approximation to the

optimised shape.

The aim of this thesis is to create a software tool that places the design somewhere in between the

intuitive approach conducted by Mark West and an approach depending on the precise but expensive

manufacturing methods available today. The tool should provide an interactive framework for, the

design of fabric formwork.

CHAPTER 1 INTRODUCTION 11

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

The main part of this thesis describes the development of the software tool, FabricCast and the

methods used to achieve its functionality. The software includes user input in form of design domain,

boundary conditions, optimisation parameters and material properties of the fabric and optimised

material. The software also allows for user interaction by directly manipulating the fabric.

By combining topology optimisation techniques with computational form finding the software will help

the manufacturer make the right decisions towards an optimal design of the slab based on the applied

boundary conditions.

In other words, this research bridges the gap between the ‘digital optimised’ and the ‘manufactured

shape’ by combining knowledge of computational structural analysis, optimisation algorithms, fabric

simulation and the practical casting techniques of fabric formwork.

1.3 STRUCTURE OF THESIS

Chapter 2 contains a review of relevant literature. Previous work in the area of this thesis is described

and the potential methods are discussed and an approach for the thesis is decided.

Chapter 3 describes the functionality and structure of the software tool developed as a part of this

thesis. An object-oriented approach is presented and a series of classes created as part of the software is

described.

Chapter 4 describes the different methods and their implementation in the software. The methods are

outlined and the contributions from the author are described in detail.

Chapter 5 contains a case study using the software developed. A quadratic slab supported by a single

column in the centre is investigated and two plaster scale models cast using fabric formworks are

presented.

Chapter 6 concludes this thesis. A summary of the work presented in the thesis is given and future

development is proposed.

12 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

CHAPTER 2 LITERATURE REVIEW

This chapter outlines concepts, techniques and recent developments in the multiple fields covered in

this thesis. Each section contains an argument for the choice of method.

The first section outlines the past work in relation to the main topic of the thesis, fabric formed slabs.

The next sections outline some other topics relevant to the thesis. This section covers a big variety of

subjects such as, topology optimisation, fabric simulation and collision handling. A full review of these

topics is not within the scope of this thesis, but a description of the most common used approaches is

given.

2.1 FABRIC FORMED SLABS

The literature on slabs cast using fabric formwork is very sparse as it is a fairly new field of research.

One of the main contributors to the field is the Centre for Architectural Structures and Technology

(CAST) at the University of Manitoba. It houses one of the leading labs in the development and design

of fabric formed structures. They specialise in a huge variety of pre-cast and in situ cast elements

including beams, trusses, columns, wall panels, vaults and slabs. Only a single published paper exists on

the work done by CAST (West and Araya, 2009). The author has, through personal communication,

acquired some unpublished work on the manufacturing techniques of concrete slabs cast in fabric

formwork (West, 2011). A couple of examples can be found in the introduction to this thesis.

For further information the reader is directed to the CAST website where other upublished papers can

be downloaded (CAST, 2011).

Although topology optimisation in architecture is a topic that has experienced growth over the past

years, and an increasing amount of literature is available, a very limited amount of literature has been

found on computational form finding and optimisation of fabric formed slabs.

Dombernowsky and Søndergaard (2010) show a few examples of topology optimised concrete slabs

using off-the-shelf software. A full-scale prototype of a topology optimised slab was created using CNC

milling of polystyrene blocks. This research was done as part of the research group “UNIKA beton”

that explores the possibilities of constructing alternative concrete moulds using robot technology.

A method for designing fabric formed concrete panels was proposed by Schmitz (2006). A surface finite

element model of the fabric formwork, and a volumetric finite element model of a non-stiff mass, was

defined based on the load paths in a panel. The non-stiff mass serves as the weight of the concrete and

applies loads to the fabric model. These two models combined were used to iteratively increase the

thickness of the volumetric model based on the displacements of the fabric formwork model until a

certain convergence criterion was reached. This form finding technique is highly dependent on the

finite element mesh chosen and the correct determination of load paths. This is a task that increases in

complexity when the model is subject to irregular boundary conditions.

Van Mele and Block (2010) describe a form finding method for fabric cast concrete shells. The goal of

this method was to find the closest possible tension only equilibrium surface to a given target surface,

thus creating a basis for fabric formwork of compression only shells. The method is based on the force

CHAPTER 2 LITERATURE REVIEW 13

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

density method and thrust network analysis. The outcome of the method is an equilibrium network

describing the pre-stress of the fabric formwork. However they do not describe how such an

equilibrium network is translated into physical boundary conditions for the fabric formwork.

The master’s thesis “Evolutionary Optimization of Fabric Formed Structural Elements” by Veenendaal

(2008) is the literature that most closely relates to the main topic of this research. The thesis explores a

method using differential evolution (DE) to optimise the shape of beams cast using well-established

fabric formwork techniques. A combination of fabric form finding using dynamic relaxation techniques

and non-linear finite element analysis of the form found shape is used as a performance criterion of

each step in the evolutionary process.

2.2 TOPOLOGY OPTIMISATION

Topology optimisation covers the idea of placing the material where the structure benefits from it the

most. This optimal distribution is dependent on the support conditions and the governing loads on a

structure. Examples of such optimisation can be found in nature in for example the growth of trees.

The base of the tree slowly branches out and thereby evolves into a shape that resists the forces afflicted

by the wind.

This concept have been explored numerically and applied to the optimisation of structural elements in

a couple of different ways.

SOLID ISOTROPIC MICROSTRUCTURE WITH PENALIZATION

In the late 1980’s a famous paper that would be the birth of topology optimisation was published

(Bendsøe, 1988). The paper was based on prior research in shape optimisation and eliminated some of

the constraints of the shape optimisation techniques. The existing optimisation methods were

constrained to the assumption that the initial topology, defined by parametric equations, was fixed

during the optimisation process. Therefore the final design could only be found within a predefined

domain of solutions.

Without going into the mathematical details, the method is based on the idea of an artificial composite

material with microscopic voids, or microstructures, and a density function that varies between 0 and 1

to describe the impact of these microstructures on the material properties. Homogenisation theory was

then used to compute the effective material properties based on the density function. The optimal

distribution of the material within a predefined design domain was then calculated by treating the

problem as a sizing problem.

Because the nature of the method was to produce non-smooth estimates of the exact boundary

(Bendsøe, 1988) the method was proposed as the first part of at two step procedure, where regular

shape optimisation would be the second step. This early version suffered from a few drawbacks such as

mesh dependency and fictitious material properties.

Bendsøe later developed the method where the artificial material densities were penalised thus reducing

the occurrence of intermediate densities and reducing the problem of the non-smooth boundaries of the

optimal design (Bendsøe, 1989). This was further developed and became the basis for the term Solid

Isotropic Microstructure with Penalization (SIMP).

14 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

BI-DIRECTIONAL EVOLUTIONARY STRUCTURAL OPTIMISATION

Another well known and widely used algorithm is the Evolutionary Structural Optimisation (ESO)

algorithm by Xie (1993). This method is much simpler than the SIMP method and based on

engineering intuition, in contrast to the highly mathematical based SIMP method.

The algorithm works by discretising the design domain and iteratively analysing and removing

unutilised material until a certain amount has been removed. This “hard-kill” binary nature of ESO is

another contrast to the SIMP method in which intermediate values, or analogously porous material, is

allowed.

The rejection ratio (RR) defines how much material should be removed at a certain step in the

optimisation process. The evolutionary rate (ER) determines how much the RR should be increased

after each steady state.

The disadvantages of the early ESO method was the slow evolution due to the fact that the design

parameters RR and ER had to be kept very low to avoid elements being removed prematurely and

creating an irreversible void that would lead to a non-optimal design.

ESO begins from a full domain and slowly evolves to the optimised topology whereas the opposite

applies to the Additive Evolutionary Structural Optimization (AESO) (Querin et al., 2000). This

algorithm approaches the optimal design from the under designed minimum domain by adding

material around areas with highly utilised material.

Bi-Directional Evolutionary Structural Optimisation (BESO) was introduced by Querin et al. (1998).

The method is a combination of the ESO and AESO method in which elements can be added back as

well as removed. This method was further researched and improved by Huang and Xie (2007)

removing numerical problems such as checkerboard patterns and mesh independency. Furthermore

the stability of the method was improved and problems with non-convergence resolved.

The author chose to proceed with the BESO method in this thesis for the following reasons. Firstly it

was chosen because of the simplicity of the algorithm and the easy implementation into existing

software code.

The discrete nature of the BESO method allows easy evaluation of the optimised shape without the use

of surface reconstruction techniques.

The SIMP method is less computationally efficient because the entire domain has to be analysed at

every iteration step. In BESO the number of equations decreases when elements are removed.

Furthermore, to speed up the process further, the algorithm can be started at an initial guess close to

the desired volume fraction. This is especially useful when applying the algorithm to three-dimensional

structures (Huang and Xie, 2007).

With the recent developments of BESO, a lot of the early issues with the algorithm have been

eliminated, thus creating a fast and stable solution.

TOPOLOGY OPTIMISATION IN ARCHITECTURE

Topology optimised structures in architecture are a rare, mainly because of the limits set by

manufacturability as mentioned previously. Despite this a few examples do exist.

CHAPTER 2 LITERATURE REVIEW 15

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

Topology optimisation techniques were used to design two of the façades of the Akutagawa River Side

office building (Ohmori et al., 2005).

In 2003, architect Arata Isozaki entered a competition to design a new train station in Florence with a

proposal using topology optimisation as a design tool (Cui et al., 2003). The project didn’t win, but the

architect later went on to design the Qatar National Convention center with a similar design approach

(Cui et al., 2005). The convention center is currently under construction.

Akutagawa River Side Project, Japan, F-tai Architects, 2004

“ !e BESO procedure was applied to the south, west
and north side walls simultaneously,
while the east side wall and the "oor slabs were kept
unchanged. In the #nite element model,
both dead weight in the vertical direction and earth-
quake loading in the horizontal direction
were included. !e topology of the three walls evolved
as material was gradually removed
from regions with low stress and added to areas with
high stress. Details of the optimization
and design processes were presented by Ohmori et al.
(2005).” (Huang and Xie, 2010)

Akutagawa River Side Project, Japan, F-tai Architects, 2004

“ !e BESO procedure was applied to the south, west
and north side walls simultaneously,
while the east side wall and the "oor slabs were kept
unchanged. In the #nite element model,
both dead weight in the vertical direction and earth-
quake loading in the horizontal direction
were included. !e topology of the three walls evolved
as material was gradually removed
from regions with low stress and added to areas with
high stress. Details of the optimization
and design processes were presented by Ohmori et al.
(2005).” (Huang and Xie, 2010)

Figure 2.1: Akutagawa River Side office building (Ohmori et al., 2005)

Figure 2.2: Proposal for new train station in Florence (Cui et al., 2003)

16 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

2.3 FABRIC SIMULATION

The aim of this research is to simulate the drape of a fabric over an optimised shape.

Cloth simulation, a more common term for fabric simulation, covers the challenges of the simulation of

the non-linear and highly deformable mechanical and dynamic behaviour of cloth under the influence

of forces and collisions inflicted by the surrounding environment. This can be done with different levels

of precision dependent on the application of the cloth simulation.

In computer games the methods used have to be computational efficient because of the limited

computation power left over from other tasks. Using approximate methods to simulate cloth usually

sacrifices precision for real-time performance. This sacrifice is not critical as the user would not be able

to see the difference between a precise model and an approximate one.

The garment industry is another big contributor to the research on cloth simulation but with a different

goal. They seek to precisely simulate the behaviour of cloth, taking into account its mechanical

properties. By doing so they can create a virtual dressing room that simulates the behaviour of a

garment on a person even in real-time.

The main challenges of cloth simulation can be divided into a few main topics concerning mechanical

properties, dynamic behaviour and collision handling, including self-collision.

Figure 2.3: Qatar Convention Centre (http://www.qatarconvention.com)

CHAPTER 2 LITERATURE REVIEW 17

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

SIMULATING DYNAMIC BEHAVIOUR

Particle systems are the most popular solution to simulate the dynamic behaviour of cloth. This

approach offers an intuitive and simple way of modelling the behaviour of cloth and can, in

combination with different numerical integration schemes, be easily adapted to a specific need, for

example convergence speed or real-time performance.

The integration schemes are used to find the time dependent coordinates of the cloth deforming under

influence of load. These coordinates are given implicit as a solution to Newton’s second law of motion.

This second order differential equation is often simplified to a set of two first order equations (Nealen et

al., 2006). These equations can be solved numerically.

A number of numerical integration methods exist and a number of them are discussed by Volino and

Magnenat-Thalmann (2001). The simplest method is the forward Euler integration where finite

differences are used to calculate the positions and velocities for the next time step.

Explicit numerical methods suffer from instability when the time step is above a certain threshold. For

simulations with stiff objects this threshold can be very low, thus reducing the speed of the simulation.

This is due to the inaccuracy of the explicit formulation. If the time step is too big the solution for the

next step can overshoot the equilibrium state and an accumulation of error, essentially a gain of energy,

will eventually result in the model exploding into an irreversible instable state. This is especially true for

the simple Euler method and therefore it is seldom used in practice.

An improvement of the Euler integration method is to reverse the order of the calculations of the

position and the velocity (Nealen et al., 2006). For non-dissipative systems this reduces to the Störmer-

Verlet integration scheme that was popularised by Verlet (1967), but used by Störmer as early as 1905.

This method is much more stable than the simple Euler method.

The instability problem can also be solved using implicit methods. These methods do however require

a system of algebraic equations to be solved at each time step, making them more computational

inefficient.

It is argued that the arbitrarily large time steps allowed in implicit methods balance the increase in

computational effort, but this is at the expense of realistic dynamical behaviour. Therefore implicit

methods should be used when quick convergence to a rest position is required (Volino and Magnenat-

Thalmann, 2001).

MATERIAL MODEL

To be able to define the internal forces of a viscoelastic non-linear behaviour fabric a material model is

needed. Because of manufacturing methods cloth is often anisotropic, which further complicates the

mechanical model.

Using a spring-mass system, the material behaviour is modelled by calculation of the force interacting

on a node based on the neighbouring nodes and the fictitious spring linking them together. Using this

simple method it is quite impossible to model the correct in-plane forces.

Volino, Magnenat-Thalmann et al. (2009) proposes a simple and accurate way of modelling the in-

plane forces of a non-linear anisotropic material.

18 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

The method is at the crossroad between the finite element and the mass-spring systems. It considers

forces between particles, but is calculated on the basis of accurate computations of the surface

mechanical state in the element connecting to the node.

In finite elements, a usual approach is to select a tensor that relates the deformation of an element to

the strain and stress. By choosing the correct tensor the material non-linearity and viscoelasticity can be

modelled.

A simple example of such a tensor is Hooke’s linear material law that relates the material stress to the

material strain. For isotropic materials this tensor only depends on Young’s modulus and Poisson’s ratio

(Nealen et al., 2006).

However a common approach is to use stress-strain relations derived from experimental studies to

precisely implement the non-linear behaviour.

A few different approaches modeling the bending stiffness of the material is available (Grinspun et al.,

2003) (Volino and Magnenat-Thalmann, 2006).

In this thesis a simple laplacian-smoothing algorithm is used where each internal node of the surface is

moved to a new position given by the average position of the neighboring nodes projected to the

surface normal.

The high computational time of early attempts to use the popular finite element method to solve the

non-linear behaviour proved to be impractical but with the latest development in the field the method

is gaining popularity (Magnenat Thalmann, 2010). Further modelling techniques such as finite element

and mesh free methods is described in the paper by Nealen et al. (2006).

2.4 COLLISION HANDLING

The software developed for this thesis needs to be able to handle the collision between a static

optimised object and a fabric object. This is a problem that has been investigated in detail in the

computer gaming industry.

With the development of computer games came a need for handling collisions of objects in real-time.

Even though computers today are much faster than back when the first computer games was developed

collision handling is still a key challenge in developing fast a responsive computer games because of the

move into 3D.

The term collision handling covers the detection of overlapping or intersection of objects such as people

with walls etc. Some objects in modern computer games are immensely complex and consist of

hundreds or thousands of polygons that all need to be checked for collision. All this has to happen in

the blink of an eye to prevent the gamer experiencing lags in the game. The increasing complexity of

computer games has led to abundant research on this topic.

BOUNDING GEOMETRIES

Bounding volumes is a widely used technique to simplify intersection tests by using simple polyhedra to

encapsulate complex geometry. This sacrifices precision for speed to a degree dependent on the

bounding volume used to represent the geometry (Figure 2.4).

CHAPTER 2 LITERATURE REVIEW 19

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

The common choice of bounding volume when precision is not an issue is a Bounding Sphere (Larsson,

2008). Axis Aligned Bounding Boxes (AABB) (Yi-Si et al., 2010) are commonly used to represent

geometry that is more or less aligned to the coordinate system and therefore can be represented by a

bounding box aligned to the coordinate system without compromising too much on the precision of the

intersection test. Object Oriented Bounding Boxes (OBB) can be used to further improve

approximation of the geometry (Gottschalk et al., 1996).

k-DOP’s are bounding volumes that are convex polytopes whose facets are determined by half spaces

whose outward normal is predetermined. AABB is a sub category of k-DOP’s, a 4-KOP in two

dimensions or a 6-KOP in three dimensions (Klosowski et al., 1998).

The Convex Hull of the geometry is also used as a bounding box (Barber et al., 1996). The Convex

Hull is the smallest possible convex volume that encapsulates all the vertices of the geometry.

The Bounding Boxes are often used in combination with space subdivision to achieve the fastest

possible algorithms (Gottschalk et al., 1996, Yi-Si et al., 2010).

DIVIDING SPACE

A common approach to speed up collision handling is to reduce the number of pairs that need to be

tested for intersection. Hierarchies are created by space subdivision to represent the complex geometry,

thus reducing the number of calculations by concentrating on a smaller part of the geometry. Such

subdivisions are usually performed on the static objects involved in the intersection test.

Binary Space Partitioning (Fuchs et al., 1980) is a technique developed for solving the hidden surface

problem when rendering three-dimensional geometries, but it is also serves as a tree structure for

collisions detection and other interactive purposes (Ar, 2000). The tree consists of nodes containing

planes dividing the scene into two parts, one part above the plane and one part below. Each part is

recursively divided into two by a new plane, thus creating a new node in the tree for every subdivision.

The decision of where to place the plane can be determined geometric or topologic criteria. Another

approach to subdivision of space is the use of octrees. Octrees recursively divide the scene into eight

boxes until the amount of objects inside each box is uniform (Wilhelms and Gelder, 1992).

4.2 Axis-aligned Bounding Boxes (AABBs) 77

BETTER BOUND, BETTER CULLING

FASTER TEST, LESS MEMORY

SPHERE AABB OBB 8-DOP CONVEX HULL

Figure 4.2 Types of bounding volumes: sphere, axis-aligned bounding box (AABB), oriented
bounding box (OBB), eight-direction discrete orientation polytope (8-DOP), and convex hull.

point inclusion, ray intersection with the volume, and intersection with planes and
polygons.

Bounding volumes are typically computed in a preprocessing step rather than at
runtime. Even so, it is important that their construction does not negatively affect
resource build times. Some bounding volumes, however, must be realigned at runtime
when their contained objects move. For these, if the bounding volume is expensive
to compute realigning the bounding volume is preferable (cheaper) to recomputing
it from scratch.

Because bounding volumes are stored in addition to the geometry, they should
ideally add little extra memory to the geometry. Simpler geometric shapes require less
memory space. As many of the desired properties are largely mutually exclusive, no
specific bounding volume is the best choice for all situations. Instead, the best option
is to test a few different bounding volumes to determine the one most appropriate
for a given application. Figure 4.2 illustrates some of the trade-offs among five of
the most common bounding volume types. The given ordering with respect to better
bounds, better culling, faster tests, and less memory should be seen as a rough, rather
than an absolute, guide. The first of the bounding volumes covered in this chapter is
the axis-aligned bounding box, described in the next section.

4.2 Axis-aligned Bounding Boxes (AABBs)

The axis-aligned bounding box (AABB) is one of the most common bounding volumes.
It is a rectangular six-sided box (in 3D, four-sided in 2D) categorized by having its
faces oriented in such a way that its face normals are at all times parallel with the
axes of the given coordinate system. The best feature of the AABB is its fast overlap
check, which simply involves direct comparison of individual coordinate values.

Figure 2.4: Bounding volumes (Ericson, 2005)

20 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

The book “Real-Time Collision Detection” provides a solid foundation for the understanding of the

different aspects of collision handling (Ericson, 2005).

The choice of collision handling method comes down to the nature of the geometry in question. In the

case of this thesis AABB would be the obvious choice of bounding volume, but due to the fact that the

mesh is of a very simple nature, and because of the even distribution and axis alignment, a much

simpler algorithm can be derived to detect collision. Therefore the author created a simple collision

handling strategy, which could later be changed later, if needed, to implement some of the space

dividing methods mentioned above.

CHAPTER 3 SOFTWARE 21

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

CHAPTER 3 SOFTWARE

In this chapter the structure of the software tool that was developed for this thesis is described. The tool

helps a designer towards an optimal design of a concrete slab. It consists of a volumetric mesh

generator, a finite element solver, a topology optimisation algorithm and a fabric simulation with

collision handling. These elements of the software are all available to the user through a common

graphical user interface (GUI). The GUI allows the user to input design data such as material

properties, geometry, optimisation parameters and boundary conditions. The geometry is displayed as

a three-dimensional rendering in a window that allows the user to interact with it.

A short description of the functionality of some selected parts of the software is given. The methods

used to achieve the functionality is not described in detail in this chapter, the reader is therefore

referred to chapter 4 for further details.

The chapter also covers the choice of programming platform and an outline description of the software

flow from initial user input to final model.

3.1 PROGRAMMING PLATFORM

Processing (Processing, 2011) is an open-source cross platform JAVA (Oracle, 2011) based programing

language especially used for applications with visual contents. It is a very visual platform that lets the

programmer quickly experience the effects of any changes in the code.

Although Processing has a lot of qualities, in terms of ease of use and quick development, the

Processing Integrated Development Environment (IDE) supplied is very limited in functionality and a

software project of this size would quickly get unmanageable. It is also quite limited in terms of

available libraries and no finite element package for continuum mechanics exists. For a further

introduction to Processing the reader is referred to literature (Shiffman, 2008).

Due to the reasons mentioned above this project used Processing’s big brother JAVA. This was an

obvious choice because the syntax of JAVA is similar to that of Processing, so a change would not

require much readjustment and code written in Processing could without much effort be rewritten in

JAVA.

JAVA is a programming language with a huge number of libraries and IDE’s available. It features

automatic garbage collection, multi threading, easy development and good documentation. JAVA is

available for a variety of platforms, which also makes is an attractive option when choosing

programming platform.

JAVA is an object oriented programming language that depends of the development of different types

of objects with various properties and methods specific for that object. An object can contain references

to other types of objects.

Classes are used to define the type of the object along with the methods and properties. Some objects

are part of the JAVA language, but custom objects can be defined by writing bespoke classes.

The object-oriented approach is very intuitive and allows different parts of the software to be developed

separately and later combined. In the next section some types of objects, or classes, developed for

FabricCast is described.

22 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

3.2 CLASSES

As part of the software for this thesis, numerous classes were developed. In this section a few selected

classes and their basic functionality is described. More detailed descriptions of the different methods

used to achieve the functionality can be found in chapter 4 and source code of the classes can be found

on the DVD (Appendix A).

As part of FabricCast the author developed the following classes.

Package bc Mesh boundary conditions
Class Constrain Defines constrains in world coordinates
Class NodalForce Defines nodal forces in world coordinates
Package collision Collision handling
FabricMeshIntersection Detecting and handling collisions between a mesh and a fabric object
Package gui Graphical user interface
MainForm Container for all graphics and interface objects, extends the JAVA JFrame class
Package Interaction User interaction
HandleBox Three dimensional interactive box for selection of nodes and elements
RepelingForce Interactive force that repels fabric objects
Sphere Interactive sphere object that collides with fabric
Package optimisation Optimisation algorithms
Abstract class Optimisation Optimisation of mesh objects
Class Beso BESO algorithm, extends the Optimisation class
Class NewBeso BESO algorithm with candidates, extends the Optimisation class
Class ConstrainedBeso BESO algorithm with candidates constrained to bottom, extends the NewBeso class
Package topology Topological elements
Class Edge Mesh edge, extends the Shape class
Class Fabric Description of the fabric, extends the Mesh class
Class Face Mesh face, extends the Shape class
Class Mesh Description of mesh topology
Class Quad3D Description of a volumetric mesh of quads, extends the Mesh class
Class Shape Simple shape class
Class Vertex Mesh vertex, extends the Shape class
Class Voxel Mesh voxel, extends the Shape class
Class VoxelHex8 Eight-node voxel, extends the Voxel class
Package util Utility classes
Class Utilities File writing, math and geometry utilities
Package visualisation 3D graphics
Class NodeResults Computation of node values from finite element object used for visualisation
Class ProcessingRenderer Rendering of 3D graphics, extends the Processing PApplet class

Table 3.1: Outline of classes developed for the software.

MESH

Meshes consist of a variety of smaller objects such as vertices, edges, faces etc. These objects contain

information about connectivity with other objects in the mesh. For example a vertex contains

information of which edges, faces or voxels it is connected to and visa versa.

The software includes two different types of mesh objects with completely different topologies and

purposes.

The first type of object is the volumetric mesh consisting of vertices and voxels representing the

optimised shape (Quad3D). The second is two-dimensional mesh of vertices, edges and faces

representing the fabric (Fabric).

CHAPTER 3 SOFTWARE 23

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

Although they differ in topology and use they share some common properties and therefore a parent

class called Mesh was created. These classes along with the Vertex, Voxel, VoxelHex8, Edge,

Face and Shape class are part of the package topology.

The Quad3D class allows the user to set up the volume for the optimisation algorithm. It allows the

user to input parameters like dimensions, mesh increments, design domain and boundary conditions,

such as supports and nodal forces. Quad3D is used to generate the mesh topology and contains the

information input by the user. The class acts as a container class for objects that define smaller parts of

the topology such as vertices and voxels. The class also contains methods used to manipulate the mesh

and set or get specific data. The mesh object can be passed to the optimisation algorithm, finite element

solver, graphics renderer and collision handling for further manipulation.

One of the main reasons for creating a custom mesh class for the optimised topology is to keep the

topological information intact even though elements are removed due to the optimisation algorithm.

This allows elements to be turned on and off without worrying about having to regenerate the

topological information.

A Boolean flag in the Voxel class determines whether an element is solid or void. Only the solid

elements are passed to the finite element analysis and the graphics renderer.

OPTIMISATION

One of the main functions of the software is to apply an optimisation algorithm to a volume. The

purpose of the algorithm is to optimise the topology of the volume based on applied boundary

conditions. The algorithm works in an iterative manner turning voxels of the volumetric mesh on or off

based on result from a structural analysis.

 A Quad3D object is passed to the optimisation class and the object is manipulated according to the

result of the optimisation by switching elements on or off. The updated Quad3D object is then

converted into a Finite Element model and a structural analysis determines the new internal forces of

the volume. These results are updated in the Quad3D object and the updated object is passed to the

optimisation class again.

This procedure continues until a convergent state has ben reached.

The outcome of this algorithm is often a topology with internal voids, but as it is not possible to create

these voids with the fabric formwork manufacturing method proposed in this thesis a customised

version of the algorithm is needed.

The optimisation algorithm is implemented in the software as a few!distinct!classes. The Beso class

represents the original BESO algorithm that the customised algorithm is based on. This class is mainly

created for the sake of comparing results with the customised algorithm. It still remains a part of the

finished software. The class NewBeso is a class that only considers a sub domain of the full domain as

removable or addable. ConstrainedBeso is a class that inherits the capabilities of the NewBeso class

but where the criterion for the sub domain is defined. This criterion comes in to affect when the

candidates for removal is selected. Further explanation of this can be found in chapter 4.

24 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

The distinction of the Beso and the NewBeso class is the way the algorithm decides which elements

should be turned on or off.

STRUCTURAL ANALYSIS

Another major part of the software is the implementation of a structural analysis method. This method

is used iteratively as part of the optimisation cycle described in the previous section. In topology

optimisation, especially when the topology optimisation method relies on a discretised domain, the

Finite Element method is the common choice of analysis procedure because this method also relies on a

discretised domain. Furthermore the output of the Finite Element method is element nodal

displacement that along with element stiffness matrices can be used to calculate the strain energy of an

element, which is the basis of evaluation of elements in the BESO method, used in this thesis. See

chapter 4.

Robot Structural Analysis (ROBOT), a commercial finite element package available at the university,

was explored as an option for structural analysis (Autodesk, 2011). Through the ROBOT Application

Programming Interface (API) it is possible to gain access to the full operability of the software from

within other software environments. This allows custom code to take advantage of the advanced

features that ROBOT has to offer. Although this is encouraging a few drawbacks exist that make

ROBOT a less appealing choice for the framework for the finite element analysis in this thesis.

ROBOT does not possess the abilities needed to implement a custom volumetric optimisation

algorithm. It is impossible to gain full control over the mesh definition and the scripting complex

geometry is cumbersome.

Another commercial software option is ANSYS (ANSYS, 2011). This software package also allows

control over the functionality of the software through a scripting interface and is specialised for analysis

of solids. As the author has no experience with ANSYS and because it is estimated that a link between

different software packages would be considerably slower that implementing the finite element method

directly into the code, ANSYS is also not a good option for the purpose of this thesis.

Total control over the analysis and meshing can be achieved by implementing an existing package

directly into the software. However Robot has been used to validate the finite element code

implemented in FabricCast.

The majority of the open source finite element libraries available are based on the programming

language C++ (Wikipedia, N. d.). However JAVA has been chosen as the programming language

because of the reasons outlined previously.

Changing the programming language would require some extra time during the software development,

as the author isn’t familiar with the syntax of C++ programming.

A JAVA based finite element is presented by Nikishkov (2010), who describes the basics of the finite

element method and the programming of algorithms used to create a working object oriented finite

element library (JFEM). More important for the sake of this thesis is the fact that the source code

explained is available as a free download. A free source code with a detailed documentation makes it

easier to customise the method.

CHAPTER 3 SOFTWARE 25

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

The reader is referred to literature for basic derivation of the finite element method used in the source

code (Nikishkov, 2010).

The JFEM library consists of three main parts, a finite element mesh generator (pre-processor), a finite

element solver (processor) and a visualiser (post-processor). The source code is split in to a variety of

distinct packages of classes.

The classes compulsory to get the solver working as an integrated part of the software are included in

the following classes: fea, model, util, elem, material and solver. See Figure 3.1.

Package fea Main classes
Class FE Symbolic constants
Class Jfem Main class for solution of elastic and elastic–plastic problems (finite element processor)
Class Jmgen Main class for mesh generation (preprocessor)
Class Jvis Main class for visualization of models and results (postprocessor)
Package model Finite element model and loading
Class Dof Degree of freedom
Class ElemFaceLoad Element face loading
FeLoad Load increment for the finite element model
FeLoadData Load data for the finite element model
FeModel Description of the finite element model
FeModelData Data for the finite element model
FeStress Computing stress increment
Package util Utility classes
Class FePrintWriter Helper class for organizing printing to a file;
Class FeScanner Scanning finite element data;
GaussRule Several Gauss integration rules
UTIL Printing error messages, dates, etc.
Package elem Finite elements
Abstract class Element Finite element
Class ElementQuad2D Two-dimensional quadratic isoparametric element
Class ElementQuad3D Three-dimensional quadratic isoparametric element
Class ShapeQuad2D Two-dimensional quadratic shape functions and their derivatives
Class ShapeQuad3D Three-dimensional quadratic shape functions and their derivatives
Class StressContainer Stresses and equivalent strains at integration point
Package material Constitutive relations for materials
Class ElasticMaterial Constitutive relations for an elastic material
Class ElasticPlasticMaterial Constitutive relations for an elastic–plastic material.
Package solver Assembly and solution of global finite element equation systems
Abstract class Solver Solution of the global equation system
Class SolverLDU Profile LDU (lower, diagonal and upper matrix decomposition) symmetric solver
Class SolverPCG Preconditioned conjugate gradient solver with sparse row format storage.

Table 3.2: Classes included in the software. Classes with strikethrough were not used in the software,
but still exist to avoid compile errors. Short descriptions courtesy (Nikishkov, 2010)

Figure 3.1: Overview of the packages included
in the FE source code (Nikishkov, 2010)

36 4 Finite Element Program

fea

model util

elem

gener visual

material

solver
Mesh
generation

Problem
solution

Visualization

Fig. 4.1 Packages of the nite element Java code. Eight class packages are used for three tasks of

nite element analysis = mesh generation, problem solution and visualization

4.2.5 Other Requirements

Since our nite element program is presented in this book we relax some normal

requirements related to documentation and error diagnostics. To keep the source

code brief we do not include special Java comments that can be used for automatic

generation of program documentation. We shall check data for possible errors, but

our error control is limited and the usual reaction to error discovery is program

termination with display of an error message.

4.3 General Structure of the Finite Element Code

During program development, three tasks of the nite element analysis = prepro-

cessing, processing, and postprocessing = are often implemented as three separate

computer programs. Since the tasks have many common data structures and meth-

ods, the three modules contain duplicated or similar code fragments complicating

support and modication.

In the Java language it is possible to have several main methods. The code

(classes) can be organized into packages. A package is a named collection of classes

providing encapsulation and modularity, which can eliminate code duplication and

provide a means for easy code reuse.

Our Jfea nite element system is organized into eight class packages, as shown

in Figure 4.1. The packages include the following classes.

26 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

Although some of the classes aren’t needed to run the solver they have to be present to avoid compile

errors. See Table 3.2 for an overview of the classes contained in the library. Figure 3.2 shows the

dependencies between the different classes of the JFEM solver.

A detailed description of the functionality can be found in the literature (Nikishkov, 2010)

One of the main challenges of implementing the FE code is to translate the custom Quad3D object,

described above, into a volumetric finite element model. All mesh connectivity information has to be

converted to an object of the type FeModel, all constraints have to be converted into Dof and all

loads have to be converted into FeLoad objects. A method in the Quad3D class converts the

information stored in the object to the equivalent finite element formulation. This approach allows total

control over the mesh class without making any changes to the finite element library. Information on

the entire mesh is stored in the class and only the necessary information is passed to the FeModel

object. For example the entire topology of the structure is stored but only enabled voxels are converted

into elements for the structural analysis.

A few customised classes are added to the JFEM library to make it more suitable for this thesis. This is

described in more detail in chapter 4.

FABRIC

As mentioned, two types of mesh topologies are implemented in the software. One is the volumetric

mesh mentioned above and the other is a surface mesh topology representing the fabric (Fabric).

The topology of the surface mesh is represented as a series of vertices, edges and faces containing

references to connecting elements. Apart from describing the topology of the mesh this class also

handles the calculation of internal and external forces for the dynamic simulation of the fabric.

The Fabric object can be passed to the ProcessingRenderer for a graphical representation.

The object interacts with the Quad3D object through an intersection handler described later in this

chapter. Interaction tools allow the user to directly interact with Fabric object. These tools are

described in the next section.

FeModelData

FeModel Solver FeLoad FeStress

Jfem (main)

FeLoadData

Dof Element

Element
Quad2D

Element
Quad3D

Shape
Quad2D

Shape
Quad3D

Solver
LDU

Solver
PCGMaterial

Elastic
Material

ElemLoad

Elem
FaceLoad

Gauss
Rule

ElasticPlastic
Material

Figure 3.2: Dependencies of the finite element processor. The classes
marked with dashed lines are not used by the software. Figure is from
Nikishkov (2010), but edited by the author

CHAPTER 3 SOFTWARE 27

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

INTERACTION

A few interactive tools are available in the software. Some of them are used to set up the design domain

and boundary conditions. Others are used to manipulate the fabric object in real-time. A graphical

representation of the interactive tools available to the user is shown in Figure 3.3.

The HandleBox class allows the user to select voxels or vertices. By selecting these elements it is

possible set up the design domain and boundary conditions using the GUI. The HandleBox is

essentially a box that can be translated in space and resized by dragging the handles with the mouse.

All elements inside the HandleBox are modified when for example loads are applied.

The Sphere class is a sphere that collides with the fabric object allowing the user to ‘push’ the fabric

in to the desired shape. The RepelingForce class has a similar function, but instead of colliding

with the fabric it adds a force to the vertices of the fabric in the direction of the vector between the

vertices and the force with a magnitude of 1
f − p 4

, where f is the position vector of the force and p is

the position vector of the vertex. Both the Sphere and the RepelingForce can be translated in

space by clicking and dragging the mouse.

ProScene (2011) is a library developed for the Processing language. Included in the library are classes

for interaction of Processing 3D scenes such as camera control and mouse interaction. This library was

used as a basis for the interactive part of the software.

The InteractiveFrame class is a part of the ProScene library. By adding an instance of this class

to a mouse grabber pool, intersections between the mouse pointer and the InteractiveFrame object can

be detected on the fly. The class contains methods for geometric manipulation of the object such as

translation and rotation by clicking and dragging the mouse. These transformations can be constrained

to the world axes by using built-in functions of the class. By constraining all three axes the user can fix a

point in space.

This type of object is attached as a property to the custom classes that the user needs to interact with. In

the case of this thesis the Vertex, HandleBox, Sphere and RepelingForce classes contain an

InteractiveFrame object.

Figure 3.3: Interactive tools. From left to right: HandleBox, RepelingForce and Sphere

28 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

Figure 3.4 shows a fabric object with InteractiveFrame objects attached at the vertices. The

InteractiveFrame highlighted with green is intersecting the mouse pointer. On the right the

InteractiveFrame is translated along the z-axis thereby applying a deformation. The fabric reacts to this

deformation accordingly.

COLLISION

The software contains a function allowing the user to interactively drape a fabric over the optimised

topology and thereby determining the way the slab could be manufactured.

The class that combines the optimised topology with the surface mesh representing the fabric is called

FabricMeshIntersectionHandler. By passing a Quad3D and a Fabric object to this class it

can be determined whether an intersection has occurred. If an intersection has been determined the

class corrects the vertex positions of the fabric to a position outside the volumetric mesh, thus

simulating a collision between the fabric and the optimised topology.

UTILITIES

This class contains a number of static methods that allow the programmer to call methods of the class

without initiating an object. This is useful when certain methods are used widely between the different

classes. This is the case for mathematical functions such as the rounding and remapping of numbers.

The Utilities class also contains some methods for writing data to files on the hard drive. A simple

method allows any string to be written as a text file. When the optimisation algorithm has converged

this is used to write a summary of the optimisation process to a text file.

The Quad3D and the Fabric class can be output as a VRML file for further manipulation. The

VRML file only contains topological information of the meshes. A VRML file is a common file format

that can be read by various commercial modelling software packages such as Rhinoceros. (McNell,

2011)

Another method is available for saving the entire information stored in the Quad3D object to a file

using JAVA serialisation. This allows the user to save meshes with all the information such as boundary

conditions, topology and geometry etc. The files saved using this method can’t be read by other

software but allow an optimisation to be paused or restarted.

Figure 3.4: InteractiveFrame placed at vertex positions

CHAPTER 3 SOFTWARE 29

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

3.3 SOFTWARE STRUCTURE AND FLOW

The diagram in Figure 3.5 shows the dependencies of the classes in the software. Some classes are

responsible for the storing and creation of other classes. For example the Vertex class doesn’t have

much use on it’s own, but when combined with subclasses of the Fabric class it is suddenly a very

useful object.

The figure also shows the relationship between the classes created by the author and the classes in the

JFEM library (marked with dashed lines).

The GUI lets the user input different properties such as geometry, mesh, boundary conditions,

materials and optimisation parameters. An option is also available to enable or disable voxels and

define the design space for the optimisation. When the user has defined the appropriate parameters, the

optimisation process is started.

The optimisation algorithm outputs a summary of the process and saves the Quad3D object to a file

when a convergent state is reached.

Before the next stage of the process the user can input some additional parameters to the software,

including fabric material properties, gravity and potential constraints. After these parameters have been

FeModel Solver FeLoad FeStress

MainForm

FeLoadData

Dof Element

Element
Hex83D

Shape
Hex83D

Solver
LDU

Solver
PCGMaterial

Elastic
Material

Gauss
Rule

Optimisation

Quad3D FabricProcessing
Renderer

FeModelData

NodeResults

FabricMesh
Intersection

Mesh

Vertex

Edge

Face

Voxel

Shape

Constrain
Nodal
Force

Voxel
Hex8

InteractionRepeling
Force

Handle
Box

Sphere

Beso

New
Beso

Constrained
Beso

Parent of
Responsible for creation and storing of

Contains a reference to

Initiated by

Figure 3.5: Dependency diagram of FabricCast

30 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

defined, the draping process is started. During this process the user can interact with the fabric using

the interaction tools mentioned previously.

When the desired shape of the fabric is found, the fabric can be exported to VRML file and imported

into a commercial 3D modelling environment.

USER INPUT

Geometry
Mesh

Boundary conditions
Solid Material properties
Optimisation parameters

USER INPUT

Fabric Material Properties
Draping parameters

OPTIMISATION

Optimisation algoritm runs
with the parameters
inputted by the user.

A summary of the
optimisation is outputted

to a textfile.

DRAPING

A fabric object with
properties defined by the
user is draped over the

optimised shape. The user
can interact with the fabric
using the interaction tools.

EXPORT

The fabric is exported as a
VRML file for further

manipulation.

RESULTS

Results from the Finite
Element analysis can be

visualised within the
software

Figure 3.6: Software flow

CHAPTER 4 METHODS & IMPLEMENTATION 31

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

CHAPTER 4 METHODS & IMPLEMENTATION

In this chapter all relevant methods used in the development of FabricCast are explained. Conceptual

explanations are combined with descriptions of individual implementations in the software. A series of

test was conducted on each method to validate that it had been correctly implemented and was

performing as expected. These tests are also described in this chapter.

4.1 FINITE ELEMENT ANALYSIS

The method known today as the Finite Element method (FE) has its foundations in the field of

aeronautics in the 1950’s and its origin can be traced back to the work of Navier in the 1820’s

(Samuelsson and Zienkiewicz, 2006).

Today finite element procedures are indispensible in a huge variety of engineering disciplines and are

used to analyse structures, solids and fluids.

METHOD OUTLINE

The finite element method is a technique for solving partial differential equations by discretising a

continuous domain into finite elements with unknown nodal displacements. By subdividing the domain

the infinite number of equations of the continuum is reduced to a finite number. A system of linear

algebraic equations is assembled and solved to determine the unknown nodal values based on the

applied boundary conditions. Values at arbitrary points outside of nodes are then determined using

interpolating functions or so called shape functions. These shape functions are an approximation of the

variation of values between the nodes. The finite element method provides good precision even when

simple shape functions such as linear functions are used.

From the nodal displacement values the strains and stresses are calculated using the appropriate

constitutive equations for the material in question.

The constitutive equations used in this thesis are based on the assumption of linear-elastic isotropic

material. This assumption is far from the real-world behaviour of concrete, but as the main focus of this

thesis is the manufacturability of optimised shape this assumption is considered valid.

The Finite Element source code implemented in this software is developed by Nikishkov (2010). In this

section the addition of a new element to the source code is described. For further description of the

source code the reader is referred to chapter 3 or literature (Nikishkov, 2010).

ADDING A NEW ELEMENT

In the following a quick outline of the method in continuum mechanics form is explained to summarise

the important parts of the method and to identify the changes and addition to the JFEM library made

by the author.

The equations that need to be solved for a continuum mechanics problem can be written in matrix

notation as follows (Nikishkov, 2010)

32 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

 k[] u{ } = f{ } (1)

 f{ } = p{ }+ h{ } (2)

 k[] = B[]T E[] B[]dV
V∫ (3)

 p{ } = N[]T pV{ }dV + N[]T pS{ }dS
S∫V∫ (4)

 h{ } = B[]T E[] ε t{ }dV
V∫ (5)

where k[] is the element stiffness matrix, u{ } is a vector of unknown element node displacements and

f{ } is the load vector consisting of actual forces p{ } and thermal forces h{ } .

Matrix N[] is a matrix containing the shape functions for the element.

 N[] =
N1 0 0 N2 ...
0 N1 0 0 ...
0 0 N1 0 ...

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (6)

Matrix B[] is called the matrix displacement differentiation matrix

 B[] = B1 B2 B3 ...⎡
⎣

⎤
⎦

 (7)

Bi[] =

δNi

δ x
0 0

0 δNi

δ y
0

0 0 δNi

δ z
δNi

δ y
δNi

δ x
0

0 δNi

δ z
δNi

δ y
δNi

δ z
0 δNi

δ x

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (8)

All the local element equations (1) can be assembled in to a global system of equations and the

unknown nodal displacements can be obtained by solving a system of linear algebraic functions. Strain

and stress values can be found using constitutive equations. The JFEM solver handles all this and only

the element shape functions and their derivatives are left to be determined.

The JFEM library includes a single three-dimensional 20-node element (Figure 4.1b).

CHAPTER 4 METHODS & IMPLEMENTATION 33

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

This element has quadratic shape functions but by setting the mid-side node connectivity to 0 these can

be reduced to linear functions. This effectively creates an 8-node element equivalent (Figure 4.1a). The

JFEM solver ignores nodes with 0 connectivity thereby reducing the number of equations that need to

be solved. This reduction greatly improves the speed of the calculations with the cost of accuracy in the

interpolation functions.

This loss of accuracy is preferable to the long computation times for the sake of this thesis. This loss of

accuracy is illustrated in the example in Figure 4.2.

Another reason for choosing the eight-node element over the 20-node element is that the memory

usage for a system of 20-node element quickly exceeds the memory capacity of the computer used for

solving (the element stiffness matrix is 60 x 60). However setting the mid-side node connectivity to 0

does not remove the node from memory and the element matrices is still 60x60 in size. The only thing

changing is the fact that the matrices contain more zero values than before and therefore the solver is

faster. An 8-node element class using 24 x 24 matrices is implemented instead.

The new element that is implemented can be described as a three-dimensional isoparametric

hexahedral linear eight-node element. The term isoparametric means that displacement fields and

geometry are represented in parametric form. The parametric values can be interpolated to global

130 12 Three-dimensional Isoparametric Elements

1

3
4

2
1 2

3
4

5

678

5
6

7
8

9 10
1112

13 14 15
16

17
1819

20

(a) (b) (c)

!

"#

Fig. 12.1 Linear (a) and quadratic (b) three-dimensional nite elements and their representation in
the local coordinate system (c)

{x} = [N]{xe},

{x} = {x y z},

{xe} = {x1 y1 z1 x2 y2 z2 ...}.

(12.2)

Here, x,y,z are point coordinates and xi,yi,zi are coordinates of nodes. The matrix
of shape functions is dened as:

[N] =




N1 0 0 N2 0 0 ...
0 N1 0 0 N2 0 ...
0 0 N1 0 0 N2 ...



. (12.3)

The shape functions of the three-dimensional linear element are:

Ni =
1
8
(1+ �0)(1+�0)(1+ �0),

�0 = ��i,

�0 = ��i,

�0 = ��i.

(12.4)

A linear hexahedral element can be degenerated into a triangular prism (Fig-
ure 12.2a) by shrinking an element face into a straight line. Linear shape functions
are not affected by this degeneration.

For the quadratic element with twenty nodes, the shape functions can be written
in the following form:

Figure 4.1: (a) Linear eight-node element. (b) Quadratic twenty-node element. (c)
Local coordinate system. (Nikishkov, 2010)

1.2 Formulation of Finite Element Equations 7

can be obtained by an assembly of element equations. In our simple case it is clear
that elements interact with each other at the node with global number 2. The assem-
bled global equation system is:

a
L




1 −1 0

−1 2 −1
0 −1 1










u1

u2

u3




 =
bL
2






1
2
1




+






0
0
R




 . (1.10)

After application of the boundary condition u(x = 0) = 0, the nal appearance of
the global equation system is:

a
L




1 0 0
0 2 −1
0 −1 1










u1

u2

u3




 =
bL
2






0
2
1




+






0
0
R




 . (1.11)

When applying the boundary condition u1 = 0 we put zeros in the rst row of the
equation system matrix and in the right-hand side; put zeros in the rst column of
the matrix and, nally, place unit value on the main diagonal.

Nodal values ui are obtained as results of solution of the linear algebraic equation
system. The value of u at any point inside a nite element can be calculated using
the shape functions. The nite element solution of the differential equation is shown
in Figure 1.2 for a = 1,b = 1,L = 1, and R = 1.

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

x

u

FEM

Exact

Fig. 1.2 Comparison of nite element solution and exact solution

The exact solution is a quadratic function. The nite element solution with the
use of the simplest element is piece-wise linear. A more precise nite element so-
lution can be obtained by increasing the number of simple elements or with the
use of elements with more complicated shape functions. It is worth noting that at
nodes the nite element method provides exact values of u (only for this particular
problem). Finite elements with linear shape functions produce exact nodal values if
the sought solution is quadratic. Quadratic elements give exact nodal values for the
cubic solution.

Figure 4.2: Comparison between finite
element solution and exact solution of a
system with two 2-node linear elements.
(Nikishkov, 2010)

34 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

coordinates using the shape functions. The shape functions are defined using the local coordinates ξ ,

η and ζ (−1≤ ξ,η,ζ ≤1) referring to the coordinate system in Figure 4.1c.

The term linear refers to the shape functions of the element. They can we written as follows

Ni =

1
8
(1+ ξ0)(1+η0)(1+ζ 0),

ξ0 = ξξi ,
η0 =ηηi ,
ζ 0 = ζζ i

 (9)

where ξ , η and ζ is the variable parametric coordinates and ξi , ηi and ζ i is the parametric

coordinates of the ith node.

The partial derivatives of the shape functions are as follows

δNi

δξ
= 1
8
ξi (1+η0)(1+ζ 0),

δNi

δη
= 1
8
ηi (1+ ξ0)(1+ζ 0),

δNi

δζ
= 1
8
ζ i (1+ ξ0)(1+η0)

 (10)

The shape functions and their derivatives are implemented in the class ShapeHex83D. Element

methods for computing the element stiffness matrix and element strains etc. are written as part of the

class ElementHex83D. These methods uses the same names as methods in other element classes and

are called by the solver. The JFEM library remains untouched apart from the addition of one line in

the abstract class Element, to incorporate the new element.

It is noted that the performance, considering both speed and memory usage, of the Finite Element

analysis can be improved by implementing a solver customised for the type of topology presented in

this thesis.

CHAPTER 4 METHODS & IMPLEMENTATION 35

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

VALIDATION

As mentioned earlier the structural analysis software ROBOT was used to validate the results of the

finite element library. A simple cantilever beam with a quadratic cross-section was modelled in both

programs with the dimensions 100x10x10 mm. The volume was discretised in to cubic elements with

the dimensions 2x2x2 mm. A linear material with Young’s modulus at 210000 MPa and Poisson’s ratio

at 0.3 was used. All nodes at the free end were loaded with a nodal force with a magnitude of 1000 N in

the negative direction of the z-axis totalling a load of 36 KN. All nodes at the fixed end were

constrained for displacement in all directions.

The displacement expected is calculated using a formula derived from the beam’s differential equation.

 δ = 1
3
PL3

EI

where P is a point load at the tip of the cantilever beam, L is the length of the beam, E is Young’s

modulus and I is the moment of inertia.

Using the values from above the displacement is

 δ = 1
3

1000N ⋅(100mm)3

210000Mpa ⋅ 1
12

⋅10mm ⋅(10mm)3
= 68.57mm

Figure 4.4: Deformed cantilever with colour map from ROBOT

// Implemented element types

 static enum elements {

 quad8 {Element create() {return new ElementQuad2D();}},

 hex20 {Element create() {return new ElementQuad3D();}},

 hex8 {Element create() {return new ElementHex83D();}};

 abstract Element create();

 }

Figure 4.3: Line added to JFEM source code

36 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

Figure 4.4 and Figure 4.5 shows the deflected shape of the cantilevered beam from ROBOT and

FabricCast respectively. In both cases the deflected shape corresponds to what is expected. The

deflection values in the direction of the world axes are displayed in Table 4.1.

The deviation from the exact value calculated using the differential equation of the beam is due to the

fact that the solid model takes material contraction in to account. The fact that the load is evenly

distributed over the cross-section of the beam oppose to a single point load can also contribute to the

deviation of results.

The finer the mesh gets the smaller this deviation is.

The small diversion in results between ROBOT and FabricCast is due to some numerical differences in

the methods. All though Robot uses same volumetric elements and shape functions floating point

errors, different solving and integration methods can cause these small deviations.

As the deviation gets smaller with mesh refinements it is decided that FabricCast produces reliable

results.

The displacement values from FabricCast is hereby validated and as the displacements are the results

needed for the topology optimisation algorithm to work this is enough to declare that a working FE

library is implemented.

4.2 OPTIMISATION ALGORITHM

The aim for topology optimisation algorithms is to optimise the layout of a given volume of material

within a predefined design domain with certain boundary conditions. The optimal layout depends on

the objective function set by the designer. The optimal design might be a maximum stressed design, a

Analysis
UX UY UZ

min max min max min max

ROBOT -5,1 5,1 -0,13 0,13 -68,28 0,0

FabricCast -5,01 5,01 -0,14 0,14 -67,05 0,0

Table 4.1: Global displacement of cantilever in mm

Figure 4.5: Deformed cantilever from FabricCast with colour map

CHAPTER 4 METHODS & IMPLEMENTATION 37

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

design with optimal serviceability limit state performance or a design where certain natural frequency

of the structure is avoided. A design using one objective function might not be the optimal using

another and for example stresses can reach an unacceptable limit before the optimum of a maximum

stiffness design is reached. In these cases a constraint function can also be set by the designer to avoid a

design with stresses beyond the limit of the material for example.

For simplicity no constraint function has been set as the focus of this thesis is the manufacturability of

the shapes not the actual optimisation of concrete shapes.

METHOD OUTLINE

The optimisation algorithm used in this thesis (BESO) is a simple algorithm that evaluates the elements

of a discretised design domain and decides where the material is needed based on element sensitivity

numbers. These numbers are calculated based on the strain energy of an element and its surrounding

elements.

As briefly explained in the chapter 2 the BESO algorithm is an algorithm that unlike the ESO

algorithm allows material to be added back in as well as removed. This ensures that material that has

been prematurely removed can be added back to the structure and it allows the existing material to

rearrange when a sudden change in topology occurs, i.e. member degeneration.

The most comprehensive and current description of the BESO method is by Huang and Xie (2007), as

described in the following.

The objective of the optimisation is to minimise the mean compliance thus achieving a solution with

optimal stiffness. The compliance is a measurement for how flexible a structure is and is defined as the

outer work of a structure. The higher the mean compliance the more flexible the structure is.

Compared to other optimisation techniques where material parameters, such as density, are the design

variables, the BESO algorithm treats the element itself as the design variable. The change in the mean

compliance or total strain energy of the structure is equal to the strain energy of the element acting as

the variable. It is yet to be proved that using strain energy as an optimisation criteria leads to an

optimal design, but recent research show that numerically the method generally finds an optimal

solution (Edwards et al., 2007).

The element can assume the values 0 or 1 denoting if the element is present in the structure. The

mathematical definition of the optimisation process is as follows

Minimize C = 1
2
f Tu

Subject to: V
* − Vixi = 0

i=1

N

∑ ,

xi ∈{0,1}

In this formulation C is known as the mean compliance f is the applied load vector and u is the

displacement vector. V * is the prescribed total structural volume and Vi is the volume of the ith element

38 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

whereas xi is a variable that can assume the value 0 or 1 declaring the absence or presence of an

element.

To further evaluate the performance of a design a factor called the performance index is introduced as

 PI = 1

C Vi
i=1

N

∑
 (11)

The factor evaluated the total mean compliance and the total volume of the structure. The higher the

performance index the better the structure performs.

SENSITIVITY VALUES

To evaluate whether an element is applicable for removal, a value called the sensitivity number is

calculated. This number represents the change in the mean compliance when the element is removed

and is equal to the strain energy of the element. This value can be calculated directly from results of the

finite element formulation

 α e
i =
1
2
{ui}

T {Ki}{ui} (12)

where ui is the ith element displacement vector and Ki is the element stiffness matrix. The superscript

e denotes that the value refers to an element.

For void elements the sensitivity value is initially set to 0.

As in the case of the ESO method this number is enough to decide whether an element should be

removed. For the BESO algorithm to work the sensitivity values of the void elements that are not

involved in the FE analysis need to be determined.

The first step of this process is to calculate the sensitivity numbers of a node by averaging the sensitivity

values of elements connected to it as follows

 α j
n =

Viα i
e

i=1

M∑
Vii=1

M∑
 (13)

where the superscript n denotes that the value refers to a node. M is the total number of elements

connecting to the jth node.

The element values are calculated from the nodal values using a mesh independency filter that also

serves the purpose of smoothing the sensitivity values thus reducing the occurrence of checkerboard

patterns caused by discontinuities in sensitivity numbers across element boundaries.

The mesh independency filter works by identifying nodes that influence the sensitivity number of an

element. Only nodes within a certain distance of the element are used to calculate the element

CHAPTER 4 METHODS & IMPLEMENTATION 39

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

sensitivity number. This distance is denoted rmin and can in 2D be visualised as the radius of the circle

with centre in the centroid of an element creating the subdomainΩi . See Figure 4.6.

The influence of the nodes on the elements within this domain is based on a linear weight factor.

The element sensitivity numbers with the mesh independency filter is calculated as

 α e
i =

w(rij)α j
n

j=1

M∑
w(rij)j=1

M∑
 (14)

where M is the total number of nodes connected to the element and w(rij) is the weight factor defined

by

 w(rij) = rmin − rij (15)

(j = 1,2,...,M)

where rij is the distance between the node and the centroid of the ith element and the jth node. Huang

and Xie (2007) note that rmin should be at least half the size of an element. This is a bit confusing

statement, as it isn’t clarified how the size should be measured. If the size of the element is set as the

minimum dimension of the element and if rmin is set to half this size then the subdomain defined by

rmin (an inscribed circle) would not contain any nodes and the sensitivity value would be 0. Huang and

Xie further recommend that rmin should be chosen between 1-3 times the size of an element. It noted

that although rmin can be chosen freely it should not change with mesh refinement so rmin should be

chosen considering the biggest possible element in the design.

In an earlier version of the BESO method the averaged nodal value was linearly extrapolated to nodes

surrounding a void element, thus determining the element sensitivity values by averaging the

extrapolated values surrounding void elements (Huang et al., 2006). This procedure caused a problem

rmin

rij

ajn aie

Figure 4.6: Sensitivity value smoothing

40 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

of mesh dependency, where more voids occurred in a solution with same boundary conditions but a

denser mesh.

A further improvement to the accuracy of the assessment of sensitivity values to the number of void

elements can be achieved by considering the history of sensitivity numbers for each element, and

averaging the current value with that of the previous iteration as follows

 α i =
α k

i +α i
k−1

2
 (16)

where α i is the sensitivity value of the ith element and k is the iteration number.

The smoothed sensitivity number for all the elements including the void elements can thus be

determined.

ADDING AND SUBTRACTING ELEMENTS

The next step is to decide the volume of the next iteration step thus deciding how many elements

should be added or removed. Because of the bi-directional nature of the algorithm the number of

elements to remove can either be positive or negative. In other words the volume can increase or

decrease at each step of the iterative process until the objective volume is reached. The current volume

is first compared to the objective volume thus deciding whether to increase or decrease the volume for

the next iteration. The volume for the next iteration is calculated as,

 Vk+1 =Vk (1± ER) (17)

(k = 1,2,3,...)

where k is the iteration number and V is the total volume. The variable ER is called the Evolutionary

Rate factor and decides the speed of the algorithm. ER should be kept low to avoid an optimisation

process where too much material is removed with each iteration thus creating a non-optimal design.

When the objective volume is reached, ER is set to 0 for the remaining number of iterations until

convergent solution is found.

When all sensitivity numbers have been calculated the values are sorted from highest to lowest. Solid

elements that satisfy

 α i ≤α del
th (18)

are then deleted, and void elements satisfying

 α i >α add
th (19)

are added.

CHAPTER 4 METHODS & IMPLEMENTATION 41

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

At this point in the procedure, Huang and Xie (2007) introduces a factor called the admission volume

ratio (AR) to insure that not too many elements are added at a single iteration. A fulfilling argument for

the introduction of this factor is not given, but an explanation could be that the sensitivity number of

the void elements that are candidates for being added to the structure is still based on an approximation

and the more elements that are added at each iteration the more likely it is that the solution diverges

from the optimal or loses its integrity.

The admission ratio is defined as the number of elements added divided by the total number of

elements in the design domain.

If AR is less than or equal to ARmax , which is a user defined maximum volume, addition then the

thresholds is set to

 α del
th =α add

th =α th (20)

where the threshold value ath corresponds to the volume for the next iteration. If n elements are

required for the next iteration the threshold value is defined as the nth sensitivity value in the sorted list

of sensitivity values for all elements.

If AR < ARmax then the number of elements nadd to be added is found by multiplying ARmax by the total

number of elements in the design domain. The sensitivity values of the void elements are sorted and

the threshold for addition of elements α add
th is the sensitivity number ranked just below the value

corresponding to the index nadd in the sorted list of void elements. The threshold for deletion of

elements is determined such that the following equation is satisfied

 Vdel =Vk+1 −Vk +Vadd (21)

where Vdel and Vadd are the deleted volume and added volume respectively. It is noted that in Huang

and Xie (2007) a typographical error has transposed the factors Vk and Vk+1 and this has been corrected

in the implementation by the author.

42 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

This rather confusing method can best be illustrated with a small example.

Example

A design domain contains of 1000 elements of which 100 are void. In this example N denotes the

total number of elements in the design domain.

All elements are assumed to have a volume of 1. The maximum volume addition ratio is set to

ARmax = 1% and ER = 0.0555 . The objective volume is 500 elements therefore ER should be

subtracted in equation (17)

 Vk+1 =Vk (1± ER) = 900 ⋅(1− 0.0555)  850

Therefore the domain should contain 850 solid elements in the next iteration step.

If the next iteration step calls for an addition of 10 (N ⋅AR = 1000 ⋅0.01= 10) or less elements the

threshold is set using (20), if not, the admission volume ratio is bigger than the maximum value.

The 100 values of the void elements are sorted from highest to lowest (α void
1,α

void
2,α

void
3,...,α100

void) (Figure

4.7). The threshold for addition is calculated as

α th
add =α

void
(ARmaxN)+1

=α void
(0.01⋅1000)+1 =α

void
11 = 22

All void elements with a sensitivity value above this threshold are “switched on”.

Next step is to determine the threshold for removal by using equation (17)

Vdel =Vk+1 −Vk +Vadd = 900 − 850 +10 = 60

Thus the threshold for removal should ensure that 60 element are removed from the structure.

The solid elements are sorted from highest to lowest (Figure 4.8) and the threshold is

α th
del =α

solid
900−60 =α

solid
840 = 22

All solid elements below this threshold are “switched off”.

Figure 4.7: Example: sorted sensitivity values of 100 void elements

1288 75 3474 4451 15161722969898 2023 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1009998

12344451 15161722969898 2023 2
1 2 3 1000999998836 837 838 839 840 841 842 843 844

Figure 4.8: Example: sorted sensitivity values of 900 solid elements

CHAPTER 4 METHODS & IMPLEMENTATION 43

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

This approach of finding threshold values is a bit cumbersome and another approach has been used in

the algorithm implemented in FabricCast. This is described in the next section.

The iterative process of finite element analysis and element removal continues until the objective

volume has reached a convergence criterion. The criterion is defined as,

 error =
(Ck−i+1 −Ck−N−i+1)i=1

N∑
Ck−i+1i=1

N∑
≤τ (22)

where k is the current iteration number C is the mean compliance, N is an integral number set to 5

(Huang and Xie, 2007) insuring stable compliance over 10 successive iterations and τ is the residual

defined by the user.

CUSTOMISATION OF ALGORITHM

A few minor alterations were made to the method outlined in the previous section. In this section these

alterations are explained.

Because of the manufacturing restrictions inherent in the fabric-formed concrete, only removal of

elements from the external bottom face of the structure is allowed. In other words elements with no

solid element directly connected to them in the negative direction of the z-axis are candidates for

removal. This ensures that no internal voids are created in the structure allowing the shape to be cast

with fabric formwork. Similarly void elements are only eligible for addition if they have a solid element

directly above them, which is in the positive direction of the z-axis. These elements are tested in every

optimisation cycle and are from this point on referred to as ‘candidates’. Figure 4.9 illustrates the

candidates in a two-dimensional domain.

Void elements about to be added back are also checked an extra time because the element above could

have been removed in the same iteration step after the list of candidates was created.

Solid candidate Void candidate

Figure 4.9: Candidates

44 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

A strategy based on removal of a certain number of elements instead of removing elements below a

threshold is implemented because of the slightly confusing threshold determination in the original

BESO method. This logic applies well to the idea of candidates, as the number of candidates varies

with every iteration step.

At the beginning of the optimisation process the number of elements in the final design is calculated as

 Nobj = N *RRV (23)

where Nobj is the objective number of elements, RRV is the removal rate of volume and N * is the total

number of elements in the design domain.

Next the number of elements in the structure for the next iteration step is calculated as

 Nk+1 = Nk (1± ER) (24)

(k = 1,2,3,...)

The number of elements to be removed can now be decided simply by subtracting the number of

elements in the next iteration by the number of elements in the current

 Ndel = Nk − Nk+1 (25)

It is noted that Ndel can also have a negative value, indicating that elements should be added to the

current design. To insure the integrity of the design, Ndel cannot be higher than a predefined value

Nmax
del = N solidDR

where N solid is the number of solid elements in the candidate list and DR is a deletion rate factor set by

the user considering the design layout and mesh refinement. This is illustrated in the following example

A reasonable value for DR acquired by numerical experience is 0.1.

Example

A 10x10x10 mesh has 1000 elements and 100 candidates for removal in the first iteration. ER in

equation (24) is set to 0.1 then the number of elements to be removed is calculated using equation

(24) and (25) as

Ndel = Nk − Nk (1− ER) = 1000 −1000(1− 0.1) = 100

In this case all of the candidates are removed and no real evaluation of the sensitivity number has

taken place.

CHAPTER 4 METHODS & IMPLEMENTATION 45

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

The example is a rare case because ER is usually set to a lower value than 0.1, but nonetheless this is a

point of concern and even for lower values of ER this could drastically influence the design.

At this point the candidates are sorted by sensitivity value (lowest to highest). The number of void

elements (Nvoid) is calculated and candidates that satisfy the following statement are “switched off”

 i ≤ Nk−1
void + Nk

del (26)

where i is the index number of the candidate in the sorted list and k is the iteration number. The

elements satisfying

 i > Nk−1
void + Ndel (27)

are “switched on”. Some of the elements satisfying equation (26) may already be void and therefore

cannot be switched off but the correct number of elements in the next iteration should be correct

following this method. An analogue argument applies to solid elements satisfying equation (27).

An issue, with both the original and the customised algorithm, that to be resolved was discovered

during different tests. Because of the bi-directional nature of the algorithm an oscillating state occurs

where the objective will be passed continuously if ER is set too high. On some occasions the algorithm

never settles and a convergent stage is never reached (Figure 4.11 left).

There are a few ways to make sure this doesn’t happen. One approach is to allow a certain deviation

from the objective volume and setting ER to 0 when the volume is within a certain percentage of the

required volume. Another is to decrease ER whenever the objective volume has been passed and

thereby damping the oscillation until the objective volume is reached (Figure 4.11 right). This second

approach was added to the algorithm in FabricCast.

Figure 4.10: Toggling sorted candidate voxels

Nk 1
void Nk

del

i " Nk 1
void

i " Nk 1
void � Nk

del

ae

i

46 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

The entire optimisation algorithm is illustrated as a flowchart in Figure 4.12

VALIDATION OF CUSTOMISED ALGORITHM

This section contains a few cases that validate the correct implementation of the optimisation algorithm

in the software. In the first two cases the optimised design is compared to tests performed by Huang

and Xie (2007). In the last the algorithm that only allows the removal of bottom elements is used. As

there doesn’t exist any examples using this strategy the validation is done by presenting a couple of

performance graphs.

Setup design domain and
boundary conditions

Conduct Finite
Element Analysis

Calculate sensitivity
numbers

Sort list of candidates
regarding to

sensitivity numbers

Construct list of
candidates

Toogle elementsConverged to
stable solution?

Solution found

Nk > N
obj

Nk+1 = Nk (1! ER)

Nk < N
obj

Nk+1 = Nk Nk+1 = Nk (1+ ER)

YESYES

NONO

YES

NO

Figure 4.12: BESO flowchart

Figure 4.11: Oscillation state without (left) and without (right) damping

CHAPTER 4 METHODS & IMPLEMENTATION 47

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

Case 1 is a simple two dimensional cantilever plate with a single point load of 100 N at the free end

(Figure 4.13). The material has a Young’s modulus of 100000 MPa and a poisons ratio of 0.3.

The structure in Figure 4.14 is modelled in 2D, using 4-

node surface elements and the one in Figure 4.15 is modelled in 3D, using 8-node volumetric elements,

since there are no surface elements implemented in FabricCast.

Although one is a two-dimensional case and the other a three-dimensional case the resulting optimal

topology should be the same. The 2D plate is modelled with a 32x20 mesh and the optimisation

process starts with a full design domain of 640 elements. The 3D structure is modelled with a 32x20x1

mesh.

Figure 4.14 shows the optimised topology of the cantilever plate using the original

BESO method. Figure 4.15 shows the optimised topology using the customised algorithm.

The topologies are basically the same but the original method seems to produce a topology that is

symmetric around the central axis. This is not the case for the customised algorithm, as highlighted

with red circles in Figure 4.15. This is due to the fact that the number of voxels removed using the

original method is decided based on a threshold value rather than a forced number. When forcing the

algorithm to remove a certain number, voxels with the same sensitivity value may or may not be

removed based on the order in which they are evaluated. Overall the customised algorithm performs

well and the difference between the two is more of an aesthetic nature.

1044 X. Huang, Y.M. Xie / Finite Elements in Analysis and Design 43 (2007) 1039–1049

Fig. 6. Mesh-independent solutions of example 1: (a) 32 × 20, (b) 80 × 50, (c) 160 × 100 and (d) 240 × 150.

Fig. 7. Comparison of the evolutionary histories (a) without and (b) with the
stability procedure defined in Eq. (6).

Fig. 8. Dimensions of the design domain and boundary and loading conditions
of example 2.

Fig. 9. Evolution histories of the compliance and the volume fraction when
BESO starts from the full design.

modulus E = 200 GPa and Poisson’s ratio != 0.3. Initially, the
material is full of the design domain. The following BESO pa-
rameters are used: ER = 5%, ARmax = 5%, rmin = 6 mm and
" = 0.01%.

Figure 4.14: Benchmark topology (Huang and
Xie, 2007)

Figure 4.15: Topology from FabricCast

1042 X. Huang, Y.M. Xie / Finite Elements in Analysis and Design 43 (2007) 1039–1049

Fig. 1. Singularity problem in the “hard-kill” optimization method.

7. Check the boundary and loading conditions for the new de-
sign. If there is any total isolation of a boundary or load, the
optimization procedure should be stopped.

8. Repeat steps 2–8 until the objective volume (V ∗) is reached
and the convergence criterion is satisfied.

In step 7, any total isolation of a boundary or load (see roller
support and F1 in Fig. 1) that changes the nature of the prob-
lem should be avoided during the “hard-kill” optimization pro-
cess, otherwise BESO may lead to an incorrect solution [18].
In the present BESO program, a boundary or load is applied
at a group of nodes as shown with G1–G4 in Fig. 1. Once
all the nodes in one group have no element connected, the
optimization procedure must stop because the assigned mesh
goes beyond the limit of mesh size for the requirement of the
“hard-kill” optimization method (e.g. only 10% of the mate-
rial within one element must be kept to illustrate the optimal
topology). If so, finer meshes should be used to recalculate the
problem [22].

5. Examples and discussion

5.1. Example 1

The first example considers the stiffness optimization design
of a cantilever beam under a concentrated loading as shown in
Fig. 2. The design domain has length 80 mm, height 50 mm and
thickness 1 mm, the force is applied downward at the centre
of the free end with the magnitude of 100 N. The material has
Young’s modulus of 100 GPa and Poisson’s ratio of 0.3, and the
available material can only cover 50% volume of the design
domain. BESO starts from the full design which is subdivided
using a regular mesh of size 160×100, totalling 4000 four-node
quadrilateral elements. The BESO parameters are ER = 1%,
ARmax = 5%, rmin = 3 mm and ! = 0.01%.

Fig. 3 shows the evolution histories of the mean compli-
ance, and the volume fraction. The mean compliance increases
as the material is gradually removed from the design domain.
It is noted that apparent bumps in the mean compliance are
caused by the significant effect of a change of the topology re-
sulting from bar elimination. Thereafter, the mean compliance
is quickly recovered and assures that the topology develops in
the right direction. After the volume reaches the objective vol-
ume, the mean compliance is convergent to an almost constant

Fig. 2. Dimensions of the design domain and boundary and loading conditions
of example 1.

Fig. 3. Evolution histories of the compliance and the volume fraction when
BESO starts from the full design.

value, 1.87 N mm. Fig. 4 shows the evolution history of topol-
ogy where the final topology is shown in Fig. 4(f).

To verify the developed BESO method, the above problem
using the same meshes is solved using the SIMP method [23]
with penalty factor p=3 and filter radius rmin=3 mm. The final
topology is shown in Fig. 5 which is similar to the above BESO
topology in Fig. 4(f) except that there are “grey” elements which
denote intermediate density material. The mean compliance is
2.07 N mm which is higher than that of the BESO topology. This
difference may be attributed to the over-estimated strain energy
of the intermediate density elements in the SIMP topology.
(The strain energy of the ith element ci(")= 1

2"p{ui}T[Ki]{ui}
depends on the assumed intermediate material model,
such as p.)

The present BESO method has higher computational effi-
ciency over the SIMP method because less and less elements
are included in the finite element analysis as the elements are
removed from the full design. With SIMP method, all elements
in the full design have to be included in the finite element

Figure 4.13: Case 1 (Huang and Xie,
2007)

Optimisation parameters

rmin = 3 mm
RRV = 0.5
ER = 1%
τ = 0.01%

48 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

Figure 4.16 shows the development of the topology and the corresponding volume fractions and mean

compliance using the original BESO. The corresponding graphs from the customised algorithm can be

seen in Figure 4.17. They show a steady increase of the mean compliance as elements are gradually

removed. Both methods reach the objective criterion after approximately 60 iterations where the

removal of volume stops and the algorithm searches for converged state. There is a good coherence

between the two graphs.

Case 2 is using the version of the algorithm where the removal of elements is restrained to a list of

candidates. In this example the candidates qualified for removal are all solid elements that have a free

bottom face. The candidates eligible to be added back are void elements that have a solid voxel

connected to the top face. The structure is a slab supported by a central column with an evenly

distributed load on the top. The material of the slap has a Young’s modulus of 100000 MPa and a

Poisson’s ratio of 0.3. Because of symmetry only a quarter of the structure was modelled with mesh of

15x15x5.

Figure 4.19 shows the optimised topology. The tendency to produce an asymmetric result is also

present in this case. Chapter 5 deals with this issue.

The performance graphs in Figure 4.20 show a similar development in both volume fraction and

compliance to case 1.

Figure 4.21 shows the development of the performance index. The drop of performance index in the

first few iteration steps is due to the default element sensitivity values for the first iteration. The rest of

1044 X. Huang, Y.M. Xie / Finite Elements in Analysis and Design 43 (2007) 1039–1049

Fig. 6. Mesh-independent solutions of example 1: (a) 32 × 20, (b) 80 × 50, (c) 160 × 100 and (d) 240 × 150.

Fig. 7. Comparison of the evolutionary histories (a) without and (b) with the
stability procedure defined in Eq. (6).

Fig. 8. Dimensions of the design domain and boundary and loading conditions
of example 2.

Fig. 9. Evolution histories of the compliance and the volume fraction when
BESO starts from the full design.

modulus E = 200 GPa and Poisson’s ratio != 0.3. Initially, the
material is full of the design domain. The following BESO pa-
rameters are used: ER = 5%, ARmax = 5%, rmin = 6 mm and
" = 0.01%.Figure 4.16: Performance graph (Huang and

Xie, 2007)
Figure 4.17: Performance graph from FabricCast

Section A-APlan

AA

60 mm

60 m
m

20 m
m

20 mm

10

Figure 4.18: Case 2

Optimisation parameters

rmin = 3 mm
RRV = 0.5
ER = 0.5%
DR = 10%
τ = 0.01%

CHAPTER 4 METHODS & IMPLEMENTATION 49

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

the graph shows an increasing performance index, and therefore a gradually improving design towards

the objective volume.

The cases presented in this section show that a working optimisation algorithm has been implemented

and the performance is as expected.

Figure 4.20: Performance graph from FabricCast Figure 4.21: Performance index

Figure 4.19: FabricCast topology turned
upside down.

50 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

4.3 CLOTH SIMULATION

This section contains a description of the methods used to simulate the behaviour of fabric draped over

an object under the influence of gravity.

The equations of damped structural motion and constitutive equations of elasticity are used to

determine the behaviour of a fabric in real-time. This simulation can be described as a form-finding

process. Beginning with an initial arbitrary shape where motion is caused by imposing loads and

stresses at the nodes, a formfound shape occurs when the shape comes to rest in an equilibrium state.

In this thesis the aim is to simulate a fabric draping over an object. By modelling the mechanical

properties of the fabric and applying the correct forces to the nodes it is possible to simulate how fabric

behaves under the influence of external forces, for example gravity.

INTEGRATING NEWTON SECOND LAW OF MOTION

Newton’s second law of motion can be used to describe the dynamics of diverse physical systems and

objects. In the case of this thesis it is used to simulate the dynamic behaviour of cloth. By relating the

object’s mass m with the acceleration a the applied forces f can be calculated as

 f = m ⋅a (28)

or in differential form

 f = m d 2x
dt 2

 (29)

where x is the position of the node and t is time.

Because this equation involves a second derivative of time it is a second order differential equation.

This equation can be reduced to a first order equation by the introduction of the variable v

 v = dx
dt

 (30)

 f
m

= dv
dt

 (31)

Many methods are available for numerically integrating this type of equation and some of them are

described in chapter 2. They all vary in precision, stability and computation time and the choice of the

method have to be made according to problem that needs to be solved (Volino and Magnenat-

Thalmann, 2001).

In this thesis the explicit Verlet integration method has been used. This method provides a medium

accuracy with low computational effort, but more importantly it has a high stability when simulating

under-damped systems such as particle systems. The algorithm works by incrementally stepping

CHAPTER 4 METHODS & IMPLEMENTATION 51

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

through time, calculating new positions based on the acceleration and the previous positions of the

element.

There are basically three versions of the Verlet integration method, the basic method, the leapfrog

method and the velocity method. The equation for the basic Verlet method is as follows

 xt+Δt = 2xt − xt−Δt + atΔt
2 (32)

where xt , xt+Δt and xt−Δt represents the current position of the element , the position in the next step

and the position in the previous step respectively. Δt denotes the time-step and at the current

acceleration.

A form of viscous damping can be implemented in this representation by introducing the damping

coefficient ξ and rewriting the Verlet equation to

 xt+Δt = xt + (1−ξ)(xt − xt−Δt)+ atΔt
2 (33)

(0 ≤ ξ <1)

Since an equation of motion is being integrated at can be determined from

 at =
ft
m

 (34)

Apart from the initialisation stage of the simulation where the previous position is unknown (Jiang,

2010), the only unknown variable at this point is the force.

MATERIAL MODEL

The force consists of contributions from internal and external forces such as gravity and other

influences from the surroundings. The external forces are easily defined. Internal forces include tension,

compression, bending, and shear forces within the cloth and are harder to define. To accomplish this, a

material model is needed.

Figure 4.22: Mass-spring system

Tension/compresion

Shear

Bending

52 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

Mass-Spring model

A common way to calculate internal forces in a cloth is using a mass-spring system, where the cloth is

discretised into a network of masses interlinked with springs to the surrounding masses. The masses are

connected with springs to counteract tension; diagonal springs for shear, and interleaving springs for

bending (Figure 4.22).

By defining the lij ,0 as the rest length between the ith and the jth node and given the position vectors

of the nodes as xi and x j the strain in the springs connected to a node can be calculated as follows.

 ε ij =
xi − x j
lij ,0

 (35)

The force vector generated by the springs acting on a node can be found using the constitutive

equations of elasticity

 fi = ε ijkij
j=1

N

∑ (xi − x j)
xi − x j

 (36)

where kij is the stiffness of the spring between the ith and jth node and N is the total number of

springs connecting to the ith node. The force is linear and proportional to the stiffness of the spring,

and the stiffness is defined in the direction of the spring.

With this method it is difficult to define an anisotropic material as the direction of which the stiffness is

defined depends on the direction of the springs. Furthermore it is difficult to apply the correct

mechanical properties of the cloth to shear and bending springs. This method also restricts the topology

of the mesh.

Element model

Because of the need to simulate the internal forces correctly, a different methodology devised by Volino

et al. (2009) was used in this thesis.

The cloth is represented by a triangle mesh where the in-plane-forces are calculated from the

deformation of the triangles instead of springs. The deformation of a triangle is computed from the

vertex positions. To do this, the weft (1,0) and warp (0,1) vectors are expressed as weighted sums of the

parametric coordinates (ua ,va) (ub ,vb) (uc ,vc) of the triangle. (Figure 4.23)

CHAPTER 4 METHODS & IMPLEMENTATION 53

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

The idea is that the deformation of the weft and warp vector can be found by weighting the deformed

vertex positions using the same pre-computed weights. The weft and warp vector can be expressed as

weighted sums as follows

ruiui = 1
i∈(a,b,c)
∑

ruivi = 0
i∈(a,b,c)
∑

rui = 0
i∈(a,b,c)
∑

rviui = 0
i∈(a,b,c)
∑

rvivi = 1
i∈(a,b,c)
∑

rvi = 0
i∈(a,b,c)
∑

 (37)

where rui is the weight of the u component of the ith node and rvi is the weight of the v component of

the ith node.

Solving this system of equations leads to the weights

rua = d
−1(vb − vc)

rub = d
−1(vc − va)

ruc = d
−1(va − vb)

rva = d
−1(uc − ub)

rvb = d
−1(ua − uc)

rva = d
−1(ub − ua)

 (38)

where

 d = ua (vb − vc)+ ub (vc − va)+ uc(va − vb) (39)

U

V

Weft

Warp

Pa

Pb

Pc
(ua,va)

(ub,vb)

(uc,vc)
Figure 7: A triangle element is defined in 2D parametric coordinates (left), and deformed in 3D world coordinates (right).

Our goal is to compute the deformation state of a triangle element directly from the positions of its vertices. For

this, we express the parametric coordinates the weft and warp orthonormal vectors (1,0) and (0,1) as weighted sums

of the parametric coordinates of the three vertices (ua,va), (ub,vb), (uc,vc), leading to the following linear systems:

�
�
�

�
�
�

=

=

=

=

=

=

i
vi

i
ivi

i
ivi

i
ui

i
iui

i
iui

r

vr

ur

r

vr

ur

0

1

0

0

0

1

 (5)

Solving these linear systems leads to the following weights, to be precomputed:

()
()
()

()
()
()

() () ()bacacbcba

abvc

cavb

bcva

bauc

acub

cbua

vvuvvuvvud
uudr
uudr
uudr

vvdr
vvdr
vvdr

−+−+−=
−=
−=
−=

−=
−=
−=

−

−

−

−

−

−

1

1

1

1

1

1

 (6)

During the simulation, these values are the weights for computing the current 3D vectors U and V directly as a

weighted sum of the current vertex positions Pi as follows:

 ��
∈∈

==
),,(),,(cbai

ivi
cbai

iui PrVPrU (7)

When viscosity has to be considered in the context of dynamic simulations, the current evolution rates of the

coordinate vectors U* and V* can be computed as well from the current vertex velocities P*i:

 ��
∈∈

′=′′=′
),,(),,(cbai

ivi
cbai

iui PrVPrU (72)

Our model is based on the Green-Lagrange strain tensor, which allows the rotation-invariant description of

internal surface strain in the context of large displacements. This symmetric tensor G is defined by the coordinate

vectors as follows, I being the identity matrix representing the rest state:

 [] []()IVUVUG T −= 2
1 (8)

From this tensor, we can extract the weft warp and shear strain values, which respectively measure the

elongation deformations along weft warp directions and the shear deformation between them, as follows:

Figure 4.23: Triangle with parametric coordinates (left) and deformed triangle with world
coordinates (right) (Volino et al., 2009)

54 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

The parametric coordinates of the triangle need to be pre-computed in order to determine the weights.

Assuming that the triangle lies on the XY-plane and the weft and warp direction is parallel to the x-

and y-axis of the world coordinate system respectively, the task of finding the parametric coordinates is

trivial and the parametric coordinates are equal to the x- and y-coordinates of the undeformed triangle.

In the case that the weft and warp direction is not aligned to the axes the parametric coordinates can be

obtained by multiplying the world coordinates with a transformation matrix as follows

 ui
vi

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

xi
yi

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

cosθ −sinθ
sinθ cosθ

⎡

⎣
⎢

⎤

⎦
⎥ (40)

where θ is the rotation of the weft vector form the x-axis.

The deformed weft U and warp V vector of the deformed shape can be calculated from

U = ruiPi

i∈(a,b,c)
∑

V = rviPi
i∈(a,b,c)
∑

 (41)

where Pi is the position of the ith node of the triangle referring to world coordinates (Figure 4.23).

The resulting strains are calculated as

εuu =
1
2
(UTU −1)

εvv =
1
2
(VTV −1)

εuv =
1
2
(UTV +VTU)

 (42)

The stresses in the weft and warp directions can be determined using the strains and an appropriate

constitutive law. In this thesis Hooke’s law for orthotropic materials was used. In three-dimensional

cases this involves a 6x6 matrix, but under plane stress conditions this can be reduced to the following

σ uu

σ vv

σ uv

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= 1
1−νuvνvu

Eu νvuEu 0
νuvEv Ev 0
0 0 Guv(1−νuvνvu)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

εuu
εvv
εuv

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (43)

where Ei is Young’s modulus in direction i and Gij
 is the shear modulus in the direction j on the

plane with normal in direction i . ν ij
 is Poisson’s ratio corresponding to the contraction in direction j

caused by deformation in direction i .

CHAPTER 4 METHODS & IMPLEMENTATION 55

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

Figure 4.24 shows a fabric hanging from two corners stretched under the influence of gravity in the

weft and warp direction respectively. The fabric is modelled with a stiffness of 9000 MPa in the weft

direction; a stiffness of 4500 MPa in the warp direction and a shear modulus of 100 MPa. Poisson’s

ratio in both directions is set to 0 as it is assumed that no interaction between the two directions occurs.

A non-linear material model would simulate the behaviour of the fabric with even more precision and

produce a smoother strain distribution (Volino et al., 2009), but for the purpose of this thesis it was

decided that an orthotropic linear model was sufficient. It is possible to change the material model

without much effort by changing the constitutive law.

From the element stresses, the weights and the weft and warp vectors it is now possible to calculate the

forces acting on each node as

 Fj = −
d
2
(σ uu (rujU)+σ vv(rvjV)+σ uv(rujV + rvjU)) (44)

This determines the in-plane forces but the out-of-plane forces still need to be determined and added to

the nodal force vector.

A simple yet effective way of calculating bending forces using laplacian-smoothing was implemented in

the software. By moving all nodes by a vector defined by the average of the neighbouring nodes

average of their neighbouring nodes projected on the vertex normal of the node a smooth surface is

achieved. The projection on the normal minimises tangential movement of nodes and thereby

shrinkage of the surface is avoided.

To ensure equilibrium in the system the neighbouring nodes are moved in the opposite direction with a

force equal to the averaged and projected force divided by the valence of the node.

Bending forces in cloth simulations are mainly added to avoid wrinkling of the cloth and thereby

achieve a smoother surface. Figure 4.25 shows the difference between a simulated cloth without (left)

Figure 4.24: Fabric supported at two corners under influence of gravity.

56 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

and with (right) bending stiffness. The shading reveals the unsmoothed surface of the cloth without

bending stiffness.

The bending stiffness also determines how big the individual creases get and the stiffness should be set

according to the thickness and elasticity parameters of the material in question.

Figure 4.25: Simulation of fabric supported at two corners and draped over a
sphere with (right) and without (left) bending stiffness.

CHAPTER 4 METHODS & IMPLEMENTATION 57

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

4.4 COLLISION HANDLING

Fabric is draped over an optimised solid shape to determine how the shape could be cast using fabric

form-work. To simulate this collisions between the fabric and the solid has to be detected and dealt

with in a proper manner.

This section describes the custom collision handling technique implemented FabricCast.

The obvious approach of detecting collisions is to test every object against every other object with every

iteration. The method is very easy to implement but not very computational efficient.

The collision handling used in this thesis is based on the fact that the mesh is axis aligned and evenly

spaced along the different axes. This leads to a very simple and computational effective way of handling

collisions.

It is noted that this algorithm is computational independent of the number of elements in the static

mesh which makes is very suitable for exactly this application.

Collision handling can be divided in to two distinct problems, detecting a collision and responding to

that collision. In the following a method for collision detection and response is described. The method

relies on the assumption that the time step used in the fabric simulation is very small and thus the

displacement for each iteration step is smaller than the minimum element size.

In the main part of this section the methods is described in two dimensions for simplicity, but can easily

be expanded to three dimensions.

VOXEL ADDRESS

By using a quick look-up algorithm to check whether collision handling should be triggered or not the

computational time used for the collision handling is greatly reduced.

The algorithm checks whether the new position of a vertex (xt+Δt) is inside a solid voxel, if so the

collision handling is triggered (Figure 4.26). This test has to be run for every vertex at each calculation

cycle, so by reducing this to a minimum a lot of computational power is saved and allows the

simulation to be more interactive.

The idea of the algorithm is to convert a coordinate in space to an address consisting of three integer

values corresponding to the three axes. The values determine how many mesh-increments one should

take along a given axis to find the voxel. The integer values are calculated the following way

 i = v x
Δx

⎢
⎣⎢

⎥
⎦⎥

 (45)

xt

xt� t

Figure 4.26: Collision detection

58 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

 j =
v y
Δy

⎢
⎣
⎢

⎥
⎦
⎥ (46)

 k = v z
Δz

⎢
⎣⎢

⎥
⎦⎥

 (47)

where v is the vector between a reference point and the point in question. Δx , Δy and Δz are the

mesh increments corresponding to the three different axes (Figure 4.28). The fraction is floored to the

nearest integer ensuring consistency when a point is exactly, on a boundary between two elements.

These three integers will from this point be referred to as voxel-addresses or simply addresses.

From this point it is a quick check to see whether the voxel exists and if so is solid. The voxel index

number can be calculated as

 index = i + Nx j + NxNyk (48)

0

1

2

7

3

6

x

y

z

4

5

Figure 4.27: Numbering of elements

Figure 4.28: Determining voxel address

0 1 2 n
i

0

1

2

m

j

x

y

x

v
y

p

(n , m)

CHAPTER 4 METHODS & IMPLEMENTATION 59

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

where Nx , Ny
 and Nz are the number of elements in the mesh in the three different directions.

Equation (48) depends on the order of the voxels in the list. In this case it is assumed that the elements

are ordered as showed in Figure 4.27.

COLLISION HANDLING

The idea of the voxel address used in the collision detection is also used in the collision handling.

At this point the term pseudo-voxel is introduced as the imaginary voxel that has an address outside of

the defined mesh. When a collision is detected the address of the position of the vertex in the current

time step is found, thus finding the voxel or pseudo voxel containing the coordinate.

Every voxel has six bounding planes that can be intersected. But knowing that the point is inside the

voxel, and traveling outward three or more planes can be eliminated. By comparing the address of xt

with the address of xt+Δt the possible intersection planes can be identified. If two components of the two

addresses corresponding to the same axis are equal then there is no intersection through the planes

normal to the axis. If the two components are different, the sign of the difference decides which planes

to ignore. Figure 4.29 shows two two-dimensional examples with two pairs of addresses. The idea is to

identify the possible axis aligned intersection lines of a vertex travelling from one address to another.

Initially there are 4 possibilities but knowing the direction the vertex is travelling in a number of these

can be eliminated. In the example on the left the first component of both addresses are the same and

intersection lines normal to the first axis is eliminated. By looking at the second component the

direction of travel along the second axis can be determined. In this case the direction is negative and

one more intersection line can eliminated in this case the horizontal line above the address. In the

example on the right none of the corresponding components are equal and only two lines can be

eliminated based on the direction of travel. The eliminated lines are displayed as dashed lines on the

figure.

With the reduced list of planes the intersection ratios are calculated. The ratios are calculated in the

general case as follows

Figure 4.29: Half-space

0 1 2 3
i

0

1

2

3
(1,3)

(1,1)

(1,3)

(2,1)

j

0 1 2 3
i

0

1

2

3

j

adrt

adrt� t

adrt

adrt� t

60 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

 an =
Pn − xt
xt+Δt − xt

nn

(n = 1,2,3,...,N)

 (49)

where Pn is a point on the nth plane and N is the number of planes and nn is the unit normal of the

nth plane. This is actually a rather trivial task due to the fact that the mesh is axis aligned and the

formulation can be simplified by only considering the component of the vector not eliminated by

multiplying with the unit normal.

The lowest value of the intersection ratio identifies the plane where the intersection happens first. In

special cases there can be two or three minimum ratios. This happens when a point travels through an

edge or a corner of a 3D voxel or pseudo voxel. In these cases all the components corresponding to the

planes with minimum intersection ratios are identified as intersection planes.

The address is updated by adding or subtracting 1 from the address component corresponding to the

identified plane. The new address is used to retrieve a voxel or pseudo voxel. If the new voxel is solid

xt+Δt is projected to this plane and the address for the new position is calculated. In practice a slight

offset of the plane is used to make sure that the right voxel is returned.

Intersection detected.
Set address to
current position and
determine
intersection plane.

First intersection plane
is found, and address
updated. New address
is void. Search for
intersection planes with
new address.

Second intersection
plane is found, and
address updated. New
address is solid.

New position is
projected to
intersection plane.
Address of new point
is void. Collisions
handling finished.

xt xt� t xt xt� t xt xt� t xt xt� t

Figure 4.30: Collision example

First intersection plane
is found, and address
updated. New address
is void. Search for
intersection planes
with new address.

Intersection
detected. Set address
to current position
determine
intersection plane.

Second intersection
plane is found, and
address updated. New
address is solid.

New position is
projected to
intersection plane.
Address of projected
point is solid.
Position updated to
projected and
collision handling is
repeated.

xt

xt� t

xt

xt� t

xt

xt� t

xt xt� t

Intersecting plane
Current address

CHAPTER 4 METHODS & IMPLEMENTATION 61

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

If the address returns a void voxel then the position is updated and the collision handling has finished.

If not the entire process is run again starting from the address of the projected position.

The entire process is outlined as an example in Figure 4.30 and as a flowchart in Figure 4.31. Figure

4.32 shows a fabric draped over an arbitrary shape as a validation that the collision handling is

performing as expected.

Figure 4.32: Fabric draped over arbitrary shape.

Figure 4.31: Collision handling flowchart

Get address from xt+!t Skip to next vertexAddress return
solid voxel?

YES

NO

Get address from xt

Find possible
intersecting planes

Find minimum
intersecting ratio

Update address

Address return
solid voxel?

Project xt+!t to
intersection plane

Address return
solid voxel?

Get address from
xt+!t

YES

YES

Update xt+!t to
projected position

NO

NO

Get address from xt

62 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

CHAPTER 5 CASE STUDY

This chapter describes a case study of the software tool developed for this thesis. The entire software

flow is described from the set up of the mesh to the finished plaster model of a square slab supported by

a column at the centre. Two different versions of the software were used in this chapter. An initial run

with an early version of the software is used to prove concept and detect any potential improvements.

The result of this initial run is used to implement some changes in the software and some results using

the latest version are presented.

5.1 THE MODEL

This case study concentrates on a square slab supported by a single square column in the centre. The

design-space of the slab is a volume with the dimensions 12x12x0.5m. The column is 2x2m in plan.

(Figure 5.1)

The slab is loaded with a uniformly distributed load on the top surface. The elements immediately

beneath the loaded surface are defined as non-design space. The elements in the non-design space are

part of the structural analysis and therefore contribute to the stiffness of the structure, but cannot be

removed, as this would create a design unsuitable for carrying the distributed load.

As noted in chapter 4, the optimisation algorithm used in this thesis tends to cause asymmetric results

even though a symmetric outcome is expected. This problem arises because the nature of the algorithm

is to remove a certain number of elements. This can cause the algorithm to remove one element and

keep another with the same sensitivity value, based on the sequence in which they are evaluated. When

this happens the structure develops a tendency to emphasise the asymmetry in future iteration steps.

The tendency can be minimised by slowing down the optimisation process, thus allowing the algorithm

to ‘self-correct’. However when large problems are analysed an increase in the number of iteration

steps is undesirable.

Figure 5.1: Slab dimensions

CHAPTER 5 CASE STUDY 63

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

Symmetry planes can be used to eliminate this problem in some cases.

In this case study three symmetry planes have been used. The first two are easily implemented when

setting up the model. By introducing these planes the model can be reduced to a quarter size, which

also lowers the computational time and memory usage.

The two planes are parallel to the XZ and YZ planes respectively. The symmetry planes are

implemented by modelling only one half of the structure divided by the symmetry plane. Supports are

added along the edge of the mesh parallel to the planes. In the case of the XZ symmetry plane the edge

is constrained in the direction of the Y-axis, thus simulating the interaction with the non-existing half of

the topology. These symmetry planes are illustrated in Figure 5.2. The part of the volume that is

modelled is marked in red.

However this model features a third symmetry plane along the diagonal of the slab. Because of the

topology of the mesh this plane splits the element along the diagonal and the third symmetry plane

cannot be modelled the same way as the first two.

The left topology in Figure 5.3 illustrates the asymmetry across the diagonal.

Figure 5.2: Symmetry planes

Figure 5.3: Asymmetric (left) and symmetric (right) solution.

64 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

In this case study a small function that checks for symmetry at each iteration step was implemented in

the software. When the optimisation algorithm toggles a voxel on or off it performs the same action on

the element mirrored by the symmetry plane. This can be done using the voxel addresses introduced

for the collision handling (See chapter 4). The addresses of the voxels are unknown at this stage but can

be found using the index of the voxels as follows

 k = index
NxNy

⎢

⎣
⎢
⎢

⎥

⎦
⎥
⎥

 (50)

 j =
index − NxNyk

Nx

⎢

⎣
⎢

⎥

⎦
⎥ (51)

 i = index − NxNyk − Nx j⎢⎣ ⎥⎦ (52)

where index is the index of the voxel and Nn is the number of increments in the direction of the nth

axis. The variables i , j and k is the address of the voxel.

The mirrored voxel, found by negating the i and j component of the address, is forced to assume the

same state as the voxel it is a mirrored image of. This method forces the topology to be symmetric

across the diagonal, but does not reduce the computation time or memory usage as all elements is still

present in the model. The topology on the right in Figure 5.3 shows the results of an optimisation with

three symmetry planes.

The dimension of the volume after being reduced by symmetry planes is 6x6x0.5 m. This volume is

discretised in to a 60x60x10 mesh. Figure 5.4 shows a screenshot of the discretised volume in

FabricCast. The elements with orange edges represent the non-design space.

Figure 5.4: Model setup

CHAPTER 5 CASE STUDY 65

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

5.2 INITIAL RUN

The optimised structure presented in this section was created when the development of the software

was on going. This was done to test the concept and detect places where the software could be

improved. The test let to some changes in the optimisation algorithm and the simulation of the in-plane

forces of the fabric. In this early version of the software the optimisation algorithm was based on a

earlier version BESO (Huang et al., 2006). The mechanical properties of the fabric were simulated

using a simple mass-spring model.

The results presented below were created using this early version of the software.

OPTIMISATION

The optimisation starts from a full domain of solid

elements and gradually progresses toward a topology

with only 30% solid elements. The performance index

increases until iteration number 391 where the

optimisation process becomes unstable. At this stage the

removal of volume does not balance the increase in

compliance and the performance index starts to drop.

The optimisation algorithm at this stage has a tendency

to create checkerboard patterns (Figure 5.5). Updating the optimisation algorithm to a more recent one

(Huang and Xie, 2007) reduced the unstable behaviour and occurrence of checkerboard patterns.

The process of the entire optimisation is shown as a chart in Figure 5.6. The topologies shown are

turned upside down to display the shapes.

The structure with highest performance index had a volume fraction of 45.5%. This structure was used

for further manipulation (Figure 5.7).

Optimisation parameters:

RRV = 0.3
RRVi = 0.01
τ = 0.01%

Material properties:

Young’s modulus = 50000MPa
Poisson’s ration = 0.2

Figure 5.5: Checkerboard patterning

66 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

Figure 5.7: Iteration number 391

Figure 5.6: Optimisation process

CHAPTER 5 CASE STUDY 67

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

DRAPING

The next step was to drape fabric over the optimised shape and thereby determine the cut-out pattern

for the form-work.

The symmetry planes discussed earlier can also be used in the draping process by only modelling a

quarter of the fabric and constraining the fabric along the edges touching the planes. The edges at the

symmetry planes are constrained for displacement in the direction of the normals of the planes.

The diagonal symmetry plane was not used in the fabric simulation.

At this stage the mechanical properties couldn’t be modelled accurately, only relative stiffness values

could be input. A more precise material model was implemented after these tests were conducted.

Nonetheless the software produced a shape of the draped fabric that could be used to find the cut-out

pattern and thereby proving the concept.

FURTHER MANIPULATION

The fabric was exported to a VRML file that was opened in Rhinoceros where the cut-out pattern was

found using Boolean operations between the fabric and an intersecting plane placed by the user. At first

the fabric was mirrored two times thus recreating the full geometry that was eliminated earlier because

of the symmetry planes (Figure 5.9).Figure 5.11 shows the intersection plane placed just above the flat

part of the fabric. The intersection curve between the fabric and the plane defines the cut-out pattern

for the formwork. (Figure 5.10)

Figure 5.8: Fabric draped over optimised shape

68 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

SCALE MODELS

The result from this initial run of the optimisation and formfinding process was used to create a few

scale models using plaster.

The method used to cast the scale models was inspired by the techniques developed at CAST and used

to create the ‘star-capital-slab’ described in the introduction of this thesis.

A fabric was placed is placed on a flat base with a cut-out. The cut-out pattern defines the shape of the

slab by allowing the fabric to sag under the weight of the plaster. A circular plate, supported from

underneath, was placed beneath the cut-out to ensure that the sag of the fabric doesn’t exceed the

Figure 5.10: Cut-out pattern Figure 5.9: Bottom view of full model of fabric
inside Rhinoceros

Figure 5.11: Perspective view from Rhinoceros of intersecting plane and fabric

CHAPTER 5 CASE STUDY 69

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

boundaries of the design space. This plate is marked with yellow in Figure 5.12. The pieces marked

with blue are part of the cut-out pattern but had to be supported from underneath as well.

The formwork was made in timber and the cut-out pattern produced by the software tool was cut in a

sheet of MDF with a thickness of 6mm.

The scale of the plaster model is 1:12 and dimensions of the formwork are shown in Figure 5.12.

The pictures displayed in Figure 5.13 show the casting process of the plaster models. Picture (a) shows

the pieces of MDF that had to be supported underneath. On picture (b) the cut-out pattern was placed

on its supports. The fabric was placed on top of the cut-out pattern (c). The frame that goes on top of

the fabric created a tight seal against the fabric to prevent the plaster from running out (d). The frame

was placed with the seal on top of the fabric (e). At this stage in the process the fabric was stretched

until the desired pre-stress level was reached. The same formwork was used to create two models, one

with and one without pretension. The results of these two models are discussed later in this chapter.

When the pre-stress level is satisfactory the formwork was fixed using clamps (f).

The plaster was purred carefully in to the formwork (g) and the fabric sagged under the weight of the

plaster (h).

Figure 5.12: Formwork dimensions

Elevation

Plan

70 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.13: Casting process

CHAPTER 5 CASE STUDY 71

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.14: Plaster models

72 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

Figure 5.14 shows some pictures of the finished plaster models. Pictures (b), (c), (d) and (g) display the

plaster model cast without pre-tensioning the fabric. By not applying pre-tension the fabric was free to

move and behave as it pleases. Picture (g) clearly shows the consequences of these movements and

creases. In the case of this structure the creases appeared in a very unfortunate position. Picture (g)

shows some deep dents in the base of the cantilevering part of the structure thus reducing the cross-

section at the point where the highest moment capacity is needed.

Pictures (e), (f) and (h) shows a plaster model in which the fabric was pre-tensioned by hand. This

creates a very smooth surface without creases, but because of the pre-tensioning the fabric was not able

to sag very deep. Because of the stiff fabric used in the model the finished shape is not very distinct, only

the weight of the plaster forces the fabric to deform and stretch into shape.

Both models have their strengths and weaknesses. The desire is to have a model that sags down through

the cut-out without making undesired creases.

The problem with this initial run of the optimisation process was that the simulation of the fabric is far

from the real physical behaviour because of the material model implemented at this stage. The fabric

used for the model is much stiffer than the simulated fabric. That is why the fabric produces creases not

detected by the simulation.

5.3 FINAL RUN

This section presents the results from the most recent version of the software tool using the same model

used in the initial run presented above.

The production of the scale model revealed some issues with the software and some changes were made

to resolve them. The optimisation process was updated to a more recent one (Huang and Xie, 2007)

and the mechanical properties of the fabric were simulated using element deformation (Volino et al.,

2009) rather than the mass-spring system used in the initial run.

This section only displays the output of the software. The further manipulation of the data and the

creation of scale models are left for future work.

OPTIMISATION

In this final run the optimisation is started from two different

topologies referred to as A and B. The first is starts from a

domain full of solid elements as the initial run described

above (A) (Figure 5.4). The second starts from an initial

guess where approximately half of the elements are solid (B)

(Figure 5.15). This greatly reduces the computational time,

as a smaller number of elements have to be processes at

each iteration. Figure 5.15 also shows the tool HandleBox

that was used to set up the initial topology for the

optimisation.

Optimisation parameters:

rmin = 300 mm
RRV = 0.4
ER = 0.01
DR = 0.1
τ = 0.01%

Material properties:

Young’s modulus = 50000 Mpa
Poisson’s ratio = 0.2

CHAPTER 5 CASE STUDY 73

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

The optimisation algorithm should theoretically reach the same topology regardless of the starting

point, but this is not the case in this example. This suggests that the topologies found are not global

optima. This is due to the fact that starting the optimisation process at a guess close to the objective

volume does not allow the topology to evolve gradually towards an optimum. Some elements may not

be considered as part of the structure at any point in the process. Therefore it is argued that the

topologies achieved using an initial guess may not be optimal. Nonetheless the results of the

optimisation process show an increase in performance from the starting point to the ‘optimal topology’.

When the size of the problem gets big this may be a sacrifice worth making, considering the reduction

in computation time.

Figure 5.15: Initial guess of topology (B)

Figure 5.16: Optimisation process of (A)

74 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

Figure 5.16 shows the development of the topology from an initial guess of a full design domain to a

design with 40% material use. The initial big decrease in the performance index is due to the fact that

the sensitivity values of the elements are calculated on the basis an average between the current and the

previous iteration. The first iteration uses default values for the sensitivity values, but these values are

irrelevant after the first couple of iterations. After this point the performance index increases steadily

until the objective volume is reached at the 45th iteration. At this point the volume fraction starts to

oscillate around the objective value 0.4. Every time this value is passed the ER value is reduced and

the algorithm slowly converges. From this point the topology does not change substantially. The

convergence criterion is reached after 147 iterations.

The shape produced by the updated algorithm is a lot smoother than the shape produced by the initial

run. Also there are no indications of checkerboard patterns. The difference in the shape from the initial

run is due to the change in how the sensitivity values of the void elements are extrapolated from the

solid.

Figure 5.17 shows the optimisation process started from an initial guess at approximately 50% of the

total volume of the deign-space.

The fluctuations in the performance index are due to the considerable changes in topology between

iterations. The changes in the topology continue after the objective criterion has been reached. The

volume fraction stays steadily at 0.4 while the algorithm searches for a convergent state. Convergence is

reached after only 48 iterations. The performance index continues to increase after the objective

volume has been reached. This is due to the fact that no volume is added or removed only rearranged

at this stage.

Figure 5.17: Optimisation process of (B)

CHAPTER 5 CASE STUDY 75

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

DRAPING

Material properties for fabric are usually determined by tests. In the case of this study no material

properties for the fabric used could be found, therefore the properties are estimated by the author.

Young’s modulus of the fabric is set to 9000 MPa in both the weft and warp direction. The shear

modulus is 500 MPa and the bending stiffness 200 MPa. Poisson’s ratio is set to 0 in both directions as

it is assumed that no interaction between the fibres in the two directions occurs.

The fabric used for this simulation is much stiffer than the one used for the initial run. This eliminates

some of the problems with creases mentioned earlier at the cost of precision of the shape (Figure 5.18

and Figure 5.19). In the case of topology (A) the fabric bridges over the voids and they will not be

present in the cast shape. In both (A) and (B) the optimised shape will be exaggerated when cast using

the fabric formwork. The cast shape will still be an optimised shape, but to a lesser extent.

Casting the shapes is left for future work.

Figure 5.18: Fabric draped over topology (A)

Figure 5.19: Fabric draped over topology (B)

76 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

CHAPTER 6 CONCLUSIONS

This thesis has presented a specialised methodology for calculating and casting an optimised shape

using fabric formwork techniques. As part of this methodology a novel software tool (FabricCast) was

developed. FabricCast can be used to design optimised shapes that are economical both in

manufacturability and material usage.

A literature review showed that the research conducted in this particular area is very sparse, but also

showed a rising interest in the subject. Therefore an investigation in existing methods and the

development of new methods was necessary.

The case study in this thesis concentrates on the design of a slab supported by column in the center, but

the method could without much effort be extended to other types of boundary conditions or other types

of elements such as beams or panels.

As part of the software a customised topology optimisation algorithm based on known techniques was

implemented. The algorithm was customised in such a way that the optimised shapes produced could

be cast using fabric formwork techniques.

Different topology optimisation techniques were reviewed and the BESO algorithm was chosen for

further development because of the easy implementation into existing code. The ‘hard-kill’ nature of

the algorithm produces shapes with unambiguous definition of boundaries and therefore there was no

need to implement surface reconstruction algorithms. Due to the simple nature of the algorithm it was

easy to customise to produce the desired type of topologies.

Maximising the stiffness, i. e. minimising the mean compliance of the structure, was the driving force

for the optimisation algorithm. It could be desired that different optimisation objectives could be

implemented along with some constraint functions, such as minimum/maximum stress constraint, to

further improve the performance of the design. After this improvement has been implemented the next

logic step would be incorporate multi-objective optimisation techniques along with the ability to analyse

multiple load cases.

A simple isotropic material model was used in this thesis to simulate the mechanical properties of

concrete. This was done to simplify the problem with the argument that the goal of this thesis was to

propose a way to fabricate optimised shapes, not to develop a way to optimise reinforced concrete

elements. However a more accurate concrete material model would be preferable for future

development.

A verification of the ‘cast shape’ in terms of a structural and shape analysis is not performed in this

thesis. The geometry of the cast shape needs to be compared with the optimised shape to determine the

level of approximation in the method and the efficiency and manufacturability of the structure.

Furthermore for the structure to be cast in full scale a detailed structural analysis would be needed.

This could be an interesting study for future work.

CHAPTER 6 CONCLUSIONS 77

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

One aim of the thesis was to simulate a fabric draping over a solid shape to mimic the behaviour of a

real-life fabric. At first a simple mass-spring model was implemented but it later showed to be

inadequate and a more precise material model was used. The numerical integration technique called

Störmer-Verlet was combined with this to simulate the dynamic behaviour of the fabric with good

precision and stability. However the method suffers from the tendency to become unstable when a stiff

material is being simulated. This tendency was counteracted by reducing the size of the time step. By

reducing the time step the simulation gets slower and any real-time interaction is impossible. This is a

problem that needs to be solved for future development of the method.

The technique for calculating the out-of-plane forces due to the bending stiffness of the fabric used in

this thesis is computationally inefficient because it relies on calculating the vertex normals on the fly.

This is necessary to avoid the nodes of the fabric drifting tangentially, thus shrinking the fabric. The

speed of the simulation could be improved be implementing a faster technique.

The hydrostatic forces of the concrete along with the formwork help shape the design when casting in

non-rigid fabric formwork. The effect of the hydrostatic forces is not considered in this thesis, but it

could be interesting to incorporate this in the optimisation process to further improve the level of

accuracy of the finial design.

Draping fabric over a detailed model with a large number of elements also makes real-time interaction

impossible. This is the case even though a fast collision handling method, with a computational time

linear and proportional to the number of nodes in the fabric, was implemented.

When working with big models with a large number of elements, the fabric has to be simulated with a

corresponding number of elements to avoid the solid elements slipping through the fabric, as the

collision handling is based on the vertices of the fabric intersecting with the planes defining the

boundaries of the solid elements. The speed of the simulation could be improved by implementing

some of the space division techniques mentioned in the literature review.

The BESO algorithm relies on regular elements, thus the optimised shapes consist of an arrangement

of cubic elements and not a smooth shape.

A tendency of the fabric to be caught on the sharp corners of the optimised shape was observed. Using

smoothing algorithm such as, marching cubes, subdivision surfaces, Poisson smoothing or voxel centre

smoothing, etc. could help avoid this undesired tendency and easy the interactive process of the design.

However changing the topology of the solid mesh would influence the collision handling and the

method used in this thesis would no longer be valid. Standard collision detection, such as bounding

volumes and space division, could be implemented instead.

Another approach to avoid the fabric getting caught on the corners is to base the collision detection on

the faces of the fabric intersecting the solid, as oppose to the vertices of the fabric intersecting the solid.

After the shape has been formfound it is necessary to export it to another software to create the cut-out

pattern. An implementation of this task in the software tool would speed up the design process and

78 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

eliminate the need for additional software. This implementation would also make it possible to analyse

the cut-out pattern and use it as part of the formfinding process.

The manufacture method proposed in this thesis is working under the assumption that a single flat

sheet of fabric is used. A further development of the method could include the use of fabric cut-out

patterns to create a shape with larger precision. This does however complicate the manufacturing

process to a degree that might be undesirable, but nevertheless it is worth investigating further.

The software tool was developed using an object-oriented approach, which holds well with the different

parts of the software that needed to be developed. The elements of the mesh and their connectivity

information were easily stored as objects and the structure of the software was very intuitive due to the

object-oriented approach. This helped to speed up the development and results were quickly available.

The programming language used has multi threading capabilities and additional use of this, combined

with hardware acceleration, could drastically increase the speed of the optimisation, fabric simulation

and overall performance of the software.

A few design studies were realised using plaster scale model. These models drew attention to certain

characteristics of the method proposed.

Using the casting techniques discussed in this thesis a compromise between precision and

manufacturability has to be made. The optimised shape can be closely approximated when using a

fabric not under the influence of pre-stress forces. The shapes created using the non-pre-stress

approach closely resemble the optimised shape, but because the fabric is free to crease, undesired

aesthetics and structural shapes can emerge. Using an approach with a pre-stressed fabric avoids the

creasing but the cast shape is further from the optimised shape. Closer approximation of the optimised

shape with a pre-stresses design approach could be achieved by improving the fabric material model

and implementing the hydrostatic forces of the concrete and the cut-out pattern for the formwork as

part of the design process.

Overall a good base for a framework for the design and manufacture of optimised shapes cast using

fabric formwork has been created, but further validation and improvement of the method is necessary.

REFERENCES 79

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

REFERENCES

ANSYS. 2011. ANSYS [Online]. Available: http://ansys.com/ [Accessed October 2011].

AR, S. 2000. Self-customized BSP trees for collision detection. Computational geometry, 15, 91-102.

AUTODESK. 2011. Robot Structual Analysis [Online]. Available: http://usa.autodesk.com/robot-

structural-analysis-professional/ [Accessed October 2011].

BARBER, C. B., DOBKIN, D. P. & HUHDANPAA, H. 1996. The quickhull algorithm for convex

hulls. ACM Trans. Math. Softw., 22, 469-483.

BENDSØE, M. P. 1988. Generating optimal topologies in structural design using a homogenization

method. Computer methods in applied mechanics and engineering, 71, 197-224.

BENDSØE, M. P. 1989. Optimal shape design as a material distribution problem. Structural and

multidisciplinary optimization, 1, 193-202.

CAST. 2011. Centre for Architectural Structures and Technology [Online]. Available:

http://www.umanitoba.ca/cast_building/ [Accessed October 2011.

CUI, C., OHMORI, H. & SASAKI, M. 2003. Computational morphogenesis of 3D structures by extended ESO

method, Madrid, ESPAGNE, International Association for Shell and Spatial Structures.

CUI, C., OMORI, H. & SASAKI, M. 2005. Structural Design by Extended ESO Method. Joho Shori

Gakkai Shinpojiumu Ronbunshu, 2005, 149-156.

DOMBERNOWSKY, P. & SØNDERGAARD, A. 2010. Three-dimensional topology optimisation in

architectural and structural design of concrete structures. Symposium of the International Association

for Shell and Spatial Structures - IASS Universitat Politècnica de València (UPV): Editorial de la

Universitat Politécnica de Valencia.

EDWARDS, C. S., KIM, H. A. & BUDD, C. J. 2007. An evaluative study on ESO and SIMP for

optimising a cantilever tie-beam. Structural and multidisciplinary optimization, 34, 403-414.

ERICSON, C. 2005. Real-time collision detection : Christer Ericson, Amsterdam, Elsevier : Morgan

Kaufmann.

FUCHS, H., KEDEM, Z. M. & NAYLOR, B. F. 1980. On visible surface generation by a priori tree

structures. SIGGRAPH Comput. Graph., 14, 124-133.

GOTTSCHALK, S., LIN, M. C. & MANOCHA, D. OBBTree: A Hierarchical Structure for Rapid

Interference Detection. SIGGRAPH, 1996. 171-180.

GRINSPUN, E., HIRANI, A. N., DESBRUN, M. & SCHRÖDER, P. 2003. Discrete shells. Proceedings

of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation. San Diego, California:

Eurographics Association.

HUANG, X. & XIE, Y. M. 2007. Convergent and mesh-independent solutions for the bi-directional

evolutionary structural optimization method. Finite Elements in Analysis and Design, 43, 1039-

1049.

HUANG, X., XIE, Y. M. & BURRY, M. C. 2006. A New Algorithm for Bi-Directional Evolutionary

Structural Optimization. JSME International Journal Series C Mechanical Systems, Machine Elements

and Manufacturing, 49, 1091-1099.

80 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

JEPSEN, C. R., KRISTENSEN, M. K. & KIRKEGAARD, P. H. Flexible Mould for Precast

Concrete Elements. International Symposium of the International Association for Shell and

Spatial Structures (IASS), 2010 Shanghai. China Architecture & Building Press, 2726-2737.

JIANG, Y. 2010. Real-time cloth simulation based on improved Verlet algorithm

2010 IEEE 11th International Conference on Computer-Aided Industrial Design and Conceptual Design, CAID and

CD'2010.

KLOSOWSKI, J. T., HELD, M., MITCHELL, J. S. B., SOWIZRAL, H. & ZIKAN, K. 1998.

Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs. IEEE

Transactions on Visualization and Computer Graphics, 4, 21-36.

LARSSON, T. Fast and Tight Fitting Bounding Spheres. SIGRAD, 2008.

MAGNENAT THALMANN, N. 2010. Modeling and simulating bodies and garments, London, Springer.

MCNELL. 2011. Rhinoceros 4.0 [Online]. Available: http://www.rhino3d.com/ [Accessed October

2011].

MELE, T. V. & BLOCK, P. A Novel Form Finding Method for Fabric Formwork for Concrete Shells.

International Association for Shell and Spatial Structures (IASS), 2010 Shanghai.

NEALEN, A., MÜLLER, M., KEISER, R., BOXERMAN, E. & CARLSON, M. 2006. Physically

Based Deformable Models in Computer Graphics. Computer graphics forum, 25, 809-836.

NIKISHKOV, G. 2010. Programming finite elements in Java(tm), London, Springer-Verlag.

OHMORI, H., HIROYUKI, F., TOSHIHIKO, I., ATSUSHI, M. & YASUTOSHI, H. 2005.

Application of Computational Mophogenesis To Structural Design. Joho Shori Gakkai

Shinpojiumu Ronbunshu, 11, 45-52.

ORACLE. 2011. JAVA 1.6 [Online]. Available: http://java.com/ [Accessed October 2011].

PROCESSING. 2011. Processing 1.5.1 [Online]. Available: http://processing.org/ [Accessed October

2011].

PROSCENE 2011. Proscene.

QUERIN, O. M., STEVEN, G. P. & XIE, Y. M. 1998. Evolutionary structural optimisation (ESO)

using a bidirectional algorithm. Engineering computations, 15, 1031-1048.

QUERIN, O. M., STEVEN, G. P. & XIE, Y. M. 2000. Evolutionary structural optimisation using an

additive algorithm. Finite Elem. Anal. Des., 34, 291-308.

SAMUELSSON, A. & ZIENKIEWICZ, O. C. 2006. History of the stiffness method. International

Journal for Numerical Methods in Engineering, 67, 149-157.

SCHMITZ, R. P. Fabric-formed Concrete Panel Design. Architectural Engineering National

Conference, 2006 Omaha. 1-15.

SHIFFMAN, D. 2008. Learning Processing : a beginner's guide to programming images, animation, and interaction,

Amsterdam; Boston, Morgan Kaufmann/Elsevier.

VEENENDAAL, D. 2008. Evolutionary Optimization of Fabric Formed Structural Elements. Master, Delft

University of Technology.

VERLET, L. 1967. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of

Lennard-Jones Molecules. Physical Review, 159, 98.

REFERENCES 81

ANDREAS BAK MPHIL IN DIGITAL ARCHITECTONICS

VOLINO, P. & MAGNENAT-THALMANN, N. 2001. Comparing Efficiency of Integration Methods

for Cloth Simulation. Proceedings of the International Conference on Computer Graphics. IEEE

Computer Society.

VOLINO, P. & MAGNENAT-THALMANN, N. 2006. Simple linear bending stiffness in particle

systems. Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation.

Vienna, Austria: Eurographics Association.

VOLINO, P., MAGNENAT-THALMANN, N. & FAURE, F. 2009. A simple approach to nonlinear

tensile stiffness for accurate cloth simulation. ACM Trans. Graph., 28, 1-16.

WEST, M. 2011. Flat Sheet Formwork for Concrete Structural Slabs. Manitoba: University of

Manitoba, Centre of Architectural Structures and Technology.

WEST, M. & ARAYA, R. 2009. Fabric Formwork For Concrete Structures And Architecture.

International Conference on Texitile Composites and Inflatable Structures. Barcelona.

WIKIPEDIA. N. d. A list of finite element software packages [Online]. Available:

http://en.wikipedia.org/wiki/List_of_finite_element_software_packages [Accessed October

2011].

WILHELMS, J. & GELDER, A. V. 1992. Octrees for faster isosurface generation. ACM Trans. Graph.,

11, 201-227.

XIE, Y. M. 1993. Simple evolutionary procedure for structural optimization. Computers & structures, 49,

885-896.

YI-SI, X., LIU, X. P. & SHAO-PING, X. Efficient collision detection based on AABB trees and sort

algorithm. Control and Automation (ICCA), 2010 8th IEEE International Conference on, 9-

11 June 2010 2010. 328-332.

82 INTERACTIVE FORMFINDING OF FABRIC-CAST CONCRETE

UNIVERSITY OF BATH DEPARTMENT OF ARCHITECTURE AND CIVIL ENGINEERING

APPENDIX A – DVD

DVD CONTENTS:

• FabricCast Source Codea

• Case Study (Chapter 5)

• Pictures of the optimisation process

• TXT-Files with optimisation process data

• VRML file containing the draped fabric

• VRML file containing the optimised solid

• .mesh files with optimised topology (can be loaded using FabricCast)

