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Accident and emergency departments experience overcrowding due to staff shortages as well as to variations in patient 

arrivals and the time required to treat them. Several policies have been developed by hospitals to ensure that patients are 

not put at clinical risk during overcrowding. These policies suggest flexing nurses from different duties to the 

overcrowded section. However, the policies do not indicate the details of when exactly the flexing should be activated. 

We develop a mathematical model to find the optimum levels of triage and treatment queue lengths after which flexing 

should be activated. The performance indicators of the department are the waiting time targets and the disturbance due 

to nurse flexing. Because of the lack of closed-form formulations, we propose simulation optimization to solve the 

problem. By analyzing the model structure, we develop an efficient search procedure of the discrete solution space. We 
show the application of the proposed method using the data of a large hospital in the UK under different parameter 

settings. The results show that hospital management should focus on increasing the number of treatment nurses rather 

than flexing the nurses, and the queue of the service stream that requires tighter staffing should be controlled by an upper 

limit. 
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1. INTRODUCTION 

 

Accident and emergency (A&E) department are the first point of contact for most of complex and life-threatening cases 

such as heart attack, stroke, or loss of consciousness. In an A&E department, the severity of a case is initially assessed 

by a triage nurse, so a senior nurse, who categorizes them as major, minor, and life-threatening (Gunal & Pidd, 2006). 

The last category of patients (life-threatening) are treated immediately. Following triage, the other two categories of 

patients wait in the waiting areas to be seen by one of the clinicians.  Major cases are prioritized over minor ones, while 

both categories are served based on a first-come, first-served (FCFS) policy. 

Overcrowding is a significant problem in A&E departments (Proudlove, Gordon, & Boaden, 2003). Along with the 

overall increase in healthcare service demand, emergency unit arrivals rose by 28% between 2002 and 2017 in England 

(NHS England, 2018a). To improve the efficiency of A&E departments, the UK government introduced a 4-hour policy 

in 2004, requiring all patients in A&E to be treated within 4 hours of their arrival. In February 2018, the 4-hour target 
was suspended (NHS England, 2018b) but the hospitals are still obliged to report their A&E waiting times.  

Two significant causes of A&E overcrowding are the variations in demand and the time required to treat patients. 

These variations may result in very long waiting times and put patients' health and well-being at risk. To deal with the 

periods of overcrowding, the National Institute of Health and Care Excellence (NICE), the leading guidance and 

regulatory agency of the healthcare system in the UK, has suggested developing escalation protocols (National Institute 

for Health and Care Excellence (NICE), 2016). These protocols outline action plans for the crowding in A&E that may 

lead to excessive waiting times and delay life-saving treatments. A common escalation action is to flex the nurses between 

different units, e.g. triage and treatment, to relieve the bottlenecks (Back et al., 2017). On the other hand, flexing may 

cause disruption on to the service that the staff are flexed from and therefore, should be planned carefully.   

Although various possible actions are listed in the escalation plans, the triggers, i.e., when a specific action should 

be activated, is not provided with enough clarity and detail. Some hospitals define triggers based on total number of 
patients waiting in A&E or the number of arrivals (Portsmouth Hospitals NHS Trust, 2018). However, an aggregate level 

of utilization may not be an efficient indicator of a bottleneck located in a specific stream such as triage.  Besides, the 

triggers are, in practice, selected in a rather ad-hoc manner. Yet, the selection of the triggers is actually a complex 
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decision-making problem involving uncertainties in both demand and treatment time. Besides, such decisions should also 

take the interdependencies between the service streams into account.   

This paper proposes a simulation-based optimization approach to find the best trigger levels in different service 
streams of A&E. We specifically consider two performance measures to evaluate a solution: (i) the percentage of patients 

waiting more than a certain threshold and (ii) the possible disturbance due to flexing. We develop a simulation model of 

A&E services including a triage queue followed by a treatment queue. Due to the lack of closed form formulations for 

this type of queues, we solve the problem with a simulation optimization (SO) approach. We assume a time-dependent 

arrival rate to A&E. 

  To the best of our knowledge, this problem has not been studied yet. The contributions of the paper can be 

summarized as developing an efficient solution approach to find the best escalation trigger levels in an A&E. More 

specifically, the solution approach can find a good enough solution within a minute. We also conduct several 

computational experiments using the data of University Hospitals Coventry and Warwickshire in the UK to show the 

performance of the proposed approach and to investigate the impact of the model parameters. The proposed approach 

can be applied into any service with two successive queues and waiting time targets, such as bank branches. The paper 
is organized as follows. Section 2 provides the problem description and underlying assumptions along with the 

optimization model formulation. Section 3 details the proposed SO algorithm. In Section 4, we introduce the design of 

experiments and results. Finally, Section 5 provides a summary of the study as well as the future research directions.  

 

2. RELATED LITERATURE 

 

This section provides an overview of the related literature on the modelling of A&E department using simulation and 

optimization. SO utilizes simulation to find the performance of a solution and is especially useful for complex problems 

with no analytical formulation. The optimization within SO can be conducted through several algorithms such as random 

search (Andradóttir, 2006), response surface methodology (Barton, 2013), and heuristics like genetic algorithm (Yeh & 

Lin, 2007), tabu search (Henderson & Nelson, 2006).  

Mohiuddin et al. ( 2017)  review 19 studies related to simulation modelling for emergency departments in the UK. 
Another comprehensive review of simulation modelling studies in emergency departments for normal and disaster 

conditions can be found in Gul & Guneri (2015). Among 106 reviewed papers, only few studies consider an optimization 

approach (Ahmed & Alkhamis, 2009; Eskandari, Riyahifard, Khosravi, & Geiger, 2011; Feng, Wu, & Chen, 2017; 

Fruggiero, Lambiase, & Fallon, 2008; Ko, Song, Morrison, & Hwang, 2014; Rico, Salari, & Centeno, 2007; Weng, Cheng, 

Kwong, Wang, & Chang, 2011; Yeh & Lin, 2007). A common theme of the studies is to find the optimum number of 

staffing in A&E to minimize patient waiting times  (Feng et al., 2017; Ghanes et al., 2015) and medical resources wasted 

(T. L. Chen & Wang, 2016). Several authors (Ibrahim, Liong, Bakar, Ahmad, & Najmuddin, 2018; Rico et al., 2007; 

Weng et al., 2011) use OptQuest, an SO engine, to find the optimum staffing levels. Other simulation software utilized 

is IDS Scheer ARIS™ and Rockwell Arena (Wang, Guinet, Belaidi, & Besombes, 2009). Fruggiero et al., (2008) use 

ant-colony optimization along with a simulation model to optimize the resources in an emergency department. Distinct 

from the others, as well as modelling an A&E, Rabbani, Farshbaf-Geranmayeh, & Yazdanparast (2018) consider the 
departments interacting with the A&E such as radiology and pharmacy. They have used data envelopment analysis, a 

multi-layer perceptron artificial neural network, and radial basis functions for purposes of optimization. An emergency 

department is modelled by discrete-event simulation in Gul & Guneri (2012). By utilizing the DES model, they have 

compared the performance of various resource allocation scenarios. DES has also been used by Joshi & Rys (2011) to 

study the impact of arrival patterns on the performance of an A&E.  

Although there are plenty of studies utilizing SO for unconstrained models of A&E planning, the literature on the 

stochastic constrained problems is limited (Ahmed & Alkhamis, 2009; W. Chen, Guo, & Tsui, 2019; Diefenbach & 

Kozan, 2011; Guo, Gao, Tsui, & Niu, 2017; Zeinali, Mahootchi, & Sepehri, 2015). Guo et al. (2017) propose a search 

method based on computing the objective values of all possible solutions. This method would be very time-consuming 

on the problems where the objective function value can only be estimated through simulation models. W. Chen et al. 

(2019) present an SO method for optimization of medical staff allocation in an A&E. The objective of the model is to 

meet the target performance measures regarding the response times to critical patients. They utilize simulated annealing 
to solve the stochastic constrained, discrete optimization problem. Zeinali et al. (2015) develop a simulation model of an 

A&E to minimize the average waiting time for patients subject to budget and capacity constraints. They use meta-

modelling to replace the simulation model with an efficient metamodel to find the best medical staff configuration. 

Diefenbach & Kozan (2011) use a software, Extend and its optimization toolbox, to model the operations in an A&E and 

to optimize the bed configurations taking into account waiting time targets.  

 Ahmed & Alkhamis (2009) present an SO approach for capacity planning of an emergency department in Kuwait. 

They consider stochastic constraints in a problem with a discrete solution space. They also model and solve the 

optimization problem where the objective function is total cost of the staffing, and the constraints are the waiting times.  

Their algorithm first identifies a feasible set of solutions and then finds the best solution among those based on random 

sampling. In each iteration, they compare the objective value of the new solution to the previous one and accept the new 
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one if it surpasses a certain number of iterations. However, they do not provide any performance results for the proposed 

algorithm. Also, their method can be trapped into a local optimum.  

Instead of performing a random search as in Ahmed & Alkhamis, (2009), we explore the structural properties of 
the model to find the optimum solution efficiently. The heuristic approaches such as genetic or tabu algorithm are not 

effective to solve the problem presented in this paper because of its structural properties (i.e., monotonicity) investigated 

in Section 5. Finally, to the best of our knowledge, there is no study focusing on the flexing rules in overcrowded A&Es.  

 

3. PROBLEM DESCRIPTION AND MATHEMATICAL MODEL 

 

This section first describes the underlying problem as well as our assumptions and then introduces the mathematical 

formulation. We model the activities in a typical (major) A&E department in the UK (NHS UK, 2019) for a finite planning 

horizon. Note that we do not consider the single specialty cases such as ophthalmology or dentistry which go through a 

separate route (NHS England, 2018b).  With small modifications, the model can be applied to any other emergency 

department. As a patient arrives to the A&E, s/he is put into an FCFS queue for triage. A triage nurse categorizes the 

patient as major, minor, or life-threatening which group receives immediate care (Gunal & Pidd, 2006). Major and minor 

categories have separate queues for treatment while the major ones have priority over the minor. There are only certain 

number of treatment cubicles that contain special beds for major patients. When all treatment cubicles are full, the patient 

is kept waiting in some other place, e.g., a buffer ward or the triage waiting area. After the patients are treated, they are 

either discharged, referred, or admitted to the hospital. 

When the A&E is overloaded, an escalation plan is activated that involves flexing nurses between treatment and 

triage areas. However, the nurses who can be flexed, denoted with 𝑆, are the senior ones with multi-tasking that exist in 

limited numbers in A&Es, i.e. around 46% of all (Harper, Powell, & Williams, 2010). The escalation plan is activated 

when the queue for triage or treatment goes above certain levels. These levels are denoted with 𝛼 and 𝜃 for the triage and 

the treatment queues, respectively. When the triage queue length is above 𝛼, one of the flexible nurses 𝑠 ∈ 1, … , 𝑆 in the 

treatment is called to triage. The flexed nurse (in the treatment) that finishes her current task earliest answers the call and 

placed into triage as a new server. If the queue length is still above 𝛼, 𝑡̅ minutes after the flexible nurse started triage, 

another flexible nurse is called.  Similarly, when the number of major patients waiting for the treatment in the buffer area 

goes above 𝜃, one of the flexible nurses currently in triage is deployed to the treatment as a new server. If there are no 

flexible nurses left in the other service, then the call cannot be answered. When the length of the respective queue drops 

to zero, the flexed nurse(s) is deployed back to his/her original stream. Figure 1 shows the flexing rules for the triage 

queue, where 𝑄𝑡 represents the length of triage queue at period t. Same rules apply to the treatment queue. 

 

 

Figure 1. Flexing rules for triage queue 

 

Each time a flexible nurse is deployed to the other service, a disruption may occur as that nurse may be required to 

give some clinical information regarding the patients seen previously by him/her (Back et al., 2017). Therefore, the 

flexing should be minimized. Average number of times that a nurse is flexed during the planning period is denoted with 

𝑛. 

As mentioned earlier, an important performance measure is the percentage of patients staying more than 4 hours in 

the A&E. Let us 𝑊 denote the 95% upper confidence limit of the patients' length of stay arrived in the A&E within the 

planning horizon. The uncertainties affecting the waiting times are the arrival times, and the duration of both triage and 

treatments. Although arrival times can follow a time-dependent exponential distribution (Ahmed & Alkhamis, 2009), 

there is no consensus in the literature about the triage and treatment time distributions in A&E; triangular (Fletcher, 
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Halsall, Huxham, & Worthington, 2007), general (Izady & Worthington, 2012), exponential (Saghafian, Austin, & Traub, 

2015) and uniform (Ahmed & Alkhamis, 2009) distributions are used to model the A&E triage and treatment durations.   

The number of nurses involved in the triage and treatment during the planning horizon are denoted with 𝑥1 and 𝑥2, 

respectively. We assume that the staffing is fixed during the planning horizon, i.e., a single shift. The model can easily 

be extended to varying staff levels, by adding time-dependency to 𝑥1 and 𝑥2. Also note that we do not model the doctor 

levels in the A&E since they are not flexed between triage and treatment. Besides, the recent figures show that NHS has 

a bigger shortage of nurses than doctors (The Health Foundation, 2019). Therefore, possibly, the number of nurses is a 

bottleneck and defines the waiting times. If the number of doctors is not enough, that may create a bottleneck in the 

treatments. In such cases, doctors from other departments may be called on duty. However, this escalation activity is not 

the scope of this paper.  

A certain percentage, 𝜂 of patient arrivals are categorized as major. The number of major treatment cubicles is 

denoted with 𝑁.  We assume that the patients arrive to the A&E with the mean inter-arrival rate 𝜆𝑡 and standard deviation  

𝜎𝑡 at time period 𝑡. After registration, they wait in the triage queue and are assessed by a triage nurse under the FCFS 

rule. The mean triage time is 1/𝜇 with standard deviation 𝜎1. The average treatment time for major cases is 1/𝜇2 with 

standard deviation 𝜎2.  We assume that other medical activities required for the treatment such as laboratory tests are 

included in the treatment duration.  Finally, the target length of stay, i.e., 4 hours, is denoted with 𝑊̅. Below, we 

summarize several modelling assumptions.  

 

Assumptions: 

 

• A modelling choice is related to `boarding' which refers to the cases where an admitted patient is kept waiting 

in A&E due to the lack of available bed on the other hospital wards. However, since A&E beds are highly 

utilized and expensive resources, some hospitals put these admitted patients into `buffer' wards such as Critical 

Decision Units (Munir, 2008). Besides, the `boarding' process would require us to model all the bed utilization 

in all wards of the hospital which is beyond the scope of this paper.   

• The only escalation action considered in the model is the flexing of nurses. There may be other escalation actions 

such as discharging patients from beds or calling extra staff from other departments within hospital. However, 

these actions have serious disadvantages and are usually used if the flexing cannot handle the overcrowding 

(Back et al., 2017).  

• Another assumption is related to the patient categories. The major cases have priority over minors, and they may 

share the clinicians. Since the majors always have priority, take significantly longer to treat (Ahmed & 

Alkhamis, 2009) and breach the waiting time targets (Gunal & Pidd, 2006), we only model the waiting times of 

the major cases. In other words, even if we would model the queue for minor cases, it would not affect the 

waiting time performance significantly. This assumption is tested in Section 5.1. Besides, the NHS plans to 

impose the waiting time limits only for major instead of all patient groups (NHS, 2019).  

• There may be more complicated flexing rules such as re-deploying the nurses when queue lengths go below a 

certain level rather than zero. However, the escalation plans do not specify when the flexing should be stopped.  

 

3.1. Mathematical Model 

 

The A&E managers have two main objectives: (1) decrease the average frequency of the nurse flexing, 𝑛(𝛼, 𝜃), (2) 

maintain a reasonable performance measured by the waiting times, especially by 𝑊(𝛼, 𝜃). These two objectives conflict 

each other, i.e., if the nurses are flexed less, the waiting times will increase. The factors that the managers can vary to 

achieve these objectives are the queue limits at which flexing is activated; 𝛼 𝜖 𝛼𝑏 , … , 𝛼𝑓  and 𝜃 𝜖 𝜃𝑏 , … , 𝜃𝑓, where 𝛼𝑏, 

𝛼𝑓 and 𝜃𝑏 , 𝜃𝑓 represent the minimum and maximum possible levels for 𝛼 and 𝜃, respectively. These boundaries can be 

set based on the historical data of the queue lengths. The stochastic programming model can be defined as: 

 

min 𝑛(𝛼, 𝜃) , 
𝑠. 𝑡. 𝑊̅ ≥  𝑊(𝛼, 𝜃),                                  (1) 

 𝛼 𝜖 𝛼𝑏 , … , 𝛼𝑓 , 𝜃 𝜖 𝜃𝑏 , … , 𝜃𝑓 . 
  

In this model, the waiting times are limited with an upper bound, 𝑊̅, that can be set based on the waiting time targets 

of National Health Service (NHS) in the UK, such as 95% of patients should spend less than 4 hours in A&E. Note that 

both waiting times and the number of flexing are stochastic variables. In other words, the problem is a constrained 

problem with a stochastic objective function. To solve these models, we need to compute the waiting times for each 

patient arriving to the A&E. The exact computation of the waiting times is difficult even with fixed queue limits, 𝛼 and 

𝜃. The computational intractability is already shown for a queue of multiple servers with exponential arrivals and general 
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service time distribution (Tijms, Van Hoorn, & Federgruen, 1981). An alternative approach to compute the waiting times 

and the number of flexing is to use simulation modelling. The details of this approach are provided in the next section. 

 

4. SIMULATION OPTIMIZATION  

 
Our literature review shows that most of the SO studies employ built-in optimization packages within a commercial 

simulation modelling software program such as OptQuest in Simul8. These built-in packages are not very flexible and 

therefore, we design and implement an SO algorithm to solve the model proposed in the previous section. For this 

purpose, we first develop a simulation model of the A&E operations described in Section 3 and implement it on Matlab. 

Specifically, we model an FCFS queue for triage and move 𝜂% of the triaged patients to the treatment area which holds 

a limited number of patients 𝑁. If the treatment area is full, then the patients are put into another FCFS queue, defined as 

treatment queue. The planning period of the simulation is set to 𝑇 minutes, while the time unit is one minute. One iteration 

of the simulation model comprises 𝑧  scenarios in which uncertain parameters are randomly generated from the 
corresponding distributions. Below we explain the details of the SO approach.  

Note that the objective function (1) is monotonic with respect to each variable. To see the monotonicity, consider 

the case with a fixed 𝜃. As  𝛼 decreases, the amount of flexing would expected to increase. On the other hand, the length 

of the treatment queue may increase as nurses are flexed more often, which may result in even more flexing depending 

on 𝜃. Therefore, the number of flexing always increases where there is a decreasing of 𝛼. The same logic applies to the 

case where 𝛼 is fixed instead of 𝜃. Due to the monotonocity, we do not need to search for the optimum solution randomly 

as in Ahmed & Alkhamis, (2009); we can use line search methods. Let us show the solution space with a matrix,  

 

𝐻 = [
𝛼𝑏 , 𝜃𝑏 ⋯ 𝛼𝑏 , 𝜃𝑓

⋮ ⋱ ⋮
𝛼𝑓 , 𝜃𝑏 ⋯ 𝛼𝑓, 𝜃𝑓

]. 

 

Note that since the objective function is monotonic in the model, for a fixed row 𝐻, the optimum solution is always 

in the last column for an unconstrained version. Similarly, for a fixed column, the optimum solution is always in the last 

row for an unconstrained version. Therefore, the search for the optimum solution should always be in the last row and 

the last column of the matrix 𝐻. However, if none of the solutions in these edges are feasible, then the search should 

move into the next column or row.   

Since the objective function is monotonic, we can also use section search methods with respect to each variable. 

Once the optimum solution is found for one variable (while the other is fixed) and vice versa, we can compare the 

optimum objective values of each and choose the solution that gives the minimum of two objective values. For a fixed 

decision variable, we conduct a bisection search on the feasible range of the other variable to find the minimum objective 
function value while satisfying the waiting time constraint (1). Note that since the decision variables are integer, the 

smallest value they can take is 1; 𝛼𝑏 = 1. The largest value, 𝛼𝑓 can be determined by the decision-makers as a large 

enough value based on the historical data where queue lengths are recorded. A bisection search divides the variable range 

into two halves at each iteration and the feasibility of the new boundaries are then checked. 

For the sake of clarity, let us consider finding the optimum 𝛼 level. Note that 𝜃 is first fixed to its maximum value, 

𝜃𝑓 since we know that the optimum solution is on the edges of the feasible solution space.   The aim is to find 𝛼 level 

that satisfies (1) with minimum 𝑛. First, the infeasible and feasible bounds are set to 𝛼̅ = 𝛼𝑓  and  𝛼 = 𝛼𝑏 . The number 

of iterations, denoted with 𝐼 is set to a large enough number based on the ranges of variables, thus, the possible number 

of iterations. In each iteration 𝑖 = 1, … , 𝐼 of the algorithm, first 𝛼𝑖 is set to ⌊(𝛼 + 𝛼̅)/2 ⌋ and 𝑊(𝛼𝑖) and 𝑛(𝛼𝑖) are found 

with the simulation. If (1 − 𝜀) % of the patients' total waiting time is lower than 𝑊̅, then 𝛼 = 𝛼𝑖, otherwise, 𝛼̅ = 𝛼𝑖. 

Therefore, the solution range is divided into two at each iteration. The search stops when 𝛼̅ = 𝛼 and the resulting 

objective function values for all scenarios 𝒏𝛼 are reported. If there is no feasible solution in this range, then the same 

procedure is repeated for a fixed 𝜃𝑓 = 𝜃𝑓 − 1.  
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Figure 2. The pseudo-code for Simulation Optimization algorithm 

 

In the next phase, the model is solved for 𝜃 with a fixed 𝛼𝑓 following the same steps. After the optimum 𝜃 is found, 

the objective function values 𝒏𝛼 and 𝒏𝜃 are compared with a statistical significance test. If 𝒏𝜃 is statistically significantly 

higher than 𝒏𝛼, then the optimum solution is (𝛼𝑓 , 𝜃𝐼); otherwise, it is (𝛼𝐼 , 𝜃𝑓).  Algorithm 1 presents the pseudo-code of 

the SO algorithm for the model.  

The computational time of the algorithm depends on the running time of the simulation model, and thus, the number 

of scenarios in the simulation and the length of the planning period 𝑇. As the number of scenarios increases, the 
robustness of the solution obtained by the algorithm increases as well.  For a reasonable size of variable ranges of 40, the 

number of iterations would be 6 for each decision variable, leading to 12 runs of the simulation model, where each run 

has a fixed number of scenarios, 𝑧. On the other hand, the enumeration of all possible solutions would require running 

the simulation model 1600 times. Therefore, the algorithm is expected to significantly decrease the computational time 

required. 

 

  5. COMPUTATIONAL EXPERIMENTS 

 

The computational experiments aim to illustrate the performance of the SO algorithm as well as the impact of several 

model parameters on the results. For this purpose, we design two sets of computational experiments. The first set of 

experiments provides the results of the model under different parameter settings. The second set of experiments analyses 

the performance of a particular solution with respect to queue dynamics. All computational experiments are carried out 
on a PC with a Windows 10 Enterprise operating system, CPU 4GHz Intel Core i7 and 32GB of RAM. 

 

5.1. Input Data 
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We use the hourly arrival data of University Hospitals Coventry & Warwickshire provided in the online resources of the 

NHS UK (NHS UK, 2018) and presented in Appendix Error! Reference source not found.. The rest of the data are 

presented in Table 1. The distribution of inter-arrival times is assumed to be exponential for each hour (Ahmed & 
Alkhamis, 2009). We have considered the planning horizon as the day shift, i.e., 8 am. - 6.30 pm. which has the same 

number of nurses throughout.  The average treatment and triage times are obtained from (Ahmed & Alkhamis, 2009) and 

are assumed to follow an exponential distribution (Saghafian et al., 2015). To ensure validity, we have also examined the 

results obtained by assuming a uniform distribution for treatment and triage time and observed no significant impact on 

the distribution on the results. 

Some of the data specific to the hospital are collected through mining expert opinion and in person visits to the 

hospital. Other parameters such as number of triage, treatment and flexible nurses vary in different seasons of the year, 

and thus, we conduct the experiments for a plausible range of these parameters estimated by experts. The number of 

scenarios in each simulation run is 500. Finally, 𝜀 is set to 0.05 throughout the experiments. 

 

Table 1. Input data for model parameters used in the numerical experiments. 

 

Description of Parameter Value Source of Data 

A&E arrival rates Time-dependent (NHS UK, 2018) 

Mean triage duration 15 min. (Ahmed & Alkhamis, 2009) 

Mean treatment duration 90 min. (Ahmed & Alkhamis, 2009) 

Number of treatment beds 12 Expert opinion 

Buffer period between consecutive 

flexing 
15 min. Expert opinion 

Waiting time limit 4 hours (NHS England, 2018b) 

Percentage of major patients 61% (Ahmed & Alkhamis, 2009) 

Ranges for variables ([𝛼𝑓, 𝛼𝑏], [𝜃𝑓, 𝜃𝑏]) [4, 40], [4, 40] Expert opinion 

 

5.2. Validation 

 

The outputs of the simulation model are compared with the real data to ensure that the simulation model reflects the 

actual process.  Specifically, we obtain the simulation results of percentage of patients staying less than 4 hours, average 

length of stay, and average time to triage from arrival. The real values of those parameters in 2017/2018 are collected 

from NHS England (2019), NHS UK (2018), and Ashraf (2019), respectively. Since these data sources have not 
differentiated the performance measures with respect to major and minor patient groups, we also obtain the results for 

these two patient groups combined. The number of triage, treatment and flexible nurses are assumed to be 6, 24, and 2, 

respectively. The real data and the simulation outputs (the mean and ± standard deviation over the scenarios) are 

presented in Table 2Table 2. The comparison of two sets of outputs indicates that the model is a good representation of 

the real-life setting.  

 

Table 2. Comparison of real data and the simulation results for model validation 

 

 % staying < 4 hours Mean length of stay (min.) Mean time to triage (min.) 

Real 79% 164 9 

Simulated 80% ± 0.44 168 ± 2.59 9 ± 0.19 

 

 

5.3. Results 

 

The initial available nurse levels, 𝑥1and 𝑥2, as well as the number of overall flexible nurses, 𝑆, may affect the solution 

significantly. Table 3Table 3 presents the solutions and the objective function value 𝑛 along with the relevant ± standard 

deviation obtained by solving the model using SO for various levels of these parameters.  We can report that the 

computational time of the algorithm is less than 1 minute in all parameter settings. 

 

Table 3. Sensitivity analysis with respect to the numbers of initial and flexible nurses 

 

 S 

Scenario 𝒙𝟏, 𝒙𝟐 4 6 8 

1 6, 24 𝛼 = 7 21.5 ± 3.16 𝛼 = 7 22 ± 2.84 𝛼 = 10 20 ± 2.52 

2 7, 23 𝛼 = 7 16.1 ± 1.02 𝜃 = 7 23.5 ± 1.89 𝜃 = 15 25 ± 3.05 



Gokalp Dynamic Nurse Deployment in A&E 

 

8 

 

3 8, 22 𝛼 = 7 18 ± 2.21 𝜃 = 7 20 ± 1.89 𝜃 = 8 24 ± 1.65 

 𝜽 𝒏 𝜽 𝒏 𝜽 𝒏 

4 10, 20 - - - - 8 11 ± 4.58 

5 10, 21 8 2.61 ± 0.2 15 2.28 ± 0.18 18 2.89 ± 0.24 

6 10, 22 7 2.2 ± 0.2 14 2.13 ± 0.19 17 2.95 ± 0.21 

 𝜶 𝒏 𝜶 𝒏 𝜶 𝒏 

7 5, 26 7 5.5 ± 1.01 18 10 ± 0.8 20 10 ± 0.79 

8 6, 26 7 2.4 ± 0.02 37 2.5 ± 0.01 37 2.9 ± 0.09 

 

The flexible nurses are distributed equally between the treatment and triage initially, i.e., if there are four flexible 

nurses, 2 of them are included in 𝑥1and 𝑥2. The first three scenarios in Table 3Table 3 show the cases where total number 

of nurses is kept at 30, whereas scenarios 4 to 6 are for the cases with varying 𝑥2 levels. Finally, scenarios 7 and 8 only 

differ in 𝑥1. Due to the structure of the solutions, only one variable attains a varying level (between its maximum and 

minimum) while the other is at its maximum. For scenarios 4 to 6, the optimum solution was always defined with 𝜃 and 

𝛼𝑓while in scenarios 7 and 8, it was defined by only 𝛼 and 𝜃𝑓. In scenario 4, the model was infeasible for 𝑆 = 4, 6. 

Below, we analyze the results based on the effect of the initial and flexible nurse levels. 

 

5.3.1. Effect of initial nurse levels 

  

• Due to the high 𝑥1and limited 𝑥2 in scenarios 4 to 6, the solution depends only on 𝜃. We observe a similar 

phenomenon in other experiments, the queue of the service stream that has more limited staff is kept under 

control to reach the waiting time target.  

• Scenarios 7 and 8 show that a change in 𝑥1 has a very significant effect on the solution, as different from a 

change in 𝑥2.  

• As the total number of nurses is increased, the objective value decreases. On the other hand, for the same number 

of total nurses (scenarios 1 to 3) and for fixed 𝑥1 levels (scenarios 4 to 7), we do not see a significant difference 

in the objective function level for the same 𝑆 levels. However, this does not hold for scenarios 7 and 8, where 

the objective value significantly decreases as 𝑥1 increases. This again shows the significant effect of the level 

of 𝑥1. 

 
5.3.2. Effect of number of flexible nurses 

    

• The trend with respect to 𝑆 exhibits a nonlinear fashion and depends on initial staff levels. When the triage nurse 

level is limited, as in scenario 1, the increase in 𝑆  from 4 to 6 does not affect the solution, whereas increase 

from 6 to 8 affects. Finally, when the treatment nurse is more limited (scenario 3), the change in 𝑆 does not 

affect the solution significantly, probably because all the flexible nurses are used in all settings in this scenario. 

In scenarios 5 & 6, we see that as 𝑆 is increased, 𝜃 also increases, indicating that a more flexible control is 

enough when there are more flexible nurses. 

• Scenarios 5 and 6 have very close solutions for a fixed 𝑆. This indicates that increasing the treatment nurses 

from 21 to 22 does not affect the solutions significantly, possibly a larger increase is needed to see any significant 

effect.  

• The objective function values are affected by 𝑆, the initial nurse levels and the solution. For example, the value 

of the objective function does not change for different 𝑆 in scenarios 1 to 3, even though the solutions differ. On 

the other hand, in scenarios 7 and 8, the objective function value depends significantly on the solution. In 

scenarios 4 to 6, the increase in 𝑆 from 6 to 8 results in a slightly higher objective function value. The main 

reason is that as there are more flexible nurses, then further flexing may not be necessary as the queue may start 
decreasing soon after. Note that the rule on re-flexing, i.e., after the queue goes to zero, has an impact on this 

observation.   

 

In summary, the results indicate that A&E managers should put an upper limit on the queue of the section that has 

more limited staff. Another suggestion would be focusing on increasing the level of triage or treatment nurses instead of 

having more flexible staff. The results presented in Table 3Table 3 can be utilized by the A&E managers in several ways. 

First, they can compare the cost of increasing the number of triage or treatment nurses with the improvement which such 

a change would bring. Alternatively, they can set a certain upper threshold on the number of changes, 𝑛, and find the best 

staffing levels and queue limits to satisfy this threshold. 

Next, we evaluate the performances of several solutions by running the simulation model for 1000 scenarios with 

the corresponding solution. Figure 3Figure 3 and Figure 4Figure 4 show the lengths of two queues along with the planning 

horizon for different 𝛼 and 𝜃 levels (while the other is at its maximum level), for scenarios 1 and 6, respectively, and 
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with 𝑆 = 6. Note that the purpose of the second set of experiments is to present the queuing dynamics of A&E instead 

of comparing the results obtained in different scenarios. Since we would like to show the impact of changing both 

variables (𝛼 and 𝜃) on the queue dynamics, we have chosen two scenarios where 𝛼 and 𝜃 appear in the optimum solution, 

respectively. Another reason for choosing Scenario 1 is because its nurse staffing levels is the closest match with the 

actual situation. The solid and dashed lines respectively, show the average and ± standard errors of the queue lengths 

over all scenarios. The time horizon of these simulation runs is kept longer than the previous runs to be able to show the 

stable trend in queue lengths.   

 

 
 

Figure 3. Simulation outputs (average and confidence interval) of the length of two queues for different α levels 

 

Figure 3 shows that the triage queue length stabilizes around the threshold level 𝛼, except where 𝛼 is large. The 

treatment queue increases slightly but stabilizes after a while. However, treatment queue on average is higher for a larger 

𝛼. This result seems counterintuitive but is due to the flexing rules. For a larger 𝛼, flexing is made when the triage queue 

is already longer. Therefore, after the flexing, the time to send back the flexed nurse is longer which results in a slightly  

larger queue on the treatment service. 

 



Gokalp Dynamic Nurse Deployment in A&E 

 

10 

 

 
 

Figure 4. Simulation outputs (average and confidence interval) of the length of two queues for different θ levels 

 

Similar to Figure 3, Figure 4 shows that treatment queue length is stabilized around 𝜃 level, except where 𝜃 is large. 

As different from the previous figure, triage queue shows a stable behavior in different 𝜃 levels. This is probably due to 

the high level of 𝑥1 that is not significantly affected by the flexing. 

 

6. CONCLUSION 

 

The crowding in A&Es is a major problem in the UK. Hospitals have developed escalation policies to resolve 

overcrowding. A common escalation action is to move nurses to a crowded section. However, the levels of crowding 

after which the flexing needs to be introduced is a complex decision-making problem. This paper proposes a simulation-

based optimization approach to find what length of queue provides a trigger event. By exploiting the model structure, we 

develop an efficient solution algorithm that can solve the model within a minute, i.e., the simulation-optimization results 

are obtained within a minute.  

We conduct experiments for several scenarios in which the initial and flexible nurse levels are varied. The results 

show that the queue of the service that has a more limited staffing level should be controlled more tightly. We also see 

that the impact of changes in the triage nurse levels is more significant compared with that of the treatment nurses. Also, 

the increase in the number of flexible nurses is not always better and may require optimizing the re-flexing rules, i.e., 

when to send back the flexed nurse. The proposed method can be applied to any A&E with small amendments in the 
simulation model if necessary. The input dataset for the simulation model and the algorithm can be extracted from the 

historical data of the corresponding A&E.  Then, the A&E’s Operational Manager can enter the data and run the algorithm 
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(directly in Matlab or using another interface designed for the purpose) when the nurse assignments for that day are ready 

and finalized, i.e., one or two days before the actual day of implementation. The algorithm would then provide the 

optimum queue trigger levels within a minute. When the respective day comes, these levels are used for the escalation 
rules presented in Figure 1. Due to the short computational time of the algorithm, even last-minute changes on the nurse 

schedule can be accommodated; the algorithm being then re-run to obtain the new solutions based on the most recent 

change in the nurse schedule. 

Future studies may aim to find the optimum re-flexing rules, as well as modelling more escalation policies such as 

speeding the discharge process and comparing these alternative policies. Another line of research would be to incorporate 

more complexities into the treatment phase such as laboratory testing or the number of physicians. Finally, the approach, 

i.e., using simulation-optimization to find best queue trigger limits, can actually be applied to even more than two queues 

by simulating the additional queues as well. However, the structural properties (e.g., monotonicity) of this new problem 

need to be analyzed to see whether simulating a limited number of solutions (as in the two-queue case) would still be 

enough or not. This case can be the focus of the further studies.  
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APPENDIX 

 

Table 4. Average number of total arrivals to UHCW in 2017/18 

 

Hour Arrivals 

9 am. 12370 

10 am. 13390 

11 am. 13815 

12 pm. 13225 

1 pm. 11965 

2 pm. 11655 

3 pm. 11845 

4 pm. 11065 

5 pm. 10865 

6 pm. 11095 

 


